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Abstract

A collection of hybrid projection approaches are proposed for approximating the response

of stochastic partial differential equations which describe structural dynamic systems. In this

study, an optimal basis for the approximation of the response of a stochastically parametrised

structural dynamic system has been computed from its generalised eigenmodes. By apply-

ing appropriate approximations in conjunction with a reduced set of modal basis functions,

a collection of hybrid projection methods are obtained. These methods have been further

improved by the implementation of a sample based Galerkin error minimisation approach. In

total six methods are presented and compared for numerical accuracy and computational effi-

ciency. Expressions for the lower order statistical moments of the hybrid projection methods

have been derived and discussed. The proposed methods have been implemented to solve two

numerical examples: the bending of a Euler-Bernoulli cantilever beam and the bending of a

Kirchhoff-Love plate where both structures have stochastic elastic parameters. The response

and accuracy of the proposed methods are subsequently discussed and compared with the

benchmark solution obtained using an expensive Monte Carlo method.

Keywords: Stochastic differential equations; eigenfunctions; Galerkin; finite element; pro-

jection methods; reduced methods.

1 Introduction

The analysis of complex stochastically parametrised engineering structures has recently received

significant interest. One of the main factors affecting the analysis is the computational cost associ-

ated with computing the response of a system. This can be mainly attributed to the dimension of

the structure under consideration. In order address this issue, this paper proposes and compares

a set of projection methods that approximates the response of dynamic structures with stochastic

parameters.
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In this work, stochastic linear damped structural dynamic systems are considered. The stochas-

tic parameter associated with our governing hyperbolic partial differential equation can be char-

acterised by a random parameter a(x, θ) on a bounded domain on Rd and a probability space

(Θ,F , P ), where θ ∈ Θ is a sample point from the sampling space Θ, F is the complete σ-algebra

over the subsets of Θ and P is the probability measure. The displacement function of the system

is given by u(x, t, θ). x ∈ Rd represents a spatial position vector where d is the number of spatial

dimensions and t ∈ R+ represents the time. Through the use of well established stochastic finite

element methods, a set of discretised linear equations can be obtained to represent the partial

differential equations. Numerous methods have been suggested in order to solve or approximate

the solution of the discretised set of equations.

Direct Monte Carlo simulation has been widely used in collaboration with stochastic finite

element methods to generate the system response at an arbitrarily large number of sample points

covering the input parameter space, following which the lower order statistical moments of the

quantities of interest are calculated [1, 2]. However this method is not favoured for the simulation

of large systems. This is due to the convergence of the direct Monte Carlo simulation being slow

with increasing dimension and associated variance of the input stochastic space. In addition to

this, computing the exact solution of a high resolution finite element model at every sample point

render the method extremely expensive. Several approaches have been proposed to reduce the

computational effort. These include centroidal Voronoi tessellations [3], quasi Monte Carlo [4, 5],

Latin hypercube sampling [6], multilevel Monte Carlo [7], derivative-driven Monte Carlo estimators

[8] and subset simulation [9].

Expansion based methods have been explored for approximating the response of the discretised

set of equations. The perturbation method expands the stiffness and mass matrices, the forcing

vector, and the response vector associated with the stochastic finite element method in terms

of a truncated Taylor expansion [10, 11]. However, the magnitude of the coefficient of variation

associated with this method must be restricted [1]. If the coefficient of variation is increased,

additional error may be induced. It has been shown that by combining a Taylor expansion with

component mode synthesis, an efficient and accurate representation of the modes of a dynamic

stochastic finite element structure can be obtained [12]. A method which is computationally

competitive with respect to the perturbation method has been suggested by [13]. The proposed

Approximate Principal Deformation Mode (APDM) approach utilises the fact that a systems’

stiffness matrix can be expressed as a linear function of the uncertain parameters. Consequently, the

APDM method can produce more accurate results for higher values of the coefficient of variation.

This method has subsequently been used as a foundation for other uncertainty analysis methods [14,

15]. The Neumann expansion method has also been applied to approximate the response vector [16].

This is achieved by expanding the inverse of the random matrix in a binomial type series. Numerous

methods have been proposed based upon the Neumann expansion. [17] utilises the Neumann

expansion to invert complex valued stiffness matrices whilst [18] proposes an acceleration technique

in conjunction with the Neumann expansion. By utilising partial bivariate decomposition and
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successive matrix inversions [19], Ref. [20] has proposed a method to improve the computational

efficiency of the Neumann expansion method.

Another class of methods for solving such problems are projection schemes. By utilising

Wiener’s 1938 work [21], [22] proposed a polynomial chaos expansion (PCE) for stochastic finite

elements. This method produces a linear combination of Hermite polynomials and undetermined

deterministic coefficients. A generalised form for the PCE was subsequently published by utilising

functions from the Askey family of polynomials [23, 24]. The PCE approach has been widely used

in numerous fields including structural dynamics [25], heat transfer [26] and fluid dynamics [27].

Due to the large computational cost associated with the PCE, numerous cost saving approaches

have been suggested [28, 29]. Sparse polynomial chaos expansions have been wildly used as a

surrogate for full models [30, 31]. A stepwise regression method has recently been suggested to

build a spare polynomial chaos [32]. The PCE approach has influenced many other recent works.

Ref. [33] has analysed the compressive sampling of polynomial chaos expansions, whilst a random

discrete L2 projection on polynomial spaces has also been proposed [34].

Model order reduction techniques, which include proper orthogonal decomposition [35, 36],

balanced model reduction [37] and reduced basis [38, 39] have received attention in recent years.

Comprehensive reviews of these techniques have been conducted in [40, 41]. Ref. [42] and [43]

have suggested adaptive reduced basis strategies in order to ensure a prescribed level of accuracy

for a given output. These adaptive reduced basis methods have embedded a goal-oriented error

assessment within their proposed methods. Techniques based upon stochastic response surfaces,

where the quantities of interest are computed for certain θ ∈ Θ, have also received significant

interest in recent years [44, 45, 46]. We refer the reader to [47, 48, 49] for a more comprehensive

review of the field and the literature.

The random eigenfunction expansion method has been utilised in [17] to formulate a reduced

random basis. In turn, Galerkin methods have been used in conjunction with eigenfunction pro-

jections to analyse the response of structures which are subjected to both a static load [50] and a

dynamic load [51]. However questions still exist regarding the exact nature of these projections.

As a result, this study proposes a set of novel hybrid forward uncertainty propagation methods

to perform a harmonic analysis of structural systems. Novel improved hybrid solution techniques

have been proposed as an extension to the projection methods. These approaches have been in-

corporated by applying a multiplicative sample based Galerkin method. This addition aims to

lower the induced error. All the proposed methods have been applied to two example problems i)

the bending of a cantilever beam ii) the bending of a Kirchhoff-Love plate. Both structures have

been discretised and include random parameters. The proposed methods are subsequently dis-

cussed and compared through the use of lower order statistical moments and appropriate relative

error estimates. Through the use of the relative error estimates, the open questions that surround

the hybrid uncertainty propagation methods can be addressed by identifying an optimal reduced

projection.

A short overview of the stochastic finite element method is given in Section 2 and three projec-
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tion methods are presented in Section 3. Methods for reducing the computational effort associated

with the proposed methods are discussed in the proceeding sections. Section 4 discusses a method

for approximating the random eigensolutions associated with the methods, whilst Section 5 dis-

cusses a modal reduction. A sample based Galerkin error minimising technique is presented in

Section 6 for each of the proposed methods. Expressions for the response moments of the different

projection methods are discussed in Section 7. Section 8 provides a summary of the proposed meth-

ods. The approaches are then compared by applying the methods to a one dimensional stochastic

Euler-Bernoulli cantilever beam and to a stochastic Kirchhoff-Love plate in Section 9. A summary

of the results and the major findings are presented in Section 10.

2 The stochastic finite element method

2.1 Discretisation of the random field

In order to proceed with the stochastic finite element method, it is necessary to discretise the

random field that is associated with the governing equation. We consider the stochastic parameter

a(x, θ) to be a Gaussian random field with a covariance function Ca : D × D → R defined on

the domain D. The covariance function is positive definite, symmetric and square bounded. The

random field a(x, θ) can be expressed by a truncated Karhunen-Loève series expansion. This

expansion is achieved by performing a spectral decomposition of the covariance function of the

field

a(x, θ) = a0(x) +

M∑
i=1

√
λ̃iξ̃i(θ)φ̃i(x) (1)

where a0(x) corresponds to the mean function of the random field and ξ̃i are uncorrelated standard

random variables. As the random field under consideration is Gaussian, the random variables are

deemed as uncorrelated standard normal random variables with zero mean and a unit variance. λ̃i

and φ̃i(x) correspond to the eigenvalues and eigenvectors satisfying the following Fredholm integral

equation of the second kind

∫
D

Ca(x1,x2)φ̃j(x1) dx1 = λ̃jφ̃j(x2) ∀ j = 1, 2, ... (2)

If the eigenvalues rapidly decay, the value of M could be kept relatively small in order to obtain an

accurate depiction of the Gaussian random field. However as the correlation length of the process

tends to zero, the number of terms required to obtain an accurate representation would increase.

2.2 Formulating dynamic systems in the frequency domain through fi-

nite element modelling

The methods of obtaining the discretised random form of the governing partial differential equations

are well-established in stochastic finite element literature. By utilising the finite element method

the equations of motion for a multiple-degrees-of-freedom structural vibration problem can be
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expressed as

M(θ)ü(t) + C0u̇(t) + K(θ)u(t) = f0(t) (3)

with the initial conditions set as

u(0) = 0 ∈ RN and u̇(0) = 0 ∈ RN (4)

In Equation (3) M(θ) and K(θ) denote the random mass and stiffness matrices respectively. C0

and f0(t) denote the deterministic damping matrix and the deterministic applied force whilst t

represents the time. The displacement is represented by u(t) and the first and second derivatives

of the displacement with respect to time are represented by u̇(t) and ü(t) respectively. The random

mass and stiffness matrices can be expressed as follows

M(θ) = M0 +

p1∑
j=1

µj(θ)Mj (5)

K(θ) = K0 +

p2∑
j=1

νj(θ)Kj (6)

In the above expressions, M0 corresponds to the deterministic mass matrix and K0 to the de-

terministic stiffness matrix. Mi and Ki are symmetric matrices which contribute towards the

random components of M(θ) and K(θ). The random mass matrix has been modelled with p1 ran-

dom variables whilst the random stiffness matrix contains p2 random variables. µi(θ) represents

the random variables associated with the random mass matrix, and νi(θ) represents the random

variables associated with the random stiffness matrix. ζ denotes a diagonal matrix which contains

modal damping factors, thus

ζ = diag[ζ1, ζ2, . . . ζN ] ∈ RN×N (7)

It is assumed that the all the diagonal entries are equal, therefore ζ1 = ζ2 = · · · = ζN . In order to

satisfy this condition, the damping matrix C0 takes the following form [52]

C0 = 2ζM0

√
M−1

0 K0 (8)

We have made the assumption that the deterministic damping matrix belongs to the class of

proportional damping matrices [52]. Therefore, the deterministic damping matrix has been simul-

taneously diagonalised with the mass and stiffness matrices by utilising the deterministic undamped

eigenmodes. The detailed discussion of general non-proportional damping is beyond the scope of

the present paper. In order to compute the dynamic response in the frequency domain, the Laplace

transform of Equation (3) is considered. Taking the Fourier transform of Equation (3) results in

[−ω2M(θ) + iωC0 + K(θ)]ũ(ω, θ) = f̃0(ω) (9)

5



Here ũ and f̃0 are the dynamic response and the forcing in the frequency domain. The random

variables associated with both the random mass and the stiffness matrices can be grouped so that

ξj(θ) = µj(θ) for j = 1, 2, . . . p1 and ξj+p1(θ) = νj(θ) for j = 1, 2, . . . p2. In turn, Equation (9) can

be re-written and expressed asD0(ω) +

M∑
j=1

ξj(θ)Dj(ω)

 ũ(ω, θ) = f̃0(ω) (10)

where D0(ω) ∈ CN×N represents the complex deterministic part of the system and Dj(ω) ∈ RN×N

the random components. The total number of random variables, M , can be computed through

summing p1 and p2. For the given configuration, the expressions for D0 and Dj are as follows

D0(ω) = −ω2M0 + iωC0 + K0 (11)

Dj(ω) = −ω2Mj for j = 1, 2, . . . , p1

Dj(ω) = Kj−p1 for j = p1 + 1, p1 + 2, . . . , p1 + p2

(12)

Therefore by combining the definitions of D0(ω) and Dj(ω) with Equation (10), all the nec-

essary components have been obtained in order to solve the discretised system of equations in

the frequency domain. In the subsequent sections, different projection methods for efficiently ap-

proximating the response are compared. This is done for θ ∈ Θ and for every frequency value

ω ∈ Ω. We refer the reader to [53] for a discussion regarding certain issues that incur during the

application of the stochastic finite element method.

3 Derivation of the projection methods

We will initially consider three different projection methods. In order to compare the accuracy and

effectiveness of the three proposed methods, a benchmark solution can be obtained by implementing

a direct Monte Carlo approach [DMCS]

ũDMCS(ω, θ) = [−ω2M(θ) + iωC0 + K(θ)]−1f̃0(ω) (13)

for each frequency and realisation.

We aim to propose a set of methods which computes the response vector by projecting onto a

basis with scalar coefficients. The rationale behind proposing different methods is to analyse the

effect of the nature of the coefficients and their associated vectors. The first three methods under

consideration have the following characteristics:

• Projecting onto a stochastic basis with stochastic coefficients
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• Projecting onto a deterministic basis with stochastic coefficients

• Projecting onto a deterministic basis with deterministic coefficients

For all methods, we aim to keep the basis vector independent of the frequency. This is done in

an attempt to reduce the computational effort if more than one frequency value were to be analysed.

We initially consider the case which incorporates the whole stochastic nature of Equation (10). For

this method, we aim to represent the response by projecting onto a stochastic basis with stochastic

coefficients

ũ1(ω, θ) =

N∑
j=1

αj(ω, θ)aj(θ) (14)

where αj(ω, θ) ∈ C denotes the random scalars which are contained in α(ω, θ) ∈ CN , and aj(θ) ∈

CN denotes the stochastic basis. These basis are contained within the matrix a(θ) ∈ CN×N . The

values of αj(ω, θ) and aj(θ) can be obtained through numerous approaches. One such approach is

by solving the following multi-objective optimisation problem

α̂(ω, θ) = arg min
α∈CN

||ũDMCS(ω, θ)−
N∑
j=1

αj(ω, θ)1âj(θ)||L2(Θ)×RN (15)

â(θ) = arg min
a∈CN×N

||ũDMCS(ω, θ)−
N∑
j=1

α̂j(θ)aj(ω, θ)||L2(Θ)×RN (16)

While the above approach gives the generic framework for the evaluation of the α(ω, θ) and a(θ),

the process can be computationally expensive due to the method’s slow convergence rate. Fur-

thermore the method could be numerically unstable as the solution may not be unique. In order

to avoid calculating ũDMCS(ω, θ), an expression for the above L2 relative error can be obtained

by observing the residual and by noting that the approximate error of the solution obtained when

using Equation (14) is

ε̂(ω, θ) = ũ1(ω, θ)− ũDMCS(ω, θ) (17)

Here the error measure is defined by using the DMCS approach as a benchmark solution. A closed

form of the error in the domain space of D(ω, θ) can be obtained. The residual can be re-written

as

r(ω, θ) = D(ω, θ)ũ1(ω, θ)− f̃0(ω) = D(ω, θ) [ũ1(ω, θ)− ũ∗(ω, θ)] (18)

where ũ∗(ω, θ) is the true solution of the system which cannot be evaluated exactly. We can treat

the solution of the DMCS approach, ũDMCS(ω, θ), as the benchmark solution. It is assumed the

DMCS approach gives a better approximation of the true solution compared to ũ1(ω, θ). Using

e(ω, θ) = ũ1(ω, θ)− ũ∗(ω, θ) as the true error, we write following Equation (18)

D(ω, θ)e(ω, θ) = r(ω, θ) (19)
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Thus the resulting true error vector is obtained as

e(ω, θ) = D−1(ω, θ)r(ω, θ) (20)

But e(ω, θ) cannot be computed exactly and we have to resort to the approximate error indicator.

We can define a bilinear form as D̄(a,b) = 〈D(ω, θ)a(ω, θ),b(ω, θ)〉 where 〈·, ·〉 denotes an inner

product in L2(Θ)× RN . Hence, from Equation (20) we can deduce

D̄(e, ε̂) = Rε̂ where Rε̂ = 〈r(ω, θ), ε̂(ω, θ)〉 (21)

Using Cauchy-Schwarz inequality, we have

∣∣D̄(e, ε̂)
∣∣2 ≤ D̄(e, e) D̄(ε̂, ε̂) = ||e||E ||ε̂||E (22)

where || · ||E denotes the norm consistent with the bilinear form D̄(·, ·) on L2(Θ)×RN (analogous

to the elastic potential energy norm for structural dynamic systems). Combining Equations (21)

and (22) we obtain
|Rε̂|2

||ε̂||E
≤ ||e||E (23)

which indicates a lower bound for the true error e(ω, θ) in terms of the approximate error indicator

ε̂(ω, θ). The equality holds only under special circumstances which have been detailed in [54].

However as the computation capacity required to implement such an approach is vastly higher

than that required for the benchmark solution, a different approach is needed.

3.1 Projecting onto a stochastic basis with stochastic coefficients (M1)

In order to implement a different approach, the generalised eigenvalue problem for the undamped

case is initially considered

K(θ)φk(θ) = λk(θ)M(θ)φk(θ); k = 1, 2, . . . N (24)

where λk(θ) and φk(θ) are the kth undamped random eigenvalue and eigenvector. For convenience,

matrices that contain the whole set of random eigenvalues and eigenvectors are defined as follows

Ω2(θ) = diag [λ1(θ), λ2(θ), . . . , λn(θ)] ∈ RN×N and

Φ(θ) = [φ1(θ),φ2(θ), . . . ,φn(θ)] ∈ RN×N
(25)

The eigenvalues are arranged in ascending order so λ1(θ) < λ2(θ) < . . . < λn(θ) and their corre-

sponding eigenvectors are mass normalised and arranged in the same order. It is apparent that

ΦT (θ)M(θ)Φ(θ) = I

ΦT (θ)K(θ)Φ(θ) = Ω2(θ)
(26)
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As the undamped eigenvectors from a complete basis, it is possible to obtain the response of

Equation (10) through projecting on the undamped eigenvectors. This can be done through using

the above identities. The Laplace transform of Equation (3) is initially reconsidered

[−ω2M(θ) + iωC0 + K(θ)]ũ(ω, θ) = f̃0(ω) (27)

The modal damping matrix is defined as follows

C′(θ) = ΦT (θ)C0Φ(θ) = 2ζΩ(θ) (28)

where ζ corresponds to the diagonal modal damping matrix introduced in Equation (7). By using

the following modal transformation ũ(ω, θ) = Φ(θ)ȳ(ω, θ) and by pre-multiplying Equation (27)

with ΦT (θ), we obtain

ΦT (θ)
{

[−ω2M(θ) + iωC0 + K(θ)]Φ(θ)
}

ȳ(ω, θ) = ΦT (θ)̃f0(ω) (29)

By combining the modal damping matrix and the orthogonality relationships defined above, it can

be shown that [
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]
ȳ(ω, θ) = ΦT (θ)̃f0(ω) (30)

Then by inverting
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]
, one has

ȳ(ω, θ) =
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]−1
ΦT f̃0(ω) (31)

As
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]
is a diagonal matrix, its inverse is easy to compute and computa-

tionally inexpensive. By pre-multiplying both sides of the above equation with Φ(θ), we have

Φ(θ)ȳ(ω, θ) = Φ(θ)
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]−1
ΦT (θ)̃f0(ω) (32)

By reintroducing ũ(ω, θ) for Φ(θ)ȳ(ω, θ) a dynamic response in the frequency domain can be

obtained

ũ1(ω, θ) = Φ(θ)
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]−1
ΦT (θ)̃f0(ω) (33)

This expression can then be rewritten as a summation, where N corresponds to the number of

degrees of freedom associated with the dynamic structure

ũ1(ω, θ) =

N∑
j=1

αj(ω, θ)aj(θ) =

N∑
j=1

(
φTj (θ)̃f0(ω)

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

)
φj(θ) (34)

The response of the dynamic stochastic system under consideration has been represented in

the same form as Equation (14). The random scalars, αj(ω, θ), correspond to the result of

φT

j (θ)
˜f0

λj(θ)−ω2+2i
√
λj(θ)ωζ

. In turn, these random scalars are projected onto the space spanned by φj(θ).
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3.2 Projecting onto a deterministic basis with stochastic coefficients

(M2)

Thus far one projection method has been proposed through Equation (34) where both the basis

and the projection coefficients are stochastic in nature. If the value of N is large, the computa-

tional effort associated with computing the undamped random eigenvalues and eigenvectors can

be considered very high. This is especially true if we sample for every θ ∈ Θ. In an attempt to

lower the computational effort, we will consider a method that projects random scalars onto a

deterministic basis

ũ2(ω, θ) =

N∑
j=1

βj(ω, θ)bj (35)

The polynomial chaos approach is a method which projects onto a deterministic basis with stochas-

tic coefficients

ũ2(ω, θ) =

P∑
k=1

Hk(ξ(θ))uk(ω) (36)

where Hk(ξ(θ)) represents the polynomial chaoses (corresponding to the random scalars) and uk

represents unknown deterministic vectors that need to be determined. The value of P is governed

by the value of M and by the order of the polynomial chaos expansion. However the polynomial

chaos approach is a notoriously costly method if the value of P or N is high. More importantly

the basis uk is a function of ω, thus this method does not comply with the desired form stated

earlier in this section.

Although mathematically erroneous, this paper proposes a method that combines undamped

random eigenvalues with undamped deterministic eigenvectors. By exchanging the undamped

random eigenvectors seen in Equation (34) for their deterministic counterparts, the response vector

for this new method can be expressed as

ũ2(ω, θ) =

N∑
j=1

(
φT0j

f̃0

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

)
φ0j

(37)

where φ0j
denotes the jth deterministic undamped eigenvector. Therefore we aim to see if the vast

majority of the stochastic nature of the system can be incorporated by only using the undamped

random eigenvalues.

3.3 Projecting onto a deterministic basis with deterministic coefficients

(M3)

As a worst-case scenario we consider the case of when all the eigensolutions are deemed determin-

istic. For this case, the response vector takes the following form

ũ3(ω, θ) =

N∑
j=1

γ0j (ω)cj (38)
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where γ0j
(ω) ∈ C and cj ∈ CN are deterministic scalars and basis respectively. If both the

undamped random eigenvalues and eigenvectors seen in Equation (34) are exchanged for their

deterministic counterpart, the response vector can be expressed as

ũ3(ω) =

N∑
j=1

(
φT0j

f̃0

λ0j
− ω2 + 2i

√
λ0j

ωζ

)
φ0j

(39)

where λ0j and φ0j
denote the jth undamped deterministic eigenvalue and eigenvector respectively.

Due to all the terms in Equation (39) being deterministic, the stochastic nature of the system is

not at all incorporated into the response vector. It can be deduced that Equation (39) provides

the deterministic solution and therefore can be established as a worst case scenario. However if

the coefficient of variation associated with the stochastic process is low, this method could provide

an adequate approximation of the mean of the true solution.

If the matrices UDMCS ∈ CN×m and U3 ∈ CN×m contain the solution vectors for all realisa-

tions of a given frequency for the benchmark and M3 methods, the Frobenius norm of the relative

error is given by

||UDMCS −U3||F =

√√√√ N∑
i=1

m∑
j=1

|{UDMCS −U3}ij |2 (40)

where m corresponds to the number of realisations. If the matrices U1 ∈ CN×m and U2 ∈ CN×m

are similarly defined for the M1 and M2 methods the following propositions can be made

||UDMCS −U1||F ≤ ||UDMCS −U2||F ≤ ||UDMCS −U3||F (41)

Due to both the eigenvalues and the eigenvectors retaining their stochastic properties in M1

method, it is intuitively expected that the M1 method would induce the least amount of error.

As the entire stochasticity of the response vector is expected to be captured by the stochastic

eigenvalues in the M2 method, this method is not expected to outperform the M1 method. In a

similar manner, as the M3 is deemed to be a worst-case scenario, naturally this method will not

outperform both the M1 and M2 methods.

At present, the computational time associated with both the M1 and M2 methods can be con-

sidered quite high, especially for a high degree of freedom finite element system. This is due to two

reasons. The first being the large number of terms in the summations seen in Equations (34) and

(37). At present, the number of terms in the series corresponds to the number of degrees of free-

dom. Secondly, calculating the random eigensolutions is computationally expensive. Combining

these reasons with the need to simulate the methods for each θ ∈ Θ accumulates to a high com-

putational effort. These issues have been addressed in the following section where approximation

and truncation techniques are introduced.
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4 Approximating the undamped eigensolutions

Calculating the exact undamped random eigensolutions can be extremely expensive, especially

if the number of degrees of freedom is large. Thus a sensitivity approach to approximate the

eigensolutions could computationally be a better option. The set of exact undamped random

eigensolutions can be obtained through combining direct Monte Carlo simulations with the eigen-

value problem of the undamped system expressed by Equation (24). The set of random eigenvalues

could consequently be used to obtain the natural frequencies of the system

ωk(θ) =
√
λk(θ) (42)

where ωk(θ) represents the kth random natural frequency of a realisation. Due to the low compu-

tational effort associated with the first order perturbation method, this method has been used to

approximate both the undamped random eigenvalues and eigenvectors. The random eigenvalues

can be approximated by the following equation

λj ≈ λj0 +

M∑
k=1

(
∂λj
∂ξk

)
dξk(θ) (43)

where λj0 is the jth deterministic undamped eigenvalue and dξk(θ) a set of Gaussian random

variables with mean zero and unit variance. The derivative of the undamped random eigenvalues

with respect to ξk can be obtained through differentiating and manipulating the eigenvalue equation

denoted by Equation (24) [55]. This results in the following equation

∂λj
∂ξk

=
φT0j

[
∂K
∂ξk
− λ0j

∂M
∂ξk

]
φ0j

φT0j
M0φ0j

(44)

where λ0j and φ0j correspond to the deterministic undamped eigenvalues and eigenvectors. As the

deterministic undamped eigenvectors are mass normalised, the denominator in the above equation

equates to one i.e. φT0j
M0φ0j

= 1, thus resulting in

∂λ0j

∂ξk
= φT0j

[
∂K

∂ξk
− λ0j

∂M

∂ξk

]
φ0j

(45)

In the instance of Equation (45), the values of both ∂M
∂ξk

and ∂K
∂ξk

are as follows

∂M

∂ξk
=

Mk, for j = 1, 2, . . . , p1

0, otherwise

∂K

∂ξk
=

Kk−p1 , for k = p1 + 1, p1 + 2, . . . , p1 + p2

0, otherwise

(46)
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where Mk and Kk − p1 correspond to the random components of M(θ) and K(θ) introduced

through Equations (5) and (6).

In a similar manner, the random undamped eigenvectors can also be expressed by a first-order

perturbation

φj ≈ φj0 +

M∑
k=1

(
∂φj
∂ξk

)
dξk(θ) (47)

where φj0 is the jth deterministic undamped eigenvector and dξk(θ) a set of Gaussian random

variables with mean zero and unit variance. It is possible to obtain the derivative of the jth

undamped random eigenvector with respect to ξk by expressing the result as a linear combination

of deterministic eigenvectors. This can be illustrated by

∂φj
∂ξk

=

N∑
r=1

αjrφ0r
(48)

The full algebraic detail of obtaining the derivative can be found in [55]. The final expression for
∂φj

∂ξk
is given by

∂φj
∂ξk

= −1

2

(
φTj0

∂M

∂ξk
φj0

)
+

N∑
i=16=j

φTk0

[
∂K
∂ξk
− λj0 ∂M∂ξk

]
φj0

λj0 − λk0
φk0 (49)

The values of both ∂M
∂ξk

and ∂K
∂ξk

are identical to those given in Equation (46). This method requires

all the deterministic eigenvalues and eigenvectors to be known. Furthermore the eigenvalues are

required to be unique. For the case of repeated eigenvalues the proposed methods would still be

valid, however a different method would be required to approximate the eigenvectors [56].

Thus by approximating the random eigensolutions it can be categorically concluded that the

computational effort associated with each of the proposed methods are as follows

CM1 > CM2 > CM3 (50)

where C represents the computational effort. Providing that the proposed methods for approxi-

mating the eigensolutions are accurate, by comparing Equations (41) and (50) it is apparent that a

trade-off between the error and the computational effort is present. M1 provides the most accurate

representation of the response vector however its computational effort is the highest. M3 provides

the least accurate response, however this is achieved with a considerably lower computational

effort.

5 Modal basis reduction

At present all the methods described in Section 3 require the calculation and summation ofN terms.

In cooperation with the approximations seen in Section 4, these methods can be deemed rather

inexpensive in comparison with the polynomial chaos approach. The polynomial chaos approach
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requires a set of NP algebraic equations to be solved where P corresponds to the number of

polynomial chaoses. However, we aim to lower the computational effort of our proposed methods

even further.

Through revisiting the ordering of the eigenvalues seen in Equation (25) it can be deduced that

λ1 < λ2 < . . . < λN (51)

where λj corresponds to the jth eigenvalue. From the scalar terms αj(ω, θ), βj(ω, θ) and γ0j (ω) seen

Equations (34), (37) and (39), it can be observed that the eigenvalues appear in the denominator.

The scalar αj is shown for illustration

αj(ω, θ) =
φTj (θ)̃f0

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

(52)

For the values of j satisfying λj(θ)+2i
√
λj(θ)ωζ > ω2, it is apparent that the value of the denomi-

nator increases as the value of j increases. The value of the numerator depends on the deterministic

force f̃0 and the undamped eigenvectors. The numerator cannot be ordered in terms of magnitude

for different values of j, however due to the mass normalisation of the undamped eigenvectors,

it can be deduced that the value of the numerator does not vary significantly. Therefore it is

established that the value of αj(ω, θ) generally decreases as the value of j increases. Consequently

the upper limits of the summations seen in Equations (34), (37) and (39) can be lowered. In turn,

these equations can be expressed as

ũ1(ω, θ) ≈
nr∑
j=1

(
φTj (θ)̃f0

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

)
φj(θ) (53)

ũ2(ω, θ) ≈
nr∑
j=1

(
φT0j

f̃0

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

)
φ0j

(54)

ũ3(ω) ≈
nr∑
j=1

(
φT0j

f̃0

λ0j − ω2 + 2i
√
λ0jωζ

)
φ0j

(55)

respectively, where nr < N � NP . The value of nr can be defined in two ways (a) the value can

be predefined depending on the system under consideration (b) by selecting a value for ε which is

sufficiently small, nr can be selected such that λ0(nr)
is the largest deterministic eigenvalue that

satisfies
λ01

λ0(nr)

> ε. If the accuracy of the truncated series is not sufficient, the accuracy can be

improved by increasing the predefined value of nr or selecting a lower value for ε.

6 Sample based Galerkin error minimisation

Three different projection methods have been proposed in Section 3. The first projects random

scalars onto a stochastic basis whilst the second projects random scalars onto a deterministic basis.

The third method projects deterministic scalars onto a deterministic basis. We have shown that
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it is possible to approximate the random eigensolutions that arise in the proposed methods in

order to lower the computational effort. However these approximations, in addition to the modal

reduction introduced in Section 5 introduces error into the calculation. This has motivated an

error minimisation technique through applying a sample based Galerkin approach. As a result, in

addition to the three projection methods introduced in in Section 3, the following three projection

methods are proposed:

• Galerkin approach with projecting onto a stochastic basis with stochastic coefficients (M1G)

• Galerkin approach with projecting onto a stochastic basis with deterministic coefficients

(M2G)

• Galerkin approach with projecting onto a deterministic basis with deterministic coefficients

(M3G)

The case of incorporating a sample based Galerkin approach with projecting onto a stochastic

basis with stochastic coefficients is initially considered.

6.1 Galerkin approach with projecting onto a stochastic basis with stochas-

tic coefficients (M1G)

The response vector for the given case is modified to take the following series representation

ũ1G(ω, θ) ≈
nr∑
j=1

cj(ω, θ)

(
φTj (θ)̃f0

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

)
φj(θ)

=

nr∑
j=1

cj (ω, θ)αj (ω, θ)φj (θ)

(56)

Here αj(ω, θ) and φj(θ) correspond to the random scalars and random eigenvectors seen in Equa-

tion (34) whilst cj (ω, θ) ∈ C are constants which need to be obtained for each realisation. This

can be done by applying a sample based Galerkin approach. We initially consider the following

residual

r(ω, θ) =

(
M∑
i=0

Di(ω)ξi(θ)

)(
nr∑
j=1

cj(ω, θ)αj(ω, θ)φj(θ)

)
− f̃0(ω) ∈ CN (57)

where ξ0 = 1 is used in order to simplify the summation. Di(ω), ξi(θ) and f̃0(ω) correspond to the

terms arising in Equations (9) and (10). By making the residual orthogonal to a basis function,

the unknown cj(ω, θ) can be computed. As Equation (56) can be viewed as a projection onto a

stochastic basis, the residual is made orthogonal to the undamped random eigenvectors

r(ω, θ) ⊥ φk(θ) ∀ k = 1, 2, . . . nr (58)
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As a sample based Galerkin approach is considered, applying the orthogonality condition results

in

φTk (θ)

[(
M∑
i=0

Di(ω)ξi(θ)

)(
nr∑
j=1

cj(ω, θ)αj(ω, θ)φj(θ)

)
− φTk (θ)̃f0(ω)

]
= 0 (59)

Through manipulating Equation (59) it is possible to re-write the equation in the following form

nr∑
j=1

(
M∑
i=0

[
φTk (θ)Di(ω)φj(θ)

]
[ξi(θ)αj(ω, θ)]

)
︸ ︷︷ ︸

Z1(ω,θ)

cj(ω, θ)︸ ︷︷ ︸
c1(ω,θ)

= φTk (θ)̃f0(ω)︸ ︷︷ ︸
y1(ω)

(60)

By defining the vector c1 (ω, θ) = [c1 (ω, θ) c2 (ω, θ) . . . cnr (ω, θ)]
T

, Equation (60) can be re-written

as

Z1(ω, θ)c1(ω, θ) = y1(ω, θ) j, k = 1, 2, . . . , nr (61)

where Z1kj
(ω, θ) =

∑M
i=0

[
φTk (θ)Di(ω)φj(θ)

]
[ξi(θ)αj(ω, θ)] ; ∀j, k = 1, 2, . . . nr and y1(ω, θ) =

φTk (θ)̃f0(ω). The number of equations that need to be solved in order to calculate the unknown

vector c(ω, θ) corresponds to the value of nr. By increasing the number of terms from nr to nr+1,

the number of terms in Z1(ω, θ) increases by 2n + 1. Therefore the lower the dimension of the

reduced system, the fewer the number of equations that need to be solved. This is of importance

as the given procedure needs to be repeated for every realisation and for every frequency under

consideration.

6.2 Galerkin approach with projecting onto a stochastic basis with de-

terministic coefficients (M2G)

A similar approach can be implemented for the case containing undamped random eigenvalues and

deterministic eigenvectors. The response vector for this given approach takes the following form

ũ2G(ω, θ) ≈
nr∑
j=1

cj(ω, θ)

(
φT0j

f̃0

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

)
φ0j

=

nr∑
j=1

cj (ω, θ)βj (ω, θ)φ0j

(62)

Here βj(ω, θ) corresponds to the scalars introduced in Equation (37) and φ0j
to the deterministic

eigenvectors also introduced in Equation (37). cj (ω, θ) ∈ C are the unknown constants that need

to obtained for each realisation of each frequency. A similar sample based Galerkin method can

be implemented to compute the unknown constants. In order to mimic the projection seen in

Equation (37), the residual is projected onto deterministic eigenvectors rather than the random

eigenvectors seen in Section 6.1. By following a similar approach to that seen in Section 6.1, the

unknown constants cj(ω, θ) can be computed by solving the following set of linear equations.

Z2(ω, θ)c2(ω, θ) = y2(ω) j, k = 1, 2, . . . , nr (63)
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where Z2kj
(ω, θ) =

M∑
i=0

[
φT0k

Di(ω)φ0j

]
[ξi(θ)βj(ω, θ)] ;

βj(ω, θ) =

nr∑
j=1

(
φT0j

f̃0

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

)

y2(ω) = φTk (θ)̃f0(ω) ∀ j, k = 1, 2, . . . nr

and c2(ω, θ) is a vector that contains the unknown constants cj(ω, θ)

The number of equations that need to be solved to compute the unknown coefficients corresponds

to the number of modes retained in the reduced models in Section 5. Similarly to the the method

described in Section 6.1, this procedure needs to be repeated for every realisation and for every

ω ∈ Ω.

6.3 Galerkin approach with projecting onto a deterministic basis with

deterministic coefficients (M3G)

A Galerkin approach can also be considered for the case that contains undamped deterministic

eigenvalues and eigenvectors. For this case, the response vector is defined as follows

ũ3G(ω, θ) ≈
nr∑
j=1

cj(ω, θ)

(
φT0j

f̃0

λ0j
− ω2 + 2i

√
λ0j

ωζ

)
φ0j

=

nr∑
j=1

cj (ω, θ) γ0j
(ω)φ0j

(64)

where γ0j
(ω) and φ0j

correspond to the deterministic scalars and the undamped deterministic

eigenvector introduced in Equation (39). cj (ω, θ) ∈ C are unknown constants which need to

obtained for each realisation of each frequency. Similarly to the two preceding methods, by applying

a sample based Galerkin approach the unknown constants can be computed. Sequentially, the

following set of equations is required to be solved for every realisation in each considered frequency

Z3(ω, θ)c3(ω, θ) = y3(ω, θ) j, k = 1, 2, . . . , nr (65)

where Z3kj
(ω, θ) =

M∑
i=0

[
φT0k

Di(ω)φ0j

] [
ξi(θ)γ0j (ω)

]
;

γ0j
(ω) =

nr∑
j=1

(
φT0j

f̃0

λ0j − ω2 + 2i
√
λ0jωζ

)

y3(ω) = φT0k
f̃0(ω) ∀ j, k = 1, 2, . . . nr

and c3(ω, θ) is the vector that contains the unknown constants cj(ω, θ)

The computational effort associated with this method is considerably lower than the other Galerkin

methods as the scalars γ0j
only need to be calculated once for each given frequency. The aim of
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this method is to incorporate the whole stochastic nature of system within the unknown scalars

cj(ω, θ). However it is not known if the Galerkin approach can substantially lower the error as

all the eigensolutions used are deterministic. This method is of significant interest as it is known

that the behaviour of deterministic and stochastic systems can differ substantially especially if the

coefficient of variation is significantly large.

7 Calculation of the response statistics

Calculating response statistics such as the mean and covariance matrices can be deemed funda-

mental during analysing practical examples. The response statistics given in this section can be

computed through implementing the methods described in the previous sections.

The response vector ũ(ω, θ) is a complex valued random process. The complete statistical

characterisation of the response is not only computationally expensive but also difficult to inter-

pellate physically. For this reason we are only interested in the modulus of this quantity. From an

engineering point of view, this quantity is of significant interest.

The mean of the modulus of the response vector for a given frequency is defined as

ū(ω) = E [|ũ(ω, θ)|] (66)

Similarly the covariance matrix of a given frequency can be defined as follows

Cũ(ω) = E
[(
|ũ(ω, θ)| − E [|ũ(ω, θ)|]

)(
|ũ(ω, θ)| − E [|ũ(ω, θ)|]

)T]
∈ RN×N (67)

where ū corresponds to the mean of the response vector and (?)T denotes the transpose of ?.

7.1 Response statistics for the M1 and M1G methods

The case of a stochastic projection incorporated with stochastic eigensolutions and a Galerkin error

minimisation approach (M1G) is initially considered. For this case, the response vector can take

the following form

ũ1G(ω, θ) =

nr∑
j=1

cj(ω, θ)αj(ω, θ)φj(θ) (68)

where αj(ω, θ) corresponds to the random scalars seen in Equation (56). Defining ũ1G(ω, θ) in such

a way supports neatness whilst calculating response statistics. When analysing the displacement of

structures, the modulus of the response corresponds to the maximum displacement or the amplitude

seen at each node. The mean vector of the amplitude can be expressed as

ū1G(ω) =

nr∑
j=1

E
[∣∣cj(ω, θ)αj(ω, θ)φj(θ)∣∣] (69)

where |?| denotes the absolute value of ?. By using the expression from Equation (69), it is possible

to define the covariance matrix of the amplitude. In the expression below, rather than using the
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standard sigma notation, the covariance matrix is defined by C in order to clarify between the

covariance matrix and the summations

Cũ1G
(ω) = E

[( nr∑
j=1

∣∣cj(ω, θ)αj(ω, θ)φj(θ)∣∣− nr∑
j=1

E
[∣∣cj(ω, θ)αj(ω, θ)φj(θ)∣∣] )

( nr∑
k=1

|ck(ω, θ)αk(ω, θ)φk(θ)| −
nr∑
k=1

E [|ck(ω, θ)αk(ω, θ)φk(θ)|]
)T] (70)

Due to the stochastic nature of this approach, the expression for the covariance matrix cannot be

simplified. The mean and covariance matrix of the M1 method takes a similar form to Equations

(69) and (70). All the terms are retained, however cj = 1 ∀ j = 1, 2, . . . nr and ck = 1 ∀ k =

1, 2, . . . nr.

7.2 Response statistics for the M2 and M2G methods

Similarly to the previous case, the method which incorporates the undamped random eigenval-

ues, undamped deterministic eigenvector and the Galerkin error minimisation approach (M2G) is

initially considered. We will consider the method’s response vector in following form

ũ2G(ω, θ) =

nr∑
j=1

cj (ω, θ)βj (ω, θ)φ0j
(71)

where βj(ω, θ) corresponds to the random scalars seen in Equation (62). Due to the undamped

deterministic eigenvectors, the mean vector of the amplitude can be expressed as

ū2G(ω) =

nr∑
j=1

E [|cj(ω, θ)αj(ω, θ)|]
∣∣φj0 ∣∣ (72)

In a similar manner to the previous case, the covariance matrix of the amplitude can be expressed

by

Cũ2G
(ω) =

nr∑
j=1

nr∑
k=1

Ψ2G(ω, θ)
∣∣∣φ0j

φT0k

∣∣∣ (73)

where the stochastic terms arising in the covariance matrix are given by

Ψ2G(ω, θ) = E
[(
|βj(ω, θ)cj(ω, θ)| − E [|βj(ω, θ)cj(ω, θ)|]

)
(
|βk(ω, θ)ck(ω, θ)| − E [|βk(ω, θ)ck(ω, θ)|]

)] (74)

Due to the undamped eigenvectors being deterministic, less computational effort is needed to com-

pute the expected values arising in the above expression in comparison to that given by Equation

(70). The mean and covariance matrix of the M2 method takes a similar form to Equations (72)

and (73). The only difference is that cj = 1 ∀ j = 1, 2, . . . nr and ck = 1 ∀ k = 1, 2, . . . nr.
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7.3 Response statistics for the M3 and M3G methods

When analysing the corresponding mean and covariance matrix arising from the M3 and M3G

methods, substantial computational reduction can be seen due to the introduction of additional

deterministic terms. The response vector of the M3G method is initially considered in the following

form

ũ3G(ω, θ) =

nr∑
j=1

cj(ω, θ)γ0j
(ω)φ0j

(75)

where γ0j
(ω) corresponds to the deterministic scalars seen in Equation (64). The mean vector of

the amplitude can be expressed as

ū3G(ω) =

nr∑
j=1

E [|cj(ω, θ)|]
∣∣∣γ0j (ω)φ0j

∣∣∣ (76)

where the only expected value arising is that of the scalars cj(ω, θ). The same is true when

considering the covariance matrix of the amplitude

Cũ3G
(ω) =

nr∑
j=1

nr∑
k=1

∣∣γ0j (ω)γ0k
(ω)
∣∣Ψ3G(ω, θ)

∣∣∣φ0j
φT0k

∣∣∣ (77)

where in this instance, the elements of the stochastic term Ψ3G only contain the scalar terms

cj(ω, θ) and ck(ω, θ).

Ψ3G(ω, θ) = E
[(
|cj(ω, θ)| − E [|cj(ω, θ)|]

)(
|ck(ω, θ)| − E [|ck(ω, θ)|]

)]
(78)

As there are no stochastic terms arising in the response when using the M3 method, it can be

easily deduced that ū3G(ω) = ũ3G(ω). Consequently, the covariance matrix would take the form

of the zero matrix.

8 Summary of the proposed methods

Thus far six projection methods have been proposed in order to analyse the response of stochas-

tically parametrised structural dynamic systems. The first three methods analyse the effect of

altering the nature of the coefficients and their associated vectors. In addition to altering the

nature of the coefficients and their associated vectors, the remaining three methods implement a

sample based Galerkin error minimisation technique. A table summarising the proposed methods

is given below
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Method
Form of the

Coefficient Basis
Vector of

response Galerkin
vector coefficients

M1
∑nr

j=1 αj(ω, θ)aj(θ)
φT

j (θ)
˜f0

λj(θ)−ω2+2i
√
λj(θ)ωζ

φj(θ) -

M2
∑nr

j=1 βj(ω, θ)bj
φT

j0

˜f0
λj(θ)−ω2+2i

√
λj(θ)ωζ

φj0 -

M3
∑N
j=1 γj(ω)cj

φT

j0

˜f0
λj0−ω2+2i

√
λj0ωζ

φj0 -

M1G
∑nr

j=1 cj(ω, θ)αj(ω, θ)aj(θ)
φT

j (θ)
˜f0

λj(θ)−ω2+2i
√
λj(θ)ωζ

φj(θ) Z−1
1 (θ, ω)y1(θ, ω)

M2G
∑nr

j=1 cj(ω, θ)βj(ω, θ)bj
φT

j0

˜f0
λj(θ)−ω2+2i

√
λj(θ)ωζ

φj0 Z−1
2 (θ, ω)y2(ω)

M3G
∑nr

j=1 cj(ω, θ)γj(ω)cj
φT

j0

˜f0
λj0
−ω2+2i

√
λj0

ωζ
φj0 Z−1

3 (θ, ω)y3(ω)

Table 1: Summary of the proposed methods

where the values of Z1(θ, ω),Z2(θ, ω),Z3(θ, ω) and y1(θ, ω),y2(ω),y3(ω) are given in Section

6. The values of cj(θ, ω) are subsequently located within the vectors containing the Galerkin coef-

ficients. Thus the main difference between the M1,M2,M3 methods and the M1G,M2G,M3G

methods are the Galerkin coefficients cj(θ, ω). It is hoped that by computing these Galerkin co-

efficients the induced errors will be significantly reduced. Although the values of the Galerkin

coefficients need to computed for each θ ∈ Θ and ω ∈ Ω, this size of the linear system which needs

to be solved is much lower than the size of the linear system associated with the direct Monte

Carlo approach. The computational complexity associated with inversions for θ ∈ Θ and ω ∈ Ω

are O(n3
r) and O(N3) respectively where nr < N . In the subsequent section, the proposed methods

are utilised to analyse two case systems.

9 Case studies

The six methods proposed in Sections 3 and 6 are applied to two classical structural dynamic

systems. The first being an Euler-Bernoulli cantilever beam, and the second being a Kirchhoff-

Love plate. Both of the analysed structures have stochastic properties. The stochastic finite

element method has been applied in order to discretise both systems. Although two clamped-free

systems are examined, the proposed methods can easily be utilised to analyse clamped-clamped

systems. This would be executed by adapting the stochastic finite element method.

9.1 Euler-Bernoulli cantilever beam

We initially apply the proposed methods to a cantilever beam. Therefore, the displacement and

rotational degrees of freedom at the clamped end of the beam are zero. The length of the beam

under consideration is 1.00 m and its cross-section is a rectangle of length 0.03 m and height

0.003 m. A harmonic point load is applied at the free tip of the beam. Figure 1 illustrates

the configuration. The uncertainty is introduced through the beam’s bending rigidity, EI. It is
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assumed that the bending rigidity is a stationary Gaussian random field of the following form

EI(x, θ) = EI(1 + a(x, θ)) (79)

where EI denotes the deterministic value of the bending rigidity. The function a(x, ω) represents

a stationary Gaussian field with zero mean, where x is the coordinate direction along the length

of the beam. The covariance function is given by

Ca(x1, x2) = σ2
ae

(|x1−x2|)/µa (80)

where µa is the correlation length and σa is the standard deviation. The random field a(x, ω)

can be expressed by the Karhunen-Loeve expansion given by Equation (1). The number of terms

considered to represent the discretised random field is given by M = 4.

For the deterministic case, the Young’s modulus is E = 69 × 109 Nm−2 thus corresponding

to an aluminium beam. The deterministic second moment of area (moment of inertia) of the

beam is I = 6.75 × 10−11 m4. Hence EI = 4.66 Nm2. The correlation length µa is set as

0.50 m thus corresponding to half of the length of the beam. The system has been discretised

into a 100 elements by using the stochastic finite element method. Consequently, after applying

the appropriate boundary conditions, the dimension of the corresponding discretised system is

200× 200.

The case of a unit amplitude harmonic point load acting on the free tip of the beam is considered

for the frequency range 0 − 450 Hz at an interval of 2 Hz. This corresponds to considering 226

frequency values. For the given beam, this allows for the first eight resequence frequencies to be

studied. The chosen constant modal damping model has a 2% damping factor for all the modes.

10, 000 Monte Carlo simulation samples are considered for each frequency step and for two

different values of the standard deviation of the bending rigidity.

σa = {0.05, 0.20} (81)

This allows for the methods to be compared under different levels of uncertainty. It has been

numerically verified that using 10, 000 Monte Carlo samples gives a satisfactory level of convergence

for the first two moments of the quantities of interest.

Based on the reasoning given in Section 5, for each of the proposed methods only twelve terms

have been used in the summations, hence nr = 12. This is a vast reduction as 188 terms have been

discarded from each method. For the deterministic case, the distribution of the natural frequencies

of the cantilever beam is given in Figure 1. The analytical natural frequencies have been computed

by using the methodology given in [57] whilst the finite element solution is computed by solving

Equation (42). As to the values obtained by using the finite element method technique match the

analytical values, the finite element method technique has been used for the reminder of this study.

The twelve natural frequencies used in the comparison methods are highlighted in Figure 1. As we
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are only considering the first twelve terms in each of the summations, the methods implementing

the sample based Galerkin error minimisation technique requires a linear set of 12× 12 equations

to solved for each sample.

(a) The configuration of the stochastic cantilever
beam with a harmonic point load asserted on the

free end
Natural frequency number (j)
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N
at

ur
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H
z)

0

500

1000

1500

Analytical solution
FE solution

(b) Distribution of the natural frequencies of the
system

Figure 1: A diagram of the cantilever beam system under a harmonic point load applied at the free end
of the beam. The first 12 natural frequencies are depicted. These have been obtained using an analytical
approach and the finite element method. It is apparent that the range of the natural frequencies covers
over twice the frequency range under consideration (450 Hz).

The mean vertical amplitude of the displacement at the tip of the beam is shown in Figure 2.

Barring the M3 method, all the projection methods seem to mimic the results obtained by using

the DMCS approach. The M3 method seems to over estimate the mean vertical amplitude at

both the resonance and the antiresonance frequencies of the system. The disparity between the

M3 and DMCS methods is most prominent when σa = 0.20. This is due to the M3 method being

deterministic. When the methods are stochastic, the peak responses are distributed around the

corresponding resonance values. The peak responses for a deterministic system is concentrated at

the resonance values, hence explaining the unsuitability of the M3 method in comparison with the

DMCS method.

Figure 3 illustrates the standard deviation of the vertical amplitude of the displacement at the

tip of the beam. Due to the M3 method being deterministic, the standard deviation associated

with this method has not been illustrated. The peaks and troths of the responses seen in Figure

3 are in agreement with those seen in Figure 2. A decent agreement is seen between the standard

deviation obtained through the DMCS method and the other projection methods. However when

the Galerkin error minimisation method is not implemented, a little discrepancy can be seen

between the projection methods and the DMCS method at high frequency values.

Figure 4 illustrates the probability density function of the vertical amplitude at the tip of the

beam. The M3 method has been omitted due to the lack of stochasticity. The probability density

function has been computed for both values of the standard deviations at a frequency of 84 Hz.

This frequency value corresponds to the fourth resonance value. All methods seem to mimic that

of the DMCS pretty well when σa = 0.05, however a disparity between the different methods is

23



Frequency (Hz)
0 50 100 150 200 250 300 350 400 450

M
ea

n 
of

 th
e 

de
fl

ec
tio

n 
at

 th
e 

tip
 (

m
)

10-5

10-4

10-3

10-2

10-1 DMCS
M1
M2
M3
M1G
M2G
M3G

(a) σa = 0.05

Frequency (Hz)
0 50 100 150 200 250 300 350 400 450

M
ea

n 
of

 th
e 

de
fl

ec
tio

n 
at

 th
e 

tip
 (

m
)

10-5

10-4

10-3

10-2

10-1

DMCS
M1
M2
M3
M1G
M2G
M3G

(b) σa = 0.20

Figure 2: The mean vertical amplitude of the displacement at the tip of the beam under a unit harmonic
point load at the free end. The response is shown for two different values of the standard deviation of the
bending rigidity: (a) σa = 0.05 (b) σa = 0.20.
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(b) σa = 0.20

Figure 3: The standard deviation of the vertical amplitude of the displacement at the tip of the beam
under a unit harmonic point load at the free end. The response is shown for two different values of the
standard deviation of the bending rigidity: (a) σa = 0.05 (b) σa = 0.20.

seen when σa = 0.20. For the higher standard deviation value, both the M1 and M2 methods do

not match the DMCS method as well as the Galerkin methods. All three of the Galerkin methods

seem to match the DMCS method equally as well.

The approximate L2 relative error of the mean of the response vector for each frequency step

can be defined as follows

ε̂
µ
L2

(ω) =
||µDMCS(ω)− µCM (ω)||L2

||µDMCS(ω)||L2

(82)

where µDMCS denotes the mean of the response vector obtained by using the DMCS method

and µCM denotes the mean of the response vector obtained by using a comparable method. This

method ensures that the error arising from each of the projection methods can be characterised

by a single value for each ω ∈ Ω. Figures 5 and 6 depict the log of the approximate L2 relative

error of the mean of the response vector for different values of nr. This is depicted for each of the
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Figure 4: The probability density function of the vertical amplitude of the displacement at the tip of the
beam under a unit harmonic point load at the free end at 84 Hz. The response is shown for two different
values of the standard deviation of the bending rigidity: (a) σa = 0.05 (b) σa = 0.20.

.

frequencies under consideration and for both values of σa.

It can be easily deduced that the M3 method introduces considerably more error than the

other methods at the resonance frequencies for both values of σa. The visible troths seen in

the relative error arising from the M1, M2, M1G, M2G and M3G methods correspond to the

resonance frequencies. For a given value of nr the trend of the approximate relative error increases

with the frequency. This is to be expected as the higher order terms in the summations become

more important as the frequency increases. The relative errors induced by the three sample based

Galerkin methods are identical. This suggests that computing the stochastic eigensolutions is

non-essential if a sample based Galerkin method is used.
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Figure 5: The log of the approximate L2 relative error of the mean of the response vector when σa = 0.05.
The contour plots depict the log of the approximate L2 relative error for different values of nr at each
frequency step.
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Figure 6: The log of the approximate L2 relative error of the mean of the response vector when σa = 0.20.
The contour plots depict the log of the approximate L2 relative error for different values of nr at each
frequency step.

.

The expression for the approximate L2 relative error of the standard deviation takes a similar

form

ε̂σL2
(ω) =

||σDMCS(ω)− σCM (ω)||L2

||σDMCS(ω)||L2

(83)
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where σDMCS denotes the standard deviation of the response vector obtained by using the DMCS

method and σCM denotes the standard deviation of the response vector obtained by using a

comparable method. Figures 7 and 8 depict the log of the approximate L2 relative error of the

standard deviation of the response vector for different values of nr. This is depicted for both values

of σa at each frequency step.

It is apparent that neither the M2 or the M3 methods capture the standard deviation of

the DMCS very well. The same is true regarding the M1 method, especially if the coefficient

of variation is high. All three sample based Galerkin methods capture the necessary standard

deviation very well, especially when the frequency value corresponds to a resonance frequency.

Similarly to the case of the approximate L2 relative error of the mean of the response vector,

the approximate L2 relative error of the standard deviation of the response vector are extremely

similar for the three Galerkin methods under consideration.
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Figure 7: The log of the approximate L2 relative error of the standard deviation of the response vector
when σa = 0.05. The contour plots depict the log of the approximate L2 relative error for different values
of nr at each frequency step.
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Figure 8: The log of the L2 relative error of the standard deviation of the response vector when σa = 0.20.
The contour plots depict the log of the approximate L2 relative error for different values of nr at each
frequency step.

The effect of truncating all the projection methods is further explored in Table 2 and Table

3. The approximate L2 relative error of the mean and standard deviation is explored for different

values of nr at a frequency of 42 Hz. This frequency corresponds to the third resonance value.

Number
M1 M2 M3 M1G M2G M3G

of modes

σa = 0.05

6 0.0071 0.0075 0.3126 0.0064 0.0064 0.0064
9 0.0042 0.0048 0.3136 0.0024 0.0024 0.0024
12 0.0038 0.0044 0.3139 0.0012 0.0012 0.0012
15 0.0037 0.0044 0.3140 0.0007 0.0007 0.0007
18 0.0037 0.0043 0.3141 0.0004 0.0004 0.0004

σa = 0.20

6 0.0193 0.0197 1.7920 0.0152 0.0152 0.0152
9 0.0159 0.0154 1.7942 0.0054 0.0054 0.0054
12 0.0158 0.0151 1.7942 0.0027 0.0027 0.0027
15 0.0158 0.0151 1.7949 0.0016 0.0016 0.0016
18 0.0158 0.0151 1.7952 0.0010 0.0100 0.0010

Table 2: The approximate L2 relative error of the mean of the response vector obtained by using the
six reduced order methods for different values of nr. The approximate L2 relative error is shown for two
different values of the standard deviation of the bending rigidity: (a) σa = 0.05 (b) σa = 0.20 at a frequency
of 42 Hz.

It is again apparent from Tables 2 and 3 that the approximate relative errors generally decrease

as additional modes are introduced. It is evident that theM3 method is considerably worse than the

other methods. The M1 method generally outperforms the M2 method, but this is to be expected

due to the M1 method incorporating stochasticity in both the eigenvalues and eigenvectors; the

stochasticity is only incorporated through the eigenvalues in the M2 method. All three Galerkin

approaches (M1G, M2G and M3G) perform equally as well, however additional computational

effort is incurred whilst computing the random eigensolution associated with methods M1G and
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Number
M1 M2 M3 M1G M2G M3G

of modes

σa = 0.05

6 0.0149 0.0166 1.0000 0.0004 0.0004 0.0004
9 0.0147 0.0166 1.0000 0.0001 0.0001 0.0001
12 0.0147 0.0166 1.0000 4× 10−5 4× 10−5 4× 10−5

15 0.0147 0.0166 1.0000 1× 10−5 1× 10−5 1× 10−5

18 0.0147 0.0166 1.0000 1× 10−5 1× 10−5 1× 10−5

σa = 0.20

6 0.0134 0.0214 1.0000 0.0005 0.0005 0.0005
9 0.0132 0.0213 1.0000 0.0002 0.0002 0.0002
12 0.0132 0.0213 1.0000 0.0001 0.0001 0.0001
15 0.0132 0.0213 1.0000 0.0001 0.0001 0.0001
18 0.0132 0.0213 1.0000 3× 10−5 3× 10−5 3× 10−5

Table 3: The approximate L2 relative error of the standard deviation of the response vector obtained by
using the six reduced order methods for different values of nr. The approximate L2 relative error is shown
for two different values of the standard deviation of the bending rigidity: (a) σa = 0.05 (b) σa = 0.20 at a
frequency of 42 Hz.

M2G in comparison to the M3G method.

9.2 Kirchhoff-Love plate

The comparative methods are applied to analyse the bending of a thin plate which is governed

by the Kirchhoff-Love plate theory. The rectangular plate under consideration has a length (L)

of 1.00 m and a width (W ) of 0.56 m. The centre of the plate has coordinates (0.00, 0.00). The

plate is clamped along its width (x = −0.50 m), thus the displacement and rotational degrees of

freedom along the clamped edge are zero.

Similarly to the previous case, the bending rigidity has been assumed to be the only stochastic

parameter. The bending rigidity of the plate, D, is assumed to be a stationary Gaussian random

field of the form

D(x, y, θ) = D(1 + a(x, y, θ)) (84)

where a(x, y, θ) is a stationary Gaussian field with zero mean and x, y are the coordinate directions

of the length and width of the plate. D corresponds to the deterministic value of the bending

rigidity of the plate. The correlation function of the random field is assumed to take the following

form

Ca(x1, x2, y1, y2) = σ2
ae
−(|x1−x2|)/µxe−(|y1−y2|)/µy (85)

where σa is the standard deviation of the bending rigidity, and µx and µy are the correlation lengths

for both the x and y directions respectively. The forcing vector is again deemed deterministic with

a unit norm. This is applied as a harmonic point load at coordinate (0.42, 0.00). The deterministic

modal damping matrix consists of a 2% damping factor for each mode. Figure 9 illustrates the

configuration of the plate.

For the given example, the parameters of the plate are as follows: thickness h = 0.003 m,

mass density ρ = 7860 kgm−3 and a Young’s modulus of E = 200 × 109 Nm−2 thus resulting in

D0 = 494.51 Nm. The values used imply that the thin plate is made of steel. The correlation

length is set at µx = L
5 i.e. a fifth of respective length in the x direction, and set at µy = W

5 in

the y direction.
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Figure 9: The configuration of the stochastic Kirchhoff-Love plate with a harmonic point load asserted
at coordinate (0.42, 0.00).

By using a structured grid with linear rectangular elements, the thin plate has been divided

into 25 elements in the x direction and 14 elements in the y direction. This leads to the system

containing 1,125 degrees of freedom. Three terms have been retained in the KL expansion intro-

duced in Equation (1) along both the x and y axis. By using a tensor product of the eigenfunctions

associated with the KL expansion, a total of 9 random variables are used to represent the discre-

tised Kirchhoff-Love plate. The response of the plate has been analysed for two different values of

standard deviation

σa = {0.05, 0.15} (86)

The frequency range of the harmonic point load under consideration is 0−200 Hz at an interval

of 2 Hz. This corresponds to considering 101 different frequency values. 5,000 samples have been

considered for each frequency step. 5,000 samples gives a satisfactory convergence for the first

two moments of the quantities of interest. For each of the proposed methods, thirty terms have

been retained in their respective summations, hence nr = 30. If all the terms were retained,

all the summations would contain 1,125 terms. The methods implementing the Galerkin error

minimisation technique require a linear set of 30× 30 equations to be solved for each sample.

The mean and the standard deviation of the vertical deflection amplitude of the plate is further

analysed at one of the free corners (0.50,−0.28). This coordinate is labelled P in Figure 9. The

mean of the vertical deflection amplitude at point P is illustrated in Figure 10. When σa is set

to 0.05, a good agreement between the DMCS method and all the projection methods is visible.

However when σa is increased to 0.15, an agreement between the M3 and DMCS methods is no

longer seen.

Figure 11 shows the standard deviation of the vertical amplitude of the plate at point P . Due to

the M3 method being deterministic, the standard deviation of this method has not been illustrated.

Barring the M2 method, a good agreement can be seen between the DMCS method and the other

projection methods. Therefore it can be deemed that only the M1 method or Galerkin methods

can incorporate the true standard deviation of the amplitude at point P .

The approximate L2 relative error of the mean of the response vector is given by Figure 12 for
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Figure 10: The mean vertical amplitude of the displacement at the corner of the plate (0.50,−0.28) is
observed. The response is shown for two different values of the standard deviation of the bending rigidity
(a) σa = 0.05 (b) σa = 0.15.
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Figure 11: The standard deviation of the vertical amplitude of the displacement at the corner of the
plate (0.50,−0.28) is observed. The response is shown for two different values of the standard deviation
of the bending rigidity (a) σa = 0.05 (b) σa = 0.15.

.

all the proposed methods. Similarly to the cantilever beam example, the M3 method is extremely

erroneous in comparison to the other methods. This is especially true when σa = 0.15. The

approximate relative error seems to amplify as the frequency increases. If the value of nr were

to be increased, it is expected that the relative error at the higher frequencies would decrease.

However increasing the value of nr would increase the computational effort.

Figure 13 depicts the approximate L2 relative error of the standard deviation for all methods

barring the M3 method. In conjunction with Figure 11, it is again apparent that the M2 method

does not capture the standard deviation of the system. It is now apparent that the M1 method

is not as effective as the sample based Galerkin methods at mimicking the standard deviation

obtained through the DMCS method. By examining the sample based Galerkin methods in more

detail, all the methods produce an extremely similar value of relative error. This is the case
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Figure 12: The approximate L2 relative error of the mean of the response vector at each frequency step.
The approximate L2 relative error is shown for two different values of the standard deviation of the bending
rigidity: (a) σa = 0.05 (b) σa = 0.15.

.

for both the relative error of the mean and the standard deviation. Therefore it can be deduced

that calculating or approximating the random eigensolutions is not necessary in order to obtain the

lowest relative errors for the mean and standard deviation. Combining deterministic eigensolutions

and the sample based Galerkin approach is sufficient.
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Figure 13: The approximate L2 relative error of the standard deviation of the response vector at each
frequency step. The approximate L2 relative error is shown for two different values of the standard
deviation of the bending rigidity: (a) σa = 0.05 (b) σa = 0.15.

.

The probability density function of the vertical amplitude of the point P is given in Figure

14. This has been calculated for both values of σa at 168 Hz. This frequency value corresponds

to the 16th deterministic resonance value. Due to the deterministic nature of the M3 method,

its probability density function has been omitted. A decent agreement can be seen between all

the methods at the lower σa value, however a greater discrepancy is seen between the methods at

the largest value of σa. When σa = 0.15 a good agreement is seen between the Galerkin methods

and the DMCS method, however the M1 and M2 methods are less successful at mimicking the
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probability density function of the DMCS method.
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Figure 14: The probability density function of the vertical amplitude of the displacement at the corner
of the plate (0.50,−0.28) when the unit harmonic point load at (0.42, 0.00) is at 168 Hz. The response
is shown for two different values of the standard deviation of the bending rigidity: (a) σa = 0.05 (b)
σa = 0.15.

.

10 Summary and Conclusion

10.1 Summary

A summary of the proposed methods is given below:

• A set of hybrid projection methods to calculate the response of stochastic dynamic structural

systems has been proposed. The different methods analyse the effect of altering the nature

of the coefficients and their associated basis.

• Both the coefficients and their corresponding basis have been computed by utilising the

stochastic and deterministic eigensolutions of the structural system.

• The computational effort is reduced by approximating the stochastic eigensolutions and by

reducing the modal basis.

• To compensate for the error induced by the proposed hybrid model order reduction technique,

a sample based Galerkin error minimisation approach is presented.

• If the sample based Galerkin error minimisation approach is omitted it is necessary for both

the coefficients and their associated bases to be stochastic in order to capture an accurate

response for a system.

• If the Galerkin error minimisation approach is applied calculating the stochastic eigensolu-

tions is unwarranted. The Galerkin method compensates for the error induced while utilising
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the baseline eigenmodes. Therefore, a Monte Carlo type sample-based method to evaluate

the coefficients and their associate basis can be avoided.

• The application of the Galerkin error minimisation approach in conjunction with projecting

onto a deterministic basis with deterministic coefficients (M3G) produces a level of accuracy

comparable to any of the other proposed methods. Our study leads us to suggest that this

simple approach has significant potential for analysing stochastic structural systems.

10.2 Conclusion

A comprehensive set of hybrid projection methods has been proposed in order to solve a stochastic

partial differential equation for structural dynamic systems. Following the implementation of a

stochastic finite element method, three projection methods have been developed by utilising the

random eigenvalue problem. The first method utilises both random eigenvalues and eigenvectors,

the second random eigenvalues and deterministic eigenvectors and the third only uses deterministic

eigensolutions. In order to reduce the computational effort associated with each of these methods,

the random eigensolutions have been approximated by a first order perturbation and only the

dominant projection terms have been retained. Due to the approximations and the reduced modal

basis, three additional projection methods have been proposed. These methods utilise a sample

based Galerkin error minimisation approach in order to lower the error.

The proposed methods have been applied to a Euler-Bernoulli cantilever beam and to a

Kirchhoff-Love plate with stochastic properties described with a random field. It is apparent

that if the sample based Galerkin error minimisation approach were not to be implemented the

stochastic elastic properties of the random eigenvalues and eigenvectors must be retained in or-

der to capture the stochasticity of the governing equation. The application of the sample based

Galerkin method compensates the error incurred when only the baseline eigenmodes are utilised.

Thus the significant computational overhead associated with a Monte Carlo type sample-based

basis evaluation is avoided when using the proposed Galerkin error minimisation technique. Fu-

ture research needs to verify these conclusions for larger real-life structures and different models

of uncertainties. One of the main difficulties that needs to be addressed is the elicitation of uncer-

tainties in stochastic parameters for real-life structures. This might require complex hierarchical

probabilistic uncertainty descriptors which then must be translated into parametrised coefficient

matrices. Additionally, the consideration of non-proportional damping matrices and projection in

the space of complex eigenmodes [52] will be a fruitful generalisation of the proposed framework.
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