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The three-dimensional distribution of the x-ray diffuse scattering intensity of BaTiO3 has been recorded in 

a synchrotron experiment and simultaneously computed using molecular dynamics simulations of a shell 

model. Together, these have allowed the details of the disorder in paraelectric BaTiO3 to be clarified. The 

narrow sheets of diffuse scattering, related to the famous anisotropic longitudinal correlations of Ti ions, are 

shown to be caused by the overdamped anharmonic soft phonon branch. This finding demonstrates that the 

occurrence of narrow sheets of diffuse scattering agrees with a displacive picture of the cubic phase of this 

textbook ferroelectric material. The presented methodology allows one to go beyond the harmonic 

approximation in the analysis of phonons and phonon-related scattering. 

 
 

 
The narrow lines of diffuse scattering, discovered half 

a century ago in x-ray photographs of BaTiO3 crystal, 

have remained a puzzle for several generations of 
physicists interested in the nature of ferroelectricity [1–
12]. It was soon understood that the observed diffuse 
scattering reflects a peculiar nanoscale displacement 
disorder of Ti ions which is intimately related to the 
ferroelectricity of this classical material [1–3].  

An example of such diffuse scattering is the k ¼ 3 dark, 

horizontal straight line in the x-ray diffuse scattering image 

shown in Fig. 1(a). The analysis of such lines that are 

evident in experiments with BaTiO3 and related perovskites 

indicated that Ti ion displacements parallel to a given Ti-O-

Ti bond chain are correlated along this chain up to distances 

of the order of 5–10 nm, while there is little correlation 

between the displacements perpendicular to the chain [1]. 

Since then, until the present, these correlated displacements 

have been considered as the key ingredient in the phase 

transition of BaTiO3, and they are deemed responsible for a 

range of nonstandard phenomena occur-ring even in the 

paraelectric cubic phase [12–17].  
Such correlated displacements, hereafter referred to as 

chain correlations [1], can be well explained if it is 
assumed that each Ti cation is at any moment off-

centered with respect to the surrounding oxygen 

octahedral cage, and displaced towards one of its eight 

facets [1]. The eight-site off-center model gives a 
tractable framework for many quantitative considerations 

[1,18–22], and in particular, it allows an explanation to be 
given as to why these chain correlations eventually vanish 

in the rhombohedral ground-state phase [1,11,12].  
Nevertheless, it has been argued that similar chain 

correlations might be induced simply by the low-frequency 

 

 

phonon modes [3–6,23–25]. Since the available conven-

tional x-ray scattering data do not provide any direct 

information about the timescale of the chain correlations, 

many other techniques have been employed to try to solve 

this controversy. These efforts yielded conflicting conclu-

sions. On the one hand, many experiments—in particular, 

the local probe methods—supported the pronounced 

eight-site off-centering [7,9,18], while the spectroscopic 

methods designed to probe collective excitations typically 

indicated that the classical soft-mode picture of the phase 

transition is more appropriate [25–28].  
The most convincing spectroscopic evidence for order-

disorder polarization dynamics has been found in the 
terahertz-range frequency response of the dielectric per-

mittivity of the tetragonal ferroelectric phase of BaTiO3 

[8]. Its spectrum shows an additional relaxational polar 
mode, well separated from the three normal IR active 
phonon modes expected in the cubic perovskite crystal. In 
addition, theoretical modeling indicated that the 
character-istic frequency of this extra relaxational polar 
mode roughly matches the rate of the single-ion hopping 
between the inequivalent (due to the spontaneous 
polarization) off-centered Ti positions [8].  

In contrast, there is no similarly obvious spectroscopic 

evidence for the intersite hopping dynamics in the cubic phase 

of BaTiO3. While detailed fitting of the paraelectric soft-mode 

spectral response with a single damped harmonic oscillator is 

not fully satisfactory, there is certainly no well-separated central 

peak in the paraelectric spectra that could be ascribed 

straightforwardly to the dynamics of the intersite jumps among 

the eight off-centered Ti positions [28–30]. Moreover, it has not 

yet been established how the spectro-scopic results relate to the 

diffuse scattering observations: are 

 



  
 

the terahertz-range polar excitations responsible also for 

the x-ray diffuse scattering planar sheets?  
In order to clarify the phase transition mechanism of this 

textbook ferroelectric substance in a broadly accessible 
manner, we have collected a comprehensive set of high-

resolution x-ray diffuse scattering data covering system-

atically the whole reciprocal space (up to Q ≈ 6.5 Å
−1

). The 

experiment was carried out at 500 K, i.e., about 100 K above 

TC, where most of the recently reported peculiar properties 

[14,31–34], often forbidden by the cubic sym-metry, should 

be either absent or negligible. A combination of the currently 

available synchrotron source experimental data with 
contemporary molecular dynamics modeling yields a very 

clear-cut picture about the dynamics of the chain correlations 

in the cubic phase of BaTiO3. In particular, while the planar 

sheets of x-ray diffuse scattering are shown to be caused by 

the soft phonon branch scattering, the signatures of a 
strongly anharmonic local potential with the eight most 

probable off-centered sites are clearly present in the material 

as well.  
The experimental data were obtained at the Advanced 

Photon Source 11ID-B beam line using a Perkin-Elmar 

amorphous silicon detector and an incident x-ray beam with 

an energy of 58 keV (0.2127 Å). During the measurement, 

the BaTiO3 single crystal sample, held at the temperature of 

500 K, was rotated with ω ¼ 0.25° steps in a way allowing 

for systematic coverage of the reciprocal space. The 

reconstruction of the reciprocal space planes was done with 

the program XCAVATE [35], after indexing 
¯ 

the data within the cubic Pm3m spacegroup with the lattice  
parameter a ¼ 4.01 Å and after removal of the known 
artifacts [36,37]. To the best of our knowledge, such detailed 
quantitative information about the diffuse scatter-ing in the 

cubic phase of BaTiO3 has not been reported yet.  
Theoretical diffuse scattering intensity maps were derived 

from computer simulations yielding temporal evolution of 

atomic positions, contained in a box compris-ing 50
3

 

BaTiO3 unit cells. The trajectory was obtained from 

molecular dynamics simulations conducted with the DLPOLY 

software [38], using an ab initio–based shell-model 
interatomic potential [39], parameters of which were taken 
from Sepliarsky et al. [40]. The time step was 0.2 fs. After 
the appropriate equilibration [41], the production trajectory 
was obtained from about 100 ps of an NVE (constant 

volume–constant energy) ensemble run. The ferroelectric 
phase-transition temperature in  the model  occurs  at 

TC;theor ∼ 300 K; for a reasonable comparison with the 

experiment,  the calculations were conducted  at  T ¼ 

TC;theor þ 100 K. Theoretical diffuse scattering intensities 

were obtained with the DISCUS program [42]. Intensity maps 
presented in this work were determined as an average of 48 
images, each calculated as a cubic average from one 
snapshot of the structure trajectory. In order to directly 
identify the dynamics of the scattering processes involved, 
we have used the information stored in the MD trajectory 

 

and numerically evaluated the scattering efficiency at a 

given momentum transfer ℏQ according to the associated 

energy transfer ℏω, in terms of the SðQ; ωÞ scattering 

function with 0.4 meV energy resolution at several points 

and paths in the momentum space, using the nMoldyn 

program [43].  
The comparison of the experimental and theoretical 

results for diffuse scattering intensity distributed within the 

hk0 and hk1.5 reciprocal space planes of cubic BaTiO3 is 

displayed in Fig. 1. The left semicircles of each intensity 
map in Fig. 1 show experimental results, and the right 
semicircles show the molecular dynamics prediction.  

The integer-coordinate points in the hk0 reciprocal space 

plane correspond to the vertices of the reciprocal lattice of 

the cubic perovskite structure. The dark diffuse spots located 

at these reciprocal lattice points are due to the usual thermal 

diffuse scattering by the thermally activated low-frequency 

acoustic phonon modes. Each of these spots appears as either 

an individual elongated ellipsoid or a pair of differently 

oriented overlying ellipsoids (evoking a butterfly shape). 

The shape and the orientation of these ellipsoids can be well 

understood from the anisotropy of the elastic tensor of the 

cubic BaTiO3 crystal [3,25,45].  
There is also a somewhat weaker diffuse scattering 

intensity emanating from the long axes of the ellipsoidal 

spots that seems to mutually connect the diffuse spots into 

continuous diffuse scattering stripes [for example, the h þ 

k ¼ 4 intensity stripe in Fig. 1(a)]. More precisely, this 

weak diffuse scattering intensity is concentrated around 

all reciprocal space planes coincident with the facets of 

reciprocal space octahedra, defined by jhj þ jkj þ jlj ≤ 2n, 

where n ¼ 1, 2, 3, etc. For example, the diffuse scattering 

localized near the h þ k þ l ¼ 4 plane appears as the dark 
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FIG. 1. Diffuse scattering of a cubic BaTiO3 single crystal at 

T C þ 100 K within the (a) hk0 and (b) hk1.5 planes of the 

momentum space. The left semicircles show experimental data; the 

right ones are calculated (see the text). Darker contrast means 

higher intensity. The vertical and horizontal diffuse lines are caused 

by the short-range Ti-ion displacement correlations. The two 

highlighted segments relate to the paths explored in Figs. 3 and 4. 

The sharp, tiny spots in noninteger positions in the left semicircle 

of (a) come from λ=3 contamination of the beam. A larger version 

of this figure is deposited in the Supplemental  
Material [44]. 

 

 



  
 

streak rippled around the h þ k ¼ 2.5 reciprocal line in Fig. 

1(b), and as the h þ k ¼ 4 dark streak in Fig. 1(a). It is 

natural to ascribe these diffuse streaks to the low-frequency 

phonon modes as well. In fact, the streak intensity roughly 

scales with the intensity of the adjacent thermal diffuse 

scattering spots, and the latter follows the known structure 

factor variation typical for acoustic modes. It has been thus 

proposed that the streaks and spots are together forming an 

“acoustic component” of the diffuse scattering SA [3].  
In contrast, the scattering related to the Ti chain 

correlations is restricted to the closest vicinity of the jhj ¼ n, 

jkj ¼ n, and jkj ¼ n (n ¼ 1; 2; 3…) reciprocal planes. 

Consequently, it appears just as a set of extremely narrow 

intensity lines, parallel to the Cartesian axes in the images of 

Fig. 1 (the dark horizontal line at k ¼ 3, for example). 

Visibly, the intensity of these lines does not scale with the 

intensity of the neighboring acoustic diffuse spots. Rather, 

the observed intensity variations testify that these diffuse 

lines stem from the disordered opticlike displacements, 

representing the relative displacement of the Ti ion with 

respect to the neighboring O and Ba ions [3]. The debated 

question is whether this optical part of the diffuse scattering, 

SO, simply reflects the dispersion of low-frequency soft 

optic modes, or whether this diffuse scatter-ing arises due to 

some extra source of Ti chain correlations, which is 

inherently linked to the eight-site Ti off-centering.  
The calculated trajectory allows us to directly inspect 

the Ti ion displacements with respect to the oxygen 

octahedral cages. The three-dimensional histogram of the 

Ti ion’s positions with respect to the center of its oxygen 

octahedron [Fig. 2(e)] shows a very smeared probability 

distribution, similar to that found in Ref. [46], 

nevertheless with a shallow local minimum in the center 

and eight maxima at the anticipated [9,12,18,47] off-

center positions. Still, only about 5% of the Ti ions 

actually fall within these probability peaks; most of the Ti 

ions are distributed around them.  
An example of the instantaneous distribution of the 

relative Ti-O6 displacements in real space is shown in 

Fig. 2(a) (only the y component is displayed). Anisotropic 
chain correlations between neighboring sites are better 
revealed in the picture showing displacements averaged 
over the time of 500 fs [Fig. 2(b)]. For example, the y 
component of a particular Ti local displacement tends to 
be parallel to that of its neighbors in the y direction, but 
there is little correlation in the perpendicular directions 
[11,48]. Equivalent correlations obviously hold for 
displacements along the x and z axes. Averaging over a 
longer period leads to a similar picture, but with a 
significant reduction of the displacement magnitudes [see 
the 4 ps averaging in Fig. 2(c)]. This indicates the 
picosecond lifetime of these correlations.  

The dynamical nature of the thermal excitations involved 

in these Ti correlations can be more quantitatively under-

stood from the frequency dependence of the SðQ; ωÞ 
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FIG. 2. Distribution of the y components of the relative Ti-O6 

displacement within a selected xy layer of the simulated crystal 

box: (a) Instantaneous displacements. (b) Displacements aver-

aged over a 500 fs period. (c) Displacements averaged over a 4 
ps period. Panel (d) shows a fraction of the simulated atomic 

structure with arrows showing the magnified vector of the local 
Ti displacement. (e) Isosurface plot of probability distribution 

for the Ti atom position with respect to the center of the oxygen 
octahedron. The average magnitude of the displacement equals 

0.147 Å, and the eight most likely positions are marked as 
corners of the superposed cube with about 0.3-Å-long edges. 

 

scattering function. The profile of SðQ; ωÞ calculated for 

the [q 0.5 1.5] trajectory in the momentum space is shown in 

Fig. 3(a). It passes through two SA stripes located around q 

¼ 2 and q ¼ 3, as well as through the SO diffuse line at 
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FIG. 3. Dynamical analysis of the diffuse scattering intensity:  
(a) Map of Sðq; ωÞ in the [q 0.5 1.5] direction. (b) X-ray 

scattering intensity determined from integration of Sðq; ωÞ over 

the indicated frequency intervals. 

 



  
 

q ¼ 2 and q ¼ 3 [see the segment marked in Fig. 1(b)]. 
At the simulated temperature, phonons with frequencies 
above 40 meV are barely populated, so that the overall 
scattering is given by integration of SðQ; ωÞ over the 
displayed frequency range. Figure 3(b) shows the full 
integral as well as the contributions obtained by 
integration with 0–10 meV and 10–20 meV. Two key 

conclusions can be drawn here. First, the SA diffuse 

scattering stripes are mostly caused by the dispersion of 
the rather flat phonon branches in the 10–20 meV 
frequency region [it is barely seen in Fig. 3(a), but the 
modes with lower frequencies are more populated and 
thus contribute more to the integral intensity]. Second, the 
sharp peak at q ¼ 3 in Fig. 3(b) arises due to the strongly 
dispersive phonon branch, apparently dropping from 
more than 40 meV down to a zero frequency [at q ¼ 3; 

see Fig. 3(a)]. Thus, it is this branch that is behind SO 

and the discussed Ti-chain displacement correlations.  
Finally, it is interesting to inspect the SðQ; ωÞ scattering 

function along the sheet of diffuse scattering. The SðQ; ωÞ 

calculated for the [3 q 0] path [Fig. 4(a)] clearly reveals 

dispersion of both the transverse acoustic branch and an 

optic branch in the 22–25 meV frequency region. On the top 

of it, there is a marked scattering component distributed 

around the zero energy transfer channel (ω ¼ 0), indicating 

an overdamped or a relaxational mode. The comparison 

of the SBaTi and STiO scattering functions, calculated by 
ignoring O ions and Ba ions, respectively, allows one to  
conclude that the eigenvector of the excitation involves 
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signal. (c) Optic spectra at different q values indicated by arrows  
on the map in (b), and a fit to a damped harmonic oscillator 

described in the text. 

 
mostly out-of-phase motion of Ti and O ions, as expected for 

the Slater-type order parameter [49,50] of the transition.  
In order to eliminate the scattering by low-frequency 

acoustic mode from the spectra, we have also used partial 

scattering functions (with contributions only from the 

indicated ions) to calculate an auxiliary scattering function 

AðQ; ωÞ ¼ SðQ; ωÞBa þ SðQ; ωÞBaTi þ SðQ; ωÞTi.

 This  
function suppresses the intensity of the long-wavelength 
acoustic branch [Fig. 4(b)] so that the spectral shapes of 
the overdamped opticlike excitation can then be followed 
even in the closest vicinity of the Brillouin zone center 
[Fig. 4(c)]. The line shape of the q ¼ 0.02 spectrum fits 
well to that of a harmonic oscillator with a frequency of 7 
meV and damping of 25 meV, yielding the 2 meV half 
width at half maximum (HWHM), implying that the 
imaginary susceptibility has a maximum around 2 meV 
[51,52]. This value corresponds to the known position of 
the soft-mode-related dielectric loss function maximum of 

BaTiO3 (at TC þ 100 K) [27,29,30,52]. In other words, 

this analysis confirms that the leading contribution to the 
x-ray diffuse scattering by the Ti-chain correlations coin-
cides with the scattering by the very same terahertz-range 
soft-phonon branch that determines the high dielectric 

permittivity of BaTiO3.  
The obtained results agree well with a range of previous 

experiments and calculations—for example, with the 

inelastic neutron scattering studies [25], EXAFS/XANES spectra 

[7], and computer simulations [8,29,46,48,53,54]. Some 

other closely related findings—for example, the detailed line 

shapes of the terahertz-range dielectric spectra [29,30,55] or 

NMR spectra (some of which were inter-preted using an 

order-disorder paradigm) [20,22,56] of cubic BaTiO3—were 

not analyzed here, as it would require still longer simulations 

times and/or calculations of other quantities. Nevertheless, 

our results demonstrate that the Ti ion dynamics and diffuse 

scattering sheets can be well described in terms of 

anharmonic phonons, and that the intrinsic energy barriers 

among the off-centered Ti positions are simply too low to 

stabilize polar clusters at timescales larger then a few 

picoseconds. We thus hope that this work can be of help in 

other studies of the polar nanoregions and precursor 

phenomena in perovskite ferroelectrics.  
In summary, this Letter reports synchrotron x-ray mea-

surements of diffuse scattering in the cubic phase of 

BaTiO3 with extensive momentum space coverage and 

dynamical contrast. Large-scale molecular dynamics sim-
ulations allowed us to calculate maps of diffuse scattering 
in excellent agreement with those observed 
experimentally. The calculated high-temperature 
trajectory provided means for accessing the dynamical 
profiles of the observed reciprocal space features.  

Let us stress that the presented methodology allows one 

to go beyond the harmonic approximation in the analysis 
of phonons and phonon-related scattering. This gives us 

the possibility to clarify several challenging aspects of the 

 



  
 

phase transition in BaTiO3. We not only show that the 

sufficiently soft phonon modes are present there, that 
their Γ-point spectrum matches the known macroscopic 
dielec-tric spectrum, and that the associated dispersion in 
the momentum space is steep enough to explain the 
observed sharpness of the diffuse scattering lines, but we 
also demonstrate that these anharmonic phonons are 
really the cause of these diffuse scattering lines, in the 
sense that there is no need for any other comparably 
intense contribution to be added to make up the observed 
x-ray diffuse scattering intensity. 
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