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Abstract—The paper presents a methodology for the Condition
Monitoring (CM) of tidal stream turbines. The process is based
on the use of, so-called, Transient Monitoring Surfaces (TMS)
developed by the authors. In this paper the TMSs have been
used to detect rotor imbalance faults. To test the use of TMS for
CM drive train simulations were undertaken. The simulations
undertaken relate to a lab-scale turbine subjected to turbulent
flows and an optimal λ control scheme based on Vector Oriented
Control (VOC). The simulations are parametrised based on
experimental data relating to testing undertaken with varying
degrees of rotor imbalance. Use of the TMS gave promising
results for the detection of various rotor imbalance conditions.
Differing levels of discrepancies between the ’normal operating’
or ’baseline’ surface were found for differing fault severities. It
was also found that a minimum amount of data is required to
gain convergence in the surface structure - in this case data sets
relating to 5 rotations of the turbine were required to make a
suitable fault detection.

Index Terms—Condition Monitoring, Tidal Stream Turbine
Rotor Damage, Transient Monitoring Surface, Time Synchronous
Averaging, Fault Detection, Hardware-in-the-loop Simulation.

I. INTRODUCTION

Tidal Stream Turbines (TST) are certain to be subjected to
harsh marine environments that will impose extreme and cyclic
loading scenarios upon turbine sub-assemblies. TST blades
in particular are going to experience the full effect of these
loading cases. This is known to be causing operational issues
linked to reliability concerns including the possibility of early
failure [1]. Whilst these loading regimes and associated rotor
faults are to a degree unavoidable, the impact of such failures
could be reduced with the intelligent monitoring of TST rotors.

A variety of approaches to turbine rotor monitoring have
been researched. However, these have normally required the
installation of transducers and monitoring systems within the
turbine rotor assembly. As with any instrumentation system,
the system itself may be subject to reliability issues. To
enhance the monitoring functions available for TST appli-
cations, Condition Monitoring (CM) approaches based upon
the acquisition and analysis of generator signals have been
developed [2]. As this approach utilises readily available TST
operational data, the approach could have the benefit of not

requiring additional sensors, data acquisition systems and data
management systems. To date these approaches have been
tested primarily during steady-state turbine operation and were
based on the characteristics observed within the frequency
domain [3].

The paper presents research undertaken considering the
application of an alternate algorithmic approach to TST rotor
monitoring which utilises parametric surfaces. The specifics of
the a parametric surfaces and their construction are detailed in
Section II, along with a review of other monitoring approaches
currently being researched.

To test the algorithmic approach transient turbine operations
were simulated via hardware-in-the-loop simulations utilis-
ing back-to-back permanent magnet synchronous machines
(PMSMs) as shown in fig 1. This drive train test rig and TST
simulation process are briefly outlined along with the method
utilised for optimum tip speed ratio (λ) control. The approach
utilises a parametric turbine model which captures mean and
transient rotor behaviour. The data used to parametrise the
model in this case were acquired via flume testing, details of
the test campaign can be found in [2].

The input of a variety of stochastic turbulent fluid velocity
time series can be applied as required by the specific sim-
ulation being enacted. These time series were generated via
spectral methods for a length scale of 4 m at a 10% turbulence
intensity [4]. The effect of the transient turbine operation,
resultant from the interaction of the in-putted fluid velocity
time-series and the optimum λ control strategy, on the CM
process was considered.

II. CONDITION MONITORING OF TIDAL STREAM
TURBINES

A. Literature Review

The improvement and assurance of the reliability of tidal
stream turbines and their sub-assemblies must be considered
to be a major factor in the realisation of a well-functioning
tidal stream energy industry. It has been argued that in order to
achieve a levelised cost of energy (LCOE) that is competitive
within the market place turbine availability should be above



75% [5]. In moving toward a higher technology readiness level
(TRL) and to underpin the significant levels of investment
required it has also been stated that the reliability of TSTs and
their components must be demonstrated [6] [7]. Experience
within the wind energy sector has suggested that online CM
and fault detection could minimise maintenance costs and
improve availability of the energy extraction technology [8] [9]
[10].To inform the development of CM approaches a review
of publications addressing the topic has been made. A brief
summary is presented herein.

Caselitz et al [11] presented one of the earliest papers aimed
specifically at the CM of TSTs. The paper aimed to apply
and adapt knowledge acquired in the CM of both on-shore
and off-shore wind turbines (WTs). The researchers advocate
a system containing many of the elements included in a WT
monitoring systems, including accelerometers for gearbox and
baring vibration monitoring and fibre bragg gratings for blade
and structural load monitoring. The system is supported by
environmental measurements, specifically by measurements of
the fluid velocity upstream of the turbine rotor. This work goes
on to outline the generalities of some CM algorithms to be
applied to TSTs based on the hardware set-up outlined.

Sloan et al [12] presented considerations of many of the
reliability issues faced by TSTs and the associated monitoring
hardware. In [13] Mjit et al conducted work considering order
analysis of vibrational data as a means of fault detection,
the work was first conducted on a commercial fan and later
extended to monitoring of a small boat propeller. The work
also discussed elements of the data storage and capture pro-
cesses. The order analysis methods applied were successful
in identification of imbalance and misalignment. The research
undertaken and presented by Mjit et al was extended in 2011
[14] to incorporate a more fully developed Smart Vibration
Monitoring System (SVMS) which handled much of the data
capture storage and processing autonomously. The system in-
cluded many of the techniques performed off-line by vibration
monitoring specialists including advanced signal processing
of vibration data. Specifically the software processed raw
vibrational data via Power Spectral Density, Fractional Octave,
Cepstrum, Hilbert Envelope, Wavelet Transform and overall
vibrational statistical characteristics. The process was devel-
oped using LabVIEW and tested using a drive train test rig
setup to harbour fault conditions by attaching weights to the
drive train. Changes to the performance metrics calculated via
the advanced signal processing operations listed above were
successfully tracked for three differing levels of fault severity
and for two rotational velocities. Further works were published
by [15], the publication presented an overview of many of the
condition monitoring processes as applied by the researchers to
the TST drive train simulation apparatus previously developed.

Duhaney et al [16] acquired data from the six accelerom-
eters mounted on a dynamometer setup similar to that used
for this study. Data was captured for baseline or normal
turbine operation, low fault severity and high fault severity.
The data sets were pre-processed to extract time-frequency
information via the Haar Wavelet transform, resulting in 18

files of 10,000 readings. Seven machine learning processes
(decision tree, Naive Bayes, 5-NN, Logistic Regression, MLP,
SVM and random forest) were then applied to the data sets in
order to test the ability of the machine learning procedures to
make successful fault or no-fault classification. Mixed results
were found for the differing machine learning algorithms with
the random forest and decision tree classifiers having 100%
correct classifications and Nave Bayes, 5-Nearest Neighbour
and logistic regression having the highest misclassification
rates. Further publications [17] [18] [19] build on the research
undertaken by Duhaney et al, the publications present the
development of a variety feature extraction and machine
learning approaches.

In [20] Waters et al presented research considering the
detection, localisation and identification of bearing faults in
TST applications. The paper presented models for bearing
loading under bearing race cracking. The models were then
used to guide the development signal processing methods
which were then applied to vibration signals acquired from
two accelerometers mounted on dynamometer test beds. The
need, requirement and impact of the adoption of CM systems
within the TST industry was considered in [21]. The use of
TST stanchion thrust measurements for CM of TST blades was
reported by Grosvenor et al [22]. This utilised a combination
of CFD modelling exercises with flume testing experiments to
develop and test a CM approach based on frequency analysis
of both computed and measured turbine thrust signals. The
work showed that increasing presence of the turbine rotational
frequency observed in thrust spectra was a useful indicator of
turbine rotor imbalance.

Whilst the number of research publications in the specific
area of TST condition monitoring was found to be limited,
research in this area has been highlighted as an important
aspect of TST development. To support this notion a research
project known as TidalSense was setup and funded under a
European Commission in 2009, [23]. The project was then
extended to become TidalSense Demo in 2011 [24]. The
work undertaken by the research project utilised a number
of industrial partners and research institutions with the goal
developing and demonstrating approaches to the CM of TST.
The work focused on the use of Long Range Ultrasonic
Technology (LRUT) to inspect cabling and turbine blades [24].
The process of using guided Ultrasonic waves imparted by
an actuator with the blade response to the waves recorded
by sensors was developed and illustrated over the course of
the two projects [25] [26]. The work developed throughout
the overall TidalSense project allowed for the imbedding of
ultrasonic sensors during composite turbine blade manufacture
creating a robust solution.

B. Normalised Parameter Surfaces

The notation of defining a surface of observed torsional
amplitudes at harmonics of the turbine rotational velocity over
a range of operational λs was initially considered within this
research as a modelling device and was presented in [2]. These
surfaces were then utilised to develop drive train simulations.



It is shown in [2] that the amplitude at harmonics of the turbine
rotational velocity, when normalised by the mean torque value,
were in close proximity for various fluid velocities for specific
λ values. This notion led to the development of a condition
monitoring tool based on the surface construction process.

To utilise such surfaces as a monitoring tool a trending or
characterisation process is first required to initially generate
a surface relating to normal turbine operation. Then, future
operational characteristics can be compared with the trained
surface. A comparison process can be utilised to generate
alarm conditions and diagnostic reasoning or simply to further
characterise the normal turbine operation surface. The differ-
ence between the surfaces are captured in this case by the
so-called sum of surface error (SOSE). The SOSE indicator
is simply the sum of the magnitude of discrepancies between
the measured surface and the normal operating surface trended
previously. It is noted that for this baseline study a simple ap-
proach was considered sufficient - it is, however, advised that
more nuanced methods of comparison should be researched.

The process of generating the surfaces uses measured rotor
torque, (τ ), signals. The general algorithm utilised for the
surface generation was:

• Normalise τ Data
• Time Synchronous Averaging (TSA) of τ Data.
• Calculate the spectrum of the TSA process output.
• Add spectrum to surface indexed by rotational
velocity harmonics and λ.

The algorithm proposed is dependent on correct normalisa-
tion and indexing during surface creation. It was found during
the construction of the surfaces that normalising and indexing
for surface creation became less defined with increasingly
transient turbine operation, for example under high turbulence
loading combined with variable speed control. As such devel-
opments to the algorithm outlined were made and the resulting
surfaces termed, Transient Monitoring Surfaces (TMS).

C. Transient Monitoring Surfaces

The process of generating the TMS follows the same general
procedure outlined above; however, under transient turbine
operation the mean rotor torque, τ̄ , used to normalise the
data can become non-stationary and may fluctuate due to
the interaction between turbulence within the on-coming fluid
velocity and the control scheme utilised. To develop a method
for effectively normalising the rotor torque data to allow for
the comparison of data recorded under differing fluid velocities
and turbine rotational velocities the structure of the turbine
rotor model presented in [2] was considered. Generally the
structure of the rotor torque model was of the following
general form:

τ(t) = τ + τ ·A (1)

Where A, in the case of the turbine rotor model was a Fourier
series representing the fluctuating component of the turbine
drive shaft torque. In the current model structure the fluc-
tuating components are related to turbine rotor operation and
more specifically to the effect of turbine/stanchion interactions

and rotor imbalance. Accordingly the fluctuating components
captured in A are explicitly a function of the turbine rotational
displacement. They are also implicitly a function of time
due to the rotational velocity of the turbine and the effect
of the varying fluid velocity and the relationship between
the two quantities. This has been captured via scaling of A
by the mean torque value,τ . In the generation and use of
the model until this point, the data sets considered generally
adhered to the condition that, τ = Constant. This was a
simplifying condition which resulted from consideration of
steady state turbine operation. However, as the goal of the
research presented herein is to consider the effectiveness of
the CM approach under non-steady state turbine behaviour, it
was consider that, τ = f(t). Whilst the model described in
[2] is considerate of the torque developed at the turbine rotor,
the CM strategy proposed seeks to utilise readily available
generator signals. As such the quadrature axis current, iq , has
been used as analogue for τ , reasoning behind this choice was
derived from the standard modelling equations for a PMSM
and can be found in [2]. Then equation (1) becomes:

iq(t) = (iq)(t) + (iq)(t) ·A (2)

It then readily follows that the quadrature axis current ob-
served can be normalised in the following manner to give an
estimate of A, which as proposed relates specifically to turbine
operational effects:

A =
iq(t)− (iq)(t)

(iq)(t)
(3)

This normalisation method allows for the development of
the monitoring surface which relates to relative fluctuation
amplitudes that are resultant from the turbine operational
characteristics of interest, such as any rotor imbalance and
the stanchion shadowing effect. However, in utilising such
a method it should be considered that the quantity, (iq)(t)
cannot be measured directly and therefore will need to be
estimated by some other means. To estimate (iq)(t) it was
considered that the mean component of the torque developed
by the turbine rotor is proportional to the square of the fluid
velocity impacting upon the turbine rotor. This gives:

τ(t) ∝ (iq)(t) ∝ U(t)2 (4)

Furthermore, under set point λ control - as considered in
this paper - the fluid velocity is proportional to the turbine
rotational velocity. Therefore the proportionality in equation
(4) can be expressed as,

iq(t) ∝ U(t)2 ∝ ω(t)2 (5)

It follows from the above considerations that the rotational
velocity may be useful in normalising the observed generator
q-axis current to extract A. This will also further support the
building of monitoring surfaces which could be more robust
under non-steady state conditions. Lastly, it was considered
that the fluctuations in the two quantities are of orders of
magnitude apart. As such calculating A in this manner would



Fig. 1. The drive train test rig which was utilised for scale turbine drive train
simulations.

have led to incorrect distortions of the normalised signal and
resulting surface. To find the constant of proportionality the
ratio of the mean values of the observed quantities was used,

c =
mean(ω(t)2)

mean(iq(t))
(6)

Finally the normalisation is under taken by:

A =
iq(t)− c · ω(t)2

c · ω(t)2
(7)

where,

iq(t) ≈ c · ω(t)2 (8)

III. HARDWARE-IN-THE LOOP SIMULATIONS

A. Simulation Overview

To fully test the proposed TMS and associated normalisation
procedure, simulations were created to represent the effect
of both stochastic fluid flow artefacts and differing turbine
control processes - simulations relating to optimal λ control
are presented in this paper. The general simulation structure
is described briefly throughout this section. Fig 2 provides
an overview and introduction to the simulation structure. The
main observation is that the structure developed allows the
appraisal of turbine rotor torque at differing rotor displace-
ments under a wide range of operating conditions. It is set
up to use a one-dimensional stochastic fluid velocity model.
The dynamic effects of λ based control to maintain optimum
power extraction are also included. The structure culminates
in the ability to observe and test differing scenarios using a
physical, scaled, drive train test rig.

Fig 2 provides a schematic point-of-reference of the simula-
tion approach highlighting the interaction between the various
developed models and control procedures. The resource model,
presented briefly in Section III-F, provides flow velocity
information to the parametric torque model (Section III-C) and
to the control actions (presented in Section III-D) to maintain
a set-point tip speed ratio. The parametric model parameters
are also set in an informed manner drawing on the scale model
flume test results which were presented in [2].

B. Tidal Stream Turbine Topology

The turbine simulated is that of the direct-drive permanent
magnet synchronous generator type, connected to the grid via
back-to-back power converters. A schematic of the setup can
be seen in Fig 3. A fully-rated converter setup is shown with
the generator side Voltage Source Converter (VSC) utilised
for turbine control and the grid-side VSC utilised for control
of power flow to the grid [27]. The VSC used are 6 level
Insulated-Gate Bipolar Transistors (IGBTs) with gate firing
control via pulse width modulation (PWM).

C. Parametric TST Rotor Simulation

The formulations developed and presented in [2] define a
parametric turbine rotor torque model, given by:

τ = τ̄ +

8∑
i=1

τ̄ · ai · cos(2πθ + φi) + Z (9)

where, Z is a normally distributed strictly stationary random
process with mean, µ = 0 and standard deviation:

σ = 0.011λ2 − 0.074λ+ 0.13 (10)

τ is given by:

τ = Cτ
1

2
· ρ · πr2U2 (11)

ai is the relative amplitude of fluctuations at various harmon-
ics, i to 8 represented as a surface. φi is the phase angle at
various harmonics, i to 8 represented as a surface. lastly, θ
represents the turbine rotational displacement.

D. Optimal λ Control

To simulate turbine dynamics in a representative manner
variable speed, optimal λ, turbine control was utilised for
the experimental simulations. This was included to allow for
adequate appraisal of CM hypotheses based on the simulation
results. The method involved taking fluid velocity and turbine
rotational velocity measurements required to define the turbine
operating tip speed ratio. The measured operating point is
compared with a set-point λ value, known prior to operation
to give maximum power output under continuous turbine
operation. The error value is passed to a controller to regulate
the generator load to achieve the torque required to minimise
the tip speed ratio error. Fig 4 shows the control diagram
for the optimal tip speed ratio tracking control system used
during the experimental simulations [28]. It can be seen that
the essential element in controlling the generator feedback
torque and hence rotational velocity is controlling the load
power output via the power converter apparatus. During the
experimental simulations the torque set point command was
input to the motor drive used and the internal control structure
was used which is outlined below.



Fig. 2. Schematic of the simulation process utilised in generating turbine simulations and scaled drive shaft emulator testing. The figure shows the 1/20th
scale testing results as an input to the parametric rotor model along with the input of a resource simulation model.

Fig. 3. Schematic of the TST topology represented throughout out the
work presented. The figure shows a grid connected direct drive turbine with
a Permanent Magnet Synchronous Generator (PMSG). A full-rated convert
setup is also shown with the grid side VSC utilised for turbine control and
the grid-side VSC utilised for control of power flow to the grid [27].

Fig. 4. An example of optimal λ control scheme. Adapted from [28].

E. Vector Oriented Control

The PMSMs utilised for the test rig setup were setup to
implement vector oriented control (VOC). In the case of the
motor the goal of the VOC was to operate the motor in a
similar fashion to a TST via the application of appropriate

torsional loads which are calculated via the outlined rotor
model. The goal of the VOC for the generator is to control
the generator load in order to realise optimal λ control. The
idea of vector oriented control has been previously utilised for
motor and generator control. Its use in relation to tidal stream
turbine control has been reported [29]. The process related to
applying this to wind turbine control has also been reported
[27]. In the case of a PMSG, this is done by noting that under
normal operation the id current in the torsion equation for a
PMSG is weakening the magnetic flux producing the generator
feedback torque. The id can therefore be set to zero to give
optimum torsional performance, this gives:

τe =
2

3
· p · ψ · iq (12)

For a set-point torque required to accelerate or decelerate the
turbine velocity to the required optimal rotational velocity the
reference direct and quadrature currents are given by:

idref = 0 (13)

iqref =
3

2

Tsp
p · ψ

(14)

The required voltage in the direct and quadrature axis can be
found be re-arranging:

vdref = Rid + ωrLqiq (15)
vqref = −Riq − ωrLdidωrψ (16)

The voltage reference signal is then input into a PWM module
which generates the switching sequence for the IGBT to
regulate the phase voltages of the generator to give the required
generator feedback torque which will result in the set-point λ



value required for peak power extraction. The VOC control
scheme was implemented in the drive systems of the PMSMs
and was developed by Bosch Rexroth as a standard control
system for the machines utilized.

F. Fluid Velocity Simulation

The simulations outlined in this paper use the simplification
that the turbine would be subjected to plug flow (non-profile
flow) conditions. This simplification was necessary as this
was the approximate flow conditions observed during the
flume testing campaign used to gather data for the model
parametrisation. The plug flow assumption leads to a conve-
nient representation of the flow conditions hitting the turbine
rotor. The flow is represented by:

Ux(t) = Ūx + u′x(t) (17)

where Ux(t) is the fluid velocity at time t decomposed
into a stationary mean fluid velocity Ūx and a fluctuating
component u′x(t) which is time varying with the x direction
perpendicular to the turbine rotor plane. A natural model for
representing the fluid flow given by the above is to model the
fluid velocity fluctuations as a stationary process with given
power spectral density characteristics. Furthermore utilising
Kolomogrovs theory of turbulence the amplitude of the power
spectrum should be proportional to f−5/3 as f →∞. The Von
Karman spectrum, as utilised by previous investigators [4] for
reliability simulations adheres to the above condition and can
be written in the non-dimensional form:

fSu(f)

σ2
u

=

4fL
Ūx

[1 + 70.79( fL
Ūx

)2]
5
6

(18)

where Su(f) is the spectral density function for the process,
L is the length scale, σu is the standard deviation of the
process ux(t). In the above the x subscript has been omitted
for brevity as the formulation outlined relates to a one-
dimensional simulation.

IV. RESULTS

A. Simulation Campaign Overview

In order to test the proposed CM method using TMSs,
hardware-in-the-loop simulations were undertaken utilising the
form presented above using model parametrisations derived
via flume testing of a 1/20th scale model TST. The scale
model was set up to harbour known sub-optimal rotor con-
ditions. A full description of the flume testing procedure
followed can be found in [2]. Four levels of rotor imbalance
conditions were tested at a three differing fluid velocities (0.9
m/s, 1.0 m/s and 1.1 m/s). The rotor imbalance levels were
achieved by setting the pitch angle of differing blades away
from the optimum for the turbine rotor. For the 3-bladed rotor,
housing adapted Wortman FX 63-137 blades, the optimal pitch
setting was found to be 6o as reported in [30]. The cases tested
during flume testing were:

Case 0→ Blade 1: 6o, Blade 2: 6o, Blade 3: 6o.
Case 1→ Blade 1: 9o, Blade 2: 6o, Blade 3: 6o.

Case 2→ Blade 1: 12o, Blade 2: 6o, Blade 3: 6o.
Case 3→ Blade 1: 6o, Blade 2: 12o, Blade 3: 9o.

The simulations were created for approximately 90 seconds,
for a mean fluid velocity of 1 m/s and a turbulence intensity of
10 %. The length scale associated with the turbulence was set
to 2 m and as discussed variable speed, optimal λ control was
executed. Initially simulations were undertaken for the optimal
rotor setting at three differing λ values (3.0, 3.6 and 4.2) - these
simulations were used to create the benchmark surface shown
in Fig 9. Rotor imbalance simulations were then undertaken
for the three fault cases (as well as an additional optimum case
as a control study) and a single set-point λ value of 3.6 (peak
power for the simulated turbine). The surfaces generated via
the four remaining simulations were then compared with the
baseline.

B. Simulation Results Overview

Fig 5 shows the results of non-steady state simulations
with the inclusion of the turbulent fluid velocity time series
discussed. It can be seen that fluid velocity fluctuations are
included in the simulations and as a result of the optimal
λ control scheme adopted, rotational velocity fluctuations of
the turbine can also be seen. Furthermore due to the change
in fluid velocity additional fluctuations can be seen in the
torsional input of the motor simulating the turbine input to the
drive system. These additional fluctuations are also evident in
traces for power output and quadrature axis current measured
via the generator PMSM control system.

C. Transient Monitoring Surface Results

Fig 6 shows the effect of normalising the generator q-axis
current data on the TSA process used to construct the output
monitoring surfaces. The figure shows the deviation of the
recorded data from the TSA characteristic with increasing
numbers of rotations included in the TSA process. The figure
shows that normalising the generator output data as described
results in better convergence to an underlying TSA character-
istic. It can be seen that minimal convergence to an underlying
TSA process was observed for the non-normalised simulation
data. Furthermore the figure also shows greater deviation from
the calculated TSA characteristics for the higher tip-speed ratio
values. Figs7 to 9 show the stages in generating the baseline
TMS. Fig 7 shows graphically the TSA process as undertaken
- the darker line highlights the mean trace with the raw data
shown as thinner lines. The spectrum plots for each TSA mean
trace are then shown in 8 - with the frequency axis scaled to
give harmonics of the rotational frequency of the turbine. It
can be seen that a distortions in the spectrum were found for
differing λ values with prominent harmonics oberved at 1st,
3rd and 6th harmonics. These spectrum are combined to create
the characteristic surface shown in fig 9.

D. Fault Detection and Diagnosis

Fig 10 shows the SOSE error observed for each simulation
case as more rotations are included in the data sets used to
create the surfaces. Initially, before approximately 5 rotations



Fig. 5. Results from the real-time drive train simulations, the case shown is the optimum rotor case with TI = 0.1 with optimal λ control utilised

Fig. 6. Deviation of the generator quadrature axis datasets form the TSA
means characteristics for normalised and non- normalised datasets and various
λ values.

are included in the surface generation process, the sum of
surface error measurement is relatively large for all cases. As
more rotations are included in the surface generation process
the sum of surface error measurement reduces in all cases. This
indicates that the turbine is more accurately characterised by
increasing amounts of data. As more data is included in the
surface construction the figure shows that sum of surface error
starts to converge to a given value for each fault condition. The
two blade offset condition sum of surface error measurement
is the lowest of the fault conditions, this followed by the 3o

offset case with the largest sum of surface error observed for
the 6o offset case. Fig 10 also shows that second optimum
simulation yielded the lowest sum of surface error.

V. DISCUSSION

The process of creating characteristic surfaces for the
steady-state test scenarios was developed, via inclusion of
further normalisation processes, to include non-steady state

Fig. 7. Graphical view of TSA process used to create the normal operation
TMS.

Fig. 8. Spectrum generated to be inserted into the TMS for normal turbine
operation.

turbine operating scenarios. In terms of the optimal λ control
scenarios the TMS generation process was undertaken via
a novel normalisation process as applied to the measured
generator quadrature axis current. The normalisation process
made use of the proportionality between observed drive shaft
torque and the square of the rotor velocity as imposed by
the optimal λ control strategy. In this way data segments



Fig. 9. TMS generated for normal turbine operating conditions. This surface represents the non-fault condition benchmark.

Fig. 10. Development of the Sum of Surface error value observed for differing
rotor conditions plotted against the number of rotations included in the surface
generation process.

fed into the TSA process required to create the monitoring
surfaces could be normalised to compare the TSA outputs
for a given λ value at differing fluid velocities and turbine
rotational velocities. This was considered to be a strong aspect
of the monitoring surface technique as applied to the optimal
λ control scheme data sets. Developing the TMS generation
process to a condition monitoring procedure was undertaken
by considering the distortion of the monitoring surfaces under
anomalous rotor conditions relative to the generated surface
for optimal rotor conditions. This was achieved by considering
the SOSE between the surfaces generated under anomalous
conditions and optimal conditions. It was found that varying
fault conditions gave varying sum of surface error values. Also
it was found that as greater numbers of rotations were utilised
in constructing the surfaces for each differing condition the
sum of surface error relative to the normal operating surface
seemed to converge to a given value. This was considered

to potentially provide stability and avoid false alarms when
generating detection and diagnostic reasoning based on the
approach. The relative success and stability of the method in
spite of fluctuating fluid velocities and rotational velocities
was seen as a significant result. This result indicates that
the method utilised was sound when faced with non-steady
state turbine operation and optimal λ turbine control. Another
aspect of the process that was seen as an asset was that the
method didnt rely on fluid velocity measurements in order
to construct the normalised monitoring surfaces. This was
considered to allow for the application of the method to a
variety of optimal λ turbine control schemes, such as hill climb
and optimal torque turbine control. Lastly, the researchers note
that this process has been illustrated and tested with minimal
volumes of data. In-terms of the application of the process
to full-scale turbine deployments, the trending period used
to create the baseline surface will by necessity have to be
sufficient to allow for reasonable surface interpolation and
information extraction. More localised SOSE measurements
can then be utilised for more robust monitoring.

VI. CONCLUSIONS

A set of approaches to turbine transient characterisation,
based on the development of TMSs, were applied to the
non-steady state data. The approaches were data intensive
and gave promising but non-conclusive results. Further testing
these processes is required to understand if the normalisation
and characteristic surface generation process are effective.
However, the results observed gave varying levels of SOSE
for differing rotor anomalies which could facilitate both fault
diagnosis and detection. This notion was further posited by
the convergence of the SOSE value for each fault to a single
value.



VII. FURTHER WORK

The use of the TMS should be tested further at the con-
ditions outlined to gain further insight into their application.
Lastly, the discretization of the harmonic index of the TMS
surface could be increased subject to greater volumes of data.
Likewise the range of harmonics captured by the surfaces
could be increased. This would allow for the study of the
usefulness of the TMS to detect other drive train faults.
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