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Thesis summary  

Genome wide association studies have identified genes associated with Late 

Onset Alzheimer’s disease (AD). Pathway analyses have used this data to 

implicate a number of biological mechanisms in AD pathogenesis. Endocytosis 

has been implicated in AD and is a critical biological mechanism involved in 

the production of Aβ.  
 

BIN1 and CD2AP are associated with AD and function in endocytosis. This 

thesis describes how depletion of BIN1 and CD2AP has contradicting effects 

on the processing of APP in a human brain cell line and affects endocytosis in 

different ways, suggesting multiple cellular trafficking mechanisms may be 

involved in Aβ production.  

 

As most genetic variants associated with complex diseases are located in the 

non-coding region of the genome, they may contribute to disease 

susceptibility by disrupting gene regulation. Variants at the BIN1 locus 

associated with AD are located approximately 30 Kb from the coding region, 

suggesting BIN1 regulation may be a risk mechanism in AD.  

 

BIN1 expression is influenced by cis-regulatory mechanisms in prefrontal cortex 

tissue. Differential allele expression implied that this cis-regulation was 

influenced by DNA variants. The variant responsible was not identified but 

there was suggestive evidence for an intronic variant associated with AD.  

 

ChIP-Seq and DNase-Seq data identified chromatin modifications and 

transcription factor binding in immune cell types at the BIN1 risk locus. Gene 

reporter assays showed that the BIN1 locus was capable of functioning as a 

genetic enhancer. Furthermore, assays used to investigate DNA protein 

interactions showed that SPI1, an AD associated transcription factor with a 

critical immune function, bound to the BIN1 locus. The BIN1 index SNP had no 

effect on gene expression or protein binding, but may have a greater impact 

on additional disease relevant immune cell types.  

 

Finally, gene-editing techniques were explored as a mechanism for generating 

isogenic cell models to investigate the effect of AD associated variants.  
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1. Introduction 

1.1 Alzheimer’s Disease 

 

Alzheimer’s disease (AD) is the most common neurodegenerative disease and 

the main cause of dementia (7). AD is the fifth leading cause of death in the 

United States in individuals aged over 65. An estimated 5.5 million Americans 

suffer from AD, 5.3 million aged over 65. Should no intervention be 

developed, the number of AD patients is predicted to triple by 2050 (8). Due 

to an ageing population and the full time care dementia patients require in the 

later stages of disease, dementia is becoming an increasing economic burden. 

The health and social care costs of dementia are greater than that for cancer, 

stroke and chronic heart disease combined (9). In the United Kingdom over 

520 000 people have AD and the cost of dementia is predicted to increase 

from £26 billion in 2014, to £55 billion in 2040 (10).  

 

Current treatments aim to manage symptoms rather than prevent onset or halt 

disease progression. A greater understanding of AD pathogenesis would aid in 

the understanding of the biology of this disease and in the development of 

disease modifying therapies that could tackle this worldwide health issue.  

 

1.1.1 History of Alzheimer’s disease 

!

Alois Alzheimer first described AD in 1906. Alzheimer examined a 51-year-old 

female who presented with severely impaired memory, aphasia, erratic 

behaviour, paranoia and auditory hallucinations. The post-mortem revealed the 

presence of extracellular neuritic plaques comprising of the amyloid beta 

peptide (Aβ), intracellular neurofibrillary tangles of tau protein (NFT) and 
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atherosclerotic changes in the brain (11, 12). These symptoms did not fit into a 

known disease at the time. The term “Alzheimer’s disease” was first used by 

Kraepelin, often regarded as the father of modern psychiatry, in the 8th edition 

of his “Handbook of Psychiatry” in 1910 (13). 

 

Little research on AD was carried out until the development of biochemical 

techniques in the 1970s, which led to an increased interest in the cholinergic 

system. In 1977, a cholinergic deficit in AD was confirmed (14, 15) and the 

discovery of selective cell death of cholinergic neurons in the nucleus basalis of 

Meynert provided further evidence for a cholinergic role in AD. This discovery 

linked the biochemical observations and the disease pathology for the first 

time (16).  The identification of the cholinergic systems role in AD led to the 

first therapies to be developed: anti-cholinesterase inhibitors.  

 

Work by Braak and Braak first identified the various stages in pathology of the 

disease in 1991 (17). Since then the development of more sophisticated 

neuroimaging techniques able to visualise neuronal atrophy in vivo, along with 

the use of PET ligand methods capable of imaging amyloid deposition and tau 

tangles in the brain, has allowed the study of AD pathology even in the early 

stages of the disease (18-20).   
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1.2 Clinical features of Alzheimer’s disease 

 

The average time course of AD dementia is 7-10 years and concludes with 

death. The symptom most commonly observed in the first instance is 

impairment of recent memory, however other cognitive deficits may also 

present, such as executive dysfunction and problem solving abilities. As the 

disease progresses to mild AD, which takes around 2-5 years, further 

symptoms become apparent such as language dysfunction, visuospatial 

difficulties, loss of insight and personality changes.  

 

The moderate stage of disease (lasting between 2-4 years) displays more 

obvious problems with memory, affecting long-term memory. It also presents 

with increased cognitive problems resulting in the individual not being able to 

act independently in the community or perform routine tasks.  

 

In the severe stages of AD, individuals require full time caregivers and are 

totally dependent upon them to complete all activities of daily living. In the 

most advanced stage of disease, individuals can become mute, non-

ambulatory, unable to talk and cannot control bladder or bowel function (21).  

 

1.2.1 Diagnosis 

 

In order to conclusively diagnose AD, patients need to present with the clinical 

phenotype of progressive dementia with impairment of other cognitive 

domains (such as learning, language, reasoning, visuospatial abilities or 

behaviour), and the neuropathological hallmarks such as NFTs, amyloid 

plaques and neuronal cell death.  As neuropathological investigations are 

difficult during life, the diagnosis of AD is predominantly influenced by clinical 
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evidence and takes a probabilistic approach, therefore only a diagnosis of 

probable AD is possible.  

 

The criteria to describe the clinical diagnosis was first established in 1984 by 

the National Institute of Neurological and Communicative Disorders and Stroke 

and the Alzheimer’s Disease and Related Disorders Association (22).  This 

report takes into account medical history, clinical examination, 

neuropsychological testing and laboratory assessments. Since 1984, the 

knowledge and understanding of AD has increased, leading to the need to 

revise these original criteria. The National Institute on Ageing – Alzheimer’s 

Association (NIA-AA) have proposed revised guidelines that include the use of 

biomarkers to aid a diagnosis (23). A summary of these guidelines is described 

below.  

 

The NIA-AA define a diagnosis for dementia as neuropsychiatric symptoms 

that: 

• Interfere with an individuals ability to function at usual activities 

• Have declined from previous levels of function and performance 

• Are not explained by another psychiatric disorder 

• Resulted in cognitive impairment that involves two of the following: 

o Impaired ability to acquire and remember new information 

o Impaired reasoning and handling of complex tasks/poor 

judgment 

o Impaired visual spatial abilities 

o Impaired language function 

o Changes in personality/behaviour 

The NIA-AA have classified a clinical diagnosis of dementia as a result of AD 

(AD dementia) diagnosis as Probable or Possible AD. A diagnosis of Probable 

AD dementia is reached when: 
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• A patient meets the diagnosis for dementia previously described. In 

addition, the dementia must have the following characteristics: 

o Insidious onset 

o History of cognitive decline 

• No evidence of cerebrovascular disease 

• No evidence of features of Dementia with Lewy Bodies 

• No evidence for Frontotemporal Dementia 

• No evidence of progressive aphasia 

• No evidence of a medical comorbidity that could have a substantial 

effect of cognition 

 

An individual can gain a diagnosis of Probable AD dementia with 

increased level of certainty if there is additional evidence of a 

documented decline or a causative AD genetic mutation. Recent 

developments in the understanding of AD biomarkers can be used to 

strengthen a Probable AD diagnosis. Biomarkers include low cerebrospinal 

fluid (CSF) beta amyloid 42 (Aβ42) and positive PET amyloid imaging, which 

are indicative of Aβ deposition in the brain, and elevated CSF tau, decreased 

flurodeoxyglucose uptake on PET in temporoparietal cortex and evidence of 

atrophy identified via MRI, which are indicative of neuronal degeneration (24). 

 

A Possible AD dementia diagnosis is received if an individual meets the 

clinical criteria of AD dementia but has: 

• An atypical disease course  

• Evidence of a comorbidity that could effect cognition 

A diagnosis of Possible AD dementia with evidence of the AD pathological 

process would be given to patients who meet the clinical criteria for a non-AD 
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dementia but possess biomarker evidence for AD or who meet the 

neuropathological criteria for AD.  

 

1.2.2 Current treatments 
 

There are two categories of drugs currently available to treat the symptoms of 

AD: acetylcholinesterase (AChE) inhibitors and NDMA (N-methyl-D-aspartate) 

receptor antagonists.  

 

Acetylcholine (ACh) is a neurotransmitter implicated in learning and memory 

(25). AChE is an enzyme, which breaks down ACh at the neuromuscular 

junction to terminate synaptic transmission in cholinergic neurons (26).  AD 

patients have decreased acetylcholine synthesis and altered levels of 

acetylcholine receptors (27, 28). AChE inhibitors prevent the breakdown of 

acetylcholine in an attempt to restore/maintain levels in the brain (29). Three 

AChE inhibitors are commonly prescribed; rivastigmine (Exelon), galantamine 

(Razadyne, Reminyl) and donepezil (Aricept). AChE Inhibitors have been shown 

to temporarily improve symptoms and reduce their decline. Individuals taking 

AChE Inhibitors can have reduced anxiety and improvements in motivation, 

memory, concentration and ability to perform daily tasks (30). 

 

Glutamate is an essential neurotransmitter in the central nervous system, 

primarily functioning in the hippocampal and neocortical regions of the brain. It 

is critical for cognition, learning and memory. NDMA receptors are enriched in 

the post-synaptic membrane and are a receptor for glutamate (31). Over 

stimulation by glutamate can increase intracellular calcium, which can impact 

on calcium homeostatic mechanisms and result in neuronal dysfunction and 

cell death (32). This process was first described in 1969 and was termed 
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excitotoxicity (33). An increased level of glutamate is seen in AD, which causes 

increased activation of the NDMA receptors resulting in excitotoxicity (34).  

 

Memantine (Namenda) is a NDMA receptor antagonist preventing the effect of 

elevated glutamate levels that can lead to neuronal dysfunction. Memantine is 

prescribed to patients intolerant to AChE Inhibitors or with severe AD. 

Individuals taking Memantine can see a reduced decline of their symptoms, 

including disorientation and ability to perform daily tasks. There is some 

evidence suggesting Memantine may also alleviate additional symptoms such 

as delusions, aggression or agitation (30). 
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1.3 Pathology 

 

1.3.1 Amyloid Plaques  

 

Senile amyloid plaques observed in the brain of AD patients are extracellular 

deposition of Aβ peptides. Aβ typically consists of 40 or 42 amino acids 

residues and is cleaved from Amyloid Precursor Protein (APP). Aβ is 

predominantly generated at the neuronal membrane, although other cell types 

may contribute, and released into the extracellular space (35). Aβ40 is the most 

abundant Aβ species however Aβ42 is hydrophobic and more prone to 

aggregating and is consequently more abundant in amyloid plaques (36). Aβ42 

was shown to be capable of causing the hyperphosphorylation of tau and 

neuritic dystrophy in cultured rat neurons (37) and the neurotoxic effect of the 

Aβ peptide in the hippocampus of healthy rats resulted in impaired memory 

(38). Aβ deposition appears to precede other AD-associated pathology (39, 

40). Aβ plaques are always observed in AD and result in the generation of 

dystrophic neurites and glial activation (41, 42).  

 

The progression of amyloid plaque deposition is fairly unpredictable, but three 

stages have been distinguished. In stage one, plaques are found in the basal 

portions of the frontal, temporal and occipital lobes. Stage two is characterised 

by all of the isocortical areas being affected, with mild plaque formation in the 

hippocampus and a lack of plaques observed in the primary sensory, motor 

and visual cortices. The third and final stage sees amyloid plaques in the 

primary isocortical areas and potentially in the cerebellum and subcortical 

nuclei (17).  Amyloid plaque burden does not appear to correlate with 

dementia severity or duration (43-46). 
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There are two morphological categories of amyloid plaque, diffuse and dense-

core. Dense-core amyloid plaques are predominantly found in the brains of AD 

patients whereas diffuse amyloid plaques have been observed in the brains of 

healthy individuals, therefore it is possible they may be a result of normal 

ageing. The neuropil is a dense network of cytoplasmic processes from nerve 

cells and glial cells. Dense-core amyloid plaques are associated with additional 

pathological events in the surrounding neuropil, such as increased neurite 

curvature, dystrophic neuritis, the recruitment and activation of astrocytes and 

microglia and synaptic and neuronal loss (47-54). Synaptic loss is an early event 

in the progression of AD (55).  

 

Dense-core amyloid plaques comprise of a central mass of extracellular 

filaments that radiate outwards and come into contact with neuronal, astrocytic 

and microglial processes, forming neuritic dystrophies (54, 56). Plaques can 

have cytotoxic effects and reactive astrocytes and activated microglia are 

associated with dense-core amyloid plaques suggesting plaques potentially 

trigger the glial response (47, 50, 53). Furthermore, pathogenic soluble forms 

of Aβ have been implicated in inducing synaptic dysfunction and synapse loss, 

critical features of AD pathogenesis (57).  

 

 1.3.2 Neurofibrillary tangles 

 

NFTs primarily consist of pairs of helical filaments consisting mainly of the 

hyperphosphorylated tau protein (58). Tau is a microtubule-associated protein 

located in the axon and plays a role in the stability of neuronal microtubules 

which function in axonal transport (59). If tau is abnormally modified, it may 

dissociate from the microtubule, causing these structures to collapse resulting 

in pathological lesions. Abnormally phosphorylated tau (P-tau) has been 

identified early in AD brains (60).  
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There are three distinguishable morphological stages of NFTs. Pre-NFTs are 

defined as having diffuse tau within the cytoplasm of otherwise normal looking 

neurons. Mature intraneuronal NFTs show filamentous aggregates of tau that 

displaces the nucleus and extraneuronal NFTs result from the death of a tangle 

bearing neuron (61, 62). 

 

The pattern of NTF progression is predictable and has been described in six 

stages. NFTs initially appear in the transentorhinal region and entorhinal cortex 

in stage one. Stage two sees the appearance of NFTs in the CA1 region of the 

hippocampus. NFTs develop in the limbic structures such as the subiculum of 

the hippocampus formation during stage three and the amygdala, thalamus 

and claustrum in stage four. In stage five, NFTs develop in the isocortical areas 

and finally in the primary sensory, motor and visual areas in stage six (17, 63, 

64).  

 

NFT burden and distribution appears to correlate with the severity and 

duration of the dementia. Furthermore, the spreading of the NFTs between 

brain regions relates to the neuropsychological symptoms experienced (43, 45, 

46). A correlation between NFT burden and astrocytosis and microgliosis has 

been observed independent of plaque burden, suggesting that NFT may also 

influence the glial response (46, 65). 

 

1.3.3 Other features 

 

AD displays symmetrical cortical atrophy predominantly affecting the medial 

temporal lobes whilst sparing the primary motor, sensory and visual cortices 

and is detectable via magnetic resonance imaging (MRI) during the early 

stages of disease (66). Neuronal and synaptic loss typically progresses in 



  Chapter 1 
 

 11 

parallel with NFTs, however as neuronal loss can exceed NFT burden, another 

mechanism of neuronal death may be involved (67-69).  

 

Synapse loss has been observed to exceed neuronal loss, indicating that the 

loss of the synapses occurs prior to neuronal death. These surviving neurons 

have reduced connectivity with the surrounding neurons. Eventually synapse 

loss can lead to neuronal death and contribute to the cortical atrophy seen in 

AD (70-73).  

 

Aβ can also deposit in vessel walls forming cerebral amyloid angiopathy, seen 

in approximately 80% of AD brains. Granuovacuolar degeneration of Hirano 

Bodies, intracellular aggregates of actin and associated proteins observed in 

neurons, has been detected in the brains of cognitively healthy elderly 

individuals, but are more frequent and severe in AD patients (74, 75).  
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1.4 APP processing and Aβ generation 

 

Aβ is generated from the proteolytic cleavage of APP. Following APP synthesis 

in the endoplasmic reticulum (ER) APP is transported to the cell surface via 

secretory vesicles. α-secretase is a membrane bound endoprotease, thought to 

cleave APP primarily at the plasma membrane (76). α-secretase cleaves APP 

within the Aβ domain leaving a α-carboxyl terminal fragment (α-CTF) and 

releases the large soluble ectodomain sAPPα fragment. The ADAM protein 

family possesses α-secretase like activity, and ADAM10 and ADAM17 have 

been suggested to be active in the processing of APP (77, 78). The α-CTF 

fragment undergoes further cleavage by a γ-secretase to produce a p83 

fragment, which is rapidly degraded and thought to have little function. Due to 

the α-secretase cleavage occurring in the Aβ domain, this prevents the 

production of the Aβ peptide and therefore this pathway is referred to as the 

non-amyloidogenic processing pathway (79).   

 

Following transportation to the cell surface, APP can be re-internalised and 

enter the endosomal/lysosomal system, where it is thought amyloidogenic 

processing and Aβ generation occurs (80). Amyloidogenic processing occurs 

when APP is cleaved by a β-secretase, such as membrane bound BACE1 (β-site 

APP cleaving enzyme 1) (81). BACE1 is abundant in neurons and requires the 

acidic environment of the early/late golgi, early endosomes and endosomes for 

optimal activity and this is thought to be the rate-limiting factor in the 

generation of Aβ (82, 83).  

 

β-secretase cleavage produces a soluble sAPPβ fragment and a membrane 

bound β-carboxyl terminal fragment (β-CTF) (81).  γ-secretase cleaves β-CTF in 

the transmembrane protein domain, which mainly occurs in the trans-golgi 
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network (TGN) and early endosomes, with some evidence it may also occur in 

multivesicular bodies (MVB) (84, 85). The γ-secretase complex consists of 4 

components: presenilin, Nicastrin, anterior pharynx defective 1 and presenilin 

enhancer 2 (86). γ-secretase cleavage generates Aβ and releases the APP 

intracellular domain (AICD). AICD can translocate to the nucleus, where it may 

regulate gene expression. Aβ40 or Aβ42 are generated depending on the 

γ-secretase cleavage site. Aβ peptides can assemble into amyloid fibrils. This is 

thought to occur via a nucleated polymerisation model, where an Aβ monomer 

acts as a nuclei from which fibrils grow (36).  Amyloid fibrils are large and 

insoluble and form the amyloid plaques seen in AD brains. A summary of APP 

processing is shown in figure 1.1. 

 

  

Figure 1.1. Non-amyloidogenic and Amyloidogenic APP processing. Non-amyloidogenic 

processing of APP occurs at the cell surface. Cleavage by α-secretase prevents the production of 

Aβ peptides. Amyloidogenic processing of APP occurs following APP internalisation. β-secretase 

cleaves APP in the endosomes to produce β-CTF and sAPPβ fragments.  β-CTF is further cleaved 

by γ-secretase to generate Aβ peptides, which deposit to form amyloid plaques.  
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sAPPα has been found to have an important role in neuronal plasticity and 

survival and be protective against excitotoxicity (87, 88). Expression of sAPPα 

appears to alleviate some of the abnormalities seen in APP knockout mice, 

suggesting that a physiological function of APP may be mediated via sAPPα 

(89). In contrast to sAPPα, sAPPβ appears to have a detrimental effect and has 

been implicated in axonal pruning and neuronal cell death (90). 

Overexpression of β-CTF is thought to have a cytotoxic effect and has been 

linked to neuronal degeneration (91, 92).  
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1.5 Genetics of Alzheimer’s Disease  

 

Due to technological limitations, the genetics underlying AD was under 

investigated until the 1980s, when increasing numbers of autosomal dominant 

pedigrees were identified (93). The association between Down’s syndrome (DS) 

(trisomy of chromosome 21) and AD was key in these initial genetic studies 

(94).  Linkage studies and the discovery that amyloid plaques peptides were 

cleaved from APP, identified APP located on chromosome 21 as a candidate 

gene (95). Linkage studies also led to the identification of a novel gene on 

Chromosome 14 associated with early onset disease now known as presenilin 1 

(PSEN1) (96). Studies in late onset familial and sporadic cases identified the 

association between gene dose of the apolipoprotein E (APOE) type 4 alleles 

and risk of AD in these cases (97, 98). Only with the recent development of 

genotyping chip technology were any further genetic associations identified.  

 

1.5.1 Familial AD 

 

Less than 5% of all AD cases occur in families in recognisable Mendelian 

inheritance patterns. Familial AD has an autosomal dominant pattern of 

inheritance and symptoms typically present before the age of 65. 10-15% of 

familial AD cases are estimated to have APP mutations, 70% of cases are 

estimated to have PSEN1 mutations and 5% of cases are due to rare PSEN2 

mutations. The remaining familial AD patients are thought have de novo 

mutations (99, 100). Mutations in these genes generally result in increased 

production of Aβ42 and an earlier disease onset (101). 
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1.5.1.1 Evidence linking APP to etiology of AD 

 

Investigations into the composition of amyloid plaques led to the identification 

of APP on chromosome 21q21 in 1987 (102). This discovery explained why 

individuals with DS develop the neuropathological features of AD in their 

fourth decade, as these individuals have three copies of APP (103). Individuals 

who have trisomy 21, but due to a translocation only have two copies of APP, 

have DS features but do not develop AD (104). Additionally, individuals with an 

APP duplication, but not trisomy 21, do not have DS but develop AD during 

their fifth decade (105). These findings all implicate overexpression of APP in 

the increased production of Aβ resulting in AD pathology.  

 

Over 30 missense mutations have been identified in APP that result in familial 

AD, with most occurring within the secretase cleavage site of the 

transmembrane domain and adjacent Aβ domain and leading to increased Aβ 

production (106, 107). APP mutation carriers have an average age of onset of 

45-55 (108). Missense mutations in the Aβ region of APP have also been 

identified which reduce β-secretase cleavage and therefore reduce the risk of 

developing AD (109). 

 

1.5.1.2 Evidence linking Presenilin to etiology of AD 

 

Presenilin genes encode for PSEN1 and PSEN2, which form a heterodimer that 

functions as the catalytic domain of the γ-secretase complex, the 

transmembrane cleaving enzyme responsible for the production of Aβ (110-

112). 
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PSEN1 

 

PSEN1 (Presenilin 1), located on chromosome 14q24.2, was identified as a 

pathogenic gene for Familial AD in 1995 (96) and encodes for the catalytic core 

of the γ-secretase complex (110). Missense mutations in PSEN1 have complete 

penetrance and are the most common cause for familial AD, accounting for 18-

50% of cases (113). The average age of onset of AD for individuals carrying a 

PSEN1 mutation is 35-55 years, but can occur as early as mid-20s (108, 114). 

Missense mutations in PSEN1 result in relatively increased levels of 

hydrophobic aggregate-prone Aβ42 peptides compared to Aβ40. This may be 

a result of either increased production of Aβ42 or decreased production of 

Aβ40 (115). Aβ42 deposition may be a preclinical event that occurs in PSEN1 

mutation carriers (116).  

 

PSEN2 

 

PSEN2 (Presenilin 2), located on chromosome 1q42.13, has high homology to 

PSEN1 and was identified as a candidate gene in familial AD in 1995 (117). 

PSEN2 mutations are relatively rare in the Caucasian population and result in a 

later and more variable age of onset between 40-70 years (108). PSEN2 

mutations also have lower penetrance than PSEN1 mutations suggesting that 

environmental or other genetic factors may influence disease (118). PSEN2 

mutations have been associated with a relative increase in Aβ42, implying it 

also affects the cleaving activity of γ-secretase (115). 
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1.5.2 Sporadic AD 

 

The vast majority of AD cases are sporadic and therefore do not run in families. 

Although sporadic AD can have an early onset, in the majority of cases onset 

occurs after the age of 65 and is referred to as Late Onset AD (LOAD). LOAD is 

a complex disease and has a heritability estimate of 60-80% (119). First degree 

relatives of an individual suffering from LOAD have a life time risk of 20-25%, in 

comparison to the general population which have a 10.4% risk (120), indicating 

genetics play an important role in this disease.  

1.5.2.1 APOE 

 

Apolipoprotein E (APOE), located on chromosome 19q13.32, has been 

implicated in both familial AD presenting with late onset and LOAD. APOE has 

three major allele variants, which can be distinguished by two SNPs (single 

nucleotide polymorphisms), rs429358 and rs7412. These allele variants are 

termed ε2, ε3 and ε4. The APOE ε4 allele was discovered as a risk gene for 

LOAD in 1993 (98). The dosage of the APOE ε4 allele is a major risk factor for 

LOAD, effecting both age of onset and cognitive decline (121, 122). Females 

with a single ε4 allele have a 4-fold increase in risk of developing LOAD, 

whereas men and women with two ε4 alleles show a 15-fold increase in risk 

(123-125). The ε2 allele is thought to be protective against AD risk and delay 

age on onset (126), however this allele has been linked to cardiovascular 

disease (127). 

 

APOE is involved in lipid homeostasis. In the central nervous system APOE is 

primarily produced from astrocytes and transports cholesterol to neurons via 

APOE receptors (128, 129). There is evidence suggesting ε4 carriers may have 

diminished cholesterol transport in neurons and astrocytes (130). APOE is also 

capable of binding Aβ and functions in the clearance of Aβ aggregates and 
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soluble Aβ from the extracellular space.  The ε3 allele has greater binding 

capacity resulting in less deposition, whereas the ε4 allele is thought to be less 

efficient in mediating clearance (131, 132). Furthermore, ε4 carriers have a 

higher plaque and tangle burden than other APOE polymorphisms (133). 

 

1.5.2.2 Genome Wide Association Studies 

 

Due to developments in sequencing technologies and the creation of chip 

based assay technology capable of genotyping millions of SNPs, Genome 

Wide Association Studies (GWAS) were made possible. GWAS are based on 

the hypothesis that common diseases are influenced by common genetic 

variation. GWAS use a case-control approach to determine allele frequency 

differences between healthy individuals and individuals suffering from a 

disease. This approach identifies genetic variation that is common in the 

population which may have a relatively small effect size in comparison to rare 

disorders, such as familial AD (134).  

 

In October 2009, Harold et al published a GWAS of LOAD (135).  A 

collaborative consortium was formed with parties based in Europe and the US 

termed Genetic and Environmental Risk in Alzheimer’s Disease 1 Consortium 

(GERAD1). This allowed a combined collection of 19000 subjects to be 

studied. Following stringent quality control measures, 16000 subjects 

remained, making this study the largest GWAS to take place at that time. This 

study showed highly significant associations, p=8.5 x 10-10 and p=1.3 x 10-9, for 

CLU and PICALM loci respectively.  This study also generated suggestive 

evidence for an association between BIN1 and LOAD, however this did not 

reach genome-wide significance (p=3.2 x 10-6). 
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Simultaneously another LOAD GWAS was carried out by Lambert et al as part 

of the European AD Initiative Stage 1 (EADI1) (136). This study replicated the 

findings reported in Harold et al, and identified two genome wide significant 

markers at the CLU locus (p<9.3 x 10-8). Lambert et al also discovered another 

locus of interest that lies within a linkage disequilibrium block containing CR1 

(p=3.5 x 10-9). 

 

In 2010, a three-stage analysis of GWAS data was performed studying 35000 

participants, including 8371 AD cases. The aim was to identify additional loci 

associated with LOAD and replicate previous findings in an independent case-

control population (137). This 3 stage analysis identified genome-wide 

significant associations between LOAD and the APOE, CLU, PICALM loci and 

two novel loci, one on chromosome 2 upstream of BIN1 and another on 

chromosome 19 located near BLOC1S3 and MARK4.  

 

In 2011, Hollingworth et al aimed to identify more new susceptibility variants 

for AD by performing a three-stage association study based on the European 

population within the GERAD+ database and testing the loci with suggestive 

evidence for association in the Alzheimer’s Disease Genetic Consortium 

(ADGC) GWAS (138). This analysis identified SNPs at the BIN1, CR1, ABCA7 

and MS4A loci with genome wide significance.  

 

In a similar study The Alzheimer’s Disease Genetic Consortium assembled a 

dataset for association analysis.  The Stage 3 analyses strengthened the 

evidence for association with CD33, EPHA1 and CD2AP. CD2AP gained 

genome-wide significance in this analysis with a p value of 8.6 x 10-9 and the 

evidence of association for the EPHA1 loci increased with a p-value of 6.0 x 10-

10 (139).   
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By 2011 ten LOAD susceptibility loci had been identified: APOE, CR1, CLU, 

PICALM, BIN1, EPHA1, MS4A, CD33, CD2AP and ABCA7. In 2013 the largest 

LOAD GWAS meta-analysis took place. The International Genomics of 

Alzheimer’s Project (IGAP) conducted a two-stage meta-analysis using four 

GWAS samples with European ancestry (140). Stage 1 meta-analysis used data 

from ADGC, CHARGE, EADI and GERAD and used the European population 

reference haplotype data from the 1000 Genome Project to impute genotypes 

for up to 11863202 SNPs per data set. In addition to APOE, 14 genomic loci 

were identified to have a genome-wide significant association in stage 1. This 

included five newly associated loci; the genes closest to the most significantly 

associated SNPs were HLA-DRB5-HLA-DRB1, PTK2B, SORL1, SLC24A4-RIN3 

and DSG2. This study confirmed the previous findings of ABCA7, BIN1, CD33, 

CLU, CR1, CD2AP, EPHA1, MS4A6A-MS4A4E and PICALM. All SNPs found to 

have a p-value less that 1 x 10-3 were genotyped in stage 2. All loci identified in 

stage 1 reached genome-wide significance in the stage 2 replication, except 

for CD33 and DSG2.  

 

Seven new loci were identified in a combined analysis of stage 1 and stage 2 

data. The strongest new association is from within an intron in ZCWPW1, 

however, this region of association covers around 10 genes therefore this hit is 

not necessarily the functional gene. Other novel loci identified includes CELF1, 

NME8, FERMT2, CASS4, INPP5D and MEF2C. This combined analysis also 

identified 13 loci with suggestive evidence of association for example SNPs 

downstream of TREML2 and upstream of TREM2. This meta-analysis identified 

11 new susceptibility loci and confirms the association of nine previously 

identified loci.  
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1.5.2.3 Post-GWAS studies 

 

Following the success of GWAS, these data were used in different approaches 

to identify additional loci associated with LOAD. Two loci were identified via a 

gene wide burden analysis. This approach takes into account multiple variants 

at a single locus and therefore investigates more complex patterns of 

association. Using the IGAP data set, 2 novel loci were identified, TP53INP1 

(p=1.4x10-6) and IGHV1-67 (p=7.9 x 10-8) (141). 

 

When IGAP data and data from an independent sample were combined, TRIP4 

was identified as a LOAD risk locus (p=9.74 x 10-9) (142). PLD3 has been 

identified via burden analysis, suggesting multiple variants within this locus 

may affect LOAD susceptibility (143). 

 

Despite the growing numbers of common variants associated with LOAD, it is 

estimated that 60% of the genetic component of LOAD is not accounted for by 

this common variation and APOE (144, 145).  This missing heritability is more 

likely explained by variation with such a small effect size it is not currently 

detected in these studies, and rare variants with greater effect size, which are 

not represented in the current chip based technologies.  

 

Next Generation Sequencing (NGS) technology, as oppose to SNP chip 

genotyping, has been used in an attempt to identify rare variants with a 

substantial effect size. Variants in exon 2 of TREM2 were found to be 

overrepresented in LOAD patients and went on to be replicated in imputed 

GWAS data, independent samples and in an Icelandic population (146, 147). 

There are a number of additional loci with suggestive evidence of association, 

but, due to sample size and cost restrictions of NGS, are yet to reach 

significance: UNC5C, ADAM10, ZNF628 and AKAP9 (148-151). 
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In 2017 an approach for rare variant discovery used microarrays that targeted 

known exome variants. Secondary analysis used genotypes and imputed 

genotypes from independent samples. This three-stage case-control study 

used over 85000 subjects and identified three new genome wide significant 

nonsynonymous variants associated with AD. A new variant was found in 

TREM2 (p=1.55 x 10-14, OR=1.67), a protective variant was found PLCG2 

(p=5.38 x 10-10, OR=0.68) and a risk variant was found in ABI3 (p=4.56 x 10-10, 

OR=1.43). These genes are all implicated in the innate immune response and 

are highly expressed in microglia, suggesting these functional pathways may 

contribute to AD susceptibility (152). 

 

It is proposed that the additive or multiplicative effects of associated genes 

with one another could explain some of the missing heritability for LOAD. As 

the understanding of the genomic landscape progresses, the interaction 

between genes and variants and the contribution of this interaction to disease 

risk remains unclear.  

 

Most models of AD risk do not consider the effects of multiple variants. GWAS 

assumes an additive model, where each SNP confers disease risk independent 

of each other. Models accounting for multiple variants are being developed. 

Polygenic risk scores (PGRS) use genomic profiles, which combine the effects 

of many associated genetic variants to predict risk of disease whereas 

multiplicative models of risk are able to investigate the relationship between 

genes (epistasis).  

 

PGRS aggregate information across multiple variants to create a unique risk 

score that aims to predict risk based on a variant profile per individual. This 

approach can identify phenotypic associations that would not be detectable 
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using single loci with low effect sizes. These scores may increase the predictive 

power of genotyping and could be a used for personalised disease profile of 

an individual.  

 

A PGRS model for AD that included APOE ε2, ε4, age, sex, the IGAP SNPs and 

SNPs with an AD association <0.05 was able to predict disease status with 78% 

accuracy (153). Although the low threshold for SNP inclusion added noise to 

the model, a higher power was achieved by including SNPs with even low level 

risks. The accuracy of this model was increased to 84% when using a 

pathologically confirmed cohort (154). It is thought that this model captures 

almost 90% of the SNP heritability that can actually be predictive for LOAD 

risk, even though this variation remains unknown (155). AD PGRS have been 

found to be associated with the risk of familial late-onset AD, accelerated 

progression from mild cognitive impairment to AD, cognitive scores and 

neuroimaging measures (156-162). PGRS will also have applications in 

identifying subjects at high risk of developing AD and aid in diagnosis.  

 

Further explanation for the unexplained genetic variance for a particular trait, is 

gene-gene interactions (epistasis). Gene interactions are critical for biological 

processes such as gene regulation and signal transduction. Epistasis measures 

the interactive effects between one gene/variant and one or more other 

genes/variants. If a locus is examined as a single entity, the potential 

interactions are not taken into account and therefore the full contribution to 

disease risk may be missed.  

 

A number of AD relevant gene-gene interactions were established before 

GWAS identified AD-associated genes. Interactions IL6 and IL10, genes acting 

in the interleukin pathway, were identified (163) and interactions between TF 
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and HFE, implicated in the iron transport pathway, have been reported (164). 

Both molecular mechanisms have been implicated in LOAD.  

 

Since GWAS, further epistatic interactions with AD-associated have been 

identified. Significant interactions were identified between GWAS identified 

LOAD genes CLU-MS4A4E and CD33-MS4A4E (165, 166). Furthermore, 

epistatic effects within known LOAD loci have identified associations with 

amyloid deposition (BIN1-PICALM) (167) and brain atrophy (168). Epistatic 

interactions may also contribute to the explanation of why some genetic effects 

are not replicated when examined in isolation. 

 

1.5.3 AD genetics implicate disease mechanisms 
 

1.5.3.1 Amyloid cascade hypothesis  

 

Proteolytic cleavage of APP can result in the generation of Aβ peptides and 

therefore is fundamental in AD pathology. Evidence from the genetic studies 

of familial AD implicates APP proteolysis in the pathogenesis of AD. APP, 

PSEN1 and PSEN2 [discussed in chapter 1.5.1] are all vitally important in Aβ 

generation. Furthermore, the strongest risk factor for LOAD, APOE, has been 

implicated in Aβ clearance from the brain. Mutations in these genes can result 

in aggressive forms of familial AD as previously described. These observations 

led to the proposal of the Amyloid Cascade Hypothesis in 1992 (169, 170). The 

Amyloid Cascade Hypothesis suggested that the amyloid plaques seen in 

LOAD are the causative pathology and the subsequent NFTs, cell loss, vascular 

damage and dementia are a consequence of the plaque deposition. The 

hypothesis has since been updated to take in to account the importance of the 

soluble oligomers and is summarised in figure 1.2 (171).  
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Figure 1.2. Amyloid Cascade Hypothesis. This hypothesis is the dominant model of AD 

pathogenesis. The diagram describes the progression of hypothesised pathogenic events 

resulting in AD. The arrow indicates that the Aβ oligomers may also have a direct effect on 

synapses and neurons in the brain, suggesting this cascade may not be truly linear. (Adapted 

from (2) 
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However, the amyloid cascade hypothesis remains controversial with evidence 

contradicting it. For example, Aβ plaques do not correlate with cognitive 

deficits as well as NFTs (172) and are often seen in the brains of cognitively 

normal people upon death (173, 174). Additionally, numerous therapies 

targeting Aβ have failed in treating this disease (175). These repeated failures 

are thought to be due to insufficient understanding of the drug mechanism, 

concerns over the drug-like properties of the compounds tested and whether 

patients in clinical trials are too advanced to benefit from therapeutic 

intervention (176, 177). Despite its controversies, the amyloid cascade 

hypothesis remains to be one of the leading suggested pathogenic 

mechanisms in AD and a vast amount of research surrounding it has been 

carried out.  

 

Furthermore, the genetics of familial AD implicates a mechanistic link between 

Aβ and tau. Pathogenic mutations in genes involved in APP processing seen in 

familial AD lead to increased Aβ production and the development of AD, 

including tau pathology as observed in sporadic AD. However, mutations in 

MAPT, which encodes tau, does not cause familial AD, but can lead to other 

tauopathies (178), suggesting tau pathology alone is not sufficient to develop 

AD. It is therefore likely the Aβ generation initiates the disease process and 

drives tau pathology (179). 

 

1.5.3.2 Pathway analysis 

 

Pathway analysis is an experimental approach that aims to determine whether 

biological pathways are enriched in loci associated with a particular trait. A 

pathway analysis performed using the IGAP genetic association data used 

significantly associated loci with LOAD and loci that had failed to reach 

significance. This analysis identified a number of biological pathways enriched 
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in these loci: immune response, regulation of endocytosis, cholesterol 

transport, proteasome-ubiquitin activity, hematopoietic cell lineage, 

hemostasis, clathrin/AP2 adaptor complex and protein folding (180). This 

investigation identified cellular pathways that provide clues to the functional 

mechanisms involved in AD pathogenesis. 
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1.6 Alzheimer’s Disease and Endocytosis 

 

Dysregulation of endocytosis is associated with AD and other 

neurodegenerative disorders (181). Aberrant neuronal endocytosis is one of 

the earliest neuropathological changes in AD (182). Abnormal endosome 

morphology can be seen in DS decades before the onset of AD and precedes 

Aβ deposition (182-184). In an AD brain, the abnormal endosome morphology 

is a result of Aβ42 accumulation and the formation of Aβ oligomers within the 

MVB/late endosomes of neuronal processes and synaptic compartments (185). 

Endocytosis is critical for the amyloidogenic processing of APP, synaptic 

activity and neurotransmitter release, all of which are dysregulated in AD (21).  

 

In addition to endosomal abnormalities, there is an increase in autophagic 

vacuoles, particularly in dystrophic neurites. This build up of autophagic 

vacuoles results in an accumulation of undigested or partially digested proteins 

throughout the brain, which is associated with neurodegeneration (186, 187). 

This build up of waste protein suggests that the efficient autophagic processes 

and lysosomal proteolysis may be defective in AD (188).  

 

A number of genes significantly associated with LOAD are thought to have a 

role in endocytosis: BIN1, PICALM, CD2AP, EPHA1 and SORL1 (135, 138-140). 

The pathway analysis using GWAS data implicated endocytosis and 

clathrin/AP2 adaptor complex as functional pathways enriched with genes 

associated with LOAD, indicating these pathways must have a critical role in 

LOAD pathogenesis (180). 
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1.6.1 Clathrin Mediated Endocytosis and cellular trafficking 

 

Endocytosis is vital for the function and survival of a cell. There are several 

pathways of endocytosis into the cell, including clathrin-dependent, caveolin-

dependent and clathrin- and caveolin- independent internalisation. As APP is 

internalised via clathrin-mediated endocytosis (CME), this pathway has been 

most studied in relation to AD (189-191).  

 

CME is the most prominent form of endocytosis that constitutively occurs in all 

mammalian cells. CME continuously transports nutrients, signaling receptors, 

low-density lipoprotein particles, cell adhesion molecules, ion channels and ion 

transporters via receptors into the cell (192, 193). CME is initiated by the 

formation of clathrin-coated pits (CCP) and clathrin-coated vesicles (CCV). 

Phosphatidylinositol 4, 5-bisphosphate (PIP2) rich zones are generated in the 

plasma membrane. These PIP2 rich zones contain high affinity receptors and 

their bound ligands. Adaptor Protein-2 (AP2) is recruited to the PIP2 rich zones, 

which consequently recruits and binds triskelia, comprising of clathrin heavy 

chains and clathrin light chains (194). Triskelia assemble together to form a 

clathrin cage that functions to induce membrane curvature and the formation 

of CCPs (195-197). This membrane curvature invaginates the plasma 

membrane and once the CCP is sufficiently deep, dynamin is recruited to the 

neck of the CCP. Dynamin is a GTPase with a PIP2 binding domain and a self-

assembly domain (198, 199). Dynamin self-assembles and polymerises around 

the neck of the CCP, and upon GTP hydrolysis induces membrane scission at 

the neck of the CCP and a CCV pinches off from the plasma membrane (198, 

200). The CCV then sheds its clathrin coat (201-203). 

 

Once the clathrin coat has been lost, the vesicle fuses with the early endosome 

via a Rab5 containing protein complex (204). Rab proteins are small GTPases 
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thought to be key regulators of intracellular trafficking (205).  Rab5 positive 

vesicles dock on to EEA1 and alsin, tethering proteins present on early 

endosomes (206, 207). Cargo in the early endosome is sorted and typically has 

three possible fates; be recycled back to the plasma membrane, be trafficked 

to the TGN or be transported to the lysosome for degradation (208).  

 

The recycling of internalised molecules back to the plasma membrane is 

essential for plasma membrane homeostasis and can occur via a “fast” or 

“slow” method. Fast recycling is the direct transport of molecules from the 

early endosome back to the plasma membrane, regulated by Rab4 (209, 210). 

The slow recycling route involves the trafficking of cargo from the early 

endosome to the endocytic recycling compartment and then to the plasma 

membrane, a pathway that is regulated by Rab11 (211). 

 

Retrograde trafficking is the process of cargo being transported from the early 

endosome to the TGN, which is mediated by a membrane sculpting/protein 

sorting complex known as retromer (212). The retromer complex comprises of 

a sorting nexin dimer, which binds to PIP2 regions and drives membrane 

curvature, and a Vps26/Vps29/Vps35 trimer which sorts cargo for delivery to 

the TGN (213). Once at the TGN, the retromer derived vesicles dock and 

deliver their cargo (214). Retromer-mediated sorting controls the intracellular 

trafficking of a number of proteins, including Aβ, APP and BACE1 (215). 

 

As cargo is transported out of the early endosome, the vesicle begins to 

mature into a MVB, which shares many similarities to a late endosome. Rab5, 

located in the early endosome, recruits effectors that activate Rab7, causing 

the maturation to Rab7 positive late endosomes (216). The maturation process 

begins with the inward budding of the membrane to create intraluminal 

vesicles (ILV). Non-ubiquitinated cargo is recycled back to the plasma 
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membrane and ILVs contain ubiquitinated cargo destined for degradation 

(217).  The formation of the ILVs and the packaging of the ubiquitinated cargo 

require the action of the Endosomal Sorting Complex Required for Transport 

(ESCRT) (218, 219). The formation of the ILVs triggers the formation of 

MVB/late endosome (220). The late endosome will eventually fuse with a 

lysosome and its contents will be degraded. As well as transporting ILVs to the 

lysosome, MVB/late endosomes can also fuse with the plasma membrane to 

release ILVs in to the extracellular space (221). Released ILVs can contain many 

different types of molecules, including Aβ (222).  

 

1.6.2 Trafficking of APP processing proteins 

 

As the two pathways of APP processing are thought to occur at distinct cellular 

locations, the trafficking, cellular localisation and the co-localisation of APP and 

the secretases can directly impact Aβ generation. When CME is inhibited, APP 

processing is impacted. Typically it is thought increased delivery of APP to the 

cell surface or reduced internalisation will increase non-amyloidogenic 

processing, whereas increased internalisation or retention in the acidic 

organelles increases amyloidogenic processing (223).  

 

Endocytosis is important for the cellular localisation of APP and BACE1. BACE1 

is synthesised in the ER, transported to the golgi apparatus for 

post-translational modification, then mature BACE1 is trafficked to the cell 

surface or endosomes. Cell surface BACE1 can be internalised and recycled 

back to the cell surface, or trafficked into the endosomal lysosomal system. 

BACE1 internalisation is regulated by GTPase ADP ribosylation factor 6 (ARF6), 

which is associated with clathrin- and caveolin- independent endocytic routes 

(224, 225).  As optimal BACE1 activity occurs within the acidic cellular 

compartments, such as the endosome, and APP cleavage by BACE 1 usually 
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occurs in the early endosome, aberrant trafficking of BACE1 could have a 

subsequent effect on APP processing (224).  
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1.7 BIN1 

1.7.1 Genetic association with LOAD 

 

The first genetic evidence for Bridging Integrator 1 (BIN1) being associated 

with LOAD emerged from the 2009 genome wide association study (GWAS) 

performed by Harold et al (135). Although this study did not produce a 

genome-wide significant association between BIN1 and LOAD, there was 

suggestive evidence with the most significant SNP reaching a p value of 3.2 x 

10-6. The association between BIN1 and LOAD first reached genome-wide 

significance in 2010 in a study performed by Seshadri et al (137). This was a 3-

stage meta-analysis identified rs744373 approximately 30 Kb upstream of BIN1 

with a meta-p value of 1.59 x 10-11.  

 

Hollingworth et al reported a significant association between rs744373 and 

LOAD in 2011 and reported an odds ratio (OR) of 1.17 (138). This provided 

independent support for the results reported by Seshadri et al. Naj et al, 

discovered another SNP in 2011, rs7561528, in the BIN1 locus which reached 

genome-wide significance with a p-value of 5.2 x 10-14, further establishing 

BIN1 as an LOAD susceptibility locus (139). In 2013 the largest LOAD GWAS 

identified another SNP within the BIN1 locus, rs6733839, located ~30 Kb 

upstream of BIN1, to have an overall meta-p value of 6.9 x 10-44 and an OR of 

1.22 (140). A conditional analysis identified an additional independent 

association signal at rs7584040, indicating the presence of two functionally 

relevant loci at BIN1 (Majounie et al, in prep). AD associated SNPs at the BIN1 

locus is shown in figure 1.3. 
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Figure 1.3. AD associated SNPs at the BIN1 locus. 

 

1.7.2 Gene Structure  

 

BIN1 is located on chromosome 2q14.3 and is a member of the amphiphysin 

family (226). BIN1 has a N-terminal BAR (BIN-amphiphysin/Rvs) domain, a PI 

(phosphoinositide) domain, a PS (Proline-Serine) domain, a CLAP (clathrin and 

AP-2) binding domain, a MYC-interacting domain and a C-terminal SH3 (Src 

homology 3) domain (226, 227). The N-BAR domain, present in all isoforms, is 

encoded by exons 1-10 and is capable of binding lipid membranes and 

inducing and sensing membrane curvature at sites such as endocytic pits of 

cytoplasmic endosomes (228, 229). The PI binding domain is encoded by exon 

11 and is muscle specific (230-232). Exon 12 encodes the PS rich region 

present in all isoforms (233). Exons 13-16 encode the CLAP binding domain, 

which is only found in brain specific isoforms (230, 234, 235). This domain is 

capable of interacting with clathrin and AP2, vital components of CME (236, 

237). The MYC-interacting domain is encoded by exon 17 and 18 (227) and the 

SH3 domain is encoded by exon 19 and 20, is present in all isoforms and binds 

proline rich motifs (238). BIN1 is subject to extensive splicing, which generates 

10 isoforms with diverse functions and tissue specific expression. The major 

isoforms differ due to the inclusion of exon 7, exon 11, brain specific exons 13-

16 and exon 17 (239, 240). The protein domains, gene organisation and 

isoforms are illustrated in figure 1.4.  

 

rs7584040( rs6733839(rs59335482( rs744373(
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Figure 1.4. BIN1 protein domains, gene organisation and isoforms. A) Protein domains of 

BIN1, the coding exons are colour coded. B) Gene organisation of BIN1. C) Neuronal isoforms. 

Alternatively spliced exons are marked with a V. D) Muscle specific isoforms. E) Ubiquitous 

isoforms. Image adapted from (233). 

 

1.7.3 BIN1 function in endocytosis and intracellular trafficking 

 

The amphiphysin family of proteins is involved in endocytosis in both neuronal 

and non-neuronal cells and interacts with a number of proteins associated with 

CCPs via the SH3 domain (237, 240-245). It is thought that the amphipysins 

recruit effectors, such as clathrin, endophilin and dynamin, whilst 

simultaneously inducing membrane curvature at the neck of budding vesicles 

via the BAR domain (246, 247). This function requires the dimerisation of the 

BAR domain, which forms a positively charged concave surface which interacts 

with the negatively charged plasma membrane (229, 236, 248). BIN1 has been 

implicated in CME and intracellular trafficking (226, 249) and as the CLAP 
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domain is present only in brain isoforms, it is suggests that BIN1 may have a 

specific CME function in this tissue (236, 240, 244, 248). In order for 

endocytosis to be induced, BIN1 must be dephosphorylated by calcineurin 

(250). The BAR domain of BIN1 facilitates membrane curvature and the 

recruitment of dynamin by clustering PIP2 in the plasma membrane. The 

accumulation of dynamin is ensured by the binding of the SH3 domain of BIN1 

to the proline rich domain of dynamin (247, 251, 252). BIN1 has been 

characterised as a negative regulator of neuronal endocytosis, with 

downregulation resulting in an increase in early endosome rab5 activity (253). 

 

Additional evidence implies BIN1 may also have essential functions in 

intracellular trafficking and endocytic recycling. Evidence suggests BIN1 may 

bind to the surface of intracellular vesicles and interact with SNX4, a member 

of the SNX protein family implicated in vesicular trafficking regulation. This 

interaction implies BIN1 may also have a role at the surface of newly formed 

endosomes and throughout intracellular regulation (254). RME1 is a protein 

essential for the successful transport of the endosome back to the membrane 

in order for cargo to be recycled. BIN1 orthologues have been shown to co-

localise with RME1 on recycling endosomes and BIN1 knockdown in HeLa cells 

showed defective endosome recycling and abnormal endosome morphology, 

suggesting a further role for BIN1 in regulating endocytic recycling (249).  

 

1.7.4 BIN1 and AD pathology 

 

The endocytic function of BIN1 has led to investigations into BIN1 in relation to 

Aβ pathology, but the effect of BIN1 remains unclear. In human AD brains, 

BIN1 expression did not correlate with Aβ40/42 levels or neuritic plaques and 

BIN1 depletion had no effect on Aβ generation in neuronal-like cells (255, 256). 
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Knockdown and overexpression of the BIN1 neuronal isoform was found to 

have no effect of APP processing in neuroblastoma cells (256).  

 

However, the number of BIN1 expressing neurons correlated with neuritic 

plaques in AD brain and BIN1 depletion resulted in an increase in Aβ secretion 

in HeLa cells expressing a familial AD mutation (257, 258). BIN1 was found to 

be crucial in the trafficking of BACE1 from the early endosomes and BIN1 

depletion in neurons increased the co-localisation of APP and BACE1, resulting 

in increased intracellular Aβ accumulation within the axons (259).  Additionally, 

3 CpG sites within the BIN1 locus were associated with Aβ load and the 

expression of three out of 14 isoforms investigated correlated with Aβ load and 

one isoform was negatively correlated with Aβ load (260).  

 

1.7.5 BIN1 expression in AD patients 

 

BIN1 is ubiquitously expressed, but the highest levels of expression are in the 

brain and muscle (231). Changes in BIN1 expression in AD have been 

observed, however these observations are not consistent. BIN1 mRNA 

transcript levels were shown to be increased in the frontal cortex of AD 

patients in comparison to healthy controls (261). When comparing BIN1 protein 

levels in AD brains to healthy brains, a modest increase in BIN1 expression was 

observed across all brains regions in AD brain, however further investigation 

identified that protein levels of neuronal isoform 1 decreased whereas 

ubiquitous isoform 9 increased, indicating a shift towards smaller isoforms in 

AD, which may be a result of neuronal loss (255). Additionally, increased levels 

of total BIN1 and the BIN1 neuronal isoform expression have been reported to 

be associated with a later age of onset and shorter disease duration (262) and 

an increase in BIN1 mRNA levels was observed in the blood plasma of AD 

patients (263). Conversely, an 87% reduction of total BIN1 protein has been 
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observed in LOAD frontal cortex when compared to healthy individuals but 

remains unchanged in familial AD cases (256). Despite contradictory results, 

changes in BIN1 expression appear to be associated with AD and are a 

pathogenic mechanism.
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1.8 CD2AP  

1.8.1.Genetic association with LOAD 

 

CD2AP (CD2-associated protein) reached a genome wide significant 

association with LOAD in 2011 in two independent studies. These two studies 

combined their data to perform a combined analysis and identified rs9349407 

to have a p value of 8.6 x 10-9 and an OR of 1.11 (138, 139). In the 2013 meta-

analysis, rs10948363 was identified with a meta-p value of 5.2 x 10-11 and an 

OR of 1.1 (140). A conditional analysis identified an independent association 

signal at the CD2AP locus. Rs7745848, located upstream of CD2AP was 

identified with a p value of 1.33 x 10-5 (Majounie et al, in prep). AD associated 

SNPs at the CD2AP locus is shown in figure 1.5 

 

 

Figure 1.5. AD associated SNPs at the CD2AP locus. 

 

1.8.2 Gene Structure 

 

CD2AP is located at chromosome 6p12 and is comprised of 18 exons. 

Differential splicing of CD2AP results in eight different isoforms. CD2AP is a 

scaffolding molecule that regulates the actin cytoskeleton and is capable of 

binding actin via multiple actin binding sites, SH3 domains and Proline-rich 

regions (264). CD2AP has three N-terminal SH3 domains and a proline rich 

region, which are crucial in stabilising the contact between a T cell and 

antigen-presenting cell. The SH3 domains also interact with CD2 (a cell 
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adhesion molecule), ALIX (a cytoplasmic protein thought to be a regulator of 

the endo-lysosomal system) and Cbl (an adapter protein which acts in the 

protein tyrosine kinase signaling pathway) (265, 266). The SH3 domains are 

followed by a globular domain and a coiled-coil structure (264). The N terminus 

has an actin binding site that anchors CD2 at the site of cell contact (267, 268).  

The domain structure of CD2AP is illustrated in figure 1.6.  

 

Figure 1.6. Protein domain structure of CD2AP. CD2AP has three N-terminal SH3 domains, 

a centrally located proline rich domain. There are multiple C-terminal actin binding domains 

and a coiled coil domains. Image adapted from (269). 

 

1.8.3 CD2AP function 

 

Numerous studies have identified variations in systemic immune responses in 

patients with AD, including the distribution and activation of lymphocytes (270, 

271). CD2AP is a scaffolding protein that links actin to the immunological 

synapse (267) . CD2AP also binds to and facilitates the clustering of CD2, an 

adhesion molecule which binds ligands presented on antigen presenting cells 

and helps to create a tight, homogenous interaction between the membranes 

of T cells and antigen presenting cells (272). The binding of CD2AP is thought 

to aid in receptor patterning and cell polarisation in T cells (267).  
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The actin cytoskeleton plays a role in cell-cell adhesion (273) and CD2AP has 

been shown to regulate actin cytoskeletal dynamics via direct interactions with 

actin (274). Due to CD2AP interacting with actin and its role in cytoskeletal 

regulation, it has also been implicated in having a role in endocytosis (182, 

268). The function of CD2AP in endocytosis is less understood than that of 

BIN1. CD2AP interacts with a number of components of endocytic machinery, 

such as rab4, AP2, cortactin and actin (247). CD2AP has been shown to form 

complexes with Cbl, an ubiquitin protein ligase, and endophilin, a BAR domain 

containing protein capable of inducing membrane curvature. It is proposed 

that Cbl mediated ubiquitination targets receptors for degradation. 

Interactions between Cbl and CD2AP recruit endophilin to induce membrane 

invagination at these sites. Following membrane invagination, cortactin is 

recruited to CD2AP.  CD2AP links the endocytic complex to the cytoskeleton 

via its interaction with cortactin, which likely assists in the budding of the 

vesicle from the plasma membrane (268). 

 

The co-expression of active rab4 or Cbl with CD2AP induces a significant 

enlargement of the early endosomes, indicating that a functional interaction 

between these proteins is essential for early endosome morphology (275). In 

addition to the early stages of endocytosis, CD2AP has also been implicated in 

exosome biogenesis and the degradative pathway (276, 277). 

 

1.8.4 CD2AP and AD pathology 

 

The CD2AP AD susceptibly locus is associated with increased plaque burden 

(278). In yeast, a functional homologue of CD2AP was identified as a 

suppressor of Aβ toxicity and CD2AP depletion in neuroblastoma cells 

transfected with wild-type APP resulted in a decrease in Aβ levels and a 

decrease in extracellular Aβ42/Aβ40 ratio (279, 280).!In cortical neurons, 
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CD2AP is preferentially located in the dendrites and associates with early 

endosomes and APP. CD2AP depletion in cortical neurons led to an increase in 

Aβ42 in the dendrites but not the axons and this was due to inefficient 

degradation of membrane bound APP. Depletion of CD2AP prevented 

efficient sorting of APP for degradation and delivery to the lysosome. This 

resulted in APP accumulation in enlarged early endosomes, where 

amyloidogenic processing occurs. This inefficient sorting was proposed to be 

due to CD2AP having a critical role in MVB formation (259).  

 

Breakdown of the blood brain barrier has been observed in AD patients and 

healthy aged individuals (281, 282). CD2AP deficient mice showed reduced 

blood brain barrier integrity, which could have detrimental effects on Aβ 

clearance and immune responses. This evidence indicates that CD2AP plays a 

key role in maintaining the blood brain barrier (283). It has also been observed 

that tau can have detrimental effects on blood brain barrier integrity and 

depletion of the fly orthologue of CD2AP enhanced tau toxicity in drosophila 

(284, 285). Therefore, loss of CD2AP function may also contribute to both 

amyloid and tangle pathology. CD2AP is ubiquitously expressed and 

expression does not associate with AD diagnosis or pathology (262, 264).  

  



  Chapter 1 
 

 44 

1.9 Gene Regulation 

 

With only about 1.5% of the genome encoding for protein, a significant 

amount of the non-coding genome contains sequence elements that are 

capable of influencing the regulation of gene expression in diverse cellular 

environments (286, 287). Variation within these non-coding regulatory regions 

contribute to the phenotypic variation seen between individuals and can 

influence traits such as disease susceptibility. Protein coding genes typically 

have three types of regulatory DNA elements: a core promoter that is required 

for the recruitment of transcription apparatus and initiates transcription at the 

appropriate start site, a proximal promoter and distal DNA elements that can 

enhance or silence transcription (288, 289).  

 

1.9.1 Eukaryotic transcription 

 

The core eukaryotic promoter is located upstream of the protein coding region 

and is the site at which the transcriptional machinery assembles (288). This 

regulatory region binds Transcription factor II D, which subsequently 

coordinates the assembly of the transcription initiation complex and recruits 

RNA polymerase II (290, 291). The initiation of mRNA synthesis requires a 

number of multi-protein complexes called general transcription factors (292). 

Communication between RNA polymerase II, the initiation complex and the 

transcription factors (TF) is facilitated by the mediator complex (293-295). 

 

The core promoter spans approximately 80 bp around the transcription start 

site (TSS). There are two classes of promoter in mammals; TATA box enriched 

promoters that initiate mRNA synthesis at a single TSS, and CpG-rich 

promoters that contain multiple TSS (296). Approximately 25% of mammalian 
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promoters contain a TATA box sequence motif that directs RNA polymerase II 

to the correct TSS. This can be the major TSS or several TSS located in a short 

nucleotide sequence (290). In CpG rich promoters, the TSS generally occur 

within or close to CpG islands, a genomic region enriched with CpG 

dinucleotides, which can result in diverse initiation patterns (297, 298). CpG 

poor promoters typically control genes whose expression is highly tissue 

specific, whereas CpG rich promoters are associated with multiple gene types 

including housekeeping, tissue specific and developmental genes (298). CpG 

islands are also associated with genes whose transcription is influenced by TFs 

that respond to upstream signals (299-301).  

 

Promoters can be regulated by a number of DNA elements. The proximal 

promoter is generally located within 500 bp of the TSS and contains cis-

elements capable of interacting with TFs. Enhancers, also capable of binding 

TFs, can work independently or synergistically with the core promoter to 

initiate transcription and can be located far from the gene which it influences. 

There are also B-recognition elements and initiator elements, which can 

interact with TFIID to elicit an effect on transcription initiation, and insulators, 

activators and repressors (291, 302).  

 

1.9.2 Mechanisms of gene regulation 

1.9.2.1 Trans-regulation 

 

Trans-regulation is when the effects on gene expression are from a remote 

source, such as hormones or TFs that bind to DNA in a sequence specific 

manner to regulatory regions of the genome (303, 304). These are usually 

transcribed at distinct loci and are subject to their own regulation (305). Trans-

regulatory factors equally influence transcription on both chromosomes. 
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1.9.2.2 Cis-regulatory elements 

 

Cis-regulation is when the regulatory element is located on the same DNA 

molecule as the gene that it regulates and can therefore influence expression 

in an allele-specific manner. Cis-regulation variation is common in the human 

genome. Cis-acting elements, such as promoters, enhancers, silencers or locus 

control regions, can be influenced by sequence variation or epigenetic 

modification variation. Gene expression can also be influenced by DNA 

variation that can affect splicing or the stability of the gene product (306).  

 

1.9.2.3 Enhancers 

 

Enhancers are DNA elements that interact with trans-acting factors to enhance 

transcription. Enhancers contain sequence motifs, which bind TFs and can be 

located far from the TSS (307). Chromatin looping allows the enhancer to 

interact with the corresponding promoter and brings the enhancer-bound TF 

to the promoter (308). The bound TFs can then recruit co-factors, which can 

remodel chromatin structure, or co-activators, which determine the activity of 

the promoter and regulate RNA polymerase II activity (309). Enhancers have 

also been implicated in RNA polymerase II release (310).  

 

It is presumed that enhancers act upon the closest promoter, however is has 

been shown that they can have an effect on the transcription at distant 

promoters and even on promoters located on a different chromosome (311-

313). Most promoters associate with a single enhancer but around 25% 

associate with two or more enhancers and multiple enhancers and regulatory 

elements can have a combinatorial effect on gene regulation (314). 

Nucleosomes in the proximity of enhancers typically have modifications 
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associated with active chromatin and active enhancers typically do not contain 

nucleosomes so that the DNA is accessible to TFs (315). 

 

Tissue specific expression is required for the unique development and function 

of each tissue. Enhancers are key regulatory elements controlling this process. 

Super-enhancers, which comprise of multiple enhancers within a certain region, 

are thought to be influential elements that control tissue specific transcription 

(316, 317). The establishment of super enhancers can be influenced by 

environmental factors, such as hormones during development, and each 

enhancer within a super enhancer binds tissue or lineage specific TFs (318-

320). Genes associated with super enhancers are expressed at higher levels 

than those associated with single enhancer regions and are expressed in a 

more tissue specific manner, resulting in the necessary gene expression for the 

desired tissue type (316, 321-324).  

 

1.9.2.4 Histone modification / chromatin structure 

 

The organisation of genomic material greatly influences gene expression 

regulation (325). A nucleosome core is formed of 147 bp of DNA wrapped 

around a protein core consisting of histones H2A, H2B, H3 and H4 (326). 

Nucleosome cores are connected by linker DNA, ranging from 10-90 bp, 

forming a “beads on a string” nucleosomal array (327). Linker histones (H1 and 

H5) bind to the linker DNA at the site of DNA exit and entry to the nucleosome 

core, which organises the nucleosome array into a chromatin fiber (328, 329). 

 

The interaction between DNA and histones greatly affects chromatin 

accessibility, which can affect protein binding to cis-elements necessary for 

transcription. DNA binding proteins, histone-modifying enzymes and proteins 

that bind to modified histones are capable of influencing chromatin structure 
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(325). Euchromatin is active chromatin where DNA is accessible for 

transcription, meaning that these regions are vulnerable to DNase I cleavage 

and DNase I hypersensitivity sites are hallmarks of active chromatin (315, 330). 

Heterochromatin is tightly packed chromatin and transcription is repressed in 

this state (331). Chromatin state depends upon the type of modifications on 

the core histones.  

 

Histones have specific residues that can be modified via methylation, 

acetylation, phosphorylation or ubiquitination to influence transcription (331). 

Histone methylation and acetylation is performed by histone 

methyltransferases and histone acetyltransferases respectively (332, 333). 

Acetylation disrupts the interaction between the DNA and the histone causing 

the chromatin to become more accessible, and acetylated and methylated 

residues are capable of recruiting regulatory proteins to the chromatin (331).  

 

Regulatory elements tend to have signature histone modifications. Active 

promoters are commonly marked by the di- and tri-methylation of lysine 4 on 

histone H3 (H3K4me2 and H3K4me3) and histone acetylation. Whereas, 

repressed promoters are typically marked by DNA methylation, H3K27me3 

and H3K9me3, typical modifications in heterochromatin (325).  

 

Enhancers are characterised by mono-, di- and tri-methylation of lysine 4 on 

histone H3 (H3K4me1, H3K4me2 and H3K4me3) (334-339). Active enhancers 

are enriched for acetylated H3K27 (H3K27ac), whereas inactive enhancers are 

enriched with H3K27me3 (340). The additional histone modification, H3K9me1, 

is associated with active enhancers, whereas H3K9me2 and H3K9me3 are 

associated with the repression of transcription from promoters and enhancers 

(325, 330, 337, 341). In genomic DNA (gDNA) CpG density and H3K4 tri-

methylation are correlated, suggesting a mechanistic connection between the 
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two (297, 342). Increased levels of H3K4me3 modifications are associated with 

the TSS of many transcribed genes and CpGs at these locations are 

hypomethylated (325, 342). 

 

1.9.2.5 DNA methylation 

 

Methylation of cytosine residues within a CpG dinucleotide to form 5-

methylcytosine (5mC) is a key epigenetic modification that influences gene 

expression (343). 5mC is produced when DNA methyltransferases add a methyl 

group to the 5-postion of the cytosine ring. 5mC is associated with gene 

silencing and plays a vital role in genomic imprinting, X-inactivation and 

lineage-specific gene expression regulation (344, 345).  

 

In the mammalian genome, around 70-80% of CpG sites are methylated and 

highly methylated DNA sequences are located in satellite DNAs, repetitive 

elements, gene bodies and non-repetitive intergenic DNA (346). However, 

approximately 60% of CpG Islands, a region enriched with CpG dinucleotides, 

located in promoters are unmethylated (347, 348). Methylation at the CpG rich 

region of promoters are associated with gene repression, whereas low levels of 

methylation close to the TSS and methylation occurring in the gene body is 

associated with transcribed genes (349-351).  

 

Methyl-CpG binding proteins (MeCPs) are able to interact with transcriptional 

repressors and specifically recognise methylated CpGs. Once bound, MeCPs 

recruit histone-modifying complexes to establish a repressive chromatin 

structure and stabilise patterns of gene expression (352-357). DNA methylation 

can also affect nucleosome positioning and can prevent the binding of TF to 

inhibit transcriptional activation (358-360).  
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1.9.3 Gene regulation in complex disease 

 

Genetic variation can influence gene regulation in a number of ways. The first 

to be characterised were structural variants, such as large deletions or 

chromosomal translocations. These structural variants can separate regulatory 

elements from their target genes, resulting in lost or gain of target gene 

regulation, and are most often found in Mendelian disorders or cancers (361). 

In other instances, a gain of regulatory element function can be caused by 

copy number variants of the regulatory elements (362, 363).  

 

In addition to large structural genomic changes, it has been shown that smaller 

genetic variants, such as SNPs, located within regulatory elements can modify 

disease risk. SNPs can impact on gene regulatory elements by disrupting the 

assembly of the transcriptional machinery. Changes in the binding of TFs are 

associated with SNPs in regulatory regions and can result in altered 

transcription levels (364). TF binding sites containing variants that alter protein 

binding are also enriched with disease-associated variants, suggesting TF 

binding may be a potential functional mechanism in disease risk (365).  

 

Variation that affects enhancer function can have consequences on gene 

expression. SNPs disrupting the conserved enhancer for the OCA2 gene, which 

is associated with eye colour, can result in a blue eye colour (366, 367) and 

mutations in an enhancer for GATA1 can significantly affect TF binding and can 

result in erythroblastic leukemia and myelofibrosis in mice (368). Another well-

characterised example involved SNPs associated with obesity located within 

introns of the FTO gene (369). It was found that this genomic region physically 

interacted with the promoter of another gene, IRX3, located 500 Kb from the 

associated variants. These variants showed association with IRX3 expression 

and this investigation identified IRX3 as having a causal role in obesity (370). 
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These examples demonstrate the effect variation in regulatory elements can 

have on biology and disease and how these effects can occur over larger 

genomic distances.   

 

The majority of genetic variation associated with complex diseases is located 

outside of the protein-coding region and is thought to elicit its effect via the 

disruption of regulatory elements. Many risk loci across multiple phenotypes 

have been implicated in the regulation of transcriptional activity and are 

enriched with cis-regulatory elements (371).  There are numerous examples of 

how specific sequence changes in DNA can change the interactions of proteins 

that complex with DNA to alter transcription.  The characterisation of risk 

variants in relation to their impact on gene regulatory mechanisms on disease 

relevant tissues may provide insight into the functional mechanisms of disease, 

explain association signals observed and ultimately contribute to the 

knowledge of biological pathways that could be targeted by therapeutic 

interventions.  

 

  



  Chapter 1 
 

 52 

1.10 Aims 
 

Despite much research linking genes involved in endocytosis to AD, how they 

increase susceptibility for the disease remains unknown. This thesis aims to 

investigate the functional impact of BIN1 and CD2AP depletion on AD 

pathological processes and investigate the BIN1 risk locus to determine how a 

non-coding region of the genome could affect the risk of developing AD.  

 

BIN1 and CD2AP both play a role in endocytosis and have been associated 

with AD. In chapter 3, this thesis investigates how depletion of these genes, 

independently and in combination, affects amyloid processing and endocytosis 

with the aim of determining a disease relevant function in a human 

neuroglioma cell line. 

 

GWAS have identified numerous genomic loci associated with LOAD, however 

how they influence risk mechanisms remains unknown. The BIN1 risk locus is 

the second most significant locus associated with LOAD after APOE. The most 

significant variant is located approximately 30 Kb from the coding region of 

BIN1 and how it confers AD risk remains unknown. As this locus is in an 

intergenic region, it is hypothesised that it is conferring risk for AD by 

disrupting BIN1 regulation. Chapters 4 and 5 use a number of approaches to 

characterise the regulatory capacity of this locus and investigate the effect of 

AD associated genotypes.  
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2. Materials and Methods 

2.1 Cell culture 

2.1.1 Mammalian Cell Culture 

2.1.1.1 H4 Neurogliomas 

 

The human neuroglioma derived cell line known as H4 was established in 1971. 

H4s originated from a 37 year old Caucasian male’s brain tumor tissue, 

diagnosed as neuroglioma with a glial origin (372). This cell line possesses an 

epithelial morphology.  

 

The H4 neuroglioma cell line was cultured in Opti-MEM (Thermo Fisher 

Scientific, Newport, UK) supplemented with 4% fetal bovine serum (FBS) 

(Thermo Fisher Scientific) and incubated in 5% CO2 at 37°C. The culture media 

was changed every 2-3 days. In order to passage this cell line, once 

approximately 80% confluent (or as desired) the media was removed and the 

cells were washed with Dulbecco’s phosphate buffered saline (PBS) (Thermo 

Fisher Scientific). Cells were incubated in 0.25% Trypsin-EDTA (Thermo Fisher 

Scientific) for 5 minutes at 37°C. Once cells detached from the culture dish 

surface, the trypsin-EDTA was neutralised with the addition of normal FBS 

containing culture medium. Cells were resuspended in the desired amount and 

seeded into a new culture vessel. H4 cells were cryopreserved in FBS 

supplemented with 5% (volume/volume (v/v)) dimethyl sulfoxide (DMSO) and 

stored in liquid nitrogen. 

 

 



  Chapter 2 

 54 

2.1.1.2 Microglia SV40 

 

The Immortalised Human Microglia - SV40 cell line was derived from Primary 

Human Microglia and is suitable for studies of human microglia in health and 

disease. This cell line was established from embryonic primary microglia cells in 

1995 (373). 

 

Flasks used to culture microglia SV40 cells were coated in collagen solution 

(Merck, Watford, UK) diluted in PBS to 5-10 μg/cm2. The solution was 

incubated in a flask for 30 minutes, removed and the flask was washed with 

PBS. The microglia SV40 cell line was cultured in Prigrow III (Applied Biological 

Materials Inc., BC, Canada) supplemented with 10% FBS and incubated at 5% 

CO2 at 37°C. The media was changed every 2-3 days. In order to passage this 

cell line, once approximately 80% confluent (or as desired) the media was 

removed and the cells were washed with PBS. Cells were then incubated in 

0.25% Trypsin-EDTA for 5 minutes at 37°C. Once cells detached from the 

culture dish surface, the trypsin-EDTA was neutralised with the addition of 

normal FBS containing culture medium. Cells were resuspended in the desired 

amount of normal culture medium and seeded into a new collagen coated 

culture vessel.  Microglia SV40 cells were cryopreserved in complete growth 

media supplemented with 10% (v/v) DMSO and stored in liquid nitrogen. 

 

2.1.1.3 HEK293 

 

HEK293 cells are a human embryonic kidney derived cell line with an epithelial 

morphology. This cell line was established in 1977 (374). HEK293 cells were 

cultured in DMEM (Dulbecco’s Modified Eagle Medium) (Thermo Fisher 

Scientific) supplemented with 4% FBS. The media was changed every 2-3 days. 

In order to passage this cell line, once approximately 80% confluent (or as 



  Chapter 2 

 55 

desired) the media was removed and the cells were washed with PBS. Cells 

were then incubated in 0.25% Trypsin-EDTA for 5 minutes at 37°C. Once cells 

detached from the culture dish surface, the trypsin-EDTA was neutralised with 

the addition of normal FBS containing culture medium. Cells were 

resuspended in the desired amount and seeded into a new culture vessel.  

HEK293 cells were cryopreserved in complete growth media supplemented 

with 5% (v/v) DMSO and stored in liquid nitrogen. 

 

2.1.1.4 THP-1 

 

The THP-1 cell line is a human leukemic cell line cultured from a male with 

acute monocytic leukemia. The THP-1 cell line is monocytic in nature and was 

established in 1980 (375).  

 

THP-1 cells are non-adherent and were grown in suspension and cultured in 

RPMI 1640 medium (Thermo Fisher Scientific) supplemented with 10% FBS and 

2mM L-Glutamine (Thermo Fisher Scientific) and incubated at 5% CO2 at 37°C. 

Culture medium was changed every 2-3 days. Cells were subcultured once the 

cell concentration exceeded 8 x 10-5 cells/mL. THP-1 cells were cryopreserved 

in complete growth media supplemented with 5% (v/v) DMSO and stored in 

liquid nitrogen. 

 

2.1.1.4 BV2 

 

BV2 cells are derived from immortalised murine neonatal microglial and are 

frequently used as a substitute for primary microglia (376). The BV2 cell line 

was established in 1992 (377).  
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BV2 cells grow both in suspension and adherently. BV2 cells were cultured in 

RPMI 1640 medium supplemented with 10% FBS and 2mM L-Glutamine and 

incubated at 5% CO2 at 37°C. Culture medium was changed every 2-3 days. 

Once cells became confluent, cells in suspension were removed from the 

culture flask. Adherent cells were washed with PBS and then incubated in 

0.25% Trypsin-EDTA for 5 minutes at 37°C. Once cells detached from the 

culture dish surface, the trypsin-EDTA was neutralised with the addition of 

normal culture medium. Cells were resuspended in the desired volume then 

combined with the cells in suspension. Both the cells in suspension and the 

adherent cells were seeded into a new culture flask in order to maintain the 

mixed population of cells. BV2 cells were cryopreserved in complete growth 

media supplemented with 5% (v/v) DMSO and stored in liquid nitrogen. 

 

2.1.2 Bacterial Cell Culture 
 

Stbl3TM E.coli strain (Thermo Fisher Scientific) and Subcloning EfficiencyTM 

DH5αTM Competent cells (Thermo Fisher Scientific) were used for 

transformations and further culture.  

 

Luria-Bertani (LB) broth was used in liquid culture of bacterium purchased from 

(Thermo Fischer Scientific). LB broth was supplemented with the necessary 

antibiotic for cell selection. Liquid cultures were incubated at 37°C in a shaking 

incubator, agitating the culture at 225 rpm.  Cultures were cryopreserved in 

complete growth media supplemented with 5% (v/v) DMSO and stored at        

-80°C. 

 

Agar broth (Thermo Fischer Scientific) was used for solid culture plates. The 

agar was supplemented with the appropriate antibiotics for colony selection. 

Plates are incubated at 37°C and stored at 4°C.  
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2.2 Cell Techniques 

2.2.1 OligofectamineTM Transfection of siRNA in H4 cell line  

 

Transfection of siRNAs was performed using OligofectamineTM Transfection 

Reagent (Thermo Fisher Scientific). Transfections were scaled for different 

tissue culture plates. The conditions and reagents required for transfections in 

different sized tissue culture plates are described in table 2.1. 

 

Table 2.1. Transfection conditions for siRNA transfections using Oligofectamine 

Transfection Reagent scaled to different tissue culture plates. 

Transfection 

Conditions (per 

well) 

 6 well 

plate 

12 

well 

plate 

24 well 

plate 

96 

well 

plate 

Number of cells  1.5x105 5x104 3x104 4800 

Tube A (μL) siRNA (X μM)  1 0.4 0.21 0.034 

 Opti-MEM 179 71.6 37.76 6.03 

Tube B (μL) Oligofectamine 

Reagent 

4 1.6 0.84 0.13 

 Opti-MEM 16 6.4 3.38 0.54 

Opti-MEM added 

to cells (μL) 

 800 320 168.78 26.94 

Complex added to 

cells (μL) 

 200 80 42.19 6.73 

12% FBS in Opti-

MEM added to 

cells (μL) 

 500 200 105.49 16.8 
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Cells were plated at the desired density 24 hours prior to transfection and 

incubated at 37°C and 5% CO2. On the day of transfection, siRNA (at the 

desired concentration) and Opti-MEM were combined in tube A. The 

oligofectamine transfection reagent was combined with Opti-MEM in tube B 

and incubated at room temperature (RT) for 10 minutes.  Following incubation, 

tube A and B were combined and incubated for 20 minutes at RT. During this 

incubation, the transfection reagent forms stable complexes with the siRNA 

oligonucleotides, which can be efficiently transfected into eukaryotic cells. 

 

The growth media was removed from the cells and the cells were washed once 

with Opti-MEM without serum. Cells were left in serum free media by adding 

the required amount of Opti-MEM to the wells as described in table 2.1. 

Following the 20-minute incubation, the complexes were added to cells. The 

cells were incubated for 4 hours at 37°C in 5% CO2, then serum free media 

supplemented with 12% FBS was added to the wells (volume described in 

table 2.1). Cells were then cultured for 48 hours and used for further 

experimental analysis.  

 

2.2.2 Plasmid Transfection using LipofectamineTM 3000 Reagent 

 

Plasmid transfections were performed using LipofectamineTM 3000 Reagent 

(Thermo Fisher Scientific). Transfections were scaled for different tissue culture 

plates. The conditions and reagents required for transfections in different sized 

tissue culture plates are described in table 2.2. 
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Table 2.2. Transfection conditions for plasmid DNA transfections using Lipofectamine 

3000 Reagent scaled to different tissue culture plates. X represents variable amounts of 

plasmid DNA. Y represents variable amounts of LipofectamineTM 3000 Reagent.  

Reagent (per 

well) 

 6 well 

plate 

12 well 

plate 

24 well 

plate 

Tube A Plasmid DNA X ng X ng X ng 

P3000TM Reagent (μL) 5  4  1 

 

Opti-MEM (μL) 125  50  25  

Tube B LipofectamineTM 3000 

reagent (μL) 

Y Y  Y 

Opti-MEM (μL) 125 50 25 

Volume of DNA-lipid complexes added to 

cells (μL) 

250 100 50 

 

Cells were plated at the desired density 24 hours prior to transfection. On the 

day of transfection, the desired amount of DNA, P3000 Reagent and 

Opti-MEM was combined into tube A. The desired volume of Lipofectamine 

Reagent and Opti-MEM was combined into tube B. The contents of each tube 

was combined at a 1:1 ratio and incubated at RT for 15 minutes. During this 

time the Lipid-DNA complexes form. 

 

During DNA-lipid complex incubation, growth media was replaced with fresh 

media. The desired volume of DNA-lipid complexes was added directly to the 

cells and incubated for 48 hours. Following incubation, cells were used for 

further experimental analysis. 
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2.2.3 Cell lysis Protocol to generate protein lysates 

 

10X Cell Lysis Buffer (Cell Signaling Technologies, Leiden, Netherlands) was 

used to lyse cells under non-denaturing conditions. The buffer consists of 20 

mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 

2.5 mM sodium pyrophosphate, 1 mM beta-glycerophosophate, 1 mM Na3VO4 

and 1 μg/mL leupeptin. This buffer was diluted to 1X and 1 mM of 

Phenylmethylsulfonyl fluoride was added prior to use.  

 

In order to perform the cell lysis, the media was removed from the cells and 

the cells were washed twice with PBS to remove residual media. In a six well 

plate, 100 μL of 1X cell lysis buffer was added directly to cells and incubated 

on ice for five minutes. Cell scrapers were used in order to detach cells from 

the surface of the plate and the lysate was transferred to a microcentrifuge 

tube. The cell lysate was sonicated for five seconds and then centrifuged for 10 

minutes at 14000 g at 4°C. The supernatant containing protein was removed 

and stored at -20°C. 

 

2.3 Protein techniques 

2.3.1 BCA (Bicinchoninic Acid) assay 

 

A BCA assay is a method developed to measure the protein concentration of 

sample. In this instance, this assay was used to measure the protein 

concentration of lysates generated from transfected cells and nuclear protein 

extractions.  
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BCA standards were created by diluting 2 mg/mL Albumin in water (Thermo 

Fisher Scientific). The range of concentrations used as standards are shown in 

table 2.3.  

 
Table 2.3. Dilution of 2mg/mL Albumin to create protein standards for BCA assay 

Concentration of Albumin (mg/mL)  

2 

1.5 

1 

0.5 

0.25 

0.125 

0.0625 

0.0312 

 

5 μL of each standard was added to a well of a clear flat bottomed 96 well 

plate. 5 μL of water was added to act as a blank for the standards. 5 μL of 

protein lysates were added to the plate. 5 μL of lysis buffer was added to act as 

blank for the protein lysates.  Each well was duplicated to ensure accurate 

results.  

 

The PierceTM BCA Protein Assay Kit (Thermo Fisher Scientific) was used to 

determine protein concentration. Reagent B was added to Reagent A at a ratio 

of 1:50. 200 μL of the Reagent A and B mixture was added to the wells 

containing standards, blank and protein lysates, and pipette mixed. The plate 

was incubated at 37°C for 20 minutes. Following incubation, optical density 

was measured using a μQuantTM Microplate Spectrophotometer at 562nm 

wavelength. 
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Duplicate measurements were averaged. Standards and protein lysate 

readings were blanked using the appropriate blank measurements. In order to 

analyse the results, a graph of the protein standards concentration against their 

optical reading was plotted. A line of best fit was created and the y=mx+c 

equation was used to calculate the concentration of the protein lysate 

measured. 

 

2.3.2 Western blotting 

 

Western blotting is a semi-quantitative technique able to visualise a specific 

protein present in a lysate sample. In this instance, this technique was used to 

investigate BIN1 and CD2AP depletion and APP levels in transfected cells.   

 

10% acrylamide gels were used in western blot experiments. These were made 

up of a resolving gel and a stacking gel for sample loading. The glass plates 

were assembled into the casting stand. To make the resolving gel for two 10% 

acrylamide gels of 0.75 mm width, 1.9 mL 1.5M tris (pH 8.8), 2.5 mL 30% 

acrylamide, 37.5 μL 20% Sodium Dodecyl Sulfate (SDS), 75 μL 10% APS, 6 μL 

TEMED (Tetramethylethylenediamine) and 3 mL H2O was mixed and poured 

into the gel cast, leaving approximately 1.5 cm for the stacking gel. In order for 

the gel to set horizontally, isopropanol was added on top of the resolving gel 

and the gel was left to set for 10 minutes. 

 

To create the stacking gel, 375 μL 1.5M Tris (pH 6.8), 750μl 30% acrylamide, 

22.5 μL 20% SDS, 45 μL 10% APS, 4.5 μL TEMED and 3.15 mL H2O was mixed. 

The isopropanol on the top of the resolving gel was discarded and residual 

liquid was removed with blotting paper. The stacking gel was added to the gel 

cast and the appropriate well comb was inserted. Once set, gels were stored 

for 2-3 days and in 1X PAGE [reagents to create 10X PAGE are described at 
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the end of this section]. The gel plates were slotted into the Mini-PROTEAN 

Tetra Cell (Bio-Rad Laboratories Ltd, Watford, UK) and placed in a tank. If only 

one gel was used, the plastic buffer dam was slotted into the tetra cell in 

addition to the acrylamide gel. The tank was filled with 1x PAGE. 5 μL of Prism 

Ultra Protein Ladder (Abcam, Bristol, UK) was loaded into one well in order to 

determine protein size.  

 

Lysate samples were prepared by combining one part 5X sample buffer 

(0.125M Tris (pH 6.8), 4% SDS, 20% v/v Glycerol, 5% 2-Mercaptoethanol and 

Bromophenol blue) with four parts protein lysate. Samples were heated at 

95°C for 5 minutes. Following incubation, the lysate sample plus sample buffer 

was loaded into the appropriate wells. Gels were electrophoresed at 150V for 

the desired length of time.  

 

Once the desired separation of the protein ladder was achieved, the protein 

was transferred on to a nitrocellulose blotting membrane (GE Life Sciences, 

Buckinghamshire, UK). 1L of transfer buffer (100 mL 10X PAGE, 200 mL 

Methanol and 700 mL H2O) was prepared. A piece of nitrocellulose blotting 

membrane was cut to the appropriate size and soaked in transfer buffer. 

 

The bottom half of the transfer sandwich was created using the gel holder 

cassette, black foam, and blotting paper. One slide of the glass plate was 

removed and the nitrocellulose blotting membrane was placed onto the gel. A 

roller was used to ensure that no bubbles were present between the gel and 

the nitrocellulose. The gel and nitrocellulose were peeled off the glass plate 

and placed in the transfer sandwich, covered with blotting paper and foam, 

and the clasp of the cassette was sealed. The transfer sandwich was placed in 

an electrophoretic transfer unit and placed in transfer tank filled with transfer 

buffer and an ice pack. If two gels were being transferred, 85V was supplied to 
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the transfer unit. If one gel was being transferred, 75V was supplied to the 

transfer unit. Electrophoretic transfer was carried out for 1 hour. 

 

Following the transfer, blots were blocked by incubating in 5% milk (in PBS-T) 

for 1 hour. [Reagents for PBS-T are described at the end of this section]. 

Primary antibody was diluted in either 5% milk or 2% Bovine Serum Albumin 

(BSA) to the appropriate concentration depending on the antibody used. If the 

antibody was diluted in BSA, three 5-minute washes with PBS-T were 

performed following the blocking incubation. The blocking milk was removed 

and the primary antibody solution was added. The solution was agitated and 

incubated at 4°C over night (ON).  

 

Following incubation, the primary antibody solution was removed and the blot 

was washed three times for 5 minutes in PBS-T. The appropriate secondary 

antibody was diluted in 5% milk at 1:15000 and added to the blots. The 

secondary antibody solution was agitated and incubated on the blot for 1 hour 

at RT then washed in PBS-T. Protein bands were detected with Pierce TM ECL 

Western Blotting Substrate (Thermo Fisher Scientific). The substrate working 

solution was prepared by mixing equal parts of Detection Reagents 1 and 2. 

The substrate working solution was incubated on the blots for 5 minutes at RT. 

Excess substrate working solution was removed from the blot and the blot was 

placed in a film cassette. In a dark room, Amersham Hyperfilm ECL (GE Life 

Sciences) X ray films were exposed to the blot for the appropriate length of 

time. The X ray films were developed using the ECOMAX film processor 

(Protec, Oberstenfeld, Germany).  

 

In order to remove the bound primary antibody from a blot, the blot was 

incubated in RestoreTM PLUS Western Blot Stripping buffer (Thermo Fisher 

Scientific) at RT for 15 minutes with agitation. Following this, the blot was 
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washed three times for 5 minutes in PBS-T and then can be treated from the 

blocking step as described above.  

 

Western blots were quantified via densitometry [described in section 2.5]. The 

Protein ladder was used to identify target proteins by molecular weight. An 

endogenous control was used in each blot using protein from a 

non-transfected cell population. Ideally a negative control would be performed 

using a cell line that does not express the protein of interest to demonstrate 

the specificity of the antibody. As BIN1, CD2AP, APP and GAPDH were 

expressed in cell lines available, a negative control was not possible. Targeting 

siRNA resulting in BIN1 and CD2AP depletion can be used to demonstrate the 

specificity of the BIN1 and CD2AP targeting antibodies.  

 

Expression of the protein of interest was normalised to the expression of 

GAPDH, a housekeeping protein, to normalise for loading errors. Each 

normalised value was divided by the expression from a non-transfected control 

and expressed as a percentage of expression change compared to the control. 

 

Reagents: 

1.5M Tris pH 8.8 – 153.9 g Tris Base, 36.9g Tris HCl, 1L H2O 

1.5M tris pH 6.8 – 225g Tris HCl, 9g Tris Base, 1L H2O 

10X PAGE – 30.25g Tris Base, 144g Glycine, 10g SDS 

PBS-T – 5 x PBS tablets (Sigma), 1 mL Tween, 1L H2O 

 

2.3.3 Enzyme-Linked Immunosorbent Assay (ELISA) 

2.3.3.1 Human APP Quantification 

 

Human APP protein was quantified using the Human APP Duoset ELISA 

following the manufacturers guidelines (R&D Systems, Abingdon, UK). 
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Plate Preparation 

 

The mouse anti-human APP Capture Antibody was diluted to a working 

concentration of 4 μg/mL in PBS (Thermo Fisher Scientific). 100 μL of capture 

antibody was added to a 96-well Microplate and incubated ON at RT. 

Following incubation, the antibody was removed and each well was washed 

three times with Wash Buffer (0.05% Tween®20 in PBS). The wells were blocked 

by adding 300 μL of Reagent Diluent (1% BSA in PBS) and were incubated at 

RT for 1 hour. Following incubation, the Reagent diluent was removed and 

each well was washed three times with Wash Buffer.  

 

Assay Procedure 

 

Protein standards were created by diluting recombinant human APP with 

Reagent diluent. Standards between 0-20 ng/mL of human APP were 

generated. Samples from H4 cell lysates were diluted 1:15 in Reagent diluent. 

100 μL of diluted samples, standards and appropriate blanks were added to 

the wells and incubated at RT for 2 hours. Following incubation, the samples, 

standards and blanks were removed and the wells were washed three times 

with wash buffer. 100 μL of biotinylated mouse anti-human APP Detection 

Antibody diluted in Reagent buffer (330 ng/mL) was added to the wells and 

incubated at RT for 2 hours. Following incubation, the detection antibody was 

removed and the wells were washed three times with wash buffer. 100 μL of 

substrate solution (1:1 mixture of Colour Reagent A (H2O2) and Colour Reagent 

B (Tetramethylbenzidine) was added to each well and incubated for 20 minutes 

at RT in the dark. Following incubation, 50 μL of Stop Solution (2 N H2SO4) was 

added to each well. The optical density of each well was determined on a 

μQuantTM Microplate Spectrophotometer using 450nm wavelength.  
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2.3.3.2 Quantification of APP related proteins 

 

β-CTF, Aβ40, sAPPα, sAPPβ and BACE1 were quantified using ELISA kits from 

IBL International (Hamburg, Germany) and performed following the 

manufacturer’s protocol. Wash buffer (40X) was diluted to 1X in deionised 

water. The Enzyme Conjugate (30X) was diluted 1:30 with Enzyme Conjugate 

diluent. The reconstituted protein standard provided was diluted in assay 

buffer to generate the appropriate protein standards. β-CTF protein standards 

ranged from 0.19-12 pmol/L.  Aβ40 protein standards ranged from 1.56-100 

pg/mL. sAPPα and sAPPβ protein standards ranged from 0.78-50 ng/mL. 

BACE1 protein standards ranged from 1.56-100 ng/mL. Test samples were 

diluted as desired with assay buffer. 

 

100 μL of standards and diluted samples was added to the appropriate wells of 

the antibody coated microtiter plate. 100 μL of assay buffer was added to wells 

to act as a blank. For β-CTF, Aβ40, sAPPα and sAPPβ ELISAs the plate was 

incubated ON at 4°C. For the BACE1 ELISA, the plate was incubated for 1 hour 

at 37°C.   

 

Following incubation, samples, standards and blanks were removed from the 

wells and the wells are washed thoroughly. Each well was filled with 1X wash 

buffer, incubated for 15 seconds then wash buffer was removed. This was 

repeated 8 times. Once all of the wash buffer was removed, 100 μL of 1X 

Enzyme Conjugate was added to each well and incubated for 1 hour at 4°C. 

Following incubation, the wells are washed 9 times using the same method as 

previously described. Once the wash buffer was removed, 100 μL of TMB 

Substrate Solution was added to the wells and the plate was incubated at RT 

for 30 minutes in the dark.  Following incubation, 100 μL of TMB Stop Solution 

was added to the wells and mixed. The optical density of each well was 
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determined on a μQuantTM Microplate Spectrophotometer using 450nm 

wavelength. 

2.3.3.3 Experimental Design  

An endogenous control was used in each ELSIA using protein extracted from a 

non-transfected cell population. Ideally a negative control would be 

performed, using a cell line that does not express the protein of interest to 

demonstrate the specificity of the antibody. However, as APP, β-CTF, Aβ40, 

sAPPα, sAPPβ and BACE1 are expressed in cell lines available, a negative 

control was possible. 

2.3.3.4 Calculating ELISA Results 

 

The average optical density of the blanks was subtracted from the optical 

density of each sample and standard technical replicate. These blanked 

technical replicates were then averaged. Plotting the standard protein 

concentration against optical density generated a standard curve. A line of 

best fit was plotted to the standard curve.  

 

The formula for the line of best fit (y=mx + c) was applied to calculate the 

protein concentrations of the samples from the optical density recorded.  This 

value was then multiplied by the dilution factor and then divided by the total 

protein concentration of the sample lysate. This generates a target protein 

mass per mg of lysate protein (for example, APP ng/mg). 

 

  



  Chapter 2 

 69 

2.4 DNA techniques 

2.4.1 DNA extraction 

 

DNA was extracted from cell lines using QIAamp® DNA Mini Kit (Qiagen, 

Manchester, UK). Once cells reached confluency, cells were trypsinised and a 

maximum of 5 x 106 cells was added to a microcentrifuge tube. Cells were 

centrifuged for 5 minutes at 300 x g. The supernatant was removed and the 

cell pellet was resuspended in 200 μL of PBS. 20 μL of proteinase K was added 

to the resuspended cells. 200 μL of Qiagen Buffer AL was added to the cell 

suspension, mixed and incubated at 56°C for 10 minutes. 200 μL of 100% 

ethanol was added to the sample, mixed and then added to the QIAamp Mini 

spin column. The column was centrifuged for 1 minute at 6000 x g. The filtrate 

was discarded and 500 μL of Qiagen Buffer AW1 was added to the column. 

The column was centrifuged for 1 minute at 6000 x g. The filtrate was 

discarded and 500 μL of Qiagen Buffer AW2 was added to the column. The 

column was centrifuged for 3 minutes at 20000 x g. The filtrate was discarded 

and the column was centrifuged for a further minute. The column was placed 

into a clean microcentrifuge tube, 50 μL of distilled water was added to the 

column and incubated for 1 minute at RT. The DNA was eluted into the water 

and collected by centrifuging the column at 6000 x g for 1 minute.  

 

2.4.2 Isolation of plasmids 

 

Plasmids were isolated from transformed E.coli using QIAprep® Spin Miniprep 

Kit (Qiagen). Transformed cultures were incubated ON and collected in a 

microcentrifuge tube. The bacterial cells were harvested by centrifuging for 3 

minutes at RT at 6800 x g. The supernatant was discarded and the cell pellet 

was resuspended in 250 μL of Qiagen buffer P1. Cells were lysed by the 
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addition of 250 μL of buffer P2. The tubes were inverted to mix and the lysis 

reaction was carried out for 5 minutes. To neutralise the reaction, 350 μL of 

Qiagen buffer N3 was added and mixed. The tube was then centrifuged for 10 

minutes at 17900 x g. The supernatant was added to a QIAprep spin column 

and then centrifuged for 1 minute at 17900 x g. The filtrate was discarded, 500 

μL of Qiagen buffer PB was added to the column and then centrifuged for 1 

minute at 17900 x g. The filtrate was discarded, 750 μL of Qiagen buffer PE 

was added to the column then centrifuged for 1 minute at 17900 x g. The 

filtrate was discarded and the column was centrifuged for 1 minute at 17900 x 

g. The column was placed in a clean microcentrifuge tube. The DNA was 

eluted by adding of 50 μL of water to the column, incubated for 1 minute then 

centrifuged for 1 minute at 17900 x g. 

2.4.3 Polymerase Chain Reaction (PCR) 

 

The PCR is a technique that amplifies DNA located between two known 

locations. DNA primers are designed to complement DNA either side of the 

region of interest. Following the binding of these primers to their 

complementary sequence to form double stranded DNA, a thermostable Taq 

polymerase synthesises a complementary DNA strand using excess 

deoxyribonucleotide triphosphates (dNTPs) in a reaction mixture.  

 

PCR consists of three stages, which are cycled to exponentially increase the 

product. The first stage is a denaturing step, which leads to the template DNA 

becoming single stranded. Next is the annealing stage where the PCR primers 

anneal to their complementary sequence within the template DNA, and finally 

the elongation step in which the new DNA strands are synthesised. A typical 

PCR will have around 30 cycles of these steps carried out at specific 

temperatures. All PCRs were carried out using C1000/S1000 Thermal Cyclers 

(Bio-Rad). 
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2.4.3.1 PCR Primer design 

 

PCR primers were designed using the Primer3 web resources 

(http://bioinfo.ut.ee/primer3-0.4.0/). Primers were designed to be 

approximately 20bp in length and have an annealing temperature of around 

60°C.  

  

2.4.4 Gel Electrophoresis 

 

Due to the negatively charged phosphate groups in DNA, DNA fragments can 

be separated electrophoretically. If a potential difference is applied to an 

agarose gel loaded with DNA, the DNA will migrate toward the anode and the 

speed of migration will be dependent on the size of the DNA fragment.  

 

1-3% agarose gels were used depending on the DNA fragment size or the 

resolution required. A 1% agarose gel was made by dissolving 1 g of high-

resolution agarose (Sigma) per 100 mL of 0.5X Tris-Borate-EDTA (TBE) buffer 

(Thermo Fisher Scientific). This was done by heating the solution until it 

becomes clear and no agarose was visible. 1 μL of ethidium bromide (10 

mg/mL) was added per 100 mL of agarose solution in order to visualise the 

DNA. This solution was then poured into a gel cast with the appropriate comb 

to form the number of wells desired and left to set.  

 

Once set, the gel was loaded into an electrophoresis tank and submerged in 

0.5X TBE. PCR product to be ran on the gel was mixed with 6X loading dye 

(NEB, Hitchen, UK) and loaded into the formed gel. An appropriate DNA 

ladder (Thermo Fisher Scientific) was ran along side the PCR product in order 

to estimate the size of the fragment.  Gels are typically electrophoresed at 
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approximately 100V until the loading dye has migrated ¾ down the length of 

the gel.   

 

The DNA separation was visualised using a UV transilluminator (UVP) and 

photographed using Image Lab software (Bio-Rad). 

 

2.4.5 Extracting DNA from an agarose gel 

 

DNA was extracted from an agarose gel using QIAquick Gel Extraction Kit 

(Qiagen) and subsequently purified using QIAquick PCR purification Kit 

(Qiagen). All centrifugation steps were carried out for 1 minute at RT at 17900 

x g. The DNA fragment was excised from the gel using a scalpel. Three 

volumes of Qiagen Buffer GQ was added to 1 volume of the gel (1mg ~ 100 

μL). This sample was incubated at 50°C until the gel slice has dissolved. One 

gel volume of 100% isopropanol was added to the sample and mixed. The 

sample was applied to a QIAquickspin column and centrifuged. The filtrate was 

discarded and 500 μL of Qiagen buffer QG was added to the column. The 

filtrate was discarded and 750 μL of Qiagen buffer PE was added to the 

column and centrifuged. The filtrate was discarded and the column centrifuged 

again. The column was placed into a clean microcentrifuge tube and 50 μL of 

water was added to elute DNA. The column was incubated for 1 minute then 

centrifuged. 

 

To purify the DNA, 5 volumes of Qiagen buffer PB was added to 1 volume of 

sample and mixed. The sample was added to a QIAquick spin column and 

centrifuged. The filtrate was discarded and 750 μL of Qiagen buffer PE was 

added to the column and centrifuged. The column was placed into a clean 

microcentrifuge tube and 50 μL of water was added to elute DNA. The column 

was incubated for 1 minute then centrifuged. 
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2.4.6 SNaPshot genotyping 

 

Following PCR amplification, the PCR reaction was cleaned by adding 1 μL of 

Shrimp alkaline phosphatase (1000 units/mL) (NEB), 0.2 μL of exonuclease 1 

(20 000 units/mL) (NEB) and 1.8 μL of water directly to the 12 μL of PCR 

product. This reaction was incubated at 37°C for 45 minutes, followed by 

incubation at 85°C for 15 minutes.   

 

The SNaPshot reaction consists of 1 μL of extension primer (1 μM), 1 μL 

SNaPshot® Multiplex Reaction Mix  (Thermo Fisher Scientific), 2 μL of cleaned 

PCR product and 6μL of water. This reaction was treated in the thermocycler 

with 30 cycles of 96°C for 10 seconds, 50°C for 5 seconds, and 60°C for 30 

seconds. 8 μL of HiDi formamide (Thermo Fisher Scientific) was added 

following the SNaPshot reaction. SNaPshot results were obtained by analysing 

samples using the Applied Biosystem 3130 Genetic Analyser and the 

fluorescence peak height analysed using GeneMarker (Softgenetics). 

 

2.5 Densitometry using ImageJ 

 

Densitometry was used to quantify bands in Western Blots and Electrophoretic 

Mobility Shift Assays (EMSA). This technique was used to estimate protein 

expression and protein DNA binding.  

 

Gel analysis required the image to be a grey-scale image and opened in 

ImageJ. The Rectangle Selections tool was used to draw a rectangle around 

the first lane. Analyse>gels>select first lane was selected. The rectangle was 

moved to the next lane and analyse>gels>select next lane was selected. This 
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was repeated for all lanes. Once each lane had been selected, a profile plot of 

each lane was drawn by selecting analyse>gels>plot lanes. 

 

The profile plot represents the relative density of the contents of the rectangle 

over each lane. The straight-line selection tool was used to draw a line across 

the base of the peak to remove background noise. The Wand tool was used to 

highlight each peak of interest in the profile plot. When all of the peaks were 

highlighted, analyse>gels>label peaks was selected. The percentages were 

transferred to a spreadsheet for analysis.  

 

2.6 Experimental Design and Statistical Analysis 

 

In this PhD, biological replicates were defined as the same experiment 

performed on multiple samples and was used to test the variability between 

samples. In terms of tissue culture, cells originating from different passages are 

considered different samples. Technical replicates were defined as performing 

the same test multiple times on the same sample, to account for variation in 

the protocol itself.  

 

The number of biological replicates is stated in the appropriate chapter. 

Graphically represented data displays the average value across biological 

replicates and error bars represent standard deviation. 

 

Data was analysed using parametric statistical analysis, primarily either by 

Student’s t-test or one way Analysis of Variance (ANOVA). The significance 

level was set as p<0.05. These tests assume data is continuous, independent of 

one another and normally distributed. These factors were taken into account 

during experimental design. 
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Prior to analysis, data was tested for homogeneity of variance using a Levene’s 

test. In the situation where data violated the assumption of homogeneity of 

variance (p<0.05), data was log transformed and the Levene’s test was 

repeated. 

 

Following a significant ANOVA result, the post-hoc Tukey’s HSD test, which 

performs selected pairwise comparisons, was performed to identify which 

group means significantly differed from one another. A p value <0.05 was 

considered significant. 

 

No statistical analysis was corrected for multiple testing in this thesis.  This 

could increase the likelihood of encountering a type 1 error. All statistical 

analysis was performed using IBM SPSS statistics Version 23. 
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3. The effect of BIN1 and CD2AP depletion on 

APP processing 

3.1 Introduction 

3.1.1 APP Processing and Trafficking 

 

Amyloid Precursor Protein (APP) has long been known as a risk gene for familial 

Alzheimer’s disease (AD) and was first discovered in 1987 (102). As the 

understanding of familial AD grew, this led to the generation of the amyloid 

hypothesis, which states that amyloidogenic processing of APP is the key 

catalytic event in AD pathogenesis and that Aβ generation causes all other 

pathological symptoms (169). Since then, genome wide association studies 

have identified more genes associated with Late Onset Alzheimer’s disease 

(LOAD) and a pathway analysis of the IGAP data identified an enrichment of 

genes involved in the regulation of endocytosis and the clathrin/AP2 complex 

(180), emphasising the importance of these functional pathways in AD. 

 

APP trafficking is critical in the processing of APP. APP is synthesised in the 

endoplasmic reticulum and then transported through the golgi to the trans-

golgi network (TGN) where post-translational modifications occur (378). From 

the TGN, APP is transported to the plasma membrane. APP can then be 

processed via the non-amyloidogenic or amyloidogenic pathways. Non-

amyloidogenic processing of APP predominantly occurs at the plasma 

membrane due to the abundance of α-secretases at this location (76), whereas 

amyloidogenic processing of APP primarily occurs intracellularly, with a large 

amount of evidence suggesting that it occurs after APP has been internalised 

(379).  
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APP is internalised via clathrin-mediated endocytosis (CME) (189-191). The 

generation of Aβ within the endosomal compartments and TGN suggests that 

amyloidogenic processing of APP primarily occurs at these locations, where the 

acidic environment is optimal for BACE1 activity (190, 380, 381). Early 

endosomes are weakly acidic with a pH 6.8-6.1 (382), whereas the pH of the 

TGN averages around 5.9 (383). It is generally accepted that the early 

endosome is the main site of APP cleavage by BACE1 (189, 384-386). 

γ-secretase cleavage of β-CTF occurs in the transmembrane protein domain 

mainly in the TGN and early endosomes, with some evidence it may also occur 

in multivesicular bodies (MVB) (84, 85). γ-secretase cleavage generates Aβ and 

releases the intracellular domain of APP. From here, it is thought APP is 

trafficked to the late endosomes, then either to the lysosomes for degradation 

or recycled back to the plasma membrane (189, 385, 387-389).  

 

APP has a YENPTY motif at the carboxyl terminus that is required for efficient 

internalisation into CCV and early endosomes (390). Studies using a modified 

form of APP, which lacks this motif, observed reduced internalisation and a 

reduction in Aβ generation (191, 391). Increasing APP trafficking to the cell 

surface or reducing it’s internalisation reduced amyloidogenic processing (183). 

Furthermore, investigations which impaired APP trafficking to the cell surface 

or enhanced internalisation, increased amyloidogenic processing (392, 393).  

This evidence demonstrates the importance of APP endocytosis in the 

processing of APP. Dysregulation of endocytosis is associated with AD and 

other neurodegenerative disorders (181) with aberrant neuronal endocytosis 

being one of the earliest neuropathological changes in AD (182). 

 

APP is produced in large quantities in neurons and is rapidly metabolised (394, 

395). Neurons are polarised cells with complex endosomal networks in the 

soma, axons and dendrites (396, 397). Endogenous APP and BACE1 are 
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predominantly located in the soma and dendrites of neurons and it is thought 

that neuronal synaptic vesicles play an important role in APP uptake (224, 398). 

In hippocampal neurons, recycling microdomains such as dendritic spines and 

presynapses, were shown to be important sites of β-cleavage and that the 

recycling endosomes, distributed throughout the neuronal processes, are a 

major site of APP and BACE1 co-localisation. In axons, APP and BACE1 interact 

within golgi-derived vesicles as they are co-transported (399). This implies that 

the location of amyloidogenic processing of APP can vary across the cellular 

location of neurons and could potentially be influenced by different disease 

mechanisms.  

 

3.1.2 BIN1 and CD2AP in AD 
 

BIN1 is thought to have a critical function in CME by inducing membrane 

curvature and recruiting dynamin. [This function is further discussed in Chapter 

1.7.3]. In rat neurons, BIN1 depletion was found to increase CME and over 

expression resulted in reduced CME (253). In 2013 the largest LOAD GWAS 

identified a SNP within the BIN1 locus, located ~30 Kb upstream of BIN1, to 

have an overall meta-p value of 6.9 x 10-44 and an OR of 1.22 (140).  

 

CD2AP has a role in cytoskeleton regulation and interacts with a number of 

components of the endocytic machinery (268). [CD2AP function is further 

described in chapter 1.8.3]. In the 2013 meta-analysis, a SNP located in the 

intron of CD2AP was identified with a meta-p value of 5.2 x 10-11 and an OR of 

1.1 (140).  

 

It is unknown how these variants, or functional variants tagged by these 

associations, infer an increased risk for LOAD. As they are located outside of 

the coding region it could be that they effect gene regulation and the risk 
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mechanism is a consequence of changes in BIN1 or CD2AP expression. BIN1 

expression has been investigated in AD and in AD pathology, but the findings 

are inconsistent. [Further discussed in chapter 1.7.4 and 1.7.5]. Little research 

has been done into CD2AP expression in AD.  

 

3.1.4 Aim 
 

BIN1 and CD2AP are both significantly associated with AD and have been 

implicated in the regulation of endocytosis, a process thought to be crucial in 

the pathogenesis of AD (180). It could be hypothesised that BIN1 and CD2AP 

infer risk for AD by affecting the same cellular mechanisms. As common 

variants associated with complex disease are thought to have small effect sizes, 

this investigation took the approach of investigating crucial disease processes 

in cellular models with depleted BIN1, depleted CD2AP and depleted BIN1 

and CD2AP in combination to investigate the additive functional effect of loss 

of these proteins.  

 

As BIN1 and CD2AP function in endocytosis, this chapter aims to characterise 

how depletion of BIN1 and CD2AP, independently and in combination, affect 

both APP processing and CME. This investigation will use the human brain 

derived H4 neuroglioma cell line. This cell line is a model of a brain cell widely 

used in AD research and is easily genetically manipulated. H4s express 

endogenous levels of APP and were selected to investigate the effects of BIN1 

and CD2AP on physiologically relevant levels of APP.  

 

Protein depletion will be achieved by establishing siRNA mediated depletion 

cellular models. The effect of loss of BIN1 and CD2AP on APP processing was 

established by quantifying APP, APP metabolites and BACE1. As BIN1 and 

CD2AP have been implicated in endocytic processes and the internalisation of 
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APP via CME is critical in the processing of APP, the effect of protein depletion 

on CME will be investigated by quantifying uptake and subsequent localisation 

of transferrin, a commonly used functional measure of CME.  
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3.2 Methods 

3.2.1 Optimisation of siRNA mediated BIN1 and CD2AP depleted 

cellular models 

 

The primary criteria for the protein depleted cellular models were to achieve 

optimal protein depletion. A range of concentrations of targeting siRNA (12.5 

nM, 25 nM, 50 nM) was investigated in order to determine their effect on 

protein expression. Following protein depletion, a number of additional factors 

were investigated. This included the effect of the siRNA transfection on cell 

viability and the expression of the non-targeted gene. The effect of total siRNA 

transfected on protein expression was also investigated. Conditions with 

minimal effect on cell viability and off-targets effects on protein expression 

were selected for functional assays.  

 

3.2.1.1 siRNA transfection 

 

H4 cells were plated at 1.5 x 105 cells per well in a 6 well plate 24 hours prior to 

transfection. [Cells were transfected as described in Chapter 2.2.1]. During 

optimisation the concentration of single targeting siRNAs used per well was 50 

nM, 25 nM or 12.5 nM. The sequences of the siRNAs used are described in 

table 3.1. ON-TARGETplus Non-targeting control siRNA (NT siRNA) 

(Dharmacon, GE, UK) was used as a control siRNA that does not target any 

sequence in the human genome. Cells treated with NT siRNA reflect a baseline 

cellular response to siRNA transfection regardless of the target.  
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Table 3.1 Sequence of the siRNAs used in this investigation 

BIN1 targeting siRNA (5’-3’) GGAGAUGAGCAAGCUCAACTT 

CD2AP targeting siRNA (5’-3’) GAUACAUGCUACUCUCCAATT 

 

Cells were co-transfected with BIN1 and CD2AP targeting siRNAs, siRNAs 

targeting BIN1 and CD2AP independently and with NT siRNA. The siRNA 

conditions initially investigated are described in table 3.2. 
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Table 3.2. siRNA concentrations investigated during optimisation of depletion models.  

Transfected siRNA  Concentration 

of BIN1 

targeting 

siRNA per 

well (nM) 

Concentration 

of CD2AP 

targeting 

siRNA per 

well (nM) 

Concentration 

of Non-

targeting 

siRNA per 

well (nM) 

BIN1 and CD2AP 

targeting   

 

50 50 0 

50 25 0 

50 12.5 0 

25 50 0 

25 25 0 

25 12.5 0 

12.5 50 0 

12.5 25 0 

12.5 12.5 0 

BIN1 targeting 

 

50 0 0 

25 0 0 

12.5 0 0 

CD2AP targeting  50 0 0 

25 0 0 

12.5 0 0 

NT siRNA 

 

0 0 100 

0 0 75 

0 0 62.5 

0 0 50 

0 0 37.5 

0 0 25 

0 0 12.5 
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3.2.1.2 Cell Viability Assay  

 

The effect of siRNA concentration on cell viability was investigated. A cell 

viability assay was performed using CellTiter 96® AQueous One Solution Cell 

Proliferation Assay (Promega). Each transfection condition described in table 

3.2 was scaled down to a 96-well plate format. 48 hours post transfection, 20 

μL of CellTiter 96® AQueous One Solution Reagent was added to wells 

containing a total of 100 μL of culture medium. The CellTiter 96® AQueous One 

Solution Reagent contains a compound which is bioreduced by metabolically 

active cells to form a coloured formazan product soluble in cell culture 

medium. The plate was then incubated for 1.5 hours in the dark at 37°C and 

5% CO2. This time point had been previously optimised in the lab for this cell 

type. Following incubation, the absorbance of the medium at 490nm was 

recorded using a BioTek μQuantTM Microplate Spectrophotometer with Gen5TM 

software. 

 

Three biological replicates were performed, with two technical replicates per 

biological replicate. Data were normalised to a non-transfected control (NTC). 

A one-sampled t-test was performed to determine whether cell viability of 

transfected cells was significantly different to the cell viability of NTC cells.  
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3.2.1.3 Protein Expression Quantification  

 

Three biological replicates of each of the transfections described in table 3.2 

were performed in 6 well plates. 48 hours post transfection, cells were lysed to 

generate protein lysates. [Cell lysis protocol is described in Chapter 2.2.3]. 

Protein concentration was determined via a BCA assay [described in Chapter 

2.3.1]. The effect of the siRNAs on protein expression was determined via 

Western blotting protocol [described in Chapter 2.3.2]. 30 μg of cell lysate was 

used for Western Blotting. 

 

The antibody targeting BIN1 was ab54764 (Abcam) and was diluted 1:1000 

and incubated in 2.5% BSA ON (overnight) at 4°C. The antibody targeting 

CD2AP was sc-25272 (Santa Cruz Biotechnology, Inc, Heidelburg, Germany) 

and was diluted 1:1000 and incubated in 5% milk ON at 4°C. The 

housekeeping gene used to normalise protein expression was GAPDH and was 

targeted by ab8245 (Abcam). This detects GAPDH at 37 kDa. Ab8245 was 

diluted 1:25000 and incubated in 5% milk ON at 4°C.  

 

HRP Horse Anti-Mouse IgG Antibody (Peroxidase) (Vector Laboratories Ltd, 

Peterborough) was used as a secondary antibody to detect the BIN1, CD2AP 

and GAPDH primary antibodies. The secondary antibody was used at a 

1:15000 dilution in 5 % milk and incubated on the blots for 1 hour at room 

temperature (RT) in the dark.  

 

Protein expression was quantified by performing densitometry on the blots 

using ImageJ software [described in chapter 2.5]. Protein loading errors were 

taken into the account as each sample was normalised to its own GAPDH 
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expression (400). Samples are then normalised to a NTC within the same 

biological replicate.  

3.2.2 Quantification of APP and APP processing metabolites 

 

Following depletion optimisation, cells were transfected using the conditions 

described in table 3.3. Following the transfection incubation, the growth media 

from cells was collected, the cells were lysed and the protein lysate collected. 

These were samples were used in the quantification of APP processing related 

proteins.   

 

Table 3.3. Transfection conditions used to generate lysates following optimisation 

Co-

transfection 

Concentration 

of BIN1 

targeting 

siRNA per well 

(nM) 

Concentration 

of CD2AP 

targeting 

siRNA per well 

(nM) 

Concentration 

of NT 

targeting 

siRNA per well 

(nM) 

25B 25C 25 25 0 

12.5B 25C 12.5 25 0 

25B 25 0 25 

12.5B 12.5 0 37.5 

25C 0 25 25 

50NT 0 0 50 

  

BACE1, APP and the APP processing metabolites Aβ40, β-CTF, sAPPα and 

sAPPβ were quantified in these siRNA-transfected cells via ELISA.  

 



  Chapter 3 

 87 

Quantification of intracellular APP, β-CTF and BACE1 required lysate dilution to 

be optimised prior to the ELISA being performed. Serial dilutions of lysates 

were performed and these samples underwent the ELISA protocol. Protein 

standards were used to generate a curve and the protein levels in lysate 

dilutions were determined. Following optimisation, dilutions were made so that 

the protein concentration fell within the exponential part of the protein 

standards graph and would therefore generate the most accurate result. For 

the APP ELISA, lysates were diluted 1:15. For the β-CTF ELISA, lysates were 

diluted 1:3. For the BACE1 ELISA lysates were diluted 1:2.For the 

quantification of extracellular Aβ40, sAPPα and sAPPβ, undiluted growth media 

was used in the ELISA.  

 

For the BACE1 and β-CTF ELISA, only one technical replicate was performed 

due to the limited lysate availability. For the remaining ELISAs, two technical 

replicates were performed per sample. Two technical replicates were 

performed for every protein standard. A total of five biological replicates were 

used in each ELISA. [The full ELISA protocols are described in chapter 2.3.3]. 

 

To further demonstrate APP levels, APP expression was also quantified via 

Western blotting. The anti-APP antibody MAB348, clone 22c11 (EMD 

Millipore, MA, USA) was used at a 1:1000 dilution and incubated in 1% milk 

ON at 4°C. This antibody is predicted to recognise all three isoforms of APP at 

approximatley110kDa, 120kDa and 130kDa. HRP Horse Anti-Mouse IgG 

Antibody (Peroxidase) (Vector Laboratories Ltd, Peterborough) was used as a 

secondary antibody to detect the APP primary antibody. The secondary 

antibody was used at a 1:15000 dilution in 5 % milk and incubated on the blots 

for 1 hour at RT in the dark. Expression was normalised to GAPDH expression 

and quantified as previously described.  
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3.2.4 Investigating internalisation of Alexa-488 labeled transferrin 

as a measure of clathrin mediated endocytosis (CME) 

 

Transferrin is internalised via CME is commonly used as a marker for CME 

(401). Dextran is a commonly used molecule to determine levels of fluid phase 

endocytosis (402). Flow cytometry was used to quantify fluorescently labeled 

transferrin and dextran molecules to investigate these uptake processes in 

BIN1 and CD2AP depleted cells.  Four transfection conditions were used when 

investigating CME. These are described in table 3.4.   

 

Table 3.4. Transfection conditions used to investigate CME. 

Co-

transfection 

Concentration 

of BIN1 

targeting 

siRNA per well 

(nM) 

Concentration 

of CD2AP 

targeting 

siRNA per well 

(nM) 

Concentration 

of NT 

targeting 

siRNA per well 

(nM) 

25B 25C 25 25 0 

25B 25 0 25 

25C 0 25 25 

50NT 0 0 50 

 

3.2.4.1 Quantification of Alexa-488 labeled transferrin uptake via flow 

cytometry 

 

48 hours post transfection, cells were washed twice in Opti-MEM at RT and 

then incubated in Opti-MEM containing 0.2% BSA (weight/volume) (w/v) at 
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37°C for 30 minutes. Cells were then washed at RT with Opti-MEM and 

incubated for 0, 5, 15 or 30 minutes in Opti-MEM containing 100nM Alexa 

Fluor® 488 Transferrin Conjugate (Thermo Fisher Scientific) (Tf-488) and 80mM 

Alexa Fluor® 647 Dextran Conjugate (Thermo Fisher Scientific) (Dextran-647). 

Following incubation, tissue culture plates were immediately placed on ice to 

prevent further uptake. Cells were washed with ice-cold 0.1M PBS and then 

incubated for 1 minute in ice-cold acid wash (0.2M acetic acid, 0.2M NaCl, pH 

2). This acid wash removed any conjugate bound to the surface of the cell. The 

cells were then washed three times in RT PBS and trypsinised for 15 minutes 

(150 μL of 0.25% trypsin added to each well of a 12 well plate).  Following 

incubation, equal volumes of trypsin inhibitor were added to the cells 

(75μg/mL DNase, 0.5mg/mL trypsin inhibitor in PBS containing 1% BSA (w/v)).  

The cells were then transferred to a microcentrifuge tube and centrifuged at 

325 g for 3 minutes at 4°C. Cells were then washed in PBS containing 1% BSA 

(w/v) and DNase (10 mg/mL) and centrifuged at 325g for 3 minutes at 4°C. 

Cells were then resuspended in 200 μL of PBS containing 1% BSA (w/v) and 10 

mg/mL DNase, filtered through a cell strainer (Sysmex Partec, Milton Keynes) 

and transferred to Fluorescent Assisted Cell Sorting (FACS) tubes (BD Falcon, 

NY, USA).  

 

Cell-associated fluorescence was detected by flow cytometry on a BD 

FACSVerseTM analyser (BD Biosciences, Oxford, UK). Cell debris and 

aggregates were gated out and 10000 events counted.  The data were 

analsyed using the geometric mean fluorescent intensity. Four biological 

replicates were performed. 
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3.2.4.2 Visualisation of Alexa-488 labeled transferrin internalisation via 

immunocytochemistry 

 

Visualising Tf-488 uptake  

 

To support the FACS data, Tf-488 uptake was visualised via 

immunocytochemistry. Cells were plated on to sterilised glass cover slips in a 

24-well plate. Cells were transfected as described in table 3.4. The Tf-488 

uptake assay was performed as described in Section 3.2.4.1, however 

excluding Dextran-647.  Cells were incubated for 5 minutes or 30 minutes with 

the Tf-488. A negative control was performed which involved incubation for 5 

minutes with Tf-488 on ice, which should inhibit uptake. Following the acid 

wash, cells were washed three times in PBS and then fixed by incubating in 3% 

Paraformaldehyde for 20 minutes at 4°C. Following fixing, cells were washed in 

PBS three times and then permeabilised by incubating cells for 5 minutes in 

PBS containing 0.2% Triton-X 100 (Sigma). Cells were then stained with DAPI (1 

μg/mL) for 5 minutes, washed twice in PBS, once in distilled water and then 

mounted using Vectashield (Thermo Fisher Scientific) on to glass slides. 

Controls were performed which omitted the acid wash step to show that the 

acid wash sufficiently removed surface bound Tf-488. This therefore 

demonstrated that Tf-488 imaged following acid wash was intracellular (data 

shown in appendix figure 1.1).  

 

Determining the location of Tf-488 

 

Immunocytochemistry was used to investigate where in the cell Tf-488 was 

located following uptake. The Tf-488 uptake assay was performed as described 
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in Section 3.2.4.1, excluding Dextran-647. Cells were incubated for 5 minutes 

or 30 minutes with the Tf-488. Following the acid wash, cells exposed to Tf-488 

for 5 minutes were washed three times in PBS and then fixed by incubating in 

3% Paraformaldehyde for 20 minutes at 4°C. Cells exposed to Tf-488 for 30 

minutes were washed three times in PBS, then fixed with 100% methanol at -

20°C for 15 minutes. Following fixing, cells are washed in PBS three times and 

then permeabilised by incubating cells for 5 minutes in PBS containing 0.2% 

Triton-X 100 (Sigma). Cells were then incubated in blocking solution (5% BSA, 

5% Goat Serum, 0.3% Triton-X) for 1 hour.  

 

Cells exposed to Tf-488 for 5 minutes were incubated with an anti-EEA1 

antibody (Abcam, ab2900) at a 1:800 dilution in antibody diluent (0.1% BSA, 

0.3% Triton-X, PBS) ON at 4°C. Cells exposed to Tf-488 for 30 minutes were 

incubated with an anti-LAMP2 antibody (Developmental Studies Hybridoma 

Bank, H4B4) at a 1:200 dilution in antibody diluent ON at 4°C.  

 

Following primary antibody incubation, cells were washed three times with 

antibody diluent. Cells probed with EEA1 were incubated in anti-rabbit 594 

secondary antibody (Thermo Fisher Scientific) at a 1:1000 dilution in antibody 

diluent in the dark for two hours at RT. Cells probed with LAMP2 were 

incubated in anti-mouse 594 secondary antibody (Thermo Fisher Scientific) at a 

1:1000 dilution in antibody diluent in the dark for two hours at RT. Negative 

controls were performed, which exposed cells only to the secondary antibody, 

to demonstrate that observed fluorescence was due to antibody binding 

(images shown in appendix figure 1.2).  

 

Following secondary antibody incubation, cells were washed in antibody 

diluent three times and incubated in DAPI (1 μg/mL) for 5 minutes. Cells were 
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then washed three times in PBS and then mounted onto glass slides using 

Vectashield (Thermo Fisher Scientific).  

 

All cells were imaged using Leica DM6000B Upright Timelapse System at x 40 

magnification. A total of three biological replicates were performed. 

Co-localisation was quantified using the Coloc2 ImageJ plugin software. 

Images were converted into a 16-bit images and the background was 

subtracted. Co-localisation was measured and the Pearson Correlation 

Coefficient (PCC) was used in subsequent statistical analyses.  
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3.3 Results 

3.3.1 Protein depletion optimisation 

3.3.1.1 Effect of siRNA transfection on cell viability 

 

Initial investigations looked at the effect of siRNA transfection on cell viability 

by performing a cell proliferation assay. This was to identify any cytotoxic 

effects of siRNA transfection. A one-sample t-test was performed to determine 

whether any condition significantly effected cell viability compared to a non-

transfected control. This revealed that no siRNA conditions reduced cell 

viability. Two conditions significantly increased cell metabolism and therefore 

cell viability. These conditions were the co-transfection of 25 nM BIN1 and 12.5 

nM CD2AP targeting siRNAs (p=0.001) and 12.5 nM CD2AP targeting siRNA 

only (p=0.009). These conditions significantly increased absorbance and 

implied an increase in cell metabolism and therefore viability. There does not 

appear to be an siRNA concentration dependent affect as 12.5 nM CD2AP 

siRNA and 25 nM BIN1 siRNA were used in other transfection conditions and 

no effect on cell viability was observed. To avoid any affect on cell viability, 

these conditions were therefore excluded from functional assays. All other 

siRNA conditions showed no significant change in cell metabolism when 

compared to non-transfected control cells (figure 3.1). 
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3.3.1.2 Effect of Non-targeting siRNA on BIN1 and CD2AP expression 

 

To determine the effect of siRNA concentration on BIN1 and CD2AP 

expression, NT siRNA was transfected at different concentrations. The effect of 

NT siRNA concentration on BIN1 and CD2AP expression was investigated on 

concentrations ranging from 100 nM to 12.5 nM. Protein expression was 

investigated via Western blotting. Ab54764 detects BIN1 isoforms between 45-

65 kDa and appears as three bands. Although, the content of each band has 

not been determined, the top band most likely contains isoform 5; the middle 

band most likely contains a combination of brain specific isoforms 3, 4, 6 and 

7. The bottom band most likely contains ubiquitous isoforms 9 and 10 (403). 

CD2AP has a molecular mass of approximately 70 kDa and is detected as a 

single band (267). 

 

A one-sampled t test revealed that no concentrations of NT siRNA had a 

significant effect on BIN1 or CD2AP expression levels. Statistical results are 

summarised in table 3.5. However, concentrations >50 nM had a variable effect 

on CD2AP expression therefore a total siRNA concentration above 50 nM was 

avoided in future experiments (figure 3.2). 

  



  Chapter 3 

 96 

Table 3.5. Summary of the one-tailed t-test showing no significant effect of NT 

transfection 

Concentration of NT siRNA (nM/well) One-sampled t- test p value 

BIN1 CD2AP 

100 0.330 0.136 

75 0.093 0.264 

62.5 0.182 0.205 

50 0.322 0.734 

37.5 0.146 0.658 

25 0.105 0.401 

12.5 0.237 0.265 
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Figure 3.2.!The effect of NT siRNA on BIN1 and CD2AP protein expression levels. A) 

Protein expression was quantified via Western Blotting. Protein expression was normalised to a 

non-transfected control and data is expressed as a percentage of normal protein expression. 

N=3. A one-sampled t-test revealed that NT siRNA does not significantly effect CD2AP 

expression at any concentration, however NT siRNA at a concentration >50nM appears to have 

a variable effect CD2AP expression. A one-sampled t-test revealed NT siRNA does not 

significantly effect BIN1 expression. Error bars indicate SEM. B) Representative Westerns 

demonstrating results described in A.  
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3.3.1.3 The effect of targeting siRNA on BIN1 and CD2AP expression 

 

To determine the effect of BIN1 and CD2AP targeting siRNA at concentrations 

at 50 nM and below, targeting siRNAs were transfected alone and BIN1 and 

CD2AP expression investigated via Western blotting. 50, 25 and 12.5 nM of 

BIN1 targeting siRNA consistently produced good depletion of BIN1, with 

expression levels ranging from 2-12% of normal expression. However, BIN1 

targeting siRNA appeared to have a concentration dependent effect on 

CD2AP expression, with the higher the BIN1 siRNA concentration the greater 

CD2AP expression. Due to the variability of the data, a one sampled t test 

determined this change in CD2AP expression was not significantly different to 

the NTC (50nM p=0.194, 25nM p=0.246, 12.5nM p=0.131). Despite not being 

significant, because of this observation, 50 nM concentrations of BIN1 siRNA 

were avoided in future investigations to minimise any off target effects.  

 

siRNA targeting CD2AP showed almost complete depletion of CD2AP 

expression at all concentrations. A one-sampled t-test indicated CD2AP siRNA 

reduced BIN1 expression at a concentration of 50 nM and 12.5 nM (p=0.016 

and p=0.002 respectively (figure 3.3). These concentrations were therefore 

avoided in further investigations in order to avoid any off target effects.  
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Figure 3.3.!The effect of single targeting siRNAs on BIN1 and CD2AP expression. A) 

Protein expression was quantified via Western Blotting. Data is expressed as a percentage of 

normal protein expression. N=3. BIN1 siRNA appears to effect CD2AP expression is a 

concentration dependent manner, whilst reducing BIN1 expression to 2-12% of normal 

expression. A one-sampled t-test revealed CD2AP siRNA significantly reduces BIN1 expression 

at concentrations 50nM and 12.5nM. 25nM CD2AP targeting siRNA does not effect BIN1 

expression. Complete CD2AP depletion was observed at all CD2AP siRNA concentrations. 

Error bars indicate SEM. B) Representative Westerns demonstrating results described in A. ** 

p≤0.01 ***p≤0.001.  
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3.3.1.4 Effect of combined BIN1 and CD2AP targeting siRNA on BIN1 and 

CD2AP expression 

 

BIN1 and CD2AP siRNAs were transfected in combination in order to 

simultaneously deplete these two proteins. The effect of the combined BIN1 

and CD2AP targeting siRNA on protein expression was quantified via Western 

Blotting. As a total siRNA concentration greater than 50 nM had a variable 

affect on CD2AP expression, combinations of BIN1 siRNA and CD2AP siRNA 

that totaled 50 nM or less were investigated.  

 

This showed that a depletion of BIN1 of 10.9-35.4% of normal expression 

levels was achieved in all conditions. BIN1 siRNA appears to reduce all protein 

isoforms, except at 12.5nM BIN1 siRNA concentration where the depletion of 

each isoform is more variable. The greatest BIN1 depletion was observed with 

the 25 nM BIN1 and 25 nM CD2AP targeting siRNA transfection conditions. 

 

In all siRNA transfection conditions, almost complete depletion of CD2AP was 

observed. This suggests that the potential concentration dependent effect of 

BIN1 siRNA on CD2AP expression is countered by using CD2AP targeting 

siRNA (figure 3.4). 
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Figure 3.4 The effect of targeting siRNAs on BIN1 and CD2AP expression. A) Protein 

expression was quantified via Western Blotting. Protein expression was normalised to a non-

transfected control and data is expressed as a percentage of normal protein expression. N=3. 

Optimal BIN1 depletion was achieved when using 25nM BIN1 siRNA and 25nM CD2AP siRNA.  

This condition achieved 11% of the normal BIN1 expression and 0% of normal CD2AP 

expression. All conditions resulted in apparent complete depletion of CD2AP. Error bars 

indicate SEM. B) Representative Westerns demonstrating results described in A.  
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3.3.1.5 Optimised siRNA conditions 

 

A concentration of NT siRNA greater than 50 nM appeared to have a variable 

affect on CD2AP protein levels (figure 3.2). Therefore the transfection 

conditions used for further work did not exceed a total siRNA concentration of 

50 nM. As CD2AP siRNA at concentrations of 50 and 12.5 nM significantly 

reduced BIN1 expression (figure 3.3), these concentrations were avoided and 

25 nM of CD2AP siRNA was used in further experiments.  

 

25 nM BIN1 and 25 nM of CD2AP siRNA in combination produced the greatest 

depletion of BIN1 and CD2AP expression, reducing protein levels to 10.9% 

and 0% or normal protein expression levels respectively (figure 3.4). Therefore 

this transfection condition was selected as it produced the greatest BIN1 and 

CD2AP depletion and did not exceed 50 nM.  

 

However, as BIN1 siRNA appeared to increase CD2AP expression in a 

concentration dependent manner (figure 3.3), a combination of 12.5 nM BIN1 

and 25 nM CD2AP targeting siRNA was also used in an attempt to address any 

BIN1 siRNA concentration effect on CD2AP or any other affect not measured in 

this investigation.  

 

BIN1 targeting siRNAs and CD2AP targeting siRNAs were transfected alone at 

the same concentrations used in the co-transfection to determine the effect of 

single protein knockdown at these concentrations. All siRNAs were transfected 

with NT siRNA to make up the final concentration of transfected siRNA to 50 

nM to ensure every experiment is transfected with the same amount of siRNA. 

50 nM of NT siRNA was used as a control. The transfection conditions used in 

the following experiments are summarised in table 3.6. 
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Table 3.6. Summary of the siRNA transfection conditions used to investigate the effect of 

BIN1 and CD2AP depletion in functional assays. 

Transfection 

Condition 

Concentration 

of BIN1 

targeting siRNA 

(nM/well) 

Concentration 

of BIN1 

targeting siRNA 

(nM/well) 

Concentration 

of BIN1 

targeting siRNA 

(nM/well) 

Depletion of 

BIN1 and 

CD2AP 

25 25 0 

Depletion of 

BIN1 and 

CD2AP 

12.5 25 12.5 

Depletion of 

BIN1 

25 0 25 

Depletion of 

BIN1 

12.5 0 37.5 

Depletion of 

CD2AP 

0 25 25 

NT siRNA 

control 

0 0 50 

 

3.3.1.6 Confirmation of BIN1 and CD2AP depletion 

 

BIN1 and CD2AP depletion was confirmed prior to use in functional 

experiments. This was confirmed via western blotting and BIN1 and CD2AP 

depletion was quantified. When both BIN1 and CD2AP were targeted by 

siRNA (25 nM, 25 nM respectively) BIN1 expression was reduced by an average 

of 92.7% and CD2AP expression was reduced by and average of 98.8%. When 

both BIN1 and CD2AP were targeted by siRNA (12.5 nM, 25 nM respectively) 
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BIN1 expression was reduced by an average of 71.9% and CD2AP expression 

was reduced by and average of 96.8%. When BIN1 was targeted alone using 

25 nM siRNA, BIN1 expression was reduced by an average of 73.4%, and when 

using 12.5 nM siRNA, BIN1 expression was reduced by an average of 68.6%. 

When targeting CD2AP alone with 25 nM of siRNA, CD2AP expression was 

reduced by an average of 87.6%. This data is shown in figure 3.5 and these 

depletion levels are assumed for the following experiments.  

 

Figure 3.5 Levels of BIN1 and CD2AP in siRNA transfected cells used in downstream 

functional experiments. Protein expression was quantified via Western Blotting. Protein 

expression was normalised to a non-transfected control and data is expressed as a percentage 

on normal protein expression. This level of protein expression was assumed in the downstream 

functional assays. N=4. Error bars indicate SEM. 
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processing pathway. APP, β-CTF, Aβ40, sAPPα, sAPPβ and BACE1 were 

quantified in the optimised depletion models via ELISA. 

3.3.2.1 BIN1 and CD2AP depletion had no effect on APP levels 

 

Intracellular APP levels were quantified via ELISA in cellular lysates following 

siRNA transfection. APP levels were normalised to a NTC (treated only with 

media) and expressed as a percentage of this normal intracellular APP 

expression. A Levene’s test revealed equal variances between each group 

(p=0.955). An ANOVA showed no transfection condition affected intracellular 

APP levels (p=0.913). This result indicated that the control siRNA did not have 

an effect on intracellular APP levels. Furthermore, reducing BIN1 and CD2AP 

levels had no significant effect on APP levels. This result was also demonstrated 

via Western Blotting (figure 3.6). Three bands were detected when probing for 

APP and with weights of approximately 122, 104 and 96 kDa. The contents of 

these bands have not been determined but most likely contain the three 

isoforms of APP. One isoform is predominantly expressed in neurons is 695 

amino acids in length (404). The other two isoforms at 751 and 770 amino 

acids in length and are ubiquitously expressed (405). These bands also likely 

contain glycosylated APP and unglycosylated APP and products of APP 

processing [discussed in Chapter 1.4]. BIN1 and CD2AP depletion did not 

appear to affect the APP isoforms differently.  
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Figure 3.6 The effect of BIN1 and CD2AP depletion of APP levels. A) Protein expression 

was quantified via ELISA. Protein expression was normalised to a non-transfected control and 

data is expressed as a percentage of control protein expression. N=5. BIN1 and CD2AP 

depletion was confirmed in lysates via Western Blotting. An ANOVA revealed no significant 

changes in APP expression were observed (p=0.913). B) Protein expression was quantified via 

Western blotting. Protein expression was normalised to a non-transfected control and data is 

expressed as a percentage of normal protein expression. N=3. Error bars indicate SEM. C) 

Representative Western demonstrating results described in B.!

!

3.3.2.2 BIN1 and CD2AP depletion have opposing effects on β-CTF levels 

 

β-CTF, a metabolite produced during the amyloidogenic processing of APP, 

was quantified in the cellular lysates produced following siRNA transfection. 

Data were expressed as a percentage change from normal β-CTF expression. A 

Levene’s test revealed equal variances between the test groups (p=0.710). 

BIN1 and CD2AP depletion significantly affected β-CTF levels as detected by 

ANOVA (p≤0.001).  

 

Using 12.5 nM siRNA to deplete BIN1 did not effect β-CTF levels when 

compared to the NT siRNA control (p=0.432), however a Tukey’s HSD test 

showed a significant 30.6% increase in β-CTF levels when using 25 nM siRNA 

to deplete BIN1 expression when compared to the NT siRNA condition, 

suggesting an increase in β-secretase cleavage by of APP (p=0.029). 

Discrepancies in β-CTF levels between the two conditions used to deplete 

BIN1 may be a result of discrepancies in BIN1 depletion.  

 

A significant 37.4% reduction in β-CTF levels was observed when using 25 nM 

siRNA to deplete CD2AP expression was compared to the NT siRNA control, 

suggesting a decrease in β-secretase cleavage by of APP (p=0.005).  
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Neither co-depletion condition had a significant effect of β-CTF levels when 

compared to NT siRNA conditions (p= 0.092 and p=0.177) or the CD2AP only 

depleted cells (p=794 and p=9.595. No significant difference in β-CTF levels 

was observed between the two BIN1 and CD2AP siRNA co-depletion 

conditions (p=0.999).  

 

However, there was a significant difference in β-CTF levels between the two 

BIN1 and CD2AP depleted conditions and the two BIN1 only depleted 

conditions. 12.5 nM of BIN1 siRNA alone showed a significant increase when 

compared to both BIN1 and CD2AP depletion conditions (p=0.001 and 

p=0.003). 25 nM of BIN1 siRNA alone showed a significant increase when 

compared to both BIN1 and CD2AP depletion condition (p≤0.001 and 

p≤0.001). Data is shown in figure 3.7 
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Figure 3.7. The effects of BIN1 and CD2AP depletion on β-CTF levels.  β-CTF expression 

was quantified via ELISA. Protein expression was normalised to a non-transfected control and 

data are expressed as a percentage of control protein expression. N=5. BIN1 and CD2AP 

depletion was confirmed in lysates via Western Blotting. An ANOVA revealed significant 

changes in β-CTF levels were observed. When compared to the NT siRNA, Tukey’s HSD test 

revealed 25nM BIN1 targeting siRNA significantly increased β-CTF levels (p=0.029) whereas 

25nM CD2AP targeting siRNA significantly reduced β-CTF levels (p=0.005). All other 

conditions did not significantly affect β-CTF levels in comparison to cell treated with the NT 

siRNA. * p≤0.05 ** p≤0.01 ***p≤0.001. Error bars indicate SEM. 
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Extracellular Aβ40 levels were quantified in the cell growth medium following 
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between the test groups, suggesting BIN1 and CD2AP depletion significantly 

affects extracellular Aβ40 levels (p=0.03). A Tukey’s HSD revealed no 

significant differences. However, a Dunnett’s t-test was performed to compare 

all groups to the NT siRNA control and this revealed a significant 43% 

reduction in Aβ40 levels in the CD2AP depleted cells (p=0.023), suggesting a 

reduction in γ-secretase cleavage of APP. 

 

Neither BIN1 siRNA only conditions significantly affected Aβ40 levels (p=1 and 

p=0.813) and neither co-transfection condition significantly affected Aβ40 

levels (p=0.085 and 0.319). Data is shown in figure 3.8.  
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Figure 3.8. The effects of BIN1 and CD2AP depletion on extracellular Aβ40 levels.  Aβ40 

levels were quantified via ELISA. Data were expressed as a percentage of control Aβ40 levels. 

N=4. BIN1 and CD2AP depletion was confirmed in protein lysates. An ANOVA revealed that 

BIN1 and CD2AP depletion significantly effected Aβ40 levels (p=0.03). A Tukey’s HSD test 

revealed no significant differences, but a Dunnett’s t-test showed a significant reduction in 

Aβ40 levels in the CD2AP only depleted cells when compared to the NT control (p=0.023). * 

p≤0.05. Error bars indicate SEM. 
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3.3.2.4 BIN1 and CD2AP depletion has no effect of sAPPα levels 

 

Extracellular sAPPα levels were quantified in the growth medium of cells 

following siRNA transfection. A Levene’s test revealed no significant 

differences in the variances between the test groups (p=0.817). An ANOVA 

revealed there were no significant differences in sAPPα levels between the 

siRNA transfected cells (p=0.194). Data are shown in figure 3.9.  

 

 

 

Figure 3.9. The effects of BIN1 and CD2AP depletion on sAPPα levels. sAPPα levels 

were quantified via ELISA. Protein levels were normalised to a non-transfected control and 

data are expressed as a percentage of control sAPPα levels. N=5. BIN1 and CD2AP 

depletion was confirmed in protein lysates via Western Blotting. An ANOVA revealed no 

significant changes in sAPPα levels were observed (p=0.194). Error bars indicate SEM. 
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3.3.2.5 BIN1 and CD2AP depletion do not affect sAPPβ levels 

 

Extracellular sAPPβ levels were quantified in the growth medium of cells 

following siRNA transfection. A Levene’s test revealed no significant 

differences in the variances between the test groups (p=0.338). An ANOVA 

revealed there were no significant differences in sAPPβ levels between the 

siRNA transfected cells (p=0.716).  Data is shown in figure 3.10.  

 

 

Figure 3.10.!The effects of BIN1 and CD2AP depletion on sAPPβ levels. sAPPβ levels 

were quantified via ELISA. Protein levels were normalised to a non-transfected control. 

Data is expressed as a percentage of control sAPPβ levels. N=5. BIN1 and CD2AP 

depletion was confirmed in protein lysates via Western Blotting. An ANOVA revealed no 

significant changes in sAPPβ levels were observed (p=0.716). Error bars indicate SEM. 
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3.3.2.6 BIN1 and CD2AP depletion has no effect on sAPPβ:sAPPα ratio 

 

Since no differences were observed in the absolute levels of either sAPPα or 

sAPPβ, extracellular sAPPα and sAPPβ levels were expressed as a ratio to 

determine whether there is any change in sAPP production relative to each 

other. A Levene’s test showed there was no significant differences in variance 

between test groups (p=0.131). A one-way ANOVA revealed no significant 

changes in sAPPβ:sAPPα between any of the siRNA conditions (p=0.393). Data 

is shown in figure 3.11.  

Figure 3.11.  The effects of BIN1 and CD2AP depletion on sAPPβ:sAPPα ratio. sAPPα and 

sAPPβ levels were quantified via ELISA. Ratios were normalised to a non-transfected control and 

the data is expressed as a percentage of the control sAPPβ:sAPPα ratio. N=5. Protein depletion 

was confirmed in protein lysates via Western Blotting. An ANOVA revealed no significant changes 

in sAPPβ:sAPPα ratio were observed (p=0.393). Error bars indicate SEM. 
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3.3.2.7 CD2AP depletion reduces BACE1 levels 

 

Due to no significant differences in APP processing being observed between 

the two BIN1 and CD2AP siRNA co-transfection conditions, only the 25 nM 

BIN1 and 25 nM CD2AP targeting siRNA condition was used when 

investigating BACE1 levels. A Levene’s test showed significant differences in 

variance between the test groups (p=0.021). The data was then log 

transformed which created equal variances (p=0.082).   

 

An ANOVA was performed which revealed a significant difference in BACE1 

levels between the test groups (p≤0.001). BACE1 levels in BIN1 only depleted 

cells were not affected in comparison to NT siRNA control levels (p=0.808), but 

were significantly increased in comparison to the BIN1 and CD2AP depleted in 

combination and the CD2AP only depleted cells (p≤0.001 and p=0.005, 

respectively). CD2AP only depleted cells had significantly decreased levels of 

BACE1 in comparison to both BIN1 depleted cells and the NT siRNA control 

(p=0.005 and p=0.032). 

 

However, BIN1 and CD2AP depletion resulted in a significant 83.1% reduction 

in BACE1 levels from control levels when compared to the NT siRNA control 

(p≤0.001) and BACE1 levels were significantly reduced when compared to 

BIN1 only depleted cells (p≤0.001). Furthermore, there was no significant 

difference between BIN1 and CD2AP depleted cells and CD2AP only depleted 

cells (adjusted p=0.156).  This data is shown in figure 3.12.  
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Figure 3.12. The effects of BIN1 and CD2AP depletion on BACE1 levels. BACE1 levels 

were quantified via ELISA. Protein levels were normalised to a non-transfected control. Data 

are expressed as a percentage of the normal BACE1 levels. N=5. BIN1 and CD2AP depletion 

was confirmed in protein lysates via Western Blotting. Significant differences were detected 

between the BIN1 and CD2AP depleted cells and the BIN1 depleted cells and the NT control. 

CD2AP only depleted cells were significantly different to the BIN1 only depleted cells and the 

NT control. No difference between the NT control and BIN1 only depleted cells were 

observed. * p≤0.05 ** p≤0.01 *** p≤0.001. Error bars indicate SEM. 
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Table 3.7. Summary of BIN1 and CD2AP depletion of APP processing related proteins. 

Protein BIN1 

depletion  

CD2AP 

depletion 

BIN1 and CD2AP 

depletion 

APP No effect No effect No effect 

β-CTF Increase Decrease No effect 

Aβ40 No effect Decrease No effect 

sAPPα No effect No effect No effect 

sAPPβ No effect No effect No effect 

sAPPβ:sAPPα No effect No effect No effect 

BACE1 No effect Decrease Decrease 
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3.3.3 Quantifying cellular uptake 

3.3.3.1 Experimental conditions used to investigate cellular uptake. 

 

In the previous experiments, BIN1 and CD2AP depletion together was 

achieved using two different combination of targeting siRNA, 25 nM BIN1 + 25 

nM CD2AP targeting siRNA and 12.5 nM BIN1 + 25 nM CD2AP. This was done 

to avoid a potential off-target effect on the BIN1 siRNA on CD2AP expression 

observed during optimisation (figure 3.3). As no differences in APP or APP 

metabolites levels were detected between the two BIN1 and CD2AP depletion 

conditions, and for practicality reasons, only one co-depletion model was used 

in the following experiments. The siRNA conditions used in the following 

experiments, which focuses on investigating cellular uptake, are described in 

table 3.8. 

 

Table 3.8. siRNA conditions used in the investigation of cellular uptake 

Transfection 

Condition 

Concentration 

of BIN1 

targeting siRNA 

(nM/well) 

Concentration 

of BIN1 

targeting siRNA 

(nM/well) 

Concentration 

of BIN1 

targeting siRNA 

(nM/well) 

Depletion of 

BIN1 and 

CD2AP 

25 25 0 

Depletion of 

BIN1 

25 0 25 

Depletion of 

CD2AP 

0 25 25 

NT siRNA 

control 

0 0 50 
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3.3.3.2 CD2AP depletion increase CME 

 

Transferrin is a common marker for functional CME and therefore Tf-488 

uptake was quantified over time in each of the cellular depletion models and 

the geometric mean fluorescent intensity plotted (figure 3.13). Differences in 

Tf-488 levels were analysed by ANOVA then Tukey’s HSD.  

 

Figure 3.13. The uptake of Tf-488 over time by BIN1 and CD2AP depletion models. The 

geometric mean of fluorescent intensity is plotted against time to track the uptake of tf-488 

over time. N=4. Error bars indicate SEM. Data was statistically analysed by an ANOVA then a 

Tukey’s HSD. At 0 minutes, no statistical differences in Tf-488 levels were detected (p=0.693).  

At 5 minutes, there was no significant difference between NT and BIN1 depletion (p=0.884). A 

significant difference between NT and BIN1 and CD2AP co-depletion (p=0.021) and CD2AP 

only depleted cells (p=0.032). At 15 minutes, there was no significant difference between NT 

and BIN1 depletion (p=0.909), but there was a significant difference between NT and BIN1 

and CD2AP co-depletion (p=0.001) and between NT and CD2AP only depleted cells 

(p=0.005). At 30 minutes, there was no significant difference between NT and BIN1 depletion 

(p=0.829), but there was significant difference between NT and BIN1 and CD2AP co-depletion 

(p=0.001) and between NT and CD2AP only depleted cells (p=0.005).  
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After 0 minutes of Tf-488 exposure, a Levene’s test revealed no differences in 

variance between any of the siRNA conditions (p=0.916). An ANOVA revealed 

no changes in Tf-488 levels (p=0.693). This indicates that all conditions began 

with the same background level of Tf-488.  

 

After 5 minutes of Tf-488 exposure, a Levene’s test showed equal variances 

between the siRNA conditions (p=0.326). An ANOVA revealed a significant 

change in Tf-488 levels between the siRNA conditions (p=0.009). BIN1 

depleted cells showed no differences in Tf-488 levels when compared to the 

NT siRNA control (p=0.884) but the CD2AP depleted cells showed at 2.03 fold 

increase in Tf-488 uptake when compared to the NT siRNA control (p=0.032).  

There was no significant difference between BIN1 only and CD2AP only 

depleted cells (p=0.110). BIN1 and CD2AP depleted cells showed a significant 

2.1 fold increase in Tf-488 uptake when compared to the NT siRNA control 

(p=0.021), but showed no difference to CD2AP only depleted cells (p=0.996) 

or BIN1 only depleted cells (p=0.076).  

 

After 15 minutes of Tf-488 exposure, a Levene’s test showed equal variances 

between the siRNA conditions (p=0.483). An ANOVA revealed a significant 

change in Tf-488 levels between the siRNA conditions (p≤0.001). BIN1 

depleted cells showed no differences in Tf-488 levels when compared to the 

NT siRNA control (p=0.909). However CD2AP depleted cells showed at 1.72 

fold increase in Tf-488 levels when compared to the NT siRNA control 

(p=0.005) and CD2AP only depleted cells had a significant 1.55 fold increase 

when compared to BIN1 only depleted cells (p=0.015). The BIN1 and CD2AP 

depleted cells showed a significant 1.92 fold increase in Tf-488 uptake when 

compared to the NT siRNA control (p=0.001). The BIN1 and CD2AP depleted 

cells showed no difference to CD2AP only depleted cells (p=0.63), but showed 
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a significant 1.73 fold increase when compared to BIN1 only depleted cells 

(p=0.002).  

 

After 30 minutes of Tf-488 exposure, a Levene’s test showed equal variances 

between the siRNA conditions (p=0.116). An ANOVA revealed a significant 

change in Tf-488 levels between the siRNA conditions (p≤0.001). BIN1 

depleted cells showed no differences when compared to the NT siRNA control 

(p=0.829). However, CD2AP depleted cells showed at 1.76 fold increase in 

Tf-488 uptake when compared to the NT siRNA control (p=0.005) and CD2AP 

only depleted cells had a significant 1.53 fold increase when compared to BIN1 

only depleted cell (p=0.021). BIN1 and CD2AP depleted cells showed a 

significant 1.92 fold increase in Tf-488 uptake when compared to the NT siRNA 

control (p=0.001). The BIN1 and CD2AP depleted cells showed no difference 

to CD2AP only depleted cells (p=0.794), but showed a significant 1.67 fold 

increase compared to BIN1 only depleted cells (p=0.004). Data is shown in 

figure 3.13.  

 

3.3.3.3 BIN1 and CD2AP depletion has no effect on fluid phase uptake 

Dextran uptake is used as a fluid phase endocytosis marker, which is a 

non-specific process involving the uptake of extracellular fluid (406). 

Dextran-647 uptake was quantified in the depletion models over time and the 

geometric mean fluorescent intensity plotted (figure 3.14). This was an attempt 

to determine if CME is exclusively affected by BIN1 and CD2AP depletion and 

the changes in Tf-488 levels observed were not due to a change in continuous 

non-specific uptake. Differences in Dextran-647 levels were analysed by 

ANOVA. 
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Figure 3.14. The uptake of Dextran-647 over time in depletion models. The geometric 

mean of fluorescent intensity is plotted against time to track the uptake of Dextran-647 over 

time. N=4. Error bars indicate SEM. ANOVA analysis revealed no significant changes in 

Dextran-647 uptake between all transfection conditions at all time points.  

 

After 0 minute exposure to Dextran-647, a Levene’s test showed equal 

variances between the siRNA conditions (p=0.28). An ANOVA revealed no 

significant changes in Dextran-647 uptake between the siRNA conditions 

(p=0.75).  After 5 minutes exposure to Dextran-647, a Levene’s test showed 

equal variances between the siRNA conditions (p=0.255). An ANOVA revealed 

no significant changes in Dextran-647 uptake between the siRNA conditions 

(p=0.121). After 15 minutes exposure to Dextran-647, a Levene’s test showed 

equal variances between the siRNA conditions (p=0.575). An ANOVA revealed 

no significant changes in Dextran-647 uptake between the siRNA conditions 

(p=0.064). After 30 minutes exposure to Dextran-647, a Levene’s test showed 

equal variances between the siRNA conditions (p=0.635). An ANOVA revealed 

no significant changes in Dextran-647 uptake between the siRNA conditions 

(p=0.166).  
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3.3.4 Visualising Tf-488 uptake via CME in BIN1 and CD2AP 
depleted cells 

3.3.4.1 CD2AP depletion increases uptake of Tf-488 after 30 minutes 

 

BIN1 and CD2AP depleted cells and NT siRNA control cells were exposed to 

Tf-488 for either 5 minutes, 30 minutes or on ice for 5 minutes. CME should be 

inhibited when cells are on ice therefore no Tf-488 uptake should occur. The 

transfected cells were then stained with DAPI and imaged at 40x magnification. 

All cells were imaged at the same exposure in order to image Tf-488 uptake 

over time.  

 

When the BIN1 and CD2AP depleted cells and NT siRNA control cells were 

incubated on ice and exposed to Tf-488 for 5 minutes, no Tf-488 uptake was 

observed. This is consistent with CME inhibition and therefore no uptake 

occurring. Representative images are shown in figure 3.15.  

 

BIN1 and CD2AP depleted cells and NT siRNA controls were exposed to 

Tf-488 at 37°C, where CME is not inhibited. After 5 minutes of Tf-488 exposure 

at 37°C, trace levels of Tf-488 can be observed in the BIN1 and CD2AP 

depleted cells (indicated by arrow in figure 3.16 A). This is consistent with the 

FACS results, which described an increase Tf-488 levels after 5-minute 

exposure (Figure 3.13). Tf-488 could not be detected in any other transfection 

condition. Images are shown in figure 3.16.  
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 Figure 3.15. Tf-488 uptake in cells incubated on ice for 5 minutes. A) BIN1 and CD2AP 

depleted cells. B) BIN1 depleted cells. C) CD2AP depleted cells. D) NT control cells. In all 

conditions no Tf-488 can be detected.  N=3. BIN1 and CD2AP depletion was confirmed via 

Western blotting. Left column shows Tf-488 only. Right column shows Tf-488 and DAPI.  
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Figure 3.16. Tf-488 localisation after 5-minute exposure. A) BIN1 and CD2AP depleted cells. B) 

BIN1 depleted cells. C) CD2AP depleted cells. D) NT control cells. N=3. BIN1 and CD2AP depletion 

was confirmed via Western blotting. A trace amount of Tf-488 is detected in BIN1 and CD2AP 

depleted cells (indicated by arrow). No Tf-488 is detected in other cell populations. Left column shows 

Tf-488 only. Right column shows Tf-488 and DAPI. 
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After 30 minutes of Tf-488 exposure at 37°C, Tf-488 is visible in BIN1 and 

CD2AP depleted cells and the NT siRNA control. In the NT siRNA control, 

there appears to be diffuse detection of Tf-488 in the perinuclear region (figure 

3.17 D). This diffuse localisation made it difficult to focus on during imaging. In 

contrast, the BIN1 depleted cells Tf-488 appears more punctate but again, 

located in the perinuclear region (figure 3.17 B). CD2AP depleted cells appear 

to also have punctate perinuclear localisation of Tf-488, in contrast to the NT 

siRNA control, and Tf-488 appears to be present in a slightly greater quantity 

than in the BIN1 depleted and NT siRNA control cells (figure 3.17 C).  

 

BIN1 and CD2AP depleted cells appear to have more punctate Tf-488 

localisation in comparison to the NT control. Tf-488 again appears to be 

located in the perinuclear region and appears to be present in slightly greater 

quantities than in the NT siRNA control or the BIN1 only depleted cells (figure 

3.17 A). All images taken after 30 minutes are shown in figure 3.17.  

 

The increase in Tf-488 uptake observed in the BIN1 and CD2AP depleted cells 

and the CD2AP only depleted cells in comparison to the BIN1 only depleted 

cells and NT siRNA control, is consistent with the FACS data at 30 minutes 

shown in figure 3.13.  
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Figure 3.13. Tf-488 localisation after 30 minutes of exposure. A) BIN1 and CD2AP depleted 

cells. B) BIN1 depleted cells. C) CD2AP depleted cells. D) NT control cells. N=3. BIN1 and CD2AP 

depletion was confirmed via Western blotting. Diffuse perinuclear localisation of Tf-488 was 

detected in the NT control. Arrows indicate areas with increased punctate staining. Increased 

levels of Tf-488 are observed in A and C in comparison to B and D. Left column shows Tf-488 only. 

Right column shows Tf-488 and DAPI. 
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3.3.4.2 Tf-488 is localised to the early endosome after 5 minutes 

 

All transfected cells were exposed to Tf-488 for 5 minutes. Cells were then 

probed with EEA1, an early endosome marker, and then stained with DAPI.  

Cells were imaged at 40x magnification and at optimal exposure for imaging 

Tf-488 after 5 minutes, which was consistent between biological replicates.  

 

Tf-488 and EEA1 appears punctate and located in the perinuclear region. All 

conditions show some level of co-localisation between Tf-488 and EEA1, 

however complete localisation in not observed. This suggests some Tf-488 is 

located in the early endosome. EEA1 and Tf-488 co-localisation was quantified 

and a PCC value was generated. A Levene’s test revealed equal variances 

between transfected populations (p=0.348). A one-way ANOVA revealed there 

were no significant differences in co-localisation between any of the 

transfected cell populations (p=0.648). Representative images are shown in 

figure 3.18.  
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Figure 3.18. Tf-488 and EEA1 localisation after 5 minute exposure to Tf-488. A) BIN1 

and CD2AP depleted cells. B) BIN1 depleted cells. C) CD2AP depleted cells. D) NT control 

cells. N=3. BIN1 and CD2AP depletion was confirmed via Western blotting. Left column 

shows Tf-488 only. Centre column shows EEA1 staining only. Right column shows Tf-488, 

EEA1 staining and DAPI. The right column shows some co-localisation between Tf-488 and 

EEA1 (indicated by arrows) suggesting Tf-488 is trafficked to the early endosome.  
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3.3.4.3 Tf-488 is localised to the lysosome after 30 minutes 

 

All transfected cells were exposed to Tf-488 for 30 minutes. Cells were then 

probed with LAMP2, a lysosomal marker, and then stained with DAPI. Cells 

were imaged at 40x magnification and at optimal exposure for imaging Tf-488 

after 30 minutes, which was consistent between biological replicates.  

 

Consistent with previous observations shown in figure 3.17, BIN1 and CD2AP 

depleted cells and CD2AP only depleted cells appear to have greater levels of 

Tf-488 than the BIN1 only depleted cells and NT control (figure 3.19). Tf-488 

appears punctate and in the perinuclear region in the BIN1 and CD2AP 

depleted cells, BIN1 only depleted cells and CD2AP only depleted cells. 

Punctate localisation of Tf-488 in the NT control is not clear, but remains in the 

perinuclear region.  

 

All conditions show some level of co-localisation between Tf-488 and LAMP2, 

indicating Tf-488 is being trafficked to the lysosome (indicated by arrows in 

figure 3.19). Co-localisation between TF-488 and LAMP2 was quantified 

generating a PCC value for each transfected condition. A Levene’s test 

revealed equal variances between the transfected conditions (p=0.105). A 

one-way ANOVA revealed significant differences between Tf-488/LAMP2 co-

localisation between the transfected conditions (p=0.029). A Tukey HSD test 

revealed there was increased co-localisation in CD2AP depleted cells in 

comparison to BIN1 depleted cells (p=0.027). This could be explained by 

increased internalisation of Tf-488, resulting in an increased levels being 

trafficking to the lysosome. No other conditions showed any significant 

differences. Representative images are shown in figure 3.19.  
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Figure 3.19. Tf-488 and LAMP2 localisation after 30 minute exposure to Tf-488. A) BIN1 and 

CD2AP depleted cells. B) BIN1 depleted cells. C) CD2AP depleted cells. D) NT control cells. N=3. 

BIN1 and CD2AP depletion was confirmed via Western blotting. Left column shows Tf-488 only. 

Centre column shows LAMP2 staining only. Right column shows Tf-488, LAMP2 staining and DAPI. 

The right column shows some co-localisation between Tf-488 and LAMP2 (indicated by arrows) 

suggesting Tf-488 is trafficked to the lysosome.  
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3.4 Discussion 

 

BIN1 depletion resulted in an increase in β-CTF levels, suggesting a potential 

increase in β-secretase activity. CD2AP depletion resulted in a decrease in 

β-CTF and extracellular Aβ40 levels, and an increase in CME. When BIN1 and 

CD2AP are both depleted, APP and APP metabolite levels remain unchanged, 

however a decrease in BACE1 levels and an increase in CME was observed.  

 

3.4.1 BIN1 depletion increases β-CTF levels 

 

BIN1 depletion increased β-CTF levels, suggesting a potential increase in 

amyloidogenic processing. BIN1 depletion did not alter intracellular APP levels, 

this could suggest BIN1 depletion had no effect on APP generation and this is 

not the cause of the observed changes in β-CTF levels. However, as APP 

mRNA levels were not investigated the effect of BIN1 depletion on APP 

generation cannot be confirmed, as observations could also suggest an 

increase in APP production and an increase in APP clearance.  

 

The increase in β-CTF levels in BIN1 depleted cells could indicate increased 

β-secretase cleavage. BIN1 depletion in mouse cortical neurons has been 

reported to increase β-cleavage and result in greater Aβ production and this 

coincided with increased cellular BACE1 levels (407). This increase in BACE1 

levels was thought to be due to increased uptake and impaired cellular 

trafficking to the lysosomal pathway, resulting in enlarged BACE1 containing 

early endosomes and reduced BACE1 degradation. Furthermore, BIN1 

depletion in primary cortical neurons increased intracellular Aβ in neuronal cell 

bodies, reduced BACE1 recycling back to the plasma membrane and increased 

BACE1 intracellular retention. BIN1 depletion also caused BACE1 
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accumulation in axonal early endosomes, the site where BACE1 and APP co-

localise (259). 

 

An apparent increase in BACE1 levels was observed here in BIN1 depleted 

cells, but this was not significant due to high variability. Although not 

significant, this data is tending towards being consistent with previous reports 

of increased BACE1 levels. The BACE1 levels measured were in the 

exponential region of the graph created by the protein standards provided, 

suggesting that lack of assay sensitivity is not the reason for the variability 

observed. An alternative explanation for the variation may be due to 

inconsistencies in BIN1 depletion. As BIN1 has been implicated in BACE1 

recycling, to determine the effect of BIN1 depletion on BACE1 trafficking, 

further assays could investigate how depletion of BIN1 can affect cellular 

recycling in the H4 cells and the localisation of BACE1.  

 

Extracellular Aβ40 levels remained unchanged in BIN1 depleted cells, 

suggesting no change in γ-secretase activity. No components of the 

γ-secretase complex were investigated in this study; therefore it cannot be 

determined whether levels of the γ-secretase complex have been altered.  

γ-secretase is located in multiple intracellular compartments (408). It is fairly 

well accepted that BACE1 is the rate-limiting factor in amyloidogenic 

processing, therefore one would expect an increase in β-CTF to result in an 

increase in Aβ40, should γ-secretase levels be unaltered. It in unknown why 

Aβ40 levels remain unchanged but this observation is consistent with another 

study, where PICALM, another AD associated gene with a critical function in 

endocytosis, was depleted in the H4 cell line (409). PICALM depletion resulted 

in an increase in β-CTF levels, but extracellular Aβ40 remained unchanged. 

Aβ40 levels observed in the H4 cell line were fairly low, so it could be possible 
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that the assay used to quantify Aβ40 was not sensitive enough to detect subtle 

variations.  

  

Studies in other cell types have reported changes in Aβ levels following BIN1 

depletion. An increase in extracellular Aβ40 and Aβ42 in BIN1 depleted mouse 

cortical neurons (407) and an increase in intracellular Aβ in BIN1 depleted 

neurons have been reported (259). As only extracellular Aβ40 was investigated, 

it could be that BIN1 depletion has an effect on Aβ secretion and a change in 

intracellular Aβ40 may have occurred. As BIN1 depletion has been reported to 

reduce BACE1 recycling to the plasma membrane (259), it could be possible 

that trafficking of other molecules to the plasma membrane is affected. BIN1 

depletion could result in defects in Aβ40 trafficking or secretion, therefore a 

change in Aβ40 levels may not be reflected in the extracellular levels.  

 

No significant changes in extracellular sAPPα, sAPPβ or the sAPPβ:sAPPα ratio 

were observed in BIN1 depleted cells. This observation contradicts the 

increase in β-CTF observed in this investigation, as sAPPβ is a product of 

β-secretase cleavage. Previous investigations have reported an increase in 

sAPPβ in BIN1 depleted neurons (407). As all extracellular metabolites were 

quantified in the culture medium, it could be that the dilution of these 

metabolites in the medium was so great that subtle changes could not be 

detected.  

 

In this investigation, Tf-488 levels have been used as a proxy for CME as it has 

been previously been shown that transferrin is endocytosed via CME. It is 

assumed that increase in Tf-488 uptake would also be applicable to APP, as 

this is endocytosed through CME, although APP uptake was not directly 

investigated. 
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BIN1 depletion did not affect Tf-488 or Dextran-647 intracellular levels, 

indicating no change in CME or fluid phase uptake. This contradicts studies 

that reported an increase in Tf-488 uptake in BIN1 depleted rat neurons. This 

effect was hypothesised to be due to BIN1 sequestering dynamin at nascent 

vesicle necks, preventing efficient CME (253). The entire CLAP domain in BIN1 

is critical for clathrin and AP2 interaction and CME and is only present in 

neuronal isoforms of BIN1 specifically expressed in the brain (233, 251). The 

presence of the neuronal isoform may differ in these cell types and could 

explain the differences in CME observed. Determining the BIN1 isoforms 

present in the H4s may help explain the effect of BIN1 depletion on CME. A 

reduction in BIN1 neuronal isoform 1 has been described in AD patients (255).  

 

As no change in CME was detected in BIN1 depleted cells, this suggests that 

CME is not responsible for the increase in β-CTF levels. An increase in APP 

uptake via CME would explain the increase in β-CTF levels, as it would result in 

more APP coming into contact with BACE1 within the endosomes. It is possible 

that although Tf-488 and Dextran-647 levels are generally used to measure 

CME and fluid phase endocytosis, Tf-488 uptake may not be reflective of APP 

uptake and BIN1 may affect APP uptake via a different specific mechanism. For 

example, if BIN1 depletion affected the cell surface levels of LRP, the endocytic 

receptor of APP (410), this could affect APP uptake specifically but not overall 

CME levels. 

 

BIN1 depletion may also affect additional intracellular pathways rather than 

CME. In neurons BIN1 functions in the intracellular trafficking of BACE1 and 

BIN1 depletion affects BACE1 recycling and degradation, but not cell surface 

levels or BACE1 endocytosis (259, 407). This is consistent with observations in 

this investigation as an apparent increase in cellular BACE1 levels was 

observed (although not significant) but no change in CME or fluid phase 
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uptake. In knockout BIN1 MEF cells, intracellular levels of transferrin were 

increased, but not due to increased internalisation (411) and BIN1 depleted 

HeLa cells showed impaired transferrin recycling rather than impaired uptake 

(249). Therefore, the changes in β-CTF and BACE1 levels observed in BIN1 

depleted H4 cells, could be due to changes in other cellular trafficking 

functions and not CME.  

 

BIN1 expression changes in AD remain unclear. Studies have reported a 

decrease in expression in total BIN1 expression and reduction in BIN1 neuronal 

isoform expression in AD brains (255, 256), which would be consistent with 

observations in this investigation as that BIN1 depletion may increase 

amyloidogenic processing of APP. However, there are multiple reports stating 

increases in BIN1 expression are associated with AD [further discussed in 

Chapter 1.7.5]. From the results of this investigation, a reduction in BIN1 

expression would increase an individual’s risk to AD. It is yet to be determined 

how AD associated variants within BIN1 affect expression levels, however rare 

deleterious coding mutations in BIN1 have been associated with AD in a 

Caribbean Hispanic population, suggesting loss of BIN1 function is a potential 

pathogenic mechanism (412).   

 

3.4.2 CD2AP depletion decreases β-CTF and extracellular Aβ40 

levels and increases CME 

 

CD2AP depletion resulted in reduced β-CTF levels and reduced extracellular 

Aβ40 levels. CD2AP depletion did not alter intracellular APP levels, but as 

previously discussed, APP mRNA levels were not investigated so any effect on 

APP generation or clearance remains unknown.  

 



  Chapter 3 

 136 

Previous investigations in mouse neuroblastoma cells used epifluorescence 

microscopy to measure APP levels and found that CD2AP depletion delayed 

APP degradation. Depletion of CD2AP led to accumulation of APP in dendritic 

early endosomes, which are enlarged consistent with cargo accumulation. It 

was suggested that the organisation of APP into intraluminal vesicles (ILV) 

during multivesicular bodies (MVB) formation is impaired when CD2AP is 

depleted, preventing lysosomal degradation (259). Although APP levels 

remained unchanged when CD2AP was depleted in the H4 cell line, further 

investigation into APP degradation was not carried out.  

 

CD2AP depletion resulted in a significant decrease in β-CTF levels, suggesting 

a decrease in β-secretase cleavage. BACE1 levels were reduced in CD2AP 

depleted cells, which would explain the apparent decrease in β-secretase 

activity observed. CD2AP depletion also resulted in a reduction in extracellular 

Aβ40. This is consistent with the reduction in β-CTF observed but could also 

suggests reduced γ-secretase activity. This is also consistent with previous 

findings which reported that CD2AP depletion in N2a mouse neuroblastoma 

cells decreased extracellular Aβ levels and Aβ40:42 ratio (280). 

 

Extracellular sAPPα and sAPPβ levels were not affected in CD2AP depleted 

cells and there was no change in the sAPPβ:sAPPα ratio. As a decrease in 

β-CTF was observed, it would be expected to see a corresponding reduction in 

sAPPβ levels. Due to the dilution of the sAPP fragments in the culture medium, 

it is most likely the assay was not sensitive enough to detect changes in sAPPα 

or sAPPβ levels. 

 

It has been previously hypothesised that CD2AP functions in ILV formation 

(259, 276). ILVs traffic cargo to the lysosome or it can be released into the 

extracellular space (221). If ILV formation is affected by CD2AP depletion, this 
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could impact on metabolite secretion via exosomes and explain why the sAPPβ 

levels to not reflect the β-CTF levels observed. To determine whether the 

extracellular metabolites reflect events within the cell, intracellular Aβ could be 

quantified. Discrepancies between intracellular and extracellular metabolites 

could be indicative of impaired secretion.   

 

After 5 minutes of exposure to Tf-488, CD2AP depleted cells showed a 

significant 2.03 fold increase in Tf-488 internalisation in comparison to the NT 

siRNA control. As no change in fluid phase endocytosis was detected after 5 

minutes, this suggests that CD2AP depletion specifically increases 

internalisation via CME, rather than non-selective uptake. Previous 

investigations have shown that increased internalisation of APP, increases 

amyloidogenic processing due to an increase in internalised APP being cleaved 

by β-secretase in the endosomes (392, 393). This is in contradiction to the 

observations in this investigation as a reduction in the products of 

amyloidogenic processing was observed when CD2AP is depleted, although 

this investigation only looked at global CME changes, not APP uptake 

specifically. At 15 minutes, a 1.72 fold increase in Tf-488 levels was observed in 

the CD2AP only depleted cells compared to the control, again suggesting 

increased internalisation.  

 

After 30 minutes, CD2AP depleted cells showed a significant 1.76 fold increase 

in Tf-488 levels in comparison with the NT siRNA control. It has been 

previously reported that CD2AP depletion reduces APP trafficking to the 

lysosome and therefore impairs degradation of APP (259). Therefore, at this 

time point the increase in Tf-488 levels could reflect impaired recycling or 

degradation in addition to an increased internalisation. CD2AP depletion has 

been previously implicated in impaired APP degradation and reduced numbers 

of MVB (275, 277). APP sorting into MVB is critical for its degradation, so it has 
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been hypothesised that impaired MVB formation in CD2AP depleted cells may 

cause impaired lysosomal degradation of APP (259). CD2AP depletion could 

therefore affect multiple cellular trafficking pathways in addition to 

internalisation that could impact on APP processing.  

 

There has been little investigation into CD2AP expression in AD and how 

common AD associated variants affect CD2AP expression remains unknown. 

Rare deleterious coding mutations have been identified in CD2AP to be 

associated with AD in Caucasian populations, suggesting loss of CD2AP 

function may be a mechanism which infers AD susceptibility (412). This would 

contradict some of the observations in CD2AP depleted cells in this 

investigation, which show a potential decrease in amyloidogenic processing of 

APP, but the underlying functional causes of the changes in APP processing 

observed remain unknown. 

 

3.4.3 BIN1 and CD2AP depletion in combination do not have an 

effect on APP processing but reduce BACE1 levels and increase 

CME 

 

BIN1 and CD2AP depletion in combination had minimal affect on APP 

processing. BIN1 and CD2AP depletion did not alter intracellular APP levels, 

however, as previously discussed mRNA levels were not investigated therefore 

it cannot be determined whether APP generation or degradation were 

affected.  

 

BIN1 and CD2AP depletion did not have a significant affect on β-CTF levels 

when compared to the NT siRNA control, however β-CTF levels were 

significantly reduced when compared to BIN1 only depleted cells, which 

showed an increase in β-CTF. There was no significant difference between the 
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BIN1 and CD2AP depleted cells and the CD2AP only depleted cells, which 

showed a significant reduction in β-CTF when compared to the control levels.  

 

A reduction in BACE1 levels was detected in BIN1 and CD2AP depleted cells 

compared to the NT siRNA control and BIN1 only depleted cells. There was no 

difference in BACE1 levels between BIN1 and CD2AP depleted in combination 

and CD2AP only depletion; it is therefore likely the loss of CD2AP is 

responsible for the reduction in BACE1. As β-CTF levels were not significantly 

reduced in the BIN1 and CD2AP depletion in combination cells, BIN1 

depletion may rescue this phenotype via a mechanism independent of BACE1 

levels.  

 

When BIN1 and CD2AP are depleted in combination, extracellular Aβ40 levels 

were not significantly different to the NT siRNA control, which is contrary to the 

results from the CD2AP only depleted cells, in which extracellular Aβ40 levels 

were significantly reduced. BIN1 only depleted cells showed no change in 

Aβ40 levels. It could be possible that BIN1 depletion may rescue or counter 

the affect of CD2AP depletion on Aβ40 levels.  

 

Extracellular sAPPα and sAPPβ were not significantly different to the NT siRNA 

control when BIN1 and CD2AP were depleted in combination. There was also 

no change observed in sAPPβ:sAPPα ratio. This was consistent with previous 

findings as no significant change in β-CTF levels were observed. As previously 

discussed, all extracellular metabolites were diluted in culture medium and the 

assays may not have been sensitive enough to detect a subtle changes in 

metabolites.   

 

 After 5 minutes of exposure to Tf-488, BIN1 and CD2AP depleted in 

combination resulted in a significant 2.1 fold increase in Tf-488 levels 
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compared to the NT siRNA control. At this early time point, this increase in 

Tf-488 levels is most likely due to an increase in internalisation via CME. At 15 

minutes a 1.92 fold increase in Tf-488 levels is observed in the BIN1 and 

CD2AP depleted cells compared to the NT siRNA control, which again is 

probably due to increased internalisation. BIN1 and CD2AP depletion caused a 

significant 1.92 fold increase in Tf-488 after 30 minutes when compared to the 

NT siRNA control. However, at this time point the increase in Tf-488 could be 

due to increased internalisation and or potential defects in recycling or 

degradation. As BIN1 and CD2AP depletion in combination and CD2AP only 

depletion were not significantly different to each other at any time points, this 

suggests CD2AP depletion is likely to be responsible for the changes in CME.  

 

As β-CTF and Aβ40 are significantly reduced in CD2AP only depleted cells, but 

not in BIN1 and CD2AP depleted in combination cells, this could suggest that 

BIN1 depletion rescues this phenotype. As CME is increased and there is no 

significant difference between the two depletion conditions, this suggests that 

if BIN1 depletion is rescuing β-CTF and Aβ40 levels, it is not via CME. In BIN1 

and CD2AP depleted cells, BACE1 levels are significantly reduced compared 

to the BIN1 only depleted cells, indicating BIN1 depletion is not rescuing this 

phenotype by increasing BACE1 levels. BIN1 depletion could impact other 

cellular processes that either increase uptake of APP specifically or affect APP 

processing via mechanisms other than β-secretase activity. 

 

3.4.4 Tf-488 is trafficked through the endosomal- lysosomal system 

 

When cells were imaged for Tf-488 uptake after 30 minutes of exposure, as 

reflected in the FACS results, BIN1 and CD2AP depleted cells and CD2AP only 

depleted cells showed greater levels of Tf-488 located in the perinuclear area. 

BIN1 depleted cells show Tf-488 located in the perinuclear area but at lower 
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levels and NT siRNA control cells show Tf-488 diffused throughout the 

cytoplasm.  

 

When investigating the localisation of transferrin following uptake, after five 

minutes of exposure there is some co-localisation of Tf-488 with EEA1, an early 

endosomal marker. Following uptake, cargo will be transported into EEA1 

positive early endosomes, so these images are consistent with Tf-488 

internalisation. No obvious change in Tf-488 co-localisation can be detected 

between BIN1 and CD2AP depletion, BIN1 only depletion, CD2AP only 

depletion and NT siRNA control. 

 

After thirty minutes of Tf-488 exposure, some Tf-488 is co-localised with 

LAMP2, a lysosomal marker. In BIN1 and CD2AP depleted cells and CD2AP 

only depleted cells more Tf-488 was localised outside the lysosome when 

compared to the BIN1 only depleted cells and the NT control. This could be 

due to an increase in internalisation, as suggested by the FACS data, but at 

this point it would be difficult to conclude whether this is due to in overall 

increase in transferrin uptake, and therefore Tf-488 is located elsewhere in the 

endosomal-lysosomal system, or whether this is a result of impaired trafficking 

of cargo to the lysosome as previously reported in CD2AP depleted cells (259). 

The use of additional endosomal markers and investigations at different time 

points would help to determine the location of Tf-488 after 30 minutes and 

provide more information on cellular trafficking. 

 

3.4.5 Concluding remarks 

 

BIN1 and CD2AP are both significantly associated with LOAD. Variants at these 

loci are associated with an increased risk of AD, but how they increase risk for 

the disease remains unknown. BIN1 and CD2AP have both been implicated in 
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the same biological pathway of endocytosis, which is thought to be critical in 

the pathogenesis of AD. The cellular trafficking of APP is critical for it’s 

processing, as its cellular location can determine which secretase is 

encountered. This investigation therefore investigated how loss of these two 

proetin impacted on APP processing and CME. 

 

BIN1 depletion and CD2AP depletion appeared to have broadly opposing 

effects on β-CTF levels. BIN1 depletion increased β-CTF levels, which is 

potentially explained by an increase in BACE1 levels, whereas CD2AP 

depletion reduced β-CTF levels, which is potentially explained by the reduction 

in BACE1 levels observed. Depletion of BIN1 and CD2AP in combination 

showed minimal change in APP metabolites, but BACE1 levels remained 

significantly reduced in comparison to the NT siRNA control. This result was 

not different from the BACE1 levels observed in CD2AP only depleted cells, 

suggesting CD2AP depletion is responsible for the reduction in BACE1 levels. 

This also suggests that BIN1 depletion may counter the effects of CD2AP 

depletion on APP processing via a mechanism independent of BACE1. 

 

BIN1 depletion did not significantly affect CME, suggesting increased 

internalisation is not responsible for the increase in β-CTF observed. BIN1 

depletion likely results in increased β-CTF production via other cellular 

mechanisms, for example impaired BACE1 degradation or recycling. CD2AP 

depletion increased CME, which was unexpected, as increased internalisation 

has previously been implicated in increased β-CTF levels, contradicting 

observations in this investigation. This suggests that CD2AP depletion results 

in decreased β-CTF production independent of internalisation. CME in BIN1 

and CD2AP depleted cells reflected that of CD2AP only depleted cells, 

suggesting loss of CD2AP is responsible for the increase in CME observed.  
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This data seems to suggest that CME is not responsible for the changes in APP 

metabolites observed. It is likely that BIN1 and CD2AP have roles in more 

complex cellular trafficking mechanisms, which may be affecting APP 

processing. 



  Chapter 4 

4. Investigating BIN1 allelic expression in relation 

to LOAD risk genotypes 
 

4.1 Introduction 

4.1.1 Allele Specific Expression 

 

DNA variants associated with a complex trait can affect disease susceptibility 

via a number of mechanisms, one of which is by altering gene expression. 

Expression Quantitative Trait Loci (eQTL) are regions of the genome that 

contain DNA variants capable of influencing gene expression. Integrating 

GWAS and eQTL data can identify genes whose expression levels are 

associated with a complex trait (413). eQTLs identified in cerebellar tissue 

overlap with GWAS SNPs from a number of neurodegenerative diseases, 

including AD, indicating that changes in gene expression may be a mechanism 

influencing complex disease (414). 

 

The underlying mechanism by which eQTLs are thought to act is in part 

mediated by DNA regulatory elements, such as those identified using DNase-

seq. DNase I hypersensitivity sites (DHS) are regulatory elements used to map 

cis-regulatory elements throughout the genome (315).  The distribution of non-

coding genome wide significant associations in 207 diseases and 447 

quantitative traits saw a 40% enrichment of GWAS SNPs in DHS, particularly in 

disease relevant cell types. Common variants associated with diseases are also 

enriched in recognition sequences of pathologically relevant transcription 

factors (371). Furthermore, when 11 complex traits were investigated, 79% of 

the heritability explained by imputed SNPs was due to their association with 

DHS, and a further enrichment of associated SNPs was observed in enhancer 
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associated DHS and in cell type specific DHS, providing further evidence that 

gene regulation is a likely mechanism by which genetic variants influence 

complex traits (415). 

 

An Allele Specific Expression (ASE) Assay is a method used to measure cis-

regulatory variation on gene expression. In the absence of heterozygous 

variants in the gDNA affecting cis-regulation, both alleles will be present in the 

mRNA in equal quantities. However, if an individual is heterozygous for a DNA 

variant that affects cis-regulation, each of the genomic alleles will be present in 

different quantities in the mRNA. An ASE assay uses a heterozygous 

transcribed SNP (present in the mRNA) to quantify the relative levels of the two 

alleles present in complementary DNA (cDNA), and therefore the mRNA. The 

ratio of the two alleles present in the mRNA can then be compared to the 

zygosity of the risk variant of interest to determine whether heterozygosity of 

this variant is associated with differential allele expression. Should the variant 

be associated with unequal allele expression, this could infer that this variant, 

or a tagged variant, is influencing the cis-regulation of this allele. Studying both 

alleles from the same cellular and tissue environment identifies genuine cis-

acting effects by eliminating potential confounding effects from trans-acting 

elements (regulatory factors effecting both alleles equally). Such trans-acting 

elements that could affect mRNA levels in a particular cellular environment 

include tissue preparation, mRNA quality, environmental factors and trans-

acting regulatory mechanisms (416-418). The principles of an ASE assay are 

illustrated in figure 4.1.  
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4.1.2 Investigating cis- regulation of BIN1 in prefrontal cortex 

 

Cis-regulation has been shown to occur in a high number of genes in the 

human brain (419). The prefrontal cortex plays an essential role in executive 

function, which involves a number of core cognitive components including 

Figure 4.1. Principle of an Allele Specific Expression Assay. A) An individual is 

heterozygous for a cis-acting variant; each allele is present in the gDNA at a 1:1 ratio. In this 

example, the risk variant, G, reduces expression of this allele by 50%. This individual is also 

heterozygous for an exonic SNP (C/T). B) mRNA produced from each genomic copy can be 

distinguished by a heterozygous variants present in the coding DNA. mRNA is produced 

from the two alleles at a 2:1 ratio as half of the amount of mRNA is produced from the allele 

containing the risk variant. This allele expression ratio will also be present in cDNA. C) A 

quantitative technique that distinguishes between the two alleles can determine the allele 

ratios present in gDNA and cDNA (and therefore mRNA). The allele ratio observed in cDNA 

can be compared to the allele ratio observed in gDNA (assumed to be 1:1) and any 

deviation from the 1:1 ratio will indicate the presence if cis-acting variation. In this example, 

in cDNA the alleles will be present at a 2:1 ratio.  
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working memory (420). Neuronal and synapse loss and neurofibrillary tangles 

spread to all isocortical areas, including the prefrontal cortex, during the later 

stages of AD and isocortical regions become burdened with amyloid plaques 

during the early stages of AD pathology progression (17, 421).  

 

Changes in BIN1 expression have been described in the cortex tissue of AD 

patients (256, 261). Additionally, methylation profiles generated from 

prefrontal cortex tissue revealed suggestive evidence that differential 

methylation at the BIN1 locus may affect LOAD susceptibility (422). As the 

prefrontal cortex is affected by AD neuropathology and regulatory and 

epigenetics changes at the BIN1 locus have been identified to be associated 

with AD, it is an appropriate tissue to investigate BIN1 allele expression and 

whether this is associated with a disease risk genotype. 

 

4.1.3 SNPs of interest  

 

There are a number of SNPs at the BIN1 risk locus that have been identified to 

have an association with AD and have the potential to influence cis-regulatory 

factors.  

4.1.3.1 Rs6733839: Most significant SNP 

 

Rs6733839, located approximately 30 Kb upstream of BIN1, was identified as 

the most significant SNP at this locus in the largest meta-analysis of GWAS 

data for LOAD performed in 2013 (p=6.9x10-44). The minor allele with a T 

genotype has an odds ratio of 1.22 (140). Rs6733839 genotype has been 

associated with episodic memory and right inferior parietal atrophy, which is 

considered to be a predictive measure of AD prognosis (423-425).  
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4.1.3.2 Rs744373: First genome wide significant SNP identified at BIN1 

locus 

 

Rs744373 was the first SNP within the BIN1 risk locus to reach genome-wide 

significance in 2010. Rs744373 was determined to have an odds ratio of 1.13 

and is located just under 2 Kb away from rs6733839 (137). When investigating 

multilocus genotype patterns, rs744373 along with variants in APOE and 

PICALM, were associated with poorer episodic memory performance, even in 

individuals not suffering from AD (426). Furthermore, a healthy Chinese 

population homozygous for the rs744373 risk variant showed a poorer working 

memory performance, larger hippocampal volume and lower functional 

connectivity between the hippocampus and the dorsolateral prefrontal cortex 

(427). Rs744373 genotype is also correlated with tau levels, rate of cognitive 

decline and AD progression (428, 429).  

 

4.1.3.3 Rs7584040: Conditional SNP 

 

A conditional analysis utilising the genome wide complex trait analysis software 

was performed on stage 1 sample data from the IGAP consortium. This analysis 

investigated all variants within 500 Kb from rs6733839 and identified a 

secondary association signal at rs7584040, located within the first intron on 

BIN1 (Majounie et al, in prep).  

 

The r2 values, representing the correlation coefficient between the AD 

associated variants are described in table 4.1.  
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Table 4.1. R2 values between AD SNPs. Values were obtained from SNAP (SNP annotation 

and Proxy Search) Pairwise LD inquiry (accessed 21.8.2017) (430).  

R2 between AD associated SNPs rs6733839 rs7584040 

rs744373 0.58 0.131 

rs7584040 0.056 - 

 

4.1.3.4 Rs59335482: Functional Evidence 

 

Rs59335482 is a three base pair indel located in a 6.7 Kb LD block containing 

rs6733839 and rs744373. Gene reporter assays showed that this variant is 

capable of influencing BIN1 expression. The insertion allele was also found to 

be associated with increased BIN1 mRNA expression in the frontal cortex of 

Alzheimer’s disease brains (261).  

 

4.1.4 Aim 

 

This chapter aims to use an ASE assay to determine whether BIN1 alleles are 

differentially expressed in prefrontal cortex tissue, which would indicate the 

presence of cis-regulatory factors. AD associated SNPs at the BIN1 locus will 

be investigated to determine whether they explain any variation in cis-

regulation observed.  
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4.2 Methods 

 

4.2.1 Using publically available databases to functionally annotate 

variants of interest 

 

There are a number of publically available databases that integrate genetic 

information with functional annotations. HaploReg v4.1 (accessed 18.5.17), 

hosted by the Broad institute, is a database that contains information on 

non-coding variants within haplotype blocks and compiles histone modification 

data (431).  RegulomeDB v1.1 (accessed 18.5.17) gathers data from various 

sources to identify DNA features and describes regulatory elements found in 

the human genome (432). RegulomeDB Version 1.1 has a scoring system 

based on the functional confidence of a variant from 1 to 6. Lower scores 

indicate increasing evidence for the variant to be located in a functional region. 

Known eQTL variants are given a category 1 score, whereas variants lacking 

any functional annotation are labeled as category 6. 

 

There are publically available databases that contain genotypic and gene 

expression data. These can be utilised to determine whether a specific variant 

is associated with a change in gene expression. Braineac (Brain eQTL Almanac) 

is a web-based resource that can be used to access the UK Brain Expression 

Consortium dataset. The UK Brain Expression Consortium dataset comprises of 

data from 134 human brains free from neurodegenerative disease and includes 

genotypes and gene expression data from multiple tissues across the human 

brain (5). This data can be stratified by genotype to determine whether a SNP 

acts as an eQTL (accessed 2.5.2017). GTEx (Genotype Tissue Expression 

Project) is resource that contains expression data from a number of tissues and 

researchers are able to use this information to investigate the relationship 
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between genetic variation and specific gene expression in human tissue 

(accessed 18.5.2017) (433).  

 

Each of these databases was utilised to explore the potential functional and 

regulatory elements surrounding the SNPs of interest, particularly focusing on 

expression in brain tissue.  

 

4.2.2 mRNA and gDNA samples 

 

Studies were performed using gDNA and cDNA derived from post-mortem 

human brain tissue, which was obtained from the London Neurodegenerative 

Diseases Brain Bank by Dr Nicholas Bray and held at the MRC Centre for 

Neuropsychiatric Genomics and Genetics, Cardiff University, under a material 

transfer agreement. This collection is described in detail in (434). All subjects 

were free from psychiatric or neurological diagnosis at the time of death. In the 

present study, gDNA extracted from the brain of 116 unrelated adults was 

genotyped for the selected exonic SNP. cDNA synthesised from total RNA (by 

random priming) from the prefrontal cortex of 14 subjects identified as 

heterozygous for the BIN1 exonic SNP was used for the ASE assay. Ethical 

approval for use of these samples to assess genetic effects on gene expression 

was provided to Dr Bray by The Joint South London and Maudsley and The 

Institute of Psychiatry NHS Research Ethics Committee (REF: PNM/12/13-102). 

  

4.2.3 Heterozygous exonic SNP 

 

A heterozygous exonic SNP is required to distinguish the mRNA copies 

produced from each chromosomal gene copy. BIN1 is a highly conserved gene 

with very few exonic variants. SNPper sequence viewer 

(http://snpper.chip.org/bio/show-sequence/?TYPE=U&GENE=16170, accessed 
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17.11.15) identified SNPs transcribed in BIN1. Rs11554586 is located in the 

5’UTR and is a SNP, a cytosine to a thymine. According to dbSNP, in the 

population sample “pilot_1_CEU_low_coverage_panel” attained from the 1000 

Genomes Project, the C allele has a frequency of 0.817 and the T allele has a 

frequency of 0.183 

(http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?searchType=adhoc_search&typ

e=rs&rs=rs11554586, accessed on 16.11.15) (435). 

!

Applying the Hardy-Weinberg Equilibrium (HWE) principle predicts a frequency 

of heterozygotes of 0.299. Within a CEU population, similar to that of the 

sample population, approximately 30% of individuals will be heterozygote for 

rs11554586 and it is therefore likely heterozygotes will be present in the 

patient samples available for analysis.  

 

4.2.4 SNaPshot Genotyping 

 

SNaPshot genotyping uses the incorporation of a fluorescently tagged ddNTP 

to a primer located adjacent to the variant site. The fluorescence can be 

detected and will reflect the genotype of the variant. Primers were designed to 

amplify the region surrounding rs11554586, generating a product size of 

165bp (table 4.2). This region was PCR amplified from the gDNA of 117 

individuals and the negative controls (H2O). The PCR reagents and 

thermocycler conditions are described in tables 4.3 and 4.4.  

 
Table 4.2. Primer sequences used to amplify the 165 bp surrounding rs11554586 

Forward Primer 5’-3’ CCTTTACTGCCCATCTCTGC 

Reverse Primer 5’-3’ GTCAGTTGGCTCCGCTGT 
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Table 4.3. PCR reagents used to amplify rs11554586 region 

Reagent μL per Reaction 

10X PCR Buffer (Qiagen) 1.2 

Water 4.06 

dNTPs (5mM) 0.96 

Primers (5μM) 0.56 (x2) 

DMSO (sigma) 0.6 

HotStar Taq DNA polymerase (Qiagen) 0.06 

DNA (5ng/μL) 4 

 

Table 4.4. Thermocycling conditions used to amplify rs11554586 region 

Step Temperature (°C) Time (Seconds) Cycle 

1 95 900  

2 95 40   

3 58 30   

4 72 40  Repeat steps 2-4 30 times 

6 72 600  

 

These gDNA samples were genotyped for rs11554586 via SNaPshot 

genotyping [full method described in Chapter 2.4.6]. The SNaPshot 

genotyping reaction was performed using an extension primer targeting the 

antisense strand (5’-CAGGCCTCGCCCGGTGGCA-3’).  

 

14 rs11554586 heterozygous individuals had available prefrontal cortex cDNA 

for analysis. gDNA and cDNA from heterozygotes was amplified and 

genotyped for rs11554586 via the SNaPshot protocol plus water negative 

controls, following the protocol described above. SNaPshot genotyping 
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produces a fluorescent peak specific to the base incorporated on to the 

extension primer. The height of this peak is relative to the number of DNA 

copies that are incorporated with that specific base and therefore produces a 

quantitative measure that discriminates between the two alleles. cDNA 

genotyping was performed in duplicate and peak heights averaged for each 

sample. The peak heights of the G allele were divided by the peak heights for 

the A allele to create G:A allele ratio for each sample. gDNA of each sample 

was genotyped, the resulting G:A allele ratios were averaged between all 

gDNA samples. The average allele ratio from all gDNA samples was used to 

normalise the cDNA ratios to control for experimental inequalities in allele 

representation, as gDNA is assumed to have a 1:1 expression. Once 

normalised, any assay specific factors influencing the allelic representation will 

be corrected for and therefore the cDNA ratios will be representative of the 

expression of that specific allele. This can be analysed and any potential 

differential allele expression detected. 

 

4.2.5 Genotyping of AD associated risk variants 

 

Additional genotyping was performed on gDNA samples heterozygous for 

rs11554586 for which G:A ratios were available. A 163 bp region surrounding 

rs6733839 was amplified via PCR. The primer sequences, PCR reagents and 

thermocycling conditions are listed in tables 4.5, 4.6 and 4.7 respectively. The 

SNaPshot genotyping reaction was performed using the extension primer 5’- 

GTAAAAAGGGGAAAAGGGT-3’.  

 

Table 4.5. Primers used to amplify region surrounding rs6733839 

Forward Primer 5’-3’ TAGCCAGTGACTTACGCTGA 

Reverse Primer 5’-3’ ACCTTCCCGTTCCATCCTGT 
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Table 4.6. PCR reaction used to amplify rs6733839 

Reagent μL per Reaction 

10X PCR Buffer (Qiagen) 5 

10mM dNTPs 1 

10μM Forward Primer 0.5 

10μM Reverse Primer 0.5 

Water 13.75 

HotStar Taq DNA Polymerase (Qiagen) 0.25 

DNA (5 ng/μL) 4 

 

Table 4.7. Thermocycler conditions to amplify rs6733839 

Step Temperature (°C) Time (Seconds) Cycles 

1 95 900  

2 95 30  

3 60 30  

4 72 60 Repeat steps 2-4 30 times 

5 72 500  

 

PCR primers and extension primers used in the SNaPshot genotyping of 

rs744373 are described in table 4.8. Primers used to genotype rs7584040 are 

described in table 4.8. 
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Table 4.8. PCR primers used to amplify region surrounding rs744373 and extension 

primers used for the genotyping of rs744373.  

Forward PCR primer 5’-3’ CCTGGGAGACACTGGAGAAG 

Reverse PCR primer 5’-3’ GCCTCCTGTCTTTCTGCAAG 

Sense extension primer 5’-3’ ATCATGGGCAGCCTCTGAG 

Antisense extension primer 5’-3’ GGGACAGGCAGGTCTGAGGC 

 

PCR primers and extension primers used in the SNaPshot genotyping of 

rs7584040 are described in table 4.9. 

 

Table 4.9. PCR primers used to amplify region surrounding rs7584040 and extension 

primers used for the genotyping of rs7584040. 

Forward PCR primer 5’-3’ CAAACCTGGACTTGGCTGAG 

Reverse PCR primer 5’-3’ CCTAAGGATGCAACCACGTG 

Sense extension primer 5’-3’ AGGGAGGTATGGGGAAGCT 

Antisense extension primer GGGGGAGAGGGGGGCGCCTA 

 

The PCR reagents and thermocycling conditions used to amplify rs744373 and 

rs7584040 are described in table 4.10 and 4.7 respectively.  
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Table 4.10. PCR reaction reagents used to amplify rs744373 and rs7584040 

Reagent μL per Reaction 

10X PCR Buffer (Qiagen) 1.2 

Water 4.66 

dNTPs (2mM) 0.96 

Forward Primer (5μM) 0.56 

Reverse Primer (5μM) 0.56 

HotStar Taq DNA polymerase (Qiagen) 0.06 

DNA (5ng/μL) 4 

 

 

Genotypes of rs59335482 were determined in samples heterozygous for 

rs11554586 via Sanger sequencing. DNA surrounding the rs59335482 was 

amplified using primers described in table 4.11. The PCR reaction and 

thermocycling conditions are described in table 4.12 and 4.13. The resulting 

PCR product is 152bp in length. The PCR product is ran on a 1% agarose gel, 

the appropriate sized band was excised and the DNA was extracted from the 

gel with the use of a QIAquick Gel Extraction Kit (Qiagen) and purified using a 

QIAquick PCR purification Kit. Purified DNA was sent to Genewiz® (Hope End, 

Takely, CM22 6TA) where samples were sequencing using their standard 

Sanger sequencing reaction conditions with the reverse sequencing primer 

(5’CAGGTGTGGTGGTTCGTA3’). 

 

Table 4.11. Primers used to amplify the region containing rs59335482 

Forward sequencing primer 5’-3’ CCACCAAACCCAGCTAAT 

Reverse Sequencing Primer 5’-3’ CAGGTGTGGTGGTTCGTA 
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Table 4.12. PCR reagents for rs59335482 sequencing 

Reagents Volume (μL) 

Buffer 1.2 

ddH2O 4.66 

dNTPs (2mM) 0.96 

Primers (5pmol/μL) 0.56 

Hot Star Taq 0.06 

DNA 4 

 

Table 4.13. Thermocycler conditions used to amplify the region surrounding rs59335482 

Step Temperature (°C) Time (Seconds) Cycle 

1 95 600  

2 95 30  

3 58 60  

4 72 30 Repeat step 2-4 two times 

5 95 30  

6 56 60  

7 72 30 Repeat step 5-7 two times 

8 95 30  

9 54 60  

10 72 30 Repeat step 8-10 29 times 

11 72 600  
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4.3 Results 

4.3.1 Functional databases indicate variants are located in 

potential regulatory regions in brain tissue  

 

4.3.1.1 Rs6733839 

 

The HaploReg v4.1 database provides evidence that rs6733839 may be within 

a regulatory region active in brain tissue. ChIP (Chromatin 

Imunnoprecipitation) -Seq data shows enhancer-associated modifications in 

this region in almost all brain tissue available in the database. Within the 

dorsolateral prefrontal cortex tissue, HaploReg v4.1 annotates this region to be 

associated with an active enhancer-flanking region and has H3K4me1 and 

H3K27ac, modifications indicative of enhancer activity. 

 

RegulomeDB Version 1.1 annotates rs6733839 with a score of 5, suggesting 

that this variant lies within a TF binding or DNase peak. Using data from Pique-

Regi et al, rs6733839 is annotated to lie in the proximity of MEF-2 and SPI1 

binding motifs (436). ENCODE data suggests rs6733839 lies in a DNase 

Hypersensitive Site in the frontal cortex (437). ChromHMM regulatory regions, 

which utilises data from the Roadmap Epigenomics Project to annotate 

chromatin state (6, 438), describes the region to be a weak transcriptional 

chromatin state in inferior temporal lobe, anterior caudate, middle 

hippocampus, anugular gyrus, substantia nigra and dorsolateral prefrontal 

cortex tissue. 

 

4.3.1.2 Rs744373 
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When querying rs744373 in the HaploReg v4.1 database, there is evidence of 

enhancer activity and promoter modifications in all adult brain tissues. Data 

from dorsolateral prefrontal cortex tissue shows evidence of enhancers and 

enhancer flanking regions within the proximity of rs744373 and H3K4me1 and 

H3K27ac modifications. Additionally, there is the presence of H3K9ac 

modifications, associated with active gene promoters.  

 

RegulomeDB v1.1 annotates this variant with a score of 5 and describes an 

enhancer chromatin state in Angular Gyrus, Inferior temporal lobe, 

hippocampus middle, cingulate gyrus and dorsolateral prefrontal cortex (data 

from Roadmap Epigenomics Project). 

 

4.3.1.3 Rs7584040 

 

When querying rs7584040 in the HaploReg v4.1 database, there is evidence 

for this SNP being located near enhancers, promoters and a transcriptional 

start site in all adult brain tissues. Within dorsolateral prefrontal cortex tissue, 

there is evidence of rs7584040 being located near an active transcription start 

site, downstream promoter elements, H3K4me3 modifications associated with 

transcription start sites of active genes and H3K9ac modifications associated 

with active gene promoters. Additionally, there is evidence for H3K4me1 and 

H3K27ac modifications in this region associated with functional enhancer 

elements.  

 

RegulomeDB v1.1 assigned rs7584040 a score of 4, indicative of minimal 

evidence of protein binding. ChIP-Seq data indicates USF1 TF binding in the 

SK-N-SH neuroblastoma cell line and annotations suggest this region is a 

DNase I hypersensitive site in the frontal cortex (data from ENCODE). 

ChromHMM regulatory regions describe the region as an active transcriptional 
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start site in angular gyrus, cingulate gyrus, substantia nigra, anterior caudate, 

hippocampus middle and dorsolateral prefrontal cortex tissues.  

 

4.3.1.4 Rs59335482 

 

Using Haploreg v4.1, rs59335482 is described in a genomic region marked 

with enhancer modifications, such as H3K27ac and H3K4me1, in brain tissues 

such as fetal thymus, hippocampus middle, substantia nigra, anterior caudate, 

cingulate gyrus, inferior temporal lobe, angular gyrus and dorsolateral 

prefrontal cortex. Histone modifications that typically flank active promoters, 

such as H3K4me3 and H3K9ac, were identified in the proximity of rs59335482 

in the hippocampus middle, substantia nigra, anterior caudate, cingulate gyrus, 

inferior temporal lobe. 

 

RegulomeDB v1.1 give rs59335482 a score of 5 and describes a weak 

transcriptional chromatin state in anterior caudate, hippocampus middle, 

inferior temporal lobe, angular gyrus and the substantia nigra. A quiescent 

chromatin region is described in the cingulate gyrus and the dorsolateral 

prefrontal cortex 

 

4.3.1.5 BIN1 expression in the brain 

 

When visualising gene expression using Braineac, BIN1 is expressed 

throughout the brain but expression levels differ between brain regions. When 

this data is stratified by genotype of the SNPs of interest, no changes in gene 

expression in any brain tissue relative to genotype were observed; therefore 

within this database these SNPs are not functional eQTLs (figure 4.2). 

Rs59335482 is not within the Braineac database therefore this data could not 

be stratified by this genotype.  
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Figure 4.2. BIN1 Expression throughout the brain. Data was obtained from 

www.braineac.org (accessed on 2.5.2017,(5)) which comprises of gene expression data in 

the following brain regions: Intralobular white matter, hippocampus, Substantia Nigra, 

Thalamus, Medulla, Temporal Cortex, Frontal Cortex, Occipital Cortex, Putamen and 

Cerebellar Cortex.  A) BIN1 transcript levels across 10 brain regions. B-D) BIN1 transcript 

levels stratified by risk SNP genotype: rs6733839, rs744373 and rs7584040. In the Braineac 

database, none of these SNPs operate as an eQTL.  

A 

B 

C 

D 
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The GTEx database was used to determine whether the variants of interest 

were functional eQTLs for BIN1 in frontal cortex tissue. Following Bonferroni 

correction for three tests (p=0.0167), the GTEx Analysis Release V6p (accessed 

18.5.17) showed no evidence that rs6733839, rs744373 and rs7584040 were 

functional eQTLs in this tissue (p=0.082, p=0.046 and p=0.3 respectively) 

(figure 4.3). 

 

 

Figure 4.3. GTEx database was used to determine whether the variants of interest are 

functional eQTLs affecting BIN1 expression in frontal cortex tissue. A) rs6733839 B) 

rs744373 C) rs7584040. These variants were determined not to be a functional eQTL for BIN1 

in prefrontal cortex tissue (p=0.082, p=0.046, p=0.3). Rs59335482 is not available in the GTEx 

database. (433). 

 

A" B"

C"



  Chapter 4 

 164 

When investigating the variants in additional tissues, there was suggestive 

evidence for rs6733839 as a functional eQTL in aorta tissue and whole blood 

(p=7.2 x 10 -7 and p=1.5 x 10-5 respectively). There was suggestive evidence of 

rs744373 being an eQTL in aorta tissue (p=4.7 x 10-5). rs7584040 was found to 

be a functional eQTL for BIN1 in tissue from the tibial artery (p=2.2 x 10-15), left 

ventricle of the heart (p=6.7 x 10-13), esophagus muscularis (p=1.4 x 10-10) and 

suggestive evidence in the aorta (p=7.3 x 10-7), esophagus mucosa (p=6.5 x 10-

7), and pancreas (p=4.1 x 10-6).  

 

4.3.2 Heterozygosity of exonic SNP 

 

PCR conditions were optimised using primers designed to amplify rs11554586 

and confirmed via gel electrophoresis (figure 4.4).  

 

These PCR conditions were used to amplify the rs11554586 region in gDNA 

and cDNA samples and subsequently used in SNaPshot genotyping of 

rs11554586.  Genotypes were obtained and are summarised in table 4.14.  

 

A Χ-squared test was performed to determine whether the observed genotype 

frequencies differ from the expected frequencies based on the observed allele 

frequencies.  A Χ-Squared value of 0.6984 was obtained and a p value of 

Figure 4.4. Amplif ication of 165 bp 

region surrounding rs11554586 in 

gDNA and cDNA. Water was used as 

a negative control. PCR products were 

electrophoresed on a 3% agarose gel. 
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0.4033 indicated that the expected genotype frequencies were not significantly 

different from the observed genotype frequencies. The sample population is 

therefore in HWE and representative of the CEU population.  

 

Table 4.14. Observed and Expected Genotypes. Expected genotype frequencies and 

expected genotype count was calculated based on the observed genotype count and allele 

frequencies.  

Genotype Observed 

Genotype 

Count 

Expected 

Genotype 

frequency based 

on observed allele 

frequencies 

Expected 

Genotype counts 

based on 

observed allele 

frequencies 

GG 

homozygotes 

87 0.7526 88 

AA 

homozygotes 

1 0.0176 2 

GA 

heterozygotes 

29 0.2299 27 

 

4.3.3 Differential Expression of BIN1 exonic variant 

 

Following PCR amplification and SNaPshot genotyping of cDNA samples, the 

observed fluorescence peak height was recorded and normalised. Samples for 

which cDNA ratios showed a coefficient of variation >0.25 were excluded. 

Following successful SNaPshot genotyping and quality control checks, 14 

samples had data. Figure 4.5 shows the G:A  allele ratios of gDNA and cDNA. 

A Levene’s test revealed that there were unequal variances between gDNA 

and cDNA ratios (p≤0.001) and therefore a two sampled t-test assuming 

unequal variances was performed to determine whether there was a significant 
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difference in allele ratios between gDNA and cDNA. This revealed that the G:A 

ratios of the cDNA is significantly different to that of gDNA (p=0.001) and thus 

deviates from a 1:1 allele expression ratio. This change from the 1:1 allele ratio 

indicates the presence of differential allelic expression and therefore indicates 

that cis-regulatory variation is operating on BIN1 in adult prefrontal cortex.  

 

 

Figure 4.5. Allelic expression of BIN1 at the expressed SNP rs11554586. 14 data points 

represent the experimental average G:A allele ratio for each individual. There is differential 

expression of the two alleles, as shown by the deviation from the 1:1 ratio in cDNA (p=0.001). 

 

4.3.4 Suggestive evidence that rs7584040 may explain cis-

regulation 

 

The G:A allele ratios observed in the cDNA and the genotypes of rs6733839, 

rs744373, rs7584040 and rs59335482 are displayed in table 4.15. 
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Table 4.15. Allele ratios and zygosity of variants of interest 

cDNA G:A   

Allele ratio 

rs6733839 rs744373 rs7584040 rs59335482 

0.773974147 CT CT CC -/CCC 

0.521357726 CT CT CC -/CCC 

1.036014658 CT CT CC -/CCC 

0.865119418 CT CT CC -/CCC 

1.032948655 CT CT CC NA 

0.471884365 CT CT CC -/CCC 

0.602978012 CT CT CT -/CCC 

0.519392134 CT TT CT -/CCC 

0.983747279 CT CT CC -/CCC 

0.769559491 TT CT CC -/CCC 

0.46898413 TT CC CT CCC/CCC 

1.100100889 CT CT CC NA 

0.726836047 CT CT CC -/CCC 

0.556687846 TT CT CC -/CCC 

 

A Levene’s test for equality of variances was performed between homozygotes 

and heterozygotes for each variant and revealed equal variances. An 

independent samples t-test assuming equal variances was performed to 

compare allele ratios for homozygotes and heterozygotes for each variant. 

Should the variant account for the cis-regulation homozygotes should have an 

allele ratio of 1, which would be significantly different to the allele ratio of 

heterozygotes. These results are summarised in table 4.16. Due to 

amplification difficulties, some samples could not be sequenced to determine 

rs59335482 genotype. Of the samples successfully sequenced, only one 
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homozygote was identified and therefore statistical analysis could not be 

carried out for this variant.  

 

Table 4.16. Summary of the statistical analysis performed to determine the differences in 

allele ratios between genotype.  An independent samples t-test assuming equal variances 

was performed to compare homozygotes and heterozygotes for each SNP. 

Variant Levene’s Test p 

value 

Independent Samples T-Test p 

value 

rs6733839 0.342 0.139 

rs744373 0.079 0.093 

rs7584040 0.070 0.062 
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4.4 Discussion 

 

4.4.1 Functional databases indicate regulatory elements 

 

Both Haploreg and Regulome DB annotated each variant as located within a 

region that had features indicative of being a regulatory element. In all brain 

tissues there was evidence of enhancer or promoter activity and histone 

modifications indicative of active regulatory elements were identified in the 

dorsolateral prefrontal cortex. This suggests that these variants are located in 

functionally active parts of the genome and therefore potentially could have an 

effect on cis-regulation.  

 

Braineac and GTex did not associate any genotype with a change in BIN1 

expression levels, however these databases study total gene expression within 

these tissues. The approach to study allele specific expression is much more 

sensitive and this investigation studied a more specific brain region. GTex 

described rs7584040 as being an eQTL in tibial artery, left ventricle of the heart 

and esophagus muscularis tissue and described suggestive evidence for 

rs6733839 and rs744373 being eQTLs in non-disease relevant tissues. This 

demonstrates that rs7584040 is capable of influencing cis-regulation and 

rs6733839 and rs744373 potentially could.  

 

4.4.2 Rs7584040 could potentially be a cis-acting variant 

 

The allelic expression ratios observed indicate BIN1 in prefrontal cortex tissue 

is influenced by cis-acting genetic variation as the allele ratios significantly 

differed from the 1:1 ratio (p=0.001). LOAD associated risk variants were 
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genotyped to determine whether changes in allele expression were correlated 

with zygosity of these variants.  

 

Following statistical analysis, in this sample it appears that rs6733839 and 

rs744373 do not explain the cis-regulation observed as there was not a 

significant difference in allele ratios between heterozygotes and homozygotes. 

Despite not having sufficient data to determine whether rs59335482 genotype 

is statistically associated with a change in mRNA expression, it seems unlikely 

to be the cis-acting variant as the homozygote sample has an allele ratio of 

approximately 0.47, indicating the presence of differential cis-regulation not 

explained by rs59335482 genotype.  However, as rs7584040 is approaching 

statistical significance (p=0.062) it is possible that this potentially affects cis-

regulation in this tissue.  

 

An analysis of differential methylation across the genome of a lymphoblastoid 

cell line found that rs7584040 lies within a 667 bp differentially methylated 

region which overlaps with a DNase I hypersensitivity site and a transcription 

factor binding region (439).  Additionally, investigations have found that 

methylation levels of BIN1 in the dorsolateral prefrontal cortex were 

significantly associated with increased LOAD risk and burden of AD pathology, 

suggesting disruption of DNA methylation may be associated with disease 

susceptibility (260, 422). Genetic variation has been shown to effect local 

methylation patterns in the cerebellum in a study of Bipolar Disorder (440). 

Therefore it could be possible for AD risk variants to elicit a functional impact 

by effecting allele specific methylation resulting in altered allele expression. 

Therefore this work provides suggestive evidence that rs7584040 may lie in a 

region that has an active role in gene regulation within the prefrontal cortex 

and could possibly effect cis-regulation by disrupting one of these 

mechanisms. 
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4.4.3 Sensitivity of assay was limited by sample size 

 

The main limitation of this work was sample size. It has previously been 

calculated that 16 individuals heterozygous for the tagging SNP would be 

required to have 80% power to detect a cis-acting variant if this variant was 

found at a frequency of 0.05 in the population (418), but this sample size would 

not be sufficient to test the effect of such a variant. As the effect size of the 

functional variant is unknown, a power calculation cannot be used to determine 

the required sample size. This sample of 14 heterozygotes was sufficient to 

identify differential expression of the two alleles suggesting the presence of 

cis-acting variation. However, this sample size was not large enough to detect 

whether any of the AD associated risk SNPs were associated with this change in 

expression. In order to obtain interpretable data, a larger sample size should 

be used.  

 

4.4.4 Future work 

 

It is possible that further sequencing of the loci of interest could reveal 

additional variants that could affect cis-regulation. Genome wide sequencing 

of individuals that have an allele ratio significantly different to 1 could detect 

heterozygous variants that could be influencing cis-regulation. Although these 

variants may not currently be associated with AD, they could be tagged by a 

known SNP and contribute to the explanation of the BIN1 index or conditional 

association signal.  One issue with this approach again is sample size as it may 

be difficult to find a variant that overcomes a multiple testing penalty with such 

a limited available sample size.  

 

To determine the directional change of expression, for example if the risk SNP 

increases allele expression, the variant would have to have a D’>0.8 with the 
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exonic SNP used to tag each allele. A pairwise linkage disequilibrium analysis 

using the SNAP version 2.2 online tool hosted by the Broad Institute, revealed 

a r2 of 0.002 between rs11554586 and rs7584040, indicating rs11554586 would 

not be an appropriate tagging SNP (430). An alternative approach would be to 

perform long range PCR to determine which variants are located on the same 

allele in heterozygotes or statistical phasing, which would require a larger 

sample.  

 

It is possible that the differential allele expression observed may be due to 

haplotype variation. Long-range allele-specific PCR could be used to 

determine the genotypes at multiple locations on each allele to distinguish 

haplotypes at this locus. Alternatively, if the D’ is fairly high between variants of 

interest, haplotypes could be estimated via statistical phasing. Investigations 

could then be implemented to determine whether individuals who are 

heterozygous for a specific haplotype show differential allele expression. This 

approach would again require a greater sample size in order to determine 

significant changes. This approach has successfully identified risk haplotypes in 

complex diseases such as schizophrenia (441). 

 

4.4.5 Concluding Remarks 

 

Differential allele expression of BIN1 was detected in prefrontal cortex tissue, 

indicating the presence of cis-acting regulatory variation. AD associated 

variants rs6733839, rs744373, rs7584040 and rs59335482 are located in 

genomic loci that have been annotated with evidence of regulatory DNA 

elements, suggesting they may elicit their effect by disrupting regulatory 

function. In prefrontal cortex tissue, none of these variants explain the 

differential allele expression observed, however rs7584040 is approaching 

statistical significance. As rs7584040 appears to be located in a regulatory 
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active genomic region, with evidence suggesting activity within the prefrontal 

cortex, rs7584040, or a variant tagged by this SNP, could be responsible for 

the change in allele expression. To validate this potential association, further 

samples will need to be investigated for their allele expression levels and 

rs7584040 genotype. Should this prove to be a significant association, studies 

could go on to look at the methylation of this region or its interaction with 

binding proteins in an attempt to understand the mechanism behind the 

differential expression observed.  
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5. Characterising the Regulatory Capacity of the 

BIN1 Risk Locus 

 

5.1 Introduction 

 

The majority of GWAS hits are located in non-coding regions of the genome. 

One of the ways DNA variants associated with a complex trait can affect 

disease susceptibility is via altering gene expression. Expression Quantitative 

Trait Loci (eQTLs) are regions of the genome that contain DNA variants 

capable of influencing gene expression. There are a number of different 

mechanisms by which eQTLs can affect gene regulation, specifically by altering 

mature mRNA levels. eQTL SNPs can affect epigenetic modification and 

transcription initiation by disrupting regulatory processes such as histone 

modification, transcription factor (TF) binding, enhancer activity (by altering 

chromatin conformation) and methylation (3). [Gene regulation and the affect 

of DNA variants are further described in Chapter 1.9]. 

 

5.1.1 Histone Modifications 

 

DNA is bound by histones to form nucleosomes, which are the building blocks 

of eukaryotic chromatin. The binding of histones and other regulatory proteins 

to DNA results in a dynamic chromatin structure. Histones have distinct 

chemical modifications to the histone tail that can be read by specific proteins 

which can cause downstream events, such as transcriptional activation or gene 

repression (442). A nucleosome core consists of four histone proteins. Histone 

3 (H3) receives the most extensive modifications and the biological significance 

of these has been most well characterised. H3 lysine 4 monomethylation 
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(H3K4me1) is associated with enhancer regions (334) and H3 lysine 27 

acetylation (H3K27ac) is associated with increased activation of both enhancer 

and promoter regions (340). Histone modifications can exert their effect via 

influencing chromatin structure or by regulating the binding of effector 

molecules (331). eQTLs have been found to affect histone modifications. 

Furthermore, specific TFs have been identified which lead to histone 

modifications and variants located within TF binding sites have been shown to 

be correlated with changes in local histone modifications (443). 

 

5.1.2 Transcription Factors 

 

TF are key components in transcriptional regulation. Eukaryotic TFs are 

comprised of a DNA-binding domain and a transcription regulatory domain 

(444). TFs regulate the basal transcriptional apparatus by binding to specific 

gene promoters and inducing or repressing gene transcription by recruiting co-

activators of the transcriptional machinery or aid in the remodeling of the 

chromatin structure (445).  

 

Variants within the TF binding motif can directly affect TF binding, which could 

disrupt assembly of the transcription machinery or the recruitment of necessary 

co-factors. There are a number of examples where risk variants have created or 

destroyed a TF binding sites and have resulted in disease. For example, a risk 

variant associated with neuroblastoma formed an additional TF binding site 

resulting in overexpression of the LMO1 oncogene (446).  Furthermore, risk 

variants associated with colorectal cancer conferred disease risk by disrupting a 

TF binding site, altering the recruitment and binding affinity of TFs required for 

the transcriptional activation of the FAS gene, an inducer of the apoptotic 

signaling pathway (447). 
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In addition to changes in the binding motif, there are numerous other factors 

that influence TF binding, such as chromatin accessibility (448), co-factors that 

influence binding specificity (449), TF dimer interactions (450) and DNA 

sequences flanking the core TF binding site (451). The sequences flanking TF 

binding sites can have a pronounced affect on TF binding and this has been 

reflected in differential binding and gene expression observed in vitro (452). 

DNA conformation can contribute to differential binding to TF to various DNA 

sequences and it is thought that variation in the flanking region of a TF binding 

site could mediate an effect via DNA conformation (453).  

 

5.1.3 Genetic Enhancers 
 

Enhancers are DNA elements that interact with trans-acting factors to enhance 

transcription. Enhancers contain sequence motifs, which bind TFs (307). 

Variants can affect enhancer function by altering the binding affinity of 

regulatory proteins to the region or disrupt chromosomal conformations. 

Enhancers are thought to act via a looping mechanism where the enhancer and 

promoter physically interact allowing the exchange of transcriptional machinery 

and the stimulation of transcription (308, 454). This enhancer-promoter 

interaction is dependent on the 3 dimensional shape of the DNA, which could 

be affected by sequence variants. For example, a variant was identified that 

destabilised the enhancer-promoter loop with the OCA2 gene, resulting in its 

downregulation (455). 

 

eQTLs are also capable of influencing transcriptional elongation, 

co-transcriptional splicing, mRNA processing and modification and post 

transcriptional processing, such as mRNA degradation, polyadenylation and 

miRNA targeting (3). The ways by which eQTLs can influence gene expression 

is summarised in figure 5.1.  
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5.1.4 Non-coding GWAS hits can identify variants that influence 

gene regulation 

 

In vitro assays have been used to successfully investigate non-coding GWAS 

hits and have identified functional molecular mechanisms influenced by risk 

SNPs that affect gene regulation. For example, rs11603334 is in complete 

linkage disequilibrium (LD) with rs1552224, a SNP at the ARAP1 locus 

significantly associated with type-2 diabetes (456). Gene reporter assays were 

used to show that the risk rs11603334 allele showed a two-fold increase in 

transcriptional activity in rat insulinoma b-cell lines. Further investigations found 

Figure 5.1. Regulatory mechanisms that can be affected by eQTL SNPs that can affect 

gene expression. eQTLs can affect epigenetic modifications and transcription initiation 

processes such as TF binding, histone modifications, enhancer activity and methylation. eQTLs 

can also affect transcriptional and co-transcriptional processes, such as splicing, mRNA 

processing and modification. eQTLs can also affect post-transcriptional mRNA processing, 

such as mRNA degradation, polyadenylation and targeting by miRNAs. Image adapted from 

(3). 
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that the rs1160334 risk allele disrupted PAX6 and PAX4 binding to the locus, 

both of which are transcriptional regulators (457). These data suggest 

rs11603334 is a functional variant regulating ARAP1 expression and that 

changes in ARAP1 expression may be the molecular consequence of the 

variants at this locus associated with Type 2 diabetes.  

 

Variants located far from the gene can have an affect of gene regulation. A 

SNP located approximately 1.8 Kb upstream from the start codon of ADRB2 

which was associated with obesity proved to be functional by affecting the 

binding affinity of nuclear factors, resulting in decreased ARDB2 expression 

(458). Furthermore, a pathway-based approach showed that 

phenotype-associated variants could be located up to 2 Mbs from the affected 

gene (459). 

 

As the BIN1 index SNP, plus LD partners (r2>0.8), associated with LOAD is 

located approximately 30 Kb upstream of BIN1, it could be possible, as 

discussed in chapter 4, that this region could function as a regulatory DNA 

element genetic enhancer and the risk mechanism may have its effect by 

disrupting regulatory function.  

 

5.1.1 Aims 
 

This chapter aims to identify AD risk variants located in genomic sites of 

regulatory potential by utilising publically available databases containing ChIP-

Seq and DNase-Seq data to investigate histone modification, local chromatin 

structure and protein binding. The regulatory activity of these elements will 

then be determined by implementing a gene reporter assay and an 

electrophoretic mobility shift assay (EMSA), both of which will examine the 

impact of rs6733839.  
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This investigation uses a number of disease relevant cell lines. The H4 cell line 

originated from a human neuroglioma and has been used in many AD cell 

biology investigations (409, 460-463). BIN1 depletion was investigated within 

this cell line and its affect on APP processing and endocytosis is discussed in 

chapter 3. Furthermore, chapter 4 describes regulatory features seen at the 

BIN1 locus within brain tissues.  

 

Monocytes are a type of white blood cell that is critical in innate immunity. 

Monocytes function in the immune response, in phagocytosis and can 

differentiate into macrophages and dendritic cells at the site of inflammation 

(464-466). Macrophages function in phagocytosis and in the innate and 

adaptive immune response by recruiting other functional immune cells. As the 

genetics of LOAD has implicated the immune response in AD pathology (180), 

such cell types would make an appropriate model. The human acute monocytic 

leukemia cell line, THP-1, resembles primary monocytes (375) and can be easily 

differentiated into a macrophage phenotype upon exposure to phorbol 12-

myristate 13-acetate (467). 

 

Microglia are the central nervous system’s resident macrophage and a key 

component in neuroinflammation. Microglia survey the brain and are actively 

involved in maintaining the brains microenvironment by rapidly responding to 

pathogens or damage (468, 469).  Microglia activation is a critical event in the 

neuroinflammatory response and microglia mediated chronic 

neuroinflammation has been linked to a number of neurological diseases, 

including AD (470). Due to this functional link to AD, two microglia cell lines 

were used to investigate BIN1 regulation. This investigation used both the 

immortalised human microglia SV40 cell line and the immortalised murine 
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microglial BV2 cell line, which has been described as a valid substitute for 

primary microglia (373, 376). 
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5.2 Methods 

 

5.2.1 Interrogating databases to investigate protein binding, 

histone modifications and chromatin structure at the BIN1 risk 

locus  

 

HaploReg v4.1 annotates regulatory regions of the genome (431). The 

database uses data from The NIH Roadmap Epigenomics Mapping Consortium 

to annotate variants in a haplotype block with specific chromatin features (471). 

RegulomeDB v1.1 (accessed 18.5.17) compiles data from various sources to 

identify DNA features and describes regulatory elements found in the human 

genome (432). These tools were used to investigate the genomic features 

surrounding rs6733839 in blood and immune cells 

(http://archive.broadinstitute.org/mammals/haploreg/haploreg.php, accessed 

2.8.2017).  

 

The NIH Roadmap Epigenomics Mapping Consortium is a public resource of 

human epigenomic data (6). The resource contains data generated from next 

generation sequencing technologies that map DNA methylation, histone 

modification and chromatin accessibility across the genome in numerous 

tissues and cell types. In this investigation, this database was utilised to 

investigate H3K4me1 and H3K27ac modifications at the BIN1 risk locus in brain 

tissue and monocyte cells and chromatin accessibility at this region within the 

monocyte cell type (http://www.roadmapepigenomics.org/ accessed 7.7.2017). 

Pott et al performed ChIP-Seq for the TF SPI1 on the THP-1 monocyte cell line 

(4). This data were accessed using Cistrome Dataset Browser, a comprehensive 

database of multi-resourced ChIP-Seq and DNase-Seq data, to determine SPI1 

binding at the BIN1 locus (http://cistrome.org/db/#/ accessed 7.7.2017) 
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5.2.2 Characterisation of Enhancer Activity using a Gene Reporter 

Assay 

 

To investigate how the BIN1 genomic region surrounding rs6733839 influences 

gene expression, this region was cloned upstream of the minimal promoter to 

act as a response element in the pGL4.23 plasmid, which encodes the 

luciferase reporter gene luc2 (Photinus pyralis). Variants of the BIN1 locus 

investigated differed in size, orientation and rs6733839 genotype in order to 

determine their effects of gene expression. Bioluminescence was quantified 

from the cells and acted as a proxy for luc2 expression. The Dual-Luciferase® 

Reporter Assay System (Promega) was used in this gene reporter investigation. 

 

5.2.2.1 Generating the plasmids 

 

The Cistrome Dataset Browser was used to access ChIP-Seq data, which was 

used to investigate TF binding at the BIN1 risk locus and determine potential 

enhancer regions for cloning. SPI1 binding regions in THP-1 cells showed TF 

binding within the region surrounding rs6733839. PCR primers were designed 

to amplify the genomic region surrounding rs6733839.  Primer pair one was 

designed to amplify a region of 693bp, which spanned the entire SPI1 binding 

region identified by ChIP-Seq data. Primer pair two was designed to amplify a 

region of the genome where there was a dip in histone modifications identified 

using NIH Roadmap Epigenomics Mapping Consortium data, indicative of 5’ 

end sequencing bias. Primer pair two amplified a region of 235bp surrounding 

rs6733839 to investigate a more localised effect of the variant. The PCR 

products were to be cloned into the KpnI cloning site in pGL4.23, therefore the 

KpnI recognition sequence was incorporated into the primers along with 
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additional bases required for restriction enzyme digests. The primer sequences 

are described in table 5.1. 

 

Table 5.1. PCR primers used to amplify enhancer regions at BIN1 risk locus 

Primer 

Set 1 

Forward Primer 

5’-3’ 

CGATGGTACCAGAAACTGAGGCCAACTCCA 

Reverse Primer 

5’-3’ 

CGATGGTACCACCCCTGTTTCCTCCTCTGT 

Primer 

Set 2 

Forward Primer 

5’-3’ 

CGATGGTACCCCTGAGCCCCACTAAGATGA 

Reverse Primer 

5’-3’ 

CGATGGTACCAGCATCGAGACTTCCCCTTC 

 

DNA was amplified from sequenced CEU gDNA samples used in The 

International HapMap Project (472). The samples used were homozygous for 

either the non-risk or risk rs6733839 allele and shared common genotypes at 

all other SNPs amplified in these products. The PCR reagents and 

thermocycling conditions are described in table 5.2 and 5.3. PCR product size 

was confirmed via gel electrophoresis and purified using the QIAquick PCR 

purification kit (Qiagen). 
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Table 5.2. PCR reagents used in high fidelity PCR used to amplify BIN1 enhancer regions 

Reagent Volume per Reaction (μL) 

Water 32.5 

5X Herculase II reaction Buffer 10 

dNTPs (25mM) 0.5 

DNA  4 

10μM Forward Primer 1.25 

10μM Reverse Primer 1.25 

Herculase II fusion DNA polymerase 0.5 

 

Table 5.3. Thermocycling conditions used to amplify BIN1 enhancer regions  

Step Temperature (°C) Time (Seconds) Cycle 

1 95 120  

2 95 20  

3 58 20  

4 72 30 Repeat Step 2-4 30 times 

5 72 180  

 

Following amplification, the PCR product and pGL4.23 were digested 

separately by KpnI. The restriction enzyme digest reagents are described in 

table 5.4. The digestion reaction was incubated at 37°C for 1 hour. Once the 

pGL4.23 digestion had been incubated for 1 hour, 2.5 units of Shrimp Alkaline 

Phosphatase (NEB) was added to prevent religation of the plasmid, and this 

was incubated for a further 30 minutes at 37°C. Once all incubation steps were 

completed, the digestion products were purified using the QIAquick PCR 

purification kit (Qiagen) and the concentration of DNA determined using a 

NanoDropTM 8000 Spectrophotometer (Thermo Scientific).  
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Table 5.4. Reagents for KpnI restriction enzyme digestion of PCR product and plasmid 

Restriction Digest Reagent Volume per Reaction (μL) 

1 μg DNA - 

NEB Buffer 1.1 5 

KpnI (NEB) 1 

Total Volume 50 

 

Each digested PCR insert was ligated into the digested pGL4.23 plasmid. The 

ligation reaction was carried out at a 12:1 insert to vector ratio. 100 ng of 

vector was combined with the appropriate amount of insert for a 12:1 ratio. A 

no-insert ligation negative control was performed. The reaction volume was 

then adjusted to 10 μL with the addition of water. 10 μL of 2X T7 Ligation 

Buffer and 1 μL of T7 ligase (NEB) was added and thoroughly mixed. This 

reaction was incubated at RT for 30 minutes.  

 

The ligation products were transformed into Subcloning EfficiencyTM DH5αTM 

Competent Cells (Thermo Fisher Scientific). 5 ng of ligation product was added 

to 50 μL DH5αTM Competent Cells and incubated on ice for 30 minutes. A 

Puc19 positive transformation control was performed. The cells underwent heat 

shock by being incubated at 42°C for 20 seconds then incubated on ice for 2 

minutes. 950 μL of pre-warmed LB broth was added to the cells and then 

incubated in a shaking incubator at 225 rpm, at 37°C for 1 hour.  20 μL of each 

transformation was spread onto a LB plate containing 100 μg/mL ampicillin. 

The plates were incubated ON at 37°C. 

 

A colony PCR was performed on clones present following incubation to 

determine the presence of the desired inserts. Primer set 1 and 2 described in 

table 5.1 were used. PCR reaction reagents and thermocycling conditions are 

described in table 5.5 and 5.6. Bacterial colonies were picked and tip placed in 
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PCR reagents. The tip was then placed into LB media containing ampicillin (100 

μg/mL).  

 

Table 5.5. Colony PCR reagents 

Reagent Volume per Reaction (μL) 

PCR Buffer (10X) (Qiagen) 5 

10mM dNTPs 1 

10μM Forward Primer 0.5 

10μM Reverse Primer 0.5 

Water 17.75 

HotStarTaq DNA Polymerase 0.25 

 

Table 5.6. Colony PCR thermocycling conditions 

Step Temperature (°C) Time (Seconds) Cycle 

1 95 900  

2 95 40  

3 58 30  

4 72 60 Repeat step 2-4 30 times 

5 72 900  

 

PCR products were visualised via gel electrophoresis and colonies indicating 

the presence of the appropriate sized insert were expanded and cultured ON. 

Plasmids were isolated from these colonies using a QIAprep Spin Miniprep Kit 

(Qiagen). Isolated plasmids were sequenced to confirm the presence of the 

desired insert and determine the orientation of the insert (sequencing primers 

are described in table 5.7). 10 μL of plasmid was purified using the AMPure 

PCR purification system (Agencourt®) on the Biomek® NXP Laboratory 

Automation Workstation (Beckman Coulter).  5 μL of AMPure cleaned product 
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was combined with 5 μL of forward or reverse primer (5 pmol/μL). This was 

sequenced by GATC Biotech’s LIGHTrunTM Sequencing service. 

 

Table 5.7. Sequencing primer sequences located in pGL4.23 to sequence insert 

Left Sequencing Primer (5’-3’) CGCTCTCCATCAAAACAAAA 

Right Sequencing Primer (5’-3’) TCGAGCTTCCATTATATACCCTCT 

 

5.2.2.2 Co-transfection of pGL4.23 and pGL4.73 into H4, Microglia-SV40, 

HEK293 and BV2  

 

Following plasmid verification, plasmids were transfected into a number of cell 

lines. Microglia SV40, H4, BV2 and HEK293 cell lines were transfected using 

Lipofectamine 3000 [protocol described in Chapter 2.2.2]. Cells were plated 

into 24 well plates and incubated for 24 hours prior to transfection. All cells 

were co-transfected with pGL4.73 that encodes the luciferase reporter gene 

hRluc (Renilla reniformis) to act as a control for transfection efficiency. For each 

biological replicate, cells were independently transfected with pGL4.23 

plasmids containing both sized BIN1 inserts, in both orientations and with a risk 

or non-risk allele. Each transfection was repeated using plasmids that 

originated from independent transformed E.coli clones. Additional controls 

included transfecting cells with the same amount empty pGL4.23 containing no 

insert to determine baseline levels of expression from this plasmid and 

transfecting cells with pGL3-basic vector, which has no enhancer region, to 

distinguish background levels of luc2 expression. Additional transfection 

parameters are described in table 5.8. Following transfection, cells were 

incubated at 37°C in 5% CO2 for 48 hours. Non-transfected controls (NTC) 

were also performed.  
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Table 5.8. Transfection conditions for gene reporter assay in H4, microglia and BV2 cells 

 Plating 

Density 

(cells/ 

well) 

Amount of 

luc2 

expressing 

plasmid 

(ng/well) 

Amount of 

empty 

pGL4.23 

(ng/well) 

Amount 

of pGL3-

basic 

(ng/well) 

Amount of 

hRluc 

expressing 

plasmid 

(ng/well) 

H4 3 x 104 600 600 600 20 

Microglia 3 x 104 300 300 300 5 

HEK293 8 x 104 300 300 300 1 

BV2 2 x 104 1000 1000 1000 10 

 

5.2.2.3 Optimising transfection of THP-1 cells 

 

Optimisation of plasmid transfection using a GFP expressing plasmid was 

attempted in the THP-1 cell line to determine whether this cell line could be 

used for gene reporter assays. Transfection optimisation was performed on 

non-differentiated and differentiated THP-1 cells.  THP-1 differentiation was 

performed by adding phorbol 12-myristate 13-acetate to a final concentration 

of 100nM to the culture medium and culturing the cells for 24 hours. The 

phorbol 12-myristate 13-acetate was then removed and replaced with normal 

culture media and transfected as normal. The transfection variables 

investigated are described in table 5.9. All transfection permutations were 

performed in 24 well plates and transfection efficiency was determined by 

visualising GFP expression using a fluorescent microscope. [The Lipofectamine 

3000 transfection protocol is described in Chapter 2.2.2].  

 

LipofectamineTM 2000 reagent transfection requires cells to be plated out at 

their required density 24 hours prior to transfection. On the day of transfection, 
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the desired amount of DNA is made up to 25 μL with Opti-MEM into one tube. 

The desired volume of Lipofectamine 2000 Reagent is made up to 25 μL with 

Opti-MEM in another tube. The contents of each tube is then combined at a 

1:1 ratio and incubated at RT from 5 minutes. During this time, Lipid-DNA 

complexes form. Following incubation, 50 μL of DNA-lipid complex is added to 

each well and incubated for 48 hours. A NTC was also performed. 

 

Table 5.9. Transfection conditions investigated to optimise transfection in THP-1 cells 

Transfection condition variable Quantities investigated 

Number of cells/well 2 x 104 3 x 104 4 x 104 6 x 104 

Amount of GFP (ng/well) 300 600 900 1000 

LipofectamineTM 2000 reagent (μL/well) 3 5 - - 

LipofectamineTM 3000 reagent (μL/well) 1 1.5 2 2.5 

 

5.2.2.4 Dual-luciferase Assay 

 

Dual luciferase reporter (DLR) assays were performed using the 

Dual-Luciferase®  Reporter Assay System (Promega UK Ltd, Southampton UK). 

Following the post transfection 48-hour incubation, cell lysates were produced 

using passive lysis buffer. 5X passive lysis buffer (supplied with DLR kit) was 

diluted 1:5 used ddH2O. The transfection medium was removed from cells and 

cells were washed in PBS. 100 μL of 1X passive lysis buffer was added directly 

to cells.  The 24-well plate containing passive lysis buffer was agitated and 

incubated at RT for 15 minutes.  

 

Reconstituted Luciferase Assay Reagent II (LARII, supplied with kit) was thawed 

at RT. 1 volume of 50X Stop & Glo® Substrate was added to 50 volumes of 

Stop & Glo® Buffer. 20 μL of cell lysate was added to a luminometer plate 
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(Sigma). 100 μL of LARII was added to each well containing cell lysate. 

Luminescence was measured using a MicroLumatPlus LB96V Microplate 

Luminometer (EG&G Berthold). The measurement interval varied depending 

on cell type. Luminescence was quantified in the H4 and BV2 cells over a 10 

second interval and a 1 second interval in the HEK293 cells. Each well was 

measured at least twice.  Once luminescence from the LARII reaction had been 

measured, 100 μL of 1X Stop & Glo® Substrate was added and mixed. 

Luminescence generated from hRluc activity was then measured.  

 

Quantified luminescence was blanked to NTC cell lysate readings. Each LARII 

reading is normalised to its own Stop & Glo® Substrate reading. Stop & Glo® 

Substrate reading measures hRluc expression and this can be used to 

normalise for transfection efficiency. Each normalised luminescence reading 

was then normalised to the pGL3-basic vector or empty pGL4.23 within its 

biological replicate. If the data were normalised to pGL3-basic expression, data 

were then normalised against the average luminescent reading from empty 

pGL4.23 vector across all biological replicates. Three biological replicates were 

performed in the H4 and BV2 cells. In the HEK293 cells, 10 biological 

replicates were performed using sense-orientated enhancers and 14 biological 

replicates were performed in antisense orientated enhancers. Data were 

expressed as a fold change of expression from the empty pGL4.23 vector. Data 

were analysed via Student’s t-test or one-way ANOVA.  

 

5.2.3 Electrophoretic Mobility Shift Assay 

 

In order to investigate the effect of rs6733839 on protein-DNA interactions an 

electrophoretic mobility assay (EMSA) was performed. This technique is based 

on the notion that DNA-protein complexes will migrate slower than unbound 

DNA in a polyacrylamide gel and therefore changes in migration patterns due 
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to protein binding can be distinguished. An EMSA allows investigations into 

the cell types not used in the gene reporter assay and may yield more 

functionally relevant results.  

 

5.2.3.1 Annealing Oligonucleotides 

 

Biotinylated and non-biotinylated complementary oligonucleotides were 

designed to incorporate 50 bp around rs6733839 with both risk and non-risk 

alleles (Integrated DNA Technologies, Leuven, Belgium). Oligonucleotides 

sequences are described in table 5.10.   

 

Table 5.10. Oligonucleotide sequences used in EMSA 

Oligonucleotide DNA sequence 5’-3’ 

Biotinylated Non-Risk 

Sense  

/5Biosg/AAATCTCTGTTCTGCTTCTTAAAAACACC

CTTTTCCCCTTTTTACTTTCAG-3’ 

Non-Risk Sense AAATCTCTGTTCTGCTTCTTAAAAACACCCTTTTC

CCCTTTTTACTTTCAG 

Non-Risk Antisense CTGAAAGTAAAAAGGGGAAAAGGGTGTTTTTAA

GAAGCAGAACAGAGATTT 

Biotinylated Risk 

Sense 

/5Biosg/AAATCTCTGTTCTGCTTCTTAAAAATACC

CTTTTCCCCTTTTTACTTTCAG 

Risk Sense AAATCTCTGTTCTGCTTCTTAAAAATACCCTTTTCC

CCTTTTTACTTTCAG 

Risk Antisense CTGAAAGTAAAAAGGGGAAAAGGGTATTTTTAAG

AAGCAGAACAGAGATTT 

 

Biotinylated oligonucleotides of the risk or non-risk alleles were annealed to 

non-biotinylated complementary oligonucleotides for visualisation. 

Non-biotinylated oligonucleotides of the risk or non-risk alleles were also 
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annealed to non-biotinylated complementary oligonucleotides for use as 

competitors.  

 

To anneal oligonucleotides, complementary oligonucleotides were mixed 

together in a 1:1 ratio. Oligonucleotides were diluted to a final concentration 

of 1 pmol/μL in Tris buffer (10mM Tris, 1mM EDTA, 50mM NaCl (pH 8)). 

Oligonucleotides were annealed using a thermocycler and the following 

conditions: 95°C for 5 minutes, -1°C per 60 second cycle repeated 70 times. 

Independent annealing reactions were carried out per biological replicate. 

 

5.2.3.2 Nuclear Protein Extraction 

 

Nuclear protein was extracted from HEK293, BV2 and THP-1 cell lines using 

NE-PER Nuclear and Cytoplasmic Extraction Reagents (Thermo Fisher 

Scientific). HEK293 cells were harvested using trypsin and then centrifuged at 

500 x g for 5 minutes. THP-1 cells are harvested by centrifugation at 500 x g for 

5 minutes. BV2 cells in suspension were harvested by centrifugation, and 

adherent cells were trypsinised and then harvested via centrifugation. The 

supernatant was removed and cells were washed in PBS. 1-10 x 106 cells were 

transferred to a microcentrifuge tube and centrifuged for 3 minutes at 500 x g 

and the supernatant removed. Protease inhibitors were added to CER I reagent 

just prior to use. 100 μL of ice-cold CER I reagent was added per 1 x 106 cells, 

vortexed for 15 seconds and then incubated on ice for 10 minutes. 5.5 μL of 

ice-cold CER II reagent was added per 1 x 106, vortexed and incubated on ice 

for 1 minute. The sample was vortexed then centrifuged for 5 minutes at 4°C at 

16000 x g.  

 

The nuclear pellet was suspended in ice-cold NER (50 μL per 1 x 106) cells. The 

sample was vortexed for 15 seconds then incubated of ice for 40 minutes. 
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During this incubation, the sample was vortexed every 10 minutes. The sample 

was centrifuged for 10 minutes at 4°C at 16000 x g. The supernatant 

containing the nuclear extract is transferred to a pre-chilled tube and stored at 

-80°C. Protein concentrations were determined by BCA assay [method 

described in Chapter 2.3.1].  

5.2.3.3 Protein Binding Reactions 

 

Binding reactions and visualisation was performed using LightShift® 

Chemiluminescent EMSA Kit (Thermo Fisher Scientific). For HEK cells, 8 μg of 

nuclear extract was used per binding reaction. For THP-1 cells and BV2 cells, 

10 μg of nuclear extract was used per binding reaction. To optimise the 

binding reaction, one of the optional reagents was added to each reaction 

(reagents listed in table 5.11). Binding reactions were performed with and 

without the competitor unlabeled oligonucleotides.  

 

Table 5.11. Reagents for the optimisation of the binding reaction 

Reagent Final Amount 

Water Make up to 20 μL 

10X Binding Buffer 2 μL 

Poly (dI!dC) 1 μg/μL 1 μL 

Optional: 50% Glycerol 1 μL 

Optional: 1% NP-40 1 μL 

Optional: 1M KCl 1 μL 

Optional: 100mM MgCl2 1 μL 

Optional: 200mM EDTA 1 μL 

Unlabeled Target DNA (1 pmol/μL) 0/4 μL 

Protein Extract 8/10 μg 

Biotin End-Labeled Target DNA 20 fmol 

 



  Chapter 5 

 194 

Reagents were added in the order listed in table 5.11. Prior to the Biotin End-

Labeled Target DNA being added, the reaction is incubated at RT for 15 

minutes. Once the Biotin End-Labeled Target DNA was added, the reaction 

was incubated at RT for a further 20 minutes. This optimisation was performed 

using both risk and non-risk allele oligonucleotides.  

 

Following optimisation, the optimal binding reaction used THP-1 nuclear 

extract and EDTA. A free DNA control was performed where the binding 

reaction contained biotinylated DNA but no competitor non-labeled DNA and 

no nuclear protein. A nuclear protein:DNA binding reaction was performed 

which contained 10μg of nuclear protein and biotinylated DNA. A competitor 

reaction was performed which contained 10 μg of nuclear protein, biotinylated 

DNA and non-biotinylated DNA to show that the protein binding was specific. 

In addition, a supershift assay was performed which involved the nuclear 

protein-DNA binding reaction being carried out as normal, then following the 

protein binding incubation, 2 μL of SPI1 antibody (Santa Cruz Biotechnology-

sc352) was added and incubated for 30 minutes at RT. If SPI1 is bound to the 

biotinylated oligonucleotides, the antibody will bind and therefore result in 

slower migration during electrophoresis. A supershift negative control was 

performed which used 2 μL of Human IgG Isotype Control antibody (Thermo 

Fisher Scientific). All reaction conditions were performed using risk and non-risk 

oligonucleotides and performed in three biological replicates. The binding 

reaction and supershift reactions are described in table 5.12. 

 



  Chapter 5 

 195 

Table 5.12. Summary of binding and Supershift reactions performed using THP-1 nuclear 

protein and EDTA reagent 

Reagent Free 

DNA 

control 

Nuclear 

protein 

– DNA  

Competitor Supershift Supershift 

negative 

control 

Water Make up 

to 20 μL 

Make up 

to 20 μL 

Make up to 

20 μL 

Make up to 

22 μL 

Make up to 

22 μL 

10X 

Binding 

Buffer 

2 μL 2 μL 2 μL 2 μL 2 μL 

Poly 

(dI!dC) 1 

μg/μL 

1 μL 1 μL 1 μL 1 μL 1 μL 

200mM 

EDTA 

1 μL 1 μL 1 μL 1 μL 1 μL 

Unlabeled 

Target 

DNA (1 

pmol/μL) 

0 μL 0 μL 4 μL 0 μL 0 μL 

Protein 

Extract 

0 μg 10 μg 10 μg 10 μg 10 μg 

Biotin End-

Labeled 

Target 

DNA 

20 fmol 20 fmol 20 fmol 20 fmol 20 fmol 

SPI1 

antibody 

0 μL 0 μL 0 μL 2 μL 0 μL 

Human IgG 

Isotype  

0 μL 0 μL 0 μL 0 μL 2 μL 
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5.2.3.4 Visualisation of the Protein DNA interaction 

 

A 5% Mini-PROTEAN® TBE precast DNA gel (Bio-Rad) was used to separate 

DNA oligonucleotides. The gel was placed into an electrophoresis unit filled 

with 0.5X TBE and the gel was pre-electrophoresed for 30 minutes by applying 

100V. Once the binding reaction was complete, 5 μL of 5X loading buffer was 

added to the samples and then 20 μL loaded into the gel. 100V was applied 

and the gel was electrophoresed for 50 minutes.  

 

The positively charged Biodyne B Nylon Membrane (Thermo Fisher Scientific) 

was soaked in 0.5X TBE for 10 minutes. The gel, nylon membrane and blotting 

paper were sandwiched and transferred to an electrophoretic transfer unit. 

0.5X TBE cooled to 10°C was used as transfer buffer. 100V was applied for 20 

minutes in order to transfer protein and DNA from the gel to the membrane.  

 

Once the transfer was complete, the membrane was placed on a dry paper 

towel to allow the buffer to absorb into the membrane. The transferred DNA 

was cross-linked to the membrane by placing the membrane face down on a 

UV transilluminator for 15 minutes.  

 

Blocking and Wash buffers were warmed to 37°C to ensure particulates were 

dissolved. The membrane was incubated with gentle shaking in blocking buffer 

for 15 minutes. The blocking buffer was then replaced with Stabilised 

Streptavidin-Horseradish Peroxidase Conjugate diluted 1:300 in blocking 

buffer and incubated for 15 minutes with gentle shaking. The 

conjugate/blocking solution was replaced with 1X wash buffer. This wash buffer 

was removed and replaced with more wash buffer and incubated for 5 minutes 

with gentle shaking. This wash step was repeated a further three times. The 

membrane was transferred to a new container and incubated in Substrate 
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Equilibration Buffer for 5 minutes with gentle shaking. The membrane was 

removed from the buffer and excess liquid drained. The Substrate Working 

Solution (Luminal/Enhancer Solution and Stable Peroxide Solution mixed at a 

1:1 ratio) was added to the membrane and incubated for 5 minutes without 

shaking. The Substrate Working solution was removed from the membrane and 

excess buffer blotted from the membrane. The chemiluminescence was 

visualised using The OMEGA LUMTM G Imaging System (Aplegen).    

 

Bands were quantified using ImageJ software [as described in Chapter 2.5]. To 

compare risk alleles to non-risk alleles, the density of the bands were 

expressed as a ratio and then a one-sampled t-test performed.  

 

 



  Chapter 5 

5.3 Results 

 

5.3.1 Publically available data indicates BIN1 risk locus may be 

regulatory active in immune cells 

 

The HaploReg v4.1 database provides evidence that rs6733839 may be within 

a regulatory region active in Hematopoetic stem cells, B cells and CD14+ 

monocytes. ChIP-Seq data shows enhancer and promoter associated 

modifications in this region in these tissues, with some evidence of enhancer 

modifications in T cells (figure 5.2).   
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Figure 5.2. HaploReg v4.1 output for rs6733839 region in blood and immune cell types. 

HaploReg v4.1 provides evidence for enhancer features in hematopoietic stem cells, B-cells 

and primary mononuclear cells from peripheral blood. There is also evidence of enhancer and 

promoter features in CD14+ Primary monocytes cells. 7_Enh indicates enhancers. 13_EnhA1 

and 14_EnhA2 indicates active enhancers. 16_EnhW1 and 17_EnhW2 indicate weak enhancers. 

H3K4me1_Enh and H3K27ac_Enh indicate histones modifications associated with enhancers. 

H3K4me3_Pro and H3K9ac_Pro indicate histone modifications associated with promoters. 

DNase indicates DNase Hypersensitivity. Black indicates that the assay was not performed in 

this tissue.  

 

RegulomeDB Version 1.1 has a scoring system based on the functional 

confidence of a variant from 1 to 6. Lower scores indicate increasing evidence 

for the variant to be located in a functional region. Known eQTL variants are 
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given a category 1 score, whereas variants lacking any functional annotation 

are labeled as category 6. RegulomeDB Version 1.1 annotates rs6733839 with 

a score of 5, suggesting this variant lies within a TF binding or DNase peak, but 

does not disrupt the site of binding (432). Using data from Pique-Regi et al, 

rs6733839 is annotated to lie in the proximity of MEF-2 and SPI1 binding 

motifs (436). ENCODE data suggests rs6733839 lies in a DNase Hypersensitive 

Site in monocyte CD14+ monocyte cells and B-Lymphocytes (437). 

ChromHMM regulatory regions, which utilises data from the Roadmap 

Epigenomics Project to annotate chromatin state (6, 438), describes the region 

as an enhancer in primary hematopoietic stem cells and primary CD14+ 

monocytes. 

 

ChIP-Seq data from Roadmap Epigenomics Project in CD14+ monocyte cells 

shows the region surrounding rs6733839 has evidence of H3K4me1 and 

H3K27ac indicative of enhancer activity. DNase-Seq data showed that in 

CD14+ monocyte cells, this region is sensitive to DNase and is therefore a site 

of open chromatin, again consistent with this region being an active regulatory 

element (figure 5.3).  Furthermore, ChIP-Seq data from human macrophages 

also indicates H3K4me1 and H3K27ac modifications at the BIN1 locus and 

DNase-Seq in macrophages also indicated this region is sensitive to DNase 

and is therefore a site of open chromatin (1) (figure 5.4). 
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Figure 5.3. ChIP-Seq data from Roadmap for CD14+ monocytes. Image shows 

approximately 6 Kb surrounding rs6733839. X-axis is genomic location. Y-axis is normalised 

read counts, i.e., the greater the peak height, the more commonly this modification is found at 

this location. The green marker indicates the location of rs6733839. A and B show the 

presence of histone modifications that are indicative of enhancer activity surrounding 

rs6733839 (H3K4me1 and H3K27ac). C and D show area of open chromatin and DNase 

hypersensitivity surrounding rs6733839.  All modifications are suggestive of regulatory activity 

within CD14+ monocytes at this locus. Data from (6).  

 

127,895,500127,895 K127,894,500127,894 K127,893,500127,893 K127,892,500127,892 K127,891,500127,891 K127,890,500127,890 K

0

82

0

82

0

82
GSM1102793 Histone H3K4me1 ChIP-Seq of CD14 Primary Cells; Histone.DS22403 NA000020634.1

0

20

0

20

0

20
GSM1102782 Histone H3K27ac ChIP-Seq of CD14 Primary Cells; Histone.DS22926 NA000020623.1

0

29

0

29

0

29
GSM701541 Chromatin accessibility assay of CD14 Primary Cells; DS17889 NA000021912.1

0

140

0

140

0

140
GSM1024791 UW_DnaseSeq_Monocytes-CD14+_RO01746Rep2 NA000014576.1

rs6733839rs7584040

A"

B"

C"

D"
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greater the peak height, the more commonly this modification is found at this location. The 
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H3K27ac). C indicates area of DNase hypersensitivity surrounding rs6733839.  All modifications 

are suggestive of regulatory activity within human macrophages at this locus. Data from (1). 
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These tools were then used to investigate regulatory modifications at the BIN1 

locus in brain tissue. In contrast to the monocyte data, there were fewer 

histone modifications indicative of enhancer activity across a number of 

different brain tissues (figure 5.5). The histone and open chromatin profiles 

surrounding the rs6733839 locus suggests that this region might have 

regulatory functions in immune cell types but not brain tissue.  
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! !Figure 5.5. ChIP-Seq data from NIH Roadmap Epigenomics Mapping Consortium across a 

number of brain regions. . X-axis is genomic location. Y-axis is normalised read counts, i.e., 

the greater the peak height, the more commonly this modification is found at this location. 

Approximately 8 Kb is displayed with the location of rs6733839 indicated by the highlighted 

green marker. H3K4me1 and H3K27ac modifications are displayed across a number of brain 

regions: Anterior caudate, cingulate gyrus, hippocampus middle, angular gyrus, inferior 

temporal lobe, brain germinal matrix, substantia nigra and mid frontal lobe. Data indicates low 

levels of histone modification in these regions, suggesting this region is less regulatory active 

in brain regions than in monocytes. Data from (6). 
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Further to the histone modification data, Cistrome DB was used to investigate 

TF binding at the BIN1 locus. ChIP-Seq performed in the THP-1 human 

monocytic cell line and from human macrophages identified SPI1 binding at 

the BIN1 risk locus (figure 5.6 and figure 5.7 respectively).  

 

 
Figure 5.7. ChIP-Seq data indicate SPI1 binding at the BIN1 locus in human macrophages. 

X-axis is genomic location. Y-axis is normalised read counts, i.e., the greater the peak height, 

the more commonly this modification is found at this location. The location of rs6733839 is 

indicated by the green highlighted marker. Data are taken from (473). 

 

5.3.2 Gene Reporter Assay 

 

As ChIP-Seq data indicates the presence of enhancer modifications and TF 

binding at the BIN1 risk locus, a gene reporter assay was designed to 

characterise the enhancer function of this locus in multiple cell lines.  

Figure 5.6. ChIP-Seq data indicate SPI1 binding at the BIN1 locus in THP-1 cell line. . X-

axis is genomic location. Y-axis is normalised read counts, i.e., the greater the peak height, 

the more commonly this modification is found at this location. The location of rs6733839 is 

indicated by the green highlighted marker. Data are taken from (4). 
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5.3.2.1 Amplification of potential enhancer regions of interest 

 

Primers were designed to amplify potential enhancer regions to clone into the 

luciferase expressing plasmid pGL4.23. Primer set 1 was designed to amplify 

the entire potential SPI1 binding region shown in figure 5.6. An additional 

primer set was designed to amplify a more localised region surrounding 

rs6733839 that spanned the dip in the histone modifications (figure 5.3). A 

high-fidelity PCR was optimised to amplify these regions and the PCR products 

were visualised via gel electrophoresis (figure 5.8). 

5.3.2.2 Validation enhancer cloning into pGL4.23 

 

Following successful amplification of samples containing the appropriate 

genotype, inserts were ligated into pGL4.23 and transformed into competent 

E.coli.  A colony PCR was performed on the transformed clones. The colony 

PCR identified clones that likely contained the insert present as appropriately 

sized PCR products were observed (figure 5.9).  Clones that indicated the 

presence of the desired insert were further cultured and plasmid DNA was 

isolated. The plasmid DNA was purified and sent for Sanger sequencing which 

confirmed the presence of the desired insert, its orientation in relation to the 

endogenous promoter and its rs6733839 genotype. A representative 

chromatogram is shown in figure 5.10. No other DNA changes were observed. 

[Full insert sequences are shown in Appendix 2]. 

 

Figure 5.8. High f idelity PCR amplif ies potential 

enhancer regions for insertion into pGL4.23 plasmid. 

Lane A shows the 693 bp fragment that encompasses the 

SPI1 binding region. Lane B shows the localised 235bp 

fragment surrounding rs6733839. 
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Figure 5.9. Colony PCR indicating transformed clones that contained cloned enhancer 

region. Each lane contains PCR products amplified from a different clone. A) PCR 

products from E.coli transformed with plasmid containing the 693 bp fragment with the 

non-risk allele. B) PCR products from E.coli transformed with plasmid containing the 693 

bp fragment with the risk allele. C) PCR products from E.coli transformed with plasmid 

containing the 235 bp fragment with the non-risk allele. D) PCR products from E.coli 

transformed with plasmid containing the 235 bp fragment with the risk allele. 
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5.3.2.3 Luciferase activity in H4 cell line indicates potential orientation-

specific enhancer function  

 

Plasmids were transfected in the H4 cell line [as described in Chapter 2.2.2]. 

The data were normalised to expression from the empty pGL4.23 for each 

biological replicate. Three biological replicates were performed using clone 1. 

Replication of the results was attempted using a second independent clone, 

which had originated from a separate transformed E.coli colony. Results are 

shown in figure 5.11. A Levene’s test revealed the data to have unequal 

variances. A one-way ANOVA revealed a significant difference in luciferase 

activity between the test groups. A Dunnett’s T3 test was performed to make 

pairwise comparisons.  

 

 

 

 

Figure 5.10. Representative chromatograms from pGL4.23 plasmids containing BIN1 

r isk locus. A) Shows an insert homozygous for the non-risk rs6733839 allele in the antisense 

orientation (highlighted in blue). B) Shows a plasmid homozygous for the risk rs6733839 

allele orientation (highlighted in blue).  
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There are significant differences between orientations observed. There is a 

significant difference between the orientations of the 639 bp risk allele 

(p=0.026) and the non-risk allele (p=0.019). No other orientation specific 

differences were observed.  

 

Enhancer size appeared to have a significant effect on the non-risk allele. A 

significant difference between the 639 bp and 235 bp antisense orientated 

non-risk allele was observed (p=0.021) and a significant difference between the 

639 bp and 235 bp sense orientated non-risk allele was observed (p=0.010). 

 

Finally, some allele specific changes in luciferase activity were detected. In the 

693 bp and the 235 bp antisense orientated enhancer a significant allele 

Figure 5.11. Luciferase expression in H4 cell line expressed as a fold change in 

comparison to the empty pGL4.23 plasmid. Three biological replicates were performed 

using clone one. One biological replicate was performed using clone 2. *p≤0.05. Error bars 

indicate SEM. 
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specific difference in luciferase was observed (p=0.025 and p=0.049 

respectively). In the 693 bp sense orientated enhancer a significant allele 

specific difference in luciferase was observed (p=0.019). Despite these results, 

the inconsistencies between clones suggest further validation is required.  

 

The most consistent relationship between allele and enhancer size with 

expected biology is enhancers in the antisense orientation, therefore this 

orientation was further investigated in other cell types. Three independent 

clones originating from separate transformed E.coli colonies were preliminarily 

screened and two independent clones were used in future experiments. As 

only three clones were screened, this introduces an element of selection bias. 

Therefore, further validation of results would require replication in a greater 

number of independent clones.   

 

5.3.2.4 SV40 Microglia cell line was incompatible with this luciferase 

reporter assay 

 

Microglia were transfected with antisense oriented enhancer plasmids and 

appropriate controls. Three biological replicates were performed. 

Luminescence was quantified in 20 μL of cell lysate over 10 seconds. 

Luminescence originating from the firefly luciferase reached the maximum 

possible reading on the plate reader used. This result was true for all cellular 

populations, including the NTC. Luminescence originating from the Renilla 

luciferase was measured at variable levels in transfected cells, which is 

expected as this expression is used to normalise for transfection efficiency. 

Very low levels were detected in the NTC, consistent with background 

luminescence.  This result suggests that microglia appear to express a protein 

that reacts with the LARII reagent to produce luminescence (figure 5.12).   
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To determine if changes in luciferase expression could be detected despite the 

high levels of background luminescence a reduced volume of lysate was 

measured (10 μL) and luminescence was quantified over 1 second 

measurement interval. Despite reduced levels of luminescence being 

quantified, high levels were detected in the NTC (figure 5.13).  

Figure 5.12. Luminescence readouts from pGL4.23 and pGL4.73 in the microglia cell line. 

Data are from three biological replicates. High levels of luminescence detected from firefly 

luciferase were detected in all cellular populations, suggesting something present in the 

microglia cells interacts with LARII to produce luminesces. Luminescence from Renilla luciferase 

is measured at expected levels. Error bars indicate SEM. 
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With the reduced cell lysate volume and reduced measurement interval the 

luminescence readout from transfected cells was variable and high levels of 

luminescence was detected from the NTC. In a troubleshooting attempt to 

determine what was causing the high levels of background luminescence, a 

luciferase assay was performed on microglia media, H4 media, collagen 

coating, NTC microglia and H4s and cells transfected with pGL4.23. The 

luminescence readouts from the various conditions investigated are shown in 

figure 5.14. This revealed that it was not the media or collagen coating that 

was causing the high levels of background luminescence. There is nothing in 

the literature that suggests that this microglia cell line expresses luc2 but they 

Figure 5.13. Luminescence readout from the microglia w ith reduced lysate and 

measurement interval. High levels of luminescence produced from the firefly luciferase 

are recorded in all cellular populations and measurements are variable. Reliable data 

were not yielded when using reduced lysate volume and measurement intervals. Error 

bars indicate SEM. 
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appear to produce a substrate that interacts with the LARII enzyme to produce 

luminescence. This indicates that the microglia cell line is an inappropriate cell 

line to use in this assay.  

5.3.2.5 HEK293 cell line show orientation specific enhancer activity 

 

HEK293 cells were transfected with two independent clones that had been 

previously screened. Luminescence data were normalised to the expression 

from the pGL3-basic vector for each biological replicate. The data were then 

further normalised to the average expression from the empty pGL4.23 vector 

across all biological replicates. For enhancers in the sense orientation, 10 

Figure 5.14. Luminescence readout from microglia troubleshooting investigation. Low levels 

of luminescence were detected in all cell culture medium and in H4 cells. The high levels of 

luminescence are detected in transfected and no-transfected microglia, suggesting microglia 

endogenously express something that interacts with LARII to produce luminescence. This makes 

this cell line incompatible with this experimental design. Error bars indicate SEM. 
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biological replicates were performed. For enhancers in the antisense 

orientation, 14 biological replicates were performed.  

 

Initially a Student’s t-test was performed to determine the effect of orientation 

on luciferase activity. There was a significant difference in average fold change 

of luciferase activity between all antisense orientated enhancers and sense 

orientated enhancers (p≤0.001). The sense-orientated enhancers showed 

minimal luciferase activity, less so than the empty control vector, and were 

therefore excluded from further analysis (figure 5.15). It is possible that this lack 

of activity is due to this region having silencer functions in the sense orientation 

resulting in repression of gene expression.  

 

Figure 5.15. Fold change in luciferase activity from sense orientated enhancers in 

HEK293 cells. Sense orientated enhancers reduced luciferase activity in comparison to the 

empty control vector and were therefore excluded from further analysis. N=10. Error bars 

indicate SEM. 

 

A one-way ANOVA revealed a significant difference in luciferase activity 

between the antisense orientated enhancers (p≤0.001). A Tukey’s HSD test 

performed multiple comparisons between the groups.  A significant decrease 
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in luciferase activity was observed in the 235 bp enhancer when compared to 

the 693 bp enhancer in the non-risk allele (p=0.015) and the risk allele 

(p=0.013). No allele specific effect on luciferase activity was observed. Data are 

shown in figure 5.16.  

 

5.3.2.6 Preliminary data in the BV2 cells 

 

In an attempt to generate gene reporter data from a microglial cell type, the 

assay was performed in the mouse microglia cell line BV2 using enhancers in 

the antisense orientation. Despite low transfection efficiency, six biological 

replicates were performed using two independent clones and data were 

normalised to expression from the empty pGL4.23 vector per biological 

replicate. A one-way ANOVA revealed no significant differences between the 

enhancers (p=0.631). Despite no significant changes being observed, the 

expression patterns could be reflective of real biological mechanisms and, if 
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Figure 5.16. Fold change in luciferase expression from antisense orientated enhancers. 

Significant differences were observed between 639 bp and 235 bp enhancers. *p≤0.05. No 

allele specific effect was observed. N=14. Error bars indicate SEM. 
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efficient transfection was achieved, may yield significant results. Data are 

shown in figure 5.17. 

  

Figure 5.17. Luciferase expression in the BV2 cell line. Data are expressed as a fold change 

in luciferase expression in comparison to the empty pGL4.23 plasmid Data suggests a potential 

risk allele affect, but efficient transfection was not achieved. N=6. Error bars indicate SEM. 
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microscopy. Transfection was performed on undifferentiated and phorbol 12-

myristate 13-acetate differentiated cells, but despite altering a number of 

variables, efficient transfection was not achieved and therefore the gene 

reporter assay was not performed in these cells.  
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5.3.3 EMSA showed that nuclear proteins interact with the BIN1 

risk locus 

5.3.3.1 EMSA optimisation in HEK293, THP-1 and BV2 cells 

 

The EMSA was optimised in a number of cell lines to determine the optimal 

conditions for DNA:protein interactions. The optimisations were performed in 

the HEK293, THP-1 and BV2 nuclear extract. Optimisations involved screening 

a number of reagents to identify optimal binding conditions and this was 

performed on both the risk and non-risk allele. Blots were overexposed to 

image faint bands present due to protein binding (figure 5.18). This could not 

detect the binding of nuclear proteins to the BIN1 risk locus in the HEK293 cell 

line. Nuclear proteins bound specifically to the BIN1 locus in the THP-1 and 

BV2 cells, but binding was more prominent in the THP-1 cells. The optimisation 

performed in the THP-1 cells showed minimal differences between conditions, 

but the clearest bands were observed in the binding reaction containing EDTA, 

therefore this condition was used in future investigations. 
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5.3.3.2 EMSA indicates SPI1 binds to the BIN1 risk locus in THP-1 cells 

 

The optimised EMSA was performed in three biological replicates using the 

THP-1 cells. A supershift assay was also performed using a SPI1 antibody. 

Images were taken at low exposure to get unsaturated images of the free DNA 

and at high exposure to get clear images of the shifted bands. The two bands 

suggestive of protein:DNA interaction were quantified using ImageJ software. 

Shifted bands were normalised to free DNA to take into account loading 

errors. [Full method of quantifying bands is described in Chapter 2.5]. Data 

were then expressed as a risk:non-risk protein-binding ratio. The lack of bands 

in the lanes containing the competitor DNA indicates the binding is specific to 

the BIN1 risk locus. A one-sampled t-test showed no significant difference in 

protein binding for either band in the non-supershifted reactions in relation to 

genotype (p=0.564 (top band) and p=0.432 (bottom band)).   

 

In the supershifted reaction, a supershift has occurred, indicating SPI1 or an 

SPI1 containing complex is bound to the BIN1 risk locus.  The SPI1 bound 

bands were quantified using ImageJ. The average risk:non-risk protein-binding 

ratio was 0.655. This was revealed not to be significantly different from 1 in a 

one-sampled t-test (p=0.069), but is showing a potential trend. There is still an 

unsupershifted band present following SPI1 supershifting, suggesting that 

proteins other than SPI1 also bind this region. Data are shown in figure 5.19.  
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Figure 5.19. Representative EMSA and supershift assay performed in the THP-1 cell line. 

Images were processed using ImageJ. Three biological replicates were performed. Shifting 

indicates proteins are interacting with the rs6733839 plus the surrounding sequence. The 

presence of supershifting when using the SPI1 antibody indicates that SPI1 binds to, or is 

present in a protein complex which binds to the BIN1 risk locus. No significant differences in 

DNA: protein binding between risk and non-risk alleles was detected.

Allele Risk Non+Risk Risk Non+Risk 

Nuclear0protein + + + + + + + + + + 

Compe6tor + + + + + + + + + + 

SPI10an6body + + + + + + + + + + 

IgG0only + + + + + + + + + + 

Free0DNA0

DNA0Protein0Interac6on0

SPI10bound0DNA0
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5.4 Discussion 

 

ChIP-Seq data indicates modifications indicative of active regulatory 

mechanisms are present at the BIN1 risk locus within monocytes and immune 

cells. Data from ChIP-Seq was used to design a gene reporter assay. This 

revealed that the BIN1 risk locus is capable of acting as an enhancer and that 

the entire TF binding region is required for optimal function. The risk allele did 

not have a significant affect on enhancer function. DNA:protein binding assays 

revealed that nuclear proteins bind to the BIN1 risk locus in THP-1 cells and 

one of these proteins is SPI1.   

 

5.4.1 ChIP-Seq data imply regulatory function in monocytes and 

macrophages 

 

Data from HaploReg and RegulomeDB suggest rs6733839 lies within a 

genomic region that has regulatory potential in blood and immune cell types. 

Data from HaploReg and RegulomeDB describing rs6733839 in neuronal and 

brain tissue has been previously discussed in chapter 4 and also indicates 

regulatory elements are present at this locus within these tissues.  

 

ChIP-Seq data from The Roadmap Epigenomics Project denotes H3K4me1 and 

H3K27ac histone modifications and an open chromatin structure surrounding 

rs6733839, suggesting active enhancer activity, within monocytes and 

macrophages (figure 5.3 and 5.4). Furthermore, SPI1 TF binding was shown in 

the monocytic cell line THP-1 and macrophages further implicating a regulatory 

function at this genomic location (figure 5.6 and 5.7). This is in contrast to brain 

tissues, which showed minimal evidence of regulatory function at this locus 

(figure 5.5). 
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Monocytes are circulating leukocytes that are central in the innate immune 

system. Monocytes are incompletely differentiated phagocytic cells that give 

rise to a heterogeneous mononuclear phagocyte lineage in response to stress 

signals by expressing a variety of cell surface molecules, determining functional 

response (474, 475). When monocytes leave the blood and enter the affected 

tissue, they differentiate into macrophages, a specialised cell that detects, 

phagocytoses and destroys pathogens (466, 476). Microglia are the CNS 

resident macrophage and survey the brain for pathogens (54). 

 

Numerous studies have linked neuroinflammation and AD pathology (477).  

Aβ deposition in the brain has been shown to induce inflammation, monocyte 

recruitment, infiltration and activation in the brain vasculature (478, 479). In 

post mortem brains of AD patients, activated microglia surround the Aβ 

plaques (480). Furthermore, the presence of Aβ can prime microglia cells, 

making them susceptible to secondary stimulus or promotes their activation 

(481). In AD, Aβ sustains chronic activation of primed microglia, leading to the 

production of inflammatory cytokines and chemokines, ultimately leading to 

neurodegeneration and neuronal loss (482). 

 

Vascular patrolling monocytes have also been shown to act to eliminate soluble 

Aβ and microglia are implicated in Aβ clearance (483, 484). In addition, there is 

evidence that systemic and local chronic inflammation may contribute to 

neurodegeneration (485, 486).  

 

Recent investigations are now beginning to link genetic mechanisms to 

immune cells and function. AD GWAS variants are enriched in enhancer 

orthologues with an immune function, implicating immune processes in AD. 
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This enrichment was stronger in distal enhancers over promoter regions, 

implicating distal enhancers in AD risk. One of the loci investigated was BIN1 

and was shown to be an active enhancer in BV2 and neuroblastoma cells (487). 

Furthermore, evidence suggests that variants exhibiting functional marks for 

chromatin accessibility, such as histone modifications and DNase I 

hypersensitivity, in immune cells significantly contribute to the heritability of 

AD (488).  

 

5.4.2 BIN1 risk allele can act as an regulatory element 

 

In the H4 cells, the BIN1 risk allele had a variable affect on luciferase activity. In 

some cases (antisense non-risk 693 bp, antisense non-risk 235 bp and sense 

risk 693 bp) expression in relation to the empty vector was significantly 

reduced and similar levels observed to that of the promoterless pGL3-basic 

vector, indicating the regulatory element has detrimental effects on expression 

and may abolish promoter function or act a genetic silencer.  

 

In the sense orientation, no obvious pattern in changes of gene expression 

were observed and there are inconsistencies between independent clones, 

indicating further validation of these results is required. In the antisense 

direction, again there are inconsistencies between clones, but there does 

appear to be a pattern of increased activity in the risk allele (figure 5.11). 

Although this result has not been replicated, this would be consistent with 

observations of increased BIN1 mRNA in the frontal cortex of AD patients 

(261).  

 

The HEK293 cell line, although not disease relevant was used in this 

investigation due to its wide use, reliability during transfection and neuronal 
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phenotype. The efficient transfection and replication in independent clones 

generated consistent data that could reflect genuine biology. Firstly, a 

Student’s t-test revealed the alleles were acting in an orientation specific 

manner, the sense orientation shows approximately a third of the expression of 

the empty vector, whereas the antisense orientation shows between an 

average 2.7 and 5.7 fold increase in activity (figure 5.15 and 5.16).  

 

It has long been thought that enhancer’s function independent of orientation. 

A recent study found that sequence orientation could impact chromosome 

architecture and effect proper enhancer-promoter interactions. It was found 

that orientation of the CTCF recognition sequence determined the formation 

of specific DNA looping interactions between promoters in mammalian cells 

(489). CTCF is a zinc finger DNA binding protein which functions as an insulator 

binding protein with a key role in genome looping (490, 491). Therefore it 

could be possible that the BIN1 allele also functions in an orientation specific 

manner.  

 

Secondly, a significant increase in activity was observed when the entire TF-

binding region identified by ChIP-Seq was present in comparison to the 

localised region in the antisense orientation. In the non-risk allele containing 

enhancers, an average 1.7 fold increase was seen in the 693 bp fragment 

compared to the 235 bp fragment (p=0.015). For the risk allele containing 

enhancers, an average 1.5 fold increase in activity was seen in the 693bp 

fragment compared to the 235 bp fragment (p=0.013). This suggests that this 

entire TF region is required for optimal regulatory activity, rather than the 

localised region surrounding rs6733839.  

 



  Chapter 5 

 224 

The action of TFs can be influenced by a number of local features, such as the 

binding of additional TF, histone modification and chromatin remodeling. It 

may be that for optimal transcription regulated by TFs the entire 693 bp is 

required to create the appropriate environmental conditions.    

 

The final gene reporter observation suggests the risk allele has no significant 

effect on enhancer function. The 693bp fragment showed an average of 25.3% 

increase in activity with the risk allele in comparison to the non-risk allele, 

however this results was not significant (p=0.235). The 235 bp fragment 

showed an average 41.4% increase in activity with the risk allele, but this was 

again not significant (p=0.263). Despite not being significant, this consistent 

observation of an increase in activity with the risk allele suggests it may have 

the potential to influence gene expression and this effect could be more 

prominent in a more disease relevant cell line. Alternatively, it could be that 

rs6733839 is not a functional variant at this locus, but is tagging an unknown 

functional variant that influences regulatory elements at this region of the 

genome.  

 

In the BV2 cell line, luciferase activity was very variable due to poor transfection 

efficiency and few biological replicates. However this data does show a pattern 

of reduced enhancer activity with the risk allele and this pattern is consistent 

between enhancer sizes. Although replication is needed, this preliminary data 

may be reflective of genuine biology and a directional change in rs6733839 

risk allele could demonstrate how the effect of risk SNPs may be different in 

different cell types.  

 

As only a small difference in luciferase activity was observed between alleles, 

this may also be due to limitations of the gene reporter assay. Small changes in 
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reporter activity can be due to a number of confounding factors such as 

plasmid DNA concentration or quality (492). Another factor affecting the 

accuracy of the assay is the limited availability of regulatory proteins within the 

cell. During transfection, many copies of the reporter gene can enter the cell. 

However, as TFs are generally present at low concentrations in the cell, few of 

these gene copies will encounter all of the necessary proteins required for 

proper function of the control region (493). This will result in reporters 

expressing at different levels depending on their encounter with the required 

proteins (494, 495). In addition, the enhancer activity observed in the reporter 

assay may not be entirely reflective of endogenous enhancer activity as 

endogenous chromatin conformations cannot be formed and this may play a 

vital role, specifically in long-range enhancers.  

 

Ideally this experiment would have been performed in all potential disease 

relevant cell lines available. Despite efficient transfection in the SV40 microglia 

cells, as demonstrated by the Renilla readouts, the SV40 microglia line 

appeared to produce a substrate that reacted with the LARII enzyme to 

produce luminescence, making this cell line incompatible with this gene 

reporter system (figure 5.12). The firefly luciferase gene luc2, is most commonly 

used in reporter assays due to its sensitivity and convenience, but alternative 

reporter genes are available. Cypridina luciferase and Gaussia luciferase can be 

used as reporter genes and originate from different organisms and therefore 

avoid the use of the LARII enzyme and may not produce background 

luminescence.  

 

Efficient transfection of the THP-1 cells was not achieved using lipofection-

based technologies. Efficient transfection of the THP-1 cells has been 

described using nucleofection, which uses electroporation as a delivery 



  Chapter 5 

 226 

method (496). As this approach was outside the scope of this project, BV2 cells 

were used as an alternative, but nucleofection could be utilised in the future.  

 

5.4.3 DNA surrounding rs6733839 binds SPI1 in THP-1 cells 

 

The shift in the EMSA indicated that THP-1 nuclear proteins bind to the DNA 

sequence containing rs6733839. Protein binding at this region suggests a 

regulatory function, which is consistent with the ChIP-Seq and gene reporter 

data (although the gene reporter assay was not performed in this cell line). 

Quantification of the bands indicated that rs6733839 did not affect overall 

protein binding (figure 5.19).  

 

The additional shift observed when the SPI1 antibody is present indicates that 

either SPI1 binds to this locus or SPI1 is present in a protein complex that binds 

to this locus. This is consistent with the ChIP-Seq data from Pott et al (figure 

5.6). SPI1, also known as PU.1, is a TF, which acts as a master regulator of 

myeloid and lymphoid development and is highly expressed in monocytes 

(497). The SPI1 locus was found to be associated with LOAD in a gene-wide 

study in 2014 (141) and evidence has since been found that reduced SPI1 

expression may decrease AD risk (498). When quantifying the bands, a 

non-significant 35% reduction of SPI1 bound protein was observed with the risk 

allele compared to the non-risk allele (p=0.069). Although this result is 

approaching significance, due to the faintness of the shifted bands, the 

imaging required over exposure, reducing the accuracy of the quantification 

process. Therefore to have confidence in this result, further validation would be 

required (figure 5.19). 
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Following SPI1 mediated supershifting, a faint band remains, indicating the 

presence of proteins other than SPI1 bound to the BIN1 risk locus. Further 

investigation would focus on identifying this protein or proteins. Initial work 

would focus on MEF-2 TF, which has been shown to have a binding motif close 

to rs6733839. 

 

Although this EMSA was performed in THP-1 cells, a ChIP-Seq study in the BV2 

cell line identified over 5000 SPI1 targeted protein coding genes, one of which 

was BIN1. A pathway analysis of these SPI1 targeted genes identified diverse 

functional pathways essential for normal monocyte/macrophage function, 

including endocytosis (499). This finding links BIN1, SPI1 and endocytosis to 

monocyte and macrophage function, which is consistent with observations in 

this thesis. Therefore all these factors may function in a common biological 

mechanism which when dysregulated could increase risk for AD. 

 

5.4.4 Future Work 

 

Ideally, the ChIP-Seq, gene reporter and EMSA assays would be performed 

across of all of the cell lines in order to create a more comprehensive 

characterisation of the regulatory activity of this locus across multiple cell 

types. Further assay optimisation would be required for this to be achieved.  

 

As ChIP-Seq data suggests rs6733839 is located within a regulatory genetic 

element and EMSA data suggests it is located in a SPI1 binding region in the 

THP-1 cell line, this could justify the use of CRISPR to generate isogenic cellular 

models with risk or non-risk rs6733839 allele. TF action and regulatory 

mechanisms can change depending on the state of the cell. A CRISPR model 

would allow the characterisation of the regulatory changes at the BIN1 locus 
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across cell states, such as monocyte differentiation or microglia activation. This 

would help to determine whether rs6733839 has a significant effect when cells 

are in a particular state. 

 

Furthermore, CRISPR-mediated epigenome editing could be implemented to 

investigate the functional significance of the BIN1 risk locus in the regulation of 

BIN1, or potentially other genes, across multiple cell types and cell states. This 

technique is capable of targeting specific DNA regulatory elements with 

proteins that induce transcriptional silencing, such as the KRAB protein that 

triggers the formation of heterochromatin, or transcriptional activation, such as 

the HAT domain that acetylates histones (500, 501). 

 

Master regulators, such as SPI1, function in combination with other TFs to 

create cell type specific regulatory regions (502), suggesting other TFs may 

have an effect at this locus. MEF-2 is a family of transcriptional regulators, 

which are encoded by four mammalian genes MEF-2-A, -B, -C and –D. MEF-2C 

was identified to be significantly associated with LOAD in the 2013 meta-

analysis (p=3.2 x 10-8) (140). MEF-2C is a TF that has been implicated in 

learning and memory, synaptic plasticity and control of synapse number (503-

505). Furthermore, MEF-2C has been identified to function in combination with 

other regulators to create a distinct chromatin landscape in microglia (506). 

 

RegulomeDB V 1.1 describes rs6733839 as in the vicinity of a MEF-2 binding 

motif as well as SPI1 (436). It could be possible that MEF-2C also binds to this 

locus, and rs6733839 may affect its binding or function. Therefore, repeating 

the EMSA across the cell lines using a MEF-2C antibody may show a cell type 

or allele specific effect on MEF-2C function at the BIN1 locus. 
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5.4.5 Concluding remarks 

 

Data from ChIP-Seq studies, gene reporter assays and the EMSA all indicate 

that the BIN1 locus is implicated in gene regulatory mechanisms, unfortunately 

all these techniques could not be replicated in all of the available cell lines of 

interest. Despite this, this chapter provides evidence for further work at this 

locus. From these results, rs6733839 does not appear to have a significant 

impact on gene regulation. Future work would focus on determining whether 

the regulatory action of this locus differs between cell type and functional state 

and whether rs6733839 elicits its effect in a particular cell environment. SPI1 

binds to the BIN1 locus and may play a role in BIN1 regulation. Other 

AD-associated TFs may also be of interest and their function at this locus could 

be determined. 
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6. General Discussion 

 

This thesis investigated GWAS findings in a cellular and molecular context in 

order to shed light on potential risk mechanisms for AD. A number of 

approaches have been used which have investigated the impact of global BIN1 

and CD2AP depletion on disease relevant cellular processes as well as BIN1 

expression and regulation in relation to specific AD associated DNA variants.  

 

6.1 BIN1 and CD2AP have opposing effects of the processing 

of APP 

 

Chapter 3 aimed to investigate the impact of BIN1 and CD2AP depletion on 

APP processing and clathrin mediated endocytosis (CME). Many of the AD 

associated genes function in the APP processing pathway in some manner. 

Understanding how these genes interact together and affect Aβ generation will 

expand the understanding of AD pathogenesis and allude to risk mechanisms.  

 

As BIN1 and CD2AP have both been implicated in endocytosis, they were both 

individually depleted to ascertain loss of protein function on disease processes. 

As both proteins are thought to function in the same pathway, depletion of 

both proteins could produce a greater effect or counter the effect of each 

other.  Therefore BIN1 and CD2AP were depleted in combination to determine 

the shared or additive effect on biological processes if loss of function was 

seen in both genes simultaneously. Data suggested that BIN1 and CD2AP 

depletion had broadly opposing affects on APP processing, which appeared to 

be independent of CME function. 
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6.1.1 BIN1 depletion indicates alternative risk mechanisms to CME 

 

BIN1 depletion resulted in an increase in β-CTF generation in the H4 

neuroglioma cells. BACE1 levels showed an apparent increase however data 

was inconsistent at the point of measuring and therefore were not significantly 

increased. BIN1 depletion in mouse neuroblastoma N2a cells transiently 

expressing human wild type APP was shown to increase Aβ generation. 

Although overall BACE1 levels were not measured, defective BACE1 recycling 

back to the plasma membrane was observed causing an increase in APP and 

BACE1 convergence in the early endosome, which was thought to contribute 

to the increased Aβ generation (259). In the N2a cell line, BIN1 depletion was 

also found to impair BACE1 trafficking from the early endosome to the 

lysosome, reducing BACE1 degradation and increasing cellular BACE1 levels 

(quantified via western blotting) (407). The consistent increase in β-CTF 

observed in BIN1 depleted H4 cells could potentially be explained by an 

increase in BACE1 activity or cellular BACE1 levels, however BACE1 was not 

consistently increased. Although the overall levels of BACE1 did not 

significantly change, the localisation of BACE1 in BIN1 depleted H4s may 

contribute to the increase in β-CTF levels. The cellular location of BACE1 was 

not determined during this investigation therefore any effect on BACE1 

trafficking remains unknown.  

 

Contradicting data from an investigation that studied gene expression in AD 

inferior temporal cortex samples showed a positive correlation between BIN1 

expression and β-secretase activity, which was quantified with the use of 

β-secretase-specific fluorogenic substrate peptides conjugated to fluorescent 

reporter molecules (507). This observation contradicts investigations carried 

out in vitro, this could be potentially explained by the different cell type 

specific functions and isoforms of BIN1. As BIN1 is thought to interact directly 
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with BACE1 via the BAR domain (407) present in all BIN1 isoforms, BIN1 could 

affect BACE1 levels differently in multiple cell types. Investigations using brain 

tissue do not resolve different cell types and therefore the results may mask 

cell type specific effects. To understand how BIN1 may be affecting BACE1 in 

the H4 cell line, the BIN1 isoforms present and BIN1:BACE1 interactions would 

need to be determined.  

 

BIN1 depletion had no effect on CME in the H4 cells. In neurons, BIN1 

depletion resulted in increased CME, as detected by increased transferrin 

uptake. However, neurons contain the neuron specific isoform 1 of BIN1. The 

CLAP domain is thought to be important for BIN1 function in CME (233). The 

exons encoding CLAP domain of BIN1 is encoded by alternatively spliced 

exons exclusive in the seven brain specific isoforms. Isoform 1 contains all 

exons encoding the CLAP domain, which was proved to be essential for CME, 

as overexpression of isoforms lacking the CLAP domain had no effect on CME 

(253). As BIN1 depletion did not affect CME, it may be that these cells do not 

have CLAP domain containing BIN1 isoforms. Determining the BIN1 isoforms 

present in the H4 cell line may help explain the effect on CME observed.  

 

Furthermore, neurons express amphiphysin 1 (AMPH1), a neuronal paralog of 

BIN1. AMPH1 is predominantly found in the neuronal synapse and is crucial for 

CME as it plays a major role in the fission of the clathrin coated pit to form a 

vesicle (508). AMPH1 is also implicated in endocytic recycling (249). It could be 

that AMPH1 may compensate or exacerbate the functional effects of BIN1 

depletion and could contribute to the discrepancies in the functional impact of 

BIN1 depletion observed between neurons and other cell types. A reduction in 

AMPH1 has been observed in AD patients and reduced levels have been 

observed in brain regions with aggregated tau protein (509), suggesting 

AMPH1 may also be involved in AD pathobiology. The H4 cell line is unlikely to 
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express AMPH1, therefore it may be that BIN1 depletion in neurons affects 

AMPH1 which impacts on CME, whereas this affect is not observed in other cell 

types that do not express AMPH1.  

 

Techniques such as CRISPR screening technologies can now be used to 

determine all genes involved in a particular biological mechanism. Loss of 

function CRISPR screening has identified genes essential for cell proliferation, 

drug resistance and viral infection (510-513). This approach could be used to 

determine which genes are essential for CME, or other disease processes, in 

disease relevant cells. This could determine cell type specific effects of AD 

associated genes or implicate new genes in disease mechanisms not currently 

investigated in AD.   

 

BIN1 likely affects multiple risk mechanisms for AD in a vast amount of different 

tissues and cellular processes due to the numerous BIN1 isoforms. BIN1 

isoforms differ in their tissue distribution and cellular functions (227, 230, 231, 

514, 515). Not only is the BAR domain, capable of inducing membrane 

curvature, present in all isoforms, but so is the SH3 domain, which is 

responsible for the interaction with a number proteins involved in endocytosis 

(233). Exon 7 is an alternatively spliced exon encoding the BAR domain that 

allows interaction with dynamin 2 (516, 517). Dynamin 2 is ubiquitously 

expressed and involved in endocytosis, vesicle recycling, membrane fusion and 

microtubule stability (518). It is therefore possible that the different BIN1 

isoforms have the potential to bind different proteins involved in endocytosis 

and could affect endocytic processes via multiple mechanisms.  

 

In addition to BIN1 function in CME and APP processing, BIN1 has also been 

implicated in tau pathology. The level of the smaller BIN1 isoform 9, which has 

elevated expression in AD brains, correlated with the number of neurofibrillary 
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tangles (NFTs). Isoform 9 is predominantly expressed in astrocytes and this 

correlation may be due to reactive astrocytosis and be a consequence of 

neuronal loss (255). If NFT levels increase, this could result in increased 

neuronal death and could contribute to the shift in BIN1 isoforms levels. 

Furthermore, if BIN1 depletion results in increased Aβ production causing 

neuronal loss, the change in astrocyte predominant BIN1 isoforms could also 

be a consequence of this mechanism.  

 

BIN1 has been shown to physically interact with tau, a correlation between 

BIN1 expression and tau-mediated neurotoxicity has been observed and BIN1 

knockdown reduces tau neurotoxicity (261). Five CpG sites within the BIN1 

locus are associated with tau tangle density, potentially implicating epigenetic 

regulation of BIN1 with AD pathology (260). BIN1 appears to link the 

microtubule skeleton to the cellular membrane via the tubular membrane 

structures it forms, which may influence the formation of NFT. BIN1 has also 

been shown to interact with CLIP170, a microtubule associated protein 

involved in microtubule stability (519).  

 

Endocytic processes have been implicated in the cellular uptake and 

subsequent release of pathogenic tau contributing to tau propagation (520-

523). Neuronal BIN1 isoforms can inhibit tau propagation whereas the loss of 

BIN1 function promotes tau propagation in rat neurons. It is proposed that loss 

of BIN1 increases uptake and tau aggregates in the endosomes ultimately 

resulting in tau pathology (253). Although this thesis links BIN1 function to Aβ 

generation, this evidence suggests that it could impact on tau pathology, again 

suggesting that BIN1 could affect AD risk via multiple cellular mechanisms. 
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6.1.2 CD2AP depletion implicates BACE1 

 

CD2AP depletion reduced β-CTF and Aβ40 production, which was consistent 

with other reports in neuroblastoma cells expressing human APP, which 

showed CD2AP depletion reduced intracellular and secreted Aβ levels (280). 

CD2AP depletion resulted in decreased BACE1, which most likely contributes 

to the observed β-CTF and Aβ40 levels. Very little research has been done on 

the interaction of CD2AP and BACE1 and this may highlight a novel cellular 

mechanism, which may reduce amyloidogenic processing of CD2AP.  

 

In this investigation, CD2AP depletion did not affect cellular levels of APP but 

appeared to reduce amyloidogenic processing in the H4 cell line. 

Contradictory results in neurons show an increase in APP and Aβ production 

was observed when CD2AP was depleted and this was thought to be due to a 

decrease in APP degradation (259).  CD2AP depletion resulted in increased 

transferrin levels, suggesting increased internalisation via CME. As increased 

internalisation has been associated with increased Aβ generation (524), this 

suggests the mechanism by which CD2AP depletion reduces β-CTF and Aβ40 

production is independent of internalisation.  

 

Furthermore, a recent study has discovered a reduction in CD2AP expression 

in the peripheral blood lymphocytes of LOAD patients in a Chinese Han 

population, suggesting CD2AP may have a systemic involvement in LOAD 

(525). CD2AP has long been implicated in the immune response as it is 

associated with T-lymphocyte marker CD2, which stimulates T cell activation 

and the formation of the immunological synapse (526). As the immune system 

is becoming increasing implicated in AD, CD2AP likely contributes to disease 

risk by having a cell type specific effect on disease processes, including 

immune cells and neurons. Understanding the effect of CD2AP in different cell 
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types will give insight into cell type specific functions and how CD2AP may 

confer risk. 

 

6.1.3 Is BACE1 responsible for changes in β-CTF? 

 

As inhibition of CME is associated with an decrease in Aβ generation (524), this 

suggests that the effect observed on APP processing in BIN1 and CD2AP 

depleted cells is independent of CME. As BACE1 levels reflect β-CTF 

generation, this would suggest BACE1 is responsible.  

 

Levels of BACE1 have been shown to be elevated in AD (527). In a hAPP 

transgenic mice harbouring the human AD Swedish and Indiana mutations, 

whose pathology is comparable to human AD, BACE1 accumulated in late 

endosomes at the presynaptic terminal in vivo (528). Recent work has shown 

that over expression of SNAPIN reduced BACE1 levels in the late endosomes 

of hAPP mice (529). SNAPIN is exclusively located on synaptic vesicles and 

interacts with SNARE complex, which has a crucial role in mediated vesicle 

fusion (530). As this implicates vesicle fusion in BACE1 regulation and BIN1 and 

CD2AP interact with the plasma membrane, they could affect BACE1 levels via 

vesicle fusion rather than internalisation, similar to SNAPIN but in other cell 

types. Therapies targeting BACE1 have been shown to reduce BACE1 levels, 

reduce amyloid levels and rescue memory loss in APP transgenic rats, 

indicating BACE1 activity is an active pathological mechanism (531). 

 

6.1.4 BIN1 and CD2AP depletion suggest additional 

BACE1- independent risk mechanisms involved  

 

Depletion of BIN1 appears to counter the effects of CD2AP depletion on APP 

processing as no significant changes in APP, β-CTF, Aβ40, sAPPα or sAPPβ 
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were observed when both proteins are depleted. When BIN1 and CD2AP are 

both depleted, BACE1 levels are low as seen in the CD2AP only depleted cells. 

This suggests BIN1 may be rescuing the effects of CD2AP depletion on APP 

processing via a BACE1 independent mechanism. Previous work has suggested 

that BIN1 depletion results in increase amyloidogenic processing of APP due 

to increased BACE1 accumulation (259, 407) whereas the data in this thesis 

suggests an additional mechanism is involved.  

 

A large-scale siRNA screen attempted to map the regulatory landscape of APP 

processing. This identified a number of biological pathways that were involved 

in the regulation of APP processing. This included the “AD pathway” which 

included APP, γ-secretase complex, β-secretases and additional enzymes 

known to cleave APP. Additional significant pathways included “Notch 

receptor processing and trafficking”, “membrane protein ectodomain 

proteolysis” and“ Presenilin action in Notch and Wnt signaling”. Pathways 

were also associated with gene transcription, mRNA splicing, protein 

translation (532). Approximately half of the current genes associated with AD 

functioned in at least one of these pathways, suggesting these genes could 

influence APP processing via numerous different mechanisms.  

 

Understanding how AD associated genes affect APP processing is vital in 

understanding disease risk and pathology. A number of AD associated genes 

are being investigated for their effect on APP processing. For example, loss of 

ABCA7 function increases β-secretase activity and Aβ production (533, 534). 

PICALM depletion reduces β-secretase activity (409). Clearly the function of AD 

associated genes in APP processing is diverse and understanding how these 

genes work and interact together will be beneficial to understanding AD 

biology.  
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6.2 DNA variants can have cell type specific effects on gene 

regulation  

 

6.2 1 DNA variants influence the cis- regulation of BIN1 in 

prefrontal cortex tissue 

 

Although further work remains, investigating the effects of BIN1 depletion 

chapter 3 establishes a functional role of BIN1 in amyloidogenic processing in 

brain cells. If reduced expression of BIN1 results in increased amyloidogenic 

processing, it could be hypothesised that aberrant regulation of BIN1 in the 

brain may be a risk mechanism involved in AD. Although BIN1 levels in AD 

brains have been investigated and a change in expression has been reported, 

the direction of this change remains contentious (255, 256, 261). Chapter 4 

investigated cis-regulation of BIN1 in prefrontal cortex tissue to determine 

whether AD associated variants could influence BIN1 regulation.  

 

Differential allele expression of BIN1 was observed in prefrontal cortex tissue, 

implying that BIN1 is under the influence of cis-acting regulatory variation in 

this tissue. It also implies there is a DNA variant capable of influencing this cis-

regulation, resulting in different levels of allele expression when heterozygous. 

AD variants were investigated to determine whether they were likely to be the 

functional variant. Rs6733839, rs744373 and rs59335482 were not associated 

with differential allele expression. Rs7584040 was not significantly associated 

with differential allele expression, but was approaching significance (p=0.062). 

It could be possible that this intronic variant may reach significance with a 

greater sample size. Rs7584040 was identified in a conditional analysis 

(Majounie et al, in prep); therefore if rs7584040 was a functional variant that 
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affects the cis-regulation of BIN1, this could be the molecular explanation for 

this secondary association signal.  

 

Introns can include functional elements, such as intron splice enhancers and 

silencers that regulate alternative splicing (535, 536), trans-splicing elements 

(537) and other regulatory elements (538). Intronic polymorphisms can effect 

splicing by being located within a splice enhancer, branch point or by 

activating a cryptic splice site (539, 540).  

 

A number of functional intronic SNPs have been found to contribute to 

susceptibility of complex disease. Two intronic SNPs located in CD244, a gene 

associated with susceptibility to rheumatoid arthritis, have been shown to 

increase transcriptional activity (541). An intronic variant within FGFR2, a gene 

involved in breast cancer, alters the binding affinity of TF Oct-1/Runx2, leading 

to increased FGFR2 expression (542). Furthermore, intronic variants located in 

GSK3B, associated with increased risk for Parkinson’s disease, implicated 

splicing and the risk allele was associated with increased levels of GSK3N 

transcripts lacking exons 9 and 11 (543). 

 

As intronic variants have been shown to influence gene regulation via a 

number of mechanisms, rs7584040 could influence such regulatory elements in 

brain tissue. BIN1 expression in the brain of AD patients remains unclear, but 

studies in the prefrontal cortex of AD patients revealed BIN1 levels were 

increased in neurons, but decreased in the neuropil areas (257). This suggests 

that other cell types present or the axons and dendrites in the neuropil area 

have different BIN1 expression to neuronal cell bodies, indicating potential cell 

type specific expression of BIN1. This thesis demonstrates that reduction of 

BIN1 expression in non-neuronal brain cells increases β-CTF production. As this 

study suggests a decrease in BIN1 expression in the neuropil areas of AD 
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prefrontal cortex, this could suggest that non-neuronal brain cells contribute to 

the production of Aβ, causing neuronal death in the prefrontal cortex. This 

thesis used an allele specific expression approach to investigate BIN1 

expression in brain tissue; therefore BIN1 expression in specific cell types was 

not resolved. Further work could investigate the cis-regulation of BIN1 in 

specific brain cell types, which may yield more significant results.  

 

6.2.2 rs6733839 risk locus may be functional in immune cell types 

 

Rs6733839 was not found to be the functional variant causing the differential 

allele expression of BIN1 observed in prefrontal cortex tissue. However, 

chapter 5 identified chromatin modifications at the genomic region containing 

the index SNP, rs6733839, indicative of regulatory elements within monocytes 

using publically available ChIP-Seq and DNase-Seq data. This justified the in 

vitro study of this locus to investigate its ability to act as an enhancer in a 

number of disease relevant cell lines. A gene reporter assay in HEK293 cells 

determined that this locus is capable of acting as an enhancer in an orientation 

specific manner however the risk allele appears to have no significant affect on 

enhancer activity. As this locus was shown to have a regulatory function, this 

further implicates aberrant BIN1 regulation as a disease risk mechanism. 

Although this enhancer is likely to function in immune cell types, the gene 

reporter assay revealed enhancer function in the HEK293 cells. This is possibly 

due to limitations of the assay, as it does not model the cell type specific open 

or closed chromatin structure. In the reporter plasmids the enhancer is likely to 

have an open structure when transfected.  

 

Investigations into DNA:protein binding revealed that this locus binds 

transcription factor SPI1 in the THP-1 monocyte cell line, further implicating this 

locus in gene regulation within monocytic cell lines. Although rs6733839 
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genotype did not significantly affect protein binding in the THP-1 cells, it could 

be possible that it may have an affect in other immune cell types or specific cell 

states. These observations therefore provide additional evidence that the 

rs6733839 risk locus may confer its risk for AD by affecting gene regulatory 

factors in an immune cell type, however the utilised cell lines act only as a 

model and the results may differ in vivo where other cell types and tissue types 

are present.  

 

SPI1 is specifically expressed in cells of hematopoietic linage and is crucial for 

the development of the myeloid and lymphoid lineages, critical for immune 

function (544-547). Activation of the innate inflammatory response is observed 

in AD brains and mosaic BIN1 knockout mice show an increase in incidence of 

inflammation (548, 549). BIN1 functions in phagocytosis in macrophages and 

regulates the expression of IDO1. IDO1 is an enzyme involved in tryptophan 

catabolism whose upregulation is required for the defense against parasites 

and pathogens (550-553). IDO1 expression has also been localised to plaques 

and tangles in the brain (554). BIN1 mRNA levels in peripheral blood 

mononuclear cells and plasma BIN1 expression have been observed to be 

significantly increased in AD patients (263). Furthermore, a recent study which 

integrated epigenomic and transcriptomic annotations with heritability data, 

showed a strong enrichment for LOAD heritability in functional DNA elements 

related to innate immunity and indicated that monocyte functional elements 

are particularly relevant (555). If SPI1 binding to the BIN1 locus in immune cell 

types is affected by sequence variation, this could affect the efficient regulation 

of BIN1 expression. In addition to changes in APP processing, this could also 

have downstream consequences for phagocytic, IDO1 and immune function in 

myeloid and lymphoid cells, which could potentially act as another risk 

mechanism for AD. 
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As shown in this thesis, BIN1 expression can influence APP processing. 

Non-neuronal cells process APP and generate Aβ in a similar manner to 

neuronal cells however non-amyloidogenic processing is the more prominent 

pathway and appears to be γ-secretase dependent (556). A less common splice 

variant of APP, Leukocyte derived-APP (L-APP), lacks exon 15 and is expressed 

in leucocytes, microglia and astrocytes (557). L-APP is processed via similar 

mechanisms to other APP isoforms to produce Aβ and sAPP and therefore may 

potentially be used to provide peripheral models of APP processing in the 

brain (558). BIN1 dysregulation is such cell types could therefore potentially 

affect APP processing outside of the brain. 

 

ENCODE consortium data suggests that only 27% of distal regulatory elements 

interact with the closest promoter and that the average number of gene 

targets is 2.5 (313). Thus it could be possible that the BIN1 risk locus regulates 

genes other than BIN1. Chromatin conformation capture techniques could be 

implemented to determine the genomic locations this locus interacts with and 

whether rs6733839 affects this interaction.  

 

This investigation used a number of techniques to characterise the regulatory 

capacity of the BIN1 locus, each with their own limitations. Genome wide 

epigenetic assays, such as ChIP-Seq and DNase-Seq can give insight into the 

regulatory state of a region, but not the effects of a particular variant, whereas 

plasmid based gene reporter assays and EMSAs can measure the effect of 

individual alleles, but are low throughput and can only investigate a single 

locus at a time. Massive parallel reporter assays have been recently developed 

to address these limitations. This assay is based upon gene reporter assays but 

uses unique barcodes in the 3’ UTR of the reporter to differentiate expression 

of individual oligonucleotides and can be used to carry out large scale, 

sensitive and direct testing of potential regulatory variants. This large scale 
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approach can be implemented to identify causal variants that influence gene 

expression across cell types and populations and could contribute to a greater 

insight into how non-coding polymorphisms can mediate gene expression 

(559).  

 

6.2.3 Cell type specific nature of disease SNPs 

 

Expression quantitative trail loci (eQTLs) have been shown to function in a cell 

type specific manner (560, 561). eQTLs are enriched in GWAS data and disease 

SNPs have been shown to have very cell type specific effects (413). For 

example, rs612529 associated with inflammatory skin diseases, was shown to 

have no effect on VSTM1 (V-Set And Transmembrane Domain-Containing 

Protein 1) expression in B cells but a significant effect in monocytes and this 

was due to the allele specific binding of SPI1 to the gene promoter. 

Furthermore, this variant had an allele specific effect on DNA methylation in 

monocytes, but had no effect on methylation in neuropils, demonstrating how 

variants can have multiple cell type specific effects on gene regulation (562).   

 

Chapters 4 and 5 suggest rs6733839 and rs7584040 could potentially affect 

BIN1 regulation, but the effects of these SNPs are apparent in different cell 

types. rs7584040 may have a regulatory function in prefrontal cortex, a tissue 

affected by AD pathology in which changes in BIN1 expression in AD patients 

have been observed. rs6733839 may effect BIN1 regulation in a monocyte cell 

line as histone modifications and TF binding have been identified in this cell 

type in this region. This suggests that multiple SNPs may have multiple effects 

in multiple cell types to confer risk for AD that explain the association identified 

at the BIN1 locus. This demonstrates the complexity of this disease and how 

pleiotropic the genetic associations with AD potentially are.  
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6.3 Gene editing technologies can be used to investigate the 

effect of variants in endogenous cellular environments  

 

There are a number of biotechnologies that have the aim of direct genome 

editing. Such technologies could be utilised to create isogenic models that 

could provide a platform to elucidate the effects of specific variants in a cellular 

context.  

 

CRISPR (Clustered regularly interspaced short palindromic repeats)- Cas 

(CRISPR-associated protein) is an adaptive multistep defense mechanism found 

in bacteria and archaea. The CRISPR-Cas defense mechanism is able to 

integrate short foreign DNA sequences, termed spacers, into the host genome 

at specific locations within the CRISPRs. CRISPR-Cas9 has become the method 

of choice for gene editing over previous technologies due to its high 

specificity, efficiency, ease and cost effectiveness. 

 

Characterisation of functional disease associated variants will inevitably exploit 

gene-editing technologies, which will become commonplace in life science 

research. Appendix 3 explores this developing technology and how it could be 

used in the investigation of Alzheimer’s disease genetics.  

 

6.4 Why understanding genetic variants is necessary 

 

GWAS have identified many disease associated genetic variants, but relatively 

few causal variants and the mechanisms by which they infer disease risk. As the 

majority of GWAS hits are located outside the coding region of genes, it is 

becoming increasingly apparent that gene regulation is likely the underlying 

biology of most GWAS associations. The underlying biology and how genetic 

variants affect gene regulation is poorly understood and this is made 
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increasingly challenging as the effects on gene regulation can be influenced by 

development, cell type and environmental factors.  

 

Common diseases are highly polygenic and in reality there are likely many 

variants that have a small effect on gene expression and the effect of these 

variants will only be observed in specific cell types. As discussed in this thesis, 

BIN1 appears to function in many disease relevant biological pathways and 

BIN1 expression appears to be influenced by different variants in different 

tissues.  

 

Understanding genetic associations with disease can not only reveal disease 

biology, but can point to novel drug targets and help in the design of clinical 

trials. Understanding the complex mechanisms underlying GWAS associations 

will allow for the identification of biological pathways that could ultimately be 

targeted by therapeutics, elucidate the genetic basis of complex disease and 

open up opportunities for personalised medicine.  

 

6.5 Concluding Remarks 

 

BIN1 and CD2AP are both associated with LOAD and have been previously 

implicated in endocytosis. This thesis found that although they both function in 

the same biological process, depletion of these two genes has different effects 

on cellular disease mechanisms. BIN1 depletion results in an increase in β-CTF 

production independent to any detectable change in CME, whereas CD2AP 

depletion appears to reduce β-CTF and Aβ production by reducing BACE1 

levels. CD2AP depletion increased CME, suggesting the change in APP 

processing was independent of APP internalisation. Depleting BIN1 and 

CD2AP in combination provided suggestive evidence that BIN1 can influence 

APP processing by an unknown BACE1-independent mechanism, as BACE1 
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levels remained reduced and no change in β-CTF and Aβ levels were observed. 

Additionally, it was found that CD2AP increased CME regardless of BIN1 

depletion.  

 

As BIN1 expression was shown to influence disease processes in brain cells, 

BIN1 expression in the prefrontal cortex was investigated. This showed that 

BIN1 expression can be influenced by DNA variants but the functional variant is 

yet to be determined. It appears that rs6733839 is not the functional variant in 

prefrontal cortex tissue, however ChIP-Seq and DNase-Seq data suggests 

rs6733839 is located within a regulatory element within monocyte cell lines. 

This result is supported by gene reporter data and DNA:protein interaction 

data suggesting SPI1, a transcription factor crucial for the development of the 

myeloid and lymphoid lineages associated with AD, binds to the BIN1 locus. 

The effect of the risk allele remains to be determined. This thesis demonstrates 

that AD associated genes can effect disease processes via a number of cellular 

mechanisms and that DNA variants can potentially influence AD risk 

mechanisms in a cell type specific manner. 
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  Appendix 
 

Appendix 1. Immunocytochemistry controls 

 

Appendix Figure 1.1 Representative image of Tf-488 uptake assay w ithout acid 

wash. The presence of green background is surface bound Tf-488. This is not 

observed in cells that have undergone the acid wash step, demonstrating that the 

acid wash step is sufficient to remove surface bound Tf-488. N=3. 
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Appendix Figure 1.2 Representative secondary antibody only control images. A) H4 cells 

probed only with Mouse 594 secondary antibody and stained with DAPI. Lack of 594 staining 

indicates the secondary antibody binds specifically to the LAMP2 primary antibody. N=3. B) H4 

cells probed only with Rabbit 594 secondary antibody and stained with DAPI. Lack of 594 

indicates that the secondary antibody binding is specific to the EEA1 primary antibody. N=3. 
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Appendix 2. Complete DNA sequence of insert 

cloned into pGL4.23 

Insert sequence is shown in red using sequencing primers described in table 

5.7 

Sense Orientation – 235 bp insert – risk 
CCCCACCTTGCAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTGGCCTA
ACTGGCCGGTACCACCCCTGTTTCCTCCTCTGTAAGATGGGGTGAGATTCACCTACCCCACA
GGGCTGGTGTGAAGGTTAGGGTAGATTATGCTTGAAAAGCACTGTGTACAACAGTCACCTA
GAGTGCCTGCTCAAACGCAGGCAGCTGTCATTCTTATCATCTGTCGTGAGTGTCTGCTCTGG
GCCTGGCCCAGTGGCAGGTGTGGCCTGTGAGGACTCTCCCAAGGCAGGGGCAGTCCCTGCA
AGCCGGAGGCCGGAGGATGAGGGGGCCTTGTAGTCAGCATCGAGACTTCCCCTTCGCCTCTC
CCTCCACCTTCCCGTTCCATCCTGTTTCTAGTCTTCTCTGGTTCCTTCTTCTGAAAGTAAAAAG
GGGAAAAGGGTATTTTTAAGAAGCAGAACAGAGATTTCTTTCCTTTTTAAAAACTCCTATTT
AAAGTCCCAGTTTCCAGAAAAGTCAGCGTAAGTCACTGGCTATGCATAGGGAATAAAAGAA
GTCATCTTAGTGGGGCTCAGGGGCGGGGGGTGGGGGGTCCCTGCACTCAGAAGCCTCTGCC
CCTCCAAGTGTGTCTGCTCGGAGGGTGCTCTAGGGGATGAGGCGCTGCAGTTGGGGGGCAA
TTAGGTGAGTGCAGGGCCAGGAGACCCCTCGATTCCATCTGCACCCGTGGCAGGCTGTTCCC
TTGCTGCTGGAGTTGGCCTCAGTTTCTGGTACCTGAGCTCGCTAGCCTCGAGGATATCAAGA
TCTGGCCTCGGCGGCCAAGCTTAGACACTAGAGGGTATATAATGGAAGCTCGACTTCCAGCT
TGGCAATCCGGTACTGTTGGTAAAGCCACCATGGAAGATGCCAAAACATTAAGAAGGGCCC
AGCGCCATTCTACCACTCGAAGACGGGACCGCCGGGCGAGCAGCTGGCACCAAAGGCATGA
AGCGCTACGGCTCTGGTGCTCCGGGCACCATTCGCCC 

Antisense Orientation – 235 bp insert – risk 
AAAAATAGCATTAGGCTGTCCCCAGTGCAGTGCAGGTGCCAGAACATTTCTCTGGCCTAACT
GGCCGGTACCCCTGAGCCCCACTAAGATGACTTCTTTTATTCCCTATGCATAGCCAGTGACTT
ACGCTGACTTTTCTGGAAACTGGGACTTTAAATAGGAGTTTTTAAAAAGGAAAGAAATCTCT
GTTCTGCTTCTTAAAAATACCCTTTTCCCCTTTTTACTTTCAGAAGAAGGAACCAGAGAAGAC
TAGAAACAGGATGGAACGGGAAGGTGGAGGGAGAGGCGAAGGGGAAGTCTCGATGCTGGT
ACCTGAGCTCGCTAGCCTCGAGGATATCAAGATCTGGCCTCGGCGGCCAAGCTTAGACACTA
GAGGGTATATAATGGAAGCTCGACTTCCAGCTTGGCAATCCGGTACTGTTGGTAAAGCCACC
ATGGAAGATGCCAAAAACATTAAGAAGGGCCCAGCGCCATTCTACCCACTCGAAGACGGGA
CCGCCGGCGAGCAGCTGCACAAAGCCATGAAGCGCTACGCCCTGGTGCCCGGCACCATCGC
CTTTACCGACGCACATATCGAGGTGGACATTACCTACGCCGAGTACTTCGAGATGAGCGTTC
GGCTGGCAGAAGCTATGAAGCGCTATGGGCTGAATACAAACCATCGGATCGTGGTGTGCAG
CGAGAATAGCTTGCAGTTCTTCATGCCCGTGTTGGGTGCCCTGTTCATCGGTGTGGCTGTGGC
CCCAGCTAACGACATCTACAACGAGCGCGAGCTGCTGAACAGCATGGGCATCAGCCAGCCC
ACCGTCGTATTCGTGAGCAAGAAAGGGCTGCAAAAGATCCTCAACGTGCAAAAGAAGCTAC
CGATCATACAAAAGATCATCATCATGGATAGCAAGACCGACTACCAGGGCTTCCAAAGCAT
GTACACCTTCGTGACTTCCCATTTGCCACCCGGCTTCAACGAGTACGACTTCGTGCCCGAGA
GCTTCGACCGGGACAAAACCATCGCCCTGATCATGAACAGTAATGGCAGTACCGGATTGCC
CAAGGGCGTATCCCTACCGCACCGCACCGCTTGGGTCCGATTCAATCATGCCCGCGACCCCA
TCTTCCGGAACAAAATAATCCCCGAAACCGCTTTCCTCAAGGGGGGGGCCATTTCACCACGG
CTTCTGCAAGGTTCACCACGCTGGGGCTACTTTGATTGGCGGGCTTTCGGGGCCATGGCCAA
GTCACCCCTTCCAAGGAAGAACGATTCTTTGCCAACTTTGCAAAACATAAAAAATCAACCAT
GCCCGCGGGGGGCCCACACCATTAAAATTTCTTCCCCTAGAAGACTCTCCCCATCAAAGTGT
TGACATTTGGACTATTTGCGAATAATCCCACATCAGGGGATGCTCCCCTCTCCAAATAATAT
GGTGAACGCTTGCGGCGAATACTGTCACCTTAGCGGCCCGTCCACTCGGGTACCCTTGCCAC
AGAATAAGCCAAGGTCTGTTCTATCTCACCGCAAGATGGTGAAAGAATGGTAATGACAGTG
AGGTGAAGGAAGAGTGCCCCTCACTATATAAGAGGGTAGACGATTGTAGCACCAGAACTAT
CAACAGTGGTGGCAAAACGTGGG 
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Sense Orientation – 235 bp insert – non risk 
GAAAATAGCAATAGGCTGTCCCAGTTGCAGTGCAGGTGCCAGAACATTTCTCTGGCCTAACT
GGCCGGTACCAGCATCGAGACTTCCCCTTCGCCTCTCCCTCCACCTTCCCGTTCCATCCTGTT
TCTAGTCTTCTCTGGTTCCTTCTTCTGAAAGTAAAAAGGGGAAAAGGGTGTTTTTAAGAAGC
AGAACAGAGATTTCTTTCCTTTTTAAAAACTCCTATTTAAAGTCCCAGTTTCCAGAAAAGTCA
GCGTAAGTCACTGGCTATGCATAGGGAATAAAAGAAGTCATCTTAGTGGGGCTCAGGGGTA
CCTGAGCTCGCTAGCCTCGAGGATATCAAGATCTGGCCTCGGCGGCCAAGCTTAGACACTAG
AGGGTATATAATGGAAGCTCGACTTCCAGCTTGGCAATCCGGTACTGTTGGTAAAGCCACCA
TGGAAGATGCCAAAAACATTAAGAAGGGCCCAGCGCCATTCTACCCACTCGAAGACGGGAC
CGCCGGCGAGCAGCTGCACAAAGCCATGAAGCGCTACGCCCTGGTGCCCGGCACCATCGCC
TTTACCGACGCACATATCGAGGTGGACATTACCTACGCCGAGTACTTCGAGATGAGCGTTCG
GCTGGCAGAAGCTATGAAGCGCTATGGGCTGAATACAAACCATCGGATCGTGGTGTGCAGC
GAGAATAGCTTGCAGTTCTTCATGCCCGTGTTGGGTGCCCTGTTCATCGGTGTGGCTGTGGCC
CCAGCTAACGACATCTACAACGAGCGCGAGCTGCTGAACAGCATGGGCATCAGCCAGCCCA
CCGTCGTATTCGTGAGCAAGAAAGGGCTGCAAAAGATCCTCAACGTGCAAAAGAAGCTACC
GATCATACAAAAGATCATCATCATGGATAGCAAGACCGACTACCAGGGCTTCCAAAGCATG
TACACCTTCGTGACTTCCCATTTGCCACCCGGCTTCAACGAGTACGACTTCGTGCCCGAGAG
CTTCGACCGGGACAAAACCATCGCCCTGATCATGAACAGTAGTGGCAGTACCGGATTGCCC
AAGGGCGTAGCCCTACCGCACCGCACCGCTTGTGTCCGATTCAGTCATGCCCGCGACCCCAT
CTTCGGCAACCAGATCATCCCCGACACCGCTATCCTCAGCGTGGTGCCATTTCACCACGGCT
TCGGCATGTTCACCACGCTGGGCTACTTGATCTGCGGCTTTCGGGTCGTGCTCATGTACCGCT
TCGAGGAGGAGCTATTCTTGGCCAGCTTGCAAGACTTAAAAATTCAATCTTGCCTGTGGGTG
CCACACTATTTAACTTCTTCGCTAAGAAGCCTCTCATCGCCAAGTCCAACTAAGGACATTTG
CCAAAAATACCCCAGCGGGGGGGCCCGCCTCAACAAGGAGTAAGTGAAGCCGGGGCCAAG
CCTTTCCCTTCCAACGGTTCCCACGGGGTTCGGGTTGGAAAAAACCGCCCCGCTTTTTGTTCC
CCCCAAAGGGGACAAAACCTCGTGGCAAAAAGAAGGGGCGGCTCCTTTCCAGAAATGGGGT
GTATTTATGCCCTCAGAAAGATCGGGGGTCACACGACGGGCCTAGAATCGCTTGTCTCCGTA
AATATAGTTGCCGTAAATCGAGGATGCTATAGCTTTTCGTAGGAACTGGAGCGCGCTAAGTT
GGGGCTCTGGACTCTCAATAGGT 

Antisense Orientation – 235 bp insert – non risk 
AAAAAAGCAATAGGCTGTCCCCCAGTGCAGTGCAGGTGCCAGAACATTTCTCTGGCCTAACT
GGCCGGTACCCCTGAGCCCCACTAAGATGACTTCTTTTATTCCCTATGCATAGCCAGTGACTT
ACGCTGACTTTTCTGGAAACTGGGACTTTAAATAGGAGTTTTTAAAAAGGAAAGAAATCTCT
GTTCTGCTTCTTAAAAACACCCTTTTCCCCTTTTTACTTTCAGAAGAAGGAACCAGAGAAGA
CTAGAAACAGGATGGAACGGGAAGGTGGAGGGAGAGGCGAAGGGGAAGTCTCGATGCTGG
TACCTGAGCTCGCTAGCCTCGAGGATATCAAGATCTGGCCTCGGCGGCCAAGCTTAGACACT
AGAGGGTATATAATGGAAGCTCGACTTCCAGCTTGGCAATCCGGTACTGTTGGTAAAGCCAC
CATGGAAGATGCCAAAAACATTAAGAAGGGCCCAGCGCCATTCTACCCACTCGAAGACGGG
ACCGCCGGCGAGCAGCTGCACAAAGCCATGAAGCGCTACGCCCTGGTGCCCGGCACCATCG
CCTTTACCGACGCACATATCGAGGTGGACATTACCTACGCCGAGTACTTCGAGATGAGCGTT
CGGCTGGCAGAAGCTATGAAGCGCTATGGGCTGAATACAAACCATCGGATCGTGGTGTGCA
GCGAGAATAGCTTGCAGTTCTTCATGCCCGTGTTGGGTGCCCTGTTCATCGGTGTGGCTGTG
GCCCCAGCTAACGACATCTACAACGAGCGCGAGCTGCTGAACAGCATGGGCATCAGCCAGC
CCACCGTCGTATTCGTGAGCAAGAAAGGGCTGCAAAAGATCCTCAACGTGCAAAAGAAGCT
ACCGATCATACAAAAGATCATCATCATGGATAGCAAGACCGACTACCAGGGCTTCCAAAGC
ATGTACACCTTCGTGACTTCCCATTTGCCACCCGGCTTCAACGAGTACGACTTCGTGCCCGA
GAGCTTCGACCGGGACAAAACCATCGCCCTGATCATGAACAGTAGTGGCAGTACCGGATTG
CCCAAGGGCGTAGCCCTACCGCACCGCACCGCTTGTGTCCGATTCAGTCATGCCCGCGACCC
CATCTTCGGGAACCAGATCATCCCCGACACCGCTATCCTCAGCGGTGGTGCCATTTCACCCC
GGCTTCGGCATGTTCACCACGCTGGGCTACTTGATCTGCGGCTTTCAGGGCAGGCTCATGGA
CCGCTTCCAAGGAAGGACTATTTCTTGCACACCTTGCAAAACTTAAAAATTCAACTTGCCGG
GCGGGGGCGCAACCATTTATCTTCTTTCTCATAGAACAGCTCCAGTGACAAATTGCAACCCA
GCTAATTTTGTCAAAAATACGCGCACGGGGAGTGCTCCTTCTCTTAAAAGGATAATGTTGGA
CGCTTGGGCTTAATGGTAGTTCGTTGCAACAGTGTCCCACCAGGGGACAT 
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Sense Orientation – 693 bp insert – risk 
ACAAACTAGCAATTAGGCTGTCCCCAGTGCAGTGCAGGTGCCAGAACATTTCTCTGGCCTAA
CTGGCCGGTACCACCCCTGTTTCCTCCTCTGTAAGATGGGGTGAGATTCACCTACCCCACAG
GGCTGGTGTGAAGGTTAGGGTAGATTATGCTTGAAAAGCACTGTGTACAACAGTCACCTAG
AGTGCCTGCTCAAACGCAGGCAGCTGTCATTCTTATCATCTGTCGTGAGTGTCTGCTCTGGGC
CTGGCCCAGTGGCAGGTGTGGCCTGTGAGGACTCTCCCAAGGCAGGGGCAGTCCCTGCAAG
CCGGAGGCCGGAGGATGAGGGGGCCTTGTAGTCAGCATCGAGACTTCCCCTTCGCCTCTCCC
TCCACCTTCCCGTTCCATCCTGTTTCTAGTCTTCTCTGGTTCCTTCTTCTGAAAGTAAAAAGG
GGAAAAGGGTATTTTTAAGAAGCAGAACAGAGATTTCTTTCCTTTTTAAAAACTCCTATTTA
AAGTCCCAGTTTCCAGAAAAGTCAGCGTAAGTCACTGGCTATGCATAGGGAATAAAAGAAG
TCATCTTAGTGGGGCTCAGGGGCGGGGGGTGGGGGGTCCCTGCACTCAGAAGCCTCTGCCCC
TCCAAGTGTGTCTGCTCGGAGGGTGCTCTAGGGGATGAGGCGCTGCAGTTGGGGGGCAATT
AGGTGAGTGCAGGGCCAGGAGACCCCTCGATTCCATCTGCACCCGTGGCAGGCTGTTCCCTT
GCTGCTGGAGTTGGCCTCAGTTTCTGGTACCTGAGCTCGCTAGCCTCGAGGATATCAAGATC
TGGCCTCGGCGGCCAAGCTTAGACACTAGAGGGTATATAATGGAAGCTCGACTTCCAGCTTG
GCAATCCGGTACTGTTGGTAAAGCCACCATGGAAGATGCCAAAAACATTAAGAAGGGCCCA
GCGCCATTCTACCCACTCGAAGACGGGACCGCCGGCGAGCAGCTGCACAAAGCCATGAAGC
GCTACGCCCTGGTGCCCGGCACCATCGCCTTTACCGACGCACATATCGAGGTGGACATTACC
TACGCCAAGTACTTCGAGATGAACGTTCGGCTGGCAGAATCTATTAATCGCTATGGGCTTAA
TACAAACCATCGGTATCGTTGTGTTGCTTCGGATATTAGCTTGGGATTCTTCTTG 

Antisense Orientation – 693 bp insert – risk: 
AAAAACTAGCAATTAGGCTGTCCCCAGTGCAGTGCAGGTGCCAGAACATTTCTCTGGCCTAA
CTGGCCGGTACCAGAAACTGAGGCCAACTCCAGCAGCAAGGGAACAGCCTGCCACGGGTGC
AGATGGAATCGAGGGGTCTCCTGGCCCTGCACTCACCTAATTGCCCCCCAACTGCAGCGCCT
CATCCCCTAGAGCACCCTCCGAGCAGACACACTTGGAGGGGCAGAGGCTTCTGAGTGCAGG
GACCCCCCACCCCCCGCCCCTGAGCCCCACTAAGATGACTTCTTTTATTCCCTATGCATAGCC
AGTGACTTACGCTGACTTTTCTGGAAACTGGGACTTTAAATAGGAGTTTTTAAAAAGGAAAG
AAATCTCTGTTCTGCTTCTTAAAAATACCCTTTTCCCCTTTTTACTTTCAGAAGAAGGAACCA
GAGAAGACTAGAAACAGGATGGAACGGGAAGGTGGAGGGAGAGGCGAAGGGGAAGTCTCG
ATGCTGACTACAAGGCCCCCTCATCCTCCGGCCTCCGGCTTGCAGGGACTGCCCCTGCCTTG
GGAGAGTCCTCACAGGCCACACCTGCCACTGGGCCAGGCCCAGAGCAGACACTCACGACAG
ATGATAAGAATGACAGCTGCCTGCGTTTGAGCAGGCACTCTAGGTGACTGTTGTACACAGTG
CTTTTCAAGCATAATCTACCCTAACCTTCACACCAGCCCTGTGGGGTAGGTGAATCTCACCC
CATCTTACAGAGGAGGAAACAGGGGTGGTACCTGAGCTCGCTAGCCTCGAGGATATCAAGA
TCTGGCCTCGGCGGCCAAGCTTAGACACTAGAGGGTATATAATGGAAGCTCGACTTCCAGCT
TGGCAATCCGGTACTGTTGGTAAAGCCACCATGGAAGATGCCAAAAACATTAAGAAGGGCC
CAGCGCCATTCTACCCACTCGAAGACGGGACCGCCGGCGAGCAGCTGCACAAAGCCATGAA
GCGCTACGCCCTGGTGCCCGGCACCATCGCCTTTACCGACGCACATATCGAGGTGGACATTA
CCTACGCCGAGTACTTCGAGATGAGCGTTCGGCTGGCAGAAGCTATGAAGCGCTATGGGCT
GAATACAAACCATCCGGATTCGTGGTGTGCACCGAAAATAAGCTTGCAGTTCTTCATGCCCG
TGTTGGGTGCCCTGTTCATCGGGGTGGCTTGGGCCCCAGCTAACGACATCTACAACGAAGCC
GAACTGCTGAACAGCATGGGCATCAGCCAGCCCACCGTCTTATTCTTGAACAAAAAAGGGC
TGCAAAAAATCCTCACCGGGCAAAAAAGCTTCCCGTCTTACCAAAGATCGCTTCTTGGGAAA
CCAAACCGACACACGGAGGTTCAAAAAATTGGGACCTTTGGGGATTTCCATTTTGCCCCCCG
GTTTCGAGAAATCCAAATTTGCGGCCCAAAATTCTCTACGTGATCATACCTCTCTCTATATAA
GG 

Sense Orientation – 693 bp insert – non risk: 
GGGGCGTTTTTTTTTGCTGCACTGCAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAAC
ATTTCTCTGGCCTAACTGGCCGGTACCACCCCTGTTTCCTCCTCTGTAAGATGGGGTGAGATT
CACCTACCCCACAGGGCTGGTGTGAAGGTTAGGGTAGATTATGCTTGAAAAGCACTGTGTAC
AACAGTCACCTAGAGTGCCTGCTCAAACGCAGGCAGCTGTCATTCTTATCATCTGTCGTGAG
TGTCTGCTCTGGGCCTGGCCCAGTGGCAGGTGTGGCCTGTGAGGACTCTCCCAAGGCAGGGG
CAGTCCCTGCAAGCCGGAGGCCGGAGGATGAGGGGGCCTTGTAGTCAGCATCGAGACTTCC
CCTTCGCCTCTCCCTCCACCTTCCCGTTCCATCCTGTTTCTAGTCTTCTCTGGTTCCTTCTTCTG
AAAGTAAAAAGGGGAAAAGGGTGTTTTTAAGAAGCAGAACAGAGATTTCTTTCCTTTTTAA
AAACTCCTATTTAAAGTCCCAGTTTCCAGAAAAGTCAGCGTAAGTCACTGGCTATGCATAGG
GAATAAAAGAAGTCATCTTAGTGGGGCTCAGGGGCGGGGGGTGGGGGGTCCCTGCACTCAG
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AAGCCTCTGCCCCTCCAAGTGTGTCTGCTCGGAGGGTGCTCTAGGGGATGAGGCGCTGCAGT
TGGGGGGCAATTAGGTGAGTGCAGGGCCAGGAGACCCCTCGATTCCATCTGCACCCGTGGC
AGGCTGTTCCCTTGCTGCTGGAGTTGGCCTCAGTTTCTGGTACCTGAGCTCGCTAGCCTCGAG
GATATCAAGATCTGGCCTCGGCGGCCAAGCTTAGACACTAGAGGGTATATAATGGAAGCTC
GACTTTCCAGCTTGGCAATCCGGTACTGTTGGTAAAAGCCACCATGGAAGATGCCAAAAAC
ATTAAGAAGGGCCCAGCGCCATTCTACCCACTCAAGACGGGACCGCCGGCGAGCAACTGCA
CAAAGCCATGAAGCGCTTACGCCCTGGTAGCCCG 

Antisense Orientation – 693 bp insert – non risk: 
ACAAACAGCAATTAGGCTGTCCCCAGTTGCAGTGCAGGTGCCAGAACATTTCTCTGGCCTAA
CTGGCCGGTACCAGAAACTGAGGCCAACTCCAGCAGCAAGGGAACAGCCTGCCACGGGTGC
AGATGGAATCGAGGGGTCTCCTGGCCCTGCACTCACCTAATTGCCCCCCAACTGCAGCGCCT
CATCCCCTAGAGCACCCTCCGAGCAGACACACTTGGAGGGGCAGAGGCTTCTGAGTGCAGG
GACCCCCCACCCCCCGCCCCTGAGCCCCACTAAGATGACTTCTTTTATTCCCTATGCATAGCC
AGTGACTTACGCTGACTTTTCTGGAAACTGGGACTTTAAATAGGAGTTTTTAAAAAGGAAAG
AAATCTCTGTTCTGCTTCTTAAAAACACCCTTTTCCCCTTTTTACTTTCAGAAGAAGGAACCA
GAGAAGACTAGAAACAGGATGGAACGGGAAGGTGGAGGGAGAGGCGAAGGGGAAGTCTCG
ATGCTGACTACAAGGCCCCCTCATCCTCCGGCCTCCGGCTTGCAGGGACTGCCCCTGCCTTG
GGAGAGTCCTCACAGGCCACACCTGCCACTGGGCCAGGCCCAGAGCAGACACTCACGACAG
ATGATAAGAATGACAGCTGCCTGCGTTTGAGCAGGCACTCTAGGTGACTGTTGTACACAGTG
CTTTTCAAGCATAATCTACCCTAACCTTCACACCAGCCCTGTGGGGTAGGTGAATCTCACCC
CATCTTACAGAGGAGGAAACAGGGGTGGTACCTGAGCTCGCTAGCCTCGAGGATATCAAGA
TCTGGCCTCGGCGGCCAAGCTTAGACACTAGAGGGTATATAATGGAAGCTCGACTTCCAGCT
TGGCAATCCGGTACTGTTGGTAAAGCCACCATGGAAGATGCCAAAAACATTAAGAAGGGCC
CAGCGCCATTCTACCCACTCGAAGACGGGACCGCCGGCGAGCAGCTGCACAAAGCCATGAA
GCGCTACGCCCTGGTGCCCGGCACCATCGCCTTTACCGACGCACATATCGAGGTGGACATTA
CCTACGCCGAGTACTTCGAGATGAGCGTTCGGCTGGCAAAAGCTATGAAGCGCTATGGGCT
GAATACAAACCATCCGGATCGTGGTGTGCACCGAAAATAACCTTGCAATTCTTCATGCCCGG
GGTGGGGGGCCCTGTTCATCAGTGTGGGCTGGGGCCCCAGCTAACGAATTCTACAACGAGTT
CGAACTTGTTGACATCAGGGGGCATCACCCATTCCCACCGTCGTATTCCTGAAACAAGAAAT
GGCTCTAAAAAATCCTCAGGGTGCGAAGAAACCTCCCGATCCTACAAAGAATCTCCCTCTGG
GAATGCGAAACCTGTAACAAAGGTCTTCCGAGGGATGTACCCTTTGGTGAATTTCGATTGTG
CACCCGTCGTCAACAAAAGGCAATTTTGGGCCGGAATTATCTGCCGGACGAAAAACCCTCCT
CGGATGGGTTAAACGTAGGGGCATACCTAATTTCCTTGTTGTAGGG 
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Appendix 3. Creation of Cellular Model 

containing rs59335482 risk allele using 

CRISPR/Cas9n to be used in functional analysis 

 

1. Introduction 

1.1 Rs59335482, an insertion identified to have a functional impact 

on gene expression 

 

The IGAP GWAS detected a significant association signal on chromosome 2 at 

position 127892810 (p=6.9 x 10-44). This association signal lies approximately 

30kb upstream of BIN1 (140). Chapuis et al, fine mapped the BIN1 risk locus by 

performing an imputation of genotypes in the European Alzheimer’s Disease 

Initiative (EADI) cohort. Two SNPs were found to be associated with LOAD, 

rs4663105 and rs6733839, the latter being previously identified by Lambert et 

al. These SNPs were investigated for their ability to alter transcription in vitro 

by the use of gene reporter assays and neither SNP showed evidence for 

altering transcriptional activity in SKNSH-SY5Y and HEK cells (261). 

 

Linkage disequilibrium (LD) analysis revealed that rs4663105 and rs6733839 

were located within a 6.7 Kb LD block, which also contained rs744373, the first 

SNP at the BIN1 locus shown to be genome wide significant (137).  This 

indicates that a functional risk variant may be located within this LD block. 

Chapuis et al went on to sequence this LD block and identified eight 

polymorphisms.  

 

These eight polymorphisms were imputed into the EADI1 GWAS data set. This 

found that one polymorphism was associated with an increased risk for LOAD, 
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rs59335482, an insertion of three cytosines. This association was replicated in 

the GERAD1 GWAS data and in an independent Flanders-Belgian population. 

This showed rs59335482 is significantly associated with an increased risk of 

LOAD with a genome-wide significant meta-analysed odds ratio of 1.20 with a 

p-value of 3.8 x 10-11. Rs59335482 has a MAF of 0.27 and is located just under 

26 Kb from the start of BIN1 and approximately 1.3 Kb downstream of the 

association signal.  

 

Following the identification of rs59335482, Chapuis et al performed a gene 

reporter assay to reveal whether this polymorphism influenced transcriptional 

activity. An increase in luciferase activity was observed in both neuroblastoma 

SH-SY5Y (+101%) and HEK293 (+33%) cells. The insertion allele was also found 

to be associated with increased BIN1 mRNA expression in the frontal cortex of 

AD brains. Rs59335482 was imputed in 98 HapMap 3 individuals for whom 

BIN1 RNA levels had been measured in lymphoblastoid cell lines. This again 

showed an association between the rs59335482 insertion allele with an 

increase in BIN1 mRNA levels (261). 

 

1.2 Imputation of rs59335482 in the GERAD dataset 

 

In 2009, a GWAS of LOAD was performed involving over 16,000 individuals 

(135). This analysis identified two loci that reached the threshold for genome-

wide significant association (p≤9.4 x 10-8). Despite not reaching the genome-

wide significance threshold, this stage 1 analysis identified two variants within 

BIN1 that showed suggestive evidence of association at p<10-5.  

 

In order to determine the association between rs59335482 and LOAD, this 

variant was imputed in a subset of the GERAD dataset consisting of 3332 cases 

and 9832 controls. Full details on samples and quality control criteria have 
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been described elsewhere (135). The dataset was imputed with SHAPEIT and 

IMPUTE2 software using 1000 genomes data (2012 release) as a reference 

panel. SNPs with info score quality estimates of less than 0.9 were excluded 

from the analysis. Association tests were performed under an additive model, 

using logistic regression, using PLINK. The analysis was adjusted for principal 

components and geographical region (performed by Nandini Badarinarayan). 

Data is shown in appendix table 3.1.  

 

Appendix Table 3.1. PLINK output from imputation of rs59335482 in GERAD data set. 

Imputation reveals that rs59335482 has a more significant association with LOAD in the dataset 

than the SNPs identified with suggestive associations.  

Field PLINK Output 

Chromosome 2 

SNP rs59335482 

Physical position (bp) 12789146 

First Allele TGGG 

Second allele T 

Test ADD 

Number of non-missing genotypes 13164 

Odds Ratio (OR) 1.175 

Standard Error 0.03261 

Lower bound of 95% CI for OR 1.102 

Upper bound of 95% CI for OR 1.252 

Coefficient t-statistic 4.94 

p 7.82 x10-7 

 

This analysis shows that rs59335482 is more significantly associated (p = 7.82 x 

10-7) with LOAD in this subset than the SNPs previously identified to have 

suggestive evidence of association. This further suggests that rs59335482 



  Appendix 

 288 

could be the functionally relevant variant that accounts for the GWAS 

association signal.  

 

1.3 rs59335482 is associated with regulatory elements within brain 

tissue 

 

HaploReg, hosted by the Broad institute, is a database that contains 

information on non-coding variants within haplotype blocks (431).  This can be 

utilised to explore the potential functions of SNPs at disease-associated loci. 

Using LD data from the 1000 genomes project, SNPs and indels in LD can be 

identified along with diverse functional information. 

 

HaploReg can be used to search for variants in high LD with the variant of 

interest. By specifying a minimum r2 value, variants with an equal or greater 

correlation with the variant of interest than the specified r2 will be identified. 

Submitting rs59335482 as a query SNP into HaploReg v4.1 with an r2 specified 

to be greater than 0.8, identified no other variants in high LD with rs59335482. 

Functional data from the HaploReg database revealed that rs59335482 was 

associated with regulatory regions within a number of brain regions (Output is 

shown in appendix figure 3.1). 

  
Appendix figure 3.1. Haploreg detailed v iew  of rs59335482. Regulatory chromatin states from 

DNase and histone ChIP-Seq data from Roadmap Epigenomics indicates rs59335482 is located 

within a region that appears to have active regulatory elements within various brain tissues.  

Database accessed on 14.11.2015.  



  Appendix 

 289 

Rs59335482 is located in a genomic region marked with enhancer 

modifications, such as H3K27ac and H3K4me1, in brain tissues such as fetal 

thymus, hippocampus middle, substantia nigra, anterior caudate, cingulate 

gyrus, inferior temporal lobe, angular gyrus and dorsolateral prefrontal cortex. 

Histone modifications that typically flank active promoters, such as H3K4me3 

and H3K9ac, were identified in the proximity of rs59335482 in the 

hippocampus middle, substantia nigra, anterior caudate, cingulate gyrus, 

inferior temporal lobe. This data provides evidence that this variant may be 

located in a functional regulatory region capable of influencing gene 

transcription and that this region may be active within brain tissue. 

 

RegulomeDB annotates rs59335482 with a score of 5, indicating potential 

transcription factor binding or DNase peak. A weak transcriptional chromatin 

state is described in the hippocampus, inferior temporal lobe and substantia 

nigra, whereas a quiescent chromatin state is described in the cingulate gyrus 

and dorsolateral prefrontal cortex (432).  

 

1.4 Studying the effects of rs59335482 in a cellular context 

 

Generating isogenic models, which differ only by rs59335482 genotype, would 

provide a platform to elucidate the effect of rs59335482 in a cellular context. 

As rs59335482 has previously been associated with changes in gene 

expression, primary investigations would focus of quantifying BIN1 expression. 

mRNA levels could be quantified via quantitative PCR and protein levels 

quantified initially by Western Blot and finer changes may be observed via 

ELISA.  

 

Should rs59335482 elicit an effect, this could have downstream implications in 

disease relevant cellular processes such as the amyloid processing pathway or 



  Appendix 

 290 

endocytic function. This model would provide a tool to study the effect on such 

processes in relation to this genotype.  

 

1.5 Gene-editing as a way to create cellular isogenic models 

 

There are a number of biotechnologies that have the aim of direct genome 

editing. Zinc finger (ZFN) and transcription activator-like effector nuclease 

(TALEN) strategies link endonuclease catalytic domains to DNA binding 

proteins to induce double strand breaks (DSB) at specific genomic loci (563). 

The latest development in gene editing technology is CRISPR-Cas9 which 

utilises a RNA guided nuclease to direct cleavage activity to specific loci (564).  

 

CRISPR (Clustered regularly interspaced short palindromic repeats)- Cas 

(CRISPR-associated protein) is an adaptive multistep defense mechanism found 

in bacteria and archaea. The CRISPR-Cas defense mechanism is able to 

integrate short foreign DNA sequences, termed spacers, into the host genome 

at specific locations within the CRISPRs. Spacers are transcribed into 

non-coding RNAs, which with the help of specific Cas protein complexes are 

able to target foreign genetic material with the same or similar genetic 

sequence (viruses or plasmids), resulting in the degradation of invading 

material. This system can be manipulated to target specific DNA sequences of 

choice and induce DNA strand breaks at this location. (565) 

 

CRISPR-Cas9 has become the method of choice for gene editing over previous 

technologies due to its high specificity, efficiency, ease and cost effectiveness. 

CRISPR-Cas9 is able to target almost anywhere in the genome as target 

selection is only limited by the Protospacer Adjacent Motif (PAM) sequence, 

which on average occurs every 8 bp (566). Targeting different loci can be 

achieved by altering the 20 bp protospacer of the guide RNA and leaving the 
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protein component unchanged, making this a more flexible tool than previous 

technologies, such as TALENs and Zinc fingers.  

 

The Cas9 nuclease induces a DSB by cutting both DNA strands at a targeted 

location. Cas9 requires the action two conserved domains in order to cleave 

both DNA strands and create a DSB. The HNH and RuvC domains encode the 

nuclease active sites in Cas9. The HNH domain cleaves the sense strand 

complementary to the targeting guide RNA, whereas the RuvC domain cleaves 

the antisense strand (567). Mutating key catalytic residues within these domains 

can create a Cas9 nickase (Cas9n) enzyme, capable of cleaving only one DNA 

strand. The D10A Cas9 variant has an alanine substitution that inactivates the 

RuvC domain, leaving only the HNH domain functional to cut the sgRNA 

complementary strand (568). A double nickase approach uses two Cas9n 

enzymes simultaneously targeting opposite DNA strands to create a DSB. 

Following a DSB, endogenous repair mechanisms work to repair the break. By 

providing a DNA repair template with the desired modification, mechanisms 

that repair DNA via homology driven repair use this DNA template which can 

result in the inclusion of your genetic modification into the endogenous 

genome (569). 

 

Ran et al investigated a number of variables in order to optimise the double 

nickase approach. SgRNA pairs that created a 5’ overhangs and overlapped 

with less than 8 bp were consistently able to induce indels at multiple genomic 

loci at levels comparable to the wildtype Cas9. A greater than 100-fold 

increase in specificity was observed when using the nickase approach 

compared to Cas9. The nickase approach was found to induce homology 

driven repair at comparable levels to Cas9 (570). Due to these observations a 

double nickase approach was taken when trying to knock in rs59335482.  
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1.6 Aims 

 

This chapter aims to genetically modify the endogenous genome of the H4 

neuroglioma cell line, via a double CRISPR nickase approach, to contain the 

insertion allele of rs59335482. This isogenic model would be available to be 

used in downstream studies to characterise the variant.  

 

H4 cells are derived from human neuroglioma cells and have been commonly 

used in AD studies (571-573).  The H4 cell line was first described in 1974 and 

originated from a 37 year old Caucasian male diagnosed with a neuroglioma 

(372). Furthermore, as histone modifications typical of regulatory elements 

were identified within the proximity of rs59335482 in a number of brain tissues, 

it is possible that these regions are conserved in this brain derived cell line and 

therefore rs59335482 may be located in a regulatory active region of this 

genome.  

 

 !
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2. Methods 

2.1 Sequencing of wild type H4 neurogliomas 

 

A 152 bp region containing rs59335482 was sequenced in the wildtype H4 

neuroglioma cell line in order to determine the genotype prior to genetic 

modification. DNA was extracted from unmodified H4 neuroglioma cell line via 

the QIAamp DNA mini kit (Qiagen) [Method described in Chapter 2.4.1].  

 

The region surrounding rs599335482 was amplified via PCR using the primer 

sequences described in appendix table 3.2.  Appendix table 3.3 shows the 

PCR conditions and the thermocycler conditions are shown in appendix table 

3.4. 

 

Appendix Table 3.2. Primers used to amplify the region containing rs59335482 

Forward sequencing primer 5’-3’ CCACCAAACCCAGCTAAT 

Reverse Sequencing Primer 5’-3’ CAGGTGTGGTGGTTCGTA 

 

Appendix Table 3.3. PCR reagents for rs59335482 sequencing 

Reagents Volume (μL) 

Buffer 1.2 

ddH2O 4.66 

dNTPs (2mM) 0.96 

Primers (5pmol/μL) 0.56 

Hot Star Taq 0.06 

DNA 4 
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Appendix Table 3.4. Thermocycler conditions used to amplify the region surrounding 

rs59335482 

Step Temperature (°C) Time (Seconds) Cycle 

1 95 600  

2 95 30  

3 58 60  

4 72 30 Repeat step 2-4 two times 

5 95 30  

6 56 60  

7 72 30 Repeat step 5-7 two times 

8 95 30  

9 54 60  

10 72 30 Repeat step 8-10 29 times 

11 72 600  

 

PCR product size was confirmed via gel electrophoresis. 10 μL of PCR product 

was purified using the AMPure PCR purification system (Agencourt®) using 

Biomek® NXP Laboratory Automation Workstation (Beckman Coulter). 5 μL of 

AMPure cleaned product was combined with 5μl of forward or reverse primer 

(5 pmol/μL). This was sequenced by GATC Biotech’s LIGHTrunTM Sequencing 

service. 

 

2.2 Creation of CRISPR/Cas9n targeting plasmid 

 

A double nickase gene editing approach, which predominantly follows the 

protocol by Ran et al, 2013 was used in this study (570). The CRISPR plasmid 

used was pSpCas9n(BB)-2A-Puro (PX462) purchased from Addgene.org 

(Addgene plasmid # 48141). This plasmid is 9200 bp in length and contains the 



  Appendix 

 295 

selectable marker of puromycin resistance and induces bacterial ampicillin 

resistance. This plasmid encodes the Cas9n gene, containing the D10A 

mutation.  

 

2.2.1 Verifying PX462 

 

PX462 was isolated from E.coli using the QIAprep Spin Miniprep Kit (Qiagen) 

[described in Chapter 2.4.2]. The restriction enzymes described in appendix 

table 3.5 were used to validate the plasmid obtained.  

 

Appendix Table 3.5. Restriction enzymes used in the validation of PX462 

Restriction 

Enzyme 

DNA fragment sized produced from digestion of 

PX462 (bp) 

Not1 9175 

SacII 2414 + 6761 

EcoRI 669 + 8506 

 

Restriction enzyme digest reagents are listed in appendix table 3.6.  Note that 

different buffers were compatible with each enzyme (appendix table 3.7). The 

reaction was incubated at 37°C for two hours. The digestion products were run 

on a 1% agarose gel to confirm the size of the DNA fragments. 
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Appendix Table 3.6. Restriction enzyme reaction reagents 

Reagent Volume μL 

DNA 6 

Buffer 2 

Restriction Enzyme 1 

Water 11 

Total 20 

  

Appendix Table 3.7. Compatible buffers used with each restriction enzyme  

Enzyme Buffer 

EcoRI  (NEB, cat. no. R0101S) EcoRI buffer (NEB, cat. no. B7200S) 

NotI (NEB, cat.no. R0189S) Buffer 3.1 (NEB, cat. no. B7200S) 

SacII (NEB, cat.no. R0157S) CutSmart buffer (NEB, cat. no. B7200S) 

 

2.2.2 Designing sgRNAs to target rs59335482 

 

Short guide (sg) RNA sequences were designed using a web based guide RNA 

design tool, found at crispr.mit.edu, developed by the Zhang lab (574). 

Sequences were selected based on the nickase analysis output. High quality 

pairs that had a distance between targeted DNA sequences of 0-20bp (optimal 

offset) and GC content greater than 30% were selected. [A full description of 

potential sgRNA sequences is provided in appendix table 4.1]. 

 

Cloning oligonucleotides were designed in order to create the duplexes 

required for cloning. Sense and antisense oligonucleotides of each target 

sequence containing BpiI compatible sticky ends allowing for ligation into 

PX462 were created. An appended guanine base was incorporated on the 

sense strand and a cytosine on the antisense strand as the U6 RNA polymerase 
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prefers a guanine nucleotide as the first base of its transcript (575). [The final 

cloning oligonucleotide designs are shown in appendix table 4.2].  

 

Single stranded DNA oligonucleotides (ssODN) were designed to act as a 

repair template resulting in the incorporation of the rs59335482 insertion 

(appendix table 3.8). SsODNs have a homologous sequence to that 

surrounding rs59335482 and therefore can be used as a template to drive 

homologous directed repair (HDR). All oligonucleotides were ordered from 

Eurofins Genomics (Ebersberg, Germany). 

 

Appendix Table 3.8. ssODN repair template sequences incorporating rs59335482 (shown 

in bold). 

Sense ssODN 

(5’-3’) 

CACCAAACCCAGCTAATTTTTTTTATTATTTTTTGTAGAG

ATGGGGGGGGTCTCACTAAGCTGTCCAGGCTGGTCTT

GAACTCCTGGCC 

Antisense 

ssODN (5’-3’) 

GGCCAGGAGTTCAAGACCAGCCTGGACAGCTTAGTGA

GACCCCCCCCATCTCTACAAAAAATAATAAAAAAAATTA

GCTGGGTTTGGTG 

 

2.2.3 Cloning sgRNA sequences into PX462 

 

Annealing and Phosphorylating Cloning Oligonucleotides 

 

The sense and antisense sgRNA oligonucleotides were annealed forming a 

DNA duplex with overhanging sticky ends for cloning into PX462. 

Oligonucleotides synthesised by conventional solid-phase phosphoramidite 

methods have a 5’ hydroxyl group. In order for successful ligation into the 

PX462 plasmid, the oligonucleotides must have a 5’ phosphate group in order 

to ligate to the 3’ unmodified end of digested PX462.  
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The annealing and phosphorylation of the oligonucleotides was performed in 

one reaction and the reagents are described in appendix table 3.9.  The 

reaction was incubated with the following temperature parameters: 37°C for 30 

minutes; 95°C for 5 minutes to allow sufficient denaturation of the 

oligonucleotides; 95°C decreasing 5°C per minute until it reaches 25°C 

allowing for accurate annealing. Once the reaction was completed, the 

phosphorylated and annealed oligonucleotides were diluted 1:200 in nuclease 

free water.  

 

Appendix Table 3.9.  Reagents used in the annealing and phosphorylation of the sgRNA 

cloning oligonucleotides.  

Reagent Amount per reaction (μL) 

sgRNA sense (100μM) 1 

sgRNA antisense (100μM) 1 

T4 ligation buffer, 10X (NEB, cat. no. B0202S) 1 

T4 PNK (NEB, cat. no. M0201S) 1 

ddH20 6 

Total 10 

 

Cloning of sgRNA duplexes into PX462 

 

The digestion of PX462 by BpiI to create the cloning site (illustrated in 

appendix figure 3.2) and the ligation of the sgRNA duplexes into this cloning 

site was performed in one reaction. The duplex sgRNAs were ligated into 

PX462. A no-insert, PX462 only negative control ligation reaction was carried 

out. This digestion and subsequent ligation reaction was incubated at 37°C for 

5 minutes, 21°C for 5 minutes, which was cycled 6 times (reagents are listed in 

appendix table 3.10). 
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Appendix Table 3.10.  Ligation reaction reagents required for successful ligation of 

sgRNA duplex into PX462.  

Reagent Amount per reaction (μL) 

PX462 (100 ng) x 

Diluted oligo duplex 2 

Tango Buffer, 10X (Thermo Fisher Scientific) 2 

DTT, 10 mM (Thermo Fisher Scientific) 1 

ATP, 10mM (NEB) 1 

FastDigest BpiI (Thermo Fisher Scientific) 1 

T7 Ligase (Enzymatics, MA, US) 0.5 

ddH20 To 20 

Total 20 

 

Once completed, the product was treated with PlasmidSafe™ DNase 

(Epicentre Biotechnologies, MI, USA) to digest any residual linearised DNA 

(reagents described in appendix table 3.11). The PlasmidSafe™ DNase 

reaction was incubated at 37°C for 30 minutes allowing for the enzyme to 

degrade any contaminating chromosomal dsDNA into deoxynucleotides. This 

Appendix figure 3.2.  Plasmid map of PX462 

showing the recognition sites of restriction 

enzyme BpiI. Digestion of BpiI will result in 

overhanging ends, compatible with ligation with 

the sgRNA duplexes.  
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was followed by an incubation at 70°C for 30 minutes to deactivate the 

enzyme. 

Appendix Table 3.11.  PlasmidSafeTM DNase purification reaction reagents 

Reagent Amount per reaction 

(μL) 

Digestion and Ligation Reaction Product 11 

PlasmidSafe Buffer (Epicentre Biotechnologies) 1.5 

PlasmidSafe ATP-Dependent DNase (Epicentre 

Biotechnologies) 

1 

ATP, 10mM (NEB) 1.5 

Total 15 

 

Transformation of PX462sgRNA into Chemically Competent Stbl3 E.coli  

 

50 μL of One Shot® Stbl3TM chemically competent cells (Thermo Fisher 

Scientific) was thawed on ice for each transformation. 2 μL of plasmid DNA 

from the PlasmidSafe DNA purification reaction was added into the vial of cells 

and gently mixed. pUC19 control DNA (10 pg/μL) was used as a positive 

control for transformation. A negative control was performed using the 

no-insert PX462 negative ligation reaction. The vials were incubated on ice for 

30 minutes. The cells underwent heat-shock by incubating the vials at 42°C for 

45 seconds and then placed on ice for two minutes. 250 μL of pre-warmed 

S.O.C media (Thermo Fisher Scientific) was added to each vial. For the pUC19 

control, the transformation mix was diluted 1:10 with LB media. The vials were 

incubated horizontally at 37°C for one hour in a shaking incubator. 25-100 μL 

of each transformation reaction was spread onto a pre-warmed selective LB 

agar plate (containing ampicillin 100 μg/mL) and incubated ON at 37°C. 

Plasmids that have successfully incorporated the duplex DNA are termed 

PX462sgRNA. 
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2.2.4 Confirming the creation of PX462sgRNAs 

 

Plasmids were isolated from transformed minicultures by miniprep (QIAprep 

Spin Miniprep Kit, Qiagen). An EcoRI restriction enzyme digest was performed 

on plasmids isolated from transformed E.coli to confirm the presence of 

PX462sgRNA. 

 

Following the successful ligation of the sgRNAs into PX462, the plasmid will be 

a length of 9178 bp. EcoRI digests are expected to produce DNA fragments of 

lengths of 669 bp and 8509 bp. The DNA products of this digest were run on a 

1% agarose gel for analysis. 

 

Purification and Sanger Sequencing of PX462sgRNA plasmids 

 

Sanger sequencing was performed on plasmids thought to contain the sgRNA 

duplexes to confirm the presence of the sgRNA sequence within PX462 at the 

desired location. Sequencing primer sequences are shown in appendix table 

3.12. Their location in the plasmid in relation to the sgRNA incorporation site is 

shown in appendix figure 3.3.  

 

10 μL of each plasmid samples was purified for sequencing using AMPure PCR 

purification system (Agencourt®) using Biomek® NXP Laboratory Automation 

Workstation (Beckman Coulter). 5 μL of AMPure cleaned product was 

combined with 5 μL of forward or reverse primer (5 pmol/μL). This was 

sequenced by GATC Biotech’s LIGHTrunTM Sequencing service.  
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Appendix Table 3.12.  Sequencing Primers for Sanger sequencing of PX462-sgRNA 

Forward Sequencing PX462-sgRNA 

Primer (5’-3’) 

GAGGGCCTATTTCCCATGATTCC 

Reverse Sequencing PX462-sgRNA 

Primer (5’-3’) 

TTTGTCTGCAGAATTGGCGC 

 

 

 

2.3 PX462 transfection into H4 neuroglioma cell line 

2.3.1 Transfection Optimisation 

 

In order to gain the optimum transfection efficiency, initial experiments 

transfecting PX462 without cloning modifications and a GFP expressing 

plasmid were performed in order to optimise a number of experimental 

factors. GFP expression and puromycin resistance were used as markers for 

transfection efficiency.  

gagggcctatttcccatgattccttcatatttgcatatacgatacaaggctgtta
gagagataattggaattaatttgactgtaaacacaaagatattagtacaaaatac
gtgacgtagaaagtaataatttcttgggtagtttgcagttttaaaattatgtttt
aaaatggactatcatatgcttaccgtaacttgaaagtatttcgatttcttggctt
tatatatcttgtggaaaggacgaaacaccNNNNNNNNNNNNNNNNNNNNNgtttt
agagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagt
ggcaccgagtcggtgcttttttgttttagagctagaaatagcaagttaaaataag
gctagtccgtttttagcgcgtgcgccaattctgcagacaaatggctctagaggta

Appendix figure 3.3. 5’-3’ sequence of PX462 spanning the cloning site for the sgRNA 

follw ing BpiI digestion and sucessful incorporation of sgRNA sequences. Red indicates 

the sequence and location of the forward primer. Blue indicates the sequence 

complimentary to the reverse primer and relative location. N indicate the loccation of sgRNA 

incorporation, this sequence will differ for each of the different sgRNA designs.  
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The experimental factors to be optimised were the plating density of the cells, 

the amount of Lipofectamine 3000 reagent (Thermo Fisher Scientific) used, the 

concentration of plasmid DNA transfected and the optimal concentration of 

puromycin needed for efficient selection. [Lipofectamine 3000 transfection 

method is described in Chapter 2.2.2] 

 

2.3.2 Co-Transfection of PX462-sgRNAs and ssODN 

 

Once the transfection reaction was optimised, H4 cells were transfected in 12 

well plates with three technical replicates per transfection. Cells were seeded 

at a density of 2.5x105 cells/well and incubated for 24 hours prior to 

transfection.  

 

Co-transfections were performed with the left and right targeting plasmids and 

either sense or antisense repair template. Transfections were performed using 

3 μL of Lipofectamine 3000 reagent per well following the protocol stated in 

Chapter 2.2.2. GFP plasmid was used as a positive control and as a visual 

measure of transfection efficiency. Cells were transfected with a total 1 μg of 

plasmid DNA (both left and right targeting plasmids) and 1 μL of either sense 

or antisense ssODN repair template (10 μM). In some instances, the 

PX462sgRNA plasmid transfected had been further treated with Plasmid-SafeTM 

ATP-dependent DNase as previously described. Negative controls were 

performed by following the Lipofectamine 3000 reagent protocol but without 

using DNA. The combinations of plasmids and guides co-transfected are 

shown in appendix table 3.13.  
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Appendix Table 3.13. Combinations of targeting plasmids and repair template used in 

CRISPR transfections.  

Transfection 

Name 

Right targeting 

plasmid (500 

ng/well) 

Left targeting 

plasmid (500 

ng/well) 

ssODN (10 

nM/well) 

Sg1(PD) sense Sg1 (plasmid safe 

treated) 

Sg1 (plasmid safe 

treated) 

sense 

Sg2 sense Sg2 Sg2 sense 

Sg2 antisense Sg2 Sg2 antisense 

Sg2 (PD) 

antisense 

Sg2 (plasmid safe 

treated) 

Sg2 (plasmid safe 

treated) 

antisense 

 

A schematic of the Cas9n targeting the DNA and generating double strand 

breaks using nickase pairs sg1 and sg2 are illustrated in appendix figure 3.4.  
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Puromycin was used to select for cells expressing PX462. Puromycin was 

added to all wells 24 hours post-transfection at a final concentration of 4 

μg/mL. The transfection media was replaced with puromycin containing media 

48 hours post-transfection. Cells were incubated in puromycin for at total of 72 

hours.  

Appendix figure 3.4. Schematic diagram of DSB generation via a nickase approach w ith 

two different targeting pairs. A. Nickase pair 1 is used in transfection sg1(PD) sense. Diagram 

shows the sequence of the guide RNAs, where their complementary sequence is and where the 

nicking of the DNA strand will occur.  B) Nickase pair 2 is used in transfections sg2 sense, sg2 

antisense and sg2(PD) antisense. The guide sequences are shown binding to their target 

sequence and the location of the DNA nick is shown. Red triangles indicate Cas9n cut sites. 

A 

B 
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2.3.3 Recovery of Remaining Cells 

 

Following 72 hours of puromycin selection, cells were grown in Opti-MEM® 

Reduced Serum Media supplemented with 10% FBS and cultured at 37°C with 

5% CO2.  

 

Cells not transfected with PX462sgRNA did not survive the selection 

procedure, as demonstrated by the negative controls. Once cells resistant to 

puromycin began to reach confluency, they were trypsinised and this mixed 

population of cells was expanded. DNA was extracted from these mixed 

populations of cells using Qiagen QIAamp DNA mini kit.  

 

2.3.4 Single cell clonal populations 

 

Post sg1(PD) sense transfection, cell populations that survived puromycin 

selection were plated out in an attempt to gain cellular colonies originating 

from single cells, where each resulting cell population has a common genome 

sequence.  

 

Cells were counted and underwent serial dilutions in culture medium in order 

to create a cellular concentration of 5 cells/mL. 100 μL of this solution was 

seeded into 96 well plates and incubated at 37°C with 5% CO2.  

 

Four days post seeding, cell colonies became visible using light microscopy 

and it was determined whether wells contained single colonies. Wells 

containing multiple colonies or no colonies were discarded. Wells containing 

single colonies were expanded. Following expansion, DNA was extracted 

(using Qiagen QIAamp DNA mini kit) and cells stored in liquid nitrogen.  56 

single cell colonies were established from transfection sg1(PD)sense.  
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2.4 Confirmation of Gene Editing 

 

A number of techniques were implemented in order to determine whether the 

genetic modification had successfully been incorporated.  

 

2.4.1 Surveyor Assay  

 

Transgenomic® (USA) produce the Surveyor Mutation Detection Kit for 

standard gel electrophoresis, which can be used in order to locate 

polymorphisms within heteroduplex DNA. It utilises the Surveyor nuclease that 

specifically cuts at sites of base substitution, indel mismatches or similar 

variation resulting in cleavage of both DNA strands 3’ of the mismatch (576).  

The subsequent DNA fragments can then be analysed via gel electrophoresis. 

This assay was used to identify the presence of the insertion in the DNA 

isolated from the mixed cellular populations that had undergone puromycin 

selection.  

 

Primers were designed to amplify the DNA region surrounding rs59335482 

producing a 500bp amplicon.  Should the Surveyor nuclease cut in the location 

of the desired modification, DNA fragments of 150 bp and 350 bp is size 

would be produced. Primer sequences are shown in appendix table 3.14.  

 

Appendix Table 3.14. Primers used to amplify SNP region for use in Surveyor assay 

Left Primer 5’-3’ CACCTCCCCTAAAGAGCCTG 

Right Primer 5’-3’ GGAAGAGAAGGTGCCAGCT 
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The PCR was carried out using the high fidelity Herculase polymerase (Agilent 

Technologies, Inc, USA). The PCR reagents are shown in appendix table 3.15 

and the thermocycler conditions are described in appendix table 3.4.  

 

Appendix Table 3.15. PCR reagents used in PCR for Surveyor Assay 

Reagent Volume per Reaction (μL)  

Herculase Buffer 10  

dNTP mix (25 mM) 0.5  

Primers (10 μM) 2.5  

Herculase Polymerase 0.5 

DMSO  1 

DNA ≤100 ng 

Total Volume 50 

  

This PCR protocol was used to amplify DNA extracted from cells, which had 

undergone the CRISPR transfection and puromycin selection (sample DNA), in 

addition to DNA obtained from wild type H4 cells (reference DNA). PCR 

reactions were performed in triplicate and then combined and purified using 

Qiagen PCR purification kit in order to obtain a DNA concentration >25 ng/μL.  

 

DNA from cell populations that had undergone transfections using 3 different 

plasmids combinations was used for this assay. The plasmid pair and repair 

template used in each transfection are listed in appendix table 3.16. 
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Appendix Table 3.16. Transfections used Surveyor Assay  

Transfection Plasmid Pair Repair Template 

1 Sg1 (PD) Sense 

2 Sg2  Sense 

3 Sg2 Antisense 

 

Each transfection was performed in triplicate; therefore three cellular 

populations arose from each transfection following the puromycin selection. 

Each cellular population was analysed individually with the Surveyor assay.  

 

The PCR product DNA concentrations were normalised to approximately 20 

ng/μL. 9 μL of reference DNA PCR product, 9 μL of sample DNA PCR product 

and 2 μL of PCR buffer were combined. These samples were hybridised to 

each other with the intention to form heteroduplex DNA. Reference DNA was 

hybridised alone in order to act as a reference control. The tubes were then 

placed into a thermocycler and underwent the programme described in 

appendix table 3.17 in order to hybridise the PCR products.  
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Appendix Table 3.17.  Thermocycler programme used for hybridisation step 

Temperature (°C) Time (seconds) 

95 600 

95 to 85 (-2.0°C/s) 

85 to 75 (-0.3°C/s) 

75°C 60 

75 to 65 (-0.3°C/s) 

65 60 

65 to 55 (-0.3°C/s) 

55 60 

55 to 45 (-0.3°C/s) 

45 60 

45 to 35 (-0.3°C/s) 

35 60 

35 to 25 (-0.3°C/s) 

25 60 

 

Following hybridisation, each sample was digested with the Surveyor nuclease. 

The reaction components were added in the following order: 20 μL of 

annealed duplex, 2.5 μL MgCl, 0.5 μL ddH2O, 1 μL of Surveyor Enhancer S and 

1 μL of Surveyor nuclease S. The reaction was gently pipette mixed then 

incubated at 42°C for 30 minutes. Upon completion, 2 μL of Stop solution was 

added and mixed. The reaction products were ran on a 1% gel and visualised 

using a UV transilluminator.  

 

A control experiment was performed alongside the test experiment which used 

plasmids provided with the Surveyor Mutation Detection Kit. These plasmids 

contain inserts that differ by one base pair. The Control G plasmid contains a 

guanine where the Control C plasmid contains a cytosine. PCR amplification 
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using the primers provided produces a fragment of 633bp. A negative control 

was performed where Control C PCR product was hybridised to another 

Control C PCR product. Control G and Control C were hybridised together. 

Digestion of this product with the Surveyor nuclease should yield products of 

217bp and 416bp in length. This experiment was performed following the 

manufacturers instructions.  

 

2.4.2 Sanger Sequencing of rs59335482 

 

DNA surrounding the modification site was amplified using primers described 

in appendix table 3.2. The PCR reaction and thermocycling conditions have 

been previously described in appendix table 3.3 and 4. The resulting PCR 

product is 152bp in length. The PCR product is ran on a 1% agarose gel, the 

appropriate sized band was excised and the DNA is extracted from the gel 

with the use of a QIAquick Gel Extraction Kit (Qiagen) and purified using a 

QIAquick PCR purification Kit [methods described in Chapter 2.4]. 

 

Purified DNA was sent to Genewiz® (Takely, UK) where samples were 

sequencing using their standard sanger sequencing reaction conditions with 

the reverse sequencing primer (5’CAGGTGTGGTGGTTCGTA3’). Genewiz® 

Sanger sequencing was performed on DNA from mixed populations of cell 

following puromycin selection and on single cell populations originated from 

the Sg1(PD) sense transfection.  

 !
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3 Results 

3.1 H4 cell line does not contain the insertion 

 

Sanger sequencing revealed the wildtype H4 cells line did not contain the 3 

base pair insertion and therefore the attempt to induce this variant could 

proceed (appendix figure 3.5).  

 

3.2 PX462sgRNAs were successfully generated 

 

Restriction enzyme digests using enzymes EcoRI, SacII and NotI verified the 

presence of PX462 (appendix figure 3.6). Following cloning of the guide RNAs 

EcoRI digestion indicates the presence of PX462 in transformed E.coli 

(appendix figure 3.7). 

 

  

Appendix figure 3.5. Chromatogram show ing the DNA sequence of the wildtype H4 

cell line. Sequencing indicates the absence of the rs59335482. insertion.  
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Appendix figure 3.6. Agarose gel containing the restriction enzyme digestion products.  A. 

Uncut PX462 is run alongside PX462 digested with Not1. Not1 linearises PX462, creating a 

fragment of 9175 bp. B. PX462 digested with SacII created fragments of length 2414 bp and 6761 

bp. PX462 digested by EcoRI produced fragments sized 669 bp and 8506 bp. These gel images 

show the correct size DNA fragment assuming successful digestion of PX462, therefore verifying the 

presence of PX462.  

A 

B 
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Sanger sequencing of isolated plasmids led to the confirmation of the 

successful incorporation sgRNA sequences into the PX462 plasmid. Six 

sequence-verified sgRNA pairs were available for use in further experiments. A 

list of PX462-sgRNA plasmids that have been verified with sequencing results is 

shown in appendix table 3.16. A chromatogram of PX462sgRNA-1R (shown in 

appendix figure 3.8) confirms the successful cloning of this sgRNA into PX462. 

 
 
 

  

Appendix figure 3.7.  Image of 1% 

agarose gel of PX462-sgRNA minipreps 

digested w ith EcoRI restriction enzyme. 

Lanes marked 1:  two separate minipreps 

containing PX462sgR1. Lanes marked 2: 

two separate minipreps containing 

PX462sgL1. Lanes marked 3:  two separate 

minipreps containing PX462sgR2. Lanes 

marked 2: two separate minipreps 

containing PX462sgL2. Expected DNA 

fragment sizes are 669 bp and 8509 bp. The 

gel image shows fragment sizes of 

approximately these sizes.  

 

650%bp%

1%Kb%

2%Kb%
    1% 2% 3% 4%
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Appendix Table 3.16.  Sequenced verified PX462-sgRNA plasmids 

PX462-sgRNA plasmids 

Sg1R 

Sg1L 

Sg2R 

Sg2L 

Sg4R 

Sg4L 

Sg6R 

Sg6L 

Sg7R 

Sg7L 

Sg8R 

Sg8L 

 

Appendix figure 3.8. Representative Chromatogram obtained from Sanger sequencing 

the PX462 plasmid, with the Nickase1-right designed sgRNA cloned into the Bpi1 

cloning sites. Primers were designed to sequence the sense strand with the expected 

sequence CACCGGGCATGCTTTTCTTGATTAA . The presence of this sequence in the 

chromatogram confirms the successful cloning of the sgRNA into PX462. Complementary 

sequencing of the reverse strand was also performed to further verify the presence of the 

sgRNA sequence.  
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3.3 Co-transfection of PX462sgRNA and ssODN into H4 neuronal 

cell line  

 

3.3.1 Transfection Optimisation  

 

During optimisation, optimal transfection efficiency of approximately 50% was 

observed when using a cell density of 2.5x105 cells per well, 1 μg GFP plasmid, 

3 μL of Lipofectamine 3000 reagent and 4 μL P3000 enhancer reagent per well 

of a 12 well plate therefore these transfection conditions were used to transfect 

the targeting plasmids (appendix figure 3.9).   

 

 

 

A)%GFP%expression%24%hours%post%
transfection%

B)%GFP%expression%48%hours%post%
transfection%

Appendix figure 3.9. Transfection of GFP plasmid. Overlay images taken at a visible 

light wavelength and 488 wavelength. A) Shows approximately 50% of cells expressing the 

GFP plasmid 24 hours after transfection. B) Showing expression of GFP in approximately 20% 

of cells 48 hours post transfection.  
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3.3.2 Transfection of PX462sgRNA  

 

Targeting plasmids were co-transfected. Cells that survived puromycin 

selection were expanded. DNA extracted from these cells was screened for the 

presence of rs59335482 insertion allele. Cellular dilutions were carried out on 

the sg1(PD) sense population and single cell colonies obtained were 

expanded. DNA was extracted from these single cell populations was 

sequenced to screen for the presence of rs59335482 insertion allele.  

 

3.4 Surveyor Assay 

 

3.4.1 Amplification of BIN1 region surrounding rs59335482  

 

Non-modified wild type H4 DNA and DNA extracted from cells that had 

successfully survived puromycin selection following transfection with the 

CRISPR plasmids was successfully amplified via PCR and used in downstream 

hybridisation experiments (appendix figure 3.10 and 11, respectively).  

 

 

Appendix figure 3.10. Amplification of w ild 

type rs59335482 region. Gel electrophoresis 

using 1% agarose performed using the PCR 

product from wild type H4s. The PCR product 

produced is approximately 500bp and was 

therefore used in downstream hybridisation 

experiments. PCR performed in triplicate and each 

product was run individually.  
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3.4.2 Amplification of control plasmids  

 

PCR amplified the variable region of the control plasmids. 2 μL of each PCR 

product were analysed via gel electrophoresis that confirmed successful 

amplification of the desired region with the expected fragment size of 633bp 

(appendix figure 3.12). 

 

Appendix figure 3.11. The PCR product amplified from transfected cells follow ing 

amplification of the region surrounding rs59335482. PCR products were 

electrophoresed on a 1% agarose gel. The expected fragment size is 500bp in length. The 

majority of samples show the expected fragment size. Some samples shows PCR products 

of differing lengths, potentially indicative of gene modification or errors during PCR. 

Lane 1 – 3: Triplicate PCR from transfection 1 replicate 1. Lane 4 – 6: Triplicate PCR from 

transfection 1 replicate 2. Lane 7 – 9: Triplicate PCR from transfection 1 replicate 3. Lane 10 

– 12: Triplicate PCR from transfection 2 replicate 1. Lane 13 – 15: Triplicate PCR from 

transfection 2 replicate 2. Lane 16 – 18: Triplicate PCR from transfection 2 replicate 3. Lane 

19 – 21: Triplicate PCR from transfection 3 replicate 1. Lane 22 – 24: Triplicate PCR from 

transfection 3 replicate 2. Lane 25 – 27: Triplicate PCR from transfection 3 replicate 3. 
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3.4.3 Surveyor nuclease digestion  

 

Following the successful amplification of the appropriate regions, hybridisation 

was performed followed by the Surveyor nuclease digest. The products of the 

digest were analysed using gel electrophoresis and imaged using a UV 

transilluminator (appendix figure 3.13).  The digestion products of the control 

plasmids produced the expected size products indicating the Surveyor 

nuclease successfully cleaved at the location of mismatches. The presence of 

multiple bands in the test and reference samples is potentially indicative of 

numerous SNPs being present in the wild type DNA. Lane 9 has a band at 

around 250bp that is absent from the reference control sample. This may 

indicate the presence of a variant not present in the wild type DNA sequence. 

Lane 11 and 12 contain the positive and negative control respectively.  

 

 

Appendix figure 3.12. Amplification of region 

of control plasmids containing SNP. 1% 

agarose gel electrophoresis showing the PCR 

products amplified from the Surveyor assay 

control plasmids. Expected fragment size is 

633bp. Lane 1: PCR product using Control G 

plasmid as template. Lane 2 and 3: PCR product 

using Control C plasmid as template 
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3.5 Sanger Sequencing of rs59335482 region in mixed populations 

and single cell colonies indicate no incorporation of insertion 

 

DNA extracted from a mixed population of transfected cells was sequenced in 

order to screen for the presence of rs59335482 insertion allele. Sequencing 

data revealed that there was no indication of the rs59335482 insertion allele 

present in the population (appendix figure 3.14). 

 

 

 

Appendix figure 3.13. Products of the Surveyor nuclease digest. Cleavage products 

of the Surveyor digest were separated on a 1% agarose gel. Lanes 1 – 3: Digestion 

products of each triplicate of transfection 1 hybridised to wild type DNA. Lanes 4 – 6: 

Digestion products of each triplicate of transfection 2 hybridised to wild type DNA. Lanes 

7 – 9: Digestion products of each triplicate of transfection 3 hybridised to wild type DNA. 

Lane 10: Reference control - Contains the digestion product of wild type PCR product 

annealed another wild type PCR product. Lane 11: Positive Control – The digestion 

products of Control C PCR product annealed to Control G PCR product. This shows the 

expected fragment size of 633 bp (undigested product) and 217bp and 416bp (digested 

products). Lane 12: Negative control - The digestion products of Control C PCR product 

annealed to Control C PCR product. This shows the expected fragment size of 633 bp 

(undigested product). 
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In order to further confirm this as a representative result, the sequencing was 

repeated on single cell colonies generated from the cell populations 

transfected with sg1(PD) sense. This confirmed that the sequence observed in 

the mixed cellular populations was consistently observed in the single cell 

populations, indicating that the rs59335482 insertion allele was not present in 

any of the 56 single cell colonies sequenced (appendix figure 3.15). 

 

Appendix figure 3.14. Sanger sequencing of DNA extracted from mixed cellular 

populations following puromycin selection indicated that the rs59335482 insertion had 

not been incorporated. Chromatograms from four transfected cell populations sg1(PD) sense, 

sg2 sense, sg2 antisense and sg2 (PD) antisense showing the DNA sequence surrounding 

rs59335482.   
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 !

Appendix figure 3.15. Representative chromatogram from the single cell colonies 

produced from the sg1(PD) sense transfected population.  All chromatograms from 56 

single cell colonies showed the same results, rs59335482 insertion had not been 

incorporated into these cells.   
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4 Discussion 

 

This chapter aimed to establish isogenic cell models to investigate the effect of 

rs59335482 genotype on BIN1. Unfortunately, genetic modification was not 

achieved. The results, potential reasons as to why the modification was 

unsuccessful and what future directions this project could take are discussed 

below. 

 

4.1 PX462 with targeting guide RNAs can be used to genetically 

modify the endogenous genome of cell lines 

 

Despite not having success in knocking in the rs59335482 insertion, there have 

been numerous publications successfully using PX462 in CRISPR-Cas9n 

mediated indel generation. PX462 was used to successfully create a double 

knockout cell line by disrupting the two catalytic subunits of AMPK, and the 

authors observed a knock out modification frequency of 12.5% (577). 

Rahmanto et al, transfected PX462 using Lipofectamine 3000 into hEM3 cells 

and observed a deletion and an insertion on each allele of ARID1A and 

confirmed protein knockdown (578).  PX462 was also transfected into HUES-2 

stem cells via a Neon® Transfection system to knockout SAMHD-1 (579).  

 

These studies have all used PX462 to establish gene knockout models via gene 

editing and therefore have validated the ability of PX462 to successfully cleave 

targeted DNA. However, there are currently no publications detailing the use 

of PX462 to knock in specific mutations.   
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4.2 Surveyor assay indicates the presence of additional SNPs or 

hybridisation errors 

 

Mutations were searched for using an enzyme mismatch cleavage method, 

which utilises enzymes able to cleave heterogeneous DNA. The Surveyor 

nuclease cleaves DNA 3’ of a mismatch or indel with high specificity (576). The 

Surveyor assay was used to determine whether variants were present within the 

CRISPR treated cells, which are absent from the wild type cell line. Multiple 

digestion products indicate that there were multiple cleavage sites present in 

the wildtype H4 DNA (appendix figure 3.13). There are a number of possible 

explanations as to why this may have occurred.  

 

Vouillot et al, 2015 has reported optimal Surveyor activity is when 

heteroduplexes make up 60% of the DNA population (580). When the 

heteroduplex population was 5-30% they could not reliably evaluate the 

enzymes activity due to high background and non-specific cleavage products. 

If the presence of the mutation is low in the mixed cell population DNA, the 

Surveyor assay may not have been sensitive enough to detect it and what is 

being observed is non-specific cleavage products. The Surveyor enzyme also 

has a known 5’-exonulcease activity (581). This activity may result in DNA 

degradation causing further background. In combination, non-specific 

cleavage and exonuclease activity could be an explanation for the presence of 

multiple bands if differential exonuclease activity acted on cleaved products 

generating DNA strand length heterogeneity. Reducing the amount of 

Surveyor enzyme incubation time may prevent non-specific cleavage in future 

assays. However, as the multiple bands are consistent between different 

hybridisation reactions, it is unlikely that this is the sole explanation.  

Due to the repetitive nature of the region of DNA, the hybridisation process 

may have misaligned resulting in the formation of mismatches in the hybrid 
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DNA. Diluting the DNA concentration to ≤50ng/μL, repeating the hybridisation 

step, or adding 1x PCR reaction buffer to products prior to annealing can 

attempt resolving sub-optimal hybridisation. However, again as the cleavage 

products are consistent between all samples and the reference control, this is 

unlikely. 

 

If the hybridisation was accurate, the presence of multiple bands in the 

reference control indicates that there are sequence differences within the wild 

type DNA, suggesting heterozygote genotype. When studying this 500bp 

sequence in UCSC, it identifies 5 common SNPs found in the dbSNP build 144 

(minor allele frequency (MAF) obtained from dbSNP): rs56193035 (MAF=0.11), 

rs61308109 (MAF=0.12), rs57109420 (MAF=0.11), rs4663105 (MAF=0.48), 

rs560590441 (MAF=0.31), rs59253801 (MAF=0.11). As these alternative SNPs 

are common in the population, it is possible that the H4 genome is 

heterozygous for a number of these SNPs, which has resulted in the Surveyor 

nuclease cleaving at a number of sites. Rs4663105, rs560590441 and 

rs59253801 are located 38, 1 and 46bp away from rs59335482 respectively 

and have therefore been Sanger sequenced during this investigation. All 

variants were found to be homozygous and not responsible for the cleavage 

patterns observed.   

 

Further genotyping could be performed to determine the zygosity of the 

remaining SNPs in the H4 genome. Once the genotypes of the remaining SNPs 

are known, alternative primers could be designed in order to avoid 

heterozygous SNPs in the PCR product used in the Surveyor assay. Any 

cleavage of this product would be due to variants not in the endogenous 

genome.  
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In lane 9 of appendix figure 3.13, an additional band is present with a size of 

250bp. As this band is absent from the reference sample and the remaining 

transfected cell populations, it may suggest the presence of a variant not found 

in the endogenous genome. This DNA sample is from the population of cells 

transfected with sg2 targeting plasmid and an antisense repair template 

(replicate 3), which during PCR amplification showed unexpected PCR products 

(appendix figure 3.11). The presence of the PCR product around 300bp 

indicates that a deletion event may have occurred during the gene-editing 

attempt.  

 

When the 110 bp region surrounding rs59335482 in the sg2 antisense cell 

population was sequenced, no changes in DNA sequence were observed. The 

targeted sequences in this transfection are located 124bp and 75bp away from 

rs59335482, therefore it is possible an off target event may have occurred and 

generated a genetic modification elsewhere in this region of the genome. It 

may be of interest to carry out a more comprehensive investigation of this 

region within this cell population to determine if a modification has occurred 

and where. In the first instance, the 300bp fragment could be excised from the 

gel, sequenced and compared to the endogenous genome to elucidate any 

modifications.  

 

4.3 Lack of Modification – CRISPR limitations 

 

Following the inconclusive evidence from the Surveyor assay, mixed and single 

cell population sequencing revealed no modification at rs59335482.   

4.3.1 Distance dependence for editing with CRISPR 

 

It has been observed that the success of gene editing is reduced with 

increased distance from the cut site and is true for both Cas9 and Cas9n (582, 
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583). Paquet et al 2016 investigated the effect of distance between the 

intended point mutations and the cleavage site and observed an inverse 

relationship between rate of mutation incorporation and distance from the 

cleavage site. This observation was consistent between genetic loci and cell 

types. Therefore a distance effect may effect mutation incorporation via HDR 

(584).  

 

Paquet’s estimates for mutation incorporation are minimal when the cut to 

mutation distance approaches 45 bp. As plasmids were preferentially 

transfected based on the ranking in the output from the design tool, the 

plasmids used in this gene editing attempt cut the DNA no closer than 74 bp 

away from the mutation site. Based on Paquet’s analysis, it could be assumed 

that cutting at this distance was unlikely to result in a modified genotype and 

could be one of the possible explanations why no gene editing was observed. 

Due to the repetitive nature of the sequence surrounding rs59335482 and the 

potential for off targeting effects, guides targeting closer to the mutation site 

were scored less highly than the more distant guides. Further attempts could 

utilise these alternative guides which may result in a higher modification 

efficiency, such as nickase pair seven whose right and left guide sequences cut 

17 and 38bp from the mutation site respectively.  

 

4.3.2 Reduced nickase activity 

 

Bialk et al, 2015 showed that the overall level of gene editing is between 10-15 

fold lower when using single a nickase enzyme in comparison with the 

CRISPR/Cas9 complex (583). When using a combination of nickase enzymes to 

create a double strand break efficient gene editing was observed, although 

levels remain reduced in comparison to Cas9, hence reduced Cas9n activity 

may be a factor in the lack of gene editing observed.  
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4.4 Developments and optimisation of gene editing approaches 

 

The field of gene editing is fast evolving as researchers aim to optimise 

protocols and approaches in order to increase efficiency and reduce off target 

effects.  

 

4.4.1 Cas9 variants that improve specificity 

 

Variations from commonly used SpCas9 enzyme are available and possess 

different properties making them more amenable to gene editing. There are a 

number of Cas9 orthologues, which utilise a longer targeting sequence (585-

587). Although a more complex PAM sequence means fewer available targets 

sequences, it also reduces the number of potential off target sites for any given 

guide.  

 

In addition to the nickase modification, other point mutations within Cas9 have 

been shown to alter its function. The D1135E and VRER mutations increase 

SpCas9 specificity for NGG and NGCG PAMs respectively (588). Point 

mutations in the RuvC and HNH catalytic domains result in an inactive nuclease 

termed dCas9. dCas9 can be attached to various effector domains, which can 

be used in a number of applications. For example, one can use two dCas9 

enzymes fused to a Fok1 nuclease, targeting opposite DNA strands. Only when 

the two fusion enzymes are bound within close proximity can the Fok1 

monomers assemble to form the catalytically active Fok1 nuclease dimer cleave 

the dsDNA. This creates a dimerisation-dependent system improving 

specificity (589). 
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eSpCas9 has three codon substitutions within the non-targeted DNA strand 

groove (590). These mutations weaken non-target strand binding by the 

protein, causing in a reduction in genome wide off-target events whilst 

maintaining on target efficiency. SpCas9-HF contains four alanine substitutions 

within the region that interacts with the phosphate backbone of the targeted 

DNA, which significantly decreases genome wide off-target effects without 

compromising efficiency (591). 

 

4.4.2 Optimising guide RNA design 

 

Initial guide RNA design tools focused on designing guides that specifically 

target the genomic DNA with minimal homology to elsewhere in the genome. 

The tool used in this work, MIT CRISPR design tool, uses a specificity score 

described in Hsu et al, 2013, which takes into account mismatches in off-target 

sites and the effect of mismatches on cleavage efficiency, however there is 

evidence that off-targets sites could contain small indels or alternative PAM 

sequences and may still be targeted by Cas9 (574, 587). Despite this, the MIT 

CRISPR design tool remains to be one of the most comprehensive design tools 

for designing guides for a nickase approach. An improved design tool is now 

available is Benchling which designs guides based on Hsu et al specificity score 

and a cutting frequency determination score which more accurately predicts off 

target activity (592). As Cas9 specificity may vary between cell types, method 

of delivery and dosage, it is difficult to collate experimental data for all 

parameters and therefore the majority of design tools do not take them all into 

account. 

 

Optimal guide length has been investigated and it was found that extending 

the sgRNA duplex by five nucleotides and mutating the fourth base in the 

continuous sequence of T bases, which follows the guide sequence and signals 
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for RNA polymerase III to pause, can significantly increase knockout efficiency 

(593, 594). It was also found that the addition of two guanine nucleotides at 

the 5’ end of the guide termed “GGX20”, demonstrated increased specificity 

with variable on-target efficiency, potentially due to changes in RNA structure 

or stability (595).  

 

Shortening the guide to 17-18 nt was shown to increase the sensitivity of Cas9 

to mismatches and more precise gene editing was observed. This may be due 

to the shorter guide being less tolerant to mismatches or possessing higher 

affinity for their target sites. When truncated guides were used in a Cas9 

nickase approach, it was found to further reduce off-target events without 

compromising on-target efficiency (596).  

 

Chemical modification of synthesised guides has been shown to have an effect 

on Cas9 specificity and enhance genome-editing efficiency. 2’-O-methyl, 2’-O-

methyl 3’phosphorothioate or 2’-O-methyl 3’thioPACE modifications at the 5’ 

and 3’ end improves editing efficiency in human primary T cells and CD34+ 

hematopoietic stem and progenitor cells (597). 

 

4.4.3 DNA donors optimisation 

 

Alternative donor DNA designs have been investigated after it was found that 

following cleavage by Cas9 the 3’ end of the non-target strand is preferentially 

released. An asymmetric DNA donor complementary to the non-target strand, 

which spanned the Cas9 cut site with 36bp on the PAM-distal side, and 91bp 

on the PAM proximal side was found to increase HDR frequency to 

approximately 57%. This effect was shown to be consistent between cell types 

and genomic loci. An optimised asymmetric donor resulted in a five-fold 

increase in HDR when using Cas9 nickase (598). 
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4.4.4 Inhibiting Non-homology end joining 

 

Approaches aiming to reduce the number of off-target events and increase 

on-target insertions have explored the effects of inhibiting non-homology end 

joining (NHEJ). A number of studies have shown that inhibiting NHEJ repair 

can increase the number of on-target insertions created via HDR.  

  

Chu et al, suppressed NHEJ by knocking down expression of vital components 

for successful NHEJ and using the small molecule SCR7 that inhibits DNA 

ligase IV function (599). They also investigated the effect of these approaches 

in combination with co-expressing Ad4 proteins which target DNA ligase IV for 

ubiquitination and proteasomal degradation.  

 

By suppressing NHEJ, a fivefold increase in HDR in cell lines was observed, 

which was further increased with the co-expression of Ad4 proteins (599). This 

effect has been observed in a numerous cell lines, mice zygotes and at multiple 

loci (600, 601). This approach however can be cytotoxic or potentially 

mutagenic and therefore not necessarily appropriate for extensive genome 

engineering (602). 

 

4.4.5 Synchronising the cell cycle 

 

HDR occurs during the S and G2 phase as this is when sister chromatids are 

available to act as repair templates whereas NHEJ occurs throughout the cell 

cycle (603). Bialk et al, 2015 showed that gene-editing frequencies are 

increased if cells are held in the G1/S border for 24 hours and the released 4 

hours before the introduction of the CRISPR/Cas9 complexes (583).  
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4.4.6 Cas9 delivery method and dosage 

 

Lentiviral vectors are capable of producing stable gene expression once 

delivered into cells. Lentiviral-mediated delivery of Cas9 and guide RNA has 

been described to induce indels at on-target sites at up to 100% efficiency, 

however the prolonged expression of Cas9 can increase off-target events (512). 

Limiting Cas9 expression can improve specificity. This was observed by Hsu et 

al who, when reducing the dosage of Cas9 by five-fold, observed a seven-fold 

increase in specificity ratio and two-fold reduction in on-target efficiency (574).  

 

Delivering recombinant Cas9 protein complexed with guide RNA into cultured 

human cells can bypass some of the limitations associated with plasmid 

transfection. Zuris et al, 2015 found that transient cationic lipid-mediated 

delivery of the Cas9 nuclease protein complexed with guide RNA forming a 

ribonucleoprotein (RNP) was highly efficient and improved the specificity of 

guide ten-fold in comparison to plasmid transfection (604). This increased 

specificity is thought to be due to a burst in Cas9 exposure when delivering 

RNP followed by rapid degradation of the protein resulting in reduced 

off-target effects (605). Zuris et al also used this approach to deliver Cas9 

nickases and observed similar results to that seen when using plasmid 

transfection. 

 

4.5 Concluding remarks 

 

As no gene editing was observed at the desired location, optimising gene 

editing efficiency would be the primary objective. Utilising some of the 

developments discussed in this section could be beneficial, such as 

synchronising the cell cycle and inhibiting NHEJ may increase the likelihood of 

the rs59335482 insertion being incorporated. As the proximity of the guide 



  Appendix 

 333 

RNAs to the mutation has been shown to be important, using more proximal 

guide RNAs would be desirable and more complex design tool may aid in this. 

Following targeting optimisation, using an asymmetric repair template should 

increase the likelihood of mutation incorporation. Finally in an effort to reduce 

off target effects, the transient expression of the Cas9n enzymes is crucial and 

this could be addressed by delivering these complexes via a RNP rather than a 

plasmid whose expression may be more long term. Creating isogeneic 

rs59335482 models would aid in the characterisation of this variant and how it 

may influence disease mechanisms within a model brain cell.  
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Appendix 4. CRISPR oligo design 

 

Appendix Table 4.1.  sgRNA target sequences selected from crispr.mit.edu Nickase analysis output 

Nickase 
Pair 

Sense Antisense sgRNA 
offset 

Sequence 5’-3’ Quality Off 
Targets 

Genic off 
targets 

Sequence 5’-3’ Quality Off 
Targets 

Genic off 
targets 

1 GGCATGCTTTTCTTGATTAAAGG High 290 19 ACTTGCAATCCTAGCACTTTGGG High 228 6 16 

2 GGCATGCTTTTCTTGATTAAAGG High 290 19 TACTTGCAATCCTAGCACTTTGG High 180 12 15 

3 CAAGTACGAACCACCACACCTGG High 130 6 TGGCAGAATCACCTGAGGCCAGG High 278 32 27 

4 CAAGTACGAACCACCACACCTGG High 130 6 CAAGGTGGCAGAATCACCTGAGG High 267 34 22 

5 TCCTGAGTAGCTGAGAACACAG High 279 17 TAGGAGGATTGCTTGAGCCTGGG High 188 12 8 

6 CTCAGGTGATTCTGCCACCTTGG High 229 21 CCAGGAGTTCAAGACCAGCCTGG Medium 316 58 2 

7 GGGGTCTCACTAAGCTGTCCAGG High 194 14 AAAAAATTAGCTGGGTTTGGTGG Medium 501 19 21 

8 TCTCACTAAGCTGTCCAGGCTGG High 213 24 AAAAAATTAGCTGGGTTTGGTGG Medium 501 19 17 

9 GGCATGCTTTTCTTGATTAAAGG High 290 19 TGCAATCCTAGCACTTTGGGAGG Medium 238 9 19 
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Appendix Table 4.2. Cloning Oligonucleotide designs for sgRNA target sites, incorporating BpiI compatible sticky ends and additional 

guanine base.  

Name  Target 5’-3’ Oligonucleotide Sense Strand 5’-3’ Oligonucleotide Antisense Strand 5’-
3’ 

Cut site to 
mutation 
distance 
(bp) 

Nickase1-
right 

GGCATGCTTTTCTTGATTAAAGG CACCGGGCATGCTTTTCTTGATTAA AAACTTAATCAAGAAAAGCATGCCC 124 

Nickase1-
left 

ACTTGCAATCCTAGCACTTTGGG CACCGACTTGCAATCCTAGCACTTT AAACAAAGTGCTAGGATTGCAAGTC 74 

Nickase2-
right 

GGCATGCTTTTCTTGATTAAAGG CACCGGGCATGCTTTTCTTGATTAA AAACTTAATCAAGAAAAGCATGCCC 124 

Nickase2-
left 

TACTTGCAATCCTAGCACTTTGG CACCGTACTTGCAATCCTAGCACTT AAACAAGTGCTAGGATTGCAAGTAC 75 

Nickase3-
right 

CAAGTACGAACCACCACACCTGG CACCGCAAGTACGAACCACCACACC AAACGGTGTGGTGGTTCGTACTTGC 103 

Nickase3-
left 

TGGCAGAATCACCTGAGGCCAGG CACCGTGGCAGAATCACCTGAGGCC AAACGGCCTCAGGTGATTCTGCCAC 42 

Nickase4-
right 

CAAGTACGAACCACCACACCTGG CACCGCAAGTACGAACCACCACACC AAACGGTGTGGTGGTTCGTACTTGC 103 

Nickase4-
left 

CAAGGTGGCAGAATCACCTGAGG CACCGCAAGGTGGCAGAATCACCTG AAACCAGGTGATTCTGCCACCTTGC 47 

Nickase5-
right 

TCCTGAGTAGCTGAGAACACAGG CACCGTCCTGAGTAGCTGAGAACAC AAACGTGTTCTCAGCTACTCAGGAC 56 

Nickase5- TAGGAGGATTGCTTGAGCCTGGG CACCGTAGGAGGATTGCTTGAGCCT AAACAGGCTCAAGCAATCCTCCTAC 98 
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left 
Nickase6-
right 

CTCAGGTGATTCTGCCACCTTGG CACCGCTCAGGTGATTCTGCCACCT AAACAGGTGGCAGAATCACCTGAGC 59 

Nickase6-
left 

CCAGGAGTTCAAGACCAGCCTGG CACCGCCAGGAGTTCAAGACCAGCC AAACGGCTGGTCTTGAACTCCTGGC 24 

Nickase7-
right 

GGGGTCTCACTAAGCTGTCCAGG CACCGGGGGTCTCACTAAGCTGTCC AAACGGACAGCTTAGTGAGACCCCC 17 

Nickase7-
left 

AAAAAATTAGCTGGGTTTGGTGG CACCGAAAAAATTAGCTGGGTTTGG AAACCCAAACCCAGCTAATTTTTTC 38 

Nickase8-
right 

TCTCACTAAGCTGTCCAGGCTGG CACCGTCTCACTAAGCTGTCCAGGC AAACGCCTGGACAGCTTAGTGAGAC 24 

Nickase8-
left 

AAAAAATTAGCTGGGTTTGGTGG CACCGAAAAAATTAGCTGGGTTTGG AAACCCAAACCCAGCTAATTTTTTC 38 

Nickase9-
right 

GGCATGCTTTTCTTGATTAAAGG CACCGGGCATGCTTTTCTTGATTAA AAACTTAATCAAGAAAAGCATGCCC 124 

Nickase9-
left 

TGCAATCCTAGCACTTTGGGAGG CACCGTGCAATCCTAGCACTTTGGG AAACCCCAAAGTGCTAGGATTGCAC 71 


