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Abstract— Applying deep learning models to large-scale IoT
data is a compute-intensive task and needs significant com-
putational resources. Existing approaches transfer this big
data from IoT devices to a central cloud where inference
is performed using a machine learning model. However, the
network connecting the data capture source and the cloud
platform can become a bottleneck. We address this problem
by distributing the deep learning pipeline across edge and
cloudlet/fog resources. The basic processing stages and trained
models are distributed towards the edge of the network and
on in-transit and cloud resources. The proposed approach
performs initial processing of the data close to the data source
at edge and fog nodes, resulting in significant reduction in the
data that is transferred and stored in the cloud. Results on
an object recognition scenario show 71% efficiency gain in the
throughput of the system by employing a combination of edge,
in-transit and cloud resources when compared to a cloud-only
approach.

I. INTRODUCTION

Internet of Things (IoT) devices such as sensors, video
cameras and smart objects [1] act as the basic building
blocks of smart cities and autonomous vehicles. The expo-
nential growth and availability of these devices is producing
a tremendous amount of data in zettabytes. As a result
of these IoT deployments, large data volumes need to be
transmitted via a (public) network to the analytics platform.
In video analytics, a single video camera can produce about
25-30 frames/second. In HD and FHD cameras an 8-bit
uncompressed RGB frame amounts to about 553 Mbps and
1.24 Gbps for a one minute video, respectively. With the
advent of 4k and 3D video cameras, this size is likely to grow
exponentially. By 2021, video traffic will account for about
82% of the whole IP Internet traffic, as estimated by Cisco
Global [2]. Developers and engineers are facing the challenge
of providing on time analytics of video data to support public
safety and security from video cameras. Cloud computing
is not efficient enough to support prompt analytics of such
video data [3]. Video Analytics based on edge computing is
the only feasible approach to cater low latency requirement
for large-scale video streams [4].

Fig. 1. Traditional Cloud based Video Stream Analytics

Traditionally video data from data sources is transferred
to the cloud where data analytics takes place, and results
are sent back to the client as shown in Fig.1. The traditional
model suffers from high latency and network bandwidth use,
as all the data has to be transferred to the cloud for analytics.
Video analytics is described as an autonomous understanding
of the events or actions occurring in a video feed [5], and
is still in its infancy compared to other forms of analysis.
Two approaches to video analytics are (i) centralized and (ii)
edge based architecture as mentioned in [6]. In a centralized
approach data from video cameras are routed to a centralized
cloud where all of the analytics takes place, whereas in an
edge-based architecture part of the analytics is performed
near the source of data and partly on the centralized cloud.
Most of the existing intelligent video analytics (IVS) systems
are based on centralized approach and assume the video
data to be readily available in proximity to where analytics
takes place. However, in reality, the video data has to be
transported from a source which may involve moving the
data through several network hops to reach the destination
where it is stored and analyzed.

With the success of deep learning, video analytics using
deep learning is increasingly being employed to provide
accurate answers to object classification particularly with
convolutional neural network (CNN) [7]. However perform-



Fig. 2. Deep Learning Pipeline for Object Recognition

ing analytics using deep learning is a complex task with
high demand put on the performance and the accuracy of
results. Deep learning algorithms often use cloud computing
for training and inference. With the exponential growth of
video data from cameras, the traditional cloud computing
paradigm is not able to meet the Quality of Experience (QoE)
demands often associated with network latency and Round
Trip Time (RTT) constraints. Moreover, an increase in data
from video cameras leads to an increasing cost of resources
on a centrally managed cloud [8].

Unlike the use of data prediction techniques on batch data,
video analytics is a complex problem and can often logically
be decomposed into stages. For example, object recognition
in videos can be decomposed into stages of motion detection,
frame enhancement, object detection, and recognition. A
typical Cloud-based deep learning pipeline for object recog-
nition and the proposed edge enhanced decomposition of the
pipeline is shown in Fig.2. It consists of four stages marked
as S1-S4. In cloud-based systems, typically all of the stages
are executed on the cloud particularly if the source producing
the data is on a different network than the client. In this work,
we split the deep learning pipeline by using edge computing
resources to improve the performance of the video analytics
system while keeping the accuracy intact.

Our main contributions are:

• Design and development of an edge inspired infrastruc-
ture for high-performance video streams analytics.

• Distribution of the deep learning pipeline stages across
the edge, in-transit and cloud resources to bring the
benefits of low latency, reduced bandwidth costs and
improved performance for object inference.

• To provide a scalable architecture which could effi-
ciently scale to a large number of video cameras by
utilizing hardware resources including multiple edges,
in-transit and cloud nodes to provide high-performance
analytics.

The rest of this paper is organized as follows. In section II
we describe state of the art in edge computing and computer
vision. In section III, we propose our system architecture for
edge enhanced deep learning and how it can scale to many
edge and in-transit nodes to provide parallel and sequential
processing of the video streams. In section IV, we discuss
the decomposition of an object recognition scenario and
develop a data pipeline model for video streams. We also
briefly describe the training setup of the neural network

used for object recognition in this section. In section V
and VI we discuss the experimental setup and the results
obtained respectively. Section VII include conclusions and
future directions of the work.

II. RELATED WORK

Existing efforts in video surveillance have relied on the
human operator manually watching camera feeds and press-
ing an alert button in case of an event. However, security
personnel can hardly remain alert for monitoring tasks after
20 mins [9]. Recently intelligent video analytics systems
(IVS) with the aim to analyze video streams without human
intervention have emerged which provide constant analysis
of a scene [10]. Most of the existing work on intelligent
video analysis is based on centralized architecture using a
storage-analyze cloud model such as [11] where the data is
first transported and stored in the cloud. The analytics is then
performed on the stored data using job scheduling [12]. The
post analytics of video data is a time consuming process and
can often take hours.

Deep learning has seen unprecedented success in recent
years for complex tasks such as speech and facial recogni-
tion. CNN is a deep learning model which has brought a
breakthrough in image, video and audio classification prob-
lems. In [13], the authors used CNN for large-scale video
classification. The training and inference of deep learning
models are performed by using cloud services [8]. With the
proliferation of IoT devices, analytics on the cloud can suffer
from slow response times mainly due to network delays and
round trip times. Due to high data volumes from IoT, data
has a strong gravity which indicates the difficulty of moving
a mass amount of data over the network. A viable approach
is to move the analytics towards the data source instead.
Consequently, edge and fog Computing [14] are proposed
as new paradigms, where data analytics takes place at the
network edge to minimize the cloud workload, to improve
the response times and to reduce the cloud storage. Current
work in edge computing focuses on reducing latency and
bandwidth from edge/cloudlet to cloud such as in Gigasight
[15] by running computer vision algorithms on the cloudlet
and sending the resulting reduced data (output, recognized
objects) to the cloud. An edge based system utilizing edge
and cloud computing include [16]. Another important work
in this regard is [17], which focuses on video analytics using
edge and in-transit resources with a deadline time for each
job. Some works such as Yaseen et al. [18] employ Graphics
Processing Unit (GPU) to accelerate the video processing
tasks to reduce the computational complexity involved in
video stream decoding and processing. Another GPU based
video analytics system on the cloud [19] is capable of
analyzing recorded streams of video data from a cloud or
storage server. An operator specifies the video file and search
criteria to a client program; video analytics is then performed
on the cloud and results are returned to the operator after
some time. However, these system only considered video
analytics using a centralized architecture.
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Fig. 3. Edge Enhanced Deep Learning Architecture with Horizontal and Vertical Scalability for Video Stream Analytics

As evident from the above discussion, existing state of
the art in video analytics focus is to provide accurate results
using both shallow networks and deep learning models.
These systems assume the video data is readily available for
analytics while the transfer cost and network latency from
source to destination is not considered. Few systems analyz-
ing video streams from cameras also assume the streaming
data has been stored in the cloud. In contrast to that,
we assume the video data is continuously being streamed
from IoT devices and discuss the challenges arising in this
scenario. Our focus in this paper to improve the performance
of the deep learning pipeline for video analytics by utilizing
edge computing paradigm. To the best of our knowledge,
this is the first time an edge computing based deep learning
pipeline distribution for efficient video analytics has been
proposed. The proposed system can be tailored to meet the
demand for real-time applications other than video analytics
such as speech recognition and anomaly detection.

III. EDGE ENHANCED SYSTEM ARCHITECTURE FOR
VIDEO ANALYTICS

The proposed system architecture consists of three logical
tiers namely edge, cloudlet and the cloud as shown in Fig.3a.
Video streams from data sources pass through the edge
and cloudlet tiers to reach the destination cloud. Cloudlet
or fog node is an in-transit node placed between the edge
and the cloud. Tiers can scale in vertical and horizontal
direction. In Vertical Tier Scalability (VTS), a tier may
contain one or more computational nodes to form a cluster as
shown in Fig.3c. Vertical tier nodes are connected with Local
Area Network (LAN) in a close vicinity forming a compute
cluster which is managed by a master node. In Horizontal
Tier Scalability (HTS), a tier can extend in the horizontal
direction with a set of vertical clusters at a certain physical
distance from each other as shown in Fig.3b. The vertical tier
scalability provides parallel processing of the video streams,
and horizontal tier scalability provides sequential processing
of the streams in a single logical tier. This scalability can

be adapted to the available hardware resources and the
specific analytics problem. It allows parallel and sequential
processing of data in three tiers. The master node of each tier
in VTS receives input from the previous tier and distributes
the load among available tier nodes. Tier nodes in VTS work
in parallel reducing the time to process the overall video data.
In VTS case, if there are 500 video frames to process and
a tier consists of two nodes, then each node may process
250 frames in parallel. At the network edge, video cameras
continuously stream time series video data to the network.
The video data is moving to the cloud in the horizontal
direction. As the data is in-transit, analytics is performed
at the intermediate nodes at the edge and cloudlet nodes.
In smart cameras, we can program the cameras to broadcast
the video to the network only when there is some motion
detection. In this case, edge tier includes the camera device
and the immediate edge node. In simple devices, such as
sensors, we may only forward the data to the cloud if the
temperature exceeds a certain value. These devices work on
rules which are specified by the user. One such tool is Krikkit
[20] which allows edge devices to be programmed by rules
specified using web services rather than programming each
of the network nodes manually. However, for video analytics,
the problems of vehicle tracking, object recognition and
semantic segmentation are not tractable with simple rules,
due to the complexity of the problems. By employing CNN,
a deep learning model, we distribute the data pipeline across
network nodes. Initially, the CNN models are trained on
the cloud, and the resultant models are saved. The saved
models are then transferred and distributed over cloudlet
and cloud resources for object inference. The edge resources
are used for basic processing stages. By overlapping the
deep learning pipeline stages over edge, in-transit and cloud
resources, the deep learning pipeline can be executed in
parallel to improve the performance of the overall system.
The numbers of nodes in each tier may vary depending
on the commodity hardware availability and the application
requirements. Total computational nodes on the network will



be the sum of the edge, cloudlet and cloud resources. By
using infrastructure in Fig.3, we can transform the low-value
density of video data into high-value density data before
feeding this data to the cloud resulting in improved response
times, reduced bandwidth and storage requirements on the
cloud. For object recognition, we define the value of the
data as high if the video frame contains an object or low
otherwise. The video data is pushed from the video sources
to in-transit resources and the central cloud using software-
defined networking (SDN) [21] such as OpenFlow [22]. SDN
is a design methodology for personalized networking and
provides the flexibility to deploy custom work-flows on com-
modity hardware by programming the control plane. As the
data is in transit, it can be filtered by the edge and in-transit
resources. The filtration process can transform the video
streams from a low-value density to a high-value density
data before being fed to the cloud for final processing. Fig.3
shows the reference architecture for a constant streaming
video analytics which can be modified to a specific video
analytics problem and the available hardware resources to
generate an application specific architecture (ASA). SDN can
then be used to realize the physical configuration of the ASA
consisting of edge, cloudlet and cloud nodes.

IV. EDGE ENHANCED DEEP LEARNING MODEL

Researchers have traditionally relied on handcrafted fea-
tures to solve computer vision problems with limited success.
Recently with the advent of deep learning, problem features
can be automatically learned by the deep learning algorithms
such as CNN. Deep learning has achieved promising results
which equal to or exceed human performance in computer
vision problems [23]. In video analytics domain, problems
such as object recognition and segmentation can be decom-
posed into a cascade of simpler problems. For example,
object recognition is a complex video analytics problem and
consists of the following stages

• S1. Frame Loading/Decoding and Motion Detection:
Video frame from the camera source is first loaded and
decoded in memory. The video frame is then passed to
a motion detector where it is compared with the pre-
vious frames for differentiation. Video sources such as
Closed-circuit television (CCTV) cameras continuously
produce video data even if there is no change in frames;
motion detection is usually employed to reduce the input
data.

• S2. Preprocessing: Includes basic enhancements such
as conversion to binary Image, histogram equalization,
and scaling where an image is downscaled or upscaled
according to the algorithm requirement.

• S3. Object Detection and Decomposition: Process video
frame into single objects, a video frame may consist
of more than one object. Usually, the frame is decom-
posed into individual objects, and then each object is
individually detected. The detection of object orienta-
tions/landmarks in a bad light or low light conditions is
also considered in this stage.

• S4. Object Recognition: The video frame is passed
through a deep learning model for object recognition.

The stages above can be distributed among edge, cloudlet
and cloud resources in varied ways which determine the
performance of the system. In general for a video analytics
problem, the work can be divided into three phases. In the
first phase, the deep learning pipeline is decomposed into
logical stages. For each stage, one or more computational
tasks are determined. In the second phase, stages based on
machine learning are trained on the cloud. In the third phase,
the stages are distributed on the physical network nodes using
SDN. The decision to run the trained model on cloud or
cloudlet can affect the performance of the overall system.
The decision strategy of running trained models on cloud or
cloudlet is discussed in section IV-B. In general, we perform
non-compute intensive stages on the edge tier and more
compute-intensive stages on the in-transit and cloud tiers.
For object recognition case, the distribution of stages over
network resources is shown in Fig.4. For S1 and S2, edge
tier can be used. Edge tier is defined as consisting of the
data sources (cameras) and the edge nodes. For S3 machine
learning model to detect the object is run on the cloudlet
node. For S4, the trained deep learning model is run on
the cloud to perform the compute-intensive work of object
recognition. If there are more than one deep learning models
for these stages, we need a way of mapping the deep learning
models onto our cloudlet and cloud nodes. In general, if
we denote the deep learning pipeline for a specific video
analytics problem by letter ’P’, the number of stages for the
problem set P is

P = {S1, S2, S3...SN} (1)

SN is the final stage number, and the set P denotes all the
stages of a problem P. It consists of two types, basic stages
and machine learning stages. Basic stages do not involve a
machine learning model for processing. For each stage, we
may have one or more tasks given as a set TSi

TSi
= T1, T2, T3, . . . TN (2)

where ’i’ in Si denotes a stage number. Total tasks for all
stages is given by

TtS =

N∑
n=1

TSn
(3)

Each task in a stage performs some transformation on the
input frame resulting in an output frame given by the
following equation

G(x, y) = T (F (x, y)) (4)

G(x, y) indicates the output pixel value at location x, y and
F (x, y) indicates the input pixel value at location x,y. The ’T’
indicates the transformation function which is applied to all
the pixels of the frame. For basic processing stages, the trans-
formation function could be an image smoothing/sharpening,
noise reduction, histogram equalization and or image scaling.



Fig. 4. Edge Enhanced Deep Learning for Object Recognition Scenario

For deep learning stages, the transformation function will be
a deep learning model.

If there are more than one deep learning stages, deep
learning models to run on each node is given by M

M = DL(SN )/N (5)

DL is a function which takes the total number of stages
in a problem and returns the number of deep learning
models in the problem. N is the number of cloudlet and
cloud nodes. If M is more then one, it means we need to
execute more than one model on either cloudlet or cloud
node. Due to processing and storage constraints, we do
not consider edge as a candidate for deep learning models.
Deep models may or may not have a dependency; dependent
models must be executed in a sequence to yield correct
results. Detection of an object is a precursor step to object
recognition, therefore object recognition model is dependent
on the object detection model and must be executed after it to
conform with the serial execution requirement. An example
of independent models is a driver recognition scenario. The
semantic recognition of the driver and the vehicle may need
two deep learning models without dependency; it does not
matter whether a person is recognized first or the vehicle. We
discuss three strategies to decide the execution of models on
network nodes given in section IV-B

A. Data Pipeline Model

The inference is to be performed on the video streams
coming from cameras. We denote the set of video cameras
as

CN = {C1, C2, . . . CN} (6)

where N is the total number of video cameras. Each of these
video cameras is producing data at N frames per second;
each camera frame rate is denoted by

CNfps = {F1, F2, F3, F4 . . . FN} (7)

Each frame is considered a job to be processed by the deep
learning model. Number of jobs produced cameras with same
frame rate per second will be

CNjps = CNfps ∗M (8)

where CNfps is the number of frames per second for camera
N and M is the number of cameras with the same frame rate.

Total number of jobs produced by all camera in one second
will be

JTjps =

N∑
n=1

CNfps ∗N (9)

where CNfps denotes the camera with unique frames per
second and N is the number of cameras with the same frame
rate. The time cost to process each job with algorithm A will
be

Cja = At + Tt (10)

where At is the algorithm time to process the job and Tt

is the network time to transfer the record from source to
destination. Total cost to process all the jobs with algorithm
A will be

CTja = JTjps ∗ Cja (11)

where JTjps is the total number of jobs and Cja is the cost
time for each job. We also define a percentage gain to show
the efficiency of a setup S in terms of time and cost of a
reference cloud setup.

Gs = (CTja(c)− CTja(s)) ∗ 100/CTja(c) (12)

where CTja(s) is the total cost to process all jobs on a setup
S and CTja(c) is the cost to process all the jobs on cloud
setup. We will use the Gain to compare our approach with
the traditional cloud model and to prove the efficacy of the
proposed system.

B. Model Decomposition Decision Strategy

The deep learning pipeline consist of 1) deep learning
models and 2) basic processing stages. For multiple stages,
the choice of running the deep learning model on the
Cloudlet or Cloud is a critical decision to be made. Depend-
ing on the problem requirement, it can largely influence the
response time and bandwidth/storage costs between network
resources. Model selection decision on network nodes is
based on the model algorithm time and the volume of the
data to be processed by the model. To make the decision
easier, we propose three strategies as following:

• Model Time (MT): Based on the inference time each
model takes, we decompose the models on the edge,
cloudlet, cloud tiers by observing the available hardware
and application requirements. Intuition may lead us to
run the compute-intensive model on the Cloud, however,
if it also has a more capacity to filter low-value density
data, it might be appropriate to run it on the cloudlet



Algorithm 1 Model Time based Node Allocation
Input: Models
Output: CloudNodes,CloudletNodes

Initialisation :
If its a single model schedule it on cloud

1: if (Models.size()==1) then
2: CloudNodes.first().assignModel(Models.first))
3: return CloudNodes, CloudletNodes
4: end if

Find model time for each model
5: Map{Model,Time} modelTimeMap
6: for (i = 1 to Models.size) do
7: time=Models[i].getAlgorithmTime()
8: modelTimeMap.set(Models[i], time)
9: end for

Sort the model time map based on time
10: if (strategy=highTimeOnCloud) then
11: sortAscending(modelTimeMap, time)
12: end if
13: if (strategy=LowTimeOnCloud) then
14: sortDescending(modelTimeMap, time)
15: end if

Allocate the models on cloudlet and cloud node
16: for (i = 0 to CloudletNodes.size()) do
17: m=modelTimeMap.getModel(i)
18: CloudletNodes.assignModel(m)
19: end for

Check if there are models to be assigned to Cloud
20: if (modelT imeMap.size() > CloudletNodes.size())

then
21: for (i = 0 to CloudNodes.size()) do
22: cloudletSize=CloudletNodes.size()
23: m=modelTimeMap.getModel(cloudletsize+i)
24: CloudNodes[i].assignModel(m)
25: if ((cloudletsSize+ i) > modelT imeMap) then
26: Break
27: end if
28: end for
29: end if
30: return CloudNodes, CloudletNodes

to reduce the network bandwidth and to save the cloud
costs. Algorithm for this strategy is given in Algorithm
IV-B.

• Frequency Sampling: In this strategy, we estimate the
number of classes in the video streams. In case of
object recognition, two classes can be ”object-yes” and
”object-no”. Based on a statistical approach, count of
all the classes is estimated and is used to schedule the
model on cloudlet or cloud. For instance, if a dataset has
more background objects, frequency-based sampling
can be employed to detect and filter the background
objects in the cloudlet. On the other hand, if the
dataset has many foreground objects than background
objects, it might be appropriate to run the deep learning

TABLE I
STORAGE SIZE AND PROCESSING DEADLINE

Name Memory Storage(MB) Deadline(sec)
Edge 32 1
Cloudlet 64 2
Cloud 128 500

recognition model on both cloudlet and cloud to make
the system efficient.

• Adaptive Strategy: This strategy observes the history of
the previous one hour, one day or one month record and
switches the cloudlet and cloud nodes based on cloud
saving, cloudlet cost-saving strategy. The saving cost
may apply to energy, bandwidth and or storage saving. It
is determined subjectively by the user based on analysis
of the network and application requirements.

C. Deep Model Training

The deep learning training for object recognition was
performed on the cloud platform. After the model was
trained, it was saved in a file and used for object inference
on video streams coming from the camera sources. For
object detection, a pre-trained model was obtained from the
OpenCV library [24]. It was not feasible to decompose the
deep learning training towards the edge due to two reasons.
Firstly, the training data was already available in the cloud.
Secondly, as cloudlets and edge nodes are usually not near
each other, distributing the training process on edge and
cloudlet nodes may introduce a significant delay which may
hamper the training process more than if it was being trained
on a cloud. The deep learning training was performed on
the cloud cluster with 8 compute cloud nodes using the
University of Derby cloud. Each node in the cloud has a
storage of 100 GB, 4 VCPUs and 16 GB RAM. The total
video dataset size is 5GB. The first convolutional layer of
CNN filters the frames with 96 kernels. The layer next to it
has 256 kernels in it. The next three layers are convolutional
with 384 kernels in them. All these layers end up to fully
connected layers. The object recognition model was fully
trained after about 1 hour and the trained model was saved
on a disk storage.

V. EXPERIMENTAL SETUP

The experimental setup was created using OMNeT Sim-
ulator. It is a discrete event simulator and provides accurate
simulations for a wide variety of scenarios. Every effort was
made to make the simulation as accurate as the real hardware.
The experimental setup consists of video cameras, processing
nodes and gateways (switches, routers) to transport data
between hosts. The edge and in-transit nodes have limited
memory storage space. When the memory buffer of an
edge or in-transit resource is exceeded, it sends all the
jobs in its current memory buffer to the next network hop
and frees the space occupied. All processing nodes also
associate a time deadline to each object recognition job in
their current memory buffer under which a job should be
completed. The storage space for the computational nodes



Fig. 5. Experimental Setup for Deep Learning Object Recognition

and their deadline time to process a job is given in Table
I. If a network node is unable to process the job under
its respective deadline time, the job is forwarded to the
next hop in the network or rejected in case of a cloud.
The experimental setup in Fig.5 depicts a subset of the
proposed infrastructure given in Fig.3 and presents a sim-
ple scenario to demonstrate the efficacy of the system.
A brief explanation of the nodes is given below.
Cam1 and Cam2 are video camera sources and are con-
tinuously streaming video data of 20 and 10 frames
per second respectively. The data is obtained from the
video folder which consists of images of HD res-
olution with an average size of 102Kb. Cam1 pro-
duces about 2Mb of video data per second and
cam2 produces about 1Mb of video data per second.
Edge Switch moves data from video sources to edge or
to the next network node. The decision of switching is
based on the configuration being run. For instance in
cloud only mode, it transfers all the video data to the
next network switch, that is cloudlet Switch in our setup.
Cloudlet Switch decides to forward the packet either to the
next network hop that is cloud Router or to the cloudlet.
The decision is made based on the experiment and config-
uration being executed. Cloud Router is used to forward
video data from the data source network to the cloud
network to reach the cloud. We assume the cloud resides
on a network other than the rest of the nodes and is
connected to the data sources network through a router.
Edge node does preprocessing of the data before forward-
ing the data back to the edge Switch. Edge Switch then
forwards it to the next horizontal node. Edge node has a
limited storage buffer for jobs. A job from the camera is
first stored in the buffer of the edge node before it can
be processed, the job is removed from the buffer after
processing. The buffer size is fixed for all experiments.
If the incoming jobs exceed the storage buffer of the
edge node, processing is aborted and edge node forwards
the unprocessed jobs to the next node in the network.
Cloudlet is an intermediate node which sits between the
data sources and the destination cloud. It has more storage
and processing capacity than the edge but equal to or fewer
resources than the cloud. The cloudlet is used to perform
inference for object detection. Video Data is transferred to
the cloudlet node only in cloudlet-cloud and edge-cloudlet-

cloud mode. The storage capacity of the cloudlet is fixed for
all the experiments and is given in Table I. Likewise edge, if
a cloudlet buffer is exceeded, it forwards the jobs to the next
network hop without processing and frees its buffer storage.
The Cloud performs the final processing and is the last
network node for the data in transit from the video sources.
The cloud runs a deep learning inference model for object
recognition on every job which takes around 250ms in
average. The storage capacity of the cloud is assumed to be
sufficient for the experiments being conducted. The Internet
Protocol (IP) address for the nodes was assigned automati-
cally by the software. Nodes were connected to each other
through communication links and ports. Ports are referred to
as gates in the simulator and were manually configured for
each node. All the nodes are placed from each other at a
certain distance to introduce the delay in the communication
links. Edge node is assumed to be closest to data sources,
cloudlet is placed in-between cloud and the edge node and
cloud is the furthest from data source. The communica-
tion delay between edge Switch to cloudlet Switch and
cloudlet Switch to cloud Router is 2ms and 4ms respectively.
All the other network connections have a delay of 1ms.
The experimental evaluation is performed using an object
recognition use case because it needs deep learning models
and has complex computational and data access require-
ments. The experimental setup is used for evaluating the
proposed system and producing the results. The frames from
video cameras consist of images of High Definition (HD)
quality with an average size around 103KB. The frames are
of two types i) background frames and ii) foreground frames.
Background frames only consist of background information
while the foreground frames consist of an object with a
background. In the dataset that has been used to evaluate
the system, the ratio of foreground to background frames
is 2:3, out of every 5 frames transferred, 2 consist of
foreground objects and 3 have only background information.
We associate foreground frames with a high value of 1 and
background frames with a low value of 0. A video stream
with all foreground frames will have a high-value density
and video frames with a mix of background and foreground
frames will have a low-value density. A continuous streaming
video data is produced by the camera sources to emulate
the real-life scenario. The edge, cloudlet and cloud nodes
have been used to evaluate the distribution of deep learning
pipeline for object recognition operations in real time on the
streaming data.

VI. RESULTS AND DISCUSSION

The experiments were run for four software defined net-
working (SDN) configurations namely i) Cloud Only (CO)
ii) Edge-Cloud (EC) iii) Edge-Cloudlet-Cloud (ECC) iv)
Edge-Cloudlet-Cloud with Filtration (ECCF). In all of the
configurations, tests were performed for object recognition
inference. No tests were performed for deep learning training
as it was not distributed towards the edge and in-transit
resources. For each SDN configuration, two experiments
were run.
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Fig. 6. Time to process 10k,50k,100K jobs on the four SDN configurations

Fig. 7. Time to process stages of an object recognition job in milliseconds
(ms)

A. Experiment 1: Total time to process 10K, 50K, and 100K
object recognition jobs

In the first experiment total time to process object recogni-
tion jobs was measured and plotted. The experiment was run
for 60 minutes and time was noted to process 10K, 50K and
100K jobs. In total 108,000 video frames were submitted to
the system which amounts to about 10.6GB in size.

1) Cloud Only: The cloud only configuration is the tradi-
tional approach and is used as the reference to compare and
analyze the results with the other SDN configurations. In this
setup, all the stages of the deep learning pipeline shown in
Fig. 7 were executed on the cloud and results were obtained.
For the first experiment using Cloud only configuration, the
results are shown in Fig.6. It takes about 666 minutes (11
hours and 7 minutes) to process 100K jobs. During this time
100K total object recognition inference jobs were completed.
The cost function for the total jobs defined in equation 11
is given below CTja=100000*400/1000=40,000s (11hrs and
6 mins) The actual time to process these records as shown
in Fig.6 is 2 seconds more than the total cost function. This
delay is attributed to transfer of the video data from video
cameras to Cloud node.

2) Edge and Cloud Only: The experiments were repeated
for edge and cloud only configuration. In this case stages S1
and S2 of Fig.7 were executed on the edge and S3 and S4
were run on the cloud. The results are shown in Fig.6. In
this case, percentage efficiency gain is more than the Cloud
only approach as distribution of stages S1 and S2 on the
edge introduces parallel processing and reduces the time to
process all the jobs.

3) Edge, cloudlet and Cloud Only: In this configuration
all the network resources that are edge, cloudlet and cloud
were employed to distribute the tasks among them. Stages
1 and 2 of Fig.7 were distributed on the edge node while
stage 3 and stage 4 were distributed on cloudlet and cloud
nodes respectively. The results are shown in Fig.6. It is
more efficient than the Edge-Cloud approach as the object
detection stage S3 which was being executed by the Cloud
is transferred to the cloudlet. Since object detection is a
compute intensive task, it took less time to process the
overall jobs in Edge-Cloudlet-Cloud approach as increased
parallelism for compute-intensive tasks lead to increase in
percentage efficiency gain.

4) Edge, Cloudlet, Cloud with Filtration: It is same as
edge, cloudlet and cloud configuration, however in this case
we have filtered streams which fall under the filtering criteria.
For example, streams with only background frames are a
candidate for filtering as they do not contain any useful
data to recognize the object. It is important to note in real
video camera streams; not all the frames are of interest. In
object recognition case, we can only forward the frames
to the cloud in which an object has been detected by an
object detection model. As object recognition is a compute-
intensive task and consumes significant time, by filtering the
streams at the cloudlet node, we were able to accelerate our
system performance. As shown in Fig.6 it takes less time
to process object recognition jobs in Edge-Cloudlet-Cloud-
filter approach than in Edge-Cloudlet-Cloud approach. The
percentage gain in ECCF case as compared to the cloud
only and Edge-Cloudlet-Cloud approach is 71% and 54%
respectively.

B. Experiment 2: Number of object recognition jobs com-
pleted in window time of 2,30,60 seconds

For near real-time analytics, it is often more important to
determine the number of object recognition jobs completed
per unit time to aid in decision making and to provide
timely control of events. To demonstrate this, we plot the
chart for window time of t=2,30,60 seconds for all the four
configurations as in experiment 1. The distribution of stages
for the configurations were the same as Experiment 1.

1) Cloud Only: For the second experiment on the cloud,
it can be seen in Fig.8a that only 4 jobs were completed in 2
seconds, 74 jobs in 30 seconds and 149 jobs in one minute.
We use the cloud case as a reference to compare and evaluate
results with the other configurations.

2) Edge and Cloud Only: In this case, edge and cloud
nodes are employed to determine the number of object
recognition jobs completed in window time of t=2,30,60



Fig. 8. Number of jobs completed in window time of 2,30,60 seconds

seconds. The completed jobs are compared with the reference
cloud only approach. It can be seen in the Fig.8b that for
edge-cloud case, only 5 jobs are completed in 2 seconds, 85
jobs in 30 seconds and 171 jobs in one minute..

3) Edge, Cloudlet and Cloud Only: In this experiment,
all the network resources that is edge, cloudlet, and Cloud
nodes were employed to determine the number of object
recognition jobs processed in a window time of t=2,30,60
seconds. The results of the experiment are shown in Fig.8c.
It can be seen that Edge-Cloudlet-Cloud case gives the
maximum efficiency gain as compared to Cloud and Edge-
Cloud configurations. Specifically, in Edge-Cloudlet-Cloud
case, around 68 more jobs were processed in 60 seconds
than the Edge-Cloud approach.

4) Edge, Cloudlet, Cloud with Filtration: This is same
as edge-cloudlet-cloud configuration, however we also filter
the low-value jobs at the cloudlet tier in this case. The
cloudlet based filtration reduces the input data to the cloud
which improves the response times and saves the cloud
bandwidth and storage. The results in Fig.8c shows, this
configuration is more efficient than the other configurations.
All the network nodes in the experimental setup have phys-
ical constraints such as limited data storage, processing
and transferring facility. This limited storage and processing
capability restricts how fast a network resource can operate
and store data. If the rate of data production exceeds the rate
of the processing capacity of a network node, then some of
the data must be stored on the storage of the node such as a
memory buffer or a hard disk. In the video streams case, this
might not always be a feasible option for edge and in-transit
resources, as the temporary buffer is guaranteed to run out
of memory if the rate of production is more than the rate of

consumption. For instance, if several cameras are producing
constant video streams with high frames per second rate, then
initially all incoming streams can be stored in the buffer and
processed. However after sometime buffer will start to fill
with the incoming streams, this pattern will continue until at
time t=buffer overflow time (BOT), the network node either
has to reject the incoming streaming job or forward it to
the next hop without processing. We propose three modes to
solve this problem:

• Delay Processing Mode (DPM): The network node
forwards the unprocessed streams to the next node in
time t=BOT.

• Reject Mode (RM): In this mode, the network node
deletes the last job in the queue with the highest waiting
time to make room for the new job. The underlying idea
is, the last job in the queue will be less relevant than the
other jobs in the queue. This strategy results in loss of
some jobs as some jobs will be starved to death by the
system. However, for video analytics case, a minor loss
of some jobs is not significant for many applications as
most cameras produce about 20 to 30 frames per second
for a smooth video experience.

• Ideal mode (IM): In this mode, an edge and in-transit
nodes can process all the jobs produced per second
by the video cameras. In this case, the rate at which
frames/jobs are produced is equal to or less than the rate
at which jobs are processed by the network resource. An
ideal mode can provide the users with real-time object
recognition from the video streams.

In the DPM, the end effect will be a delay in the pro-
cessing time of all the jobs. We recommend for real-time
analytics, the edge and in-transit nodes ideally should be
able to consume all the video streaming jobs which were
produced per unit time. In video analytics case, if there
are 10 cameras with a frame rate of 25 per second, then
each network node should be able to process 250 stream-
ing jobs per second to be considered in the ideal mode.
The time deadline for jobs can be of two types namely i)
resource-based deadline ii) Job-based deadline. In resource-
based deadline time, each resource may have a separate
deadline time window under which all the jobs in its current
memory buffer are executed or rejected otherwise. As edge
and in-transit are expensive resources, it might be useful in
some cases to assign resource based deadline. In a job-based
deadline time, each job is associated with a deadline time
regardless of its processing stage and the resource executing
it. Using the proposed infrastructure, a system with multiple
edges, in-transit nodes can be designed to meet the job
deadline time.

VII. CONCLUSIONS
In this paper, an edge-based system for deep learning is

proposed for efficient and large-scale video stream analytics.
Using the infrastructure, an object recognition scenario was
implemented. Four different configurations of edge, cloudlet
and cloud nodes were compared with the traditional cloud
only approach to demonstrate the efficacy of the system. The



deep learning pipeline stages consisting of frame loading
and decoding, preprocessing, detection and recognition were
distributed towards the edge, in-transit and the central cloud
for object inference. The results showed efficiency gain of
37% and 71% in Edge-Cloudlet-Cloud and Edge-Cloudlet-
Cloud-Filter configurations respectively as compared to the
cloud only approach. The efficiency gain is a reduction in
the total time required to complete the processing of object
recognition jobs. The proposed system approach brings the
deep learning based analytics towards the source of the
video streams by parallelizing and filtering streams on the
network nodes. The background filtering approach used in-
transit nodes filtered the background frames, which further
reduced the video data, bandwidth and the storage needed
at the destination cloud. Although we have demonstrated a
deep learning pipeline decomposition using a video analytics
case, the proposed approach can be applied to other domains
employing the deep learning algorithms. It is particularly
useful when the streaming source resides on a network other
than the cloud. In the future, we aim to further explore our
edge enhanced infrastructure using multiple edge/cloudlet
nodes to analyze the scalability and efficiency gain. We also
aim to investigate approaches to programming the edge and
in-transit nodes dynamically and to automate the execution of
multiple models of deep learning based on the video stream
content.
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