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Summary 

	
This thesis investigated ion dyshomeostasis within Niemann-Pick disease type C (NPC), a 

neurodegenerative lysosomal storage disease. Chapter 3 characterizes newly discovered lysosomal 

Zn2+ storage in NPC, and identifies a novel function for the NPC1 protein as a lysosomal Zn2+ 

transporter. Zn2+ accumulation appears responsible for some lipid storage within NPC, and treating 

cells with the Zn2+ chelator phytic acid corrects downstream NPC phenotypes. Chapter 4 investigates 

Ca2+-modulating therapies for treating NPC. These include tanganil, demonstrated in a recent case 

study to ameliorate ataxia within NPC patients, and which works by increasing cytosolic Ca2+ to 

overcome the NPC lysosomal Ca2+ signaling defect. The importance of this Ca2+ signaling defect in NPC 

can be seen both in the aforementioned beneficial effects of Ca2+ modulating therapies and when 

looking at NPC-like lipid storage and reduced neuronal Ca2+ spikes observed following treatment of 

zebrafish with an inhibitor of lysosomal Ca2+ signaling, Ned-19 (Chapter 5). In addition, Chapter 5 

describes the generation and characterization of NPC zebrafish treated with inhibitors of npc1 

(U18666A, 1NMP) and microinjected with npc1-morpholino. These models accurately recapitulate 

human NPC phenotypes (characteristic lipid storage, behavioural defects) and can be used to test 

emerging NPC therapies in vivo (e.g. phytic acid, tanganil). Finally, Chapter 6 explores how different 

formulations of curcumin, which correct NPC phenotypes both in vitro and in vivo via Ca2+ modulation, 

have reduced effect and can exacerbate storage in cells when combined with lipid vectors. Having 

described studies into both Ca2+ and Zn2+ dyshomeostasis in NPC, a new 2-armed pathogenic cascade 

was hypothesized whereby early dyshomeostasis of lysosomal Ca2+ and Zn2+ generates all downstream 

NPC phenotypes. Combination therapies with Ca2+ modulators (e.g. tanganil) and Zn2+ chelators (e.g. 

phytic acid) may provide the best option to treat this complex disease, and require testing both in 

vitro and in vivo. 
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Chapter 1: General Introduction 

 
1.1 The endocytic system 

 

Cells take-in extracellular lipids, ligands and plasma membrane proteins via endocytosis. 

Internalization is balanced by other endosomal pathways which return many of these materials to the 

plasma membrane. The dynamics of these processes help determine plasma membrane composition, 

which in turn influences nutrient uptake, cell adhesion and junction formation, cell migration, 

cytokinesis, cell polarity and signal transduction (Grant and Donaldson, 2009). The dynamics of this 

process, alongside information on the various characteristics of the different organelles involved, can 

be seen in figure 1.1.  

Clathrin dependent endocytosis (CDE) and clathrin independent endocytosis (CIE) are the two 

major mechanisms by which endocytosis takes place (Grant and Donaldson, 2009). The most well 

studied of these two mechanisms is CDE, which occurs following recognition of specific cytoplasmic 

domains of plasma membrane proteins by adaptor proteins, allowing packaging into clathrin-coated 

vesicles and transport into the cell (Grant and Donaldson, 2009). Known CDE cargo proteins include 

receptors for iron-bound transferrin and low-density lipoprotein (LDL) (Grant and Donaldson, 2009). 

In addition, numerous forms of CIE exist, and these include caveolar endocytosis which facilitates the 

transport of glycosphingolipids (GSLs) and some viruses, as well as phagocytosis and macropinocytosis 

(Mayor and Pagano, 2007). Whilst CDE relies on specific adaptor proteins to select cargo, these are not 

found with CIE, and therefore how cargo is selected for transport is largely unknown (Mayor and 

Pagano, 2007). One theory follows observations that divergent forms of CIE appear reliant on free 

cholesterol, proteins and lipids residing in sphingolipid rich plasma membrane ‘lipid rafts’ (Mayor and 

Pagano, 2007). For one, fluorescent analogs of GSLs appear to cluster in membrane microdomains 

prior to internalization by calveolae (Singh et al., 2003, Puri et al., 2001, Sharma et al., 2004), whilst a 

non-natural analogue that does not cluster in membrane microdomains is not internalized via this 

mechanism (Singh et al., 2006). This suggests that some CIE cargo is identified by association with lipid 

microdomains at the plasma membrane.  

Following either CDE or CIE, endocytosed material is first delivered to early endosomes where 

cargo is sorted depending on whether it is to be recycled back to the plasma membrane or targeted to 

the lysosome for degradation (Jovic et al., 2010). Early endosomes, characterized by the expression of 

a small-GTP binding protein known as Rab5 (Jovic et al., 2010), are tubular, multi-vesicular 

compartments located in the cell periphery (Gruenberg, 2001). This structure facilitates sorting; with 

cargo destined for recycling often clustering within tubular domains which proceed to bud off into 
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recycling vesicles, and material to be degraded found within multivesicular elements (Mellman, 1996). 

The slightly acidic pH (~6) of early endosomes, maintained by an ATP-driven proton pump, can allow 

dissociation of receptors from their ligands (Jovic et al., 2010). This mechanism promotes recycling of 

the LDL-receptor to the plasma membrane whilst LDL is targeted to the lysosome for degradation 

(Goldstein et al., 1979). Ca2+ is taken up into early endosomes via endocytosis, although within ~5 

minutes of entry endosomal acidification causes Ca2+ to rapidly leak out of these organelles, in a 

manner dependent on initial Ca2+ concentration. This suggests that H+ intake into endosomes is 

balanced by Ca2+ exit via endosomal Ca2+ channels, or, alternatively, that Ca2+ is required for the 

opening of other endosomal ion channels (e.g. K+ or Cl-) which facilitate charge compensation 

(Gerasimenko et al., 1998).  

Overtime, early endosomes accumulate ligands destined for lysosomal degradation, and 

eventually lose their ability to fuse with endocytic vesicles, signaling their maturation into late 

endosomes (Dunn and Maxfield, 1992). New sorting early endosomes are continuously formed to 

replace those that have undergone maturation into late endosomes (Dunn and Maxfield, 1992). Late 

endosomes, characterized by the expression of Rab7 (Poteryaev et al., 2010), move along microtubules 

to achieve a perinuclear localization and begin to acidify (pH ~5) prior to fusion with lysosomes (Hu et 

al., 2015), which will be discussed in the next section. Both homotypic fusion of late endosomes and 

heterotypic fusion of endosomes and lysosomes appears dependent on Ca2+ release from these 

organelles (Luzio et al., 2007).  
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Figure 1.1. Schematic of the endocytic system within eukaryotic cells. Each organelle displays characteristic pH and Ca2+ 

conditions. Ca2+ is transported into early endosomes following endocytosis and uptake of extracellular fluid. Acidifcation of 

these organelles then proceeds to reduce Ca2+ content. A proton dependent mechanism next acts to fill both late endosomes 

and lysosomes with Ca2+. The endo-lysosomal Ca2+ store plays a key role regarding endocytic transport and fusion (image 

adapted from (Lloyd-Evans et al., 2010)) 

 

1.2 The lysosome 

 

Lysosomes, first characterized by Christian De Duve in 1954 (de Duve, 1983) are membrane bound 

organelles containing a wide range of acid hydrolases; facilitating their essential role in cellular 

recycling. Many endocytosed proteins and lipids are targeted for degradation within the lysosome, 

where complex molecules can be broken down, and their components reused. Lysosomal enzymes are 

synthesized in the endoplasmic reticulum (ER) prior to transport to the Golgi apparatus were they 

acquire a mannose-6-phosphate (M6P) tag. This tag is recognized by M6P-receptors which facilitate 

their transport to lysosomes (Gary-Bobo et al., 2007). Macromolecules degraded and recycled by 
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lysosomes include LDL derived cholesterol, GSLs, sphingomyelin, sphingosine, and 

bis(monoacylglycero)phosphate (BMP) (Cooper, 2000).  

To protect against self-digestion, this organelle can be seen to contain a carbohydrate rich 

glycocalyx (Neiss, 1984), which acts to sequester the numerous acid hydrolases from the rest of the 

cytoplasmic components (Fukuda, 1991). BMP acts as another key component of the endo-lysosomal 

membrane, promoting fission and fusion events whilst acting as a cofactor for several important 

lysosomal enzymes (Gallala and Sandhoff, 2011). These acidic organelles maintain their pH using a 

proton-pumping V-type ATPase, which utilizes ATP in order to pump protons into the lysosome lumen 

(Mindell, 2012). Alongside the upmost importance of the lysosome regarding recycling, this organelle 

has numerous other roles. For one, lysosomal exocytosis plays a key role in membrane repair following 

exposure to Ca2+ ionophores and pore-forming toxins (Divangahi et al., 2009, Jaiswal et al., 2002, 

Rodriguez et al., 1997). Furthermore, the lysosome has been shown to act as an important cellular Ca2+ 

store with key roles in signaling (Galione and Churchill, 2002). 

 

1.3 Lysosomal storage diseases 

 

The fundamental importance of the lysosome is seen when observing the 70 genetic LSDs (Cox and 

Cachon-Gonzalez, 2012). These disorders, typically inherited as autosomal recessive traits (~1/5000 

live births), arise following loss of function of soluble lysosomal enzymes, non-enzymatic lysosomal 

proteins, or non-lysosomal proteins that impinge on lysosomal function. Resulting dyshomeostasis 

leads to copious cellular pathologies alongside progressive storage of undegraded materials within the 

lysosome. LSDs are often classified according to the biochemical nature of the primary accumulating 

substrate, for example, mucopolysaccharidoses are named following primary accumulation of 

mucopolysaccharides, and display a broad clinical spectrum regarding severity of symptoms, 

progression and age of onset. Symptoms often affect both central nervous system (CNS) and visceral 

function (Vitner et al., 2010).  

LSDs act as a highly important area of study. Firstly, these diseases have devastating effects 

both on sufferers and their families, as well as putting significant pressure on healthcare services. This 

alone makes research into both mechanism and novel therapeutics vital. Furthermore, whilst 

individually rare, LSDs have a combined birth frequency of over 1/7500 (Meikle et al., 1999) and 

manifest as the most prevalent cause of pediatric neurodegenerative disease (Jalanko and Braulke, 

2009). Also, as well as greatly improving the lives of many LSD sufferers, research into LSDs has greatly 

enhanced our understanding of basic cellular homeostasis involving lysosomes and endocytosis. In 
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addition, numerous links of LSDs to more common human diseases have been emerging in recent years 

(Herbert et al., 2015, Maxfield, 2014, Shachar et al., 2011).  

Despite differences in both symptom development and storage profiles, LSDs often display 

similarities when looking at biochemical, cellular and clinical features. Common mechanisms of cellular 

pathogenesis include Ca2+ dyshomeostasis, oxidative stress, chronic inflammation, altered lipid 

trafficking, defective autophagy, ER stress and activation of the unfolded protein response, and 

autoimmune disease. Overlapping mechanisms of pathogenesis observed among different LSDs means 

that therapies developed could be widely applied to treat multiple diseases (Vitner et al., 2010).  

 
1.4 Niemann-Pick type C (NPC) disease 

 

NPC disease is a rare (~1/90,000 living births (Wassif et al., 2016)) autosomal recessive inherited 

neurodegenerative LSD. NPC belongs to the Niemann-Pick group of lipidoses along with Niemann-Pick 

A (NPA) and Niemann-Pick B (NPB), both of which are characterized by a primary defect in acid 

sphingomyelinase (ASM), the degradative enzyme of the lipid sphingomyelin (Schuchman and 

Wasserstein, 2016). Despite manifesting as a highly heterogeneous disease with variable age of onset 

and progression (Yerushalmi et al., 2002, Imrie et al., 2007, Wassif et al., 2016),  NPC patients often 

present with ataxia and dementia following both neurological and visceral degeneration, and 

symptoms culminate in a reduced life expectancy (Sevin et al., 2007). Characteristic degeneration of 

cerebellar Purkinje neurons (Higashi et al., 1993), which causes the above mentioned ataxia, alongside 

oxidative stress (Fu et al., 2010) and inflammation (Baudry et al., 2003) form common features of this 

disorder. Other symptoms include vertical supranuclear gaze palsy, dysarthria, cognitive defects, 

hepatosplenomegaly, psychiatric disorders, dysphagia and cataplexy (Sevin et al., 2007). Occasionally, 

patients may also present with coagulation and platelet changes such as thrombocytopenia, anemia 

and petechial rash (Del Principe et al., 1971, Spiegel et al., 2009), inflammatory bowel disease/Crohn’s-

like symptoms (Schwerd et al., 2016, Jolliffe and Sarkany, 1983, Steven and Driver, 2005) and reduced 

liver function (Patterson et al., 2012). 

 

1.5 NPC gene/protein defects 

 

Whilst most LSDs are monogenic, NPC occurs following mutations in either NPC1 (~95% of cases 

(Scriver, 1995)) or NPC2 genes. The NPC1 gene is located on chromosome 18q11 (Carstea et al., 1993) 

and encodes a 13-transmembrane domain 1278 amino acid protein (Carstea et al., 1997) residing 

within the limiting membrane of late endosomes and lysosomes (Ioannou, 2005, Babalola et al., 2007). 

This protein is currently of unknown function but it is known to be able to bind cholesterol at the 



 

6 

 

 

 

luminal N terminus (Infante et al., 2008). At least 58 mutations have been described in NPC patients 

(Park et al., 2003). Recently, NPC1 has been found essential for EBOLA virus infection, allowing the 

virus to fuse with the lysosomal membrane and escape from late endosomes following infection 

(Carette et al., 2011, Cote et al., 2011).  

The NPC2 gene is located on chromosome 14q24.3 (Naureckiene et al., 2000) and encodes a 

soluble lysosome lumen cholesterol binding protein of 132 amino acids. Dysfunction of either gene 

results in identical phenotypes, therefore it is likely that they act either in a common cellular pathway 

or upon the same downstream target (Sleat et al., 2004). Topological prediction for NPC1 can be seen 

in Figure 1.2.  

 
1.6 NPC lipid storage & cellular pathogenesis 

 

NPC disease is characterized by a highly complex storage material within lysosomes following 

progressive accumulation of multiple classes of lipids (Lloyd-Evans et al., 2008, te Vruchte et al., 2004). 

These lipids include cholesterol, sphingomyelin, numerous GSLs, the sphingolipid catabolic product 

sphingosine, (Lloyd-Evans et al., 2008) and the endo-lysosome specific phospholipid BMP (Chevallier 

et al., 2008). Alongside storage, a profound block in the endocytic pathway at the level of the late 

endosome can be observed with limited fusion between lysosomes and late endosomes, autophagic 

vacuoles or phagosomes (Lloyd-Evans et al., 2008, Ko et al., 2001, Mayran et al., 2003).  How trafficking 

defects and lipid storage lead to neurodegeneration is largely unknown. 
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Figure 1.2: Predicted topological structure of NPC1. NTD = N-terminal domain, SSD = sterol sensing domain, TM = 

transmembrane, LE = late endosome, Lys = lysosome. Cholesterol, NPC2, U18666A, EBOLA and Zn2+ binding sites are shown, 

alongside the location of the most common NPC causing mutation, I1061T, and the lysosomal targeting signal.  Adapted from 

Lloyd-Evans and Platt 2010. 

 
1.7 Deciphering NPC1 protein function: history of NPC disease 

 

In order to investigate how genetic defects in NPC1 and NPC2 result in storage and neurodegeneration 

within patients, the precise function of the NPC1 protein must first be deciphered.      

Following initial characterization of NPC as a primary sphingomyelin storage disease by 

Crocker et al., in 1958 (Crocker and Farber, 1958), ideas regarding the classification of NPC disease 

have fluctuated greatly.  In 1966 a key role for sphingomyelin was dismissed (Brady et al., 1966), and 

by 1984 NPC was reclassified as a lactosylceramide (LacCer) storage disease (Elleder et al., 1984). This 

idea was revised in 1972 (Dawson, 1972) and concurrently work completed by Peter Pentchev et al 

1985 (Pentchev et al., 1985) suggested NPC as a disorder associated with defective LDL cholesterol 

recycling. The identification of the gene in 1997 further strengthened the possibility that NPC disease 

was a cholesterol lipidosis by highlighting sequence similarity between NPC1 and mediators of 

cholesterol regulation and synthesis including SCAP, SREBP, PATCHED and HMG CoA reductase 

(Carstea et al., 1997).  Most recently, Li et al., 2016 (Li et al., 2016) published the crystal structure of a 

large fragment of NPC1, with the potential to aid future characterization. 
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To this day, the function of the NPC1 protein, and how loss of function results in cellular 

pathology, remains a highly disputed subject within the field following contradicting lines of evidence 

and conflicts of interest.  

 

1.8 Classical cascade: NPC as a primary cholesterol storage disease 

 

Development of the classical NPC cascade, with cholesterol acting as the primary storage material, 

arose in 1985 (Pentchev et al., 1985), and can be seen in Figure 1.3. Within this model, cholesterol 

redistribution was suggested to result in downstream storage of other materials following major roles 

of this lipid regarding trafficking of sphingolipids along the endocytic pathway (Puri et al., 1999).  

However, numerous lines of evidence exist against NPC as a primary cholesterol storage disease. 

Arguments for and against NPC as a primary cholesterol storage disease are contrasted in Table 1.  

 

For Against 

• Within peripheral 

diseased tissues 

cholesterol shows 

the greatest fold 

elevation of all NPC 

lipids (Butler et al., 

1993) 

• *Depletion of LDL 

within NPC cell 

culture medium can 

correct both 

cholesterol and GSL 

storage (Salvioli et 

al., 2004) 

• Both NPC1 and 

NPC2 are able to 

bind cholesterol 

(Infante et al., 2008) 

• No net increase in CNS cholesterol is seen (Karten et al., 

2003), despite a key neurological phenotype 

• LDL does not only contain cholesterol: also contains 

ceramide (Lightle et al., 2003) and traces of GSLs (Garner et 

al., 2001) (see*) 

• There exists no evidence that purified full-length NPC1 

directly transports cholesterol (Lloyd-Evans and Platt, 2010) 

• Cyclodextrin does not enter the CNS but does correct it 

(Pontikis et al., 2013), therefore cannot be beneficial by 

direct interaction with lipids 

• At least one NPC1 independent endosomal cholesterol efflux 

pathway already exists (Aye et al., 2009) 

• No clinical benefit is seen when testing the use of 

cholesterol-lowering therapies, and also when looking at the 

effects of NPC-null/LDL receptor-null double knock out mice 

(Patterson et al., 1993, Somers et al., 2001, Erickson et al., 

2000) 

• Variant NPC disease shows no storage of LDL-derived 

cholesterol, whilst still displaying characteristic sphingolipid 
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trafficking defects alongside clinical symptoms (Sun et al., 

2001) 

• SLOS patients display a deficiency in the cholesterol 

synthesis enzyme DHCR7, leading to a reduction in 

cholesterol levels and increase in cholesterol precursors. 

Despite this defect in cholesterol synthesis, patient cells 

display an NPC-like phenotype when grown in cholesterol-

free culture conditions (Wassif et al., 2002) 

• Treatment with the approved NPC drug miglustat results in 

reduced GSL synthesis whilst having no affect on cholesterol 

levels (te Vruchte et al., 2004) 

• Various therapies (e.g. curcumin (Lloyd-Evans et al., 2008), 

increasing Rab expression (Narita et al., 2005), Vitamin E (Xu 

et al., 2012b)) can rescue the cholesterol transport defect in 

NPC1 null cells without targeting cholesterol storage directly 

• Addition of sphingosine to healthy cells can induce NPC 

phenotypes whereas overloading with free cholesterol 

cannot (Roff et al., 1991) 

 

Table 1.1 Arguments for and against cholesterol being the primary storage material in NPC. NPC = Niemann-pick type C, 

CNS = central nervous system, LDL = low density lipoprotein, GSL = glycosphingolipid, SLOS = Smith-Lemli-Opitz syndrome, 

DHCR7 = 7-dehydrocholesterol reductase. 

 

1.9 Other NPC lipids 

 

1.9.1 Glycosphingolipids (GSLs) 

 

GSLs, including glucosylceramide (GlcCer), LacCer, and the gangliosides GM2 and GM3, show the 

greatest net elevation within the NPC patient brain (te Vruchte et al., 2004, Zervas et al., 2001). These 

lipids may be stored as a consequence of altered cellular trafficking (Lloyd-Evans et al., 2008), or 

alternatively following impaired breakdown (Salvioli et al., 2004). Disrupted saposin activity following 

accumulation of cholesterol and sphingomyelin within the lysosome may also result in GSL storage 

(Kolter and Sandhoff, 2005). Saposins are heat stable glycoproteins which activate lysosomal 

hydrolases involved in the breakdown of sphingolipids (Kishimoto et al., 1992). These molecules 

display optimal activity within BMP populated inner lysosomal membranes under low cholesterol 
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conditions. Altered environments within NPC cells may consequently hinder function (Kolter and 

Sandhoff, 2005). 

One line of evidence suggesting GSLs as a major driver of NPC pathogenesis arose following 

observations that storage within other disorders (e.g. Tay-Sachs, Sandhoff disease (GM2), and GM1 

gangliosidosis), resulted in severe neuropathology (Sandhoff and Harzer, 2013). This hypothesis was 

reconsidered however when NPC1 mice were crossed with mice lacking the polypeptide N-

acetylgalactosaminyl (GalNac) transferase, producing offspring unable to produce numerous complex 

gangliosides (including GM1 and GM2) (Liu et al., 2000). Despite reduced GSLs however, no 

improvement of NPC phenotypes was seen in these mutants, suggesting minimal involvement of these 

lipids regarding pathogenesis (Gondre-Lewis et al., 2003). These mice were still able to produce GSLs 

such as GlcCer and LacCer however; therefore these neutral lipids may still play a role regarding 

pathology. Within the NPC1/ GalNac double mutant, reduction in gangliosides was accompanied by a 

reduction in cholesterol (Gondre-Lewis et al., 2003). This result demonstrates how cholesterol 

accumulation lies downstream of GSL increase.  

Despite above arguments, when discussing the importance of gangliosides within NPC disease, 

positive effects of the iminosugar N-butyl-deoxynojirimycin (miglustat) must also be considered 

(Zervas et al., 2001, Ko et al., 2001). This glucose analog acts as an inhibitor of ceramide-specific 

glucosyltransferase, which catalyzes the first step in GSL biosynthesis (Platt et al., 1994). Acting as the 

only currently approved therapy for NPC patients (Lachmann et al., 2004), miglustat provides some 

improvement regarding both delayed disease onset (Zervas et al., 2001) and cellular trafficking 

abnormalities (Lachmann et al., 2004).  

 

1.9.2 Sphingomyelin 

 

Accumulation and mislocalization of the lipid sphingomyelin (Lloyd-Evans et al., 2008) alongside 

reduced activity (Elleder and Smid, 1985) and mislocalization of the sphingomyelin catabolic enzyme 

acid sphingomyelinase (ASM) (Tamura et al., 2006) can be observed within NPC1 disease cells, and 

both of these factors likely contribute towards pathogenesis (Lloyd-Evans and Platt, 2010). 

Characteristic ASM inhibition explains why this disease was initially entitled Niemann-Pick type C: 

Niemann-pick types A and B both arise following initial ASM defects (Ginzburg and Futerman, 2005). 

Sphingomyelin storage within NPC cells may arise following abnormal post-translational 

alterations in ASM, leading to reduced activity and therefore reduced sphingomyelin breakdown 

(Reagan et al., 2000). An alternative hypothesis suggests that decreased protein kinase C (PKC) activity 

in NPC1 following sphingosine storage directly results in increased sphingomyelin; phosphorylation of 



 

11 

 

 

 

ASM via PKC has been shown to regulate enzyme activity (Zeidan and Hannun, 2007, Rodriguez-

Lafrasse et al., 1997). Alterations in levels or functionality of BMP within NPC null cells may also 

regulate ASM activity: BMP has been shown to act as essential cofactor in the interaction between 

ASM and sphingomyelin (Kolter and Sandhoff, 2005, Linke et al., 2001). 

Adding sphingomyelinase to cellular plasma membranes results in a release of free 

cholesterol; this suggests a close biophysical relationship between these two lipids (Abi-Mosleh et al., 

2009). The above experiment also demonstrates how cholesterol storage and mislocalization may arise 

following sphingomyelin dyshomeostasis, with sphingomyelin acting as a molecular trap for 

cholesterol (and vice versa) (Lloyd-Evans and Platt, 2010). Furthermore, similarly to cholesterol, 

sphingomyelin storage is not observed within NPC1 disease brain (Karten et al., 2002). 

 

1.9.3 Bis(monoacylglycero)phosphate (BMP) 

 

BMP is another lipid shown to markedly increase within both NPC1 and NPC2 deficient cells (Chevallier 

et al., 2008), often within internal membranes of disease related multivesicular storage bodies (Karten 

et al., 2009). Within healthy cells, this lipid can be found primarily within late endosomes and 

lysosomes were, under the control of Alix/AlP1, it is able to regulate fission and fusion of the 

multivesicular endosome membrane (Chevallier et al., 2008).   

Despite observed increase of this phospholipid within diseased cells, addition of exogenous 

BMP to NPC null results in partial reversion to wild-type phenotypes (Chevallier et al., 2008). As 

previously discussed, BMP performs essential roles regarding activation of hydrolases involved in the 

lysosomal degradation of GSLs (Kolter and Sandhoff, 2005), as well as acting as a cofactor for the ASM 

enzyme during sphingomyelin breakdown (Kolter and Sandhoff, 2005, Linke et al., 2001). Bearing this 

in mind, it appears as if modifications to BMP, rather than decreased availability, result in downstream 

storage of GSLs and sphingolipids within NPC. 

Storage of BMP is likely to arise following characteristic endocytic trafficking defects observed 

in NPC (Lloyd-Evans et al., 2008, Ko et al., 2001, Mayran et al., 2003). 

 

1.10 Current cascade: NPC1 as a sphingosine transporting RND permease? 

 

Following cholesterol controversy, a new NPC cascade was proposed (Figure 1.3). This cascade used 

growing evidence suggesting NPC1 as a resistance-nodulation cell-division (RND) permease 

transporter (Tseng et al., 1999, Davies et al., 2000). RND permeases are frequently observed within 
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gram-negative bacteria, where they function to transport lipophilic drugs, detergents, bile salts, fatty 

acids, metal ions and dyes out of the cytosol (Davies et al., 2000). 

As an RND permease, it was proposed that NPC1 could be acting to transport the detergent-

like molecule sphingosine, with sphingosine thereby acting as the primary NPC lipid following 

inhibition (Lloyd-Evans and Platt, 2010). This sphingoid base acts as a backbone for the formation of 

sphingolipids such as sphingomyelin, and is released following breakdown in the lysosome. This lipid 

then requires a transporter to facilitate its egress from the lysosome following its net positive charge 

(Lloyd-Evans and Platt, 2010). Sphingosine exists as an important cellular metabolite and signaling lipid 

in animal cells; acting as a potent inhibitor of PKC, Ca2+ channels, cell cycle progression and a mediator 

of apoptosis (Betto et al., 1992, Bottega et al., 1989, Kagedal et al., 2001, Lloyd-Evans et al., 2003, 

Werneburg et al., 2002).  

Initial evidence for a key role of sphingosine arose following observations that levels of this 

lipid increase up to 12-fold in peripheral areas of NPC patients; namely in the liver and spleen (te 

Vruchte et al., 2004). Furthermore, a 4-fold increase of this lipid is observed within the NPC patient 

brain (te Vruchte et al., 2004). Moreover, in contrast to other NPC lipids, addition of sphingosine to 

healthy cells at a concentration equivalent to that found in diseased cells results in an NPC phenotype 

(Roff et al., 1991). Finally, following treatment of healthy cells with the well-known NPC1 inhibitor 

U18666A (Lu et al., 2015), sphingosine acts as the first lipid elevated, followed by defective endocytosis 

and consequent secondary storage of lipids (Lloyd-Evans et al., 2008). Early storage highlights 

sphingosine as an upstream event following inactivation of NPC1. 

Following its elevation within diseased cells, sphingosine appears to inhibit Ca2+ store filling via 

an unknown mechanism, thereby reducing late-endosomal/lysosomal Ca2+ levels (Lloyd-Evans et al., 

2008, Lloyd-Evans and Platt, 2010). Within healthy cells, late-endosomal/lysosomal Ca2+ signaling 

mediates both vesicular release and late-endosomal/lysosome fusion (Pryor et al., 2000), and these 

stores are then expected to refill via Ca2+ influx channels on the lysosomal membrane (Christensen et 

al., 2002, Gerasimenko et al., 1998), although the exact nature of these import systems is currently 

unknown. By impeding above Ca2+ signaling pathways, sphingosine mediated Ca2+ dyshomeostasis 

results in the dramatic trafficking defects observed within NPC cells (Lloyd-Evans and Platt, 2010). 

Enhancing PKC activity using Phorbol 12-myristate 13-acetate results in increased vimentin-associated 

endocytic transport via Rab9 and a reduction in cholesterol storage (Walter et al., 2009). Consequently, 

endocytic defects may also emerge following previously discussed sphingosine-mediated PKC 

inhibition (Rodriguez-Lafrasse et al., 1997). PKC can also act to regulate Ca2+ channels; therefore we 

cannot discount the possibility that PKC inhibition caused by sphingosine primarily accounts for the 

lysosomal Ca2+ defect in NPC (Yazaki et al., 2015). 
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Figure 1.3 Potential NPC1 pathogenic cascades. A) The classic NPC cascade whereby NPC1 acts as a cholesterol transporter: 

mutation leads directly to cholesterol storage within lysosomes and disease symptoms. B) The current NPC cascade: NPC1 

acts as a sphingosine transporter. Defects lead to initial sphingosine storage within lysosomes, Ca2+ signalling and endocytosis 

defects, and finally lipid storage and disease. Adapted from Lloyd-Evans et al., (2008). 

 

1.11 NPC1: Homology to other proteins 

 

Whilst NPC1 currently remains of unknown function, comparison to other proteins shows various 

homologies. 

Firstly, NPC1 sequence shares 23% sequence identity (35% within the carboxyl terminal) when 

compared with the membrane receptor Patched (Park et al., 2003). Upon Patched binding to 

cholesterol-modified sonic hedgehog, the G-protein coupled receptor (GPCR) Smoothened is released, 

resulting in activation of numerous downstream signaling cascades (Burglin, 2008). Hypothetically, 

NPC1 could also act to transduce signals via this pathway, with loss of function altering signaling 

homeostasis (Lloyd-Evans and Platt, 2010). 

Following sequence alignments against the RND permease AcrB, found in Escherichia coli, 

NPC1 has recently been proposed as the only known mammalian RND permease (Scott and Ioannou, 

2004). Further evidence for an RND permease function of NPC1 arose when the protein demonstrated 

the ability to transport acriflavine, a known RND permease substrate (Davies et al., 2000). Acting as an 

RND permease, it was suggested that NPC1 could act to regulate lysosomal content of endogenous 

amines (Kaufmann and Krise, 2008), for example the sphingoid base sphingosine as previously 

discussed (Lloyd-Evans and Platt, 2010). Similarly to other bacterial RND permeases, NPC1 could 

potentially transport numerous substances, not just sphingosine, thereby rendering NPC disease even 
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more complex than first thought. For one, NPC1 has previously been implicated in clearance of both 

the anti-cancer drug daunorubicin and dextran molecules from cells (Gong et al., 2006). 

Alongside various similarities across proteins, orthologs of the NPC1 protein show high 

evolutionary conservation across species (Malathi et al., 2004). This was demonstrated when it was 

shown that the yeast orthologue of NPC1, ncr1, is able to compensate for NPC1 deficiency when 

expressed in mammalian cells (Malathi et al., 2004). Furthermore, within yeast, ncr1 is found on the 

vacuolar membrane (Malathi et al., 2004), with the vacuole having been shown functionally equivalent 

to the eukaryotic lysosome (Patel and Cai, 2015). Given high conservation regarding both sequence 

and location, studies into the role of ncr1 within yeast may provide further clues to deciphering NPC1 

function. Current research suggests against a cholesterol transport function of ncr1 following 

observation that during ergosterol autotrophic conditions sterols are neither internalized by nor 

trafficked through the yeast vacuole (Schulz and Prinz, 2007). However, a, sphingolipid transport 

function of ncr1 was hypothesized when it was shown that point mutations in the sterol sensing 

domain resulted in a primary sphingolipid trafficking phenotype (Malathi et al., 2004). 

 

1.12 Therapeutics available for the treatment of NPC 

 

The rarity and relative lack of understanding of this disorder means therapeutic options for NPC are 

limited. Currently, N-butyldeoxynojirimycin, or miglustat, acts as the only approved therapy for NPC 

(Lyseng-Williamson, 2014), although hydroxypropyl-β-cyclodextrin (HPβCD), arimoclomol, curcumin 

and gene therapy are currently being investigated. More information about curcumin can be found in 

Chapter 6. 

 

1.12.1 Miglustat 

 

Miglustat acts as an inhibitor of GSL synthesis via inhibition of GlcCer synthase, and was previously 

developed as a therapy for glycosphingolipidoses such as Gaucher disease (Cox et al., 2000). Patients 

with Gaucher disease show a primary defect in GSL metabolism, leading to progressive storage of these 

moieties within lysosomes (Scriver, 1995). As previously discussed, GSL storage can also be observed 

within NPC (te Vruchte et al., 2004, Zervas et al., 2001). 

Zervas et al., 2001 demonstrated how NPC mice treated with this iminosugar display reduced 

GSL accumulation alongside delayed onset of symptoms and increased lifespan. Additionally, work by 

Lachmann et al., (2004) showed how this substrate reduction therapy is able to correct lipid trafficking 

defects observed within NPC patients.  
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In 2007 the results of a small clinical trial in the UK and USA indicated beneficial effects of 

miglustat in arresting multiple components of NPC disease pathology (Patterson et al., 2007). 

Subsequently, miglustat has been approved worldwide (apart from in the USA) for use in NPC patients. 

It is at present the only approved therapy. Early treatment appears to significantly retard disease onset 

and progression. However, despite beneficial effects observed, miglustat is far from a curative 

treatment for this disease (Lyseng-Williamson, 2014). 

Hung et al., (2014) determined that miglustat is unable to correct disrupted metal homeostasis 

in NPC patients (Hung et al., 2014). Furthermore, miglustat treatment does not correct cholesterol 

phenotypes, suggesting this accumulation may also present as an upstream effect (te Vruchte et al., 

2004). Discussed limitations of this therapy prompted the development of curcumin and cyclodextrin 

as potential treatments for NPC. 

 

1.12.2 Hydroxypropyl-β-cyclodextrin (HPβCD, cyclodextrin) 

 

Allopregnanolone was found deficient in NPC patients, prompting work by Griffin et al., 2004 where 

they treated Npc1-/- mice with this neurosteroid, solubilized in 20% hydroxypropyl-β-cyclodextrin 

(HPβCD). NPC mice presented with significant improvements regarding both lifespan and 

neuropathology (Griffin et al., 2004). Subsequent experiments however demonstrated how injection 

of the cyclodextrin vehicle alone could account for the vast majority of the improvement seen 

(Davidson et al., 2009). Since this discovery, intracisternal injection of HPβCD in feline models of NPC 

has been shown to delay cerebellar degeneration and purkinje cell loss whilst reducing lipid 

accumulation and increasing life expectancy (Vite et al., 2015). Several clinical trials are currently taking 

place investigating the effects of HPβCD in human patients (Garcia-Robles et al., 2016, Matsuo et al., 

2013, Maarup et al., 2015). 

Cyclodextrins are membrane-impermeant cyclic oligosaccharides. Despite widespread use of 

these molecules both in vitro and in vivo to manipulate cholesterol levels (Zidovetzki and Levitan, 2007, 

Davis and Brewster, 2004), mechanism of action against NPC pathology is currently unknown. One 

view suggests this molecule is able to sequester cholesterol within its hydrophobic core (Davis and 

Brewster, 2004). Another hypothesizes that HPβCDs induce lysosomal exocytosis by damaging the 

plasma membrane, thereby releasing storage materials and decreasing cell stress (Chen et al., 2010). 

Nonetheless, the question that remains is how this molecule can correct neurological phenotypes, 

despite an inability to cross the blood brain barrier (BBB) (Pontikis et al., 2013). Brain endothelial cells 

are in close contact with astrocytes at the BBB, and Ca2+ signals can be propagated across these cells 

bidirectionally via gap-junctions (Braet et al., 2001). For this reason, a potential capacity of HPβCD to 
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restore NPC Ca2+ signaling, thereby partially correcting both trafficking and lipid storage, has been 

suggested (Goike and Lloyd-Evans et al. unpublished observation). 

Despite potential benefits of this therapy, toxic effects regarding both hearing and hair-cell 

death have recently been proposed to occur following HPβCD treatment of feline and mouse NPC 

models (Crumling et al., 2012, Ward et al., 2010, Vite et al., 2015).  

 

1.12.3 Arimoclomol  

 

Arimoclomal acts as a heat shock protein-based therapy currently being tested in a 2/3 clinical trial 

with 46 NPC patients (Kirkegaard et al., 2016).  

Molecular chaperones of the heat shock protein 70 (HSP70) family protect pathologically 

challenged cells via direct interaction with lysosomes (Kirkegaard et al., 2010, Nylandsted et al., 2004). 

HSP70 binding to BMP stabilizes the interaction of this lipid with numerous lysosomal enzymes, 

preventing degradation of the enzymes and increasing their activity (Kirkegaard et al., 2010). For one, 

increased BMP binding to ASM improves breakdown of sphingomyelin to ceramide, therefore 

preventing lysosomal aggregation, membrane permealization and stress-induced cell death found in 

numerous LSDs (Kirkegaard et al., 2010, Nylandsted et al., 2004, Petersen and Kirkegaard, 2010, 

Guicciardi et al., 2004, Micsenyi et al., 2013). Furthermore, HSP70 has recently been found to enhance 

the proper folding and activity of mutant NPC1 proteins. Combined, these results demonstrate 

potential dual benefits of HSP70 based therapies in NPC. Indeed, treating NPC1 mice with recombinant 

HSP70 both reduced lipid storage and improved neurological phenotypes (Kirkegaard et al., 2016). 

Despite benefits observed in the mouse model, HSP inducers such as rHSP70 have been known 

to stress cells, discouraging there use in a chronic condition like NPC. Bearing this in mind, Kirkegaard 

et al., (2016) instead performed studies on NPC mice treated with arimoclomol, a small-molecule orally 

available coinducer of the HSP70 system. Arimoclomal was seen to cross the blood-brain barrier in 

NPC mice in order to reduce storage and improve motor function. Beneficial effects of arimoclomol 

have also been observed in vitro, with treatment reducing lysosomal expansion and lipid storage in 

NPC patient fibroblasts (Kirkegaard et al., 2016). 

 

1.12.4 Gene therapy 

 

Whilst still in development, gene therapy to specifically increase levels of functional NPC1 within 

patients holds great promise for the treatment of NPC.  
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This method was first investigated for its use to treat NPC disease following observations that 

expressing wild-type NPC1 under either a prion (Loftus et al., 2002), neuron (Lopez et al., 2011) or glial 

(Borbon et al., 2012a) specific promoter prevents neurodegeneration and extends the lifespan of Npc1-

/- mice. Recently, Chandler et al., (2017) utilized an adeno-associated virus serotype 9 vector (AAV9) to 

increase levels of Npc1 in Npc1-/- mice. This resulted in increased Purkinje cell survival, improved motor 

deficits, reduced cholesterol storage, and an extended lifespan (Chandler et al., 2017). 

 

1.13 Inhibitors of NPC1 

 

Using inhibitors of NPC1 to generate disease phenotypes in wild-type cells and organisms provides 

tremendous benefit regarding the study of NPC disease. For one, inhibiting NPC1 to induce NPC in 

macrophages and checking phenotypes at various time points allowed deduction of the order of the 

pathogenic cascade (Lloyd-Evans et al., 2008). Four substances are currently known to induce an NPC-

like phenotype: U18666A (Lu et al., 2015), Phe-Arg β-naphthylamide dihydrochloride (PAβN) (Lloyd-

Evans et al., unpublished observation), 1-(1-naphthylmethyl)-piperazine (1NMP) (Lloyd-Evans et al., 

unpublished observation), and sphingosine (Roff et al., 1991). U18666A is a cationic amphiphile known 

to generate an NPC phenotype by binding and directly inhibiting NPC1 (Lu et al., 2015), whilst 1NMP 

and PAβN act as RND permease inhibitors (Schumacher et al., 2006, Lomovskaya et al., 2001, Renau et 

al., 1999), therefore inhibiting the only known mammalian RND permease, NPC1. The fact that we 

observe NPC phenotypes following treatment with RND permease inhibitors further implicates NPC1 

as a member of this family of transporters. Finally, as previously discussed, sphingosine acts as the only 

NPC lipid that results in an NPC-like phenotype when added to cells at a physiologically relevant 

concentration (Roff et al., 1991), highlighting this storage as an early disease phenotype. 

 

1.14 Aims of this thesis 

 

The function of NPC1, mutated in ~95% of NPC patients, remains unknown. This project utilized in vitro 

and in vivo models to further characterize the function of NPC1, decipher the pathogenic cascade that 

occurs following mutation and to uncover novel therapeutics designed to target upstream stages of 

this cascade, namely the observed acidic-store Ca2+defect and lysosomal Zn2+ storage. 

 Chapter 2 describes materials and methods used throughout the thesis; methods specific for 

each results chapter can be found at their start. 

 Chapter 3 investigates lysosomal Zn2+ storage in NPC, a novel function for NPC1 as a lysosomal 

Zn2+ transporter, and Zn2+ chelators (e.g. phytic acid) as potential treatments for NPC. 



 

18 

 

 

 

 Chapter 4 looks to characterize the effects of previously investigated and novel Ca2+ 

modulators on the NPC cellular phenotype. Ca2+ modulators have previously been shown to overcome 

the lysosomal Ca2+ defect in NPC, thereby preventing endocytosis defects and lipid storage. 

 Chapter 5 demonstrates the development and characterization of a zebrafish model of NPC: 

providing insight into the NPC cascade and allowing rapid evaluation of novel therapeutics in vivo. 

 Chapter 6 examined the effects of various curcumin nutraceuticals on NPC glia. Several NPC 

patients began taking curcumin supplements following work by Lloyd-Evans et al., 2008 demonstrating 

beneficial effects of curcumin in the mouse, but observations of toxicity in vitro suggested the need 

for further study. 

 Chapter 7 concludes the thesis with a general discussion, including implications of the findings 

outlined in this thesis for future NPC therapy and a greater understanding of the pathogenic cascade.
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Chapter 2: General Materials & Methods 

 
Unless otherwise stated, all reagents were from Sigma-Aldrich. For all methods not shown here, see 

chapter specific methods. 

 
2.1 Cell culture 

 
Glia (mouse astrocytes) were primary cells cultured by Dr E Lloyd-Evans from wild-type Npc1+/+ (wild-

type) and Npc1-/- (NPC1-null) mice (Lloyd-Evans et al., 2008). Glia were grown as monolayers in a 

humidified incubator at 37oC and 5% CO2 in complete Dulbecco’s Modified Eagle’s medium (DMEM). 

Flasks (T75s with 75ml total volume and T25s with 25ml total volume) were used for maintenance and 

chamber slides (ibidi), 24-well plates (Greiner), and coated 96-well plates (Greiner) were used for 

treatments and assays. Other cells used include chinese hamster ovary (CHO), baby hamster kidney 

(BHK) and human fibroblasts (see Chapter 3 for more detailed methods on these cell types). 

 
2.2 Microscopy 

 
All cell microscopy was performed using an inverted Zeiss Colibri LED widefield fluorescence 

microscope with a high-speed monochrome charged coupled device (CCD) Axiocam MRm camera and 

Axiovision 4.7 software. All images were taken using a 40x oil magnification lens. For imaging of fixed 

cells, cells were grown and treated on acid washed glass coverslips in 24-well plates and fixed and 

stained as described below. The coverslips were mounted on glass slides using Mowiol mounting 

medium (Mowiol 4-88, Calbiochem). For live imaging (including Ca2+ imaging), cells were grown and 

treated in chamber slides (ibidi), stained as described below and imaged directly. For live Zn2+ staining 

and fixed BMP/sphingomyelin staining (Chapter 3), lysosomal Ca2+ imaging (Chapter 4), and live and 

fixed imaging of zebrafish (Chapter 5) see chapter specific methods. 

 
2.3 Treatment with inhibitors of NPC1 (U18666A & 1NMP) 

 
U18666A is a cationic amphiphile known to generate an NPC phenotype by binding and directly 

inhibiting NPC1 (Lu et al., 2015) and 1-(1-naphthylmethyl)-piperazine (1NMP) is an RND permease 

inhibitor, acting to inhibit the only identified mammalian RND permease, NPC1 (Schumacher et al., 

2006, Lomovskaya et al., 2001). For more information about using U18666A and 1NMP these to induce 

an NPC1 phenotype in cells (Chapter 3) and zebrafish (Chapter 5) please see chapter specific methods. 
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2.4 Fixed cell staining 

 
2.4.1 Fixing cells in paraformaldehyde (PFA) 

 
Glia grown on glass coverslips were washed once with phosphate buffered saline (PBS), and incubated 

with 4% paraformaldehyde (PFA, Taab) at room temperature for 5 minutes. Cells were then washed 

once with complete medium, then washed twice more in PBS and stored at 4oC. 

 
2.4.2 Cholesterol staining using filipin 

 
Cholesterol was visualized using filipin (filipin complex from Streptomyces filipinenses), a naturally 

fluorescent antibiotic that specifically binds cholesterol (Bornig and Geyer, 1974). PFA-fixed glia were 

incubated in complete DMEM with 187.5μg/ml filipin at room temperature for 30 minutes, then 

washed 3 times in PBS. Excitation/Emission = 360/480nm. 

 
2.4.3 GM1 fixed staining using Alexa Fluor 488-CtxB 

 
Ganglioside GM1 was visualized using Alexa Fluor 488-Cholera toxin B subunit (CtxB) (Svennerholm, 

1976). PFA-fixed glia were incubated in blocking buffer (PBS with 1% bovine serum albumin (BSA) and 

0.1% saponin) with 2.5μg/ml Alexa Fluor 488-CtxB at 4oC overnight, then washed 3 times in PBS. 

Excitation/Emission = 495/519nm. 

 
2.4.4 Hoescht nuclear staining 

 
A blue fluorescent hoescht 33258 pentahydrate (bis-benzimide) nuclear stain was sometimes used to 

help identify stained glia. PFA-fixed cells were incubated in PBS with 2μg/ml hoescht (Invitrogen) at 

room temperature for 10 minutes, then washed 3 times in PBS. Excitation/Emission = 361/497nm. 

	
2.5 Live cell staining 

	
2.5.1 Lysotracker green staining for lysosomes 

	
Glia grown in ibidi chamber slides were washed once in complete Hank’s Balanced Salt Solution (HBSS 

+ 1mM HEPES pH7.2m 1mM CaCl2, 1mM MgCl2) prior to incubation with Lysotracker green (Invitrogen, 

200nM in HBSS), which loads specifically into lysosomes, for 15 minutes at 37oC. Cells were then 

washed twice in complete HBSS and imaged live. For more information about using Lysotracker in 

zebrafish, see Chapter 5 specific methods. Excitation/Emission = 504/511nm. 
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2.5.2 Ca2+ imaging using Fura-2 AM 

	
Elevation in cytoplasmic Ca2+ following the addition of various drugs (MLSA1, δ-tocopherol, CGS21680, 

acetyl-X-leucine, and curcumin nutraceuticals) was measured using the cell permeable Ca2+ indicator 

Fura-2AM (ThermoFisher Scientific) with an excitation at 360 and 380nm and emission at 525nm. Ca2+ 

release was calculated ratiometrically between emissions of 360 and 380nm. Cells in ibidi chamber 

slides were washed once in cold medium with 1% BSA. Following the wash, cells were incubated for 

an hour at <16oC with 5μM Fura-2AM in complete DMEM with 1% BSA and 0.025% Pluronic F127. The 

Fura-2AM solution was then removed and the cells were left for 10 minutes in complete HBSS to allow 

esterases within cells to cleave the acetoxymethyl ester (AM) group on the probe, which would 

otherwise inhibit fluorescence. Cells were then washed twice with complete HBSS and imaged live. 

	
2.6 Thin layer chromatography (TLC) 

	
Relative lipid species across samples were compared using a thin later chromatography (TLC) method. 

Chapter-specific modifications can be found within individual methods sections. 

	
2.6.1 Bicinchoninic acid (BCA) protein assay to determine amount of protein in a sample 

 
Treated and untreated Npc1+/+ and Npc1-/- glia were harvested from T75 flasks and pelleted by 

centrifugation at 159xg for 5 minutes. The cell pellets were then homogenized using three rounds of 

freeze-thaw followed by 20 strokes in a dounce 30 homogenizer. For details on homogenization of 

zebrafish see Chapter 5 specific methods. Following homogenization, the BCA protein assay was 

performed as per the manufacturers instructions. Absorbance was read using a TECAN absorbance 

microplate reader at 570nm wavelength. 

 
2.6.2 Lipid extraction 

 
Lipids were extracted using the method described in Neville et al., (2004) (Neville et al., 2004) with 

modifications required for zebrafish extractions (see Chapter 5).    

Aliquots of the homogenates equal to 1mg were taken from all the samples. The samples were 

made up to equal volumes in MilliQ water before extracting lipids by adding 5 times the original volume 

of chloroform:methanol 1:2 (Fisher) which solubilizes lipids. The samples were then left on a roller 

overnight at 4oC. Following this incubation, samples were centrifuged at 1429xg for 5 minutes and the 

supernatant was collected prior to the addition of 4 parts the original volume of PBS and chloroform. 

The samples were then vortexed and left to settle to give a clear phase separation, allowing for the 
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upper aqueous phase to be removed and discarded. The remaining organic lipid-containing phase was 

dried down under a stream of nitrogen using a nitrogen evaporator. 

 
2.6.3 Thin layer chromatography (TLC) separation of lipids 

 
Following lipid extraction, TLC was performed as described by Maue et al., 2012 (Maue et al., 2012). 

The samples were re-suspended in 50μl chloroform:methanol 1:1 solution before being vortexed and 

sonicated for 10 minutes. 15μg of polar lipid standard (Avanti Polar Lipids) was also dried down under 

nitrogen prior to re-suspension in chloroform:methanol 1:1. The samples were then applied to 1cm 

lanes at the bottom of a silica gel HPTLC plate (Merck Millipore) alongside the polar lipid standard. 

Loaded plates were then ran in a pre-equilibrated TLC tank containing one of 2 mobile phases until the 

solvent mobile front was approximately 1cm from the top of the silica gel plate. Mobile phases where 

made up to chloroform:MeOH:H2O ratios of either 65:25:4 for better visualization of phospholipids (or 

for separation of curumin supplements alone, see Chapter 6) or 80:10:1 (Chapter 6).  

 
2.6.4 Developing of the silica gel TLC plate 

 
Once taken out of the TLC tanks the plates were dried using a hairdryer for 10 minutes. The plates 

were then sprayed until saturation with dH2O plus 1% sulphuric acid (Fisher) and 0.1% orcinol. 

Following spraying, the saturated plates were developed following gradual warming up to 100oC.  

 When developed, the plates were scanned in greyscale in order to obtain the integrated 

greyscale values using the gel analysis plugin in ImageJ. Greyscale values were then used to calculate 

the area under the curve for each band in order to compare band density (representing amount of 

lipid) between the different samples. 

 
2.7 Image analysis: thresholding and distribution analysis 

 
Following staining with various fluorescent probes, staining intensity was quantified using 

thresholding. Using ImageJ, the brightness for one set of images, representing one treatment category 

(usually untreated Npc1-/- astrocytes), was adjusted so that a particular percentage of cells were visible, 

and this percentage was recorded as number of bright cells. Other images of different treatment 

categories (e.g. Npc1+/+, Npc1-/- + U18666A etc) then had their brightness adjusted to the same amount 

as the first category, and percent visible cells (bright cells) were calculated. This allowed comparison 

of probe intensity across sets of images. Following quantification of several repeats, statistical analysis 

was performed on the percentages. 
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 Distribution analysis was performed to highlight differences in cellular phenotypes following 

staining with Zinquin, FluoZin3-AM or filipin. 

 
2.8 Statistical analysis 

 
Results were analyzed for statistical significance using T-tests (for comparison of the means of 2 

groups) or ANOVA using a Dunnet’s multiple comparisons posthoc test (for comparison of the means 

of more than 2 groups) carried out using GraphPad Prism 7.0a software. 
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Chapter 3: NPC1 Zn2+ phenotype, NPC1 as a Zn2+ transporter & treatment of 

this Zn2+ phenotype with chelators 

 

3.1 Introduction 

 

Recently, evidence has emerged suggesting lysosomal Zn2+ storage as a key phenotype in NPC1 disease. 

We therefore decided to investigate this phenotype, as well as potential therapies to combat Zn2+ 

storage, further. 

 

3.1.1 Zn2+ as an essential trace element 

 

Zn2+ acts as a highly regulated, essential trace element within healthy cells; functioning within proteins 

as structural components, as well as acting as cofactors for over 300 enzymes with roles regulating 

numerous essential cellular processes (Takeda, 2000). 

Cellular Zn2+ is regulated by a large variety and number of regulatory proteins: in fact, between 

3 and 10% of all proteins in the mammalian genome are suspected to bind Zn2+ (Vallee and Falchuk, 

1993). Among these, highly important regulators include 10 ZnTs (Zn2+ transporter proteins) which 

mediate transport from the cytosol to the lumen of intracellular organelles or out of the cell (Liuzzi 

and Cousins, 2004), 14 ZIPs (Zn2+ importing proteins) which mediate influx at the plasma membrane 

and efflux from intracellular organelles (Liuzzi and Cousins, 2004) and 4 isoforms of MTs 

(metallothioneins) which are Zn2+ buffering proteins (Vallee, 1995, Maret and Vallee, 1998). ZnT, ZIP 

and MT expression is highly regulated in response to changing levels of Zn2+ (Ghoshal and Jacob, 2001, 

Cousins et al., 2006). 

Cells are predicted to contain intracellular Zn2+ stores, although their exact location is 

unknown. ZnT2 is known to pump Zn2+ into lysosomes (Mocchegiani et al., 2010), however, in 

lysosomal proteomics, no known Zn2+ transporter has been discovered that could potentially be 

pumping Zn2+ out (Chapel et al., 2013). One study did claim that they had found ZIP8 on lysosomes in 

T-cells (Aydemir et al., 2009): however, the antibody used is known to be non-selective (Lloyd-Evans 

communication), therefore confounding results.  

Zn2+ displays key roles regarding synaptic transmission, with several glutamatergic terminals 

showing enrichment of Zn2+ exceeding 1mmol/L within glutamate containing synaptic vesicles.  

Following its release from synapses, this ion generates both dampening and stimulatory effects on 

assorted inhibitory and excitatory neurons (Frederickson et al., 2000).  
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3.1.2 Zn2+ and neurological disease 

 

Zn2+ dyshomeostasis can be seen within numerous neurological disorders. Firstly, accumulation of Aβ 

plaques acts as a pathological hallmark of Alzheimer’s disease (Terry and Katzman, 1983). These 

plaques have been shown to bind Zn2+ with high affinity (Bush et al., 1994b, Bush et al., 1994a), and 

absence of synaptic Zn2+ has been shown to reduce plaques by 20% (Lee et al., 2002). Furthermore, in 

Parkinson’s disease, Zn2+ accumulation can be seen within affected dopaminergic neurons and other 

patient tissues (Dexter et al., 1991, Hozumi et al., 2011). NPC1 and Alzheimer’s disease share many 

disease-related molecular pathways including accumulation of Aβ plaques, tau pathology and 

cholesterol storage (Malnar et al., 2014). Furthermore, lysosomal Zn2+ accumulation is observed within 

NPC1 cells and mouse brain (Figure 3.1, Lloyd-Evans et al., unpublished observation). These 

observations suggest Zn2+ dyshomeostasis as a potential cause of the neurological decline observed in 

NPC. 

 

3.1.3 Zn2+, reactive oxygen species (ROS) and apoptosis 

 

Zn2+ appears to promote neuronal apoptosis through various mechanisms, and this is likely to impact 

on pathologies of numerous neurological disorders presenting with Zn2+ dyshomeostasis. For one, both 

cytosolic and inter-mitochondrial Zn2+ dyshomeostasis can potentially interfere with mitochondrial 

function and ultimately culminate in cell death (Sensi et al., 2000, Dineley et al., 2005, Sensi et al., 

1999, Malaiyandi et al., 2005). Furthermore, through PKC (Noh et al., 1999), nicotinamide adenine 

dinucleotide phosphate (NADPH) (Kim and Koh, 2002), and neuronal nitric oxide synthase (Kim and 

Koh, 2002) activation, increased Zn2+ levels result in elevated ROS and superoxide generation. 

Increased ROS can be highly toxic to cells as these molecules advocate fragmentation of DNA 

(Wiseman and Halliwell, 1996), lipids (Bruckdorfer, 1998), and matrix components (Tiku et al., 1999). 

These highly aggressive molecules promote oxidative changes to proteins, potentially resulting in 

chemical fragmentation alongside increased vulnerability to proteases (Davies, 1987, Stadtman). 

Finally, Zn2+ accumulation in lysosomes has been suggested to encourage autophagic neuronal death 

via permeabilization of the lysosomal membrane (Hwang et al., 2008). 

 

3.1.4 Zn2+ and NPC 

 

Several findings initially suggested disrupted metal ion homeostasis within NPC tissues. This included 

several gene expression profiling studies whereby increased expression of a wide range of transporters 
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and solute carriers, including the Zn2+ transporter SLC392A, was observed within NPC1 human 

fibroblasts and mice (Reddy et al., 2006, Vazquez et al., 2011). 

Hung et al. 2014 (Hung et al., 2014) then performed further comprehensive examination 

looking at transition metal levels within cerebrospinal fluid, plasma, and tissue samples obtained from 

both human NPC1 patients and Npc1-/- mice. He demonstrated a clear, significant increase in Zn2+ in 

both human and mouse NPC1 samples when compared with wild-type, including an increase within 

the cerebrum. Furthermore, most patients also show reduced Zn2+ within their plasma and cerebral 

spinal fluid.  

As previously discussed, within healthy cells, Zn2+ homeostasis is tightly regulated by a variety 

of ion transporters (e.g. ZnTs and ZIPS) and buffering proteins (e.g. MTs) (Liuzzi and Cousins, 2004, 

Vallee, 1995, Maret and Vallee, 1998). Work within the Lloyd-Evans lab however has visualized Zn2+ 

redistribution and accumulation within the lysosomes of NPC1 cells and tissues, representing a novel 

disease phenotype. Furthermore, said Zn2+ is present in the Purkinje neurons of the cerebellum, which 

die in NPC, but not in the Purkinje neurons of lobe 10 which are known to survive. These observations 

are shown in Figure 3.1 (Waller-Evans and Lloyd-Evans, unpublished). 

 

 
 
Figure 3.1. Zn2+ accumulation in Npc1-/- cells and the brain. A) Staining astrocytes with the zinquin probe for Zn2+ shows a 

disperse cytosolic distribution of this ion in wild-type (WT, Npc1+/+) compared with increased punctate Zn2+ and decreased 

cytosolic in NPC1 cells (Npc1-/-). B) Npc1+/+ mouse Purkinje neurons of lobes I-IX (lobe III shown) shows low levels of Zn2+ 

(staining for Zn2+ with TSQ shown at 495nm) within the granule cell layer (staining for Purkinje neuron marker calbindin at 

550nm). However, within Npc1-/- mice, Purkinje cells of lobe III show marked Zn2+ accumulation as early as 2 weeks. C) Purkinje 

cells of lobe X taken from Npc-/- mice show no Zn2+ accumulation even at 10 weeks (death occurs at 10-11 weeks). This 

indicates a correlation between lysosomal Zn2+ accumulation and Purkinje cell death. N>3. Figure by Waller-Evans and Lloyd-

Evans, unpublished. 
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Other studies also suggest lysosomal Zn2+ accumulation as an upstream phenotype within the NPC1 

pathogenic cascade. For example, Kobayashi et al. 1999 (Kobayashi et al., 1999) demonstrated that 

overexpression of ZnT2 (transports Zn2+ into lysosomes (Mocchegiani et al., 2010)) generates increased 

lysosomal Zn2+ resulting in increased inactive BMP and cholesterol alongside cellular trafficking 

defects. This potentially represents an NPC phenotype and raises an interesting possibility that Zn2+ 

accumulation may be responsible in part for the NPC pathogenic cascade. Finally, a study by Watari et 

al. 2000 showed how the intraluminal cysteine rich loop of NPC1 is in fact able to bind Zn2+, with this 

region displaying a crucial role regarding function (Watari et al., 2000).  

Following collective evidence, one aim of this PhD is to investigate NPC1 as a Zn2+ transporting 

RND permease. RND permeases have previously been shown to transport Zn2+ (Hantke, 2001, Pak et 

al., 2013), and whilst transporters are currently known to transport Zn2+ into lysosomes (Mocchegiani 

et al., 2010), so far none are known which can transport Zn2+ out (Chapel et al., 2013), with NPC1 acting 

as a potential candidate. 

 

3.1.5 NPC1 as an RND permease 

 

As previously discussed, following sequence alignments against the RND permease AcrB, found in E. 

coli, NPC1 has recently been proposed as the only known mammalian RND permease (Scott and 

Ioannou, 2004, Tseng et al., 1999). Further evidence for an RND permease function of NPC1 arose 

when the protein demonstrated the ability to transport acriflavine, a known RND permease substrate 

(Davies et al., 2000). Acting as an RND permease, it was suggested that NPC1 could act to regulate 

lysosomal content of numerous substances including endogenous amines (Kaufmann and Krise, 2008), 

for example the sphingoid base sphingosine, and metal ions such as Zn2+. 

 

3.1.6 Zn2+ chelators for the treatment of NPC 

 

Zn2+ chelators have previously been investigated regarding the treatment of several 

neurodegenerative disorders such as Alzheimer’s (Huang et al., 1997) and Parkinson’s (Sheline et al., 

2013). 

Following observation of an NPC Zn2+ phenotype, Clark and Lloyd-Evans (unpublished) 

performed a comprehensive screen of Zn2+ chelators to see which, if any, were capable of correcting 

NPC lysosomal expansion (measured using lysotracker) and cholesterol storage (measured using 
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filipin) phenotypes within Npc1-/- mouse glial cells. Chelators tested included CaEDTA, Captopril, 

Clioquinol, Deferoxamine, DMPS, D-penicillamine, Phytic acid, SAHA and TPEN. 

This screen identified phytic acid, a natural product found in nuts and cereals, as a best hit, 

following its ability to correct cholesterol storage within Npc1-/- cells (Figure 3.2). This molecule is able 

to bind most metal ions with high affinity, leading to the generation of strong, insoluble, complexes 

(Iyengar et al., 2010). Furthermore, this chelator has been shown to function at low pH (Cheryan, 

1980), explaining how it could potentially act to chelate lysosomal Zn2+. 

 

Following previous evidence of Zn2+ storage in NPC and observed conservation of NPC1 with multi-

substrate RND permeases, some of which are known to transport Zn2+(Pak et al., 2013), as well as 

observations suggesting Zn2+ storage may act as an early, important event in the pathogenesis of NPC, 

we decided to investigate this phenotype further by characterizing a novel function for NPC1 as a 

lysosomal Zn2+ transporter. 

 

Figure 3.2. Treatment of cells with phytic acid appears to be able to 

correct Npc1-/- cholesterol storage phenotypes. Npc1+/+ (wild-type) and 

Npc1-/- (NPC1) astrocytes were either left untreated of treated with 

either 100μM or 1mM phytic acid prior to staining with filipin for 

cholesterol. Npc1+/+ cells show a disperse distribution of this lipid when 

compared with punctate staining in Npc1-/- cells representative of 

lysosomal storage. Treatment with 1mM, but not 100μM, phytic acid, 

appears able to partially revert the cholesterol storage phenotype of 

Npc1-/- null cells back to wild-type. Unpublished data Clark & Lloyd-

Evans. Scale = 10μM. 

 

 

3.2 Materials & Methods 

 

Unless otherwise stated, all reagents were from Sigma-Aldrich. Any methods used in this chapter and 

not described here can be found in the general materials and methods section (Chapter 2).  

 

3.2.1 Cell culture 

 

Chinese hamster ovary (CHO) cells were obtained from Dr. D. Ory (Millard et al., 2000) and included 

wild-type CHO H1s, CHO 1-1s which overexpress NPC1 15 times as much as H1s and CHO M12s which 

are Npc1-null. Baby hamster kidney (BHK) cells were obtained from Dr J. Gruenberg (Kobayashi et al., 
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1999) and included wild-type BHK-21 and those overexpressing the lysosomal Zn2+ import channel 

ZnT2 (ZnT2-BHK). Wild-type, NPC1 (NPC1-/- (P237S/I1061T)), NPC2 (NPC2-/-), mucolipidosis type IV 

(MLIV, TRPML1 null), Niemann-Pick type A (NPA, ASM null), Tay-Sachs (hexosaminidase A null), CLN3 

(CLN3 null, lysosomal transmembrane protein of unknown function) Gaucher (glucocerebrosidase 

null), mucopolysaccharidosis type II (MPS II, iduronate II sulfatase null) and farber (ceramidase null) 

human fibroblasts (HFs) were obtained from the coriell cell bank. MNNPC (I061T/I061T), BSNPC 

(G46V/P691L), KWNPC (I061T/P1007A) and MONPC (I0161T/D948N) HFs were obtained from Dr. C. 

Wassif, NIH. 

All cells were cultured as monolayers in a humidified incubator at 37oC and 5% CO2. HFs and 

BHKs were grown in complete Dulbecco’s modified Eagle’s medium (DMEM) while CHOs were grown 

in complete DMEM Ham’s F-12 medium. Flasks were used for maintenance and chamber slides (ibidi) 

or 24 well plates for most treatments and assays. With BHK cells, 10μl gelatin was applied to chamber 

slides and coverslips prior to seeding to promote adhesion. 

 

3.2.2 Visualizing Zn2+ - FluoZin-3, AM, RhodZin and Newport green staining protocol 

 

In order to compare Zn2+ levels both across cell lines and between cellular stores, cells grown in ibidi 

chamber slides were washed once in complete HBSS prior to incubation in HBSS with 0.025% pluoronic 

F127 and 5μM Zn2+ probe for 30 minutes at 37oC. Cells were then washed once more in complete HBSS 

and imaged live. 

 

3.2.2.1 Zinquin ethyl ester staining for vesicular Zn2+ 

 

Zinquin ethyl ester (Enzo) is a Zn2+ responsive fluorophore, which is highly specific for Zn2+ over other 

divalent cations. The ethyl ester improves cell loading, and this probe is has been shown very useful 

for determining vesicular Zn2+ (Snitsarev et al., 2001). Cells grown in ibidi chamber slides were washed 

once in complete HBSS prior to incubation with 25μM Zinquin ethyl ester for 30 minutes at 37oC. Cells 

were then washed once more in complete HBSS and imaged live. Excitation/Emission = 368/490. 

 

3.2.2.2 FluoZin-3, AM staining for cytosolic and acidic compartment Zn2+ 

 

FluoZin-3, AM (Invitrogen) is a cell-permeant, Zn2+ selective indicator that exhibits a >50-fold increase 

in fluorescence in response to saturating levels of Zn2+. This high affinity probe (Kd = 15nM) is able to 
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detect changes in both cytosolic and acidic compartment Zn2+ (Gee et al., 2002). Excitation/Emission = 

494/516nm. 

 

3.2.2.3 RhodZin staining for mitochondrial Zn2+ 

 

Replacing the fluorophore of FluoZin-3 with rhodamine led to the development of RhodZin (Invitrogen, 

Kd=65nM), a fluorescent probe specific for Zn2+ that concentrates in mitochondria due to the 

mitochondrial membrane potential (Sensi et al., 2003). Excitation/Emission = 555/575nm. 

 

3.2.2.4 Newport green staining for ER Zn2+ 

 

Newport green (Invitrogen) acts as a low affinity Zn2+ probe (Kd>30μM), likely to bind Zn2+ only when 

present at high concentrations (e.g. endoplasmic reticulum (ER) Zn2+)(Gee et al., 2002). 

Excitation/Emission = 505/535nm. 

 

3.2.3 Mitotracker green staining for mitochondria 

 

Mitotracker green (Invitrogen) is a fluorescent probe that appears to localize to mitochondria 

regardless of mitochondrial membrane potential. In order to compare mitochondrial levels between 

wild-type and NPC1, cells grown in ibidi chamber slides were washed once in complete HBSS prior to 

incubation in HBSS with 200nM Mitotracker green for 20 minutes at room temperature. Cells were 

then washed once more in complete HBSS and imaged live. Excitation/Emission = 490/516. 

 

3.2.4 Exocytosis assay to measure NPC1 Zn2+ transport 

 

In order to prove a function for NPC1 as a Zn2+ transporter, a novel assay was designed which exploits 

exocytosis in order to determine protein function. Each stage of this assay is described below with a 

summary diagram shown in Figure 3.3. 
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Figure 3.3. Exocytosis assay to measure NPC1 Zn2+ transport. A) NPC1 resides on lysosomes of wild-type CHO H1 cells. B) 

Addition of ionomycin induces lysosomal exocytosis and fusion with the plasma membrane. This results in release of the 

lysosomal enzyme β-hexosaminidase (β-hex, percent released can be measured as described below) alongside insertion of 

NPC1 into the plasma membrane, with the N and C termini that normally present into the lysosomal lumen now facing the 

extracellular milieu. C, D & E) In order to prevent re-endocytosis of NPC1, cells were kept on ice (4oC) throughout the 

experiment. Next, we added Zn2+ and pH 5.2 buffer to the medium in order to mimic the acidic lysosomal lumen environment. 

NPC1 is reliant on a proton motive force and therefore requires low pH to function. Cells were stained with the fluorescent 

Zn2+ probe FluoZin-3, AM, and in wild-type CHO H1’s (C) we could visualize increased cytosolic FluoZin-3, AM staining 

overtime, indicative of Zn2+ transport. This increase was faster in the CHO 1-1s which overexpress NPC1 15X more than wild-

types (D), and did not occur in CHO M12’s which are Npc1-null.  

 

3.2.4.1 Ionomycin treatment 

 

Ionomycin (Calbiochem) treatment has been shown to induce lysosomal exocytosis (Xu et al., 2012a). 

CHO cells were grown in either 24 well plates with no coverslips (for β-hexosaminidase assay) or in 

ibidi chamber slides (prior to staining with FluoZin-3, AM and treatment with pH5.2 buffer/Zn2+). 10μM 

ionomycin (Calbiochem) was added to cells for 10 minutes at 37oC, prior to removal of medium either 

for β-hexosaminidase assays to confirm exocytosis or FluoZin-3, AM staining to determine NPC1 

protein function. 
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3.2.4.2 β-hexosaminidase (β-hex) assay to determine percentage β-hex released from CHO cells 

 

Following lysosomal exocytosis, the lysosomal enzyme β-hex is released into the medium surrounding 

cells (Xu et al., 2012a). We can therefore measure β-hex activity in the medium surrounding cells, and 

compare this with total β-hex (both within cells and within medium) to find percentage released. 

Comparison between untreated CHO lines and ionomycin treated allows visualization of increased 

release following ionomycin treatment, representing increased exocytosis.  

Following ionomycin treatment, medium was removed from both untreated and treated wells 

and transferred to eppendorfs (sample A). In order permeabilize the cells left on the plate and release 

β-hex, 0.1% triton X-100 detergent was then added to each well, and the plate was left on a gentle 

shaker for 2 minutes at room temperature. Cells were then homogenized further by freeze thawing (5 

minutes in a -80 freezer followed by 37oC for 10 minutes), and again put on a gentle shaker for another 

2 minutes. Triton X-100 detergent, now containing homogenized cells, was transferred to new 

eppendorfs (sample B). 

A β-hex assay was next performed on both samples A and B in order to find out exocytosed 

and total β-hex activity. This assay was performed as described in Jeyakumar et al. 2009 (Jeyakumar 

et al., 2009). 

Percentage β-hex released is determined by using (sample A/(sample A + sample B))*100 

 

3.2.4.3 Live FluoZin-3, AM staining for Zn2+ 

 

The Zn2+ responsive fluorophore FluoZin-3, AM was used to measure cytosolic levels of this ion. CHO 

cells in ibidi chamber slides, either untreated or treated with ionomycin to induce exocytosis, were 

washed once with HBSS prior to incubation with 2μM FluoZin-3, AM for one hour at 4oC, low 

temperature was used to prevent endocytosis. Cells were then washed once more in HBSS and imaged 

live as described below. Excitation/Emission = ~494/516nm, Kd = ~ 15nM. 

 

3.2.4.4 Treatment of cells with pH5.2 buffer and Zn2+ 

 

In order to perform a novel assay aiming to establish NPC1 as a Zn2+ transporter, we dissolved 50μM 

ZnCl2 in 100mM NaAcetate pH5.2 buffer (in HBSS). Following ionomycin treatment and FluoZin-3, AM 

staining (see above), cells in ibidi chamber slides were washed once in HBSS, imaged at time zero, and 

buffer was added prior to live imaging at 10, 40, 70 and 100 minutes. 
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3.2.5 Sequence alignments 

 

In order to determine similarities between human NPC1 (NP_000262), the yeast ortholog ncr1 

(KZV07510) heavy metal transporting RND permeases ZneA (4K0J_A, Zn2+ transporter) and CusA 

(3NE5_A, Cu2+ transporter), and cholesterol regulators PATCHED (AAC50550) and HMG-CoA reductase 

(P04035), amino acid sequence alignments were conducted in T-Coffee. T-coffee produces an 

alignment by combining the output of several different alignment methods, which include pairwise 

structural methods and multiple sequence alignments. Output format was FASTA.  

 

3.2.6 Cell treatments 

 
3.2.6.1 Treatment with U18666A to inhibit NPC1 

 
U18666A is known to induce an NPC-like phenotype in cells (Lu et al., 2015)(for more information see 

general methods section (Chapter 2)). Npc1+/+ glia were either left untreated or treated for 1, 2, 4, 6, 

or 24 hours with 2µg/ml U18666A in complete DMEM prior to live or fixed staining and imaging to 

examine the order that materials are stored within the lysosome following inhibition of the Npc1 

protein. 

 
3.2.6.2 Treatment with 1NMP to inhibit NPC1 

 
1-(1-naphthylmethyl)-piperazine (1NMP) is known to induce an NPC-like phenotype in cells Lloyd-

Evans et al., unpublished observation)(for more information see general methods section (Chapter 2)). 

Wild-type glia were either left untreated or treated for 1, 2, or 24 hours with 50µM 1NMP in complete 

DMEM prior to live or fixed staining and imaging to examine the order that materials are stored within 

the lysosome following inhibition of the Npc1 protein. 

 

3.2.6.3 Treatment with 50μM ZnCl2 to increase lysosomal Zn2+ 

 

To increase lysosomal Zn2+, wild-type (BHK-21) or ZnT2 (lysosomal Zn2+ import channel) overexpressing 

BHK cells were treated (24, 48 or 72 hours) with 50μM ZnCl2 in complete DMEM prior to live or fixed 

staining and imaging. Treatment with ZnCl2 can be seen to induce NPC1 phenotypes in ZnT2 

overexpressing BHK cells. 
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3.2.6.4 Treatment with the Zn2+ chelator phytic acid 

 

Phytic acid, acting as a Zn2+ chelator (Iyengar et al., 2010), can be seen to correct lysosomal Zn2+ storage 

alongside downstream cholesterol storage phenotypes within Npc1+/+ glia (Clark and Lloyd-Evans 

unpublished observation). Npc1+/+ and Npc1-/- glia were either left untreated or treated for 96 hours 

with 1mM phytic acid in complete DMEM prior to live or fixed staining and imaging to examine its 

effects on Npc1-/- storage phenotypes. 

 

3.2.6.5 Treatment with the sphingolipid biosynthesis inhibitor ISP1 

 

ISP1, acting as an inhibitor of serine palmitoyltransferase (the first step in sphingolipid biosynthesis) 

(Miyake et al., 1995), can be seen to correct all NPC phenotypes. This therapy however is unable to 

correct suspected upstream lysosomal Zn2+ storage. Npc1+/+ and Npc1-/- glia were either left untreated 

or treated for 96 hours with 150nM ISP1 in complete DMEM prior to live or fixed staining or imaging 

to examine its effects on Npc1-/-  storage phenotypes. 

 

3.2.6.6 Treatment with the proposed NPC1 therapy HPβCD 

 

Treatment of glia with the membrane-impermeant cyclic oligosaccharide HPβCD, which acts through 

a currently unknown mechanism of action, can be seen to correct all NPC phenotypes  (Davidson et 

al., 2009), except for suspected upstream Zn2+ storage.  Npc1+/+ and Npc1-/- glia were either left 

untreated or treated for 24 hours with 0.4mg/ml HPβCD in complete DMEM prior to live or fixed 

staining or imaging to examine its effects on Npc1-/-  storage phenotypes. 

 
 

3.3 Results 

 

3.3.1 Specificity of the Npc1-/- lysosomal Zn2+ storage phenotype 

 

We began further investigation into the specificity of lysosomal Zn2+ storage in NPC1 by staining cells 

live with various probes specific for acidic compartment, ER or mitochondrial Zn2+ (Figure 3.4). Staining 

with Zinquin (Figure 3.4 A & B, acidic compartment) or FluoZin-3, AM (Figure 3.4 A & C, acidic 

compartment) confirms that Npc1+/+ cells show low levels of cytoplasmic Zn2+ (disperse staining 

throughout the cell) while Npc1-/- cells have increased lysosomal Zn2+ (~90% increase in large punctate 
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stained structures indicative of Zn2+ storage in lysosomes, more easily seen in zoom image for FluoZin-

3, AM). Newport green (Figure 3.4 A & D, ER Zn2+) showed no difference between Npc1+/+ and Npc1-/-. 

RhodZin showed reduced mitochondrial Zn2+ in Npc1-/- cells compared with wild-type (~23% reduction 

in bright cells), however this could be at least partly due to reduced mitochondria observed using 

Mitotracker.  Together, these results demonstrate how Zn2+ dyshomeostasis in NPC1 cells primarily 

involves lysosomal accumulation of this ion. 

 

 
 

Figure 3.4. Zn2+ accumulates in Npc1-/- lysosomes (organelle specific Zn2+). Npc1+/+ (wild-type) and Npc1-/- (NPC1) mouse 

astrocytes were stained and imaged live with either Zinquin or FluoZin-3, AM (acidic compartment Zn2+ - shown as both 

original image and zoom), Newport green (ER Zn2+), Rhodzin (mitochondrial Zn2+) or Mitotracker (mitochondria) (A). Pictures 

were quantified by either thresholding (Newport green (D), RhodZin (E), mitotracker (F)) or distribution (Zinquin (B), FluoZin-

3, AM (C)) to generate graphs shown. N=3. Data contributed by Maguire, Clark, Lloyd-Evans. Analysed & compiled by Maguire. 
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N=3. Scale bar shown in bottom right of image = 10μM and shows scale for all images except FluoZin-3, AM (zoom), scale bar 

for FluoZin-3, AM (zoom) images = 5μM. ***=p<0.001, **=p<0.01. >50 cells analyzed per condition per N. 

 

Having determined that Zn2+ accumulation in NPC1 was lysosome specific, we next wanted to 

investigate whether this accumulation was an NPC1 specific, rather than an LSD general phenotype. 

To do this, human LSD fibroblasts with deficiencies in a wide range of lysosomal proteins were stained 

with FluoZin-3, AM, imaged live and analyzed for Zn2+ storage (Figure 3.5 A & B). The only fibroblasts 

that showed significant Zn2+ accumulation when compared with wild-type was NPC1 (~50% increase in 

bright cells), suggesting specificity of this phenotype. 

 

 
 

Figure 3.5. Specificity of the NPC1 lysosomal Zn2+ storage phenotype. A) Wild-type (WT), NPC1, NPC2, mucolipidosis IV 

(MLIV), Niemann-pick type A (NPA), Tay-Sachs, CLN3, Gaucher, Mucopolysaccharidosis type II (MPS II) and Farber human 
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fibroblasts were stained and imaged live with FluoZin-3, AM to compare levels of acidic compartment Zn2+. Pictures were 

quantified by thresholding to generate graphs shown (B). N=3. Scale bar = 10μM. *=p<0.05. >50 cells analyzed per condition 

per N. 

 

3.3.2 Exploring lysosomal Zn2+ storage in Npc1-/- astrocytes 

 

Having seen that lysosomal storage of Zn2+ occurred specifically in NPC1 cells, we next wanted to 

investigate where this phenotype occurred in the previously proposed pathogenic cascade.  

Typical NPC1 phenotypes are demonstrated in Figure 3.6. These phenotypes have all been 

previously demonstrated and are well characterized within NPC cells and tissues. Indeed, filipin 

staining is currently used as a diagnostic assay for confirming NPC disease in patients (Vanier et al., 

1991) and lysotracker is currently in use as a screening assay for monitoring patient response to 

therapy (Xu et al., 2014). 

Following staining with the acidic pH activated lysosomal marker Lysotracker DND28 we see 

dim punctate staining, indicative of lysosomes, in Npc1+/+ compared with much brighter punctate 

staining throughout the Npc1-/- cells (Figure 3.6 A & C). FITC-CtxB staining for ganglioside GM1 (Figure 

3.6 A & F), filipin staining for cholesterol (Figure 3.6 A & D) and anti-BMP staining for BMP (Figure 3.6 

A & E) all demonstrate a diffuse distribution in wild-type. This is indicative of previously described 

plasma membrane and early endosomal distribution of sphingomyelin, plasma membrane and 

endocytic compartment distribution for cholesterol and a punctate late endosomal and lysosomal 

distribution of BMP and GM1 within healthy cells. This can be compared with punctate lysosomal 

staining in Npc1-/- cells, note the increase in staining intensity with all probes in the Npc1-/- cells 

indicating accumulation of these lipids in lysosomes. As described in Figure 3.4, Npc1-/- cells also show 

lysosomal Zn2+ storage and redistribution when compared with Npc1+/+ (Zinquin, FluoZin-3, AM). 

Figure 3.6 also demonstrates how following treatment with the RND permease inhibitor 1NMP 

(Schumacher et al., 2006), the aforementioned NPC1 phenotypes begin to emerge in a specific order. 

This suggests an RND permease function of NPC1. Furthermore, knowledge of the specific order of 

events in the NPC pathogenic cascade will provide further clues as to the nature of the NPC1 protein. 

Additionally, therapeutically targeting early events in the pathway is likely to provide greater benefits 

than targeting later ones. 

Zn2+ storage (FluoZin-3, AM) emerges first following treatment for 1 hour (Figure 3.6 A & B, 

~95% increase), suggesting increased lysosomal Zn2+ as an early, possibly primary, phenotype in the 

NPC1 pathogenic cascade. This is followed by progressive accumulation of cholesterol (filipin) and GM1 

(FITC-CtxB) from 2-4 hours (Figure 3.6 A, D & F). Lysosomal storage of BMP (anti-BMP) and lysosomal 

expansion (Lysotracker) phenotypes emerge last following 24-hour treatment (Figure 3.6 A, E & C). 
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In order to confirm Zn2+ storage as an early event, we next performed a slightly reduced version 

of the above time-course using another known inhibitor of the NPC1 protein, U18666A (Figure 3.7)(Lu 

et al., 2015). These results confirm observations of 1NMP: whilst NPC1-like lysosomal Zn2+ storage 

(FluoZin-3, AM) can be seen from 1 hour treatment (Figure 3.7 A & B, ~85% increase); cholesterol 

storage (filipin) is only observed at 24 hours (Figure 3.7 A & C, ~100% increase). 
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Figure 3.6. Inhibition of Npc1 with 1NMP induces early Zn2+ accumulation. Time course experiment showing emergence of 

Niemann-pick type C (NPC) phenotypes in Npc1+/+ (wild-type) glia following inhibition of the NPC1 protein using the 

resistance-nodulation-cell division (RND) permease inhibitor 1-(1-naphthylmethyl)-piperazine (1NMP) (Lloyd-Evans et al. 

unpublished observation) (Schumacher et al., 2006) at 50μM. A) Npc1+/+ cells where either untreated or treated for either 1 

hour (hr), 2hr, 4hr, 6hr or 24hr with 1NMP prior to staining with the indicated probe (live or fixed) as described in materials 
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and methods. Untreated Npc1-/- (NPC1) cells were also grown as a positive control.  Pictures were quantified by either 

thresholding (Lysotracker (C), Anti-BMP (E), FITC-CtxB (F)) or distribution (FluoZin-3, AM (B), Filipin (D)) to generate graphs 

shown. N=3. Scale = 10μM. *=p<0.05, **=p<0.01, ***=p<0.001. >50 cells analyzed per condition per N. 

 

 
 

Figure 3.7. Inhibition of Npc1 with U18666A induces early Zn2+ accumulation, similarly to 1NMP. A) Time course experiment 

showing emergence of Niemann-pick type C (NPC) phenotypes in Npc1+/+ (wild-type) astrocytes following inhibition of the 

NPC1 protein using U18666A (Lu et al., 2015) at 2μg/ml. Npc1+/+ cells where either untreated or treated for either 1 hour (hr), 

2hr or 24hr with U18666A prior to staining with the indicated probe (live or fixed) as described in materials and methods. 

Untreated Npc1-/-(NPC1) cells were also grown as a positive control.  Pictures were quantified by either thresholding (Filipin 

(C)) or distribution (FluoZin-3, AM (B)) to generate graphs shown. N=3. Scale = 10μM. ***=p<0.001. >50 cells analyzed per 

condition per N. 

 

Having confirmed lysosomal Zn2+ storage as an early event in the pathogenesis of NPC1 disease, we 

next wanted to further investigate whether this phenotype was important regarding downstream lipid 

storage. We did this using BHK cells overexpressing ZnT2, a channel known to pump Zn2+ into 

lysosomes (Mocchegiani et al., 2010). Following 24, 48 or 72-hour treatment with extracellular ZnCl2, 

these cells developed NPC1 phenotypes (Figure 3.8). 

Lysosomal Zn2+ storage (Zinquin) occurred first, from 24-hour treatment (Figure 3.8 A & B, 

~80% increase). Followed by cholesterol (filipin) at 24-48 hours (Figure 3.8 A & C, ~50% increase at 24 
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hours followed by a further 15% increase at 48 hours), and finally lysosomal expansion (lysotracker) 

from 48-72 hours (Figure 3.8 A & D, ~30% increase at 48 hours followed by ~30% increase at 72 hours). 

This data suggests that Zn2+ storage initiates downstream lipid storage. 

 

 

 

 

Figure 3.8. ZnT2 overexpressing cells show NPC1 phenotypes following treatment with Zn2+. Treating baby hamster kidney 

(BHK) cells overexpressing ZnT2 (transports Zn2+ into lysosomes (Mocchegiani et al., 2010)) with 50μM ZnCl incudes lysosomal 

Zn2+ storage followed by NPC lipid phenotypes. A) ZnT2 overexpresing BHK cells (ZnT2) where either untreated or treated for 

24 hours (hr), 48hr or 72hr with 50μM ZnCl prior to staining with the indicated probe (live or fixed) as described in materials 

and methods. Pictures where quantified either by thresholding (Lysotracker (D)) or distribution (FluoZin (B), Filipin (C)) to 

generate graphs shown. N=3. Scale = 10μM. *=p<0.05, **=p<0.01, ***=p<0.001. >50 cells analyzed per condition per N. 

 

Having demonstrated lysosomal Zn2+ storage in NPC1 as an early event in the pathogenic cascade 

(Figure 3.6, 3.7 & 3.8), we next compared lysosomal cholesterol, Zn2+ storage, and localization of NPC1 

within NPC1+/+ (wild-type) fibroblasts and 5 different NPC1 patient fibroblasts with a variety of 

pathogenic mutations. 

Variant NPC cells are unusual as they show no cholesterol storage (Sun et al., 2001). In Figure 

3.9 A & B, cholesterol storage (filipin) can be seen in all NPC1 fibroblasts (with at least a ~50% increase 



 

42 

 

 

 

in bright cells compared with wild-type) except in KW cells (1061T/P1007A), which are seen to have a 

variant cholesterol phenotype (Sun et al., 2001). Despite this, punctate Zn2+ storage (Zinquin) is 

observed in all NPC1 fibroblasts (Figure 3.9 A & C, at least at ~30% increase in punctate staining when 

compared with wild-type). This demonstrates the importance of lysosomal Zn2+ storage over 

cholesterol accumulation regarding NPC1 pathogenesis, whilst highlighting Zn2+ and cholesterol 

storage as independent events. Figure 3.9 A & D demonstrates how within NPC1 (P237S/I1061T) and 

MN (I061T/I061T) NPC fibroblasts, NPC1 (anti-NPC1) does not localize to lysosomes, and this could 

therefore account for storage of both cholesterol (Figure 3.9 A & B) and Zn2+ (Figure 3.9 A & C). Within 

KW cells however, NPC1, whilst able to reach lysosomes (Figure 3.9 A & D), appears unable to transport 

Zn2+ (Figure 3.9 A & C), whilst transport of cholesterol appears intact (Figure 3.9 A & D). This 

presumably occurs due to KW cells having a mutation in a domain required for transport of Zn2+, but 

not for other substrates. Mutations affecting BS (G46V/P691L) and MO (I061T/D948N) cells appear to 

affect transport of both cholesterol and Zn2+, as while localization of NPC1 within these fibroblasts 

remains lysosomal (Figure 3.9 A & D), storage of both Zn2+ (Figure 3.9 A & C) and cholesterol (Figure 

3.9 A & B) occur. 
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Figure 3.9. Zn2+ accumulates in variant NPC1-/- cells. In order to characterize cholesterol and Zn2+ storage as well as 

localization/presence of NPC1 within various NPC mutants, wild-type (NPC1+/+), NPC1 (P237S/I1061T), MNNPC (I061T/I061T), 

BSNPC (G46V/P691L), KWNPC (I061T/P1007A) and MONPC (I0161T/D948N) human fibroblasts were stained with the 

indicated probe (live or fixed) as described in materials and methods (A). Pictures were quantified either by thresholding 

(Filipin (B) and anti-NPC1 (D)) or distribution (Zinquin (C)) to generate graphs shown. N=3. Scale = 10μM. ****=p<0.0001, 

***=p<0.001, **=p<0.01, *=p<0.05. >50 cells analyzed per condition per N. 

 

Having shown the importance of the NPC1 lysosomal Zn2+ storage phenotype in the absence of 

cholesterol, we next looked to see whether treatment with either an inhibitor of sphingolipid synthesis 

(ISP1) or a cholesterol chelator (HPβCD) could reverse NPC1 Zn2+ accumulation (Figure 3.10).   

We found that whilst both of these treatments were able to correct cholesterol (filipin) storage 

within Npc1-/- astrocytes, neither had any effect on the NPC1 Zn2+ phenotype (FluoZin-3, AM). This 

again suggests Zn2+ storage as an early NPC1 phenotype, occurring prior to lipid accumulation. 
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Figure 3.10. ISP1 and HPβCD do not correct lysosomal Zn2+ storage in Npc1-/- cells.  Npc1+/+ (wild-type) and Npc1-/- (NPC1) 

glia were either untreated or treated with A) ISP1 (250nM, inhibitor of sphingolipid synthesis) or B) (2-Hydroxypropyl)-β-

cyclodextrin (HPβCD) (0.4mg/ml, cholesterol chelator) for 96 hours prior to staining with the indicated probe (live or fixed) 

as described in materials and methods. N=3. Scale = 10μM. >50 cells analyzed per condition per N. 

 

3.3.3 NPC1 as a lysosomal Zn2+ transporter 

 

As previously discussed, NPC1 acts as the only known mammalian RND permease (Scott and Ioannou, 

2004). Having identified lysosomal Zn2+ storage as an early event in the NPC1 pathogenic cascade 

(Figure 3.6, 3.7 & 3.8), and knowing that several RND permeases transport metal ions, we decided to 

investigate a new function for NPC1 as a lysosomal Zn2+ transporter, acting to remove Zn2+ from 

lysosomes. This would explain early storage of Zn2+ following loss of NPC1 function. 

T-Coffee software was used to compare sequences of NPC1 with ZneA: a recently discovered 

proton driven Zn2+ transporting RND permease found within the heavy-metal resistant bacteria 

Cupriavidus metallidurans CH34 (Pak et al., 2013)(for sequence alignment see Appendix 1). This 

demonstrated 20% sequence identity between the 2 proteins and suggested that NPC1 and ZneA may 

share a conserved Zn2+ transporting function (Figure 3.11 C). This identity is much higher than that 

observed when comparing NPC1 with cholesterol regulators HMG-CoA reductase and PATCHED (Figure 

3.11 D).  

Key residues involved in the binding and efllux of Zn2+ within ZneA can be seen in Figure 3.11 

B. Looking closer at BLAST sequences showed how the majority (6/10) of said residues are conserved 

in the NPC1 protein sequence, further suggesting a key role of these moieties regarding function. A 

further observation following sequence comparison was that 14 NPC causing mutations occur within 

conserved residues between NPC1 and ZneA, including the most common NPC mutation (I1061T). Two 

NPC causing mutations are also found in corresponding ZneA Zn2+ binding domains, as seen in Figure 

3.11 B. These sites are D654 in ZneA corresponding to D944N in NPC1, and D658 in ZneA corresponding 

to D948N in NPC1. 
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Another insight into the function of the NPC1 protein gained using sequence comparison to 

ZneA followed observations that 5 out of the 14 conserved residues found mutated in NPC generate a 

variant disease phenotype that lacks lipid storage (Sun et al., 2001). As an RND permease, NPC1 could 

be capable of transporting numerous substances. Variant patients are potentially unable to transport 

Zn2+, whilst still retaining other transport functions (such as the ability to transport sphingosine). 

Finally, in an effort to determine whether NPC1 showed homology to general metal ion 

transporting RND permeases, rather than only Zn2+ specific RND permeases, BLAST comparisons were 

performed with NPC1 and the Cu2+ transporting RND permease CusA (Delmar et al., 2013). This 

comparison revealed only 13% sequence identity between the 2 proteins (Figure 3.11 C). 

 

 
 

Figure 3.11. NPC1 shares functional features with ZneA. A) Table showing conservation between key Zn2+ binding (blue) and 

efflux (green) residues. B) Diagram showing how residues act to bind and transport Zn2+ in ZneA. Carbon atoms are colored 

to represent binding (blue) or efflux (green). Zn2+ ions are depicted as spheres in yellow. Electron density is shown in red. 

Purple circles highlight conservation, while orange highlight those affected in common NPC causing mutations. Image 

adapted from Pak et al. 2013 (Pak et al., 2013). C) Table showing sequence identity when comparing NPC1 with the yeast 

version of NPC1, the NPC1 yeast ortholog ncr1, ZneA, and the Cu2+ transporting RND permease CusA (Delmar et al., 2013). D) 

Table showing sequence identity when comparing NPC1 with cholesterol homeostasis proteins HMG-CoA reductase and 

PATCHED. Work performed in collaboration with Dr Kim Wager and Dr Emyr Lloyd-Evans. 

 

As bioinformatics suggested a possible connection between NPC1 and the Zn2+ transporting RND 

permease ZneA, and as NPC1 has been shown to bind Zn2+ (Watari et al., 2000), we next designed a 

novel assay, which exploits lysosomal exocytosis in order to establish whether NPC1 functions as a Zn2+ 

transporter. 



 

46 

 

 

 

Lysosomal exocytosis is a process whereby lysosomes fuse with the plasma membrane 

following damage, thereby ensuring the membrane is once more intact and extruding their contents 

in the process (Xu et al., 2012a). Exocytosis leads to the emergence of lysosomal proteins on the 

plasma membrane, which under normal conditions will eventually be re-endocytosed to lysosomes. In 

order to prevent re-endocytosis of plasma membrane NPC1, cells were kept on ice throughout the 

experiment. Ionomycin treatment has previously been shown to induce lysosomal exocytosis via a 

combination of generating small fissures in the plasma membrane coupled to a large elevation in 

cytosolic Ca2+, triggered by the ability of ionomycin to primarily act as a Ca2+ ionophore in all 

membranes apart from lysosomes (Xu et al., 2012a). This would transport NPC1 to the plasma 

membrane, with the N and C termini that normally present into the lysosomal lumen now facing the 

extracellular milieu, as well as releasing the lysosomal enzyme β-hex into surrounding medium. By 

adding Zn2+ and pH5.2 buffer to the medium, it was hoped that we could mimic the acidic lysosomal 

lumen environment observed in cells and that NPC1, which is reliant on a proton motive force, would 

become functional, and therefore transport extracellular Zn2+ into cells. Bearing this in mind, it was 

expected that this increase could be visualized over time using FluoZin-3, AM. This increase should be 

greater in Npc1 overexpressing cells (CHO 1-1’s), and low to non-existent in Npc1-null cells (CHO 

M12’s), depending on activity of residual plasma membrane Zn2+ transporters at acidic pH. Each stage 

of this assay is described diagrammatically in Figure 3.3 

Figure 3.12 A shows how in all CHO lines tested (H1, 1-1, M12) treatment with ionomycin 

induces a much greater β-hex release into cellular medium when compared with untreated controls 

(~10-20% increase). This confirms previous observations that ionomycin treatment is able to induce 

lysosomal exocytosis (Xu et al., 2012a). As discussed, CHO cells treated with ionomycin to induce 

lysosomal exocytosis were then incubated on ice with the fluorescent Zn2+ probe FluoZin-3, AM, and 

we imaged cells at time zero before adding pH 5.2, 50μM ZnCl2 buffer. Cells were then incubated on 

ice and imaged 10, 40, 70 and 100 minutes following treatment. Images of CHO’s at 0 and 70 mins are 

shown in Figure 3.12 B, although time zero images have been brightened to a greater degree than 70 

mins due to extremely dim images prior to the addition of ZnCl2 containing buffer. At time zero, 

ionomycin treated cells show a punctate probe distribution. Percentage of cells showing cytoplasmic 

(rather than punctate) Zn2+ distribution over time in all CHO lines can be seen in Figure 3.12 C. 

Following treatment, all CHO’s (at time 10 mins) appear brighter and begin to assume a more 

cytoplasmic probe distribution, suggesting transport of Zn2+ into cells. We see the highest increase in 

cytoplasmic Zn2+ when looking at CHO 1-1’s at 10 mins, with an increase of ~80%. The next highest 

initial increase in seen in CHO H1’s, with a ~60% increase at 10 mins. Finally, CHO M12’s display the 

smallest increase at 10 mins with only ~43% of the cells showing cytoplasmic staining. Overtime, these 

values remain high in the 1-1s, with a slight fluctuation in the H1’s, and consistently low amounts of 
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cytoplasmic staining in CHO M12’s. This data suggests that amount of cytoplasmic staining, 

representative of Zn2+ influx into cells, is correlated with the amount of NPC1 present in the CHO cell 

lines.  

 

 
 

Figure 3.12. Preliminary results of a novel assay exploiting lysosomal exocytosis to confirm Npc1 function as a lysosomal 

Zn2+ transporter. A) CHO cells (H1, 1-1 and M12) were either untreated or treated with 10μM ionomycin for 10 minutes at 

37oC to induce lysosomal exocytosis. A β-hexosaminidase assay was then performed on both cellular medium and the cells 

themselves, and percentage β-hexosaminidase (β-hex) released was calculated. B) Representative images of CHO H1, 1-1 and 

M12’s at either 0 minutes (min) or 70 min following treatment with pH 5.2, 50μM ZnCl2 buffer and incubation on ice. C) Graph 

showing percent of cells showing cytosolic (rather than punctate) staining in CHO H1, 1-1 and M12’s at 0, 10, 40, 70 and 100 

mins following treatment with ZnCl2 buffer and incubation on ice. For A N = 3, B & C N = 2. Scale bar = 10μM. >50 cells analyzed 

per condition per N. 

 

3.3.4 Treating NPC1 lysosomal Zn2+ storage: phytic acid 

 

Having provided evidence for a new function for NPC1 as the first identified lysosomal Zn2+ transporter, 

and determined how loss of function leads to progressive Zn2+ storage in lysosomes, we next examined 

this phenotype as a potential therapeutic intervention point. As we know increased lysosomal Zn2+ in 

NPC1 contributes to lipid accumulation, by correcting this phenotype using chelators we can 

potentially reverse downstream lipid storage as well. 

Figure 3.13 demonstrates how treatment with the heavy metal chelator phytic acid reverses 

lysosomal storage of Zn2+ (zinquin, ~60% reduction), cholesterol (filipin, ~20% reduction), BMP (anti-

BMP, ~50% reduction) and sphingomyelin (anti-lysenin, ~60% reduction) in Npc1-/- astrocytes. 

However, treatment with this chelator was unable to correct NPC1 ganglioside GM1 (FITC-CtxB) 

storage or lysosomal expansion (lysotracker). This result suggests that whilst lysosomal Zn2+ storage 
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may be responsible for some downstream phenotypes in the NPC1 pathogenic cascade, other factors 

may also play a role. 

 

 
 

Figure 3.13. Treating Npc1-/- lysosomal Zn2+ storage with the chelator phytic acid corrects some downstream phenotypes. 

A) Npc1+/+ (wild-type) and Npc1-/- (NPC1) glia were either untreated or treated with 1mM phytic acid for 96 hours prior to 

staining with the indicated probe (live or fixed) as described in materials and methods. Pictures were quantified by either 
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thresholding (Filipin (C), anti-BMP (D), Lysotracker (F), FITC-CtxB (B), anti-Lysenin (E)) to generate graphs shown N=3. Scale = 

10μM. *=p<0.05, **=p<0.01, ***=p<0.001. >50 cells analyzed per condition per N. 

 

 

3.4 Discussion 

 

Previous work within the Lloyd-Evans lab demonstrated accumulation of Zn2+ within NPC1 lysosomes 

(Clark, Waller-Evans, Lloyd-Evans, unpublished). This observation, in combination with previous 

research highlighting roles of Zn2+ in regulating the NPC1 phenotype (Reddy et al., 2006, Vazquez et 

al., 2011, Hung et al., 2014, Kobayashi et al., 1999, Watari et al., 2000), led to the development of this 

project to investigate the Zn2+ phenotype further.  

 

3.4.1 Lysosomal Zn2+ storage appears specific to NPC1 

 

In order to determine the importance of lysosomal Zn2+ accumulation in the NPC1 disease cascade, we 

first looked to see whether Zn2+ homeostasis was disturbed in other organelles (Figure 3.4). When 

staining Npc1+/+ and Npc1-/- astrocytes with fluorescent probes for acidic compartment (FluoZin-3, AM, 

Zinquin), ER (Newport green) and mitochondrial Zn2+ (RhodZin) we confirmed mislocalization of Zn2+ 

to lysosomes in Npc1-/- cells whilst demonstrating no difference in ER Zn2+ when compared with 

controls. A significant reduction in mitochondrial Zn2+ was observed in Npc1-/- cells when compared to 

Npc1+/+, however this can at least in part be explained by a reduction in mitochondria in Npc1-/- cells 

(mitotracker green). These results demonstrate how the NPC1 Zn2+ phenotype constitutes specific Zn2+ 

accumulation in lysosomes, as oppose to cellular Zn2+ redistribution. 

Furthermore, as common cellular phenotypes are often observed amongst LSDs, we next 

sought to investigate the specificity of lysosomal Zn2+ storage to NPC1. We did this by comparing 

FluoZin-3, AM staining for acidic compartment Zn2+ in HFs from 9 different LSDs alongside wild-type. 

Results shown in Figure 3.5 demonstrate how only NPC1 HFs show a significant increase in acidic 

compartment Zn2+ when compared with wild-type.  This suggests that Zn2+ storage occurs as a direct 

result of NPC1 dysfunction, occurring independently of more widespread LSD phenotypes (e.g. 

endocytosis defects, lipid storage). 

Having determined the specificity of lysosomal Zn2+ storage, we next wanted to investigate 

this phenotype, as well as its position in the NPC1 pathogenic cascade, further. 
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3.4.2 Lysosomal Zn2+ storage initiates downstream lipid storage in Npc1-/- astrocytes 

 

Collectively, the results presented in chapter 3 clearly demonstrate the importance of the lysosomal 

Zn2+ storage phenotype regarding NPC1 lipid storage and lysosomal expansion.  

For one, Figures 3.6 and 3.7 demonstrate how inhibition of NPC1 with either 1NMP or 

U18666A induces lysosomal Zn2+ storage first (1hr), followed by downstream storage of NPC1 lipids 

(cholesterol (filipin), BMP (anti-BMP), GM1 (FITC-CtxB – 4-6 hrs) and lysosomal expansion (Lysotracker, 

24hr). Furthermore, when you add extracellular Zn2+ to ZnT2 overexpressing BHK cells, excess Zn2+ is 

pumped into lysosomes where it initiates downstream lipid storage and NPC1 phenotypes, which 

emerge in the same order as when initiated using U18666A or 1NMP. Lysosomal Zn2+ accumulation 

can be seen from 24hr treatment with ZnCl2, followed by cholesterol storage (24-48hr) and finally 

lysosomal expansion (72hr)(Figure 3.8).  

As discussed in my general introduction (Chapter 1), it has previously been proposed that NPC1 

functions as a cholesterol transporter (Pentchev et al., 1985), with mutations preventing cholesterol 

efflux from lysosomes and initiating downstream phenotypes. Despite this claim, variant NPC1 cells 

exist which do not store cholesterol (Sun et al., 2001). Figure 3.9 reiterates the importance of Zn2+ 

storage regarding pathogenesis in these variant cells: despite the absence of cholesterol, lysosomal 

Zn2+ accumulation occurs in these cells. Another argument that Zn2+ storage may lie upstream of lipid 

accumulation in NPC1 can be seen in Figure 3.10, where Npc1-/- astrocytes where treated with either 

a cholesterol chelator (HPβCD) or an inhibitor of sphingolipid synthesis (ISP1). These treatments, whilst 

able to partially correct NPC1 cholesterol, appear to have no effect on lysosomal Zn2+. 

Together, the above evidence suggests lysosomal Zn2+ storage in NPC1 as an early phenotype 

in the pathogenic cascade. Next, given high conservation between NPC1 and RND permease 

transporters, many of which are known to transport metal ions such as Zn2+, we decided to investigate 

a new function for NPC1 as a Zn2+ transporting RND permease. 

 

3.4.3 NPC1 is a Zn2+ transporting RND permease 

 

In order to investigate protein function, we performed sequence alignments between NPC1 and heavy 

metal transporting RND permeases CusA (Cu2+ transporter) and ZneA (Zn2+). We also performed 

alignments between NPC1 and cholesterol homeostasis proteins HMG CoA reductase and PATCHED. 

Original evidence that suggested NPC1 to be a cholesterol transporter followed alignments with these 

proteins (Carstea et al., 1997). As you can see in Figure 3.11, despite some similarity with cholesterol 

regulators, much greater conservation can be seen when comparing NPC1 with RND permeases, in 
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particular the Zn2+ transporter ZneA (20% identical). This suggests some conserved function between 

these 2 proteins. 

As the structure of ZneA had recently been published (Pak et al., 2013), we next performed 

more detailed sequence alignments between key residues known to be important for binding and 

transport of Zn2+ in ZneA (Figure 3.11). We found that 6 out of these 10 residues were conserved in 

NPC1. This is higher than the 20% identity observed overall, suggesting that this area is particularly 

important regarding NPC1 protein function. Following this observation, we next looked to see if any of 

these residues were mutated in NPC1 disease patients, and found 2 NPC1 mutations occurred in these 

conserved Zn2+ binding residues. Strong conservation in this area of the protein suggests a shared Zn2+ 

transport function between ZneA and NPC1, whilst mutation analysis suggests the importance of this 

function regarding NPC disease. 

We next performed further mutation analysis and found that 14 NPC1 mutations occur in 

conserved residues between ZneA and NPC1, including the most common NPC disease causing 

mutation, I0161T (Figure 3.11). This again suggests Zn2+ transport as an important function of the NPC1 

protein. Furthermore, 5 out of these 14 conserved mutations are reported to cause a variant NPC 

phenotype (little or no cholesterol storage)(Sun et al., 2001). We have seen however (Figure 3.9) that 

variant cells still accumulate lysosomal Zn2+. This suggests that NPC1 may function as a multi-substrate 

transporter, with variant cells specifically losing the ability to transport Zn2+ whilst still being capable 

of transporting other substrates. 

As bioinformatics suggested a Zn2+ transport function of NPC1, we decided to utilize a novel 

assay to investigate this further (Figure 3.12). CHO cells where treated with ionomycin to induce 

exocytosis of NPC1 to the plasma membrane, where function can be assessed. Cells were then 

incubated on ice (to prevent internalization of exocytosed NPC1) with the Zn2+ probe FluoZin-3, AM. 

Following this, NaAcetate buffer (pH 5.2) provided the proton motive force required for function whilst 

addition of ZnCl2 provided a substrate to transport. Transport of Zn2+ into cells (measured by increased 

FluoZin-3, AM fluorescence) was demonstrated to occur fastest in CHO 1-1’s (which overexpress Npc1 

x15), second fastest in wild-type CHO H1’s and slowest is M12s (Npc1 null). This result demonstrates 

how Zn2+ transport into cells can be directly correlated with amount of NPC1 on the plasma membrane 

following lysosomal exocytosis, therefore proving a Zn2+ transport function for NPC1. Some transport 

would still be expected to occur in M12’s due to the presence of other plasma membrane Zn2+ 

transporters, some of which may function at low pH. 

When targeting a disease therapeutically, it is often better to focus on upstream events in the 

pathogenic cascade, as preventing these changes have the potential to correct all downstream 

phenotypes. Given our discovery of a Zn2+ transport function of NPC1, as well as our understanding of 
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the importance of lysosomal Zn2+ accumulation regarding downstream NPC1 phenotypes, we decided 

to investigate novel chelators to treat this phenotype. 

 

3.4.4 Chelating lysosomal Zn2+ using phytic acid corrects certain Npc1-/- phenotypes 

 

Lloyd-Evans and Clark (unpublished) performed a screen of 9 heavy metal chelators to examine effects 

on Npc1-/- cholesterol accumulation, and identified the natural product phytic acid as a best hit. 

Following observations that phytic acid was capable of correcting cholesterol storage in Npc1-/- 

astrocytes, I investigated its effects on numerous other disease phenotypes. 

Phytic acid treatment (1mM, 96hr) was able to significantly reduce Zn2+, cholesterol, BMP and 

sphingomyelin storage within Npc1-/- astrocytes. However, treatment was unable to reverse Npc1-/- 

GM1 storage or lysosomal expansion. As an RND permease, NPC1 could be capable of transporting 

multiple substrates. If all NPC1 phenotypes developed as a result of loss of Zn2+ transport function, we 

would assume that chelating the Zn2+ using phytic acid would be able to revert all NPC1 phenotypes 

back to wild-type. Observations in Figure 3.13 therefore suggest that lysosomal Zn2+ transport is not 

the only function of NPC1, with loss of other transport functions responsible for other disease 

phenotypes. 

 

 

3.5 Conclusions 

 

To conclude this chapter, numerous lines of evidence highlight a novel and direct function for NPC1 as 

a Zn2+ transporting RND permease. Loss of transport function appears to result in downstream Npc1-/- 

lipid storage, and chelating excess lysosomal Zn2+ using phytic acid appears to correct some, but not 

all, downstream NPC phenotypes. Future work would involve staining for Zn2+ within NPC1 zebrafish 

(Chapter 5) to see if we see the same lysosomal Zn2+ accumulation as in vitro, investigating a wider 

variety of Zn2+ chelators for their effects on NPC, and assessing the effects of Zn2+ chelators on the 

development of the NPC phenotype in vivo.
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Chapter 4: Exploring effects of Ca2+ modulators on the NPC1 lysosomal Ca2+ 

defect and NPC disease cellular phenotypes 

 
4.1 Introduction 

 
4.1.1 The importance of Ca2+ as a ubiquitous messenger 

 
Ca2+ acts as a highly important second messenger within the cytosol of eukaryotic cells, regulating 

numerous cellular processes including proliferation, differentiation, secretion, contraction, 

metabolism, trafficking, gene transcription and apoptosis (Mekahli et al., 2011). 

Cellular Ca2+ is tightly controlled, as can be clearly seen when looking at the difference in 

extracellular (1.2-2.5mM) and cytosolic (50-100nM) Ca2+ levels (Bronner, 2001). This allows cells to 

utilize its binding energy for signal transduction following rapid, local increases in this ion. The 

importance of Ca2+ signaling can be seen when considering the hundreds of cellular proteins known to 

bind this ion at over a million-fold range of affinities (nM to mM) (Clapham, 2007). 

 
4.1.2 Regulation of Ca2+ exchange at the plasma membrane 

 
Ca2+ homeostasis at the plasma membrane is maintained mainly by selective, high affinity plasma 

membrane Ca2+ ATPases (PMCAs). PMCAs pump Ca2+ out of cells in order to maintain low global resting-

state intracellular [Ca2+] levels (Strehler, 2015).  Other ion pumps such as Na+/Ca2+ (NCX) and Na2+/Ca2+-

K+ (NCKX) also serve to maintain low intracellular levels by exploiting the concentration gradient of 

other ions to extrude Ca2+ (Karlstad et al., 2012) 

Extracellular Ca2+ enters the cell via voltage and ligand-gated ion channels. Voltage-gated Ca2+ 

selective channels (CaV) utilize the electrochemical gradient created by the separation of charges 

between the intracellular and extracellular space in order to elicit rapid increases in cytosolic Ca2+. 

Numerous ligand gated plasma membrane Ca2+ channels exist, and these include AMPAR (alpha-

amino-3-hydroxy-5-methyl-4-propionic acid receptor). AMPARs display low-permeability to Ca2+, with 

AMPAR mediated synaptic depolarization often initiating further Ca2+ entry via CaVs (Hartmann and 

Konnerth, 2005). 
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4.1.3 The extracellular Ca2+-sensing receptor (CasR) 

 
Changes in extracellular Ca2+ modulate cellular function via the plasma membrane GPCR CasR, which 

is activated by increasing concentrations of Ca2+. CasR functions as a dimer, stabilized by extracellular 

disulfide bonds and hydrophobic interactions. Ca2+ and amino acid binding sites can be found within a 

large, amino terminal venus flytrap domain (VFTD). Following Ca2+ binding to the VFTD, several 

heterotrimeric G-protein mediated signaling pathways can be activated, depending on cell type and 

state, and these pathways activate phospholipase C, attenuate adenylyl cyclase and/or activate MAPK 

kinase pathways to induce changes in intracellular Ca2+ (Breitwieser, 2012). 

CasR is expressed to varying degrees in numerous tissues known to be involved in Ca2+ 

homeostasis, including bone, kidney and intestine (Breitwieser, 2012). Within bone, CasR expression 

modulates cell proliferation and helps to maintain the balance between resporption and deposition 

(Theman and Collins, 2009), whilst in the intestine activation regulates production of acid and 

hormones (Feng et al., 2010, Geibel and Hebert, 2009). Furthermore, increased extracellular Ca2+, 

sensed by CasR, has been shown to influence cellular differentiation, as evidenced by the roles of 

extracellular Ca2+ in the differentiation of induced pluripotent stem cells into neurons (Rushton et al., 

2013). 

A hypothetical transmembrane domain within CasR contains binding sites for positive and 

negative allosteric regulators (calcimimetrics & calcilytics, respectively), where they act to stabilize 

either active or inactive forms of this protein (Breitwieser, 2012). These regulators are now approved 

for the treatment of several conditions characterized by dysfunctional CasR signaling, including several 

disorders of the parathyroid. Parathyroid hormone release is controlled by CasR expression, and 

calcimimetrics can be used to treat many diseases in which parathyroid hormone levels are altered 

(Alon, 2007). 

 
4.1.4 Intracellular Ca2+ stores: ER, mitochondria and the Golgi 

 
The major Ca2+ stores in eukaryotic cells consist of the ER, mitochondria, Golgi, and the endolysosomal 

system. 

The ER is the most well studied Ca2+ store within eukaryotic cells, with a resting Ca2+ 

concentration of between 620-860μM (Suzuki et al., 2014). Ca2+ uptake occurs via sarco-/endoplasmic 

reticulum Ca2+-ATPase (SERCA) pumps, and release predominately through either the inositol 1,4,5-

trisphosphate (IP3) receptor (IP3R) or the ryanodine receptor (RyR) (Berridge et al., 2000). Basal Ca2+ 

release also occurs via leak channels such as presenilin 1 (Tu et al., 2006) and Bax inhibitor 1 (Kim et 

al., 2008). The function of chaperone proteins in the ER often requires Ca2+ binding, with reduced ER 
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Ca2+ leading to inappropriate secretion, aggregation and degradation of misfolded proteins (Berridge 

et al., 2000). 

Ca2+ exchange occurs between IP3R, RyR and mitochondria, another cellular Ca2+ store. Within 

mitochondria, Ca2+ has numerous important roles, with increased mitochondrial Ca2+ activating 

mitochondrial dehydrogenases (e.g. pyruvate dehydrogenase (Denton et al., 1972)) and leading to 

increased ATP production (Jouaville et al., 1999). Prolonged accumulation of Ca2+ within mitochondria 

however may result in mitochondrial permeability transition and cell death (Danese et al., 2017). 

Uptake occurs mainly via the mitochondrial calcium uniporter (MCU), whilst release occurs via either 

Na2+/Ca2+ or H+/Ca2+ exchangers (Rizzuto et al., 2012).  

The Golgi acts as another cellular Ca2+ store, with Ca2+ acting as cofactors for enzymes as well 

as having roles in retrograde trafficking from the golgi to the ER, and allowing aggregation of proteins. 

This organelle utilizes IP3R, SERCA, RyR and the secretory pathway Ca2+ ATPase (SPCA1) to initiate rapid, 

local, cytosolic Ca2+ signals (Pizzo et al., 2011). 

Furthermore, in recent years, the endolysosomal system has become increasingly recognized 

as an important acidic Ca2+ store (Morgan et al., 2015a, Patel and Cai, 2015). 

 
4.1.5 Ca2+ movement through the endocytic system: Lysosomal Ca2+ 

 
Rich in both H+ and Ca2+, acidic stores include lysosomes, lysosome-related organelles, secretory 

vesicles, vacuoles and acidocalcisomes (Patel and Docampo, 2010). Within mammals, lysosomes act 

as the major acidic Ca2+ store, with ~500μM luminal Ca2+ (comparable to ER Ca2+) (Lloyd-Evans et al., 

2008, Christensen et al., 2002).  

Ca2+ loading into these acidic organelles appears dependent on the H+ gradient, potentially via 

a currently unknown mammalian Ca2+/H+ (CAX) exchanger (Christensen et al., 2002, Gerasimenko et 

al., 1998). CAX channels have been identified within acidic lysosomes/vacuoles of plants, protists, fungi 

and metazoa where they utilize proton gradients across membranes to transport Ca2+ into the lumen 

(Patel and Cai, 2015). Deletion of Arabidopsis CAX channels disrupts Ca2+ homeostasis, gas exchange, 

growth and fitness (Cheng et al., 2005, Conn et al., 2011) whilst deletion of yeast CAX impairs stress 

responses (Denis and Cyert, 2002). Within metazoa, CAX channels demonstrate key roles in migration 

of neural crest cells during development (Patel and Cai, 2015). 

Ca2+ handling in the lysosome involves numerous ion channels, including members of the 

transient receptor potential (TRP) ion channel family, two-pore channels (TPCs) and ATP-gated 

ionotropic receptors. By both releasing and responding to Ca2+, lysosomal Ca2+ signaling enables 

lysosomal exocytosis and fusion with the plasma membrane (important in numerous processes e.g. 

wound healing)(Cheng et al., 2015), endolysosomal fusion and trafficking (Pryor et al., 2000), and 
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autophagy (Medina and Ballabio, 2015). In addition to these local events, lysosomal Ca2+ signaling can 

regulate plasma membrane excitability, cell differentiation, and can trigger global Ca2+ signaling events 

by inducing Ca2+ release from the ER (Kilpatrick et al., 2013). 

 

4.1.6 TRPML1 & MLSA1 

 
The TRP channel superfamily includes a sub group of three isoforms of TRP channels called mucolipins 

(TRPML 1-3), these are voltage and ligand-gated ion channels that localize predominantly to 

endolysosomes (Kiselyov et al., 2005, Manzoni et al., 2004, Venkatachalam et al., 2006). Loss of 

function of the ubiquitously expressed TRPML1 results in the lysosomal storage disease mucolipidosis 

type IV (MLIV) (Puertollano and Kiselyov, 2009). 

TRPML1 possesses non-selective cation conductance with permeability to Ca2+ at low pH, and 

is activated by either the endolysosomal phosphoinositide phosphatidylinositol 3,5-bisphosphate 

(PI(3,5)P2) (Dong et al., 2010) or the synthetic agonist ML-SA1 (Shen et al., 2012). Conversely, TRPML1 

activity can be inhibited using phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the main plasma 

membrane PIP species (Dong et al., 2010).  

Following activation, Ca2+ release from TRPML1 enables vesicular trafficking and fusion (Chen 

et al., 1998) alongside activation of TFEB and regulation of autophagy (Medina and Ballabio, 2015). 

TRPML1 null cells (MLIV) display lysosomal storage of autofluorescent lipofuscin (Goldin et al., 1995), 

gangliosides, mucopolysacharides and phospholipid alongside a trafficking defect (Bach, 2001). 

 
4.1.7 TPCs & NAADP (& Ned19) 

 
TPC’s represent another important family of lysosomal Ca2+ release channels. These voltage-gated ion 

channels appear to release Ca2+ in response to the most potent intracellular Ca2+ releasing second 

messenger, NAADP (nicotinic acid adenine dinucleotide phosphate) (Churchill et al., 2002). As NAADP 

is membrane-impermeant, a cell-permeant acetyoxymethyl ester derivative of NAADP (NAADP-AM) 

can be used when investigating NAADP-mediated Ca2+ release (Galione et al., 2014). Furthermore, in 

2009, Naylor et al., utilized virtual screening to identify a chemical probe for NAADP, known as Ned-

19, capable of blocking NAADP signaling at nanomolar concentrations.  

 Numerous lines of evidence suggest that NAADP induces Ca2+ release from acidic stores via 

TPCs (Brailoiu et al., 2009a, Calcraft et al., 2009, Zong et al., 2009), most likely facilitated by a currently 

unknown accessory protein (Marchant and Patel, 2013, Pitt et al., 2016). TPC1 has been demonstrated 

to primarily transport H+, K+, Na2+ as well as some Ca2+(Pitt et al., 2016), whilst TPC2 appears to 

predominately transport Ca2+(Pitt et al., 2010, Schieder et al., 2010).  
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For more information on TPCs, NAADP and Ned-19, see Chapter 5. 

 
4.1.8 NPC1 cells display a lysosomal Ca2+ defect 

 
In 2008, Lloyd-Evans et al., 2008 discovered a 60-70% reduction in lysosomal Ca2+ within NPC1 cells 

when compared with wild-type following treatment with either the cathepsin C substrate Gly-Phe β–

Naphthylamide (GPN), which induces osmotic lysis of lysosomes, or bafilomycin A1, which induces 

lysosomal Ca2+ release via inhibition of the vATPase. This defect was seen to result in altered acidic 

compartment Ca2+ signaling via NAADP. No difference in ER or mitochondrial Ca2+ was found between 

wild-type and NPC1 cells.  

In order to prevent interference of Ca2+-induced Ca2+-release (CICR) when measuring 

lysosomal Ca2+, cells were pretreated with either thapsigargin or ionomycin, which release non-acidic 

compartment Ca2+ (Liu and Hermann, 1978), prior to incubation with GPN or bafilomycin A1. A defect 

in lysosomal Ca2+ was further confirmed using the low-affinity Rhod-dextran Ca2+ probe in combination 

with pH and Ca2+ insensitive Alexa Fluor 488-dextran (lysosomal probe) to directly measure the 

lysosomal luminal Ca2+ concentration in situ.  

This paper also demonstrated how treating RAW macrophage cells with the NPC1 inhibitor 

U18666A (Lu et al., 2015) leads to a 60% reduction in lysosomal Ca2+ when compared with wild-type. 

Following treatment with U18666A, the NPC1 lysosomal Ca2+ defect appears to emerge prior to 

cholesterol and GSL storage. Moreover, chelating lysosomal Ca2+ from wild-type cells using a high 

affinity (strong Ca2+ buffering) Rhod-dextran resulted in endocytic trafficking defects alongside lipid 

storage; phenotypes comparable to those observed in NPC disease. Together, this evidence suggests 

that a reduction in lysosomal Ca2+ in NPC1 acts as an early event in disease pathogenesis, with reduced 

lysosomal Ca2+ affecting previously discussed lysosomal Ca2+ signaling, endocytosis, and autophagy, 

resulting in cellular lipid storage. 

Reduced lysosomal Ca2+ is hypothesized to emerge following sphingosine storage within NPC1 

cells (Lloyd-Evans et al., 2008); sphingosine has previously been observed to inhibit plasma membrane 

Ca2+ channels (Colina et al., 2002), and could therefore be acting in a similar way to inhibit lysosomal 

uptake of this ion via currently unknown channels. Indeed, sphingosine is the only lipid that when 

added exogenously is capable of reducing lysosomal Ca2+ levels (Roff et al., 1991) and reduction of 

sphingosine storage using ISP1 normalized lysosomal Ca2+ in NPC cells (Lloyd-Evans et al., 2008).  

In contrast to the above hypothesis, Hӧlinger et al., (2015) suggested that reduced lysosomal 

Ca2+ in NPC arises following sphingosine triggered Ca2+ release via TPC1 (Hoglinger et al., 2015). Despite 

this suggestion, as increased Ca2+ release from lysosomes should result in vesicular fusion (Pryor et al., 

2000), this does not explain the endocytic trafficking defect observed in NPC (Lloyd-Evans et al., 2008, 
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Ko et al., 2001, Mayran et al., 2003). Furthermore, as discussed earlier, TPC1 primarily transports 

monovalent ions over Ca2+ (Pitt et al., 2014, Pitt et al., 2016). Finally, if sphingosine mediated Ca2+ 

release via TPCs acted as the primary defect, NPC phenotypes should be corrected following treatment 

with the TPC inhibitor Ned-19 (Naylor et al., 2009). Ned-19 can in fact be seen to induce lysosomal 

storage within cells (Xu et al., 2016). 

Since the discovery of the NPC1 lysosomal Ca2+ defect, this phenotype has been confirmed by 

several groups (Visentin et al., 2013, Ferrante et al., 2016, Xu et al., 2012b, Hoglinger et al., 2015), and 

has also been implemented in a screening program by the NIH to discover new therapies for NPC 

disease (Xu et al., 2012). 

 

4.1.9 Ca2+ modulation in NPC 

 
Following observations that sphingosine storage in NPC1 cells leads to reduced lysosomal Ca2+, Lloyd-

Evans et al., 2008 presented evidence for Ca2+ modulation therapies as potential treatments for NPC 

disease. Inhibiting sphingosine storage directly using the sphingolipid synthesis inhibitor ISP1, whilst 

able to normalize lysosomal Ca2+ levels in Npc1-/- astrocytes (Lloyd-Evans et al., 2008), is not a viable 

therapy for NPC due to toxic effects of this molecule (Hanada et al., 2000). Via inhibition of SERCA, 

thapsigargin induces ER Ca2+ release (via Ca2+ leak from the ER) and subsequent cytosolic Ca2+ increase. 

This appears to compensate for reduced lysosomal Ca2+ signaling in Npc1-/- astrocytes, therefore 

correcting endocytic trafficking defects and lipid storage within disease cells. Analogous effects were 

seen when using the less toxic, weaker SERCA agonist, curcumin, which will be further discussed in 

chapter 4. Beneficial effects can be prevented by co-treating Npc1-/- cells with the intracellular Ca2+ 

chelator BAPTA-AM, confirming a Ca2+-dependent mechanism of action. 

Prior to this discovery, Yamamoto et al., 1994, had in fact previously investigated the effects 

of Ca2+ modulation on cholesterol esterification defects in NPC1, and observed attenuated cytoplasmic 

Ca2+ elevation in NPC1 fibroblasts following uptake of LDL. Treatment with plasma membrane Ca2+ 

channel agonist YC-170 was able to increase cytosolic Ca2+ and cholesterol esterification in NPC1 cells, 

whilst treatment with Ca2+ channel antagonists (e.g. Nifedipine, Diltiazem, Verapamil) further 

attenuated cholesterol esterification (Yamamoto et al., 1994). This provides further support that 

modulation of intracellular Ca2+ is a therapeutic target for NPC and since the findings of Lloyd-Evans et 

al., 2008, other Ca2+ modulators have also been investigated regarding treatment of NPC disease. 

These therapies include adenosine A2A receptor agonists (Visentin et al., 2013, Ferrante et al., 2016) 

and δ-tocopherol (activated vitamin E) (Xu et al., 2012b). 

Adenosine A2A receptors are G-coupled receptors with a diverse range of physiological effects 

often linked to lysosomal trafficking, pH, and Ca2+ concentration (Klinger et al., 2002, Carini et al., 2004, 
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Liu et al., 2008, Christensen et al., 2002). With this in mind, Visentin et al., 2013 decided to investigate 

potential beneficial effects of the A2A receptor agonist CGS21680 on NPC1 fibroblasts (Visentin et al., 

2013) and neurons (Ferrante et al., 2016).  Treatment with 100nM CGS21680 was able to restore 

intralysosomal Ca2+ in NPC1 cells to levels comparable with wild-type, whilst correcting mitochondrial 

defects and reducing cholesterol storage. Co-treating with either the A2A receptor antagonist 

ZM241384, or BAPTA-AM, prevented beneficial effects.  As the main transduction mechanism of A2A 

receptors is via activation of the cAMP/PKA pathway, the authors co-treated with the PKA inhibitor 

KT57TA. Co-treatment prevented correction of lysosomal cholesterol storage in NPC1 neurons, 

suggesting that activation the cAMP/PKA pathway following CGS21680 treatment plays a key role in 

the correction of the NPC1 lysosomal Ca2+ defect and downstream lipid storage. 

Xu et al., 2012 further demonstrated potential benefits of Ca2+ modulators when treating NPC1 

fibroblasts with 40μM δ-tocopherol, where it appeared able to increase both cytosolic and lysosomal 

Ca2+. This in turn appears to partially correct trafficking defects whilst reducing lysosomal expansion 

and cholesterol accumulation towards wild-type levels (Xu et al., 2012b), although the signaling 

mechanisms involved remain unknown. 

 
4.1.10 TRPML1 function in NPC1, MLSA1 as a therapy 

 

In 2012, Shen et al., 2012 suggested that TRPML1 function is inhibited by sphingomyelin, with 

sphingomyelin build-up in both NPA and NPC disease leading to inhibition of TRPML1 and subsequent 

endocytic trafficking defects. Despite aforementioned evidence of decreased lysosomal Ca2+ in NPC1 

cells (Lloyd-Evans et al., 2008, Visentin et al., 2013, Ferrante et al., 2016, Xu et al., 2012b, Hoglinger et 

al., 2015), this group suggested that this is not the case, and instead hypothesized that decreased 

lysosomal Ca2+ release from TRPML1 results in the observed block in trafficking and lipid storage.  This 

followed observations of reduced Ca2+ release in NPC1 cells compared with wild-type following 

addition of MLSA1. Based on above hypotheses, Shen et al., 2012 proposed the synthetic TRPML1 

agonist MLSA1 as a potential therapy for NPC.  

In spite of claims by Shen et al., 2012, a lysosomal Ca2+ defect in NPC1 rather than a defect in 

Ca2+ release from TRPML1 appears likely following confirmation of this phenotype by several groups 

as previously discussed (Visentin et al., 2013, Ferrante et al., 2016, Xu et al., 2012b, Hoglinger et al., 

2015). Moreover, when measuring lysosomal Ca2+, it is necessary to first empty other cellular Ca2+ 

stores using ionomycin in order to prevent CICR interfering with the lysosomal measurement (Liu and 

Hermann, 1978), this does not appear to have been done in Shen et al., 2012. Furthermore, in Shen et 

al., 2012 their use of recombinant TRPM1-GCaMP to measure the reduced lysosomal Ca2+ release in 

NPC1 cells is at odds with their own data from the paper showing that over-expression of TRPML1 can 
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rescue the Ca2+ signaling defects. If TRPML1 overexpression rescues the NPC1 Ca2+ defect then how 

are they able to measure any defect via overexpression of TRPML1 coupled to a GCaMP sensor? 

Indeed, recent work from our laboratory has shown that reduction in sphingomyelin storage has no 

impact on either lysosomal Ca2+ levels or TRPML1 mediated Ca2+ release in NPC disease cells (Waller-

Evans and Lloyd-Evans, unpublished observations). 

Bearing above observations in mind, we hypothesize that utilizing MLSA1 to induce lysosomal 

Ca2+ release in NPC1 cells could potentially worsen the lysosomal Ca2+ phenotype whilst exacerbating 

trafficking and lipid storage phenotypes. 

 
4.1.11 Acetyl-DL-leucine (tanganil) 

 
A recent case series investigated the effect of the acetylated amino acid tanganil on 12 NPC patients. 

Using a dose of 3g/day for 1 week followed by 5g/day for a further 3 weeks led to a significant 

improvement in cerebellar symptoms and quality of life within patients (Bremova et al., 2015). This 

trial arose following a previous study demonstrating beneficial effects of tanganil against other 

cerebellar ataxias of various etiologies (Strupp et al., 2013).  

Tanganil, or acetyl-DL-leucine, has been widely prescribed since 1957 for the treatment of 

acute vertigo, and therefore possesses an extensive safety record. Whilst its mechanism of action 

against vertigo remains elusive, it appears to alter the membrane potential of abnormally 

hyperpolarized and depolarized vestibular neurons, most likely through an effect on ion channels, 

perhaps Ca2+ channels, within the plasma membrane (Vibert and Vidal, 2001). It has previously been 

proposed that beneficial effects occur primarily via the L isomer (Gunther et al., 2015). 

 
4.1.12 Aims 

 
Given the observed benefits of Ca2+ modulation in NPC1, we decided to investigate several of these 

modulators further. In particular, we aimed to explore any benefits and potential pitfalls of the 

TRPML1 agonist MLSA, proposed as a potential therapy for NPC disease. Moreover, we proceeded to 

investigate whether observed benefits of the acetylated amino acid tanganil occurred via Ca2+ 

modulation. 

 

 

4.2 Materials & Methods 

 
Unless otherwise stated, all reagents were from Sigma-Aldrich. Any methods used in this chapter and 

not described here can be found in the general materials and methods section (Chapter 2). 
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4.2.1 Cell culture 

 
For more detailed cell culture methods, please see general methods section. Wild-type post-natal day 

4 mouse cerebellar neurons were obtained from Prof Susan Cotman (Fossale et al., 2004), and human 

embryonic kidney cells stably transfected with human CaSR (HEK-CaSR) were obtained from Prof 

Riccardi (Ward et al., 2013). Both lines were grown in complete DMEM as monolayers in a humidified 

incubator (37oC, 5% CO2).  

 
4.2.2 Cell treatments 

 
4.2.2.1 Treatment with the TRPML1 agonist, MLSA1 (Mucolipin Synthetic Agonist 1) 

 
MLSA1 acts as a synthetic agonist for the voltage-gated endolysosomal ion channel TRPML1 (Grimm 

et al., 2010), and has been proposed to correct cholesterol storage within NPC1 cells (Shen et al., 2012). 

Npc1+/+ and Npc1-/- glia where either left untreated or treated overnight (~15 hours) with 30μM MLSA1, 

made up from a 10mM stock in DMSO, in complete DMEM prior to live or fixed staining and imaging. 

For details on performing direct addition Ca2+-signaling experiments, see general materials and 

methods (Chapter 2). 

 
4.2.2.2 Treatment with δ-tocopherol (activated vitamin E) 

  

Npc1+/+ and Npc1-/- glia were treated overnight (~15 hours) with 10μM	δ-tocopherol (a Ca2+ modulator 

proposed to correct NPC1 cholesterol storage (Xu et al., 2012b)), made up from a 10mM stock in 

dimethyl sulfoxide (DMSO), in complete DMEM prior to live or fixed staining and imaging in order to 

confirm previously reported effects. For details on performing direct addition Ca2+-signaling 

experiments, see general materials and methods (Chapter 2). 

 
 
 
4.2.2.3 Treatment with the adenosine A2A receptor agonist CGS21680 

 
Npc1+/+ and Npc1-/- glia were treated overnight (~15 hours) with 10nM CGS21680 (Tocris, an adenosine 

A2A receptor agonist previously proposed to correct NPC1 cholesterol storage via modulation of 

lysosomal Ca2+ (Visentin et al., 2013, Ferrante et al., 2016)), made up from a 10µM stock in DMSO, in 

complete DMEM prior to live or fixed staining and imaging in order to confirm previously reported 

effects. For details on performing direct addition Ca2+-signaling experiments, see general materials and 

methods (Chapter 2). 
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4.2.2.4 Treatment with acetyl-X-leucine 

 
The acetylated amino acid acetyl-X-leucine (TCI chemicals) can be composed of D, L or a mixture of D 

and L isomers. Acetyl-DL-leucine is licensed as Tanganil, a drug prescribed for over 50 years to treat 

acute vertigo (Vibert and Vidal, 2001), and recently shown to provide benefit regarding ataxic 

phenotypes in a case series involving 12 NPC patients (Bremova et al., 2015). Npc1+/+ and Npc1-/- glia 

were treated overnight (~15 hours) with either 1, 10, 30 or 100μM	acetyl-DL-leucine,	made	up	from	

1	and	30mM	stocks	in	DMSO,	in	complete	DMEM	prior	to	live or fixed staining and imaging in order 

to determine effects of treatment on cellular Ca2+ and characteristic NPC storage phenotypes. For 

details on performing direct addition Ca2+-signaling experiments (using D, L and DL isomers of acetyl-

X-leucine), see general materials and methods (Chapter 2). For direct addition Ca2+ experiments, cells 

were imaged in HBSS in either the presence (1mM	CaCl2)	or absence of extracellular Ca2+ in order to 

determine whether Ca2+ elevation following addition of acetyl-DL-leucine was due to extracellular 

uptake or intracellular release from stores. 

 
4.2.2.5 Treatment with the low-affinity Ca2+ chelator BAPTA-AM 

 
In order to determine whether tanganil’s ability to correct NPC phenotypes occurs via Ca2+ modulation, 

we treated Npc1+/+ and Npc1-/- glia overnight (~15 hours, complete DMEM) with the low-affinity Ca2+ 

chelator BAPTA-AM (molecular probes, stock concentration 10mM in DMSO, used at 10µM in 

complete DMEM)(Wang et al., 1997), either alone or in combination with acetyl-DL-leucine, prior to 

live or fixed staining and imaging. AM demonstrates modification of BAPTA with an AM ester, which 

allows this chelator to permeate cell membranes. Once inside the membrane, the AM group is 

hydrolyzed by intracellular esterases (Galione et al., 2014), leaving BAPTA to accumulate within the 

cell and chelate Ca2+. 

 
4.2.3 Lysosomal Ca2+ measurements 

 
Effects of overnight treatment with MLSA1 (30μM), δ-tocopherol (30μM), CGS21680 (10nM) and 

tanganil (10μM) on lysosomal Ca2+ levels in Npc1+/+ and Npc1-/- glia was determined by staining with 

cell-permeable cytosolic Ca2+ probe Fura-2AM (ThermoFisher Scientfic, see general methods, chapter 

2) prior to addition of acid free ionomycin (Merck Millipore, 2mM stock in DMSO, 5μM working 

solution in complete HBSS) to release Ca2+ from all stores except lysosomes (Liu and Hermann, 1978). 

Nigericin was then added to depolarize lysosomes (Tapper and Sundler, 1990), releasing lysosomal 

Ca2+ into the cytoplasm were we recorded any change in cytoplasmic Ca2+ levels (340/380).  
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4.2.4 TRPML1 overexpression 

 
Following claims by Shen et al., 2012 suggesting that TRPML1 overexpression rescues NPC1 cellular 

phenotypes we decided to investigate further.  

TRPML1-YFP (yellow fluorescent protein) in a pcDNA3.1+ vector was purchased from Addgene 

as bacteria in an agar stab. To amplify the plasmid cDNA, bacteria was streaked from the agar onto 

Luria Bertani agar plates supplemented with 50μg/ml ampicillin and grown overnight at 37oC with 

agitation. The plasmid was then prepared for transfection using a PureLink HiPure plasmid purification 

kit (ThermoFisher) according to manufacturers instructions, resuspended in Tris-EDTA buffer and 

stored at -20oC until needed. Transfection was carried out with 2 different concentrations of TRPML1-

YFP: 1103ng (low concentration, determined via nanodrop) and 3309ng/well (high).  To prepare the 

low and high concentrations of TRPML1-YFP, 1 and 3μl of stock solution was combined with 49 and 

47μl of 150mM RNase free NaCl (Polyplus transfection, SA) respectively before being briefly vortexed. 

Separately, for both concentrations, 2μl of jetPei DNA transfection reagent (Polyplus transfection, SA) 

was added to 48μl RNase free NaCl and briefly vortexed. 50μl of this JetPei solution was then combined 

with 50μl of either the high or low concentration TRPML1-YFP solution and was briefly vortexed prior 

to a 30-minute incubation at room temperature. Following this incubation, 100μl of the appropriate 

solution was added to Npc1+/+ and Npc1-/- glia grown in complete DMEM as monolayers in a 24-well 

plate (see general methods), and incubation occurred for 72-hours at 37oC.  

Following this incubation, cells were fixed and stained overnight with anti-GFP (green 

fluorescent protein, 2μl/ml, Abcam, ab6556) prior to staining with an anti-rabbit secondary (Abcam). 

Anti-GFP stains YFP as the only difference between the two proteins is a point mutation that does not 

affect antibody binding (Wachter et al., 1998). Cells were next stained with the fluorescent cholesterol 

binding probe filipin prior to imaging (see general materials and methods). 

Controls included non-transfected Npc1+/+ and Npc1-/- glia, JetPei only (no TRPML1-YFP) 

treated Npc1-/- glia to determine any effects of transfection vector alone and primary (anti-GFP) and 

secondary only controls to identify non-specific staining. 

 
4.2.5 Measurements of Ca2+ in different populations of cells using a fluorescence plate reader 

 
In order to investigate the effects of acetyl-L-leucine on cellular Ca2+ levels at increasing extracellular 

Ca2+ concentration we performed a Ca2+ plate reader assay in collaboration with Prof. Riccardi’s lab.  

 HEK-293 cells that stably express CasR (HEK-CasR, ~30,000 cells per well) were seeded into 96 

well plates, either left untreated or treated with acetyl-L-leucine (10μM), and grown to confluence 

before being loaded with 2μM Fluo-4 (Fisher) for 30 minutes. Using a Fluoroskan Ascent plate reader, 
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an initial baseline reading of 10 measurements was taken to determine the 0 second value. A Ca2+ 

solution that increased in Ca2+ concentration (0.2-10mM) was dispensed into a single well after 5 

seconds. Emission at 538nm for each well (excitation = 485) was then followed for a further 25 seconds 

(1 reading every 5 seconds). Dose response curves were generated from the peak fluorescence upon 

the addition of the Ca2+ solution and corrected for the initial baseline measurement. Peak fluorescence 

was then normalized to the 10mM Ca2+ and 2μM ionomycin response to enable comparison between 

different plates. PRISM was used to perform non-linear regression and generate R2 values shown. 

 

4.2.6 Sphingosine assay 

 
A modified version of the BCA assay (see general methods) was used to measure levels of the NPC1 

lipid sphingosine in blood plasma of patient’s pre-and post-tanganil treatment. The BCA assay is 

conventionally used to detect the amount of protein in a sample. Copper (II) Sulphate (Cu(II)SO4) is 

added to a solution, where the peptide bonds in any proteins present reduce the Cu2+ ions to Cu+. Next, 

the BCA solution is added, and two molecules of the acid chelate with each of the Cu+ ions to form an 

intense purple-colored product, with the intensity of the purple color being indicative of the amount 

of protein in the solution. In the absence of protein, sphingosine contains a free amine group capable 

of reducing Cu2+ ions and producing a purple product. Therefore, following removal of protein from 

plasma, levels of sphingosine pre-and post-tanganil treatment can be determined (Gribben and Lloyd-

Evans, unpublished). 

 Solvent extraction was used to precipitate and remove protein from patient blood samples by 

combining 30μl of each sample with 120μl of Chloroform:Methanol (1:1) and leaving overnight on a 

roller at 4oC. The next day, samples were vortexed prior to being spun at 1000rpm for 5 minutes, and 

lipid-containing solvent was removed from the protein pellet and transferred to a new tube.  

30μl chloroform and 30μl PBS were added to the solvent mix, and samples were vortexed and spun at 

1000rpm for 5 minutes, initiating a phase separation. The top layer of this mixture was discarded 

(aqueous phase), whilst 30μl chloroform and 30μl PBS was added to the lower lipid containing layer, 

and the previous step was repeated twice more to remove salts.  

Following these three wash steps, samples were dried down under nitrogen and resuspended 

in 20μl acetonitrile (CH3CN) prior to sonication for 30 minutes to disperse lipid aggregates. 

Solutions were then transferred to 96 well plates prior to addition of 180μl complete BCA 

solution (BCA + Cu(II)SO4) and sphingosine levels were determined based on degree of color change 

compared with a standard curve of known concentrations of C18 D-erythro sphingosine dissolved in 

acetonitrile plus complete BCA. 

 



 

65 

 

 

 

4.3 Results 

 
4.3.1 Examining the effects of previously investigated Ca2+ modulators on the Npc1-/- phenotype 

 
In order to determine the effects of direct addition of previously investigated Ca2+ modulators on 

intracellular Ca2+ release, Npc1+/+ and Npc1-/- glia were loaded with the Ca2+ probe Fura-2AM prior to 

treatment with either CGS21680 (10nM), δ-tocopherol (30μM) or MLSA1 (30μM), and changes in 

cytoplasmic Ca2+ levels were recorded.  Effects of modulators on lysosomal Ca2+ was investigated by 

treating cells overnight with either CGS21680 (10nM), δ-tocopherol (30μM) or MLSA1 (30μM) before 

staining cells with Fura-2AM and adding ionomycin to release Ca2+ from all stores except lysosomes 

(Liu and Hermann, 1978), and then nigericin to depolarize lysosomes and release their Ca2+ content 

(Tapper and Sundler, 1990). 

As can be seen in figures 4.1 A and B, all compounds were capable of increasing cytosolic Ca2+ 

in Npc1+/+ cells, with MLSA1 having the greatest effect followed by δ-tocopherol and finally CGS21680. 

We next confirmed that the A2A receptor agonist, CGS21680, is able to increase lysosomal Ca2+ in Npc1-

/- glia to levels comparable to Npc1+/+ (figure 4.1 B & C), despite having minimal effect on cytosolic Ca2+ 

(figure 4.1 A & B)(Visentin et al., 2013, Ferrante et al., 2016). Furthermore, δ-tocopherol was able to 

increase both cytosolic (figure 4.1 A & B) and lysosomal Ca2+ (figure 4.1 C & D) in Npc1-/- glia (Xu et al., 

2012b). A greater ~35% increase in cytosolic Ca2+ was seen in Npc1-/- over Npc1+/+ glia following 

addition (figure 4.1 A & B). TRPML1 agonist MLSA1, despite causing a significant increase in cytosolic 

Ca2+ (figure 4.1 A & B), appeared to have no effect on lysosomal levels (Figure 4.1 C & D) in Npc1-/-. 

MLSA1 addition did however cause significantly higher (~28%) cytosolic Ca2+ elevation in Npc1+/+ when 

compared to Npc1-/-, confirming results by Shen et al., 2012 (figure 4.1 A & B). 

To determine the effects of these Ca2+ modulators on characteristic Npc1-/- cholesterol storage, 

we analyzed Npc1-/- glial cells treated overnight with either CGS21680 (10nM), δ-tocopherol (30μM) 

or MLSA1 (30μM) prior to fixation and staining with the fluorescent cholesterol binding probe filipin. 

Treatment with either CGS21680 or δ-tocopherol was able to reverse cholesterol storage in Npc1-/- glia 

to levels comparable to Npc1+/+ (figure 4.1 E), mimicking previous observations (Visentin et al., 2013, 

Ferrante et al., 2016, Xu et al., 2012b) and confirming potential benefits of these Ca2+ modulators in 

NPC. However, despite confirming the ability of MLSA1 to increase cytosolic Ca2+ (figure 4.1 A & B), we 

were unable to reproduce results of Shen et al., 2012 suggesting that MLSA1 reduced cholesterol 

storage in NPC1 (figure 4.1 E). These results demonstrate how whilst Ca2+ modulation can correct Npc1-

/- storage, not all molecules capable of elevating cytosolic Ca2+ will have a beneficial effect on the NPC 

phenotype. 
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Figure 4.1. CGS21680, δ-tocopherol and MLSA1 all modulate cellular Ca2+ (either cytoplasmic, lysosomal, or both) but only 

CGS21680 and δ-tocopherol are able to reverse Npc1-/- lipid storage. Npc1+/+ (wild-type) and Npc1-/- (NPC1) mouse 

astrocytes were stained and imaged live with the cytoplasmic Ca2+ probe Fura-2AM prior to direct addition of CGS21680 

(10nM), δ-tocopherol (30μM) or MLSA1 (30μM). Following treatment, we proceeded to measure changes in intracellular Ca2+ 

levels (ratiometric measurement at 340nm and 380nm, expressed as 340/380). Graphs summarizing Ca2+ release (A) and 

representative Ca2+ traces (B, FU = fluorescence units) are shown (MLSA1 = Δ, δ-tocopherol = O, CGS21680 = ☐, wild-type 

(Npc1+/+) = white, NPC1 (Npc1-/-) = grey). Following overnight treatment (~15 hours) with the above drugs (same 
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concentrations used in A & B), we investigated effects of treatment on either lysosomal Ca2+ (following staining with Fura-

2AM, addition of ionomycin to release Ca2+ from all stores except lysosomes (data not shown), nigericin to release Ca2+ from 

lysosomes, and measurement of changes in intracellular Ca2+, graphs C, traces D (Npc1+/+  = ☐, Npc1-/- = n, Npc1-/- + MLSA1 

= X, Npc1-/- + δ-tocopherol = Ο, Npc1-/- + CGS21680 = Δ) or effects on lysosomal cholesterol storage by fixing cells and staining 

with filipin (E). It should be stated that Npc1+/+ cells often have very dim staining with filipin because of high levels in Npc1-/-, 

which would be saturated if Npc1+/+ cells were taken at higher comparable exposures. N=2, scale bar = 10μm. Work 

completed in collaboration with CUROP student Adam Whitall. >50 cells analyzed per condition per N. 

 
As we were unable to reproduce data by Shen et al., 2012 suggesting that MLSA1 treatment 

can reduce lipid storage in NPC1 cells, and given that MLSA1 has previously been suggested as a 

potential therapy for NPC1 patients (Shen et al., 2012), we next decided to investigate the effects of 

this TRPML1 agonist further. 

 
4.3.2 MLSA1 treatment induces a lysosomal Ca2+ defect in Npc1+/+ glia whilst further reducing 

lysosomal Ca2+ in Npc1-/- cells 

 
We began by staining Npc1+/+ and Npc1-/- glia with the Ca2+ probe Fura-2AM and investigating the 

effects of MLSA1 on lysosomal Ca2+ levels.  

As previously discussed, when measuring lysosomal Ca2+, cells must first be treated with 

ionomycin to release Ca2+ from all other (non-acidic) cellular stores (Liu and Hermann, 1978) and 

prevent interference of CICR.  

Following addition of ionomycin, nigericin was added to release acidic-store (lysosomal) Ca2+ 

(Tapper and Sundler, 1990). As seen in the traces and graphs (figure 4.2 A & B), lysosomal Ca2+ was 

indeed reduced in Npc1-/- cells when compared with Npc1+/+ (~80%), confirming previous observations 

(Lloyd-Evans et al., 2008, Visentin et al., 2013, Ferrante et al., 2016, Xu et al., 2012b, Hoglinger et al., 

2015). MLSA1 pretreatment of either Npc1+/+ or Npc1-/- cells appeared to reduce lysosomal Ca2+ levels 

below that seen in untreated control lines (treatment reduced lysosomal Ca2+ by ~57% in Npc1+/+, ~55% 

in Npc1-/-), with acidic store Ca2+ in the treated Npc1+/+ resembling levels observed in Npc1-/- (figure 4.2 

A & B). As reduced lysosomal Ca2+ in NPC1 appears to account for observed lipid storage, we next 

decided to investigate whether or not the MLSA1-induced lysosomal Ca2+ defect was inducing NPC-like 

phenotypes in Npc1+/+ glia. 
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Figure 4.2. Npc1+/+ and Npc1-/- glia treated overnight with the TRPML1 agonist MLSA1 have reduced lysosomal Ca2+. Npc1+/+ 

(wild-type) and Npc1-/- (NPC1) mouse astrocytes were either untreated or treated overnight with 10 or 30μM MLSA1 prior to 

staining and live imaging with the ratiometric cytoplasmic Ca2+ probe Fura-2AM (340/380). 5μM	 ionomycin was added to 

release Ca2+ from non-acidic stores prior to addition of 10μM nigericin to induce Ca2+ release from lysosomes and measuring 

the increase in cytosolic Ca2+.  Graphs summarizing lysosomal Ca2+ release (A) and representative Ca2+ traces (B, FU = 

fluorescence units) are shown (Npc1+/+ = Δ, Npc1-/- = ☐, untreated = white, MLSA1 = grey).  N=2. Work completed in 

collaboration with final year project student Lucy Walker. >50 cells analyzed per condition per N. 

 
4.3.3 Reduced lysosomal Ca2+ in Npc1+/+ glia treated with MLSA1 induces NPC lipid storage 

phenotypes 

 

In order to determine the effect of reduced lysosomal Ca2+ in MLSA1 treated Npc1+/+ cells we first 

stained Npc1+/+ and Npc1-/- glia, either untreated or treated with MLSA1 overnight, with the cholesterol 

probe filipin (Representative images Figure 4.3 A & B, quantified by thresholding 4.3 C & D). We 

observed that whilst DMSO vehicle control had no effect, treatment of either cell line with 10 or 30μM 

MLSA1 appeared to slightly increase cholesterol levels, worsening the disease phenotype in Npc1-/- 

cells compared with controls (~15% increase, P<0.05) and potentially, although non-significantly, 

inducing partial storage in the Npc1+/+ astrocytes.   

This finding is supported by preliminary experimental analysis by TLC (figure 4.4 A, quantified 

4.4 D), where cholesterol, GSLs, BMP, phospholipids, sphingomyelin and gangliosides appear to 

increase in Npc1+/+ and Npc1-/- glia following treatment. 
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Whilst this data is discouraging for the use of MLSA1 as a potential therapy for NPC1, our 

findings clarify the importance of the lysosomal Ca2+ defect in NPC1 with regards to downstream lipid 

storage. 

 

 

 
 
Figure 4.3. Npc1+/+ and Npc1-/- glia treated overnight with the TRPML1 agonist MLSA1 show increased lysosomal 

cholesterol storage following staining with filipin. Following overnight treatment with 10 or 30μM MLSA1, Npc1+/+ (wild-

type) (B) and Npc1-/- (NPC1) (A) cells were fixed and stained with the cholesterol probe filipin.  Representative cells can be 

seen in A & B and images were quantified by thresholding to generate graphs C & D. N=3 for Npc1-/- cells, N=2 for Npc1+/+, 

scale bar = 10μm. Work completed in collaboration with CUROP student Adam Whitall and final year project student Lucy 

Walker. >50 cells analyzed per condition per N. 
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Figure 4.4. Npc1+/+ and Npc1-/- glia treated overnight with the TRPML1 agonist MLSA1 show increased storage of a variety 

of lipids following solvent extraction and TLC analysis. Npc1+/+ (wild-type) and Npc1-/- (NPC1)  glia were either untreated or 

treated overnight with the TRPML1 agonist MLSA1 prior to lipid extraction and TLC analysis (A). Standard lipid formulations 

were run alongside samples, GSLs = glycosphingolipids, BMP = bis(monoacylglycero)phosphate. Band intensity of the 

different lipids across the samples was quantified using ImageJ (B). N=1, work completed in collaboration with final year 

project student Lucy Walker. 
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4.3.4 Overexpression of TRPML1 is unable to correct Npc1-/- cellular phenotypes 

 
Shen et al., 2012 demonstrated how overexpression of TRPML1 in NPC1 cells reversed cholesterol 

storage.  As we were unable to reproduce other results from this publication (e.g. the finding that 

treatment with TRPML1 agonist MLSA1 could reduce NPC1 cholesterol storage), and in fact found that 

MLSA1 treatment exacerbated the lysosomal Ca2+ defect and lipid storage in Npc1-/- glia whilst inducing 

a phenotype in wild-types (Figures 4.2, 4.3 & 4.4), we decided to investigate this claim by repeating 

the experiment and overexpressing a TRPML1-YFP construct in Npc1+/+ and Npc1-/- glia. Two 

concentrations of TRPML1-YFP were used, 1103 (Figure 4.5 B) and 3309ng/ml (Figure 4.5 C). Following 

transfection, cells were fixed and stained with an anti-GFP followed by a fluorescent secondary 

(488nm). As expected, treatment with the higher concentration of TRPML1-YFP led to ~20% more cells 

expressing GFP when compared with the lower concentration (Figure 4.5 E). Cells expressing GFP can 

be considered to have incorporated and expressed the TRPML1-YFP vector, and therefore should be 

overexpressing TRPML1. Primary and secondary only antibody controls had no effect on fluorescence 

(data not shown). 

 We used filipin (380nm) to examine the distribution of the characteristic NPC lipid cholesterol. 

Our first finding was that Npc1-/- cells treated with the JetPei transfection vector alone showed a small 

increase in filipin staining (~19%), representative of increased cholesterol storage in lysosomes, when 

compared to untreated Npc1-/- glia (Figure 4.5 A). 

 We next compared cholesterol storage (via filipin staining, 380nm) within Npc1-/- cells grown 

on the same coverslip, treated with low (Figure 4.5 B) or high (Figure 4.5 C) concentrations of TRPML1-

YFP. We found that following treatment with either plasmid concentration, Npc1-/- cells expressing the 

TRPML1-YFP construct (488nm, GFP positive) showed increased cholesterol storage when compared 

with GFP negative Npc1-/- cells in the same well or JetPei controls (Figure 4.5 B, C & D). This suggests 

that contrary to claims by Shen et al., 2012, overexpression of TRPML1 in NPC1 is unable to rescue 

cellular phenotypes, and may in fact worsen lipid storage. 
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Figure 4.5. Npc1-/- glia over-expressing TRPML1 show increased cholesterol storage when compared with non-GFP tagged 

controls. Panel A shows control images: non-transfected Npc1+/+ (wild-type) and Npc1-/- (NPC1) glia and Npc1-/- glia treated 

with JetPei transfection vector alone prior to staining with filipin. It should be stated that Npc1+/+ cells often have very dim 

staining with filipin because of high levels of cholesterol in Npc1-/-, which would result in probe saturation within Npc1-/- cells 

if wild-type’s were taken at comparable exposures. Dr Helen Waller-Evans prepared TRPML1-YFP for transfection as 

described in materials and methods. Following this, Npc1-/- glia were transfected using JetPei DNA transfection reagent (JP) 

combined with either a low (1103ng, B) or high (3309ng, C) concentration of TRPML1-YFP and incubated for 72-hours prior 

to fixation and staining with both anti-GFP (binds YFP, followed by anti-rabbit secondary, 488nm) and the cholesterol binding 

probe filipin (380nm). Filipin staining in GFP positive and negative Npc1-/- cells following treatment with either low or high 

gene concentrations can be seen in B & C respectively, and staining intensity was quantified via thresholding to generate 

graph D. Following transfection, percent of Npc1-/- cells anti-GFP positive (therefore expressing TRPML-YFP) for low and high 

gene concentrations can be seen in graph E. N=2. Preliminary data, more repeats needed. Scale bar = 10μm. >50 cells analyzed 

per condition per N. 
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4.3.5 Tanganil interacts with plasma membrane ion channels leading to changes in intracellular Ca2+ 

levels 

 
In a recent case study involving 12 NPC patients, the acetylated amino acid Tanganil was demonstrated 

to provide benefits both in terms of ataxic phenotypes and quality of life (Bremova et al., 2015). Whilst 

its mechanism of action against NPC is currently unknown, research suggests that effects against 

vertigo may involve interaction with neuronal Ca2+ channels (Vibert and Vidal, 2001). Following these 

observations, we set out to determine whether Tanganil was capable of acting as a Ca2+ modulator 

within Npc1-/- cells. To do this, we measured Ca2+ release following addition of various concentrations 

of this drug. Npc1+/+ and Npc1-/- glia were loaded with the Ca2+ probe Fura-2 AM prior to treatment 

with either 1, 10, 30 or 100μM Tanganil, in both the presence (Figure 4.6 A & C) or absence (Figure 4.6 

B & D) of extracellular Ca2+. 

As can be seen in Figure 4.6 A & C, when imaged in HBSS plus Ca2+, treatment of Npc1+/+ glia 

with all tested concentrations of Tanganil resulted in increased cytosolic Ca2+. In comparison, only 10, 

30 and 100μM Tanganil treatments led to a release in Npc1-/-. Significantly reduced Ca2+ release can be 

seen within Npc1+/+ cells at 100μM when compared with that observed at 30μM (~29%), although this 

is not seen within Npc1-/- cells. Overall, release in Npc1+/+ glia at comparable concentrations of Tanganil 

was significantly higher than in Npc1-/- (e.g. ~57% increase at 10μM, ~40% at 30μM). These results are 

the first to demonstrate an ability of Tanganil to modulate Ca2+ levels within glia. 

When imaged in HBSS without Ca2+, significantly increased cytosolic Ca2+ was observed in 

Npc1+/+ glia only when treated with 30μM Tanganil. This can be compared with Npc1-/- glia where no 

concentrations were able to invoke a significant Ca2+ release. Responses in HBSS without Ca2+, as can 

be seen by comparing the scale bars of graphs A & B and the Ca2+ traces, are much reduced when 

compared with comparable concentrations in HBSS plus Ca2+ (e.g. Npc1+/+ cells plus 10μM Tanganil 

experience a 7-fold increase in Ca2+ release in the presence, compared to the absence, of extracellular 

Ca2+). As removing extracellular Ca2+ prevents or reduces responses to Tanganil, we can conclude that 

this drug acts mainly via plasma membrane receptors to modulate cellular Ca2+ levels in glia. 
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Figure 4.6. Tanganil interacts with plasma membrane ion channels leading to Ca2+ release. Npc1+/+ (wild-type) and Npc1-/- 

(NPC1) glia were stained with the Ca2+ probe Fura-2AM (340/380) prior to treatment with either DMSO or 1, 10, 30 or 100μM 

tanganil in either the presence or absence of extracellular Ca2+.  Following treatment, we proceeded to measure changes in 

intracellullar Ca2+ levels. Representative Ca2+ traces are shown for Npc1+/+ (A) and Npc1-/- (B) glia treated with either 10 (Δ) or 

30μM (Ο) Tanganil in the presence (white shapes) or absence (grey shapes) of extracellular Ca2+. Traces were quantified to 

make graphs showing average release in presence (C) and absence (D) of extracellular Ca2+. N=3. ***=p<0.001, **=p<0.01. 

>50 cells analyzed per condition per N. 
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4.3.6 Acetyl-L-leucine appears responsible for the Ca2+ increase observed in Npc1+/+ glia following 

treatment with Tanganil, whilst in Npc1-/- glia L and D isoforms appear to have synergistic effects 

 

Tanganil, or acetyl-DL-leucine, contains both D and L isomers. As it has previously been suggested that 

the L isomer is responsible for beneficial effects of tanganil observed in vertigo (Gunther et al., 2015), 

we decided to investigate whether the same was true in NPC1. 

Npc1+/+ and Npc1-/- glia were loaded with the Ca2+ probe Fura-2 AM prior to treatment with 

10μM of either acetyl-D-leucine, acetyl-L-leucine, or acetyl-DL-leucine (Tanganil, Figure 4.7). Npc1+/+ 

glia release more Ca2+ following addition of acetyl-D, L, and DL-leucine when compared with NPC1, 

confirming results obtained in figure 4.6.  

In Npc1+/+ glia, application of L and DL isoforms was able to induce significant Ca2+ release when 

compared with DMSO controls (P<0.0001, ~90%), whilst D was not, replicating findings in vertigo 

(Gunther et al., 2015)(Figure 4.7 A & C) and suggesting that Ca2+ release is dependent on the L isomer. 

In contrast, Npc1-/- cells released Ca2+ in response to L (P<0.01, ~80%) DL (P<0.01, ~93%) and D 

(P<0.0001, ~60%) isoforms when compared with DMSO controls, with D and L isoforms showing a 

synergistic effect and acetyl-DL-leucine treatment inducing significantly more Ca2+ release when 

compared with L alone (P<0.01, ~29% increase).  

 

 
 
Figure 4.7. Acetyl-L-leucine appears responsible for the Ca2+ increase observed in Npc1+/+ glia following treatment with 

tanganil, whilst in Npc1-/- glia L and D isoforms appear to have synergistic effects. Npc1+/+ (wild-type) and Npc1-/- (NPC1) glia 

were stained with the Ca2+ probe Fura-2AM (340/380) prior to treatment with 10μM of either acetyl-D-leucine, acetyl-L-

leucine, or acetyl-DL-leucine (Tanganil). Following treatment, we proceeded to measure changes in intracellular Ca2+ levels. 

Representative Ca2+ traces are shown for Npc1+/+ (A) and Npc1-/- (B) glia treated with either acetyl-D-leucine (n), acetyl-L-

leucine (☐), or acetyl-DL-leucine (X). FU = fluorescence units. Traces were quantified to make graphs showing average release 

(C). N=3. ****=p<0.0001, **=p<0.01. >50 cells analyzed per condition per N. 



 

76 

 

 

 

4.3.7 Tanganil treatment partially reduces lysosomal Ca2+ in Npc1-/- glia 

 

Following observations that some Ca2+ modulators exert their beneficial effects of Npc1-/- glia via 

modulation of lysosomal Ca2+ levels (Figure 4.1), and given that MLSA1 appears to increase cytosolic 

Ca2+ whilst decreasing lysosomal levels (Figures 4.1 & 4.2), potentially resulting in lysosomal storage 

within glia (Figures 4.3 & 4.4), we next decided to investigate the effects of Tanganil on lysosomal Ca2+ 

levels within cells. Npc1-/- glia were either untreated or treated overnight with 10μM Tanganil and 

lysosomal Ca2+ levels were compared with Npc1+/+ cells. This was done by staining with Fura-2AM and 

adding ionomycin (to prevent interference from CICR) prior to nigericin (releases lysosomal Ca2+), and 

measuring the change in cytosolic Ca2+ levels. As expected, reduced lysosomal Ca2+ was seen in Npc1-

/- cells when compared with Npc1+/+ (Lloyd-Evans et al., 2008).  

We found that Tanganil treatment partially reduced lysosomal Ca2+ in Npc1-/- cells (P<0.05, 

~10%). As this is also seen with MLSA1 (Figure 4.2), albeit to much greater levels, where the reduced 

Ca2+ appears to generate lipid storage in treated cells, we next decided to further examine the effects 

of tanganil treatment on lipid storage in Npc1-/- glia. 

 

 
Figure 4.8. Tanganil treatment partially reduces lysosomal Ca2+ in Npc1-/- glia. Npc1+/+ (wild-type) cells were left untreated 

whilst Npc1-/- (NPC1) mouse astrocytes were either untreated or treated with 10μM Tanganil overnight prior to staining and 

live imaging with the ratiometric cytoplasmic Ca2+ probe Fura-2AM (340/380). 5μM	 ionomycin was added to release Ca2+ 

from non-acidic stores prior to addition of 10μM nigericin to induce Ca2+ release from lysosomes and measuring the increase 

in cytosolic Ca2+. Representative Ca2+ traces (A, FU = fluorescence units) and graphs summarizing Ca2+ release (B) are shown.  

N=3. Work completed in collaboration with CUROP student Adam Whitall. ****=p<0.0001, *=p<0.05. >50 cells analyzed per 

condition per N. 
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4.3.8 Tanganil corrects Npc1-/- cellular phenotypes 

 
To determine whether Tanganil was capable of correcting NPC1 cellular phenotypes, we analyzed 

Npc1-/- glial cells treated with various concentrations of this drug for characteristic lipid storage. 

Npc1+/+ and Npc1-/- glial cells were treated with either DMSO (vehicle control, 10μl/ml) or 1, 10, 30 or 

100μM Tanganil for 24 hours prior to fixed or live imaging.  

We used Lysotracker Green to compare size and number of lysosomes within cells (Figure 4.9 

A & B). Npc1+/+ cells show dim punctate staining in a perinuclear location, indicative of functional 

lysosomes, whilst a much brighter and expanded punctate staining pattern can be observed 

throughout Npc1-/- cells (~95% increase). Whilst no significant difference is seen with this probe when 

comparing untreated Npc1-/- cells and those treated with either DMSO vehicle control or 1μM Tanganil, 

a significant decrease in lysotracker intensity and distribution can be seen following treatment with 

either 10 or 30μM Tanganil (P<0.05, ~24% & ~50%). Treatment with 100μM Tanganil however is unable 

to correct Npc1-/- lysotracker phenotypes, presumably as this concentration induces less cytosolic Ca2+ 

elevation (Figure 4.6). 

We used filipin to examine the distribution of the characteristic NPC1 storage lipid cholesterol, 

and found expected staining patterns for untreated Npc1-/- and Npc1+/+ glia (Figure 4.9 A & C). Npc1-/- 

cholesterol storage appears significantly reduced following treatment with 30μM Tanganil (P<0.05, 

~42%), and appears to be approaching significance with 10μM treatment (more repeats needed), 

although no correction is seen at 1 and 100μM. 

Given above observations, we can conclude that alongside Tanganil’s ability to evoke Ca2+ 

release within Npc1-/- cells, it is also capable of correcting multiple NPC1 cellular phenotypes. Despite 

a reduction in lysosomal Ca2+ seen in Npc1-/- cells following overnight treatment with Tanganil (figure 

4.8), we do not see increased storage in Npc1-/- cells as observed with MLSA1 (figure 4.3). Furthermore, 

we do not see increased cholesterol storage or lysosomal expansion in Npc1+/+ cells treated overnight 

with 30μM Tanganil (data not shown), which suggests that the lysosomal Ca2+ is not reduced to the 

same extent as it is with MLSA1. 



 

78 

 

 

 

 
 

Figure 4.9. Tanganil corrects Npc1-/- cellular phenotypes. Following treatment with either DMSO vehicle control (10μl/ml) 

or 1, 10, 30 or 100μM Tanganil (tan) (DMSO concentration at 100μM Tanganil is comparable to vehicle control), Npc1-/- (NPC1) 

glia were either fixed or imaged live and stained with lysotracker green for lysosomes or filipin for cholesterol (A). Untreated 

Npc1+/+ cells were also stained for comparison. It should be stated that Npc1+/+ cells often have very dim staining with filipin 

and lysotracker because of the very high levels in Npc1-/-, which would be saturated if wild-type’s were taken at comparable 

exposures. Quantification of lysotracker and cholesterol fluorescence microscopy experiments (via thresholding) is shown in 

graphs B & C respectively. Scale bar = 10μm. N=3 for lysotracker and Npc1-/- + 30μM Tanganil filipin experiments, N=2 for all 

others. ****=p<0.0001, *=P<0.05. >50 cells analyzed per condition per N. 

	
4.3.9 Correction of Npc1-/- phenotypes by tanganil is prevented when co-treated with the Ca2+ 

chelator BAPTA-AM 

	
We next sought to examine whether mechanism of correction of NPC1 lipid storage relied on the ability 

of Tanganil to modulate Ca2+. We did this using co-treatment with Tanganil and the intracellular Ca2+ 

chelator, BAPTA-AM. Npc1+/+ and Npc1-/- glial cells were either left untreated or treated with DMSO 

(vehicle control, 4μl/ml), 30μM Tanganil, 30μM Tanganil & 10μM BAPTA-AM or 10μM BAPTA-AM for 

24 hours prior to fixed or live imaging (Figure 4.10). Data for Npc1+/+ cells treated with tanganil with or 

without BAPTA-AM is not shown, although no difference in either lysotracker or filipin staining was 

observed following treatment. 
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Npc1+/+ and Npc1-/- cells showed characteristic staining patterns for both lysotracker and 

cholesterol (Figure 4.9, 4.10) when either untreated, treated with DMSO or treated with 30μM 

Tanganil for 24 hours. Co-treatment of Tanganil with BAPTA-AM however prevented any benefit 

achieved with acetyl-DL-leucine alone, and no difference was observed here in comparison with 

untreated or DMSO control Npc1-/- cells. Treating Npc1+/+ and Npc1-/- cells with BAPTA-AM alone does 

not appear to influence either cholesterol or lysotracker phenotypes (Figure 4.10). 

As the beneficial effect of Tanganil on Npc1-/- cells is prevented following removal of 

intracellular Ca2+, we can conclude that reversal of phenotypes following drug treatment occurs via 

Ca2+ modulation. 

	

 
 
 

Figure 4.10. Correction of Npc1-/- phenotypes by tanganil is prevented when co-treated with the Ca2+ chelator BAPTA-AM. 

Following treatment with either DMSO vehicle control (4μl/ml), 30μM Tanganil (TAN), 30μM Tanganil & 10μM BAPTA-AM 

(TAN + BAP) or 10μM BAPTA-AM (BAP), Npc1+/+ (wild-type) and Npc1-/- (NPC1) cells were either fixed or imaged live and 

stained with lysotracker green for lysosomes or filipin for cholesterol (A). It should be stated that Npc1+/+ cells often have very 

dim staining with filipin and lysotracker because of the very high levels in Npc1-/-, which would be saturated if wild-type’s 

were taken at comparable exposures. Quantification of lysotracker and cholesterol fluorescence microscopy experiments (via 

thresholding) is shown in graphs B & C respectively. Scale bar = 10μm. N=3. ****=p<0.0001, *=P<0.05. >50 cells analyzed per 

condition per N. 
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4.3.10 Tanganil releases more Ca2+ in Npc1+/+ cerebellar neurons than in Npc1+/+ glia 

	

Acetyl-DL-leucine has been suggested to work specifically against the ataxic phenotypes in NPC 

patients (Bremova et al., 2015). As the degeneration of cerebellar neurons in NPC appears responsible 

for these ataxic phenotypes (Higashi et al., 1993), we next looked to see the effects of tanganil on 

cerebellar neurons in comparison to glia.  

Npc1+/+ glia and cerebellar neurons were loaded with the Ca2+ probe Fura-2 AM prior to 

treatment with 10μM acetyl-DL-leucine (Figure 4.11). We observed significantly more Ca2+ release in 

Npc1+/+ cerebellar neurons when compared with Npc1+/+ glia (P<0.05, ~60%), suggesting that tanganil 

acts on a specific receptor, or subset of receptors, with variable expression across the brain. 

Furthermore, this observation explains how tanganil may be acting to specifically improve ataxic 

phenotypes in patients. 

 

	

 
 
Figure 4.11. Tanganil releases more Ca2+ in Npc1+/+ cerebellar neurons than in Npc1+/+ glia, potentially due to differential 

expression of its receptor. Npc1+/+ glia and immortalized cerebellar granule neurons (cerebellar neurons) were stained with 

the Ca2+ probe Fura-2AM (340/380) prior to treatment with 10μM acetyl-DL-leucine (tanganil). Following treatment, we 

proceeded to measure changes in intracellullar Ca2+ levels. Representative Ca2+ traces are shown for wild-type glia (☐) and 

cerebellar neurons (n) (A, FU = fluorescence units). Traces were quantified to make graphs showing average release (B). N=3. 

*=p<0.05. >50 cells analyzed per condition per N. 
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4.3.11 Acetyl-L-leucine increases activation of CaSR at increasing Ca2+ concentrations	

 
As tanganil contains acetyl-L-leucine, and as L amino acids are known to activate CaSR (Busque et al., 

2005), a plasma membrane GPCR known to alter intracellular Ca2+ levels (Breitwieser, 2012) and which 

is variably expressed across the brain (Yano et al., 2004), we decided to investigate whether tanganil 

was acting via CaSR to increase cytosolic Ca2+. We initially utilized CaSR overexpressing HEK cells in a 

96 well plate assay to determine Ca2+ elevation induced by acetyl-L-leucine at increasing Ca2+ 

concentrations. Increasing Ca2+ concentration activates CaSR. What we found is that cells treated with 

10μM acetyl-L-leucine potentiated activation of CaSR, shown by increased intracellular Ca2+ elevation, 

when compared to untreated controls with increasing extracellular Ca2+ concentration, particularly in 

the physiologically relevant range of 1.8-2.5mM Ca2+ (Figure 4.12). 

	

 
 
 

Figure 4.12. Acetyl-L-leucine increases intracellular Ca2+ elevation (when compared with untreated controls) via activation 

of CaSR at increasing extracellular Ca2+ concentrations. Human embryonic kidney (HEK) cells overexpressing CaSR (HEK-

CaSR, (Ward et al., 2013)) were seeded into 96 well plates, either left untreated or treated with acetyl-L-leucine (10μM), and 

grown to confluence before being loaded with 2μM Fluo-4 for 30 minutes. Using a Fluoroskan Ascent plate reader, an initial 

baseline reading of 10 measurements was taken to determine the 0 second value. A Ca2+ solution that increased in Ca2+ 

concentration (0.2-10mM) was dispensed into a single well after 5 seconds. Emission at 538nm for each well was then 

followed for a further 25 seconds (1 reading every 5 seconds). Dose response curves were generated from the peak 

fluorescence upon the addition of the Ca2+ solution and corrected for the initial baseline measurement. Peak fluorescence 

was then normalized to the 10mM Ca2+ and 2μM ionomycin response to enable comparison between different plates. N=2. 

Experiments performed by the lab of Prof Riccardi. For control R2 = 0.7398, for 10μM Acetyl-L-Leucine R2 = 0.7347. 
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4.3.12 In a preliminary study, plasma sphingosine levels appear reduced post-tanganil treatment in 

NPC1 patient blood samples 

 
Following the 2015 NPC1/Tanganil case study (Bremova et al., 2015), we received patient blood plasma 

pre- and post-Tanganil treatment, with the aim of performing lipidology for characteristic NPC lipids, 

and ELISAs for Ca2+-modulators and other NPC biomarkers. It can be assumed that changes in Ca2+ 

within patients following treatment with acetyl-DL-leucine will be reflected by changes in lipids and 

Ca2+ binding proteins in the blood. Whilst more work is needed, we performed a preliminary 

experiment to measure levels of the NPC lipid sphingosine before and after treatment. This assay 

utilizes a modified version of the BCA assay, and Figure 4.13 indicates a reduction in patient plasma 

sphingosine levels following 4-week treatment with Tanganil. Whilst more experiments will need to be 

performed, this data, in combination with observations of benefits in cells (Figure 4.9 & 4.10), further 

highlights the potential benefit of Ca2+ modulation therapies for NPC. 

 

 
 

Figure 4.13. In a preliminary study, plasma sphingosine levels appear reduced post-tanganil treatment in NPC1 patient 

blood samples. Blood samples taken pre/post (4 weeks) Tanganil treatment during the 2015 NPC/Tanganil case study 

(Bremova et al., 2015) were analyzed for sphingosine levels (μM) using a modified version of the BCA assay, see materials 

and methods. N=2 for pre-Tanganil, 1=post-Tanganil. 
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Figure 4.14. Sagittal mouse brain sections taken from the Allen Brain Atlas shows high levels of CaSR RNA in the cerebellum. 

Npc1+/+ (wild-type) mouse brain sections following in situ hybridization with an antisense probe for CaSR RNA (purple). A) 

Entire mouse brain, arrow points to the cerebellum, scale bar = 839μm. B) Zoomed in image of cerebellum showing staining 

within individual cells, scale bar = 200μm. Images obtained from Allen Brain Atlas (Casr – RP_050331_03_A12). 

 
 

4.4 Discussion 

 

4.4.1 Ca2+ modulators have varied effects on the Npc1-/- cellular phenotype 

 
When investigating various Ca2+ modulators (CGS21680, δ-tocopherol, MLSA1 and Tanganil) for their 

effects on cytoplasmic and lysosomal Ca2+ levels as well as lipid storage within Npc1-/- glia, we 

discovered that depending on their mechanism of action, although all modulators elevate cytosolic 

Ca2+, they have a diverse effect on NPC disease phenotypes. 

 Tanganil and MLSA1 both act by elevating cytosolic, rather than lysosomal Ca2+ directly 

(Figures 4.1, 4.2, 4.6 & 4.8). MLSA1 however, despite the increase in cytoplasmic Ca2+ seen, appears to 

increase storage of lipids within Npc1+/+ and Npc1-/- glia (Figures 4.3 & 4.4). This can be explained 

because treatment with MLSA1 appears to reduce lysosomal Ca2+ in both Npc1+/+ and Npc1-/- cells 

(Figure 4.2), and this likely worsens trafficking defects and explains increased lipid storage. Tanganil 

treatment however, whilst also causing a very slight reduction in lysosomal Ca2+ (Figure 4.8), is able to 

correct trafficking defects and partially reverse storage within Npc1-/- cells via elevation of cytosolic 
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Ca2+ (Figures 4.9 & 4.10). A potential reason why reduced lysosomal Ca2+ results in lipid storage in cells 

treated overnight with MLSA1 but not with Tanganil could be that with Tanganil, cytoplasmic Ca2+ 

elevation following CaSR activation results in CICR from intracellular stores such as lysosomes, which 

readily re-fill allowing signaling events. Treatment with MLSA1 however will lead to constant activation 

of the lysosomal Ca2+ channel TRPML1, leading to long-term lysosomal Ca2+ reduction, signaling 

problems and trafficking defects. This is confirmed by the presence of lipid storage in control cells 

treated with MLSA1 but not Tanganil (Figures 4.3 & 4.9). We confirmed the results of Shen et al., 2012 

that MLSA1 induces more Ca2+ release in Npc1+/+ cells when compared to Npc1-/-. However, unlike Shen 

et al., we believe this to be the result of the reduced lysosomal Ca2+ levels in NPC (Lloyd-Evans et al., 

2008), which limits Ca2+ release following addition of MLSA1. Future work would involve looking at the 

effects of Tanganil on lysosomal Ca2+ in Npc1+/+ cells, although, as no lipid storage is seen in Npc1+/+ 

cells following treatment (data not shown), it is unlikely that tanganil induces a Ca2+ defect in Npc1+/+ 

similar to that seen following treatment with MLSA1. 

Interestingly, and as previously reported, CGS21680 appears to correct Npc1-/- cholesterol 

storage by increasing lysosomal Ca2+, whilst having minimal effect on cytosolic levels, and δ-tocopherol 

appears to correct Npc1-/- cells by elevating both lysosomal and cytosolic Ca2+ (Figure 4.1). These 

findings confirm previous work (Lloyd-Evans et al., 2008, Visentin et al., 2013, Ferrante et al., 2016, Xu 

et al., 2012b) and demonstrate beneficial effects of Ca2+ modulators on cellular models of NPC. 

 The fact that different modulators, despite having similar effects on Ca2+ levels, can have very 

different effects within cells, suggests that more work must be done to further characterize Ca2+ 

dyshomeostasis within NPC1 and that multiple therapies must be investigated before deciding the best 

therapeutic option for NPC patients. 

 
4.4.2 Despite claims by Shen et al., treatment with MLSA1 appears to induce an NPC phenotype in 

Npc1+/+ cells whilst exacerbating storage in Npc1-/- cells. Overexpression of TRPML1 in Npc1-/- glia 

also appears to increase storage. 

 
Following overnight treatment with MLSA1 (10 or 30μM), we observe a reduction in lysosomal Ca2+ in 

both Npc1+/+ and Npc1-/- glia (Figure 4.2). This most likely occurs following sustained lysosomal Ca2+ 

release from TRPML1 after treatment with its agonist, and following evidence that reduced lysosomal 

Ca2+ in Npc1-/- results in trafficking defects and lipid storage (Lloyd-Evans et al., 2008), this reduction 

could have negative effects on storage. Indeed, reduced lysosomal Ca2+ results in lipid storage in both 

cell lines as demonstrated by filipin staining for cholesterol (Figure 4.3) and TLC (Figure 4.4).  We also 

investigated claims by Shen et al., 2012 suggesting that overexpression of TRPML1 in Npc1-/- glia could 

reverse NPC cholesterol storage. Our results however suggest that overexpression in fact exacerbates 
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cholesterol storage (Figure 4.5). Above evidence combined, despite recommendations by Shen et al., 

2012 suggest MLSA1 is not a viable therapeutic option for NPC; if lysosomal Ca2+ is already reduced in 

NPC then clearly activating lysosomal Ca2+ release channels is not a viable treatment strategy as it 

reduces lysosomal Ca2+ even further. 

 
4.4.3 Acetyl-DL-leucine (Tanganil) corrects Npc1-/- cellular phenotypes via elevation of cytosolic Ca2+ 

 
During this study, we demonstrated how Tanganil is able to elevate cytosolic Ca2+and reverse 

lysosomal storage within Npc1-/- cells via interaction with the GPCR CaSR.  

 When applied to Npc1+/+ and Npc1-/- glia at various concentrations (1, 10, 30 and 100μM), 

Tanganil is able to elevate cytosolic Ca2+, with 30μM releasing the most Ca2+, followed by 10μM and 

finally 1μM (for Npc1+/+ only, no elevation in Npc1-/- with 1μM). Treatment with 100μM, while resulting 

in cytoplasmic Ca2+ elevation, occurs to a lesser degree than at 30μM in both cell lines (Figure 4.6). This 

may occur following competitive inhibition for binding to receptors at higher concentrations, or 

potentially due to toxic effects of this drug at higher concentrations. Ca2+ elevation is significantly 

reduced when cells were imaged in Ca2+-free HBSS when compared with Ca2+-containing (Figure 4.6), 

suggesting to us that Tanganil acts via a mechanism that activates plasma membrane channels to 

elevate cytosolic Ca2+, as oppose to inducing release from intracellular stores, as is seen with other 

Ca2+ modulators like curcumin (Lloyd-Evans et al., 2008). More Ca2+ release is observed in Npc1+/+ cells 

when compared to Npc1-/- at comparable Tanganil concentrations (Figure 4.6). Tanganil likely invokes 

CICR from intracellular stores following initial elevation, and lower lysosomal Ca2+ in Npc1-/- could 

therefore explain the reduced response.  

Having determined that Tanganil is able to induce Ca2+ influx within Npc1+/+ and Npc1-/- glia, 

we wanted to find out how. Figure 4.12 demonstrates how Tanganil elevates cytoplasmic Ca2+ via 

interaction with the GPCR CaSR. As CaSR is known to be activated by extracellular Ca2+, we utilized 

CaSR overexpressing HEK cells in a plate assay that looks at intracellular Ca2+ elevation at increasing 

extracellular Ca2+ concentration. We found that cells treated with 10μM acetyl-L-leucine show greater 

Ca2+ elevation when compared to untreated controls with increasing Ca2+ concentration (Figure 4.12). 

CaSR is a plasma membrane receptor reliant on extracellular Ca2+ to function, so if acetyl-L-leucine is 

acting via CaSR, this explains why Tanganil was unable to increase cytosolic Ca2+ in HBSS without Ca2+ 

(Figure 4.6). 

 As Tanganil consists of a mixture of D and L isomers, we next investigated whether the D or L 

forms were individually capable of elevating Ca2+ following treatment, and if so how this compared 

with elevation following addition of the mixed isomer (Figure 4.7). Within Npc1+/+, the L isomer (acetyl-

L-leucine) appeared wholly responsible for Ca2+ increase following addition of Tanganil, with acetyl-D-
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leucine alone resulting in minimal, non-significant, Ca2+ elevation. This fits with previous evidence from 

studies into vertigo that L isomers work as the active isomer in Tanganil (Gunther et al., 2015). Within 

Npc1-/-  cells however, both D and L isomers are capable of significantly elevating cytoplasmic Ca2+, and 

the mixed isomer formulation (Tanganil) appears to have a synergistic effect regarding Ca2+ elevation. 

Differential effects of D, L and DL isomers in Npc1-/- when compared with Npc1+/+ could be due to 

different membrane properties in NPC1 (Miersch et al., 2008), which could potentially have effects on 

channel gating or ligand binding to CaSR. Alternatively, differential expression of CaSR in Npc1+/+ 

compared to Npc1-/- could affect Ca2+ elevation following addition of Tanganil, and future work could 

involve western blots of CaSR in Npc1+/+ and Npc1-/- glia to investigate this.  Whilst it’s clear that further 

questions remain regarding interactions of the different isomers in the glial cell lines, as the mixed 

isomer formulation (acetyl-DL-leucine) appears induce the most Ca2+ release in Npc1-/- glia, this 

suggests current treatment with Tanganil would be more effective than treating with L or D isomers 

individually. 

 Figure 4.9 demonstrates how treatment with Tanganil is able to partially reverse lysosomal 

expansion (at 10 or 30μM) and cholesterol storage (at 30μM) phenotypes in Npc1-/- glia, although no 

correction is seen with 1 or 100μM. Co-treating Npc1-/- cells with 30μM Tanganil and the cytosolic Ca2+ 

chelator BAPTA-AM (10μM) however prevents any reduction in storage (Figure 4.10), demonstrating 

how correction occurs via Ca2+ modulating abilities (Figure 4.6). No phenotype is observed when 

treating Npc1+/+ or Npc1-/- cells with BAPTA-AM alone (Figure 4.10), demonstrating how lack of 

correction when co-treating follows inhibition of correction by Tanganil rather than induction of 

storage by BAPTA-AM alone. Following this observation, lack of correction at 1μM likely occurs 

following a lack of Ca2+ elevation (Figure 4.6C), and 100μM Tanganil may be unable to correct storage 

following either toxic effects or competitive inhibition when using this compound at higher 

concentrations. 

 Alongside our in vitro studies investigating the mechanism of action of Tanganil on NPC, 

patient blood samples obtained pre- and post-Tanganil treatment during the 2015 case study by 

Bremova et al., (2015) were analyzed for changes in the NPC storage lipid sphingosine (Figure 4.13); 

we observed reduced sphingosine in blood plasma following treatment. Although very preliminary 

(N=1), this data suggests that acetyl-DL-leucine is able to reduce lipid storage in NPC patients, 

presumably via modulation of Ca2+. Future work will involve repeating this experiment on additional 

samples, as well as performing more lipidology, ELISAs for Ca2+ binding/modulating proteins (e.g. 

calbindin, calmodulin) and other known NPC biomarkers. 

 Finally, as acetyl-DL-leucine has been suggested to work specifically against the ataxic 

phenotypes present in NPC, and as ataxic phenotypes in this disorder occur following degeneration of 

cerebellar neurons, we compared Ca2+ elevation in Npc1+/+ glia and an immortalized cerebellar granule 
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neuron cell line following addition of acetyl-DL-leucine (10μM) (Figure 4.11). We observed significantly 

more Ca2+ release in the cerebellar neuron cell line when compared with glia, suggesting that tanganil 

acts on a specific receptor with variable expression across the brain. Based on the Allen Brain Atlas, 

CaSR appears more highly expressed in the cerebellum when compared to other brain areas like the 

cortex (Figure 4.14). As cytosolic Ca2+ elevation following tanganil addition appears to correlate with 

CaSR expression levels, this strengthens our hypothesis that tanganil is acting via CaSR to elevate Ca2+ 

and reverse storage in NPC. 

 As the action of acetyl-DL-leucine on NPC may be limited by the expression pattern of CaSR, 

future work will involve investigating other Ca2+ modulators able to work on a greater number of cell 

types. 

 
4.4.4 Limitations and future work 

 
Having demonstrated beneficial effects of Ca2+ modulators on the NPC phenotype both in vitro and in 

vivo within human patients, this work highlights the need to investigate a plethora of Ca2+ modulators 

as treatments for NPC. Whilst exploring this new area of therapeutics, a variety of phenotypes, 

alongside cell-type specificity, must be considered when assessing benefit. Future investigations will 

involve looking at in vitro effects of previously investigated and novel drugs on known NPC storage 

molecules such as cholesterol, gangliosides BMP and Sphingomyelin alongside lysosomal expansion 

and trafficking phenotypes, to help us further our understanding of how these molecules work. TLC 

and electron microscopy can also be used to assess effects of Ca2+ modulators on storage. In vivo 

studies into the effectiveness of these drugs will also be undertaken in our zebrafish models of NPC1, 

which will be discussed in Chapter 5.  

 When investigating Ca2+ modulators, potential negative effects of Ca2+ overload must be 

examined. For example, elevated cytosolic Ca2+, exceeding physiological levels, is known to promote 

neuronal cell death, and also appears to accelerate the generation and aggregation of β-amyloid in 

Alzheimer’s (Qi and Shuai, 2016). As amyloid plaques are also seen in NPC (Yamazaki et al., 2001), this 

should be taken into account when investigating new therapies. Furthermore, excess Ca2+ signaling in 

the heart can effect function and potentially lead to cardiac failure (Vassalle and Lin, 2004). 

 Future work will involve further investigating the effects of tanganil on CaSR. Treating with 

agonists (calcilytics) and antagonists (calcimimetrics) of CaSR signaling (Breitwieser, 2012), both alone 

and in combination with tanganil, will allow us to fully characterize the interaction. Moreover, staining 

brain sections with anti-CaSR and looking at its expression pattern in glia compared with will allow us 

to determine the effectiveness of tanganil in the NPC brain.  As discussed, future investigations into 
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tanganil will involve more thorough testing of patient blood samples for NPC biomarkers pre- and post-

treatment. 

 
 

4.5 Conclusions 

 
Whilst further investigation is needed, Ca2+ modulating therapies show great promise as therapeutics 

for NPC disease. Despite this, not all molecules capable of elevating cytosolic Ca2+ act as effective 

treatments for NPC, and some may in fact worsen storage phenotypes (e.g. MLSA1). Furthermore, 

tanganil, whilst able to reduce lipid storage both in vitro and in vivo within human patients, may have 

only limited clinical benefit due to the variable expression pattern of its receptor, CaSR. Nevertheless, 

as tanganil appears to correct ataxic phenotypes within NPC patients via modulation of intracellular 

Ca2+ levels, Ca2+ modulation can be seen as a key therapeutic intervention point in NPC pathogenesis 

and further research in this area is vital to develop future NPC small molecule therapies. 
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Chapter 5: Generation of a NPC zebrafish colony for the purposes of 

phenotyping and future drug screening 

 

5.1 Introduction 

 
5.1.1 Animal models of NPC disease (excluding zebrafish) 

 
Murine, feline, nematode worm, fly and yeast models of NPC disease have all been developed (Table 

5.1). Species differences, in comparison to human patients, lead to different disease manifestation 

across models (Hemsley and Hopwood, 2010). Despite this, use of animal models has been shown to 

be vital regarding study of LSDs. For example, testing of HPβCD in both mouse (Griffin et al., 2004) and 

cat (Vite et al., 2015) models has highlighted its efficiency as a potential therapy for NPC disease, as 

well as potential side effects (Crumling et al., 2012, Vite et al., 2015, Ward et al., 2010). Positives and 

negatives of the existing NPC1 disease models can be seen in table 5.2. 

 
Organism Gene Amino 

acid 
identity to 
human 
NPC1 (%) 

Null mutant phenotype 

Mus musculus 
(mouse) 
(Walkley and 
Suzuki, 2004, 
Stein et al., 
2012) 
 
 
 
 
 
 
 
 

Npc1 86 • Gastrointestinal, liver and respiratory dysfunction 

• Disease onset 4-5 weeks, death 10-12 weeks 

• Accumulation of gangliosides, neutral glycolipids and 

sphingosine in the brain 

• Accumulation of cholesterol, phospholipid (e.g. 

sphingomyelin) and glycolipids in the liver 

• Neurodegeneration (although without 

neurofibrillary tangles) 

• Small brain (less complex) 

Felis catus (cat) 
(Walkley and 
Suzuki, 2004) 

Npc1 91 • Neurological, gastrointestinal and liver dysfunction 

• Disease onset 8-12 weeks, death before 11 months 

• Ganglioside, neutral glycolipid and sphingosine 

accumulation in the brain 

• LacCer, GlcCer, phospholipid and cholesterol 

accumulation in the liver 
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Drosophila 
melanogaster 
(fly) (Huang et 
al., 2005, 
Fluegel et al., 
2006) 

dnpc1a 44 • Survive until first larval stage where they are unable 

to molt (live to adulthood with 20-hydroxyecdysone, 

cholesterol and 7-dehydroxycholesterol 

supplementation) 

• Experience accumulation of sterols in a punctate 

pattern throughout their bodies 

• Male infertility 

• No neurodegeneration 

Caenohabditis 
elegans 
(nematode) 
(Sym et al., 
2000) 

ncr1 27 • Hypersensitive to cholesterol/progesterone 

deprivation 

• Slow late-stage embryogenesis 

• Arrested development at the dauer larvae stage 

Saccharomyces 
cerevisae 
(yeast) 
(Walkley and 
Suzuki, 2004, 
Malathi et al., 
2004) 

ncr1 33 • No impact on viability 

• Missense allele in sterol-sensing domain confers 

accumulation of sphingolipids 

Table 5.1 Model organisms used to study NPC. This table states gene name corresponding to human NPC1 within each 

organism, amino acid sequence identity when compared with human NPC1 and null mutant phenotypes. Adapted from 

Munkacsi et al., 2007 (Munkacsi et al., 2007). 

 

 
Organism Advantages Disadvantages 
Mus musculus 
(mouse) 
(Hemsley and 
Hopwood, 
2010) 

• Mammal 

• Cheaper housing & easier 

breeding when compared with 

cats 

• Relatively easy to genetically 

manipulate 

• Highly expensive to maintain when 

compared with non-mammalian 

models 

• Use of multiple Npc1-/- mouse strains 

displaying different genetic 

backgrounds across studies creates 

problems (different symptoms/times 

of occurrence) 

• Acute phenotype and short life-span 

Felis catus (cat) 
(Hemsley and 
Hopwood, 
2010) 

• Mammal • Large size limits where colonies can be 

established and makes them expensive 

to maintain 
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• Large complex brain which, out of 

all the NPC models, appears most 

similar to humans 

• Greater longevity and genetic 

diversity allows for both study of 

later disease events as well as 

how genetic variation effects 

phenotype 

• Low levels of breeding (het/het mating) 

results in restricted numbers of litters, 

and very long gestation time results in 

very few kittens 

• Heterogeneity provides problems 

when characterizing the model 

• Considerable ethical issues 

Drosophila 
melanogaster 
(fly) (Pandey 
and Nichols, 
2011) 

• 75% of human disease-causing 

genes are believed to have a 

functional homolog in the fly 

(Reiter et al., 2001, Lloyd and 

Taylor, 2010) 

• Basic biological pathways 

conserved 

• Low maintenance costs 

• Suitable for high-throughput drug 

screening & toxicity testing 

• Numerous genetic manipulation 

techniques availaible 

• Rapid life cycle – single genetic 

mating can produce hundreds of 

genetically identical offspring 

within 10-12 days 

• Simple behavioral testing 

• Conserved neurotransmitter 

pathways 

• Not a mammal 

• BBB permeability differences (Stork et 

al., 2008) 

• The most high-throughput mechanism 

of drug-delivery is within food – and 

this may cause problems regarding 

drug action, absorption, variability of 

dosage 

• Considerable differences between 

human and fly brain, eye, immune 

system, heart 

Caenohabditis 
elegans 
(nematode) 
(Pandey and 
Nichols, 2011) 

• Rapid life cycle (~4 days) 

• Prolific 

• Highly amendable to genetic 

manipulation 

• Transparent throughout its 

lifecycle 

• Not a mammal 

• Fewer gene homologs in mammals 

when compared with other models 

(except yeast), and some families 

display no homologs at all (Rikke et al., 

2000) 
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• Suitable for high-throughput drug 

screening 

• No sophisticated immune 

system/heart/reproductive 

system/centralized brain 

• Only very simple behavioral tests can 

be performed 

Saccharomyces 
cerevisae 
(yeast) (Stork 
et al., 2008, 
Botstein and 
Fink, 2011) 

• Eukaryote 

• Cost effectiveness 

• Availability 

• Reproducibility 

• Ease and safety of handling 

• Ease of genetic manipulation 

• Yeast NPC1 analog ncr1 rescues 

function in mammalian Npc1-/- 

null cells (Malathi et al., 2004) 

• No nervous system 

• No lysosomes 

• Unicellular 

Table 5.2 Advantages and disadvantages of model organisms used in the study of NPC. BBB = blood brain barrier. 

 

5.1.2 Zebrafish as a model organism 

 

Zebrafish are becoming increasingly employed throughout the fields of embryogenesis and disease 

modeling (Wager and Russell, 2013). This follows from several useful properties of this model 

organism. For one, zebrafish can produce ~300 eggs per breeding, with embryos developing externally 

to the mother and remaining optically transparent. The ease at which zebrafish can be bred to produce 

large amounts of embryos greatly reduces cost and increases speed when comparing with mammalian 

systems, whilst transparency allows for ease when imaging fluorescent probes or GFP expression 

following genetic manipulation. Rapid development is also observed, with neurogenesis commencing 

~10 hours post fertilization (hpf) (Kabashi et al., 2011), synaptogenesis at ~16hpf (Kabashi et al., 2011), 

advanced brain development seen at 24hpf (Kimmel, 1993), and complete morphogenesis by 3dpf 

(Kimmel et al., 1995). Rapid, external development seen with this organism means that disease 

phenotypes tend to manifest in the larval stages, often by 4-5 days post fertilization (dpf), allowing 

data to be collected quickly. 

Widespread use of this model organism prompted whole genome sequencing, with this 

information now being easily accessible on bioinformatics databases. Sequencing demonstrated how 

most zebrafish genes share 50-80% sequence identity with their human counterparts (Kabashi et al., 

2011), and consequently further validated the use of zebrafish as a model for human diseases. High 
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amino acid conservation can also be seen across these species, especially within functional domains 

of proteins (Kabashi et al., 2011) .  

High throughput drug screening is also highly amenable to the zebrafish system following the 

ease of mass maturing embryos in separate wells of a 96 well plate. Pharmacological modulators can 

be added to the fish water in order to efficiently develop and screen candidate drugs, as well as to 

perform toxicity tests, in vivo. Furthermore, zebrafish are capable of complex behaviors, relevant to 

humans, which can be used to both characterize disease models and test response to therapy. These 

behaviors include spontaneous tail coiling, which begins at 17hpf; touch response, which begins at 

21hpf and finally the first swimming behavior at 27hpf (Brustein et al., 2003). 

Considering above points, zebrafish appear highly favorable regarding study off and 

development of therapies for genetic diseases.  

 

5.1.3 What molecular tools are available to manipulate the zebrafish genome? 

 
Another reason justifying the use of Danio rerio when studying genetic disease is the wide variety of 

molecular tools available to manipulate their genomes. These techniques include transient 

knockdown technology using morpholino oligonucleotides (MOs), forward genetic screens invoking 

N-ethyl-N-nitrosourea (ENU), reverse genetic screens based on Targeting Induced Local Lesions IN 

Genomes (TILLING), and finally reverse genetic techniques that induce specific and permanent genetic 

knockdown using zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) 

and finally the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system (Wager 

and Russell, 2013). 

 

5.1.3.1 Morpholino oligonucleotides (MOs) 

 

A commonly used method of knockdown explored in zebrafish utilizes MOs. These antisense 

oligonucleotide analogs bind to complementary RNA sequences in order to block translation of a 

target gene (Morcos et al., 2008). MOs are injected at the 1- to 4-cell embryos and become evenly 

distributed throughout the embryo as it develops, producing a morphant (Morcos et al., 2008). Two 

types of MOs are used. Ones designed to target the ATG start codon and therefore prevent 

progression of the initiation complex (Bill et al., 2009), and ones that target intron/exon boundaries 

therefore resulting in either splice variants lacking specific domains within proteins of interest or else 

introduce a frame-shift, thereby producing an in-frame stop codon (Draper et al., 2001). Those 

targeting intron/exon boundaries do not affect the maternal transcript, thereby providing an 

advantage when examining a target gene that presents with a maternal function (Bennett et al., 2007). 
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Whilst transient knockdown using MOs acts as a powerful technique, one disadvantage lies in the fact 

that MOs become more and more dilute as the embryo grows, and therefore they can only act for a 

few days (up to ~5dpf)(Wager and Russell, 2013).  

 

5.1.3.2 Controls for MO specificity 

 

MO specificity can be assessed using a BLAST search of the target genome. This method helps ensure 

that no single-nucleotide polymorphisms or sequence errors in the reference sequence are present 

(Wager and Russell, 2013). Following knockdown, consequent reduction in protein expression must 

be validated. When using start-codon directed MOs several mechanisms can be employed, although 

most display difficulties (Eisen and Smith, 2008). Whole-mount immunohistochemistry can be used 

when an antibody is available which both binds to the protein of interest and is reactive against 

zebrafish in vivo (Wager and Russell, 2013). Western blotting is another common method used to 

confirm knockdown, although large amounts of material may be required (Wager and Russell, 2013). 

A final way of confirming successful start codon blocking MO action utilizes co-injection of GFP-tagged 

mRNA for the transcript of interest (Yang et al., 2001). Less fluorescence tends to suggest successful 

knockdown, although an assumption is made regarding accessibility of the endogenous mRNA to the 

MO (Wager and Russell, 2013). On the other hand, when using splice-blocking MOs, missplicing can 

be easily confirmed using RT PCR and sequencing of the spliced product (Wager and Russell, 2013). 

Various controls can be performed to ensure that phenotypes observed in the morphant are 

not due to off-target effects. These controls include injection of nonsense oligos, injection of a sense 

version of the experimental oligo and injection of a mismatched oligo. None of these pseudo MOs will 

bind the target sequence, and therefore any effect observed can be considered non-specific. 

Furthermore, observing identical effects when using a variety of morpholino types against the same 

target gene (i.e. translation and splice blocking oligos) indicates specificity. Looking for off-target 

effects may also involve rescue experiments whereby a wild-type mRNA off your protein of interest is 

co-injected alongside your MO. Problems with this method however include knockdown of the mRNA 

by the MO, incorrect translation of the mRNA and ectopic expression of the mRNA. Potential solutions 

include engineering mRNA transcripts that include mismatches to prevent binding to the MO, or 

alternatively, splice site directed MOs might be used, which do not recognized spliced mRNA (Wager 

and Russell, 2013). 

Testing for specificity is highly important as non-specific effects often include 

neurodegeneration, widespread cell death, and epibolic failure. All of the above can greatly hinder 

accurate identification of specific knockdown phenotypes. As these non-specific events usually occur 
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following inactivation of p53, co-injection of an anti-p53 MO alongside MO of interest allows us to 

control for these events (Bedell et al., 2011). 

 

5.1.3.3 Other techniques utilized to manipulate the zebrafish genome 

 

Forward genetic screens using ENU can also be used to manipulate the zebrafish genome. This 

chemical induces numerous point mutations within the germ line of male fish. Following one 

generation of out crossing and two generations of in crossing to produce homozygotes for each 

mutation, transparent zebrafish embryos can then be screened for phenotypes of interest (Lieschke 

and Currie, 2007). In addition to forward screens, reverse genetic screens are utilized which make use 

of TILLING. This technique invokes random mutagenesis within numerous zebrafish embryos, prior to 

sequencing for mutations in a specific gene within individual fish (Vettori et al., 2011, Moens et al., 

2008). This allows detection of mutations that may only produce subtle phenotypes, and mutations 

are then isolated by out-crossing the single fish. 

Reverse genetic techniques, such as ZFN and TALEN, are able to produce permanent genetic 

knockdown within a gene of interest. ZFNs consist of multiple Cys2His2 zinc finger proteins, bound to 

a type IIS Fok1 endonuclease. Each zinc finger can specifically recognize a 4 base pair DNA sequence 

via an α-helical domain, and joining of several of these proteins allows for site-specific recognition. 

Following binding to the sequence of interest, cleavage is initiated by the linked endonuclease, 

creating a double strand break. Finally, eukaryotic repair mechanisms often initiate non-homologous 

end joining (NHEJ), resulting in either loss or gain of a small amount of sequence, and often a 

frameshift allele (Urnov et al., 2005). ZFNs do present with some specificity issues however, and not 

all sequences can be targeted (Wager and Russell, 2013).  

Considering the above disadvantages, TALEN represents a more predictable and specific 

approach when compared with ZFNs (Boch and Bonas, 2010). These molecules consist of a 

transcription activator-like effector, which can be engineered to specifically bind any sequence, 

attached to a FokI endonuclease. Whilst the Fok1 endonuclease can be used to introduce knockout 

similarly to ZFNs (Sander et al., 2011), TALENs can also be used to knockin specific sequences at the 

predefined locus. This is achieved via exogenously added DNA, which is then used as a template for 

NHEJ (Bedell et al., 2012). 

The CRISPR/Cas system was developed from an adaptive immune response found in bacteria 

and viruses. Here, this system acts to protect the organism’s genome from invading viruses and 

plasmids. CRISPR/Cas induced knockout relies on the injection of multiple guide RNAs that bind to 

complementary sequences at a target site. Next, co-injection of guide RNAs linked to a Cas nuclease 
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results in a combination of targeted deletions, inversions and translocations. Knockins can also be 

introduced using this system, similarly to with TALEN (Ota et al., 2014). 

 

5.1.4 Zebrafish models of neurodegenerative disease 

 

Several observations have prompted the use of zebrafish for the study of neurological disease. For 

one, the zebrafish brain possesses many similarities when compared with humans. A telencephalon, 

diencephalon, mesencephalon, metencephalon, and myelencephalon (Kimmel, 1993) can all be 

observed alongside cell types such as astrocytes (Grupp et al., 2010), oligodendrocytes (Yoshida and 

Macklin, 2005), and microglia (Svahn et al., 2013, Cuoghi and Mola, 2007). Neurons also display a 

similar structure across the species, with soma, dendrites, and an axon, which can be either 

myelinated or unmyelinated. Zebrafish also develop a BBB at 3dpf with similar properties to the 

human equivalent (Jeong et al., 2008), allowing studies into delivery of drugs to the brain. The 

zebrafish CNS also displays many structural similarities to mammalian systems, further justifying the 

use of this model. Conserved structures include the cerebellum, optic tracts and tectum, medulla, 

hypothalamus and cranial nerves (Sager et al., 2010). Finally, the main neurotransmitter systems 

involving acetylcholine, dopamine, gama-aminobutyric acid, glycine, glutamate, noradrenaline, and 

serotonin are all present within zebrafish (Best and Alderton, 2008). Following above advantages, 

zebrafish have previously been used to model numerous neurological diseases including Parkinson’s, 

Huntington’s, Alzheimer’s (Xi et al., 2011) and NPC (Schwend et al., 2011, Louwette et al., 2013).  

 

5.1.5 Zebrafish models of NPC1 

 

Previously, two groups have made use of morpholinos to generate models of NPC1 disease. The first 

study, published by Schwend et al., 2011, aimed to decipher the function of npc1 during development. 

Firstly, they found that Zebrafish npc1 (60% identity and 66% sequence similarity to humans) is widely 

expressed during early embryonic development, with knockdown leading to expected cholesterol 

mislocalization, an abnormal actin cytoskeleton, and delayed epiboly phenotypes. Epiboly presents as 

one of the earliest morphogenic movements of gastrulation, enabling development of the embryos 

complex body plan (Hsu et al., 2002). Cholesterol has a key role promoting cell migration at this stage, 

and therefore low bioavailability of this lipid following npc1 knockdown may underlie the observed 

epiboly defect. Finally, this study demonstrated how the npc1 zebrafish morphant can be rescued by 

injection of mouse Npc1 mRNA at either the one cell stage or into the yolk of a 1000 cell stage embryo, 
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indicating the specificity of this morpholino. In addition, this rescue experiment further indicates cross 

species conservation of the NPC1 protein. 

A second study performed by Louwette et al., 2013 aimed mainly to investigate hematopoietic 

NPC phenotypes within MO treated zebrafish embryos. Within human patients, coagulation and 

platelet changes, thrombocytopenia, anemia and petechial rash have been described (Del Principe et 

al., 1971, Spiegel et al., 2009). Complications such as red blood cell abnormalities, abundant ghost 

erythrocytes in addition to aberrations in white blood cells such as cytoplasmic granulation and 

neutrophil hyper-segmentation, that included lymphopenia and atypias, can also be observed within 

the Npc1-/- mouse (Parra et al., 2011). By creating npc1 transient knockdown zebrafish using MOs and 

performing flow cytometry and real-time quantitative polymerase chain reaction (QPCR) experiments, 

hematopoietic phenotypes such as thrombocytopenia and mild anemia were also confirmed within 

zebrafish, further justifying this model as an accurate representation of human NPC disease. This study 

also confirmed accumulation of free cholesterol within the morphants via filipin staining, whilst 

determining high levels of NPC1 expression within the developing brain, eyes, and yolk syncytial layer 

(YSL) of the embryos. The MO generated knockdowns in this study displayed malformed heads and 

dysmorphic brain and eyes, accompanied by increased apoptosis in these regions. 

These studies demonstrated characteristic npc1 knockdown phenotypes within zebrafish, as 

well as potentially providing us with predesigned MOs, able to induce NPC disease with no reported 

off-target effects. However, neither study fully characterized the NPC1 morphant: no behavioral 

testing was performed and only cholesterol accumulation was reported. 

 

5.1.6 Zebrafish lipidology 

 

Numerous aspects of lipid biology in zebrafish are conserved in humans. This includes both a similar 

lipid profile and homologous genes involved in lipid metabolism (Fraher et al., 2016).Fraher et al., 

2016 demonstrated how 0 hpf zebrafish contain all the major lipids known to be important in human 

development including cholesterol and cholesterol esters, phospholipids and lysophospholipids, 

sphingolipids including sphingomyelin and ceramide, and ganglioside GM3. Many of these lipids are 

known to be stored within NPC (Lloyd-Evans et al., 2008, te Vruchte et al., 2004), and their presence 

is therefore important when looking to develop a zebrafish model for this disease.  

Alongside these lipid species, expression of numerous genes known to be important in lipid 

signaling and metabolism in humans can be seen in the developing zebrafish (Fraher et al., 2016). 

These genes include those required to produce the sphingosine-1-phosphate receptor (Kupperman et 

al., 2000). Disrupted sphingosine signaling is an important NPC cellular phenotype (Lloyd-Evans et al., 
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2008), and the presence of its receptor suggests that signaling pathways associated with sphingosine 

are present in the zebrafish, further demonstrating the benefits of this organism as a model for NPC. 

Furthermore, cholesterol synthesis enzymes such as HMG CoA reductase have also been identified 

within the zebrafish (Li et al., 2001), suggesting conserved lipid biosynthesis pathways. 

Finally, work by Schwend et al., 2011 and Louwette et al., 2013 demonstrated how filipin 

staining for cholesterol resulted in a punctate distribution in npc1-morphant fish, compared with a 

disperse staining pattern in wild-types, suggesting that NPC disease zebrafish display lysosomal 

cholesterol storage, similarly to NPC patients and mice (Lloyd-Evans et al., 2008, te Vruchte et al., 

2004). It is of considerable interest, bearing in mind the usefulness of zebrafish as a drug-screening 

tool, to determine whether npc1-morphant zebrafish phenocopy human NPC disease with respect to 

the accumulation of other lipids and behavioral abnormalities, which would provide an amenable 

animal model for high-throughput drug screening in this disease. 

 

5.1.7 Drug screening strategies 

 

As previously discussed, zebrafish are highly amenable to high throughput drug screening. Chemical 

suppression screens can be implemented following characterization of disease phenotypes within 

morphants. Screening protocols involve arraying embryos within individual wells of a 96-well plate 

prior to addition of a multitude of promising therapeutics. Following treatment, severity of morphant 

phenotype can be assessed, and any drugs that appear to provide benefit can then undergo further 

validation using dose and toxicity assessments (Lieschke and Currie, 2007). With these high 

throughput screens, no presumptions are made regarding specific molecular mechanisms. This means 

that previously unsuspected proteins or pathways can potentially be identified as drug targets 

(Lieschke and Currie, 2007). Given the currently unknown and controversial function of the NPC1 

protein, this characteristic provides key benefits when studying NPC disease. 

 

5.1.8 Inhibiting lysosomal Ca2+ release via TPCs using an inhibitor of NAADP signaling: Ned-19 

 
As previously discussed, NPC cells display a lysosomal Ca2+ defect, resulting in endocytosis defects and 

lipid storage (Lloyd-Evans et al., 2008). Under normal circumstances, voltage-gated TPCs release Ca2+ 

from lysosomes in response to the second messenger NAADP (Morgan et al., 2015b). The resulting 

cytosolic Ca2+ elevation drives numerous physiological events including cellular differentiation, muscle 

contraction, endothelial cell activation, membrane trafficking, autophagy, nutrient sensing, 

exocytosis, angiogenesis, fertilization & embryogenesis and cytokinesis (Morgan et al., 2015b).  
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In 2009, Naylor et al., utilized virtual screening to identify a chemical probe for NAADP, known 

as Ned-19, able to block NAADP signaling at nanomolar concentrations. The screen was performed 

using the ZINC database searching for compounds with similar 3-dimensional shapes and 

electrostatics to NAADP. Ned-19 is also auto-fluorescent, allowing fluorescent imaging of the NAADP 

receptor (Naylor et al., 2009). Less Ca2+ release is observed in NPC cells compared with wild-type 

following addition of Ned-19 (Lloyd-Evans et al., unpublished observation), presumably due to 

reduced acidic compartment Ca2+ levels in NPC (Lloyd-Evans et al., 2008). Furthermore, by treating 

with this compound, it is possible to block lysosomal Ca2+ release, therefore inducing an NPC-like 

phenotype and lipid storage within wild-type cells (Lloyd-Evans et al., unpublished observation). NPC1 

phenotypes can also be induced using U18666A (Lu et al., 2015) and 1NMP (Schumacher et al., 2006, 

Lomovskaya et al., 2001, Renau et al., 1999) (see Chapter 1). 

 
5.1.9 Aims 

 
This chapter sought to generate, characterize (both behaviorally and biochemically) and compare 

drug-induced zebrafish models of NPC1 and npc1-morphants generated following morpholino 

microinjection, with the aim of testing previously investigated and novel NPC therapies. Furthermore, 

by treating fish with the inhibitor of NAADP signaling, Ned-19, we aimed to characterize the 

importance of the NPC lysosomal Ca2+ defect in vivo using imaging methods not possible with mouse 

models. 

 
 

5.2 Materials & Methods 

 
Unless otherwise stated, all reagents were from Sigma-Aldrich. Any methods used in this chapter and 

not described here can be found in the general materials and methods section (Chapter 2). 

 
5.2.1 Establishment and maintenance of the zebrafish colony 

 
Zebrafish (Tubingen) were purchased from UCL and were reared at 28.5 ± 0.5°C on a 14 hour light, 10 

hours dark cycle to mimic the natural zebrafish environment. Following adult breeding, the embryos 

produced were incubated in the dark at either 28°C or 31°C, depending on the desired speed of 

development, in ‘embryo water’ containing 0.06mg/ml Instant Ocean Salts (Amazon) in distilled water 

and methylene blue (anti-fungal, 0.0002%). Where required developmental staging was carried out 

according to Kimmel et al. (Kimmel et al., 1995). All procedures were performed in accordance with 

the UK Home Office Animals Scientific Procedures Act (1986).  



 

100 

 

 

 

5.2.2 Inducing NPC in zebrafish embryos using either U18666A, 1NMP or Ned-19 

 
U18666A, 1NMP and Ned-19 are all known to induce an NPC-like phenotype in cells (for more 

information on U18666A and 1NMP, see general methods section (Chapter 2)). Ned-19 acts as an 

inhibitor of NAADP signaling (Naylor et al., 2009).  6hpf zebrafish were arranged at 25 embryos per 

well in a 24-well plate prior to treatment with 1μg/ml U18666A, 300μM 1NMP or 100μM Ned-19 in 

embryo water. DMSO controls were also performed. Drug treated and untreated embryo water was 

refreshed daily. 

 
5.2.3 Light microscopy imaging of zebrafish 

 
For live imaging of morphology, larvae were anesthetized with MS222 (0.016% w/v). For both live and 

fixed imaging, embryos were visualized using a SZMN light microscope with a Watec camera and 

Debut software. 

 
5.2.4 Behavioral testing in zebrafish: spontaneous coiling and touch response 

 
Spontaneous coiling and touch response represent two complex behaviors of the zebrafish that can 

be analyzed to assess both disease phenotypes and response to treatment. These motor behaviors 

demonstrate the development of locomotor networks in the zebrafish brain and spinal cord (Brustein 

et al., 2003). 

 Spontaneous coiling in zebrafish consists of spontaneous alternating side-to-side contractions 

of the trunk generated by their limited electrically coupled spinal network (Brustein et al., 2003). These 

movements begin at 17hpf, peak in frequency by 19hpf and then progressively decline over the course 

of 6-7 hours (Brustein et al., 2003). At either 24 or 48hpf, 3 minute videos were taken of control, drug-

treated, or morpholino injected embryos (~15-30 embryos per video) using light microscopy (see 

5.2.3) and number of coils per embryo was recorded. 

 Touch response behavior begins at 21hpf, with embryos responding to touch with vigorous 

coiling (Brustein et al., 2003). This behavior is dependent on interactions between the developing 

zebrafish hindbrain and spinal cord, and by 27hpf, it extends to the embryos swimming off at speed 

following contact (Brustein et al., 2003). Videos of 4 embryos per condition (either control, drug-

treated, morpholino) were taken at both 48hpf and 72hpf. Time taken (frames per second, FPS) for 

the embryo to leave the screen following contact was recorded. 
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5.2.5 Fixation of zebrafish 

 
5dpf zebrafish were transferred to labeled eppendorfs prior to addition of the anesthetic MS222. The 

MS222 was then removed and embryos were washed twice in 1ml PBS. 1ml of 4% PFA was then added 

to each tube before leaving embryos overnight. The next day, 3 washes in 1ml PBS was performed 

and embryos were stored at -4oC ready for either fixed staining and imaging or biochemistry. 

 
5.2.6 Homogenization of zebrafish 

 
Excess PBS was removed from the fixed zebrafish embryos (or whole zebrafish brain, removed using 

a scalpel and forceps) and the eppendorfs were dropped into liquid N2 for 1 minute. Embryos were 

then fished out using pliers and transferred from the eppendorf into a pestle and mortar, where they 

were crushed into a powder. 250μl dH2O was then added to the pestle, and the entire mixture was 

transferred to a dounce homogenizer where it was further homogenized using 15 strokes. Samples 

were then transferred to new eppendorfs and stored at -80oC ready for biochemistry.  

 
5.2.7 Alkaline hydrolysis TLC to analyze lipid content of drug treated embryos 

 
Protein content of the homogenized embryos was determined using the BCA assay (see general 

methods, chapter 2) prior to lipid extraction (Chapter 2) in conjunction with alkaline hydrolysis to 

remove phospholipids (Brockerhoff, 1963). Alkaline hydrolysis is required when performing TLC on 

zebrafish embryos as high levels of phospholipid within the samples form multi-vesicular bodies that 

proceed to disrupt the running of the sample up the silica plate. Unfortunately, this process also 

reduces levels of other lipids within the sample (e.g. sphingomyelin), therefore hindering our ability 

to accurately measure all NPC storage lipids. Alkaline hydrolysis was performed by adding 0.2M KOH 

to the standard lipid extraction mixture (see general methods) and incubating for 2 hours at 65oC 

(Weber et al., 2002). Following lipid extraction and hydrolysis, TLC was performed as described in 

general materials and methods (65:25:4 mobile phase). The TLC was then analyzed using ImageJ 

software and quantified using known amounts of each lipid present within the standard lane to 

determine concentrations (mg/ml) of a variety of lipids within the embryos. 

 
5.2.8 Biochemical assays for sphingomyelin and acid sphingomyelinase activity on 5dpf zebrafish 

embryos 

 
Sphingomyelin and acid sphingomyelinase assays were performed using an amplex red 

sphingomyelinase assay kit (Invitrogen), as per manufacturers instructions, on homogenized 5dpf 

zebrafish embryos. When measuring levels of sphingomyelin in samples, bacterial sphingomyelinase 
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was added, along with a pH7 buffer, however no endogenous sphingomyelin was added. When 

measuring acid sphingomyelinase activity, 5mM endogenous sphingomyelin was added alongside a 

pH5 buffer with no bacterial sphingomyelinase. 

 
5.2.9 Cryosectioning of 5dpf zebrafish embryos 

 
Fixed embryos were cryoprotected in 30% (w/v) sucrose in PBS at 4oC overnight or until sunk. All 

samples were embedded in TissueTek (Bayer) and lowered slowly into isopentane cooled with dry ice. 

Embryos were then stored at -80oC prior to sectioning. 12μm sections were taken using a Bright 5000 

cryostat onto X-tra adhesive slides (Surgipath), which were air-dried and stored at -80oC until stained. 

 
5.2.10 Staining cryosections with fluorescent lipid probes filipin and FITC-CtxB  

 
For more information on filipin staining for cholesterol and FITC-CtxB staining for ganglioside GM1, 

please see general methods section (Chapter 2). Sections were removed from the -80oC freezer and 

left to defrost for 30 minutes prior to use. Next, a 1mm Edge hydrophobic barrier PAP pen (Vector 

labs) was used to draw around individual sections prior to 3 x 5 minutes washes with PBS-T (PBS + 

0.1% triton).  

For imaging cholesterol, we then applied a 187.5µg/ml solution of filipin (stock was made up 

in PBS-T with 5% FBS and 1% BSA) to each section for 45 minutes at room temperature in the dark.  

For imaging ganglioside GM1, following the 3 initial PBS-T washes, a blocking solution (1% BSA 

in PBS-T) was applied for 30 minutes at room temperature prior to overnight incubation with 2.5µg/ml 

FITC-CtxB.  

Sections were then washed 3 x 5 minutes to PBS-T before being mounted onto a coverslip 

using mowiol (Calbiochem), and left to dry and store at room temperature in the dark until visualized 

using a Leica DM2500 microscope. 

 
5.2.11 Morpholino oligonucleotide (MO) knockdown 

 
An ATG (start codon blocking) MO (5’-TGTGGTTTCTCCCCAGCAGAAGCAT-3’), already known from 

previous studies to successfully knock-down npc1 in zebrafish (Louwette et al., 2013, Schwend et al., 

2011), was ordered from GeneTools, LLC and dissolved in 300μl ddH2O to generate a 1mM stock 

solution. 

 Glass needles were pulled from borosilicate glass capillary tubes, 1.0mm O.D. x 0.58mm I.D. 

(Harvard Apparatus) using a flaming/brown micropipette puller (Sutter Instrument Co)(Heat 546, Pull 

85, Velocity 85, Time 200).  
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 Morpholino working solutions were made in 1X Danieau’s solution (see table 5.1) plus 1% 

phenol red (to allow visualization of injected solution), whilst injected control solutions contained 

Danieau’s plus 1% phenol red only.  

 Needle tips were clipped using forceps under a light microscope (SZMN) prior to backloading 

with 4μl of either MO or control solution and insertion into a three-axis micromanipulator (UM-1PF, 

UM-3C, Narishige). To improve reproducibility, needle calibration was performed prior to MO 

injection. To calibrate the amount of MO solution injected, a drop of mineral oil was placed on a 

microscope graticule and MO injected into the oil. The pulse duration was adjusted such that each 

injection delivered a sphere of the desired diameter. Since the concentration of the MO is known, the 

amount delivered per volume can be calculated. 

 Approximately 40 embryos were arrayed for injection by lining them up against a microscope 

slide placed in a petri dish. This prevents the embryos from rolling and rotating during injections and 

maintains them in enough embryo water to prevent dehydration. Embryos were injected into the yolk 

cytoplasmic stream of 1-2 cell stage embryos using a pico-liter injector (PLI-10, Warner instruments) 

and then maintained at 28oC prior to examination. 

 
Reagent Amount per 1 litre Concentration 

NaCl 101.7g 1740mM 
KCl 1.56g 21mM 

MgSO4�7H2O 2.96g 12mM 
Ca(NO3)2 4.25g 18mM 

HEPES buffer 35.75g 150mM 
Table 5.3. Composition of 30X Danieau’s microinjection solution. 

 
5.2.12 Lightsheet microscopy 

 
Imaging of fluorescent probes on whole live or fixed 5dpf zebrafish embryos utilized a ZEISS Lightsheet 

Z.1 microscope as per manufacturer’s instructions. Prior to lightsheet microscopy, whole live embryos 

were washed twice in PBS prior to staining with either lysotracker green for lysosomes (10µM, see 

general methods) or Rhod-2AM (Excitation/emission = 552/581nm) for Ca2+ imaging, followed by a 

further 2 PBS washes and live imaging. For Rhod-2AM, a small volume of 1mM probe was 

microinjected into zebrafish brains as previously described (Brustein et al., 2003). 

The Lightsheet Z.1 allows high temporal resolution imaging of optical sections within large 

samples, and results in virtually no phototoxicity or bleaching. Light sheet fluorescence microscopy 

works by splitting fluorescence excitation and detection into two separate light paths, with the axis of 

illumination perpendicular to the detection axis. This allows illumination of only a thin section of your 

sample at any time, therefore generating an inherent optical section by exciting only fluorescence 
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from the in-focus plane. Light from the in-focus plane is then collected on the pixels of a camera, 

rather than pixel by pixel (e.g. with confocal or other laser scanning microscopy). Parallelization of the 

image collection on a camera-based detector increases the speed of image acquisition and reduces 

the amount of excitation light required when compared with many other microscopy techniques (Lim 

et al., 2014). 

 
 

5.3 Results 

 
5.3.1 TLC reveals a similar lipid profile in wild-type zebrafish compared with humans, whilst 

demonstrating increased NPC lipids in 1NMP and U18666A treated embryos 

 
In order to determine whether or not adult wild-type zebrafish brains produced the lipids known to 

be stored in NPC patients, an adult zebrafish was sacrificed, its brain removed and homogenized and 

lipids were extracted for TLC analysis. As can be seen in Figure 5.1 A, with increasing amount of protein 

in the zebrafish sample, we get increased lipid as expected. Comparison with lipid standards shows 

the presence of NPC lipids cholesterol, ceramide, GM3, phospholipids, neutral lipids, GM1 and 

sphingomyelin within the wild-type zebrafish brain. However, GlcCer, GalCer (galactosylceramide), 

LacCer and BMP were not detected. If these lipids are not present within zebrafish brains, this is 

unfortunate as these lipids are stored in NPC humans and measuring changes in levels in response to 

drug treatment of zebrafish embryos would be useful for future studies. Alternatively, very low levels 

of these lipids within the zebrafish brain may prevent detection via TLC: as is demonstrated in Figure 

5.1 B where small amounts of GlcCer and LacCer were detected within wild-type embryos, although 

this could also be due to different expression of lipid metabolic and catabolic enzymes during zebrafish 

development. 

 Having observed that wild-type zebrafish appear to have a similar lipid distribution to humans, 

we next sacrificed, homogenized and extracted lipids from zebrafish embryos that had either been 

left untreated or treated with 1NMP to induce an NPC phenotype. In order to prevent interference 

from high levels of phospholipid (which alters separation of lipids as they run up the silica plate) an 

alkaline hydrolysis TLC was performed on the samples.  A graph summarizing levels of key lipids is 

shown in figure 5.1 B. As expected, treating zebrafish embryos with 1NMP induced storage of lipids 

also known to accumulate in NPC humans and mice. Within wild-type embryos, cholesterol represents 

the most prevalent lipid, and 1NMP treatment slightly increases levels by ~1mg/ml. GlcCer, 

sphingosine and GM3 all show very low levels within untreated wild-type embryos (see figure 5.2 A), 

with at least a 4-fold increase following treatment with 1NMP. Sphingosine in fact demonstrates the 
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greatest fold elevation when compared with all lipids examined. GM1 can be seen at ~2mg/ml within 

wild-type fish, and increases 4-fold following inhibition of NPC1. Other lipids appear to decrease 

following treatment of zebrafish embryos with 1NMP: namely ceramide (~50% decrease) and LacCer 

(~20% decrease). 
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Figure 5.1. Zebrafish contain comparable lipids to humans, and lipids stored in NPC humans increase following treatment 

of zebrafish embryos with the npc1 inhibitor 1NMP. Thin layer chromatography (TLC) was used to analyze lipid content 

either within the adult zebrafish brain (A – TLC plate shown) or within 5dpf zebrafish embryos treated with 300μM 1NMP (1-

naphthyl-methylpiperazine) (B – graph comparing lipid levels (mg/ml) in untreated wild-type (blue) and 1NMP treated (red) 

embryos). Chol = cholesterol, GlcCer = glucosylceramide, LacCer = lactosylceramide, spho = sphingosine. N=1, preliminary 

data. 

 
5.3.2 Increased sphingomyelin and decreased acid sphingomyelinase activity is observed in 5dpf 

U18666A and 1NMP treated zebrafish embryos 

 
NPC patients and the Npc1-/- mouse model show storage of sphingomyelin (Lloyd-Evans et al., 2008) 

alongside reduced activity (Elleder and Smid, 1985) and mislocalization (Tamura et al., 2006) of its 

degradative enzyme, acid sphingomyelinase. In order to validate these biochemical characteristics in 

our zebrafish model of NPC, we performed assays for both levels of sphingomyelin (Figure 5.2 A) and 

acid sphingomyelinase activity (Figure 5.2 B) on 5dpf zebrafish either untreated (wild-type), treated 

with DMSO vehicle control or treated with npc1 inhibitors U18666A and 1NMP. As alkaline hydrolysis 

prevented the detection of sphingomyelin when performing TLC analysis on npc1-inhibited embryos 

(Figure 5.1 B), these assays allow us to analyze the effects of treatment on this lipid. Increased 

sphingomyelin was observed in 5dpf zebrafish embryos treated with either 1NMP or U18666A (~20 & 

30% increase compared with wild-type), suggesting inhibition of acid sphingomyelinase. However, 

only 1NMP treated embryos, which show greater storage of sphingomyelin when compared with 

U18666A, showed a decline in acid sphingomyelinase activity when compared with wild-type and 

DMSO treated controls (~40% decrease). No difference was seen in acid sphingomyelinase activity 

when comparing wild-type and DMSO treated controls. 
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Figure 5.2. Increased sphingomyelin and decreased acid sphingomyelinase activity is observed in 5dpf U18666A and 1NMP 

treated zebrafish embryos. Enzyme assays were used to analyze the effects of npc1-inhibitors 1NMP (300μM)	and	U18666A	

(1μg/ml) on sphingomyelin storage (A) and sphingomyelinase activity (B) in 5dpf zebrafish embryos. Embryos were treated 

with DMSO as a vehicle control. FU = fluorescence units. N=1. Preliminary data. 

 
5.3.3 Treating zebrafish embryos with either U18666A or 1NMP induces storage of both cholesterol 

and ganglioside GM1 

 
NPC1 patients, mice and cells show storage of both cholesterol and ganglioside GM1 (te Vruchte et 

al., 2004). In order to determine whether our zebrafish models show storage of these lipids following 

treatment with npc1-inhibitors, we imaged fixed 5dpf zebrafish either untreated (control) or treated 

with either U18666A or 1NMP following staining with either filipin for cholesterol or FITC-CtxB for 

ganglioside GM1. We observed increased cholesterol and ganglioside GM1 within embryos treated 

with either U18666A and 1NMP when compared with wild-type (Figure 5.3). These results mimic data 

from NPC1 patients and other animal models (te Vruchte et al., 2004) and suggest that our model 

accurately recapitulates human disease phenotypes. A greater increase in cholesterol can be seen 

following treatment with U18666A when compared with 1NMP, and a greater increase in ganglioside 

GM1 can be seen in 1NMP treated embryos when compared with U18666A. 

 

 
 
Figure 5.3. Inhibition of npc1 induces storage of both cholesterol and ganglioside GM1 in 5dpf U18666A and 1NMP treated 

zebrafish embryos. Zebrafish embryos were either left untreated or treated with npc1-inhibitors U18666A (1μg/ml) or 1NMP 

(300μM). At 5dpf, embryos were fixed and stained with filipin for cholesterol or FITC-CtxB for ganglioside GM1 prior to 

imaging using a Zeiss Lightsheet Z.1. N=2, scale bar = 50μm. 
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5.3.4 Treating zebrafish embryos with either U18666A or 1NMP induces movement abnormalities 

 
NPC1 patients and mice present with progressive ataxia (Sevin et al., 2007). As zebrafish are capable 

of performing complex behaviors (Brustein et al., 2003), we investigated whether our U18666A and 

1NMP treated zebrafish exhibited any movement defects.  

First, we analyzed spontaneous coiling behavior in 24 and 48hpf embryos. Representative 

images of embryos within their chorions at 24 and 48hpf are shown in figures 5.4 A and C respectively. 

As can be seen in figure 5.4 B, at 24hpf, there is a significant decrease in the number of coils observed 

following treatment with either 1NMP (~20% decrease) or U18666A (~30% decrease) when compared 

with control embryos. Again, at 48hpf, we see a significant decrease in coils in 1NMP embryos when 

compared with controls. No decrease is seen at 48hpf with U18666A however, although this may 

become significant with further experimental repeats.  

Next, we analyzed response to touch in 48hpf embryos. Representative images of control and 

npc1-inhibited embryos at both 0ms and 180ms after touch can be seen (Figure 5.4), alongside a graph 

showing the percent of embryos responding to the touch and swimming away within 180ms (Figure 

5.4). There is a significant decrease in embryos responding to touch following treatment with 1NMP 

(~80% decrease), and a non-significant reduction (~30% decrease) following treatment with U18666A. 

Collectively, these results demonstrate ataxia-like movement defects within npc1-inhibited zebrafish 

embryos.  
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Figure 5.4. Inhibition of npc1 induces movement abnormalities in U18666A and 1NMP treated zebrafish embryos. 

Zebrafish embryos were either left untreated, treated with DMSO vehicle control, or treated with npc1 inhibitors U18666A 

(1μg/ml) or 1NMP (300μM). At 24hpf (A & B) or 48hpf (C & D) embryos were filmed, and the amount of coils per embryo 

was recorded over 3 minutes. For spontaneous coiling we examined at least 50 embryos per condition for each experiment. 

Also at 48hpf, we performed the touch response test on treated and untreated embryos. Representative images of embryos 

at 0 and 180ms following touch (E) and the percent of embryos responding to touch within 180ms (F) is shown. For touch 

response experiments, we examined at least 10 embryos per condition for each experiment, N=2. *=p<0.05, ***=p<0.001, 

****=p<0.0001. 

 
5.3.5 Treating zebrafish embryos with U18666A induces lysosomal expansion and movement 

defects, which are reversed by co-treating with miglustat 

 
Having seen that treatment with either U18666A or 1NMP induces NPC-like lipid storage (Figure 5.3) 

and behavioral defects (Figure 5.4) in 5dpf zebrafish embryos, we next wanted to investigate whether 

the only currently approved NPC therapy, miglustat (Lachmann et al., 2004), has any efficacy in 

reversing these defects. As shown in figure 5.5, we stained and imaged live 5dpf zebrafish either 

untreated, treated with U18666A to induce NPC or treated with both U18666A and miglustat, with 

the lysosomal probe lysotracker green prior to imaging on a ZEISS Lightsheet Z.1 microscope. As can 

be seen in figure 5.5 A, embryos show increased lysotracker staining, indicative of lysosomal 
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expansion, following treatment with U18666A. Furthermore, co-treating these cells with miglustat 

reduces lysotracker staining towards wild-type levels. As previously demonstrated (Figure 5.4) 

spontaneous coiling behavior can be seen to decrease in embryos treated with U18666A at 24hpf 

(~50% decrease). In preliminary studies, this phenotype also appears to be corrected towards wild-

type levels following co-treatment with miglustat (Figure 5.5 B), although this will need to be 

replicated and significance testing performed before firm conclusions can be drawn from this data. 

These results confirm previously demonstrated benefits of miglustat in NPC (Zervas et al., 2001, 

Lachmann et al., 2004). 

 

 
Figure 5.5. Treating zebrafish embryos with U18666A induces lysosomal expansion and movement defects, which appear 

reversed following co-treatment with miglustat. Zebrafish embryos were either left untreated or treated with the npc1 

inhibitor U18666A (1μg/ml) either with or without miglustat (500μM). Spontaneous coiling behavior of the embryos was 

recorded at 24hpf (B).  At 5dpf, embryos were stained and imaged live with the lysosomal probe lysotracker green prior to 

imaging on a ZEISS Lightsheet Z.1 microscope (A). N=3 for A, 1 for B. For B, at least 50 embryos were examined per condition: 

1 experiment, preliminary data. Scale bar = 10μm. Work done in collaboration with Dr Luke Haslett (A) and Sophie Cook (B). 
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5.3.6 Treating zebrafish embryos with Ned-19, an inhibitor of NAADP signaling, induces NPC-like 

phenotypes 

 
As reduced lysosomal Ca2+ has been shown to be an early NPC phenotype (Lloyd-Evans et al., 2008), 

and having previously investigated Ca2+ modulators as treatments for NPC (see chapter 4), we 

investigated the effects of inducing a lysosomal Ca2+ signaling defect in vivo using the NAADP signaling 

inhibitor Ned-19 (Naylor et al., 2009). This is particularly pertinent as NAADP signaling is reduced in 

NPC disease cells, presumably due to reduced lysosomal Ca2+ (Lloyd-Evans et al., 2008), and by using 

Ned-19 we might be able to confirm which phenotypes in NPC are a direct result of this defect. Firstly, 

we fixed Ned-19 treated 5dpf zebrafish embryos prior to staining with either filipin for cholesterol or 

FITC-CtxB for ganglioside GM1. We observed increased levels of these lipids within Ned-19 treated 

embryos when compared with wild-type (Figure 5.6 A), similarly to treatment with U18666A, 1NMP 

or following MO injection (Figures 5.3 & 5.8). Live 5dpf embryos, either untreated or treated with Ned-

19, where also imaged with the lysosomal probe lysotracker green (Figure 5.6 A), demonstrating 

increased lysosomes, highly characteristic of NPC disease, within Ned-19 treated zebrafish. 

 Next, we investigated how Ca2+ signaling was affected within the Ned-19 treated 5dpf 

zebrafish directly by staining live embryos with the Ca2+ probe Rhod2-AM. We observed much reduced 

Ca2+ levels within Ned-19 treated embryos (Figure 5.6 A). We next picked a region of interest within 

the live zebrafish forebrain and measured changing Ca2+ levels over 30 seconds. As can be seen in the 

Ca2+ traces (Figure 5.6 B) and graphs (Figure 5.6 C & D) shown, Ned-19 treated zebrafish show a slightly 

reduced number of spontaneous Ca2+ events coupled with a large reduction in the amplitude of each 

individual spontaneous event (4-fold reduction). 

 Together, these data demonstrate how inducing a lysosomal Ca2+ signaling defect using Ned-

19 can induce NPC lipid storage and lysosomal expansion phenotypes in vivo, therefore confirming 

the importance of this phenotype in the disease cascade, and highlighting the importance of 

developing Ca2+ modulating therapies for NPC (see Chapter 4). Moreover, the ability to perform live 

Ca2+ imaging in vivo indicates the benefits of using transparent zebrafish models to study diseases 

displaying disrupted Ca2+ homeostasis. 
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Figure 5.6. Treating zebrafish embryos with Ned-19, an inhibitor of NAADP signaling, induces NPC-like phenotypes. 

Zebrafish embryos were either left untreated or treated with the NAADP signaling inhibitor Ned-19 (100μM). A) At 5dpf, 

embryos were either fixed and stained with filipin for cholesterol or FITC-CtxB for ganglioside GM1, or imaged live with the 

Ca2+ probe Rhod2-AM (images are pseudocoloured to represent Ca2+ levels, high Ca2+ = yellow, low Ca2+ = purple) or the 

lysosomal probe lysotracker green. All embryos were imaged using a Zeiss Lightsheet Z.1. Following staining with the Ca2+ 

probe Rhod2-AM, regions of interest where picked in the live zebrafish forebrain and changing Ca2+ levels were measured 

over 30 seconds and represented as Ca2+ traces (B). Graphs show C) number of Ca2+ responses and D) fluorescence change 

obtained from B. N=3. Top scale bar = 50μm for filipin, FITC-CtxB and Rhod2-AM, bottom scale bar = 10μm for lysotracker 

images. Work done with help from Dr Luke Haslett and Dr Emyr Lloyd-Evans. 

 
5.3.7 Inhibition of zebrafish npc1 using an ATG-targeting morpholino induces movement 

abnormalities and storage of NPC1 lipids cholesterol and ganglioside GM1 

 
NPC1 patients and mice show storage of cholesterol and ganglioside GM1 within their lysosomes 

alongside progressive ataxia (te Vruchte et al., 2004). Having seen that zebrafish treated with either 

U18666A, 1NMP or Ned-19 show storage of cholesterol and ganglioside GM1 (Figures 5.3 & 5.6), and 

that embryos treated with U18666A or 1NMP show reduced spontaneous coiling and response to 

touch (Figure 5.4), we next investigated whether this was also true within npc1-morphant zebrafish. 
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First, we analyzed spontaneous coiling behavior within our npc1-morphant zebrafish (Figure 

5.7 A). As can be seen in figure 5.7 A, at 24hpf there is a significant decrease (~50%) in the number of 

coils observed following microinjection with an ATG-targeting morpholino against npc1 when 

compared with injected control zebrafish. This mimics what was seen previously following treatment 

of embryos with pharmacological inducers of the NPC phenotype (Figure 5.4). 

Next, we analyzed response to touch in 48hpf embryos (Figure 5.7 B & C). Figure 5.7 B 

demonstrates how npc1-morphant zebrafish display a non-significant increase in response time 

following touch, although a higher N could potentially allow significance. No decrease is seen in 

number of embryos responding altogether (Figure 5.7 C). 

Injected control and npc1-morphant 5dpf embryos were next stained with either filipin for 

cholesterol of FITC-CtxB for ganglioside GM1. We observed increased cholesterol and ganglioside GM1 

within npc1-morphant embryos when compared with controls (Figure 5.7 D). These results mimic 

those in Figure 5.3 where embryos were treated with pharmacological inhibitors of NPC1, as well as 

data from patients and other disease models, confirming the specificity of the phenotype. 
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Figure 5.7. Inhibition of zebrafish npc1 using an ATG-targeting morpholino induces movement abnormalities and storage 

of NPC1 lipids cholesterol and ganglioside GM1. Zebrafish embryos were either left untreated (uninjected control), injected 

with Danieau’s microinjection solution with 1% phenol red only (injected control), or injected with an ATG (start codon 

blocking) npc1-morpholino (in Danieau’s microinjection solution with 1% phenol red). At 24hpf embryos were filmed, and 

the amount of coils per embryo was recorded over 3 minutes (A). For spontaneous coiling we examined at least 50 embryos 

per condition for each experiment. At 48hpf, we performed the touch response test on embryos. Time taken for embryos to 

respond to touch in frames per second (FPS, B) and percent of embryos not responding to touch within 180ms (C) is shown. 

For touch response experiments, we examined at least 10 embryos per condition for each experiment. D) A) At 5dpf, embryos 

were either fixed and stained with filipin for cholesterol or FITC-CtxB for ganglioside GM1 prior to imaging using a Zeiss 

Lightsheet Z.1. For behavioural testing (A, B & C) N=2, for fluorescent staining (D) N=3. Scale bar = 50μm. ** =P<0.01 
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5.4 Discussion 

 
There is currently only one approved therapy for NPC, miglustat, and whilst able to slow disease 

progression it is far from a cure (Zervas et al., 2001), meaning more therapies are required to treat 

patients with this devastating disorder. Zebrafish act as an emerging animal model for the study of 

and development of therapies for neurodegenerative diseases. Baring this in mind, and given that 

previous studies exist demonstrating successful knock-down of npc1 in zebrafish using MOs, we 

decided to generate our own npc1-morphant zebrafish and to characterize this model further, with 

the eventual aim of testing novel NPC disease modifying therapies in this organism. Furthermore, we 

developed and characterized pharmacological models of NPC in zebrafish embryos using known npc1-

inhibitors U18666A and 1NMP, as well as Ned-19, known to induce an NPC-like phenotype in cells. 

 In order to determine whether our NPC zebrafish show phenotypes present in the human 

disease, therefore verifying the importance of this model, we examined lipid storage and lysosomal 

expansion within embryos. Zebrafish treated with either U18666A, 1NMP, Ned-19 or microinjected 

with npc1-MO show storage of both cholesterol and ganglioside GM1, with the presence of these 

lipids and other species known to be stored in NPC being confirmed using TLC for 1NMP treated 

embryos (Figure 5.1, 5.3, 5.6 & 5.8). Furthermore, lysosomal expansion, indicative of lipid storage and 

characteristic of NPC disease, is seen following treatment with either U18666A or Ned-19 (Figures 5.5 

& 5.6). In addition to this, preliminary studies suggest both sphingomyelin storage and inhibition of its 

degradative enzyme acid sphingomyelinase (Figure 5.2) within U18666A and 1NMP treated zebrafish, 

again, both of which are observed within humans and mice (Lloyd-Evans et al., 2008, Elleder and Smid, 

1985, Tamura et al., 2006). These data suggest that a similar lipid storage profile exists within both 

NPC humans and zebrafish, and therefore the effects of any lipid-lowering treatments (e.g. miglustat, 

see figure 5.5), could be examined. 

As ataxic phenotypes are prevalent within both NPC patients and mice, we also performed 

behavioral tests, notably spontaneous coiling and touch response tests, on NPC embryos. We found 

reduced coiling behavior alongside reduced response to touch in drug-induced models (treated with 

either U18666A or 1NMP) and MO injected embryos (Figures 5.4 & 5.8, although response to touch is 

non-significant for npc1-morphants, more repeats needed), suggesting that movement defects within 

NPC patients are replicated within our zebrafish models. This will allow us to assess the effects of 

therapies, for example the approved NPC therapy miglustat (Figure 5.5), on behavioral defects in NPC. 

Many drugs and MOs have off-target effects at certain concentrations, and therefore treatment can 

occasionally generate phenotypes unrelated to inhibition of NPC function. As identical lipid storage 

and behavioral defects are observed in all forms of NPC zebrafish generated however, this suggests 
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that either direct or indirect inhibition of the NPC pathway is responsible for the phenotypes 

generated. Furthermore, preliminary results suggest beneficial effects of the only currently approved 

NPC therapy miglustat (Figure 5.5), which if replicable suggest this therapy is working via the same 

pathway to improve NPC phenotypes in both humans and zebrafish. 

 Ned-19, an inhibitor of NAADP mediated lysosomal Ca2+ signaling (Naylor et al., 2009), induces 

NPC-like phenotypes in wild-type cells (Lloyd-Evans, unpublished observation). It has been previously 

suggested that reduced lysosomal Ca2+, which in turn leads to reduced lysosomal Ca2+ signaling, acts 

as an early phenotype in the NPC1 disease cascade (Lloyd-Evans et al., 2008). Treating zebrafish with 

Ned-19 appears to induce reduced Ca2+ signaling within 5dpf zebrafish embryos alongside lipid storage 

(Figure 5.6). This suggests that initiating the Ca2+-signaling defect within NPC zebrafish is responsible 

for much of the lipid storage observed, therefore highlighting the benefits of Ca2+ modulating 

therapies for the treatment of NPC (see Chapters 4 and 6). These results also demonstrate benefits of 

using zebrafish as a model organism: small, transparent zebrafish allow us to perform live Ca2+ imaging 

not possible within other animal models such as mice. This benefit is likely to be highly useful when 

studying any disease associated with Ca2+ dyshomeostasis, particularly the lysosomal storage 

disorders where to date no one has confirmed the presence of Ca2+ signaling abnormalities in situ in 

the brain, despite significant evidence of Ca2+ signaling disruption within these disorders. Future work 

could examine whether specifically inducing a lysosomal Ca2+ signaling defect within zebrafish using 

Ned-19 is responsible for the movement defects and neuronal loss observed within other NPC animal 

models, or whether another disease pathway (e.g. lysosomal Zn2+ storage, see Chapter 3), has a 

greater effect regarding ataxic phenotypes. 

 To conclude, our zebrafish models, which all show identical lipid storage and movement 

defects, appear to actively recapitulate several known NPC phenotypes, therefore justifying its use to 

study NPC disease mechanisms and the effects of novel therapeutics and demonstrating no obvious 

off-target effects. Furthermore, the ease by which zebrafish models can be characterized behaviorally, 

biochemically and even using in vivo live Ca2+ imaging suggests it acts as a highly useful model organism 

when studying NPC. Future work would involve further characterizing the diseased embryos and 

testing emerging therapies including the Ca2+ modulator tanganil (see Chapter 4) and the Zn2+ chelator 

phytic acid (see Chapter 3) to see if any beneficial effects can be seen within the NPC zebrafish.  
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Chapter 6: Effects of curcumin nanoformulations on Npc1-/- cellular function 

 

6.1 Introduction 

 
6.1.1 Curcumin 

 
The widely used spice, coloring, flavoring and herbal medicine known as turmeric is a product of the 

rhizome of Curcuma longa L. The key active ingredient of turmeric is curcumin [E,E)-1,7-bis(4-hydroxy-

3-methoxyphenyl)-1,6-heptadiene-3,5-dione] (Figure 6.1) which bestows anti-inflammatory, anti-

cancer, anti-oxidant, anti-athlerosclerotic, anti-microbial and wound healing effects onto this yellow 

root extract (Bilmen et al., 2001).  Demethoxycurcumin (17%) and bisdemethoxycurcumin (3%) are 

also present within turmeric extract (Figure 6.1). 

 

 
 
Figure 6.1. Chemical structures of the 3 curcuminoids present with turmeric extract. (A) Curcumin [(E,E)-1,7-bis(4-Hydroxy-

3-methoxyphenyl)-1,6-heptadiene-3,5-dione] makes up 77% of turmeric (B) demethoxycurcumin  [(E,E)-1-(4-Hydroxy-3-

methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione] (17%) and (C) bisdemethoxycurcumin [(1E,6E)-1,7-bis(4-

hydroxyphenyl)hepta-1,6-diene-3,5-dione] (3%). 

 
Approximately 7600 publications on this compound demonstrate curcumins ability to improve 

symptoms of patients with diverse disorders, including cancer (Shanmugam et al., 2015) and cystic 

fibrosis (Egan et al., 2004) as well as providing benefit following radiological exposure (Kma, 2014) and 
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cobra bites (Shabbir et al., 2014). Recently, treatment with this extract has also been shown to improve 

neurological symptoms in patients with Alzheimer’s disease (Monroy et al., 2013) and Npc1-/- mice 

(Lloyd-Evans et al., 2008). Widespread use of this ‘edible’ drug to treat various ailments without side 

effect has led to the belief of low health risks associated with this molecule. 

 
6.1.2 Curcumin in neurodegenerative disease 

 
Treatment with curcumin has recently been suggested to provide benefit against various non-LSD 

neurological conditions including Alzheimer’s, Parkinson’s and Huntington’s disease. These 3 disorders 

are all characterized by abnormal aggregation of aberrant forms of specific proteins (β-amyloid in 

Alzheimer’s, α-synuclein in Parkinson’s and huntingtin in Huntington’s) that likely contribute to disease 

onset and/or progression (Monroy et al., 2013). This characteristic can also be seen in NPC where 

abnormal β-amyloid accumulates in the brain (Burns et al., 2003), suggesting treatment may provide 

similar benefit in NPC patients. Curcumin is able to cross the blood-brain barrier (BBB)(Tsai et al., 2011) 

where it likely acts against neurological disease via a combination of anti-plaque, anti-oxidative anti-

inflammatory mechanisms (Monroy et al., 2013). 

 
6.1.3 Curcumin as a therapy for NPC disease 

 
Benefit within NPC cells and tissues occurs following one distinctive property of curcumin: its ability to 

inhibit all 3 isoforms of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA). It does this by inducing 

a conformational change which blocks ATP from binding (Bilmen et al., 2001). Within cells, SERCA acts 

to transport Ca2+ from the cytosol into the sarcoplasmic or endoplasmic reticulum. Following inhibition 

of this process with curcumin, Ca2+ continues to be released from the ER via leak channels, resulting in 

further Ca2+ release from the ER and transiently elevated cytosolic Ca2+ levels. Increased cytosolic Ca2+ 

levels are predicted to benefit NPC by overcoming the lysosomal Ca2+ defect, which likely results in 

defective Ca2+-dependent endocytic trafficking and fusion events within diseased cells, which in turn 

results in lipid storage (Lloyd-Evans et al., 2008). 

Beneficial effects of curcumin on NPC symptoms were first realized by Lloyd-Evans et al., 

(2008) who demonstrated how treatment of mouse Npc1-/--mutant glial cells with 30μM curcumin 

restored sphingolipid trafficking. Co-treatment in these same cells with curcumin and the membrane 

permeant Ca2+ chelator BAPTA-AM prevented benefit, demonstrating that the correction occurred via 

curcumin-induced changes in cytosolic Ca2+. Following this observation, Lloyd-Evans et al., 2008 then 

proceeded to test the therapeutic effects of oral curcumin (150 mg/kg per day from 1 day post-

weaning) in the Npc1-/- mouse. Curcumin-treated mice displayed improved coat condition, increased 

weight gain, increased activity and reduced tremor when compared with untreated. This was 
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accompanied by reduction in total brain GSL and sphingosine-1-phosphate, although elevated 

sphingosine levels were not significantly changed after treatment. In another study, Npc1-/- mice 

treated with curcumin experienced a ~16% increase in lifespan (Borbon et al., 2012b)(not dissimilar to 

the 25% observed with miglustat). Despite demonstrating an increase in lifespan following treatment 

with pure curcumin, Borbon et al., 2012 declared no beneficial effects of curcumin on Npc1-/- mice. 

This surprising statement may be due in part to their findings that lipidated curcumin formulations, 

proposed to cross the blood-gut and BBB more easily, showed no improvement at all in Npc1-/- mice. 

Since these initial findings, several groups have confirmed the beneficial effects of curcumin on NPC 

both in vivo and in vitro (Williams et al., 2014, Fineran et al., 2016, Efthymiou et al., 2015). 

 
6.1.4 The need for vectors to increase the bioavailability of curcumin 

 
A pharmacologically approved curcumin formulation would most likely require a vector to increase its 

bioavailability due to this molecule’s poor absorption and fast metabolism (Anand et al., 2007).  When 

ingested, only 1% of curcumin enters blood plasma and much of this is then rapidly conjugated to form 

inactive products. Several ways to circumvent this bioavailability problem include formation of 

curcumin-liposomes (as tested in Borbon et al., 2012), use of adjuvants (e.g. piperine), curcumin 

phospholipid complexes, combining curcumin with turmeric oils, and nano-sized compounds (Anand 

et al., 2007). 

 Adjuvants such as piperine act by blocking curcumin metabolism; thereby increasing its half-

life in the body, with co-administration leading to a 2000% increase in bioavailability (Shoba et al., 

1998). Curcumin-containing liposomes can also be generated. Liposomes are able to solubilize 

hydrophobic compounds, altering their pharmacokinetic properties and increasing rate of absorption. 

Higher plasma levels, lower clearance and improved gastrointestinal absorption (~1.5 increase in half-

life in rats) can be achieved by combining curcumin with micelles and phospholipids (Liu et al., 2006). 

Furthermore, curcumin can be combined with turmeric oil to increase absorption into the blood and 

increase retention time (700% more activity and 7-8 times more bioavailability in humans)(Anand et 

al., 2007).  Despite the above observations of increased retention of curcumin formulations when 

combined with lipid, there is a possibility that the lipid vector itself may accumulate in NPC cells, which 

show defects in the efflux of phosphatidyl choline to apolipoprotein A1 (Choi et al., 2003), therefore 

potentially worsening storage phenotypes. This could explain the reduced efficiency of curcumin in 

Npc1-/- mice published by Borbon et al., 2012 when a lipid carrier was used to increase bioavailability. 

 Studies indicate that nanoformulations of curcumin increase bioavailability, with injection of 

5mg/kg nanocurcumin in mice resulting in 0.5% entering the brain within 1 hour and a serum 

concentration of ~10μM (Chiu et al., 2011): a concentration known to inhibit SERCA activity and elevate 



 

120 

 

 

 

cytosolic Ca2+ (Bilmen et al., 2001). Tissue penetrance of nanosuspensions appears to be dependent 

on particle size, with intravenous injection of nano-curcumin resulting in 3mM plasma concentrations 

resulting in high concentrations of curcumin in the liver (200nM, 10 min post injection) and the brain 

(70nM, 20-30 min post injection) (Bi et al., 2017). 

 

6.1.5 Curcumin aggravates inhibition of cytochrome P450 enzymes in NPC 

 
One of the symptoms observed in NPC is reduced liver function following substantial storage of lipids 

such as cholesterol. This often manifests in the neonatal period as cholestatic jaundice, progressing in 

~10% of patients to liver failure and premature death (Patterson et al., 2012). These symptoms, 

combined with observations that therapeutic drugs (including curcumin, Lloyd-Evans personal 

communication) require lower dosing in Npc1-/- mice when compared with Npc1+/+, suggested a 

potential drug metabolism defect in NPC that has since been confirmed (Nicoli et al., 2016). A normal 

dose of curcumin would consist of 300-1250mg/kg/day, whilst in the Npc1-/- mouse this dose must be 

adjusted to 150mg/kg/day to prevent toxicity (Nicoli et al., 2016, Lloyd-Evans et al., 2008). Nicoli et al., 

2016 discovered a defect in the cytochrome P450 (CYP) system, involved in hepatic metabolism, within 

NPC1 mice, cats and human liver explants. Poor metabolism means breakdown products build-up to 

toxic levels. Impairment of the CYP system within NPC most likely occurs following storage of 

cholesterol within late endosomes and lysosomes, resulting in altered regulation and synthesis of 

oxysterols and bile acids (Alvelius et al., 2001, Maekawa et al., 2013, Maekawa et al., 2015, Porter et 

al., 2010), both of which are known to regulate transcription of CYP-related genes (Diczfalusy, 2013, 

Hafner et al., 2011, Eloranta and Kullak-Ublick, 2005). Nicoli et al., (2016) demonstrated how bile acid 

therapy using ursodeoxycholic acid (UDCA) could increase CYP enzyme activities, whilst reducing 

tremor and improving motor function with Npc1-/- mice. 

 Alongside reduced CYP enzyme activity in NPC, curcumin itself is also known to inhibit a 

substantial number of the major human CYP enzymes (Volak et al., 2008). However, despite inhibition 

by curcumin of CYP enzymes, Lloyd-Evans et al., 2008 still demonstrated improvement when treating 

the Npc1-/- mouse, suggesting that the positive effects of this molecule outweigh drug toxicity effects 

at certain doses. As previously discussed, curcumin is often modified to increase bioavailability (Anand 

et al., 2007). These modifications could potentially effect degree of inhibition of CYP enzymes, 

therefore preventing benefits in NPC, and this could potentially explain lack of benefit in Borbon et al., 

2012. 
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6.1.6 Crohn’s disease and inflammatory bowel disease in NPC1: implications when administering 

curcumin formulations 

 
A percentage of NPC patients develop early-onset Crohn’s disease (CD) or inflammatory bowel disease 

(IBD) like symptoms including intestinal inflammation with granuloma (Jolliffe and Sarkany, 1983, 

Schwerd et al., 2016, Steven and Driver, 2005), and this likely arises following defects in 

autophagosomal maturation (Sarkar et al., 2013). These defects prevent antibacterial autophagy by 

the NOD2-RIPK2-XIAP pathway, and hinder degradation of bacteria known to be responsible for CD 

(e.g. Salmonella enterica serovar typhimurium (S. typimurium) (Grassl et al., 2008) and CD-associated 

adherent-invasive Escherichia coli (Darfeuille-Michaud et al., 2004, Lapaquette et al., 2012, Darfeuille-

Michaud et al., 1998)) (Schwerd et al., 2016). 

 As the NPC gastrointestinal tract is already dysfunctional following lipid build-up and inhibition 

of autophagosomal maturation, and as curcumin is absorbed via the gut, oral administration of 

curcumin formulations solubilized in lipid to increase bioavailability could potentially worsen CD and 

IBD symptoms in patients. 

 
6.1.7 Combination treatment as a strategy for NPC disease 

 
Ultimately, as a variety of dysfunctions in NPC cells culminate in symptoms within patients, targeting 

several aspects of the pathogenic cascade at the same time using different drugs will most likely act as 

the most effective treatment. Previous attempts of combination therapy in Npc1-/- mice by Williams et 

al., 2014 used miglustat to reduce sphingolipid synthesis and storage, curcumin to elevate cytosolic 

Ca2+ and overcome the lysosomal Ca2+ defect, and ibruprofen to reduce neuroinflammation. Mice 

treated with combination therapies show greater improvement when compared to those treated with 

mono-therapies, with improved body weight and motor function alongside reduced Purkinje cell loss 

(Williams et al., 2014). Co-treating NPC patients with curcumin alongside UDCA to prevent CYP-enzyme 

inhibition (Nicoli et al., 2016) would perhaps act as a viable therapeutic approach in the future. 

 
6.1.8 Potential risks associated with the use of curcumin nutraceuticals for the treatment of NPC 

 

Following the publication of Lloyd-Evans et al., (2008) which highlighted benefits of curcumin within 

Npc1-/- mice, many NPC patients began taking curcumin nutraceuticals (Vockley, 2009). Considering 

the differences observed between Lloyd-Evans et al., 2008 and Borbon et al., 2012, where 

unformulated curcumin was beneficial in both but lipidated curcumin was unable to provide benefit 

in Borbon et al., 2012, we decided to investigate the effects of lipidated curcumin on Npc1-/- cells. This 

is especially important as NPC patients are taking lipidated curcumin, and considering the potential for 



 

122 

 

 

 

accumulation of phospholipid in NPC cells (Choi et al., 2003), these particular formulations may 

therefore be damaging instead of beneficial. 

In addition to these concerns, an inadequate system for monitoring their safety means that 

over the counter supplements are often associated with toxicity. Unlike prescription medication, 

supplements do not require premarketing approval and are often inaccurately labeled.  For example, 

in 2008, a poorly manufactured multivitamin proved responsible for over 200 cases of selenium 

poisoning (Cohen, 2014). Risks associated with taking uncontrolled nutraceuticals suggest a need for 

a clinically approved bioavailable formulation of curcumin, which would provide benefits against NPC 

phenotypes without toxicity. 

 

6.1.9 Aims 

 

Given that NPC patients are currently taking lipidated curcumin supplements (Vockley, 2009), and 

considering that lipidation appears to negate the benefits observed with curcumin alone (Lloyd-Evans 

et al., 2008, Borbon et al., 2012b), we instigated a study into a number of lipidated curcumin 

formulations taken by NPC patients in order to determine what impact they may have at the cellular 

level on NPC1 disease phenotypes.  

 

 

6.2 Materials & Methods 

 

Unless otherwise stated, all reagents were from Sigma-Aldrich. Any methods used in this chapter and 

not described here can be found in the general materials and methods section (Chapter 2). 

 

6.2.1 Preparation and solubilisation of curcumin nutraceuticals 

 

Curcumin supplements (Table 6.1) were purchased in multiple batches from commercial retailers. 

Three different tablets from each batch were opened, weighed and solubilized in DMSO (VWR, UK). 

We estimated the curcumin content from the manufacturers stated ratios of curcumin to lipid carrier 

and bulking agent (see Table 6.1) and generated a 10mM stock solution in each case. Each curcumin 

supplement was used at a final concentration of 30μM ensuring that the DMSO content always 

remained below 0.3% v/v. Appropriate DMSO and, where possible, lipid or bulking agent controls were 

also used. Analytical standard curcumin (>98%) was made up in the same way to a final concentration 

of 30μM in DMSO. 
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Referred 

to in this 

study as 

Formulation  Producer Reported lipid content % Curcuminoid 

TRE N/A (total root 

extract) 

Solgar No added lipids 93% 

CGM Curcumagalacto-

mannoside 

Akay/Swanson Fenugreek 

galactomannans 

>35% 

BCM95g BCM-95 Dolcas 

Biotech/Genceutic 

Naturals 

Turmeric essential oil, 

lecithin, triglycerides, 

beeswax, sunflower oil 

95% 

BCM95s BCM-95 Dolcas 

Biotech/LifeExtensi

on 

Turmeric essential oil 95% 

SLNA MicroActive (Solid 

lipid curcumin 

particle) 

Maypro 

Industries/Dr. 

Mercola 

Medium chain 

triglycerides, polyglycerol 

oleate, sodium alginate 

25% 

SLNL Longvida (Solid 

lipid curcumin 

particle) 

Verdure 

Sciences/AOR, 

Nutravene 

Soy lecithin, palmitate, 

stearic acid 

23% 

SLNM Meriva (Solid lipid 

curcumin particle) 

Indena/Dr.’s Best, 

Inc 

Phospholipid 37.2% 

 
Table 6.1. Properties of the curcumin nanoformulations. 

 

6.2.2 Treating cells with curcuminoids 

 

Npc1+/+ (wild-type) and Npc1-/- (NPC1 disease) glia were either left untreated or treated overnight (~16 

hours) with 30μM of each curcumin formulation (prepared and solubilized as described above) in 

complete DMEM prior to live or fixed staining and imaging. 

 
6.2.3 Nanoparticle size analysis of curcuminoids 

 
Nanoparticle size analysis was performed in collaboration with Dr Joanne Welton (Cardiff Metropolitan 

University, Cardiff, UK) on a NanoSightTM LM10 system with a high sensitivity sCMOS camera system 

(OrcaFlash2.8, Hammamatsu C11440) and a syringe-pump system (Malvern Instruments). The analysis 
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was performed as described by Webber and Clayton (2014), with some modifications. Nanoparticles 

present in the curcumin formulations were diluted 1 in 50,000 in particle free water after solubilisation 

in DMSO to concentrations up to 2x109 particles/ml within the linear range of the instrument, and for 

each formulation 5 videos of 30 seconds were analyzed using the batch analysis tool of NTA 3.1 

software (build 3.1.54) where minimum particle size, track length and blur were set as “automatic”. 

 
6.2.4 TLC’s to seperate curcuminoids 

 
One whole capsule of formulated curcumin was solvent extracted and separated by TLC, as described 

in general materials and methods. Solvent systems used were: Chloroform:methanol:H2O 65:24:4 for 

better separation of curcuminoids (unstained) and phospholipids, and 80:10:1 for improved separation 

of cholesterol from ceramides. 

 
6.2.5 Measuring curcumin release from the nanoformulations 

 
The in vitro release properties of curcumin nanoformulations were studied using dialysis by a modified 

method of Nasra et al., 2017 (Nasra et al., 2017). 1ml of each curcumin nanoformulation was placed 

into cellular dialysis bags with a 12,000 molecular weight cut off (Sigma). Bags were immersed in 10ml 

EtOH at room temperature and were placed on a shaker at 30rpm. At the indicated intervals 200μM 

of EtOH was collected and stored at 4oC until analysis using a Tecan Infinate F50 absorbance plate 

reader at 450nm. 

 
 
6.2.6 Cell viability assays following treatment with curcuminoids 

 
Cellular viability following either 16 or 48 hour treatment with the curcumin nanoformulations was 

determined on live cells by fluorescence microscopy using the early apoptotic marker Annexin A5. As 

a positive control, cells were also treated with nigericin (40μM, 2 hours): a Na2+/K+ ionophore that 

depolarizes mitochondria and lysosomes leading to apoptosis. Following curcumin or nigericin 

treatment, cells were incubated for 30 mins on ice with 5μg/ml FITC-Annexin A5 (eBioscience) in 

complete HBSS. Cells were then washed three times and imaged in the same buffer chilled to 4oC (to 

prevent internalization of the Annexin A5 during imaging). Independently, cellular viability was also 

determined using the CellTiter 96 MTS assay (Promega). Cells were grown in 96 well plates at a density 

of 20,000 cells per well, allowed to adhere and then incubated for 48 hours with the curcumin 

nanoformulations. Viability was determined by the addition of the tetrazolium MTS compound for 30-

60 minutes, which undergoes a colour change in functional mitochondria that was measured at an 

absorbance of 490nm in a Tecan Infinite F50 microplate reader (LabTech). 
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6.2.7 Texas Red dextran staining to investigate the effects of curcuminoid treatment on endocytosis 

 
Fluid phase endocytosis of Texas Red dextran was measured in live cells incubated for 4 hours with the 

curcumin nanoformulations in conjunction with 0.25mg/ml 10kDa Texas Red dextran in complete 

DMEM. Cells were then washed 3 x 5 min with complete DMEM supplemented with 1% BSA and 

0.5mg/ml unlabeled 10kDa amino-dextran to remove non-internalized Texas Red dextran that was 

associated with the plasma membrane. Cells were then washed three times with PBS prior to live 

imaging. Excitation/emission = 595/615nm. 

 
6.2.8 Analysis of phospholipidosis induced by curcuminoids using HCS LipidTOX Red 

 
The accumulation of phospholipid in live cells was determined using HCS LipidTOX Red (Thermofisher) 

at a 1:1000 dilution in complete DMEM at 37oC. Cells were incubated with the LipidTOX Red reagent 

for 4 hours prior to three washes in PBS and live imaging. Excitation/emission = 595/615nm. 

 
 

6.3 Results 

 
6.3.1 Determining nanoparticle size, curcuminoid content, and curcumin release kinetics of the 

supplements 

 

In order to determine whether the curcumin supplements were nanoformulations, and if so, how the 

particles compared across the samples, we examined the size distribution and concentration of all 

types of nanoparticles within the mixtures using a NanoSight LM10.  

As can be seen in Figure 6.2 A, all curcumin supplements analyzed were nanoparticles. Three, 

including TRE, CGM, and SLNM have mean sizes less than or equivalent to 100nm (Figure 6.2 B), a 

further three, SLNL, SLNA and BCM95g have mean sizes between 100 and 150nm and one, BCM95s, has 

a mean size of above 150nm. In addition, the modal peak sizes of these nanoparticles vary 

considerably. The three nanoformulations with the lowest mean size also have the lowest modal peak 

size (~75nm), two, SLNA and BCM95g, have a modal peak size of ~85-100nm, and a further two, SLNL 

and BCM95s have a modal peak size of more than 120nm (Figure 6.2 C). A second broader peak ranging 

from 110-175nm also exists for SLNL, SLNM and BCM95s, which may represent aggregation of these 

particles. A third peak at 220nm can also be seen for BCM95s indicating this formulation made from 

the essential oils of turmeric has the most diversity in terms of particle size (this diversity is presumably 

tempered by the addition of lecithin and beeswax in the case of BCM95g). 
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In addition to confirming that these curcumin formulations are nanoparticles, we also 

confirmed the curcuminoid content in the nanoformulations via solvent extraction and separation by 

TLC. Using this method we were able to separate the three major curcuminoids, namely curcumin 

(largest band), desmethoxycurcumin and bis-desmethoxycurcumin in all of the nanoformulations 

(Figure 6.2 D). Our results are largely in keeping with the total curcumin content as reported by the 

manufacturers (Table 6.1), with TRE having the highest overall curcuminoid content followed by 

BCM95g and BCM95s, whereas SLNL, SLNA and SLNM have the lowest curcumin content. 

We next investigated how quickly the curcumin formulations release their curcumin in vitro 

using a dialysis-based method (Figure 6.2 E). This demonstrated how all the formulations release their 

curcumin slowly, with absorbance saturation taking at least 1 hour for all the formulations. BCM95g 

and BCM95s appear to release curcumin the fastest (~1 hour to saturate), with the next fastest 

formulations (CGM & TRE) taking ~2 hours to achieve maximum release. The formulations that appear 

to release curcumin the slowest are SLNM, SLNA (3-4 hours) and SLNL. SLNL in fact never achieves the 

same degree of curcumin release as that seen with the other formulations. 
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Figure 6.2. Different curcumin mixtures have different mean and mode nanoparticle size, curcumin content and curcumin 

release kinetics.  Particle size (nm) of the nanoformulated curcumin was determined using a NanoSightTM L10 system (see 

chapter specific methods). Results are displayed graphically (A) and quantification the mean nanoparticle size can be seen in 

B, and the model nanoparticle size distribution in C. The mean ± standard deviation is shown for 5 separate measurements. 

These experiments were performed in collaboration with Dr Joanne L. Welton and Dr Richard Webb at Cardiff Metropolitan 

University. D) One whole capsule of each formulated curcumin was solvent extracted and separated by TLC to determine 

curcuminoid content (unstained, see chapter specific methods, C. Performed by Dr Luke Haslett). E) Curcumin release from 

nanoformulations over time (min) measured using dialysis (Performed by Dr Emyr Lloyd-Evans).  N=3. 
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6.3.2 Whilst all curcumin formulations elevate cytosolic Ca2+, some cause higher, prolonged 

elevation in Npc1-/- when compared with Npc1+/+ glia, suggesting possible toxicity 

 
in order to determine whether the curcumin supplements were likely to have any beneficial effect on 

Npc1-/- cells we first determined whether they could induce an elevation in cytosolic Ca2+ levels. All of 

the supplements were able to induce rapid elevation in cytosolic Ca2+ in both Npc1+/+ and Npc1-/- 

astrocytes at 30μM (Figure 6.3 A). Interestingly, whilst the TRE, BCM95s and BCM95g supplements all 

released similar levels of Ca2+ in Npc1+/+ and Npc1-/- astrocytes, the CGM, SLNL, SLNM and SLNA 

supplements all induced greater release in the Npc1-/- disease cells compared to controls (Figure 6.3 

B). The SLNA formulation elevated intracellular Ca2+ by 2-2.5 times more in the Npc1-/- cells compared 

to the controls. This could occur following altered NPC1 disease plasma membrane fluidity (Miersch et 

al., 2008) leading to greater release of curcumin within the cell. Following addition of analytical 

standard curcumin (Figure 6.3 A), the subsequent increase in cytosolic Ca2+ can be seen to return to 

baseline ~3 minutes after treatment. This is not seen following treatment with the curcumin 

nanoformulations, presumably due to the slow curcumin release seen with these formulations when 

compared with analytical standard curcumin (Figure 6.2 E). 
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Figure 6.3. Whilst all curcumin formulations elevate cytosolic Ca2+, some cause higher elevation in Npc1-/- when compared 

with Npc1+/+ glia, suggesting possible toxicity. Npc1+/+ (wild-type) and Npc1-/- (NPC1) mouse astrocytes were stained and 

imaged live with the cytoplasmic Ca2+ probe Fura2 prior to direct addition of either analytical standard curcumin (>98% 

curcumin), TRE, CGM, BCM95g, BCM95s, SLNA, SLNL or SLNM (30μM). Following treatment, we proceeded to measure changes 

in intracellular Ca2+ levels (ratiometric measurement at 340nm and 380nm, expressed as DF/F0). Ca2+ traces (A) and graphs 

summarizing Ca2+ release from the ER into the cytoplasm following inhibition of SERCA by curcumin (B) are shown. N=4. 

**=p<0.01, ***=p<0.001. 
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6.3.3 Whilst several curcumin formulations reduce Npc1-/- lysosomal storage, others appear to 

exacerbate phenotypes 

 

Having confirmed that all the curcumin formulations were capable of elevating intracellular Ca2+ levels 

we next determined whether this could induce a reduction in Npc1-/- lysosomal lipid storage, as 

previously reported with pure unformulated curcumin (Lloyd-Evans et al., 2008). Surprisingly, although 

SLNM had the greatest effect on elevating cytosolic Ca2+ in Npc1-/- disease astrocytes it had no beneficial 

effect on lysosomal storage. Indeed, we observed an increase in lysosomal accumulation of cholesterol 

(Figure 6.4 A), a smaller but significant increase in ganglioside GM1 (Figure 6.4 B), and a further 

expansion of the lysosomal system (Figure 6.4 C) in Npc1-/- cells treated with SLNM. Despite their ability 

to elevate cytosolic Ca2+ to a greater degree in the Npc1-/- astrocytes, CGM had no effect on lipid 

storage (Figure 6.4 A & B) or lysosomal expansion (Figure 6.4 C), whereas SLNL, in a manner similar to 

SLNM, consistently led to an increase in lipid storage of cholesterol (Figure 6.4 A), gangliosides (Figure 

6.4 B) and an expansion of lysosomes (Figure 6.4 C). In contrast to the two other SLN nanoformulations, 

SLNA had no effect on cholesterol storage (Figure 6.4 A), ganglioside storage (Figure 6.4 B) or lysosomal 

expansion (Figure 6.4 C). Two curcumin supplements consistently emerged as having the greatest 

impact on lowering lysosomal lipid storage in the Npc1-/- cells, namely BCM95s and TRE, with 

reductions in cholesterol (Figure 6.4 A), ganglioside GM1 (Figure 6.4 B) and lysosomal expansion 

(Figure 6.4 C) observed with BCM95s, and reductions in cholesterol (Figure 6.4 A) and lysosomal 

expansion (Figure 6.4 C) with TRE. No detrimental effect of any of the supplements on inducing 

lysosomal storage of these lipids in Npc1+/+ cells was observed (data not shown).  

 



 

131 

 

 

 

 
Figure 6.4. Whilst several curcumin formulations reduce Npc1-/- lysosomal storage, others appear to exacerbate 

phenotypes. Npc1+/+ (wild-type) cells were left untreated whilst Npc1-/- (NPC1) astrocytes were either untreated or treated 

with TRE, CGM, BCM95g, BCM95s, SLNA, SLNL or SLNM (30μM). Cells were then fixed or imaged live following staining with 

either filipin for cholesterol (A), FITC-CtxB for visualizing ganglioside GM1 (B) or lysotracker green for lysosomes (C) (in A & B, 

nuclei were counterstained using hoechst 33258). N=3, scale bar = 10μM.  
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6.3.4 Curcumin nanoformulations have varying effects on endocytosis in Npc1-/- glia 

 
To determine the cause of the elevated lipid storage levels in the Npc1-/- cells treated with SLNL and 

SLNM we investigated whether incubation with these curcumin nanoformulations had any effect on 

endocytosis, which is known to be altered in NPC disease (te Vruchte et al., 2004) and is the main route 

for bulk lipid entry into the cell. Following a joint incubation of the cells with both the curcumin 

nanoformulations and 10kDa Texas Red Dextran for 4 hours, we observed some key differences 

between the formulations. In parallel with the reduced lipid storage observed in Npc1-/- cells treated 

with TRE and BCM95s (Figure 6.4), and in keeping with previous data on curcumin (Lloyd-Evans et al., 

2008) we also observed a partial correction in the endocytic transport defect (Figure 6.5) with these 

two curcumin formulations. Npc1-/- disease cells have been shown to have a delay in transport 

between early and late endosomes (Lloyd-Evans et al., 2008, Lachmann et al., 2004, Mayran et al., 

2003). Following 4 hour treatment with Texas Red Dextran, this probe can be seen to cluster around 

the nucleus in late endosomes and lysosomes in the Npc1+/+ cells (Figure 6.5 A), whereas in the Npc1-

/- cells it has a broader distribution (including staining close to the plasma membrane) predominantly 

representative of early endosomes and to a lesser degree some late endosomes. Both TRE and 

BCM95s, as well as SLNA, appear to have partially rescued this transport defect with Texas Red Dextran 

staining now clustered in a peri-nuclear region indicative of late endosomes and lysosomes, very little 

staining in proximity to the plasma membrane, indicative of early endosomes, can be seen. 

Interestingly, both SLNM and SLNL appear to have either reduced the entry of Texas Red Dextran into 

the Npc1-/- astrocytes or enhanced it’s recycling out of the cell as the total level of fluorescence is lower 

by ~65% and ~85% respectively compared to the untreated cells (Figure 6.5). This would appear to 

suggest a connection between the elevated lipid storage and a further defect in endocytosis in the 

Npc1-/- cells, however, we also observed reduced fluorescence indicating reduced internalization of 

the Texas Red Dextran probe in the Npc1-/- cells treated with BCM95g (~88%) and CGM (~65%). As no 

lipid storage was observed in these cells (Figure 6.4) it must be concluded that the defect in 

endocytosis of Texas Red Dextran is not the cause of the elevated lipid storage observed with SLNM 

and SLNL. In an attempt to reconcile these data, we attempted to measure phospholipid accumulation 

in the curcumin formulation treated cells. Unfortunately, we mainly observed reduced staining of the 

phospholipidosis probe HCS LipidTOX red (Figure 6.6) correlating with the cells that had the greatest 

defect in endocytosis. This suggests that the probe, the identity of which has not been made public 

knowledge by Invitrogen, is more than likely an endocytosed phospholipid and as such is not a useful 

probe when cells have a considerable endocytosis defect. 
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Figure 6.5. Curcumin nanoformulations have varying effects on endocytosis in Npc1-/- glia. Npc1+/+ (wild-type) cells were 

left untreated whilst Npc1-/- (NPC1) astrocytes were either untreated or treated with TRE, CGM, BCM95g, BCM95s, SLNA, SLNL 

or SLNM (30μM).  Cells were then incubated for 4 hours with supplement plus 0.25mg/ml Texas Red Dextran, and imaged live. 

Representative images can be seen in A and images were quantified according to probe distribution to generate graph B. 

Dotted lines around Npc1-/- and Npc1+/+ cells show the location of the plasma membrane. N=3, scale bar = 10μM. 

***=P<0.001, ****=P<0.0001. 
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Figure 6.6. Phospholipidosis does not appear to occur following treatment with the curcumin nanoformulations. Following 

overnight treatment with TRE, CGM, BCM95g, BCM95s, SLNA, SLNL or SLNM (30μM) Npc1-/- cells were incubated for 4 hours 

with supplement plus the phospholipidosis probe HCS LipidTOX Red (nuclei counterstained with hoechst 33258, 

pseudocolored green) prior to live imaging. Representative images can be seen in A and images were quantified depending 

on punctate probe distribution, indicative of phospholipidosis, (compared with no stain) to generate graph B. A complete 

absence of staining following treatment with several supplements suggests that this probe is endocytosed, and therefore is 

not particularly useful when measuring phospholipid levels in cells that have a considerable endocytosis defect (Figure 6.5). 

N=3, scale bar = 10μM. **=P<0.01. 

 
6.3.5 Lipid content varies greatly across the curcumin nanoformulations 

 
Having observed that some of the curcumin nanoformulations increased lipid storage in Npc1-/- disease 

cells, and that this did not completely correlate with defects in endocytosis induced by the curcumin 

formulations, we decided to determine the nature of the lipid species in each formulation by solvent 

extraction and separation by HPTLC. Perhaps unsurprisingly, TRE had the lowest lipid content with very 

few bands present which correlate with those observed at a higher level in BCM95s and BCM95g (Figure 

6.7 A & B), both of which contain essential oils of curcumin that are presumably present in lower 

concentrations in TRE. CGM, which has few lipids, also contains one of these bands, the identity of 

which is currently unknown but could possibly be related to the galactomannan present in CGM or is 

a component of the curcumin used in manufacturing CGM. Interestingly, the three curcumin species 

are visible in all lanes (compare with Figure 6.2 D) between the glucosylceramide and cholesterol bands 

(Figure 6.7 A). As well as TRE and CGM, two other curcumin nanoformulations, BCM95S and SLNA, 

contained very few lipids with only the reported triglycerides and fatty acids present for SLNA (the band 

above cholesterol). Otherwise, the remaining curcumin supplements (SLNL, BCM95g, and SLNM) had 

significant levels of a variety of lipids. SLNM had the highest lipid content (Figure 6.7 A & B) and is 

reported as using phospholipid to solubilize curcumin, by similarity to the standard this could represent 
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lecithin (Table 6.1, Figure 6.7 C) as well as to BCM95g (Figure 6.7 A, B, & C) which incorporates lecithin 

(Table 6.1). SLNL is also reported to contain lecithin (Table 6.1), this appears to be the case although 

there are fewer bands when compared to the standard (Figure 6.7 C) with one or two fainter additional 

bands also present which are also seen in SLNM (Figure 6.7 C). For the purposes of this study, our TLC 

analysis largely confirms the stated lipid content of these formulations whilst also indicating the 

presence of a few other lipids. Perhaps of most importance is that none of the supplements contained 

lipids that are known to accumulate in NPC1 disease. To confirm this we ran the HPTLC plates in 2 

solvent systems (Figure 6.7 A & B). First we used a solvent system comprising CHCl3:MeOH:H2O 65:25:4 

to separate BMP from sphingomyelin and which also allows visualization of neutral glycosphingolipids 

such as GlcCer (three lipids that are stored in NPC disease). We observed a small amount of BMP and 

sphingomyelin in SLNM but did not observe any of these lipids in the other formulations (Figure 6.7 A). 

In order to separate cholesterol and ceramide we used a solvent system comprising CHCl3:MeOH:H2O 

80:10:1. We did not observe any appreciable amount of cholesterol in any of the formulations (Figure 

6.7 B). We can therefore rule out that the lipid formulations are themselves the source of the 

additional lipid storage that we observe in the Npc1-/- astrocytes treated with SLNL and SLNM. However, 

both SLNL and SLNM contain high amounts of phospholipid (Figure 6.7 A, B & C), so a change in NPC1 

lysosomal metabolism as a result of phospholipid accumulation cannot be ruled out. 
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Figure 6.7. Lipid content varies greatly across the curcumin nanoformulations. TLC was used to analyze solvent extracted 

curcumin nanoformulations. Lipid content was visualized with p-anisaldehyde: in (A) phospholipids were seperated using a 

development solvent system of chloroform:methanol:H2O 65:25:4, in (B) improved separation of cholesterol from ceramides 
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was achieved using a developing solvent system of chloroform:methanol:H2O 80:10:1. C) shows a comparison of selected 

nanoformulations alongside lecithin standards, a common component of the nanoformulations. Lipid standards (15μg) 

corresponding to the unknown sample bands are indicated on the left hand side. BMP = bis(monoacylglycero)phosphate. 

N=2, experiments were performed by Dr Luke J Haslett, Post Doctoral researcher in the ELE lab. 

 
6.3.6 Curcumin nanoformulations have varying effects on Npc1-/- disease cellular viability 

 
Having shown that some of the supplements could alter Ca2+ levels differentially between the Npc1+/+ 

and the Npc1-/- astrocytes, with greater release in Npc1-/- (Figure 6.3), that some caused an increase in 

lysosomal storage (Figure 6.4), and that some induced defects in endocytosis (Figure 6.5) potentially 

caused by membrane damage triggered by the nanoformulation itself (Panariti et al., 2012), we 

decided to test whether any of the curcumin formulations had any effect on cellular viability. First we 

utilized an early marker of apoptosis, extracellular live binding of FITC-Annexin A5 to plasma 

membrane phosphatidylserine (PS). PS is externalized to the outer leaflet of the plasma membrane as 

one of the first events in apoptosis. Following 16 hour treatment with the supplements, no staining of 

extracellular PS by FITC-Annexin A5 is detected in any of the conditions apart from the Npc1-/- cells 

treated with CGM and SLNL (Figure 6.8 A). As a positive control to confirm that staining is indicative of 

apoptosis we treated cells with nigericin, a molecular poison, and observed plasma membrane FITC-

Annexin A5 staining (Figure 6.8 A). Interestingly, some intracellular staining of FITC-Annexin A5 

indicative of endosomes in observed in the Npc1-/- disease cells treated with SLNL (Figure 6.8 A), 

suggesting either the possibility of necrosis or that the curcumin nanoformulation has disrupted the 

plasma membrane sufficiently to allow Annexin A5 to enter but not a 10kDa dextran (Figure 6.5). To 

confirm our viability findings with FITC-Annexin A5 we used a metabolic marker of cellular viability, 

namely mitochondrial activity measured using MTS. Of the curcumin formulations tested, all bar SLNA 

had some effect on Npc1-/- mitochondrial activity and cellular viability following a 30 hour incubation 

with the supplements (Figure 6.8 B). TRE, BCM95g and BCM95s had a minimal ~7-8% reduction in 

mitochondrial function whereas SLNM, SLNL and CGM substantially, and significantly, reduced cellular 

viability by ~40-50% respectively. No detrimental effect on cell viability of any of these formulations 

was observed on Npc1+/+ cells (not shown). 
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Figure 6.8. Curcumin nanoformulations have varying effects on Npc1-/- cellular viability. A) Following 16-hour treatment 

with TRE, CGM, BCM95g, BCM95s, SLNA, SLNL or SLNM (30μM), Npc1-/- cells (plus untreated Npc1-/- and Npc1+/+ controls) were 

stained using the apoptotic marker Alexa Fluor 488-Annexin A5 (white, nuclei counterstained with hoechst 33258, 

pseudocoloured green) prior to live imaging. Nigericin (40µM, 2 hours) was used as a positive control. White arrows indicate 

examples of apoptotic cells with plasma membrane staining. B) Cells were treated with curcumin nanoformulations (as above) 

for 48 hours prior to measurement of mitochondrial activity via the MTS assay (AU = absorbance units). N=3, scale bar = 

10μM, ***=P<0.001. 

 



 

139 

 

 

 

 
 
Figure 6.9. Proposed impact of curcumin nanoformulations on Npc1-/- cells. A) In control cells (Npc1+/+) endocytosis 

culminates in lysosomes where lysosomal Ca2+ release enables fusion of the different organelles involved. In NPC disease 

(Npc1-/-), reduced lysosomal Ca2+, and associated reduced lysosomal Ca2+ release leads to a reduction in endocytosis and 

endosomal fusion events. B) Unformulated curcumin releases Ca2+ from the ER via partial inhibiton of SERCA and subsequent 

uncovering of ER Ca2+ leak. This Ca2+ release around lysosomes stimulates endocytosis and can overcome the defect in 

endosomal fusion in NPC disease. C) Curcumin nanoformulations, which are endocytosed, interact with early endosomal 

membranes leading to potential membrane damage (as they are more fluid in NPC). This in turn further inhibits endocytosis 

and prevents the benefit mediated by ER Ca2+ release induced by the released curcumin. Slower curcumin release from these 

nanoformulations results in prolonged intracellular Ca2+ release and the triggering of apoptosis. Figure provided by Dr Helen 

Waller-Evans. 

 
 

6.4 Discussion 

 

Unformulated curcumin has been shown to be able to ameliorate NPC disease in five separate studies 

(Lloyd-Evans et al., 2008, Borbon et al., 2012b, Williams et al., 2014, Efthymiou et al., 2015, Fineran et 

al., 2016), whilst curcumin formulated into a lipid vector has been shown to have little to no benefit in 

the Npc1-/- mouse (Borbon et al., 2012b). Despite this, reports of NPC patients taking formulated 

curcumin exist (Vockley, 2009). The aim of the present study was therefore to compare a number of 

commercially available lipidated curcumin formulations and determine whether they could mediate 

any benefit at the cellular level using Npc1-/- disease cells. Our project focused on a range of lipidated 

curcumin nanoformulations, which are used for increasing the bioavailability of curcumin, which is 

otherwise poorly absorbed through the intestines (Prasad et al., 2014). Formulation of curcumin into 

a lipid vector allows for improved delivery across the blood-gut barrier, the achievement of higher 

concentrations of curcumin in the blood and tissues, and reduced renal clearance, all of which is 

essential for treating disease (Bi et al., 2017). Recent evidence has shown that formulation into 
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nanoparticles allows for even greater penetration into the blood and higher steady state levels, 

dependent on particle size (Bi et al., 2017). Our study is the first to demonstrate that all of these 

formulated lipidated curcumin particles are nanoparticles (and therefore are nanoformulations), 

ranging in size from 50-250nm (Figure 6.2 A, B & C). 

 With respect to the ability of these nanoformulations to modulate intracellular Ca2+, all were 

capable of inducing Ca2+ release from the ER and elevating cytosolic Ca2+ levels (Figure 6.3). It was 

interesting to note that four, CGM, SLNA, SLNM and SLNL induced greater Ca2+ elevation in the Npc1-/- 

cells but this did not correspond with a reduction in lysosomal storage as would have been expected 

(Lloyd-Evans et al., 2008)(Figure 6.4). However, this enhanced intracellular Ca2+ release elicited by the 

majority of these nanoformulations (with the exception of SLNA) did correspond with increased cellular 

toxicity, namely reduced mitochondrial activity and apoptosis (Figure 6.8). Results in Figures 6.3 A and 

6.2 E demonstrate how the nanoformulations cause slow curcumin release, resulting in prolonged Ca2+ 

increase with Npc1-/- cells.  This	 property	 could	 be	 useful	 when	 choosing	 an	 appropriate	 NPC	

therapy	 as	 cellular	 benefits	 may	 be	 observed	 over	 longed	 time	 periods	 that	 seen	 with	

unformulated	curcumin. 

 A surprising result of our work is that although all of the nanoformulations of curcumin could 

modulate intracellular Ca2+ (Figure 6.3), very few actually had an impact on Npc1-/- disease lysosomal 

lipid storage (Figure 6.4). As unformulated curcumin has been shown in several studies to be effective 

(Lloyd-Evans et al., 2008, Williams et al., 2014, Efthymiou et al., 2015, Fineran et al., 2016), we 

hypothesized that this was due in some way to the properties of the lipid carrier. Although SLNA 

appears to have a small benefit on some components of Npc1-/- lysosomal storage, no effect is seen 

with CGM, whilst treatment with SLNM and SLNL led to an elevation in lysosomal storage (Figure 6.4). 

This worsening of the Npc1-/- lysosomal storage phenotype was greatest with SLNL, but the exact 

reasons underlying this unexpected phenotype are unclear. SLNL and SLNM both appeared to 

significantly reduce endocytosis of Texas Red Dextran (Figure 6.5), which might explain the elevated 

lysosomal storage (Figure 6.4). However, we also observed this endocytosis defect with CGM and 

BCM95g (Figure 6.5), neither of which had any effect on lysosomal storage (Figure 6.4), which rules this 

out as a possibility. Based on the similar properties of SLNL and SLNM particles one possibility is that 

their lipid content is related to the enhanced lysosomal storage we observed in the Npc1-/- cells treated 

with these nanoformulations (Figure 6.4). This is supported by the lack of effect of SLNA, which has a 

similar formulation but is substantially different in that it contains sodium alginate, which can restrict 

the diffusion of phospholipids (Mackie et al., 2016) and may therefore ameliorate its effects on the 

Npc1-/- cell. However, we did not observe the presence of any NPC disease storage lipids in these 

nanoformulations, ruling this out as a possible cause of the elevated storage (Figure 6.7). One further 

potential cause of the elevated lipid storage is that the curcumin itself is trapping cholesterol within 
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the Npc1-/- disease lysosome. Curcumin has been suggested to be capable of interacting with 

cholesterol (Jourghanian et al., 2016) and as such, delivery of curcumin into the endocytic system as a 

nanoparticle could potentially result in further entrapment of cholesterol within these compartments 

that would reduce any benefit of the elevated intracellular Ca2+. This mechanism could explain why 

only a small number of the curcumin nanoformulations led to any observable benefit. Another 

possibility underlying the increased lipid storage is that three of the four nanoformulations, CGM, SLNM 

and SLNL have elicited some toxicity in the cells (Figure 6.8). The associated cellular stress would lead 

to reduced turnover and a greater degree of lipid accumulation in the non-dividing cells, supported by 

the reduced mitochondrial activity (Figure 6.8 B). However this lipid accumulation occurs, it is clearly 

not beneficial for lysosomal lipid levels to be elevated in cells from a lysosomal storage disease. One 

additional outcome of our findings is that they argue against curcumin working to rescue NPC1 

lysosomal storage by exocytosis, as has been suggested (Canfran-Duque et al., 2014), as the 

supplement that elevates cytosolic Ca2+ the most (and would therefore elicit the greatest degree of 

exocytosis), SLNA, only has a minimal effect on reducing lysosomal storage levels. Of the curcumin 

formulations we have tested it is those least modified with lipids that overall have had the greatest 

beneficial effect on reducing lysosomal lipid storage in Npc1-/- disease cells (BCM95s and TRE, Figure 

6.4). These nanoformulations were able to elevate cytosolic Ca2+ (Figure 6.3) without inducing toxicity 

(Figure 6.8) and were able to reduce lipid storage in Npc1-/- astrocytes (Figure 6.4) as previously 

reported with pure curcumin (Lloyd-Evans et al., 2008)(Figure 6.9).  Our findings are in keeping with 

the published data from the Npc1-/- mouse model where unmodified curcumin had the greatest effect 

on survival and function (Lloyd-Evans et al., 2008) whereas lipidated curcumin (SLNL) had no benefit 

on Npc1-/- mouse function (Borbon et al., 2012b). 

 Although this is an in vitro study it is important to note that the benefit of curcumin to NPC 

disease comes from modulation of Ca2+ at the ER and not as an anti-oxidant (Williams et al., 2014). It 

is therefore the effect of curcumin on the individual cells of the body that needs to be considered and 

as such our study provides useful insight into the potential effects of curcumin formulations on NPC 

disease cellular function. For example, as previously discussed, the function of the NPC1 intestine and 

liver is known to be abnormal (Patterson et al., 2012), and it is therefore these tissues that will be 

primarily affected by short-term treatment with these formulations. Some may transcytose, enter the 

blood stream and be carried to various other organs before releasing their cargo of curcumin and lipids 

(Kadam et al., 2012). What impact this may have on disease course is unknown and as the only 

lipidated nanoformulation of curcumin to be tested in NPC disease has been SLNL, in the mouse model 

(Borbon et al., 2012b), which provided no benefit it is clear that more work is needed to determine 

the safety and efficacy of these nanoformulations on NPC disease prior to any use in human patients. 
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6.5 Conclusions 

 
As NPC1 is a lipid storage disease the use of a lipidated vehicle may not be the best approach due to 

the possibility that the additional lipid load could alter metabolism or endocytosis and lead to further 

lipid storage as we have observed. Based on our evidence, from this report and others (Lloyd-Evans et 

al., 2008, Borbon et al., 2012b, Williams et al., 2014, Efthymiou et al., 2015, Fineran et al., 2016) it is 

perhaps the least modified forms of curcumin that appear to have the greatest benefit for NPC1 

disease both in vitro and in vivo. Ultimately, the utilization of curcumin itself may not be ideal for 

treating NPC1 disease, owing to its low bioavailability (Prasad et al., 2014), and other more bioavailable 

Ca2+ modulators (Visentin et al., 2013, Xu et al., 2012b), see Chapter 3, may yet prove to be the most 

effective therapeutic approach for targeting the lysosomal Ca2+ dysfunction in NPC disease.
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Chapter 7: General Discussion 

	
7.1 Summary 

	
Overall, this thesis aimed to investigate ion dyshomeostasis in NPC1 both in vitro and in vivo. Results 

in Chapter 3 illustrated a Zn2+ transport function for NPC1, and demonstrated partial reversal of the 

NPC phenotype in vitro using the Zn2+ chelator phytic acid. Chapter 4 investigated various Ca2+ 

modulators for the treatment of NPC, including tanganil, previously found to provide benefit against 

ataxic phenotypes in NPC patients (Bremova et al., 2015). Chapter 5 investigated the effects of 

different formulations of curcumin, a Ca2+ modulator known to provide benefit in Npc1-/- mice. And 

finally, Chapter 6 details the development of zebrafish models of NPC, required to test any potential 

therapies in vivo, whilst demonstrating NPC-like phenotypes following treatment of zebrafish with an 

inhibitor of lysosomal Ca2+ signaling via NAADP, called Ned-19. Together, these results demonstrate 

the importance of both Ca2+ and Zn2+ dyshomeostasis within NPC and suggest ways to treat these 

defects. 

	

7.2 NPC1 functions as a lysosomal Zn2+ transporter, with loss of function of NPC1 resulting in 

downstream lipid storage 

	

Prior to this project, indirect observations of Zn2+ accumulation within NPC1 cells, brain (Waller-Evans 

and Lloyd-Evans, unpublished) and patient blood samples (Hung et al., 2014), as well as upregulation 

of a variety of Zn2+ transporters and solute carriers (Reddy et al., 2006, Vazquez et al., 2012), suggested 

dyshomeostasis of this ion within NPC. Although NPC1 is often referred to as a cholesterol transporter 

following observations by Pentchev et al. 1985, there exists no direct evidence that full length purified 

NPC1 transports cholesterol (Lloyd-Evans and Platt, 2010). The results presented in Chapter 3 however 

clearly demonstrate the first direct function for NPC1 as a lysosomal Zn2+ transporting RND permease, 

with loss of function initiating downstream lipid storage and lysosomal expansion. 

Within this thesis, specificity of the NPC1 lysosomal Zn2+ storage phenotype was determined 

by showing that other cellular Zn2+ stores (ER, mitochondria) are not affected in NPC (Figure 3.4), and 

that Zn2+ storage is specific to NPC1 rather than being a general phenotype of lysosomal storage 

diseases (Figure 3.5). Indirect evidence for a Zn2+ transporting function for NPC1 included observations 

that Zn2+ storage occurs prior to lysosomal expansion and lipid storage phenotypes following either 

treatment with NPC1 inhibitors (U18666A (Figure 3.6), 1NMP (Figure 3.7)) or addition of Zn2+ to cells 

overexpressing the lysosomal Zn2+ import channel ZnT2 (Figure 3.8). Following characterization of 
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NPC1 as the only known mammalian RND permease (Scott and Ioannou, 2004, Tseng et al., 1999), 

evidence for a Zn2+ transporting function was supported by observations of sequence conservation, 

especially in residues known to be important for Zn2+ transport, between NPC1 and the Zn2+ 

transporting RND permease ZneA (Figure 3.11). Finally, direct proof for a Zn2+ transporting function of 

NPC1 can be seen when looking at the results of a novel assay which exploits lysosomal exocytosis in 

order to assess the function of lysosomal membrane proteins (Figure 3.12). 

	
7.3 NAADP-mediated Ca2+ signaling is important within the brain, and reduced lysosomal Ca2+ in 

NPC1 is responsible for downstream lipid storage 

	
The importance of lysosomal Ca2+ signaling can be seen in Chapter 5 when treatment with Ned-19, an 

inhibitor of lysosomal Ca2+ signaling via NAADP, resulted in a profound Ca2+ signaling defect in 5dpf 

zebrafish alongside storage of cholesterol and ganglioside GM1 (Figure 5.6). The substantial reduction 

in Ca2+ signaling within the zebrafish brain following treatment with Ned-19 is in line with numerous 

evidence suggesting the importance of lysosomal Ca2+ signaling via NAADP. Firstly, NAADP binding 

sites are observed throughout the brain (Patel et al., 2000) and exogenous stimulation with glutamate 

triggers both NAADP synthesis and lysosomal Ca2+ release (Pandey et al., 2009). In addition, lysosomal 

Ca2+ release via NAADP regulates the long-term structural plasticity of dendritic spines by triggering 

extracellular matrix remodeling (Padamsey et al., 2017).  Moreover, addition of NAADP can be seen 

to elicit Ca2+ release in brain microsomes (Bak et al., 1999), promote neuronal differentiation (Brailoiu 

et al., 2006), augment neurite outgrowth (Brailoiu et al., 2005), drive membrane depolarization 

(Brailoiu et al., 2009b) and increase Ca2+ influx via N-type voltage gated Ca2+ channels (Hui et al., 2015). 

Reduced lysosomal Ca2+ in NPC1 has been predicted to be due to inhibition of lysosomal Ca2+ 

uptake by the important cellular metabolite and signaling lipid, sphingosine (Lloyd-Evans et al., 2008, 

Lloyd-Evans and Platt, 2010). This lipid has previously been shown to inhibit plasma membrane Ca2+ 

channels (Colina et al., 2002), and following inhibition of the NPC1 protein with U18666A, sphingosine 

acts as the first lipid stored at 10 minutes – followed by reduced lysosomal Ca2+ from 30 minutes of 

treatment (Lloyd-Evans et al., 2008), suggesting it may inhibit lysosomal Ca2+ channels as well. 

Sphingosine storage was demonstrated to be directly responsible for the lysosomal Ca2+ defect in NPC 

following endogenous addition to cells; which resulted in a lysosomal Ca2+ defect and lipid storage 

mimicking that observed in patients, cells and mice (Roff et al., 1991, Lloyd-Evans et al., 2008).  

Given the importance of lysosomal Ca2+ signaling, it is hardly surprising that reduced lysosomal 

Ca2+ in NPC, most likely caused by lysosomal storage of sphingosine, appears to have a big impact on 

disease phenotypes, with Ned-19 treatment reducing the amplitude of neuronal Ca2+ spikes and 

initiating downstream lipid storage in vivo (Figure 5.6). The importance of the lysosomal Ca2+ defect 
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in NPC is also highlighted by observations that tanganil (Figures 4.9 & 4.10), CGS1680 (Figure 

4.1)(Visentin et al., 2013, Ferrante et al., 2016), d-tocopherol (Chapter 4)(Xu et al., 2012b), and 

curcumin (Chapter 6)(Lloyd-Evans et al., 2008), are able to reverse NPC lipid storage via their Ca2+ 

modulating abilities. Also, further reducing lysosomal Ca2+ by treating with the TRPML1 agonist MLSA1 

(Figure 4.2) appears to initiate lipid storage in wild-type cells whilst worsening storage in NPC (Figures 

4.3 & 4.4), again demonstrating the importance of lysosomal Ca2+ regarding NPC pathogenesis. 

	

7.4 Despite benefits observed, care must be taken when investigating Ca2+ modulators for the 

treatment of NPC 

 

Whilst clear beneficial effects of Ca2+ modulators on NPC are demonstrated, work in Chapter’s 4 and 

6 demonstrate how care must be taken when selecting Ca2+ modulators to move to the clinic. This was 

first demonstrated when looking at effects of the proposed NPC1 therapy and TRPML1 activator 

MLSA1, which despite previous studies suggesting beneficial effects (Shen et al., 2012), was 

demonstrated to in fact induce lipid storage within NPC cells (Figures 4.3 & 4.4). Curcumin acts as 

another potential NPC therapy, however, the low bioavailability of this molecule limits its effects in 

patients (Anand et al., 2007) and although available over the counter, this natural product is often 

combined with other compounds to increase its absorption (Anand et al., 2007), and combination 

effects are rarely investigated. The addition of certain lipid vectors combined with a lack of regulation 

when developing supplements means that several curcumin nutraceuticals currently being taken by 

NPC patients may in fact exacerbate lipid storage within cells and induce cellular toxicity (Chapter 6). 

These results demonstrate how a small change to a formulation can result in big changes to 

therapeutic effectiveness at the cellular level, and this is also seen when comparing D, L and DL forms 

of tanganil, whereby mixed isomer (DL) formulations initiate greater Ca2+ release in Npc1-/- astrocytes 

when compared with single isomer (D or L) treatments (Figure 4.7). Finally, whilst results in Chapter 

4, combined with the recent case study by Bremova et al., 2015 demonstrate the benefits of Ca2+ 

modulation via tanganil within human patients, potential limited effects of tanganil on certain cell 

types due to variable expression of its receptor, CaSR, may mean alternative Ca2+ modulators would 

act as better therapies for NPC patients (Figures 3.11 & 3.14). 

	

7.5 How do the Zn2+ and Ca2+ phenotypes fit together? Potential new pathogenic cascade for NPC1 

 

Pentchev et al., 1985 hypothesized a pathogenic cascade for NPC whereby a primary defect in 

cholesterol trafficking resulted in all downstream NPC phenotypes (Figure 7.1 A). This however now 
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appears unlikely following numerous observations (see Chapter 1.4). Having determined the 

importance of both Ca2+ and Zn2+ dyshomeostasis in NPC, I next asked how these two phenotypes fit 

together in order to generate a novel disease cascade (Figure 7.1 C).  

Sphingosine, storage of which occurs early in the NPC disease cascade following 10-min 

treatment with the NPC1 inhibitor U18666A (Lloyd-Evans et al., 2008), is an amine known to require 

a transmembrane pump to transport it out of lysosomes due to its net positive charge (Lloyd-Evans 

and Platt, 2010). One study suggested a role of NPC1 in the transport of amines, which could include 

sphingosine, out of lysosomes (Kaufmann and Krise, 2008). In addition to evidence that sphingosine is 

able to initiate a lysosomal Ca2+ defect (Lloyd-Evans et al., 2008), several factors highlight the 

importance of this lipid in the development of the NPC phenotype. For one, within NPC patients, 

sphingosine is increased up to 12-fold in peripheral areas such as the liver and spleen, with a 4-fold 

increase in the brain (te Vruchte et al., 2004). Furthermore, the yeast ortholog of NPC1, ncr1, which is 

able to compensate for NPC1 deficiency when expressed in mammalian cells (Malathi et al., 2004), 

appears to transport sphingolipids following observations that mutating its sterol sensing domain 

results in a primary sphingolipid trafficking defect (Malathi et al., 2004). As previously discussed, NPC1 

acts as the only mammalian RND permease  (Scott and Ioannou, 2004, Tseng et al., 1999), a class of 

multi-drug efflux pumps primarily found within gram-negative bacteria. As an RND permease, in 

combination with above observations, NPC1 may function to transport sphingosine out of lysosomes, 

resulting in the disease cascade described in Figure 7.1 B (Lloyd-Evans and Platt, 2010). 

In addition to potential roles in sphingosine transport, NPC1 appears to act as a lysosomal Zn2+ 

transporter, permitting Zn2+ efflux from lysosomes (Chapter 3). Figure 7.1 C shows a newly proposed 

pathogenic cascade for NPC1: a 2-armed pathway where NPC1 is a multi-substrate RND permease 

capable of transporting both sphingolipids and Zn2+. As previously discussed, storage of sphingosine, 

via a currently unknown mechanism, appears to initiate a lysosomal Ca2+ defect within NPC1 cells 

(Lloyd-Evans et al., 2008, Lloyd-Evans and Platt, 2010). As lysosomal Ca2+ release is important for 

endocytosis, this reduction in turn leads to trafficking defects and consequently lipid storage (e.g. 

cholesterol, sphingomyelin) (Lloyd-Evans et al., 2008). When NPC1 loses its ability to transport Zn2+, 

Zn2+ accumulates in NPC1 lysosomes and is chelated by the head-groups of BMP and other 

phospholipids (Kobayashi et al., 1999). Zn2+ binding to BMP could potentially prevent this phospholipid 

interacting with ASM, a necessary interaction for the degradation of the sphingomyelin (Kolter and 

Sandhoff, 2005), in turn leading to lysosomal storage of this lipid. As sphingomyelin and cholesterol 

interact (Garcia-Arribas et al., 2016), storage of sphingomyelin may in turn lead to some cholesterol 

storage. It can be seen that from both sides of the cascade, lipid storage self-potentiates and worsens 

endocytosis defects. 
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Several observations suggest that the Zn2+ and Ca2+ storage phenotypes make up separate 

parts of the disease cascade, as represented in Figure 7.1 C. For one, treating Npc1-/- astrocytes with 

the Zn2+ chelator phytic acid appears to reduce lysosomal storage of Zn2+, cholesterol, BMP, and 

sphingomyelin whilst unable to correct ganglioside GM1 storage and lysosomal expansion (Figure 

3.13), suggesting that Zn2+ storage alone is not responsible for the development of all NPC cellular 

phenotypes. Moreover, treating cells with either ISP1, an inhibitor of sphingolipid synthesis, or HPbCD, 

a proposed NPC therapy that seems to work via modulation of cholesterol, was unable to correct 

lysosomal Zn2+ storage within Npc1-/- astrocytes, suggesting that storage of this ion is either upstream 

or independent of sphingosine and cholesterol storage. In addition, miglustat, the only approved NPC 

therapy (Lachmann et al., 2004) and an inhibitor of glycosphingolipid synthesis (Platt et al., 1994) is 

able to reduce storage of sphingosine (Stein et al., 2012)(Lloyd-Evans et al., unpublished observation) 

but not Zn2+ (Hung et al., 2014). Another observation which suggests a 2-armed cascade is that variant 

NPC cells, showing minimal cholesterol storage, still accumulate lysosomal Zn2+. The ability of an RND 

permease to transport one substrate can be affected by its ability to transport others (Kinana et al., 

2013), which means loss of one transport function can potentially initiate either whole or half of the 

disease cascade. Variant cells may experience only half of the cascade (lysosomal Zn2+ accumulation), 

explaining the lack of substantial cholesterol storage.  

Future work investigating the proposed NPC disease cascade (Figure 7.1 C) would include 

addition of both sphingosine and Zn2+ to cells (both astrocytes and cells overexpressing ZnT2 in the 

case of Zn2+) to the determine effects on Zn2+ and sphingosine storage respectively. If the 2 phenotypes 

occupy different sides of a pathogenic cascade, we would expect addition of sphingosine to be unable 

to increase Zn2+, and Zn2+ addition unable to increase sphingosine.  

	

	
	

Figure 7.1. Potential NPC pathogenic cascades. A) The classical cascade whereby NPC1 acts as a cholesterol transporter: 

disruption leads directly to cholesterol storage within lysosomes and disease symptoms. B) Current cascade whereby NPC1 

acts as a sphingosine transporter. Defects lead to initial sphingosine storage within lysosomes, Ca2+ signaling and 
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endocytosis defects, and finally lipid storage and disease. C) As an RND permease, NPC1 could have multiple substrates 

including Zn2+ and sphingosine, both of which are stored following loss of function. Zn2+ interacts with BMP, and blocks the 

interaction of BMP with acid sphingomyelinase (ASM); an interaction required for enzymatic function. This leads to storage 

of sphingomyelin, and consequently cholesterol. Within this proposed cascade, sphingosine storage itself results in a 

pathway resembling the current cascade (B). Lipid storage from both pathways results in endocytosis defects. Above events 

combine to cause NPC disease pathogenesis. 

	

7.6 Plausible interactions between the Zn2+ and Ca2+ arms of the pathogenic cascade 

	

Whilst we suspect that Zn2+ and Ca2+ dyshomeostasis lie on separate arms of the NPC pathogenic 

cascade (Figure 7.1 C), some interaction between the 2-pathways is likely. For one, lipid storage that 

emerges following lysosomal Zn2+ accumulation is likely to contribute to further lysosomal dysfunction 

and endocytosis defects. Furthermore, NPC cells showing lysosomal accumulation of Zn2+ are likely to 

show reduced Zn2+ in the cytosol. Low cytosolic Zn2+ has been previously hypothesized to prevent 

endocytosis and increase plasma membrane localization of the Zn2+ transporter ZIP4, most likely in 

order to increase Zn2+ import into cells (Kim et al., 2004). In addition to its potential role in regulating 

endocytosis, numerous studies also suggest Zn2+ as a positive regulator of autophagy, although the 

mechanisms behind this remain largely unknown (Liuzzi et al., 2014). Bearing this in mind, both Zn2+ 

and Ca2+ dyshomeostasis may contribute to endocytosis and autophagy defects characteristic of NPC 

(Lloyd-Evans et al., 2008, Ko et al., 2001, Mayran et al., 2003). In addition, both Ca2+ and Zn2+ have well 

established roles in CNS function and synaptic transition, with dyshomeostasis of both of these ions 

having been implicated in the pathology of numerous neurodegenerative diseases (Corona et al., 

2011, Prakash et al., 2015, Pchitskaya et al., 2017). Within Alzheimer’s, disrupted Ca2+ and Zn2+ appear 

to have a synergistic effect on Ab and tau accumulation, oxidative stress and glutamate receptor over 

activation, ultimately promoting synaptic and neuronal loss (Corona et al., 2011). Baring this in mind, 

similar interactions may take place within NPC1 neurons. 

	

7.7 Developing combination therapies to treat both sides of the NPC1 2-armed pathogenic cascade 

	

Simultaneously treating Npc1-/- mice with miglustat to target glycosphingolipid storage, curcumin to 

overcome the lysosomal Ca2+ signaling defect and ibuprofen to reduce inflammation can be seen to 

have a greater neuroprotective benefit when compared with single or dual therapies (Williams et al., 

2014), suggesting combinational therapy as an optimal route for NPC. If the 2-armed disease cascade 

shown in Figure 7.1 C is representative of what happens in NPC1 cells and patients, perhaps the best 

treatment option would involve co-treating with a Ca2+ modulator such as tanganil (Chapter 4) and a 

Zn2+ chelator like phytic acid (Chapter 3). Future work would involve testing these combinatorial 
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therapies both alone (in our NPC zebrafish, Chapter 5) and in combination (both in vitro and in vivo). 

Within zebrafish, effects of both individual and combination treatments on lipid storage (via 

fluorescent staining and thin layer chromatography) and behavioral defects (spontaneous coiling and 

touch response) would be assessed. This would both confirm which arms of the pathogenic cascade 

are responsible for which phenotypes (e.g. is the lysosomal Ca2+ defect and/or Zn2+ accumulation 

responsible for the behavioral defects observed in the NPC zebrafish?), as well as providing 

information about the best combination therapies to take to the clinic. 

 Gene therapy holds great promise for the treatment of NPC1, with AAV-NPC1 injection leading 

to increased expression of lysosomal NPC1 (Chandler et al., 2017), presumably allowing NPC1 to 

transport its substrates out of lysosomes (e.g. sphingosine, Zn2+). This results in reduced cholesterol 

storage, reduced Purkinje cell death, improved behavior, and increased lifespan (Chandler et al., 

2017). Despite benefits observed, AAV-NPC1 injected mice still present with shortened lifespan and 

neuronal death when compared with wild-type, most likely due to variable expression of the AAV 

vector in the brain (Chandler et al., 2017). As previously discussed, lysosomal Zn2+ accumulation in 

NPC most likely results in reduced cytosolic levels of this ion. Perhaps using gene therapy to increase 

lysosomal NPC1 levels would stimulate Zn2+ transport out of lysosomes, potentially overcoming the 

cytoplasmic Zn2+ deficiency, whilst in turn reducing toxic lysosomal levels. This may have some 

beneficial effects regarding endocytosis and autophagy, both of which are reliant on cytosolic Zn2+ 

(Kim et al., 2004, Liuzzi et al., 2014). On top of this, increasing NPC1 in the lysosomal membrane via 

gene therapy in combination with small-molecule therapies (e.g. tanganil, phytic acid, miglustat) may 

optimize benefits following AAV-NPC1 injection by increasing the number of cells receiving therapy 

and reducing lysosomal storage of lipids and Zn2+, stimulating lysosomal Ca2+ signaling, and improving 

endocytosis defects from multiple directions. 

	

7.8 Concluding remarks  

	

To conclude this thesis, reduced lysosomal Ca2+ in NPC1 is instrumental in the development of the NPC 

phenotype. This phenotype emerges following lysosomal accumulation of sphingosine, which appears 

to inhibit lysosomal Ca2+ uptake channels. Moreover, having discovered a novel function for NPC1 as 

a lysosomal Zn2+ transporter, acting to transport Zn2+ out of lysosomes, lysosomal Zn2+ accumulation 

also appears crucial in the NPC disease cascade. These findings allowed elucidation of a potential new 

2-armed pathogenic cascade for NPC, whereby NPC1 acts as an RND permease able to transport both 

Zn2+ and sphingosine, and inhibition of NPC1 transport function leads to the primary accumulation of 

both these substrates. Combination treatments utilizing Ca2+ and Zn2+-modulating therapies, more of 
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which need to be investigated to optimize benefits in patients, perhaps alongside gene therapy 

approaches, may act as the best way to treat both arms of the pathogenic cascade. Future work will 

involve testing therapies both alone and in combination within our NPC zebrafish.  
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Appendices 

 
Appendix 1: T-Coffee software was used to compare sequences of NPC1 with ZneA: a recently 

discovered proton driven Zn2+ transporting RND permease found within the heavy-metal resistant 

bacteria Cupriavidus metallidurans CH34 (Pak et al., 2013) 
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