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Abstract 

 

Neurofibromatosis type 1 (NF1) is caused, in 4.7–11% of cases, by large deletions 

encompassing the NF1 gene and its flanking regions within 17q11.2. Different types of large 

NF1 deletion occur which are distinguishable by their breakpoint location and underlying 

mutational mechanism. Most common are the type-1 NF1 deletions of 1.4-Mb which exhibit 

recurrent breakpoints caused by non-allelic homologous recombination (NAHR), also termed 

unequal crossover. Here, we analysed 37 unrelated families of patients with de novo type-1 

NF1 deletions by means of short tandem repeat (STR) profiling to determine the parental 

origin of the deletions. We observed that 33 of the 37 type-1 deletions were of maternal origin 

(89.2% of cases; p < 0.0001). Analysis of the patients’ siblings indicated that, in 14 
informative cases, ten (71.4%) deletions resulted from interchromosomal unequal crossover 

during meiosis I. Our findings indicate a strong maternal parent-of-origin bias for type-1 NF1 

deletions. A similarly pronounced maternal transmission bias has been reported for recurrent 

copy number variants (CNVs) within 16p11.2 associated with autism, but not so far for any 

other NAHR-mediated pathogenic CNVs. Region-specific genomic features are likely to be 

responsible for the maternal bias in the origin of both the 16p11.2 CNVs and type-1 NF1 

deletions. 
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Introduction 

Large deletions encompassing the NF1 gene region at 17q11.2 (also termed NF1 

microdeletions) are detected in 4.711% of patients with neurofibromatosis type 1 (NF1; 

MIM #162200) (Cnossen et al. 1997; Rasmussen et al. 1998; Kluwe et al. 2004; Zhang et al. 

2015). Frequently, these deletions exhibit recurrent breakpoints and are mediated by non-

allelic homologous recombination (NAHR), also referred to as unequal crossover. However, 

different types of large NF1 deletion have been identified which are distinguishable by the 

size and locations of their breakpoints. Most frequent are type-1 NF1 deletions of 1.4-Mb 

accounting for 70-80% of all large NF1 deletions (Pasmant et al. 2010; Messiaen et al. 2011). 

Type-1 NF1 deletions are caused by NAHR between highly homologous low-copy repeats 

(LCRs) termed NF1-REPa and NF1-REPc (Dorschner et al. 2000; Jenne et al. 2001; López-

Correa et al. 2001). Type-1 NF1 deletions are characterized by breakpoint recurrence since 

most of the breakpoints are located within the NAHR hotspots referred to as paralogous 

recombination sites 1 and 2 (PRS1 and PRS2) (Forbes et al. 2004; De Raedt et al. 2006; 

Bengesser et al. 2014; Hillmer et al. 2016, 2017). Type-2 NF1 deletions encompass only 1.2-

Mb and are mediated by NAHR between the SUZ12 gene and its pseudogene SUZ12P (Roehl 

et al. 2010; Vogt et al. 2012). Type-2 NF1 deletions comprise 10-20% of all large NF1 

deletions (Kehrer-Sawatzki et al. 2004; Messiaen et al. 2011). Type-3 NF1 deletions are 

characterized by breakpoints located within NF1-REPb and NF1-REPc and are also mediated 

by NAHR (Bengesser et al. 2010; Pasmant et al. 2010; Zickler et al., 2012). However, type-3 

deletions are rare, accounting for only 1.44% of all large NF1 deletions (Pasmant et al. 2010; 

Messiaen et al. 2011).  

    In addition to large NF1 deletions with recurrent breakpoints, atypical NF1 deletions have 

been identified which exhibit non-recurrent breakpoints. These atypical NF1 deletions are not 

mediated by NAHR but instead by occur via DNA double strand break repair or replication-

associated mechanisms (Vogt et al. 2014 and references therein). At least 10% of all large 

NF1 deletions are atypical (Pasmant et al. 2010; Messiaen et al. 2011). They are 

heterogeneous in terms of breakpoint location, size and the number of genes located within 

the deleted region (reviewed by Kehrer-Sawatzki et al. 2017). 

    The various types of NF1 microdeletion are distinguishable not only by breakpoint position 

and underlying mechanism but also by the frequency of somatic mosaicism with normal cells 

not harbouring the deletion. Type-2 NF1 deletions, caused by NAHR between SUZ12 and 

SUZ12P1, are frequently of postzygotic origin (Kehrer-Sawatzki et al. 2004; Steinmann et al. 

2007); thus, at least 63% of all type-2 NF1 deletions are associated with somatic mosaicism 

(Vogt et al. 2012). Atypical NF1 deletions are also frequently mosaic; among the 17 atypical 

NF1 deletion patients investigated by Vogt et al. (2014), 10 patients (59%) exhibited somatic 

mosaicism with normal cells. By contrast, only a small proportion (2–4%) of type-1 NF1 

microdeletions are of postzygotic origin and associated with somatic mosaicism (Messiaen et 

al. 2011).  

    Early studies reported that large NF1 deletions are often of maternal origin but the deletions 

analysed were not characterized with regard to their size, type and underlying mutational 

mechanism (Lazaro et al. 1996; Upadhyaya et al. 1998). López-Correa et al. (2000) analysed 

six NF1 deletions that had been shown to be of type-1, and all six of them were of maternal 

origin. The study of López-Correa at al. (2000) also included a smaller NF1 deletion, not of 



type-1, but this deletion was of paternal origin. Although these findings hinted at a maternal 

bias for type-1 NF1 deletions, the number of deletions analysed by López-Correa et al. (2000) 

was still small. In the study presented here, we investigated a rather larger number of 

confirmed type-1 NF1 deletions (N=37) and successfully identified their parental origin. 

Further, we determined the chromosomal origin of 14 of these type-1 NF1 deletions, in 

particular ascertaining whether they were mediated by interchromosomal or 

intrachromosomal NAHR. We observed a strong maternal parent-of-origin bias for type-1 

NF1 deletions which might be attributable to gender-specific differences in recombination 

rates or chromatin conformations.  

 

 
Patient data, Materials and Methods 
We analysed 37 patients with de novo type-1 NF1 deletions and their unaffected relatives who 

were collected at the Department of Neurology, University Hospital Hamburg Eppendorf, 

Germany. The deletions of these patients had exhibiting breakpoints located within the highly 

homologous low-copy repeats NF1-REPa and NF1-REPc as determined by MLPA and long-

range breakpoint-spanning PCRs (Supplementary Table S1). The primers used for the 

breakpoint-spanning PCRs have been reported previously (Hillmer et al. 2017). Genomic 

DNA from the patients and their relatives was extracted from blood cells or saliva using 

Oragene•DNA (OG-250) DNA collection tubes (Genotek). The DNA extracted from saliva 

samples is derived from a mixture of buccal epithelial cells and blood cells (up to 74% of the 

DNA isolated from saliva is derived from white blood cells; Thiede et al. 2000). The patients 

and their family members provided written informed consent. This study was approved by the 

insititutional review boards of the University of Ulm and the University Medical Center 

Hamburg-Eppendorf.  

 

STR profiling 

Short tandem repeats (STRs), also termed microsatellite markers, were investigated by PCR 

and fragment analysis of the PCR products in order to determine the parental and 

chromosomal origin of the deletions. The primers used for these assays are listed in 

Supplementary Table S2. The primers were either labelled at their 5’ends with 6-FAM 

(Fluorescein) or HEX (Hexachloro-Fluorescein). PCR products were amplified using the 

AmpliTaq Gold™ 360 DNA polymerase (Applied Biosystems) and separated by capillary gel 

electrophoresis on an ABI 3130xl genetic analyzer (Applied Biosystems). The GeneScan™ 
500 ROX™ size standard was used to determine the size of the allele peaks.  

 

Recombination rate analysis 

Male and female recombination rates across the type-1 NF1 deletions region were taken from 

Kong et al. (2010) and visualized by means of the UCSC Genome Browser 

(https://genome.ucsc.edu/). 

 

 
Results  

Microsatellite marker analysis of DNA derived from the NF1 patients and their parents 

revealed that 33 of the 37 type-1 NF1 deletions analysed were of maternal origin (89.2%) 

whereas only four were of paternal origin (10.8%) (Table 1). Hence, our findings indicate a 

https://genome.ucsc.edu/


strong maternal bias for the origin of type-1 NF1 deletions (p < 0.0001, two-tailed binomial 

test). 

The chromosomal origin of 14 of the 37 type-1 deletions was identified by means of marker 

analysis of the unaffected siblings of the patients harbouring the deletions in question. The 

chromosomal origin of a deletion indicates whether it has been caused by inter- or intra-

chromosomal NAHR. If NAHR occurs between homologous chromosomes, it is referred to as 

interchromosomal NAHR which occurs during meiosis I, schematically indicated in 

Supplementary Figure S1. Alternatively, if NAHR takes place between sister chromatids of 

one chromosome or within one chromatid of a single chromosome, it is referred to as 

intrachromosomal NAHR which most likely occurs during meiosis II (Supplementary Figures 

S2 and S3). The analysis of unaffected siblings indicated the phase of the markers and hence 

the haplotypes of the transmitting parents. If the patient exhibited an exchange of markers 

flanking the deletion region as compared with the haplotypes of the transmitting parent, then 

the deletion must have been caused by interchromosomal NAHR as exemplified in Figure 1. 

By contrast, no change of the haplotype phase of markers flanking the deletion is indicative of 

intrachromosomal NAHR (Figure 1). We noted that interchromosomal NAHR was 

responsible for ten (71.4%) of the 14 type-1 NF1 deletions in which the chromosomal origin 

of the deletion had been identified. By contrast, four deletions (28.6%) were caused by 

intrachromosomal NAHR (Table 1). If only the deletions of maternal origin are considered, 

then nine of the 11 maternal deletions (81.8%) were mediated by interchromosomal NAHR. 

In the study of López-Correa et al. (2000), marker analysis of unaffected siblings of type-1 

NF1 deletion patients was informative in five of the six families investigated and all five 

deletions were mediated by maternal interchromosomal NAHR. If our results and those of 

López-Correa et al. (2000) are taken together, 14 of the 16 type-1 NF1 deletions analysed 

were of maternal, interchromosomal origin (87.5%, p = 0.0042, two-tailed binomial test). 

These findings indicate a preference for interchromosomal crossover for in the context of 

maternal type-1 deletions. If only the deletions of paternal origin are considered, then two of 

the three paternal deletions were mediated by intrachromosomal NAHR. 

 

 
Discussion 

Non-allelic homologous recombination (NAHR), also referred to as unequal crossover 

between LCRs during meiosis, is the mechanism responsible for recurrent disease-associated 

copy number variants (CNVs) including germline type-1 NF1 deletions (reviewed by Watson 

et al. 2014). In contrast to CNVs with recurrent breakpoints, those de novo CNVs with non-

recurrent breakpoints are caused by a variety of different mutational mechanisms including 

microhomology-mediated break-induced replication (MMBIR) and fork stalling associated 

with template switching (FoSTeS) (reviewed in Carvalho and Lupski, 2016). As an alternative 

to replication-associated mechanisms, non-recurrent CNVs can be caused by various DNA 

double strand repair mechanisms that are not dependent upon sequence homology at the 

breakpoints, e,g, non-homologous end joining (NHEJ) (reviewed in Weckselblatt and Rudd, 

2015). Previous studies have indicated that de novo non-recurrent CNVs, in particular 

deletions, are preferentially of paternal origin (Thomas et al. 2006a; Itsara et al. 2010; Hehir-

Kwa et al. 2011; Sibbons et al. 2012; Ma et al. 2017). This bias could be explicable in terms 



of the higher number of cell divisions (and hence replications) in the male as compared with 

the female germline. Whilst the number of oogonia in females is fixed at birth and will not 

increase later in life, self-renewing spermatogenic stem cells undergo continuous proliferation 

and replication during a male’s lifespan (reviewed by Drost and Lee, 1995; Wilson Sayres and 

Makova, 2011; Griswold, 2016). The higher number of cell divisions (and replications) in the 

male germ line is likely to be the cause of the paternal parent-of-origin bias for de novo 

mutations (Kong et al. 2012; Rahbari et al. 2016) and may also explain the paternal bias for 

large structural imbalances such as non-recurrent CNVs (Ma et al. 2017). 

    In contrast to de novo CNVs with non-recurrent breakpoints, recurrent CNVs such as type-

1 NF1 deletions exhibit a strong maternal parent-of-origin bias. In the study presented here, a 

considerable excess of maternally derived type-1 NF1 deletions was observed (33 out of 37 

deletions, 89.2% of cases; p < 0.0001, two-tailed binomial test). A strong maternal bias for 

type-1 NF1 deletions has previously been reported by López-Correa et al. (2000) but their 

study was very limited in size since it included only six confirmed type-1 NF1 deletions. If 

our results and those of López-Correa et al. (2000) are combined, 39 of 43 type-1 NF1 

deletions analysed have been of maternal origin (90.7%; p < 0.0001, two-tailed binomial test). 

A similarly pronounced maternal parent-of-origin bias has been reported for de novo disease-

associated duplications and deletions of a 550 kb region on chromosome 16p11.2 (Duyzend et 

al. 2016) (Table 2). Such a high level of maternal bias in transmission has not however been 

reported for any other type of recurrent disease-associated CNV. Hence, the 16p11.2 CNVs 

and type-1 NF1 deletions are so far without precedent in terms of their extremely high 

maternal parent-of-origin bias.  

    A rather more subtle but nevertheless still significant bias in favour of a maternal origin has 

been reported for the 22q11.2 microdeletions associated with DiGeorge and Velocardiofacial 

syndrome (Table 2) (Thomas et al. 2006b; Delio et al. 2013). However, the extent of this 

maternal bias was much lower than that observed for type-1 NF1 deletions and the CNVs at 

16p11.2. The significantly higher recombination rates in the 16p11.2 critical region in females 

as compared to males have been suggested as the explanation of the maternal bias for the 

16p11.2 CNVs (Kong et al. 2010; Duyzend et al. 2016). We also observed differences 

between female and male recombination maps involving 7-17.5-fold higher recombination 

rates in females than in males across the type-1 NF1 deletion region, a finding which could be 

responsible for the maternal parent-of-origin bias for type-1 NF1 deletions (Supplementary 

Figure S4). 

Higher recombination rates in females than in males have also been noted in the 22q11.2 

microdeletion region associated with DiGeorge and Velocardiofacial syndrome (Delio et al. 

2013). Taken together, these findings imply an association between gender-specific 

recombination rate differences across certain genomic regions and parent-of-origin bias for 

CNVs. However, the consideration of recombination rates across CNV regions may not be 

precise enough in this context; instead, it might be more informative to investigate local 

recombination rates at CNV breakpoints. However, the breakpoints of NAHR-mediated 

CNVs are located within LCRs. The assessment of recombination rates within these paralogs 

is difficult owing to their complex variation patterns characterized by the occurrence of 

multiple shared SNPs between the paralogues resulting from frequent non-allelic homologous 

gene conversion without crossover (Rozen et al. 2003; Pavlicek et al. 2005; De Raedt et al. 



2006; Lindsay et al. 2006; Guo et al. 2016; Hillmer et al. 2017). Consequently, these 

paralogous genomic regions are not well represented in the currently available recombination 

maps. Future high-resolution analysis of recombination rates within LCRs at NAHR 

breakpoints will be necessary to confirm an association between parent-of-origin bias and 

gender-specific recombination rate differences.  

    In addition to recurrent CNVs exhibiting a maternal parent-of-origin bias, there are also 

some with a paternal bias, including the CNVs causing Sotos syndrome and Charcot-Marie-

Tooth disease type 1A (Lopes et al. 1998, Miyake et al. 2003, Visser et al. 2005) (Table 2). 

By contrast, other NAHR-mediated CNVs such as those causing Williams-Beuren syndrome, 

Smith-Magenis syndrome and Potocki-Lupski syndrome, do not exhibit any gender bias of 

origin (Table 2). These differences indicate that a gender-of-origin bias for recurrent CNVs is 

not a feature that is inherent to NAHR as the causative mechanism but is instead dependent 

upon genomic region-specific features. Alternatively, the occurrence of a parent-of-origin bias 

for a CNV may be associated with negative selection against oocytes or spermatocytes 

harbouring the CNV in question. It therefore cannot be excluded that negative selection 

against spermatocytes harbouring type-1 NF1 deletions contributes to the observed maternal 

parent-of-origin bias for these deletions. 

Remarkably, type-1 NF1 deletions are associated with the loss of two tumour suppressor 

genes, NF1 and SUZ12. Among the other recurrent CNVs listed in Table 2, only the 3-Mb 

deletions at 22q11.2 causing Velocardiofacial or DiGeorge syndrome lead to the loss of a 

tumour suppressor gene, in this case, LZTR1. It is unclear as yet if the CNV-mediated loss of 

these tumour suppressor genes has any impact upon the maternal inheritance bias of the 

respective CNVs.  

    The vast majority of type-1 NF1 deletions are of meiotic origin and are not associated with 

somatic mosaicism with normal cells not harbouring the deletion. Only 2-4% of patients with 

type-1 NF1 exhibit somatic mosaicism with normal cells (Messiaen et al. 2011). In the study 

presented here, we investigated the chromosomal origin of 14 type-1 NF1 deletions (11 of 

maternal and three of paternal origin; Table 1). If only the deletions of maternal origin are 

considered and our results are combined with those of López-Correa et al. (2000), then 14 of 

the 16 type-1 NF1 deletions, for which the chromosomal origin could be determined, were of 

interchromosomal origin (87.5% of cases; p = 0.0042, two-tailed binomial test). This indicates 

a preference for maternal interchromosomal NAHR events causing type-1 NF1 deletions. 

Since interchromosomal exchange derives from unequal crossover during meiosis I, the 

predominance of interchromosomal NAHR events causing type-1 NF1 deletions confirms that 

these deletions are predominantly of meiotic origin. By contrast, no significant parent-of-

origin bias has been observed for type-2 NF1 deletions which are mostly of postzygotic origin 

and mediated by intrachromosomal NAHR (Roehl et al. 2010).  

    The predominance of maternally derived type-1 NF1 deletions mediated by 

interchromosomal NAHR suggests that there are gender-specific differences in the meiotic 

processes that promote ectopic chromosome synapsis between the LCRs NF1-REPa and NF1-

REPc, a prerequisite for NAHR or unequal crossover. Ectopic synapsis between these LCRs 

is likely to be promoted by specific chromatin conformations which are epigenetically 

regulated. Early germ cells have been shown to undergo a multitude of epigenetic changes 

that accompany their development and the onset of meiotic recombination (reviewed by Kota 



and Feil, 2010; Sin et al. 2015; Sun et al. 2017; Maezawa et al. 2018). In relation to putative 

epigenetic differences between male and female germ cells, what is important is that the 

initiation of meiotic recombination occurs at completely different times during the human 

male and female lifespans. In human oocytes of the primordial follicle, meiotic recombination 

is initiated very early on during fetal development and is already complete before birth. Only 

after a pause of many years do some of these oocytes enter into the first meiotic division upon 

hormonal stimulation. By contrast, male germ cells are not involved in meiotic recombination 

during the fetal period but instead remain dormant until hormonally stimulated to further 

divide in the sexually mature adult (reviewed by El Yakoubi and Wassmann, 2017). Hence, 

early germ cells are likely to exhibit gender-specific differences in their epigenetically 

regulated chromatin conformation which could conceivably include the LCRs NF1-REPa and 

NF1-REPc. One consequence of these differences might be a higher rate of ectopic synapsis 

and unequal crossover between these LCRs in female germ cells than in their male 

counterparts resulting in the observed maternal parent-of-origin bias for type-1 NF1 deletions.  

An intriguing sexual dimorphism has recently been observed pertaining to the width of the 

synaptonemal complex in the mouse (Agostinho et al. 2018). The synaptonemal complex is a 

proteinaceous tripartite, ladder-like structure that links homologous chromosomes and 

mediates recombination, in particular crossover formation, during meiotic prophase I 

(reviewed by Zickler and Kleckner, 2015). If gender-specific differences in the synaptonemal 

complex were also to exist in humans, they could influence the frequency of equal as well as 

unequal crossovers between certain LCRs. Further studies are now urgently required to 

address these issues in order to identify the underlying cause(s) of the strong parent-of-origin 

biases characterizing some CNVs including the type-1 NF1 deletions studied here.    
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Legend to Figure 

Figure 1: Chromosomal origin of type-1 NF1 deletions as determined by the analysis of 

microsatellite markers located on chromosome 17 (nucleotide positions given according to 

hg19) performed in order to determine the parental origin of the deletions and whether they 

had been caused by interchromosomal NAHR (as in the case of the deletion in patient 450) or 

intrachromosomal NAHR (as in the case of the deletion in patient SB94).  



The analysis of unaffected siblings indicated the phase of the markers and hence the 

haplotypes of the transmitting parents. The numbers in the coloured columns indicate the 

lengths of the PCR fragments representing the alleles in the individuals investigated. Markers 

within the red rectangles are located within the NF1 microdeletion region. Alleles highlighted 

in yellow are informative with respect to the parental origin of the deletion. Grey marking 

denotes alleles that were not informative. del: allele is deleted. 

 



Table 1 

Parental origin of 37 de novo type-1 NF1 deletions. The chromosomal origin of 14 deletions 

was determined by analysis of the siblings of the patients.  

 

Number of deletions of 

maternal or paternal origin/ 

total number of deletions  

Number of deletions of 

maternal  

origin 

paternal  

origin 

maternal origin mediated by paternal origin mediated by 

interchromo-

somal NAHR 

intrachromo-

somal NAHR 

interchromo-

somal NAHR 

intrachromo-

somal NAHR 

33/37 

(89.2%) 

 

4/37  

(10.8%) 

 

9/11  

(81.8%) 

2/11  

(18.2%) 

1/3  

(33.3%) 

2/3  

(66.7%)  

 



Table 2 
Parental and chromosomal origin of recurrent pathogenic NAHR-mediated copy number variants (CNVs). CNVs occurring in genomic regions harbouring 

imprinted genes were not considered.  
Disorder [MIM #] Disease-causing CNV/ 

chromosomal region 

Number of CNVs of maternal or paternal origin/ 

total number of CNVs investigated (proportion, 

p-value for the two-tailed binomial test [reference] 

Number of CNVs of intra- or inter-

chromosomal origin/ total number of CNVs 

investigated  

Williams-Beuren syndrome [194050] deletion of 1.5 Mb/ 7q11.23 
333 maternal /639 (52.1%, p = 0.307),  

306 paternal /639 (47.9%) [1] 

61/84 (72.6%) interchromosomal 

23/84 (27.3%) intrachromosomal [2] 

22q11.2 deletion syndrome including 

Velocardiofacial syndrome [192430] 

and DiGeorge syndrome [188400]  

deletion of 3 Mb/ 22q11.2 

219 maternal /389 (56.2%, p = 0.0148),  

170 paternal /389 (43.8%) [3] 

31/34 (91.2%) interchromosomal  

3/34 (8.8%) intrachromosomal [6] 

465 maternal /810 (57.4%, p < 0.0001), 

345 paternal /810 (42.6%) [4]  

185 maternal /318 (58.2%, p =  0.0042),  

133 paternal /318 paternal (41.8%) [5] 

Chromosome 16p11.2 deletion 

syndrome [611913] 
deletion of ~550 kb/ 16p11.2 

59 maternal /66 (89.4%, p < 0.0001), 

7 paternal / 66 (10.6%) [7] 

26/50 (52%) interchromosomal 

24/50 (48%) intrachromosomal [7] 

Chromosome 16p11.2 duplication 

syndrome [614671] 
duplication of ~550 kb/ 16p11.2 

12 maternal /13 (92.3%, p = 0.0034),  

1 paternal /13 (7.7%) [7] 

7/12 (66.6%) intrachromosomal  

4/12 (33.3%) interchromosomal [7] 

17q21.31 microdeletion syndrome 

[610443] 
deletion of 500-650 kb/ 17q21.31 

12 paternal /20 (60%, p = 0.5034), 

8 maternal /20 (40%) [8] 
not determined 

Smith-Magenis syndrome 

[182290] 
deletion of 3.7 Mb/ 17p11.2 

19 maternal /32 (59.3%, p = 0.3771), 

13 paternal /32 (40.7%) [9,10] 
not determined 

Potocki-Lupski syndrome [610883] duplication of 3.7 Mb/ 17p11.2 
23 paternal /41 (56.1%, p = 0.5327), 

18 maternal /41 (43.9%) [11] 

38/59 (64.4%) interchromosomal  

21/59 (35.6%) intrachromosomal [11] 

Sotos syndrome [117550] deletion of 1.9 Mb/ 5q35 

18 paternal /20 (90%, p = 0.0004), 

2 maternal /20 (10%) [12] 

6/8 (75%) intrachromosomal  

2/8 (25%) interchromosomal [12] 

16 paternal/ 18 (88.9%, p =  0.0013), 

2 maternal /18 (11.1%) [13] 
not determined 

Charcot-Marie-Tooth disease type 1A 

CMT1A [118220] 
duplication of 1.5 Mb/ 17p12 

32 paternal /34 (94.1%, p < 0.0001), 

2 maternal /34 (5.9%) [14] 

32/34 (94.1%) interchromosomal 

2/34 (5.9%) intrachromosomal [14] 

Hereditary neuropathy with liability to 

pressure palsies (HNPP) [162500]) 
deletion of 1.5 Mb/ 17p12 

3 maternal /4 

1 paternal /4 [15] 
2 intrachromosomal [15] 

[1] According to Gilbert-Dussardier et al. (1995), Dutly and Schinzel (1996), Perez-Jurado et al. (1996), Urbán et al. (1996), Robinson et al. (1996), Baumer et al. (1998), Bayés et al. (2003), 

Thomas et al. (2006b), Hobart et al. (2010), Dutra et al. (2011). [2] According to Dutly and Schinzel (1996), Urbán et al. (1996), Baumer et al. (1998), Bayés et al. (2003), Thomas et al. (2006b). 

[3] According to the original results reported by Delio et al. (2013). [4] According to the combined original results reported by Delio et al. (2013) and previously reported studies. [5] According to 

the original results of Thomas et al. (2006b) and previously reported studies summarized by these authors. [6] According to Baumer et al. (1998), Trost et al. (2000) and Saitta et al. (2004). 

[7] Duyzend et al. (2016). [8] Koolen et al. (2008). [9] Greenberg et al. (1991). [10] Juyal et al. (1996). [11] Sun et al. (2013). [12] Miyake et al. (2003). [13] Visser et al. (2005). [14] Lopes et al. 

(1998). [15] Lopes et al. (1997). 


