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Abstract 

Peer-to-peer (P2P) energy trading is referred to as flexible energy trades between peers, where the excessive energy 
from many small-scale Distributed Energy Resources (DERs) including those in dwellings, offices, factories, etc., is 
traded among local customers. To assess the feasibility of P2P energy trading, where local electricity demand and 
supply balancing is desired, a so-called P2P index was developed. By clustering the historical smart metering data 
using the k-means method, customers were categorized by their electricity consumption patterns and representative 
demand profiles of low voltage electrical distribution networks were produced. A linear programming optimization 
was carried out to find the optimal capacity of different DERs to maximize the local demand and supply balancing. 
PV systems and combined heat and power units were considered as the renewable resources. This work provides 
network planners with guidelines of appropriate shares of DERs for better constructing their future networks, and 
facilitates a P2P energy trading market paradigm. 
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1. Introduction 
Existing electrical energy systems were designed and built to accommodate large-scale generating 

plants, with demand traditionally considered as uncontrollable and inflexible, and with centrally 
controlled operation and management. Recently, there has been a revival of interest in connecting 
Distributed Energy Resources (DERs) to distribution networks, and microgeneration and flexible loads at 
the premises of end users. DERs suffer from the issues of uncertain availability due to varying weather 
conditions. Flexible loads are not currently utilized for balancing local generation. Thus, a challenge for 
the Distribution System Operators (DSOs) to provide a secure network to meet peak demand, and to 
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move to more active DSO roles with new business models, is increasingly critical. However the current 
changes cannot be effectively implemented within the existing technical schemes and market frameworks, 
and may result in a degradation of economic and environmental performance. There is a vital challenge to 
the DSOs, and new business models are essentials for their survival under this energy revolution.  

A large penetration of DERs also creates operational problems in distribution networks. For effective 
operation of the distribution networks, different approaches are being considered. One approach would be 
to break the network into smaller entities such as Microgrids and CELLs [1]. These investigations of 
Microgrids, CELLs, etc. were mainly focused on the technical issues. However the challenges that DSOs 
are facing with the energy revolution were not fully addressed. Radical decentralised systems and 
regional market solutions are clearly required to bring the end users and DSOs at the heart of system 
operation, and to provide effective technical and new market arrangement and business models for DSOs. 

Peer-to-Peer (P2P) energy trading might be a way forward to provide these market and technical 
solutions. P2P energy trading is defined as flexible energy trades between peers, where the excessive 
energy from many small-scale DERs is traded among local customers. Recently, some work has already 
been carried out on the P2P concept of trading local energy resources with other customers. Several 
projects, such as “Piclo” in the UK [2], “Vandebron” in Netherland [3], and “SonnonCommunity” in 
Germany [4] each proposed a possible business model for P2P energy trading considering from suppliers’ 
perspective. However, it would be necessary to assess the portfolios of these renewable resources as well 
as the electricity consumptions and to evaluate the feasibility of balancing them. 

2. Peer-to-Peer Energy Trading 
The P2P approach promotes regional energy trading and demand response to available resources in 

local areas, and this increases the efficiency, flexibility and responsiveness of local resources. Due to the 
hierarchical nature of the distribution networks, the P2P energy trading will be carried out in three levels: 
Level 1: P2P within a Microgrid; Level 2: P2P within a CELL (multi-Microgrids); and Level 3: P2P 
among CELLs (Multi-CELLs), as shown in Figure 1. In Level 1, each customer (normally in an low 
voltage (LV) network) is considered as a peer, in Level 2 each Microgrid is a peer (Level 2 is normally a 
medium voltage (MV) distribution network), and each CELL from Level 2 is a peer in Level 3. 
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Fig. 1. Structure of peer-to-peer energy trading  

3. Clustering Customer Demand 
In the UK, a number of generic profile classes (PCs) are provided by Elexon for residential, 

commercial and industrial customers, and are derived based on the average of all customers contained 
within a single PC [5]. Although these PCs are suitable for settlement, in reality they are not reflective of 
how electricity is actually consumed within the home. Individual households may use electricity in very 
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different ways [6]. Cluster analysis is able to group customers which have a similar electricity use pattern 
and this obtains better knowledge of the network demands than a simple aggregation. This can be used to 
produce representative demand profiles of distribution networks. A better planning of the DERs is 
therefore able to be carried out for the P2P energy trading. 

3.1. Methodology to produce representative demand profiles 

The process to producing a representative demand profile is divided into four stages (see Figure 2). 

3.1.1. Stage 1: Segmenting data 
The smart metering data is segmented on a daily basis (from 00:00 to 00:00 next day) with a 15-min 

resolution. For a data set of n customer for a period of M days, there are a total number of n×M daily load 
profiles. These daily profiles are the input of the k-means clustering analysis.  

3.1.2. Stage 2: clustering analysis using k-means method 
The k-means method is used to cluster these daily load profiles. Each of the daily load profiles 

produced in Stage 1 is classified into one of the PC groups, and each PC group is one cluster. 

3.1.3. Stage 3: Customer profile class classification 
Usually customers use electricity differently on a daily basis, and thus multiple PCs over a period were 

found for some customers. The PC, conform to which a customer used for the majority of the time across 
the analyzed period (i.e. M days), is considered for that customer. 

3.1.4. Stage 4: Creating representative profiles 
A representative demand profile is an aggregation of randomly selected profiles from PC pools. Each 

of the PC pools is consisted of the members of the corresponding PC obtained by using k-means method. 
The proposition of different PCs is determined either by the nature of an existing LV network or user 
defined depending on the purposes of research. 
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Fig. 2. Methodology for clustering and producing the representative demand profiles using smart metering data 

4. Modelling Local Renewable Generation Resources 

4.1. PV systems, and combined heat and power (CHP) units 

The PV generation profile is produced using the Centre for Renewable Energy Systems Technology 
(CREST) [7] tool. Due to the relatively small area of LV networks, for a given day, all PV systems are 
considered to have the same generation profile. The nominal capacity of the PV systems is randomly 
selected from a range of 2.0 to 3.5 kWp. Assume the number of PV systems installed in an LV network is 

1n , the total PV generation is presented by 
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For the electricity output of CHP, a heat demand-driven model was adopted. The electricity generation 
peaks normally take place in the morning and evening, when heat demand is high. Assume the number of 
CHP units is 2n , and the total electricity output is the summation of outputs from all CHP units, 
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4.2. Distributed generation in a Microgrid 

The total distributed generation is presented by 

PV, CHP,t t tG G G
                                                                                                                              (3) 

5. Problem Formulation 

5.1. P2P index 

Distributed generation supports the energy balance in local areas. The load in a distribution system is 
divided into the gross system load, distributed generation and net load. The net load is the residual load 
and it is reduced as part of the system load is supplied by distributed generation. The peer-to-peer index is 
defined by the proportion of distributed generation to the gross system load, 

,
t

P2P t
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G
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where ,P2P tI  is the P2P index, tL  is the gross system load and tG  is the distributed generation. 

5.2. Optimization formulation  

In an LV network, to achieve demand and supply balance, a set of DERs that result in the daily index 
equal to one is desired. Therefore, the objective function is expressed by 
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6. Case Study 

6.1. Demand data and clustering results 

The electricity demand data from smart metering installed at the newly-built Zero Energy Bill (ZEB) 
houses at Corby, Northamptonshire, UK [8] was used. Figure 3(a) shows a one-week demand profiles of 
4 customers with a 15-minute resolution. The proposed clustering method was carried out and Figure 3(b) 
shows the centroid daily profiles of four clusters, and it was found the corresponding proportion of these 
clusters are 27.1, 25.4, 10.0, and 37.5%. Two representative demand profiles was produced by randomly 
selecting different number of clusters, and used for Case 1 and Case 2. In Case 1, 90, 30, 30, and 90 
profiles are selected from clusters 1, 2, 3 and 4, and in Case 2, 120, 30, 0, and 90 profiles are selected 
from these four clusters. Both of the two cases represent an LV network with 240 residential customers.  

6.2. Optimization results 
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6.2.1. Two deterministic case 

The proposed linear-programming optimization was carried out to find an optimal number of PV 
systems and an optimal rating of the CHP unit to supply the network demand. The results were compared 
amongst only using PV systems, and then only CHP units, and finally combined technologies of PV and 
CHP units. Figure 4(a) depicts the optimal PV generation for Case 1. Figure 4(b) depicts the optimal 
electricity rating of CHP units for Case 1. Figure 4(c) presents optimal number of PV system and CHP 
rating for Case 1. For the PV only case, 78 PV systems were required and the average daily P2P index 
was 0.38. This index doubled when adopting CHP units with a required rating of 186.3 kW. The P2P 
index was further increased to 0.86 when using the combined technologies for this deterministic case. 
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Fig. 3. (a) Examples of demand profiles of four customers from smart metering; (b) Centroid loads of 4 clusters 
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Fig. 4. Optimization results of Case 1: (a) PV only; (b) CHP units only; (c) PV and CHP units together 
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6.2.2. Monte Carlo analysis 

Multiple simulations were carried out and each considered a daily network demand that is randomly 
selected from the cluster pools. The pool of PV generation was produced by CREST tool, and the CHP 
profiles also considered the randomness of the electricity generation. The average and deviation of the 
optimal number of PV system and CHP rating are presented in Figure 5. It is demonstrated that Case 2 
required more proportion of PV systems, as Case 2 has more customers using electricity around mid-day. 
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Fig. 5. Monte Carlo analysis: optimal PV number and CHP rating for PV only, CHP only and combined PV and CHP scenarios 

7. Conclusions 
To assess the feasibility of P2P energy trading, a P2P index considering local demand and generation 

balancing was developed. By clustering the smart metering data using the k-means method, customers’ 
historical demand data was analyzed, and this helped to find the optimal DERs to balance the networks’ 
demand. The methodology was verified by a case study considering an LV distribution networks with 
residential customers. This work provides network planners with guidelines of appropriate shares of 
DERs for better constructing their networks, and facilitates a P2P energy trading market paradigm. 
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