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Major depressive disorder (MDD) is a notably complex illness with a lifetime 
prevalence of 14%. 1 It is often chronic or recurrent and is thus accompanied by 
considerable morbidity, excess mortality, substantial costs, and heightened risk of 
suicide. 2-7 MDD is a major cause of disability worldwide. 8 We conducted a genome-
wide association (GWA) meta-analysis in 130,664 MDD cases and 330,470 controls, 
and identified 44 independent loci that met criteria for statistical significance. We 
present extensive analyses of these results which provide new insights into the 
nature of MDD. The genetic findings were associated with clinical features of MDD, 
and implicated prefrontal and anterior cingulate cortex in the pathophysiology of MDD 
(regions exhibiting anatomical differences between MDD cases and controls). Genes 
that are targets of antidepressant medications were strongly enriched for MDD 
association signals (P=8.5x10-10), suggesting the relevance of these findings for 
improved pharmacotherapy of MDD. Sets of genes involved in gene splicing and in 
creating isoforms were also enriched for smaller MDD GWA P-values, and these gene 
sets have also been implicated in schizophrenia and autism. Genetic risk for MDD was 
correlated with that for many adult and childhood onset psychiatric disorders. Our 
analyses suggested important relations of genetic risk for MDD with educational 
attainment, body mass, and schizophrenia: the genetic basis of lower educational 
attainment and higher body mass were putatively causal for MDD whereas MDD and 
schizophrenia reflected a partly shared biological etiology. All humans carry lesser or 
greater numbers of genetic risk factors for MDD, and a continuous measure of risk 
underlies the observed clinical phenotype. MDD is not a distinct entity that neatly 
demarcates normalcy from pathology but rather a useful clinical construct associated 
with a range of adverse outcomes and the end result of a complex process of 
intertwined genetic and environmental effects. These findings help refine and define 
the fundamental basis of MDD. 
 
Twin studies attribute ~40% of the variation in liability to MDD to additive genetic effects 
(heritability,ℎ"), 9 and ℎ" may be greater for recurrent, early-onset, and postpartum MDD. 10,11 GWA 
studies of MDD have had notable difficulties in identifying loci. 12 Previous findings suggest that an 
appropriately designed study should identify susceptibility loci. Direct estimates of the proportion of 
variance attributable to genome-wide SNPs (SNP heritability, ℎ#$% " ) indicate that around a quarter 
of the ℎ" for MDD is due to common genetic variants. 13,14 Although there were no significant findings 
in the initial Psychiatric Genomics Consortium (PGC) MDD mega-analysis (9,240 MDD cases) 15 or in 
the CHARGE meta-analysis of depressive symptoms (34,549 respondents), 16 more recent studies 
have proven modestly successful. A study of Han Chinese women (5,303 MDD cases) identified two 
genome-wide significant loci, 17 a meta-analysis of depressive symptoms (161,460 individuals) 
identified two loci, 18 and an analysis of self-reported MDD identified 15 loci (75,607 cases). 19 
There are many reasons why identifying causal loci for MDD has proven difficult. 12 MDD is probably 
influenced by many genetic loci each with small effects, 20 as are most common complex human 
diseases 21 including psychiatric disorders. 22,23 A major lesson in human complex trait genetics is that 
large samples are essential, especially for common and etiologically heterogeneous illnesses like 
MDD. 24 We sought to accumulate a large sample to identify common genetic variation involved in 
the etiology of MDD. 24 
 

Analysis of MDD anchor with six expanded cohorts shows polygenic prediction & 
clinical relevance 



We defined an “anchor” cohort of 29 samples that mostly applied standard methods for assessing 
MDD (Table S1). MDD cases in the anchor cohort were traditionally ascertained and typically 
characterized (i.e., using direct interviews with structured diagnostic instruments). We identified six 
“expanded” cohorts that used alternative methods to identify MDD (Table S2; deCODE, Generation 
Scotland, GERA, iPSYCH, UK Biobank, and 23andMe, Inc.). All seven cohorts focused on clinically-
significant MDD. We evaluated the comparability of these cohorts (Table S3) by estimating the 
common-variant genetic correlations (&') of the anchor cohort with the expanded cohorts. These 
analyses strongly supported the comparability of the seven cohorts (Table S4) as the weighted 
mean &' was 0.76 (SE 0.028) with no statistical evidence of heterogeneity in the &' estimates 
(P=0.13). As a benchmark for the MDD &' estimates, the weighted mean &' between schizophrenia 
cohorts was 0.84 (SE 0.05). 13  
 
We completed a GWA meta-analysis of 9.6 million imputed SNPs in seven cohorts containing 
130,664 MDD cases and 330,470 controls (Figure 1; full details in Online Methods). There was no 
evidence of uncontrolled inflation (LD score regression intercept 1.018, SE 0.009). We estimated 
ℎ#$% " to be 8.9% (SE 0.004, liability scale, assuming lifetime population risk of 0.15), and this is 
around a quarter of ℎ" estimated from twin or family studies. 9 This fraction is somewhat lower than 
that of other complex traits, 21 and is plausibly due to etiological heterogeneity.  
 
We completed a GWA meta-analysis of 9.6 million imputed SNPs in seven cohorts containing 
130,664 MDD cases and 330,470 controls (Figure 1; full details in Online Methods). There was no 
evidence of uncontrolled inflation (LD score regression intercept 1.018, SE 0.009). We estimated 
ℎ#$% " to be 8.9% (SE 0.004, liability scale, assuming lifetime population risk of 0.15), and this is 
around a quarter of ℎ" estimated from twin or family studies. 9 This fraction is somewhat lower than 
that of other complex traits, 21 and is plausibly due to etiological heterogeneity. 
 
We used genetic risk score (GRS) analyses to demonstrate the validity of our GWA results for clinical 
MDD (Figure 2). As expected, the variance explained in out-of-sample prediction increased with the 
size of the GWA discovery cohort (Figure 2a). Across all samples in the anchor cohort, GRS 
explained 1.9% of variance in liability (Figure S1a), GRS ranked cases higher than controls with 
probability 0.57, and the odds ratio of MDD for those in the 10th versus 1st GRS decile (OR10) was 2.4 
(Figure 2b, Table S5). GRS were significantly higher in those with more severe MDD, as measured 
in different ways (Figure 2c). 
 
Implications of the individual loci for the biology of MDD 
 
Our meta-analysis of seven MDD cohorts identified 44 independent loci that were statistically 
significant(P<5x10-8), statistically independent of any other signal, 25 supported by multiple SNPs, 
and showed consistent effects across cohorts. This number is consistent with our prediction that 
MDD GWA discovery would require about five times more cases than for schizophrenia (lifetime risk 
~1% andℎ"~0.8) to achieve approximately similar power. 26 Of these 44 loci, 30 are novel and 14 were 
significant in a prior study of MDD or depressive symptoms (the overlap of our findings: 1/1 with the 
CHARGE depressive symptom study, 16 0/2 overlap with CONVERGE MDD study, 17 1/2 overlap with 
the SSGAC depressive symptom study, 18 and 13/16 overlap with 23andMe self-report of MDD 19 ). 
There are few trans-ancestry comparisons for MDD so we contrasted these European results with 
the Han Chinese CONVERGE study (Online Methods). 
 
Table 1 lists genes in or near the lead SNP in each region, regional plots are in the Supplemental 
File, and Table S6 provides extensive summaries of available information about the biological 
functions of the genes in each region. In nine of the 44 loci, the lead SNP is within a gene, there is no 
other gene within 200 kb, and the gene is known to play a role in neuronal development, synaptic 
function, transmembrane adhesion complexes, and/or regulation of gene expression in brain. 



The two most significant SNPs are located in or near OLFM4 and NEGR1, which were previously 
associated with obesity and body mass index. 27-32 OLFM4 (olfactomedin 4) has diverse functions 
outside the CNS including myeloid precursor cell differentiation, innate immunity, anti-apoptotic 
effects, gut inflammation, and is over-expressed in diverse common cancers. 33 Many olfactomedins 
also have roles in neurodevelopment and synaptic function; 34 e.g., latrophilins form trans-cellular 
complexes with neurexins 35 and with FLRT3 to regulate glutamatergic synapse number. 36 Olfm4 
was highly upregulated after spinal transection, possibly related to inhibition of subsequent neurite 
outgrowth. 37 NEGR1 (neuronal growth regulator 1) influences axon extension and synaptic 
plasticity in cortex, hypothalamus, and hippocampus, 38-40 and modulates synapse formation in 
hippocampus 41,42 via regulation of neurite outgrowth. 43,44 High expression, modulated by nutritional 
state, is seen in brain areas relevant to feeding, suggesting a role in control of energy intake. 45 The 
same SNP alleles are associated with increased risk of obesity and MDD (see also Mendelian 
randomization analyses below) and are associated with NEGR1 gene expression in brain (Table 
S6). The associated SNPs may tag two upstream common deletions (8 and 43 kb) that delete 
transcription factor binding sites, 46 although reports differ on whether the signal is driven by the 
shorter 27 or the longer deletion. 31 Thus, the top two associations are in or near genes that influence 
BMI and may be involved in neurite outgrowth and synaptic plasticity. 
 
Novel associations reported here include RBFOX1 and LRFN5. There are independent associations 
with MDD at both the 5’ and the 3’ ends of RBFOX1 (1.7 Mb, RNA binding protein fox-1 homolog 
1). This convergence makes it a strong candidate gene. Fox-1 regulates the expression of thousands 
of genes, many of which are expressed at synapses and enriched for autism-related genes. 47 The 
Fox-1 network regulates neuronal excitability and prevents seizures. 48 It directs splicing in the 
nucleus and binds to 3ʹ UTRs of target mRNAs in the cytoplasm. 48,49 Of particular relevance to MDD, 
Fox-1 participates in the termination of the corticotropin releasing hormone response to stress by 
promoting alternative splicing of the PACAP receptor to its repressive form. 50 Thus, RBFOX1 could 
play a role in the chronic hypothalamic-pituitary-adrenal axis hyperactivation that has been widely 
reported in MDD. 51 
 

LRFN5 (leucine rich repeat and fibronectin type III domain containing 5) encodes adhesion-like 
molecules involved in synapse formation. Common SNPs in LRFN5 were associated with depressive 
symptoms in older adults in a gene-based GWA analysis. 52 LRFN5 induces excitatory and inhibitory 
presynaptic differentiation in contacting axons and regulates synaptic strength. 53,54 LRFN5 also limits 
Tcell response and neuro inflammation (CNS “immune privilege”) by binding to herpes virus entry 
mediator; a LRFN5-specific monoclonal antibody increases activation of microglia and macrophages 
by lipopolysaccharide and exacerbates mouse experimental acquired encephalitis; 55 thus, reduced 
expression (the predicted effect of eQTLs in LD with the associated SNPs) could increase 
neuroinflammatory responses.  
 
Gene-wise analyses identified 153 significant genes after controlling for multiple comparisons 
(Table S7). Many of these genes were in the extended MHC region (45 of 153) and their 
interpretation is complicated by high LD and gene density. In addition to the genes discussed above, 
other notable and significant genes outside of the MHC include multiple potentially “druggable” 
targets that suggest connections of the pathophysiology of MDD to neuronal calcium signaling 
(CACNA1E and CACNA2D1), dopaminergic neurotransmission (DRD2, a principal target of 
antipsychotics), glutamate neurotransmission (GRIK5 and GRM5), and presynaptic vesicle 
trafficking (PCLO). 
 
Finally, comparison of the MDD loci with 108 loci for schizophrenia 22 identified six shared loci. Many 
SNPs in the extended MHC region are strongly associated with schizophrenia, but implication of the 
MHC region is novel for MDD. Another example is TCF4 (transcription factor 4) which is strongly 
associated with schizophrenia but not previously with MDD. TCF4 is essential for normal brain 



development, and rare mutations in TCF4 cause Pitt–Hopkins syndrome which includes autistic 
features. 56 GRS calculated from the schizophrenia GWA results explained 0.8% of the variance in 
liability of MDD 
(Figure 2c). 
 
Implications for the biology of MDD using functional genomic data 
Results from “-omic” studies of functional features of cells and tissues are necessary to understand 
the biological implications of results of GWA for complex disorders like MDD. 57 To further elucidate 
the biological relevance of the MDD findings, we integrated the results with a wide range of 
functional genomic data. First, using enrichment analyses, we compared the MDD GWA findings to 
bulk tissue mRNA-seq from GTEx. 58 Only brain samples showed significant enrichment (Figure 3A), 
and the three tissues with the most significant enrichments were all cortical. Prefrontal cortex and 
anterior cingulate cortex are important for higher-level executive functions and emotional regulation 
which are often impaired in MDD. Both regions were implicated in a large meta-analysis of brain MRI 
findings in adult MDD cases. 59 Second, given the predominance of neurons in cortex, we confirmed 
that the MDD genetic findings connect to genes expressed in neurons but not oligodendrocytes or 
astrocytes (Figure 3B). 60 These results confirm that MDD is a brain disorder and provide validation 
for the utility of our genetic results for the etiology of MDD. 
Third, we used partitioned LD score regression 61 to evaluate the enrichment of the MDD GWA 
findings in over 50 functional genomic annotations (Figure 3C and Table S8). The major finding 
was the significant enrichment of MDD ℎ#$% " in genomic regions conserved across 29 Eutherian 
mammals 62 (20.9 fold enrichment, P=1.4x10-15). This annotation was also the most enriched for 
schizophrenia. 61 We could not evaluate regions conserved in primates or human “accelerated” 
regions as there were too few for confident evaluation. 62 The other major enrichments implied 
regulatory activity, and included open chromatin in human brain and an epigenetic mark of active 
enhancers (H3K4me1). Notably, exonic regions did not show enrichment suggesting that, as with 
schizophrenia, 20 genetic variants that change exonic sequences may not play a large role in MDD. 
We found no evidence that Neanderthal introgressed regions were enriched for MDD GWA findings. 
63  
 
Fourth, we applied methods to integrate GWA SNP-MDD results with those from gene expression 
quantitative trait loci (eQTL) studies. SMR (summary data–based Mendelian randomization) 64 

identified 13 MDD-associated SNPs with strong evidence that they control local gene expression in 
one or more tissues (Table S9 and Figure S2), including two loci not reaching GWA significance 
(TMEM64 and ZDHHC5). A transcriptome-wide association study 65 applied to data from the 
dorsolateral prefrontal cortex 66 identified 17 genes where MDD-associated SNPs influenced gene 
expression (Table S10). These genes included OLFM4 (discussed above). 
 
Fifth, we added additional data types to attempt to improve understanding of individual loci. For the 
intergenic associations, we evaluated total-stranded RNA-seq data from human brain and found no 
evidence for unannotated transcripts in these regions. A particularly important data type is 
assessment of DNA-DNA interactions which can localize a GWA finding to a specific gene that may be 
nearby or hundreds of kb away. 67-69 We integrated the MDD findings with “easy Hi-C” data from 
brain cortical samples (3 adult, 3 fetal, more than 1 billion reads each). These data clarified three of 
the associations. 
 
The statistically independent associations in NEGR1 (rs1432639, P=4.6x10-15) and over 200 kb away 
(rs12129573, P=4.0x10-12) both implicate NEGR1 (Figure S3a), the former likely due to the 
presence of a reportedly functional copy number polymorphism (see above) and the presence of 
intergenic loops. The latter association has evidence of DNA looping interactions with NEGR1. The 
association in SOX5 (rs4074723) and the two statistically independent associations in RBFOX1 
(rs8063603 and rs7198928, P=6.9x10-9 and 1.0x10-8) had only intragenic associations, suggesting that 



the genetic variation in the regions of the MDD associations act locally and can be assigned to these 
genes. In contrast, the association in RERE (rs159963 P=3.2x10-8) could not be assigned to RERE 
as it may contain superenhancer elements given its many DNA-DNA interactions with many nearby 
genes (Figure S3b). 
 
Implications for the biology of MDD based on the roles of sets of genes 
A parsimonious explanation for the presence of many significant associations for a complex trait like 
MDD is that the different associations are part of a higher order grouping of genes. 70 These could be 
a biological pathway or a collection of genes with a functional connection. Multiple methods allow 
evaluation of the connection of MDD GWA results to sets of genes grouped by empirical or predicted 
function (i.e., pathway or gene set analysis). 
 
Full pathway analyses are shown in Table S11, and the 19 pathways with false discovery rate q-
values < 0.05 are summarized in Figure 4. The major groupings of significant pathways were: 
RBFOX1, RBFOX2, RBFOX3, or CELF4 regulatory networks; genes whose mRNAs are bound by FMRP; 
synaptic genes; genes involved in neuronal morphogenesis; genes involved in neuron projection; 
genes associated with schizophrenia (at P<10-4) 22; genes involved in CNS neuron differentiation; 
genes encoding voltage-gated calcium channels; genes involved in cytokine and immune response; 
and genes known to bind to the retinoid X receptor. Several of these pathways are implicated by 
GWA of schizophrenia and by rare exonic variation of schizophrenia and autism, 71,72 and 
immediately suggest shared biological mechanisms across these disorders. 
 
A key issue for common variant GWA studies is their relevance for pharmacotherapy: do the results 
connect meaningfully to known medication targets and might they suggest new mechanisms or 
“druggable” targets? We conducted gene set analysis that compared the MDD GWA results to 
targets of antidepressant medications defined by pharmacological studies, 73 and found that 42 sets 
of genes encoding proteins bound by antidepressant medications were highly enriched for smaller 
MDD association P-values than expected by chance (42 drugs, rank enrichment test P=8.5x10-10). 
This finding connects our MDD genomic findings to MDD therapeutics, and suggests the salience of 
these results for novel lead compound discovery for MDD. 74 

 
Implications for a deeper understanding of the clinically-defined entity “MDD” 
Past epidemiological studies associated MDD with many other diseases and traits. Due to limitations 
inherent to observational studies, understanding whether a phenotypic correlation is potentially 
causal or if it results from reverse causation or confounding is generally unclear. Genetic studies can 
now offer complementary strategies to assess whether a phenotypic association between MDD and 
a risk factor or a comorbidity is mirrored by a non-zero &' (common variant genetic correlation) and, 
for some of these, evaluate the potential causality of the association given that exposure to genetic 
risk factors begins at conception. 
 
We used LD score regression to estimate &' of MDD with 221 psychiatric disorders, medical diseases, 
and human traits. 14,75 Table S12 contains the full results, and Table 2 holds the &' values with 
false discovery rates < 0.01. First, there were very high genetic correlations for MDD with current 
depressive symptoms. Both correlations were close to +1 (the samples in one report overlapped 
partially with this MDD meta-analysis 18 but the other did not 16). The  &' estimate in the MDD anchor 
samples with depressive symptoms was numerically smaller (0.80, SE 0.059) but the confidence 
intervals overlapped those for the full sample. Thus, the common-variant genetic architecture of 
lifetime MDD overlapped strongly with that of current depressive symptoms (bearing in mind that 
current symptoms had lower estimates of ℎ#$% “compared to the lifetime measure of MDD). 
 
Second, MDD had significant positive genetic correlations with every psychiatric disorder assessed as 
well as with smoking initiation. This is the most comprehensive and best-powered evaluation of the 



relation of MDD with other psychiatric disorders yet published, and these results indicate that the 
common genetic variants that predispose to MDD overlap substantially with those for adult and 
childhood onset psychiatric disorders. 
 
Third, MDD had positive genetic correlations with multiple measures of sleep quality (daytime 
sleepiness, insomnia, and tiredness). The first two of these correlations were based on a specific 
analysis of UK Biobank data (i.e., removing people with MDD, other major psychiatric disorders, shift 
workers, and those taking hypnotics). This pattern of correlations combined with the critical 
importance of sleep and fatigue in MDD (these are two commonly accepted criteria for MDD) 
suggests a close and potentially profound mechanistic relation. MDD also had a strong genetic 
correlation with neuroticism (a personality dimension assessing the degree of emotional instability); 
this is consistent with the literature showing a close interconnection of MDD and this personality 
trait. The strong negative &' with subjective well-being underscores the capacity of MDD to impact 
human health. 
 
Finally, MDD had negative correlations with two proxy measures of intelligence, positive correlations 
with multiple measures of adiposity, relationship to female reproductive behavior (decreased age at 
menarche, age at first birth, and increased number of children), and positive correlations with 
coronary artery disease and lung cancer. 
 
We used Mendelian randomization (MR) to investigate the relationships between genetically 
correlated traits. We conducted bi-directional MR analysis for four traits: years of education (EDY, a 
proxy for general intelligence) 76, body mass index (BMI) 27, coronary artery disease (CAD) 77, and 
schizophrenia 22. These traits were selected because all of the following were true: phenotypically 
associated with MDD, significant &' with MDD with an unclear direction of causality, and >30 
independent genome-wide significant associations from large GWA. 
 
We report GSMR (generalized summary statistic-based MR) results but obtained qualitatively similar 
results with other MR methods (Table S13 and Figures S4A-D). MR analyses provided evidence 
for a 1.15-fold increase in MDD per standard deviation of BMI (PGSMR=2.7x10-7) and a 0.89-fold 
decrease in MDD per standard deviation of EDY (PGSMR=8.8x10-7). There was no evidence of reverse 
causality of MDD for BMI (PGSMR=0.81) or EDY (PGSMR=0.28). For BMI there was some evidence of 
pleiotropy, as eight SNPs were excluded by the HEIDI-outlier test including SNPs near OLFM4 and 
NEGR1 (if these were included, the estimate of increased risk for MDD was greater). Thus, these 
results are consistent with EDY and BMI as causal risk factors or correlated with causal risk factors 
for MDD. For CAD, the MR analyses were not significant when considering MDD as an outcome 
(PGSMR=0.39) or as an exposure (PGSMR=0.13). We interpret the &' of 0.12 between CAD and MDD to 
reflect a genome-wide correlation in the sign of effect sizes but no correlation in the effect size 
magnitudes: this is consistent with “type I pleiotropy” 78, that there are multiple molecular functions 
of these genetic variants (which may be tissue-specific in brain and heart). However, because the MR 
regression coefficient for MDD instruments has relatively high standard error, this analysis should be 
revisited when more MDD genome-wide significant SNP instruments become available from future 
MDD GWA studies. 
 
We used MR to investigate the relationship between MDD and schizophrenia. Although MDD had 
positive &' with many psychiatric disorders, only schizophrenia has sufficient associations for MR 
analyses. We found significant bi-directional correlations in SNP effect sizes for schizophrenia loci in 
MDD (PGSMR=7.7x10-46) and for MDD loci in schizophrenia (PGSMR=6.3x10-15). We interpret the 
MDDschizophrenia &' of 0.34 as reflecting type II pleiotropy 78 (i.e., consistent with shared biological 
pathways being causal for both disorders). 
 
Empirically, what is MDD? 



The nature of severe depression has been discussed for millennia. 79 This GWA meta-analysis is 
among the largest ever conducted for a psychiatric disorder, and provides a body of results that help 
refine and define the fundamental basis of MDD. 
 
First, MDD is a brain disorder. Although this is not unexpected, some past models of MDD have had 
little or no place for heredity or biology. Our results indicate that genetics and biology are definite 
pieces in the puzzle of MDD. The genetic results best match gene expression patterns in prefrontal 
and anterior cingulate cortex, anatomical regions that show differences between MDD cases and 
controls. The genetic findings implicated neurons (not microglia or astrocytes), and we anticipate 
more detailed cellular localization when sufficient single-cell and single-nuclei RNA-seq datasets 
become available. 80 

  
Second, the genetic associations for MDD (as with schizophrenia) 61 tend to occur in genomic regions 
conserved across a range of placental mammals. Conservation suggests important functional roles. 
Given that this analysis did not implicate exons or coding regions, MDD may not be characterized by 
common changes in the amino acid content of proteins. 
 
Third, the results also implicated developmental gene regulatory processes. For instance, the genetic 
findings pointed at RBFOX1 (the presence of two independent genetic associations in RBFOX1 
strongly suggests that it is the MDD-relevant gene). Gene set analyses implicated genes containing 
binding sites to the protein product of RBFOX1 in MDD, and this gene set is also significantly 
enriched for rare exonic variation in autism and schizophrenia. 71,72 These analyses highlight the 
potential importance of splicing to generate alternative isoforms; risk for MDD may be mediated not 
by changes in isolated amino acids but rather by changes in the proportions of isoforms coming from 
a gene, given that isoforms often have markedly different biological functions. 81,82 These convergent 
results provide a tantalizing suggestion of a biological mechanism common to multiple severe 
psychiatric disorders. 
 
Fourth, in the most extensive analysis of the genetic “connections” of MDD with a wide range of 
disorders, diseases, and human traits, we found significant positive genetic correlations with 
measures of body mass and negative genetic correlations with years of education. MR analyses 
suggested the potential causality of both correlations, and our results certainly provide hypotheses 
for more detailed prospective studies. However, further clarity requires larger and more informative 
GWA studies for a wider range of related traits (e.g., with >30 significant associations per trait). We 
strongly caution against interpretations of these results that go beyond the analyses undertaken 
(e.g., these results do not provide evidence that weight loss would have an antidepressant effect). 
The currently available data do not provide further insight about the fundamental driver or drivers of 
causality. The underlying mechanisms are likely more complex as it is difficult to envision how 
genetic variation in educational attainment or body mass alters risk for MDD without invoking an 
additional mechanistic component. For example, genetic variation underlying general intelligence 
might directly alter the development and function of discrete brain regions that alters intelligence 
and which also predisposes to worse mood regulation. Alternatively, genetic variation underlying 
general intelligence might lead to poorer development of cognitive strategies to handle adversity 
which increases risk for MDD. An additional possibility is that there are sets of correlated traits–e.g., 
personality, intelligence, sleep patterns, appetitive regulation, or propensity to exercise–and that 
these act in varying combinations in different people. Our results are inconsistent with a causal 
relation between MDD and subsequent changes in body mass or education years. If such 
associations are observed in epidemiological or clinical samples, then it is likely not MDD but 
something correlated with MDD that drives the association. 
 



Fifth, we found significant positive correlations of MDD with all psychiatric disorders that we 
evaluated, including disorders prominent in childhood. This pattern of results indicates that the 
current classification scheme for major psychiatric disorders does not align well with the underlying 
genetic basis of these disorders. The MR results for MDD and schizophrenia indicated a shared 
biological basis. 
 
The dominant psychiatric nosological systems were principally designed for clinical utility, and are 
based on data that emerge during human interactions (i.e., observable signs and reported 
symptoms) and not objective measurements of pathophysiology. MDD is frequently comorbid with 
other psychiatric disorders, and the phenotypic comorbidity has an underlying structure that reflects 
shared origins (as inferred from factor analyses and twin studies). 83-86 Our genetic results add to this 
knowledge: MDD is not a discrete entity at any level of analysis. Rather, our data strongly suggest 
the existence of biological processes common to MDD and schizophrenia. It would be unsurprising if 
future work implicated bipolar disorder, anxiety disorders, and other psychiatric disorders as well. 
 
Finally, as expected, we found that MDD had modest ℎ#$% " (8.9%) since MDD is a complex malady 
with both genetic and environmental determinants. We found that MDD has a very high genetic 
correlation with proxy measures that can be briefly assessed. Lifetime major depressive disorder 
requires a constellation of signs and symptoms whose reliable scoring requires an extended 
interview with a trained clinician. However, the common variant genetic architecture of lifetime 
major depressive disorder in these seven cohorts (containing many subjects medically treated for 
MDD) has strong overlap with that of current depressive symptoms in general community samples. 
Similar relations of clinically-defined ADHD or autism with quantitative genetic variation in the 
population have been reported. 87,88 The MDD “disorder versus symptom” relationship has been 
debated extensively, 89 but our data indicate that the common variant genetic overlap is very high. 
This finding has two important implications. 
  
One implication is for future genetic studies of MDD. In a first phase, it should be possible to 
elucidate the bulk of the common variant genetic architecture of MDD using a cost-effective 
shortcut – large studies of genotyped individuals who complete brief lifetime MDD screening (a 
sample size approaching 1 million MDD cases may be achievable by 2020). In a second phase, with a 
relatively complete understanding of the genetic basis of MDD, one could then evaluate smaller 
samples of carefully phenotyped individuals with MDD to understand the clinical importance of the 
genetic results. These data could allow more precise delineation of the clinical heterogeneity of MDD 
(e.g., our demonstration that individuals with more severe or recurrent MDD have inherited a higher 
genetic loading for MDD than single-episode MDD). Subsequent empirical studies may show that it is 
possible to stratify MDD cases at first presentation to identify individuals at high risk for recurrence, 
poor outcome, poor treatment response, or who might subsequently develop a psychiatric disorder 
requiring alternative pharmacotherapy (e.g., schizophrenia or bipolar disorder). This could form a 
cornerstone of precision medicine in psychiatry. 
 
The second implication is that people with MDD differ only by degree from those who have not 
experienced MDD. All humans carry lesser or greater numbers of genetic risk factors for MDD. 
Genetic risk for MDD is continuous and normally distributed with no clear point of demarcation. 
Non-genetic factors play important protective and pre-disposing roles (e.g., life events, exposure to 
chronic fear, substance abuse, and a wide range of life experiences and choices). The relation of 
blood pressure to essential hypertension is a reasonable analogy. All humans inherit different 
numbers of genetic variants that influence long-term patterns of blood pressure with environmental 
exposures and life choices also playing roles. The medical “disorder” of hypertension is characterized 
by blood pressure chronically over a numerical threshold above which the risks for multiple 
preventable diseases climb. MDD is not a “disease” (i.e., a distinct entity delineable using an 
objective measure of pathophysiology) but indeed a disorder, a human-defined but definable 



syndrome that carries increased risk of adverse outcomes. The adverse outcomes of hypertension 
are diseases (e.g., stroke or myocardial infarction). The adverse outcomes of MDD include elevation 
in risk for a few diseases, but the major impacts of MDD are death by suicide and disability. 
 
In summary, this GWA meta-analysis of 130,664 MDD cases and 330,470 controls identified 44 loci. 
An extensive set of companion analyses provide insights into the nature of MDD as well as its 
neurobiology, therapeutic relevance, and genetic and biological interconnections to other 
psychiatric disorders. Comprehensive elucidation of these features is the primary goal of our genetic 
studies of MDD. 
 
Online Methods 
Anchor cohort. Our analysis was anchored in a GWA mega-analysis of 29 samples of European-
ancestry (16,823 MDD cases and 25,632 controls). Table S1 summarizes the source and 
inclusion/exclusion criteria for cases and controls for each sample. All samples in the initial PGC MDD 
papers were included. 13,15,90 All anchor samples passed a structured methodological review by MDD 
assessment experts (DF Levinson and KS Kendler). Cases were required to meet international 
consensus criteria (DSM-IV, ICD-9, or ICD-10) 91-93 for a lifetime diagnosis of MDD established using 
structured diagnostic instruments from assessments by trained interviewers, clinician-administered 
checklists, or medical record review. All cases met standard criteria for MDD, were directly 
interviewed (28/29 samples) or had medical record review by an expert diagnostician (1/29 
samples), and most were ascertained from clinical sources (19/29 samples). Controls in most 
samples were screened for the absence of lifetime MDD (22/29 samples), and randomly selected 
from the population. We considered this the “anchor” cohort given use of standard methods of 
establishing the presence or absence of MDD. 
 
The most direct and important way to evaluate the comparability of the samples comprising the 
anchor cohort is using SNP genotype data. 14,94 The sample sizes were too small to evaluate the 
common variant genetic correlations (&') between all pairs of anchor cohort samples (>3,000 
subjects per sample are recommended). As an alternative, we used “leave one out” genetic risk 
scores (GRS, described below). We repeated this procedure by leaving out each of the anchor cohort 
samples so that we could evaluate the similarity of the common-variant genetic architectures of 
each sample to the rest of the anchor cohort. Figure S1A shows that all samples in the anchor 
cohort (except one) yielded significant differences in case-control distributions of GRS. 
 
Expanded cohorts. We critically evaluated an “expanded” set of six independent, European-ancestry 
cohorts (113,841 MDD cases and 304,838 controls). Table S2 summarizes the source and 
inclusion/exclusion criteria for cases and controls for each cohort. These cohorts used a range of 
methods for assessing MDD: Generation Scotland employed direct interviews; iPSYCH (Denmark) 
used national treatment registers; deCODE (Iceland) used national treatment registers and direct 
interviews; GERA used Kaiser-Permanente treatment records (CA, US); UK Biobank combined self-
reported MDD symptoms and/or treatment for MDD by a medical professional; and 23andMe used 
self-report of treatment for MDD by a medical professional. All controls were screened for the 
absence of MDD. Cohort comparability. Table S3 summarizes the numbers of cases and controls in 
the anchor cohort and the six expanded cohorts. The most direct and important way to evaluate the 
comparability of these cohorts for a GWA meta-analysis is using SNP genotype data. 14,94 We used LD 
score regression (described below) to estimate ℎ#$% " for each cohort, and &' for all pairwise 
combinations of the cohorts.  
 
We compared the seven anchor and expanded cohorts. First, there was no indication of important 
sample overlap as the LDSC regression intercept between pairs of cohorts ranged from -0.01 to 
+0.01. Second, Table S4 shows ℎ#$% " on the liability scale for each cohort. The ℎ#$% " estimates 
range from 0.09 to 0.23 (for lifetime risk (=0.15) but the confidence intervals largely overlap. Third, 



Table S4 also shows the &' values for all pairs of anchor and expanded cohorts. The median &' was 
0.80 (interquartile range 0.67-0.96), and the upper 95% confidence interval on &' included 0.75 for 
all pairwise comparisons. These results indicate that the common variant genetic architecture of the 
anchor and expanded cohorts overlap strongly, and provide critical support for the full meta-analysis 
of all cohorts. 
 
Genotyping and quality control. Genotyping procedures can be found in the primary reports for each 
cohort (Tables S1-S2). Individual genotype data for all anchor cohorts, GERA, and iPSYCH were 
processed using the PGC “ricopili” pipeline (URLs) for standardized quality control, imputation, and 
analysis. 22 The expanded cohorts from deCODE, Generation Scotland, UK Biobank, and 23andMe 
were processed by the collaborating research teams using comparable procedures. SNPs and 
insertion deletion polymorphisms were imputed using the 1000 Genomes Project multi-ancestry 
reference panel (URLs).95 

 
Quality control and imputation on the 29 PGC MDD anchor cohorts was performed according to 
standards from the PGC (Table S3). The default parameters for retaining SNPs and subjects were: 
SNP missingness < 0.05 (before sample removal); subject missingness < 0.02; autosomal 
heterozygosity deviation (|Fhet|<0.2); SNP missingness < 0.02 (after sample removal); difference in 
SNP missingness between cases and controls < 0.02; and SNP Hardy-Weinberg equilibrium (P > 10−6 

in controls or P > 10−10 in cases). These default parameters sufficiently controlled l and false positive 
findings for 16 cohorts (boma, rage, shp0, shpt, edi2, gens, col3, mmi2, qi3c, qi6c, qio2, rai2, rau2, 
twg2, grdg, grnd). Two cohorts (gep3 and nes2) needed stricter SNP filtering and 11 cohorts needed 
additional ancestral matching (rot4, stm2, rde4) or ancestral outlier exclusion (rad2, i2b3, gsk1, 
pfm2, jjp2, cof3, roc3, mmo4). An additional cohort of inpatient MDD cases from Münster, Germany 
was processed through the same pipeline. 
 
Genotype imputation was performed using the pre-phasing/imputation stepwise approach 
implemented in IMPUTE2 / SHAPEIT (chunk size of 3 Mb and default parameters). The imputation 
reference set consisted of 2,186 phased haplotypes from the 1000 Genomes Project dataset (August 
2012, 30,069,288 variants, release “v3.macGT1”). After imputation, we identified SNPs with very 
high imputation quality (INFO >0.8) and low missingness (<1%) for building the principal components 
to be used as covariates in final association analysis. After linkage disequilibrium pruning (r2 > 0.02) 
and frequency filtering (MAF > 0.05), there were 23,807 overlapping autosomal SNPs in the data set. 
This SNP set was used for robust relatedness testing and population structure analysis. Relatedness 
testing identified pairs of subjects with ) > 0.2, and one member of each pair was removed at 
random after preferentially retaining cases over controls. Principal component estimation used the 
same collection of autosomal SNPs. 
 
Identification of identical samples is easily accomplished given direct access to individual genotypes. 
13 Two concerns are the use of the same control samples in multiple studies (e.g., GAIN or WTCCC 
controls) 96,97 and inclusion of closely related individuals. For cohorts where the PGC central analysis 
team had access to individual genotypes (all anchor cohorts and GERA), we used SNPs directly 
genotyped on all platforms to compute empirical relatedness, and excluded one of each duplicated 
or relative pair (defined as ) > 0.2). Within all other cohorts (deCODE, Generation Scotland, iPSYCH, 
UK Biobank, 23andMe, and CONVERGE), identical and relative pairs were identified and resolved 
using similar procedures. Identical samples between the anchor cohorts, iPSYCH, UK Biobank, and 
Generation Scotland were identified using genotype-based checksums (URLs), 98 and an individual on 
the collaborator’s side was excluded. Checksums were not available for the deCODE and 23andMe 
cohorts. Related pairs are not detectable by the checksum method but we did not find evidence of 
important overlap using LD score regression (the intercept between pairs of cohorts ranged from -
0.01 to +0.01 with no evidence of important sample overlap). 



 
Statistical analysis. In each cohort, logistic regression association tests were conducted for imputed 
marker dosages with principal components covariates to control for population stratification. 
Ancestry was evaluated using principal components analysis applied to directly genotyped SNPs. 99 In 
the anchor cohorts and GERA, we determined that all individuals in the final analyses were of 
European ancestry. European ancestry was confirmed in the other expanded cohorts by the 
collaborating research teams using similar procedures. We tested 20 principal components for 
association with MDD and included five principal components covariates for the anchor cohorts and 
GERA (all other cohorts adopted similar strategies). There was no evidence of stratification artifacts 
or uncontrolled test statistic inflation in the results from each anchor and extended cohort (e.g., lGC 

was 0.995–1.043 in the anchor cohorts). The results were combined across samples using an inverse-
weighted fixed effects model.100 Reported SNPs have imputation marker INFO score ≥ 0.6 and allele 
frequencies ≥0.01 and ≤0.99, and effective sample size equivalent to > 100,000 cases. For all cohorts, 
X-chromosome association results were conducted separately by sex, and then meta-analysed 
across sexes. 22 For two cohorts (GenScot and UKBB), we first conducted association analysis for 
genotyped SNPs by sex, then imputed association results using LD from the 1000 Genomes reference 
sample. 101 

 
Defining loci. GWA findings implicate genomic regions containing multiple significant SNPs (“loci”). 
There were almost 600 SNPs with P < 5x10-8 in this analysis. These are not independent associations 
but result from LD between SNPs. We collapsed the significant SNPs to 44 loci via the following 
steps. 
• All SNPs were high-quality (imputation INFO score ≥ 0.6 and allele frequencies ≥0.01 and ≤0.99). 
• We used “clumping” to convert MDD-associated SNPs to associated regions. We identified an index 
SNP with the smallest P-value in a genomic window and other SNPs in high LD with the index SNP 
using PLINK (--clump-p1 1e-4 --clump-p2 1e-4 --clump-r2 0.1 --clump-kb 3000). This retained SNPs 
with association P < 0.0001 and r2 < 0.1 within 3 Mb windows. Only one SNP was retained from the 
extended MHC region due to its exceptional LD. 
• We used bedtools (URLs) to combine partially or wholly overlapping clumps within 50 kb. 
• We reviewed all regional plots, and removed two singleton associations (i.e., only one SNP 
exceeding genome-wide significance). 
• We reviewed forest plots, and confirmed that association signals arose from the majority of the 
cohorts. 
• We conducted conditional analyses. To identify independent associations within a 10 Mb region, 
we re-evaluated all SNPs in a region conditioning on the most significantly associated SNP using 
summary statistics 25 (superimposing the LD structure from the Atherosclerosis Risk in Communities 
Study sample). 
 
Genetic risk score (GRS) analyses. To demonstrate the validity of our GWAS results, we conducted a 
series of GRS prediction analyses. The MDD GWA summary statistics identified associated SNP alleles 
and effect size which were used to calculate GRS for each individual in a target sample (i.e., the sum 
of the count of risk alleles weighted by the natural log of the odds ratio of the risk allele). In some 
analyses the target sample had been included as one of the 29 samples in the MDD anchor cohort; 
here, the discovery samples were meta-analyzed excluding this cohort. As in the PGC schizophrenia 
report, 22 we excluded uncommon SNPs (MAF < 0.1), low-quality variants (imputation INFO < 0.9), 
indels, and SNPs in the extended MHC region (chr6:25-34 Mb). We then LD pruned and “clumped” 
the data, discarding variants within 500 kb of, and in LD r2 > 0.1 with the most associated SNP in the 
region. We generated GRS for individuals in target subgroups for a range of P-value thresholds (PT: 
5x10-8, 1x10-6, 1x10-4, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1.0). 
 



For each GRS analysis, five ways of evaluating the regression of phenotype on GRS are reported 
(Table S5). The significance of the case-control score difference from logistic regression including 
ancestry PCs and a study indicator (if more than one target dataset was analyzed) as covariates. 2) 
The proportion of variance explained (Nagelkerke’s R2) computed by comparison of a full model 
(covariates + GRS) to a reduced model (covariates only). It should be noted that these estimates of 
R2 reflect the proportion of cases in the case-control studies where this proportion may not reflect 
the underlying risk of in the population. 3) The proportion of variance on the liability scale explained 
by the GRS R2 was calculated from the difference between full and reduced linear models and was 
then converted to the liability scale of the population assuming lifetime MDD risk of 15%. These 
estimates should be comparable across target sample cohorts, whatever the proportion of cases in 
the sample. 4) Area under the receiver operator characteristic curve (AUC; R library pROC) was 
estimated in a model with no covariates 22 where AUC can be interpreted as the probability of a case 
being ranked higher than a control. 5) Odds ratio for 10 GRS decile groups (these estimates also 
depend on both risk of MDD in the population and proportion of cases in the sample). We evaluated 
the impact of increasing sample size of the discovery sample GWA (Figure 2a) and also using the 
schizophrenia GWA study 22 as the discovery sample. We also undertook GRS analysis for a target 
sample of MDD cases and controls not included in the metaanalysis (a clinical inpatient cohort of 
MDD cases and screened controls collected in Münster, Germany). 
 
We conducted GRS analyses based on prior hypotheses from epidemiology of MDD using clinical 
measures available in some cohorts (if needed, the target sample was removed from the discovery 
GWA). We used GRS constructed from PT=0.05, selected as a threshold that gave high variance 
explained across cohorts (Figure S1a). First, we used GRS analyses to test for higher mean GRS in 
cases with younger age at onset (AAO) of MDD compared to those with older AAO in the anchor 
cohort samples. To combine analyses across samples, we used within-sample standardized GRS 
residuals after correcting for ancestry principal components. Heterogeneity in AAO in the anchor 
samples has been noted, 102 which may reflect study specific definitions of AAO (e.g., age at first 
symptoms, first visit to general practitioner, or first diagnosis). Following Power et al., 102 we divided 
AAO into octiles within each cohort and combined the first three octiles into the early AAO group 
and the last three octiles into the late AAO group. Second, we tested for higher mean GRS for cases 
in anchor cohort samples with clinically severe MDD (endorsing ≥8 of 9 DSM MDD criteria) compared 
to those with “moderate” MDD (endorsing 5-7 of 9 MDD criteria) following Verduijn et al. 103 Sample 
sizes are given in Table S3. Third, using iPSYCH as the target sample, we tested for higher mean 
GRS in recurrent MDD cases (ICD-10 F33, N=5,574) compared to those with single episode MDD 
cases (ICD-10 F32, N=12,968) in analyses that included ancestry principal components and 
genotyping batch as covariates. Finally, following Verduijn et al. 103 using the NESDA sample (PGC 
label “nes1”, an ongoing longitudinal study of depressive and anxiety disorders) as the target sample 
, we constructed clinical staging phenotypes in which cases were allocated to one of three stages: 
Stage 2 (n = 388) first episode MDD; stage 3 (n = 562) recurrent/relapse episode MDD; stage 4 (n = 
705) persistent/unremitting chronic MDD, with an episode lasting longer than 2 years before 
baseline interview and/or ≥ 80% of the follow-up time with depressive symptoms. We tested for 
higher mean GRS in stage IV cases compared to stage II MDD cases. 
 
Linkage disequilibrium (LD) score regression 14,94 was used to estimate ℎ#$% " from GWA summary 

statistics. Estimates of ℎ#$% " on the liability scale depend on the assumed lifetime prevalence of 
MDD in the population ((), and we assumed (=0.15 but also evaluated (=0.10 to explore sensitivity 
(Table S4). LD score regression bivariate genetic correlations attributable to genome-wide SNPs (&') 
were estimated across MDD cohorts and between the full MDD cohort and other traits and 
disorders.  
 
LD score regression was also used to partition ℎ#$% " by genomic features. 61,94 We tested for 
enrichment of ℎ#$% " based on genomic annotations partitioning ℎ#$% " proportional to bp length 



represented by each annotation. We used the “baseline model” which consists of 53 functional 
categories. The categories are fully described elsewhere, 61 and included conserved regions 62, USCC 
gene models (exons, introns, promoters, UTRs), and functional genomic annotations constructed 
using data from ENCODE 104 and the Roadmap Epigenomics Consortium. 105 We complemented these 
annotations by adding introgressed regions from the Neanderthal genome in European populations 
106 and open chromatin regions from the brain dorsolateral prefrontal cortex. The open chromatin 
regions were obtained from an ATAC-seq experiment performed in 288 samples (N=135 controls, 
N=137 schizophrenia, N=10 bipolar, and N=6 affective disorder). 107 Peaks called with MACS 108 (1% 
FDR) were retained if their coordinates overlapped in at least two samples. The peaks were re-
centered and set to a fixed width of 300bp using the diffbind R package. 109 To prevent upward bias 
in heritability enrichment estimation, we added two categories created by expanding both the 
Neanderthal introgressed regions and open chromatin regions by 250bp on each side.  
 
We used LD score regression to estimate &' between MDD and a range of other disorders, diseases, 
and human traits. 14 The intent of these comparisons was to evaluate the extent of shared common 
variant genetic architectures in order to suggest hypotheses about the fundamental genetic basis of 
MDD (given its extensive comorbidity with psychiatric and medical conditions and its association 
with anthropometric and other risk factors). Subject overlap of itself does not bias &'. 14 These &' are 
mostly based on studies of independent subjects and the estimates should be unbiased by 
confounding of genetic and non-genetic effects (except if there is genotype by environment 
correlation). When GWA studies include overlapping samples, &' remains unbiased but the intercept 
of the LDSC regression is an estimate of the correlation between association statistics attributable to 
sample overlap. These calculations were done using the internal PGC GWA library and with LD-Hub 
(URLs). 75  
 
Relation of MDD GWA findings to tissue and cellular gene expression. We used partitioned LD score 
regression to evaluate which somatic tissues were enriched for MDD heritability. 110 Gene expression 
data generated using mRNA-seq from multiple human tissues were obtained from GTEx v6p (URLs). 
Genes for which <4 samples had at least one read count per million were discarded, and samples 
with <100 genes with at least one read count per million were excluded. The data were normalized, 
and a tstatistic was obtained for each tissue by comparing the expression in each tissue with the 
expression of all other tissues with the exception of tissues related to the tissue of interest (e.g., 
brain cortex vs all other tissues excluding other brain samples), using sex and age as covariates. A t-
statistic was also obtained for each tissue among its related tissue (ex: cortex vs all other brain 
tissues) to test which brain region was the most associated with MDD, also using sex and age as 
covariates. The top 10% of the genes with the most extreme t-statistic were defined as tissue 
specific. The coordinates for these genes were extended by a 100kb window and tested using LD 
score regression. Significance was obtained from the coefficient z-score, which corrects for all other 
categories in the baseline model.  
 
Lists of genes specifically expressed in neurons, astrocytes, and oligodendrocytes were obtained 
from Cahoy et al. 60 As these experiment were done in mice, genes were mapped to human 
orthologous genes using ENSEMBL. The coordinates for these genes were extended by a 100kb 
window and tested using LD score regression as for the GTEx tissue specific genes.  
 
We conducted eQTL look-ups of the most associated SNPs in each region and report (Table S6) 
GWA SNPs in LD (r2 > 0.8) with the top eQTLs in the following data sets: eQTLGen Consortium 
(lllumina arrays in whole blood N=14,115, in preparation), BIOS (RNA-seq in whole blood (N=2,116), 
111 NESDA/NTR (Affymetrix arrays in whole blood, N=4,896), 112 GEUVADIS (RNA-seq in LCL (N=465), 
113 Rosmap (RNA seq in cortex, N= 494, submitted), GTEx (RNA-seq in 44 tissues, N>70), 58 and 
Common Mind Consortium (CMC, prefrontal cortex, Sage Synapse accession syn5650509, N=467). 66 



 
We used summary-data-based Mendelian randomization (SMR) 64 to identify loci with strong 
evidence of causality via gene expression (Table S9). SMR analysis is limited to significant cis SNP-
expression (FDR < 0.05) and SNPs with MAF > 0.01 at a Bonferroni-corrected pSMR. Due to LD, 
multiple SNPs may be associated with the expression of a gene, and some SNPs are associated with 
the expression of more than one gene. Since the aim of SMR is to prioritize variants and genes for 
subsequent studies, a test for heterogeneity excludes regions that may harbor multiple causal loci 
(pHET < 0.05). SMR analyses were conducted using eQTLGen Consortium, GTEx (11 brain tissues), 
and CMC data. 
 
We conducted a transcriptome wide association study 65 using pre-computed expression reference 
weights for CMC data (5,420 genes with significant cis-SNP heritability) provided with the 
TWAS/FUSION software. The significance threshold was 0.05/5420. DNA looping using Hi-C. 
Dorsolateral prefrontal cortex (Brodmann area 9) was dissected from postmortem samples from 
three adults of European ancestry (Dr Craig Stockmeier, University of Mississippi Medical Center). 
Cerebrum from three fetal brains were obtained from the NIH NeuroBiobank (URLs; gestation age 
17-19 weeks, African ancestry). Samples were dry homogenized to a fine powder using a liquid 
nitrogen-cooled mortar and pestle. 
 
We used “easy Hi-C” (in preparation) to assess DNA looping interactions. Pulverized tissue (~150 mg) 
was crosslinked with formaldehyde (1% final concentration) and the reaction quenched using glycine 
(150 mM). Samples were then lysed, Dounce homogenized, and digested using HindIII. This was 
followed by in situ ligation. Samples were cross-linked with proteinase K and purified using 
phenolchloroform. DNA was then digested with DpnII followed by purification using PCRClean DX 
beads (Aline Biosciences). The DNA products were self-ligated overnight at 16° using T4 DNA ligase. 
Self-ligated DNA waw purified with phenol-chloroform, digested with lambda exonuclease, and 
purified using PCRClean DX beads. For DNA circle re-linearization, bead-bound DNA was eluted and 
digested with HindIII and purified using PCRClean. Bead-bound DNA was eluted in 50ul nuclease 
free water. 
 
Re-linearized DNA (~50ng) was used for library generation (Illumina TruSeq protocol). Briefly, the 
DNA was end-repaired using End-it kit (Epicentre), A tailed with Klenow fragment (3ʹ–5ʹ exo–; NEB), 
and purified with PCRClean DX beads. The 4ul DNA product was mixed with 5ul of 2X quick ligase 
buffer, 1ul of 1:10 diluted annealed adapter and 0.5ul of Quick DNA T4 ligase (NEB). The ligation was 
done by incubating at room temperature for 15 minutes. DNA was purified using DX beads. Elution 
was done in 14ul nuclease free water. To deep-sequence easy Hi-C libraries, we used custom TruSeq 
adapter in which the index is replaced by 6 base random sequence. Libraries were then PCR 
amplified and deeply sequenced (4-5 lanes per sample, around 1 billion reads per sample) using 
Illumina HiSeq4000 (2x50bp). 
 
Because nearly all mappable reads start with the HindIII sequence AGCTT, we trimmed the first 5 
bases from every read and added the 6-base sequence AAGCTT to the 5’ of all reads. These read 
were then aligned to the human reference genome (hg19) using Bowtie. After mapping, we kept 
reads where both ends were exactly at HindIII cutting sites. PCR duplicates were removed. Of these 
HindIII pairs, we splitreads into three classes based on their strand orientations (“same-strand”, 
“inward”, or “outward”). For cis-reads the only type of invalid cis-pairs are self-circles with two ends 
within the same HindIII fragment facing each other. We computed the total number of real cis-
contact as twice the number of valid “same-strand” pairs. Reads from undigested HindIII sites are 
back-to-back read pairs next to the same HindIII sites facing away from each other. 
 



Gene-wise and pathway analysis. Our approach was guided by rigorous method comparisons 
conducted by PGC members. 70,114 P-values quantifying the degree of association of genes and gene 
sets with MDD were generated using MAGMA (v1.06). 115 MAGMA uses Brown’s method to combine 
SNP p-values and account for LD. We used ENSEMBL gene models for 19,079 genes giving a 
Bonferroni corrected P-value threshold of 2.6x10-6. Gene set P-values were obtained using a 
competitive analysis that tests whether genes in a gene set are more strongly associated with the 
phenotype than other gene sets. We used European-ancestry subjects from 1,000 Genomes Project 
(Phase 3 v5a, MAF ≥ 0.01) 101 for the LD reference. The gene window used was 35 kb upstream and 
10 kb downstream to include regulatory elements. 
 
Gene sets were from two main sources. First, we included gene sets previously shown to be 
important for psychiatric disorders (71 gene sets; e.g., FMRP binding partners, de novo mutations, 
GWAS top SNPs, ion channels). 72,116,117 Second, we included gene sets from MSigDB (v5.2) 118 which 
includes canonical pathways and Gene Ontology gene sets. Canonical pathways were curated from 
BioCarta, KEGG, Matrisome, Pathway Interaction Database, Reactome, SigmaAldrich, Signaling 
Gateway, Signal Transduction KE, and SuperArray. Pathways containing between 10-10K genes were 
included. 
 
To evaluate gene sets related to antidepressants, gene-sets were extracted from the Drug-Gene 
Interaction database (DGIdb v.2.0) 119 and the Psychoactive Drug Screening Program Ki DB 120 

downloaded in June 2016. The association of 3,885 drug gene-sets with MDD was estimated using 

MAGMA (v1.6). The drug gene-sets were ordered by p-value, and the Wilcoxon-Mann-Whitney test 
was used to assess whether the 42 antidepressant gene-sets in the dataset (ATC code N06A in the 
Anatomical Therapeutic Chemical Classification System) had a higher ranking than expected by 
chance. 
 
One issue is that some gene sets contain overlapping genes, and these may reflect largely 
overlapping results. The pathway map was constructed using the kernel generative topographic 
mapping algorithm (k-GTM) as described by Olier et al. GTM is a probabilistic alternative to Kohonen 
maps: the kernel variant is used when the input is a similarity matrix. The GTM and k-GTM 
algorithms are implemented in GTMapTool (URLs). We used the Jaccard similarity matrix of FDR-
significant pathways as input for the algorithm, where each pathway is encoded by a vector of binary 
values representing the presence (1) or absence (0) of a gene. Parameters for the k-GTM algorithm 
are the square root of the number of grid points (k), the square root of the number of RBF functions 
(m), the regularization coefficient (l), the RBF width factor (w), and the number of feature space 
dimensions for the kernel algorithm (b). We set k=square root of the number of pathways, m=square 
root of k, l=1 (default), w=1 (default), and b=the number of principal components explaining 99.5% 
of the variance in the kernel matrix. The output of the program is a set of coordinates representing 
the average positions of pathways on a 2D map. The x and y axes represent the dimensions of a 2D 
latent space. The pathway coordinates and corresponding MAGMA P-values were used to build the 
pathway activity landscape using the kriging interpolation algorithm implemented in the R gstat 
package. 
 
Mendelian randomization (MR). 121 We used MR to investigate the relationships between MDD and 
correlated traits. Epidemiological studies show that MDD is associated with environmental and life 
event risk factors as well as multiple diseases, yet it remains unclear whether such trait outcomes 
are causes or consequences of MDD (or prodromal MDD). Genetic variants are present from birth, 
and hence are far less likely to be confounded with environmental factors than in epidemiological 
studies. 
 



We conducted bi-directional MR analysis for four traits: years of education (EDY) 76, body mass index 
(BMI) 27, coronary artery disease (CAD) 77, and schizophrenia (SCZ) 22. Briefly, we denote z as a 
genetic variant (i.e., a SNP) that is significantly associated with x, an exposure or putative causal trait 
for y (the disease/trait outcome). The effect size of x on y can be estimated using a two-step least 
squares (2SLS) 122 approach: *+, = *.,/*.+., where *.+ is the estimated effect size for the SNP-trait 
association the exposure trait, and *., is the effect size estimated for the same SNP in the GWAS of 
the outcome trait. 
 
Since SNP-trait effect sizes are typically small, power is increased by using multiple associated SNPs 
which allows simultaneous investigation of pleiotropy driving the epidemiologically observed trait 
associations. Causality of the exposure trait for the outcome trait implies a consistent relationship 
between the SNP association effect sizes of the exposure associated SNPs in the outcome trait. 
 
We used generalized summary statistics-based MR (GSMR) (Zhu et al., submitted) to estimate *+, and 
its standard error from multiple SNPs associated with the exposure trait at a genome-wide 
significance level. We conducted bi-directional GSMR analyses for each pair of traits, and report 
results after excluding SNPs that fail the HEIDI-outlier heterogeneity test (which is more conservative 
than excluding SNPs that have an outlying association likely driven by locus-specific pleiotropy). 
GSMR is more powerful than inverse-weighted MR (IVW-MR) and MR-Egger because it takes 
account of the sampling variation of both *.+ and *.,. GSMR also accounts for residual LD between the 
clumped SNPs. For comparison, we also conducted IVW-MR and MR-Egger analyses. 123 
Trans-ancestry. Common genetic risk variants for complex biomedical conditions are likely to be 
shared across ancestries. 124,125 However, lower &' have been reported likely reflecting different LD 
patterns by ancestry. For example, European-Chinese &' estimates were below one for ADHD (0.39, 
SE 0.15), 126 rheumatoid arthritis (0.46, SE 0.06), 127 and type 2 diabetes (0.62, SE 0.09), 127 and reflect 
population differences in LD and population-specific causal variants. 
 
The Han Chinese CONVERGE study 17 included clinically ascertained females with severe, recurrent 
MDD, and is the largest non-European MDD GWA to date. Neither of the two genome-wide 
significant loci in CONVERGE had SNP findings ±250 kb with P < 1x10-6 in the full European results. 
We used LDSC with an ancestry-specific LD reference for within ancestry estimation, and POPCORN 
127 for trans-ancestry estimation. In the CONVERGE sample, ℎ#$% " was reported as 20-29%. 128 Its &' 

with the seven European MDD cohorts was 0.33 (SE 0.03). 129 For comparison, &' for CONVERGE with 
European results for schizophrenia was 0.34 (SE 0.05) and 0.45 (SE 0.07) for bipolar disorder. The 
weighted mean &' between the CONVERGE cohort with the seven anchor and expanded cohorts 
using was 0.31 (SE 0.03). These &' estimates should be interpreted in light of the estimates of &' 

within European MDD cohorts which are variable (Table S4). 
 
Genome build. All genomic coordinates are given in NCBI Build 37/UCSC hg19. 
 
Availability of results. The PGC’s policy is to make genome-wide summary results public. Summary 
statistics for a combined meta-analysis of the anchor cohort samples with five of the six expanded 
samples (deCODE, Generation Scotland, GERA, iPSYCH, and UK Biobank) are available on the PGC 
website (URLs). Results for 10,000 SNPs for all seven cohorts are also available on the PGC web site. 
GWA summary statistics for the sixth expanded cohort (23andMe, Inc.) must be obtained separately. 
Summary statistics for the 23andMe dataset can be obtained by qualified researchers under an 
agreement with 23andMe that protects the privacy of the 23andMe participants. Please contact 
David Hinds (dhinds@23andme.com) for more information and to apply to access the data. 
Researchers who have the 23andMe summary statistics can readily recreate our results by meta-
analyzing the six cohort results file with the Hyde et al. results file from 23andMe. 19 

 



Availability of genotype data for the anchor cohorts is described in Table S14. For the expanded 
cohorts, interested users should contact the lead PIs of these cohorts (which are separate from the 
PGC). 
 
URLs 
1000 Genomes Project multi-ancestry imputation panel, 
https://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html 
23andMe privacy policy https://www.23andme.com/en-eu/about/privacy 
Bedtools, https://bedtools.readthedocs.io 
Genotype-based checksums for relatedness determination, 
http://www.broadinstitute.org/~sripke/share_links/checksums_download 
GTEx, http://www.gtexportal.org/home/datasets 
GTMapTool, http://infochim.u-strasbg.fr/mobyle-cgi/portal.py#forms::gtmaptool 
LD-Hub, http://ldsc.broadinstitute.org 
MDD summary results are available on the PGC website, https://pgc.unc.edu 
NIH NeuroBiobank, https://neurobiobank.nih.gov 
PGC “ricopili” GWA pipeline, https://github.com/Nealelab/ricopili 
UK Biobank, http://www.ukbiobank.ac.uk 
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Figure legends 
Figure 1: Results of GWA meta-analysis of seven cohorts for MDD. (a) Relation between 
adding cohorts and number of genome-wide significant genomic regions. Beginning with the 
largest cohort (1), added the next largest cohort (2) until all cohorts were included (7). The 
number next to each point shows the total effective sample size. (b) Quantile-quantile plot 
showing a marked departure from a null model of no associations (the y-axis is truncated at 
1e-12). (c) Manhattan plot with x-axis showing genomic position (chr1-chr22), and the y-axis 
showing statistical significance as –log10(P). The red line shows the genome-wide 
significance threshold (P=5x10-8). 
 
Figure 2: Out-of-sample genetic risk score (GRS) prediction analyses. (a) Variance 
explained on the liability scale based on different discovery samples for three target 
samples: anchor cohort (16,823 cases, 25,632 controls), iPSYCH (a nationally 
representative sample of 18,629 cases and 17,841 controls) and a 



clinical cohort from Münster not included in the GWA analysis (845 MDD inpatient cases, 
834 controls). The anchor cohort is included as both discovery and target as we computed 
out-of-sample GRS for each anchor cohort sample, combined the results, and modeled 
case-control status as predicted by standardized GRS and cohort (see Online Methods). (b) 
Odd ratios of MDD per GRS decile relative to the first decile for iPSYCH and anchor cohorts. 
(c) MDD GRS (from out-of-sample discovery sets) were significantly higher in MDD cases 
with: earlier age at onset; more severe MDD symptoms (based on number of criteria 
endorsed); recurrent MDD compared to single episode; and chronic/unremitting MDD 
(“Stage IV” compared to “Stage II”, first-episode MDD 103). Error bars represent 95% 
confidence intervals. 
 
Figure 3: Comparisons of the MDD GWA meta-analysis. (a) MDD results and enrichment in 
bulk tissue mRNA-seq from GTEx. Only brain tissues showed enrichment, and the three 
tissues with the most significant enrichments were all cortical. (b) MDD results and 
enrichment in three major brain cell types.The MDD genetic findings were enriched in 
neurons but not oligodendrocytes or astrocytes. (c) Partitioned LDSC to evaluate enrichment 
of the MDD GWA findings in over 50 functional genomic annotations (Table S8). The major 
finding was the significant enrichment of MDD ℎ#$% " in genomic regions conserved across 
29 Eutherian mammals. 62 Other enrichments implied regulatory activity, and included open 
chromatin in human brain and an epigenetic mark of active enhancers (H3K4me1). Exonic 
regions did not show enrichment. We found no evidence that Neanderthal introgressed 
regions were enriched for MDD GWA findings. 
 
Figure 4: Generative topographic mapping of the 19 significant pathway results. The 
average position of each pathway on the map is represented by a point. The map is colored 
by the -log10(P) obtained using MAGMA. The X and Y coordinates result from a kernel 
generative topographic mapping algorithm (GTM) that reduces high dimensional gene sets 
to a two-dimensional scatterplot by accounting for gene overlap between gene sets. Each 
point represents a gene set. Nearby points are more similar in gene overlap than more 
distant points. The color surrounding each point (gene set) indicates significance per the 
scale on the right. The significant pathways (Table S11) fall into nine main clusters as 
described in the text.  
 
Figure S1: Leave-one-out GRS analyses of the anchor cohort. (a) Per sample R2 at varying 
significance thresholds. A all samples in the anchor cohort (except one) yielded significant 
differences in case-control distributions of GRS. Across all samples in the anchor cohort, 
GRS explained 1.9% of variance in liability. (b) Relation between the number of cases and 
R2, showing the expected positive correlation.  
 
Figure S2: Regional association plots of genomic regions identified from SMR analysis of MDD 
GWA and eQTL results. SMR analysis helps to prioritize specific genes in a region of association for 
follow-up functional studies. Figures appear in the same order as the results reported in Table S9. 
In the top plot, grey dots represent the MDD GWA P-values, diamonds show P-values for probes 
from the SMR test, and triangles are probes without a cis-eQTL (at PeQTL < 5e-8). Genes that pass 
SMR and heterogeneity tests(designed to remove loci with more than one causal association) are 
highlighted in red. The eQTL Pvalues of SNPs are shown in the bottom plot. 
 
Figure S3: Circular plots to illustrate DNA-DNA loops. From the outside, the tracks show 
hg19 coordinates in Mb, the positions of significant MDD associations (-log10(P), outward is 
more significant), the names and positons of GENCODE genes, and the arc show significant 
DNA-DNA loops (q < 1e-4) from Hi-C on adult cortex (green) and fetal frontal cortex (blue). 
(a) chr1:71.5-74.1 Mb suggesting that the two statistically independent associations in the 
region both implicate NEGR1. (b) The MDD association in RERE, in contrast, coincides with 
many DNA-DNA loops and may suggest that this region contains superenhancer elements. 



Figure S4: Graphs depicting the SNP instruments used in Mendelian randomization 
analyses. Table S13 shows the parameter estimates and significance, and these graphs 
show scatterplots of the instruments for MDD and (a) BMI, (b) years of education, (c) 
coronary artery disease, and (d) schizophrenia. 
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