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ABSTRACT 
 

The aim of this paper is to provide a review of the characteristics of 3D 
solid modeling software libraries – otherwise known as ’geometric 
modeling kernels’ in non-manifold applications. ’Non-manifold’ is a 
geometric topology term that means ’to allow any combination of 
vertices, edges, surfaces and volumes to exist in a single logical body’. In 
computational architectural design, the use of non-manifold topology can 
enhance the representation of space as it provides topological clarity, 
allowing architects to better design, analyze and reason about buildings. 
The review is performed in two parts. The review is performed in two 
parts. The first part includes a comparison of the topological entities’ 
terminology and hierarchy as used within commercial applications, 
kernels, and within published academic research. The second part 
proposes an evaluation framework to explore the kernels’ support for 
non-manifold topology, including their capability to represent a non-
manifold structure, and in performing non-regular Boolean operations, 
which are suitable for non-manifold modeling.  

 
Keywords: Architectural Design, Non-Manifold Topology, Geometric 
Kernels, Survey. 

1 NON-MANIFOLD TOPOLOGY 

1.1 Definition 

Mathematically, Non-Manifold Topology (NMT) is defined as cell complexes that are 
subsets of Euclidean Space [38]. Practically, topology refers to the spatial relationships 
between the various entities in a model and it describes how geometric entities are 
connected [53]. ’Non-manifold’ is a geometric topology term that means ’to allow any 
combination of vertices, edges, surfaces and volumes to exist in a single logical body’ 
[22]. Such models allow multiple faces meeting at an edge or multiple edges meeting at a 
vertex. Coincident edges and vertices are merged. Moreover, non-manifold topology 
models have a configuration that cannot be unfolded into a continuous flat piece and are 
thus non-manufacturable and not physically realizable [4]. On the contrary, a manifold 
body without internal voids can be fabricated out of a single block of material [1]. In 
addition, in a manifold object if one were to draw spheres centered on the points of the 
object’s surface, these would be divided into two pieces; one inside and one outside the 



 

object [55]. Examples of manifold and non-manifold geometry are shown in Fig. 1 and 
further information on the difference between manifold and non-manifold modeling are 
provided in [10]. 

Non-manifold supports a form of modeling, which removes constraints traditionally 
associated with manifold solid modeling forms by embodying all of the capabilities of 
wireframe modeling, surface modeling and solid modeling forms in a unified 
representation and extending the representational domain beyond that of the above 
modeling forms [59]. One of the very first ideas proposed by Kjellberg [30] and his team 
in the late 1970s was that, having a unified modeling framework with a mix of different 
representation techniques would allow the user to represent different stages and levels 
of models. Non-manifold modeling in ℝ3 can be considered as exhaustively decomposing 
the ℝ3 into disjoint sets of elements of zero, one, two, and three dimensional point sets, 

i.e., vertices, edges, faces, and regions respectively [13], [16]. 

 
Fig. 1: Examples of manifold and non-manifold geometry 

1.2 Applications 

NMT has been successfully applied in the ship building industry, the medical field, 
architectural design, 3D modeling, computer-aided engineering analyses, as well as digital 
fabrication exploration. 

Ship building industry: NMT has been successfully used in the ship-building for 
’compartment’ design, that is how the overall hull is subdivided into enclosed potentially 
watertight spaces, and the representation of these subdivision as a complex hull 
structure [35]. In this field, the use of NMT allows designers to segment a complex overall 
form into more cellular zones and spaces in a consistent manner. 

Medical field: NMT has been successfully used in the medical field to model complex 
organic structures with multiple internal zones [7], [42]. In these applications, a non-
manifold mesh is often generated from a Magnetic Resonance Imaging (MRI) scan of 
human organs as a basis for further analyses, for example using the Finite Element 
Method (FEM).  

3D modeling: Non-manifold geometric models can maintain additional data, which 
may not appear in the resultant shape. This is one of their most useful characteristics, as 
it allows hybrid representation, including characteristics of both Constructive Solid 
Geometry and Boundary Representation 3D modeling [39].  

Computer Aided Design (CAD)/Computer Aided Engineering (CAE)/Computer 
Aided Manufacturing (CAM): NMT can also be used in engineering analyses, as it can 
handle cellular structures and abstracted mesh models [34]. Some studies [51], [52] have 
used non-manifold topology for structural modeling and finite element analyses and 
others have demonstrated the partitioning of cells leading to cellular representations 
which are then used for structural analyses [43]. Moreover, non-manifold spatial models 
are considered to be suitable for early structural analysis, as horizontal and vertical 
edges can be used to define beams and columns respectively, while internal or external 
faces can be used to define floors, roof elements and interior or exterior walls, facades 
and partitions [1]. The opportunities offered and limitations overcome by non-manifold 
systems in CAD/CAE/CAM applications have been reported in various studies. For 
example, Lipson and Shpitalni [36] introduced a topology invariant while providing a 



 

basis for a modeling system for sheet metal parts. With this invariant, it is possible to 
query manufacturing processes, such as number of components and configuration of 
bend lines and weld lines, using a single qualitative model of the product. This capability 
is particularly useful in the early stages of the design. Mikchevitch and Pernot [40] 
studied typical issues when transferring non-manifold 3D models between CAD systems 
and proposed a methodology for reconstructing 3D partitions that might be lost from 
exported non-manifold models, which they then successfully validated on academic and 
industrial models. Vivodtzev et al. [57] introduced a method for topology preserving 
mesh simplification, which ensures the consistency of CAD/CAM models. Lee [33] 
established a more integrated environment for the design and analysis of plastic injection 
moulding parts through the development of a feature-based design system based on a 
non-manifold modelling kernel supporting feature-based multi-resolution and multi-
abstraction modelling capabilities. In that system, the CAD and CAE systems work under 
a single model in a NMT schema and for design changes, the design and analysis models 
are modified simultaneously. 

Digital Fabrication: the potential of NMT has been investigated in terms of the design 
and additive manufacturing of conformal cellular structures [25]. It was found that the 
consideration of topology and more importantly the establishment of topological queries 
could improve the efficiency of their design. 

Architectural design: Considering the above applications, it would be possible to 
transfer NMT’s success from the ship-building and the medical fields to architecture in 
order to enhance the representation of architectural space [23]. The complexity of a ship, 
including its scale and its spatial organization, or that of an organic structure, including 
its multiple internal zones, could be well compared to the complexity of a building. One 
of the advantages of the NMT technique is the topological clarity that it provides, which 
allows architects to better design, analyse, reason about, and produce their buildings. The 
potential of NMT in the early design stages is already acknowledged and research has 
been undertaken with regard to the advantages of NMT’s application for energy analysis 
in the early design stages [22], [24]. NMT has already been applied together with 
parametric and associative scripting to model the spatial organization of a building [1]. 
This information was then used to create different analytical and material models of a 
building. 

2 TOPOLOGICAL CHARACTERISTICS OF NON-MANIFOLD OBJECTS 

2.1 Topological Elements and Data Structures 

Topological elements of non-manifold objects are hierarchically interrelated and a lower-
dimensional element is used as the boundary of each of several higher dimensional ones 
[59]. A topological element does not include its own boundary [38]. An example of a 
hierarchical structure of non-manifold topological elements is presented in Fig. 2(a). The 
bottom-most element is a vertex, which geometrically equals to a point. A vertex can be 
detached from other structures, or located at the ends of an edge, which implies a line. 
This, however, is the end of the similarity with the traditional surface boundary 
representation, as open and closed loops can be created from the detached as well as 
inter-connected vertices and edges. Loops can be integrated to produce a face/surface, 
while faces can be combined to build a shell. It should be noted, however, that a shell 
may contain isolated vertices, edge, and faces. Then, a volume can be generated from a 
set of adjacent shells. A complex finally lies at the top of the hierarchy. It can constitute 
any other elements including volumes, faces, edges, and vertices. 

 



 

 

 
Fig. 2: (a) An example of hierarchical structure of non-manifold topological elements [38], 
(b) Basic data structure, adapted from [56]. 

 

Geometric algorithms involve the manipulation of objects, which are not handled at the 
machine language level. The user must therefore organize these complex objects by 
means of the simpler data types directly representable by the computer. These 
organizations are universally referred to as data structures, which are ways to organize 
information, which, in conjunction with algorithms, permit the efficient and elegant 
solution of computational problems [46]. A basic data structure is presented in Fig. 2(b). 
Expanded data structures and topological relationships allow for a richer representation 
of loci, centrelines, elements, surfaces, volumes and hierarchical structures that are 
usually found in architectural compositions. 

2.2 Boolean Set Operations for Non-Manifold Objects 

Boolean set operations are common set operations that are used to combine solids in 
order to create more complex objects. They are usually applied to two bodies at a time 
[3]. The main Boolean operations are union, intersection and difference and can be 
regular or non-regular. In the union operation, the resulting solid occupies the space 
previously occupied by all the original solids. In the intersection operation, the resulting 
solid occupies the space previously occupied simultaneously by all the original solids. In 
the difference operation, the resulting solid occupies the space previously occupied by 
one of the original solids that the other solids did not occupy [3]. Generally a regular 
Boolean operation removes any external faces of the input bodies that are within the 
resulting body, while a non-regular Boolean operation maintains any external faces of the 
input bodies that are within the resulting body [1]. As a result, regular operations lead to 
a manifold result, while non-regular operations lead to a non-manifold result. The 
manifold or the non-manifold property of the output body cannot be informed by the 
input bodies’ property, as manifold and non-manifold inputs can lead to manifold or 
non-manifold outputs, but not respectively [3]. This is also observed in Fig. 3, which 
shows the result of different regular or non-regular Boolean operations with manifold 
inputs. As observed, some operations (union and intersection) are symmetric, while other 
operations (difference, impose) are asymmetric. With asymmetric operations there is the 
convention that the inputs are referred to as the ’part’ (A) and the ’tool’ (B) respectively 
[1]. As an example, in the impose operation, all parts of A which are within the region of 
B are removed. Similarly, in the imprint non-regular operation, all parts of B that are not 
within A are removed. Both these operations lead to non-manifold results. 

 



 

 
 
Fig. 3: The result of different regular or non-regular Boolean operations with manifold 
inputs (adapted from [1]). 

3 METHODOLOGY 

The intention of this research was to review academic literature and geometric modeling 
kernels supporting non-manifold topology. A geometric modeling kernel is a 3D solid 
modeling software library that provides geometric and topological data structures, as 
well as algorithms to model an architectural space, a building or an artefact. The study 
included the investigation of the topological entities used in thirteen data structures, as 
well as in other proposed class hierarchies suitable for non-manifold modeling, in terms 
of the levels they support and the terminology used for each level (Section 4.1). In 
addition, twelve geometric modeling kernels that support NMT have been evaluated 
(Section 4.2) and they have been assessed according to three characteristics, namely their 
license types, including whether they are commercial or open source (Section 4.2.1); the 
topological entities hierarchy they support (Section 4.2.2); and the supported topological 
operations (Section 6). Inconsistencies were expected to be found regarding the 
terminology and the supported levels in both the academic research and the kernels, and 
thus the aim of this research is two-fold; first, to summarize the academic overview and 
the review of the modeling kernels in a new terminology and class hierarchy standard 
(Section 5) and then to also propose a testing framework to assess the kernels’ support 
for non-manifold structures based on the new terminology (Section 6). More specifically, 
the tests, using the Open CASCADE Technology (OCCT) kernel, aim to identify the 
provided structural representations of a non-manifold structure and operations involving 
these structures. OCCT 7.2.0 64-bit was used due to its status as one of the most 
outstanding open source geometry kernels with well-established community base, and its 
advertisement of non-manifold support. In addition, OCCT was found to provide a richer 
environment to work in, compared with other open-source kernels, as it provides a higher 
level of entities, which allows flexibility and versatility in its use. 



 

4 REVIEW ON ENTITIES’ TERMINOLOGY IN NON-MANIFOLD MODELING 

4.1 Academic Research 

The advantages of non-manifold representation have been recognized in various studies, 
such as [16], [39] and several representation schemes have been proposed for 3D 
modeling. This section focuses on the review of the research papers whose authors 
proposed a non-manifold class hierarchy or used an existing one. However, it is 
acknowledged that some of these frameworks have been based on precursors that are 
suitable for manifold modeling. The review included the following publications. 

 Weiler’s [60] radial edge structure 
 Rossignac and O’Connor’s [50] Simplicial Geometric Complexes 
 Gursoz et al.’s [17] vertex-based data structure 

 Yamaguchi and Kimura’s [62] coupling entities data structure 
 Cavalcanti et al.’s [8] Complete Geometric Complexes 
 Lee and Lee’s [34] partial edge structure 
 Karasick’s [26] star-edge boundary representation 

 Higashi et al.’s [20] cycle structure 
 De Floriani and Hui’s [14] non-manifold indexed data structure with adjacencies 
 Hui and De Floriani’s [21] incidence simplicial data structure 
 Hachenberger et al.’s [18] SNC (Nef complex) structure, 
 Zeng et al.’s [63] Q-complex data structure 

 Boguslawski and Gold’s [6] dual half-edge data structure 
The review also included other researchers, who either proposed their own hierarchy, 
such as [1], [15], [32], [36], [39], [45], [47], adopted an existing one [5], [11], [22], [32], [38], 
[41], [45], [49] or proposed extra structures in existing data structures, such as in Luo and 
Lukacs’ [37] work, which removed the ambiguities1 found in the radial-edge structure. A 
matrix regarding the entities’ terminology used in the above studies can be found in the 
Appendix A (Tab. 5).  

Considering the above, various entity names have been used considering different 
topological frameworks, which are as follows. 

 complex, body, model or group for the higher level of the hierarchy for the 8th 
level; 

 solid, primitive or component for the 7th level; 
 volume, region or cell for the 6th level; 

 shell, polyhedron or tetrahedron for the 5th level; 
 face, dangling face or facet for the 4th level; 
 loop, wire, genus or cycle for the 3rd level; 
 edge or wire-edge for the 2nd level; and 
 vertex for the 1st level. 

The number of studies (academic papers) that use each of the aforementioned entity 
names are presented in Fig. 4. It is seen that vertex is used in all studies, while a set of 
basic elements [61] including vertex (1st level), edge (2nd level), loop (3rd level), face (4th 
level) and shell (5th level) is shared in almost every scheme. The higher levels in the 
topological hierarchy present larger diversity and it seems that region, solid and complex 
is the preferred terminology for the 6th, 7th and 8th level respectively. 

 

                                                      
1 More information regarding the ambiguities can be found in [56]. 



 

 

 
Fig. 4: Number of occurrences of entity names in non-manifold academic research 

(authors’ own). 

4.2 Non-Manifold Geometry Kernels 

The main requirement for the geometric kernel to support conceptual design is to 
provide a non-manifold topology so that mixed-dimensional geometry can be allowed 
[28]. Twelve geometric modeling kernels that support non-manifold topology have been 
put to the test and they are assessed according to three characteristics, namely the 
topological entities hierarchy they support (Section 4.2.1); their license types, including 
whether they are commercial or open source (Section 4.2.2); and the offered topological 
operations (Section 5). A table including the information presented in this section in a 
concise format is attached in Appendix A (Tab. 6). The following geometric kernels are 
reviewed in this paper. 

 ACIS, by Spatial Corporation 
 SOLIDS++, by IntegrityWare 
 Parasolid, by Siemens 
 ARCHMIND, by Theo Athanasiadis 

 BMesh, by various contributors 
 Open CASCADE Technology (OCCT), by Open CASCADE SAS 
 OpenVolumeMesh (OVM), by RWTH Aachen University 
 CGAL, by various contributors 
 LibIGL, by the Interactive Geometry Lab of ETH Zürich 

 Rhino SDK, by McNeel and Associates 
 ASM, by Autodesk 
 SMLib, by Solid Modeling Solutions 

4.2.1 Topological entities hierarchy 

The topological elements used in each kernel vary and so does the hierarchy they use. All 
kernels support vertices and faces (CGAL uses the term ‘facet’ instead of ‘face’), while all 
except LibIGL support edges. Compared to the review on the entities terminology from 
the academic perspective, the geometry kernels make distinct use of loop and wire, with 
the loop indicating a closed wire. This distinction creates an extra level in the entity 
hierarchy. Some kernels have the notion of the shell and it seems that the naming from 
the next level upwards varies, as shown in Tab. 1. For the 7th level, names such as volume, 
region, cell, lump and solid are being used with region being the most preferred one to 
signify the space inside a closed shell. In the 8th level, which refers to two closed shells 
linked by their faces, ‘CompSolid’ is used by OCCT and ’solid’ by ASM and Rhino SDK. As 
for the 9th level, which includes the collection of any of the lower entities, the dominant 



 

terminology is ‘body’, used by ACIS, Parasolid and ASM. Other naming for this level 
includes ‘compound’, ‘model’ and ‘brep’. The variant number of entities used by each 
kernel suggests that some kernels provide a richer environment to work in, while others, 
such as LibIGL, ARCHMIND or BMesh are simply mesh representation libraries. 
 

Level Entities 

Kernels 
No of 

instances OCCT OVM CGAL LibIGL ARCHMIND BMesh ACIS SOLIDS++ Parasolid ASM 
Rhino 

SDK 
SMLib 

9th 

body        •  • •   3 

compound •            1 

model            • 1 

brep         •     1 

8th 
CompSolid •            1 

solid          • •  2 

7th 

volume   •          1 

region         •  • • 3 

cell  •     •   •   3 

lump       •      1 

solid •            1 

6th shell •  •    • • • •  • 7 

5th face • • • • • • • • • • • • 12 

4th loop   •   • • • • • • • 8 

3rd wire •      •      2 

2nd edge • • •  • • • • • • • • 11 

1st vertex • • • • • • • • • • • • 12 

No of entities 8 4 6 2 3 4 9 6 7 8 6 7  

 
Tab. 1: Use of entity terminology in non-manifold geometry kernels (authors’ own). 

4.2.2 Licensing 

Whether a kernel is open-source or proprietary has a direct association to the licensing 
terms under which it is distributed. There is no one license that presents no limitations; 
it is useful, however, to be aware of the strengths and limitations of each when using 
open-source tools. 

OCCT, OpenVolumeMesh, CGAL, LibIGL, ARCHMIND and BMesh are open-source 
kernels, which means that they provide a freely available source code. This can be 
considered an advantage, as open-source tools facilitate interoperability, having the 
capability for direct integration in various software products. The source code of the 
open source kernels can be distributed to anyone under various licensing terms and 
conditions preserving the provenance and openness of the engine. These terms address 
the freedom to run the engine for any purpose, the freedom to study how it works and to 
adapt it to one’s needs, the freedom to redistribute copies of it and the freedom to 
modify it to add further capabilities and distribute any improvements to the public [48].  

On the other hand, SOLIDS++, Parasolid, ACIS, Rhino SDK, ASM and SMLib are 
proprietary ones, meaning that under commercial licenses they have closed source codes 
that are not freely accessible. It should be noted, however, that ACIS offers a University 
program, under which ACIS can be made accessible for one year with the possibility to 
renew the contract. More information on the advantages and disadvantages of open-



 

source and proprietary tools can be found on the White Paper provided by Optimus 
Information [44]. The above information is also included in Appendix A (Tab. 6). 

5 PROPOSAL OF A STANDARDIZED ENTITIES’ TERMINOLOGY 

As briefly described in Section 1.2, NMT (as well as its manifold counterpart) has 
benefited various disciplines in creating spatial building models, material building 
models, structural models, mechanical models or building services models. However, 
community members across different areas may refer to the same NMT concepts using 
different terminologies, and may use them for different purposes. For example, in a 
spatial building model a location could actually be the alias for a vertex, the centre curve 
the alias for an edge and a path the alias for a wire. The cell could be used as a space or 
as a thermal zone in a spatial building model, a wall or a floor in a BIM model, as well as 
a slab or a beam in a structural model.  

In light of a more standardized topological framework with regard to the naming and 
hierarchy of topological elements, a class hierarchy is proposed in Fig. 5. The terminology 
is proposed to provide a common concept for the diverse discipline-specific 
terminologies, including the ones for conceptual architectural design, structural design, 
energy analysis, spatial reasoning and digital fabrication. The terminology is proposed 
according to the following principles: to reduce ambiguity, to increase distinctiveness, to 
use simple words, to use words that do not imply a specific discipline, and to use 
independent descriptors between topological and geometric entities. The entities up to 
the level of a shell use the currently preferred terminology in academia and in 
commercial applications. From then on, a cell implies a region of a bounded space that 
can be either filled (solid) or void. This entity resembles real-life cells such as a biological 
cell and a prison cell. A CellComplex indicates a series of connected cells and resembles a 
building complex. A cluster can contain heterogeneous elements, and is a familiar 
concept in a number of areas including biology (e.g. a cluster of cells), architecture (a 
cluster of buildings), and set theory (an unordered cluster of objects). 

 



 

 

 
Fig. 5: Topological elements class hierarchy with examples (authors’ own). 

6 A TESTING FRAMEWORK FOR NON-MANIFOLD TOPOLOGY: A STUDY CASE WITH 
OCCT 

As a component of the geometry kernels’ review written in Section 4.2, this section 
presents a proposed testing framework to assess the kernels’ support for non-manifold 
structures. The tests particularly aim to identify the provided structural representations 
of a non-manifold structure and operations involving these structures. Structural 
representations are examined using construction tests (Section 6.1), in which a structure 
is created from simpler primitives; and exploration tests (Section 6.2), in which traversals 
are done between sub-entities of a shape. Operation tests are focused on merge (Section 
6.3) and slice (Section 6.4) operations, which are two non-regular Boolean operations 
supported by OCCT. The discussions cover the correctness of the resulting shapes and 
the operations’ performances. Performance tests were conducted using a machine with 
Intel Core i7-7600U@2.80 GHz processor, 16 GB of RAM, and Windows 10 Pro. OCCT 
7.2.0 64-bit was used and the kernel was built using Visual Studio 2017. 
Experimentations with other non-manifold kernels regarding kernel capabilities and 
applications are reported in various studies [2], [12], [19], [31], [33], [54]. 

6.1 Construction Tests 

OCCT provides methods to construct various predefined shapes. A box can thus be 
created as a cell by using a built-in class and passing, for example, either two extreme 
corners of the box or one corner and the dimension of the box. Alternatively, a similar 
box structure can be manually built in a bottom-up manner using the following steps. 

1. Create 8 corners of the box 
2. Connect the corners into 16 edges 
3. Connect every 4 edges on each side on the box into a wire 
4. Create the box faces based on the wires 



 

5. Create a shell from the encompassing faces 
6. Create a solid from the shell 

Fig. 6 shows a performance comparison between the two methods. It can be seen that the 
built-in class significantly outperforms the manual method. This was expected, as the 
built-in method pre-allocates memory in the most optimal way, while the manual method 
reallocates memory along the testing process. It is yet a useful test to explore different 
ways of creating a topological shape. It also shows the difference in time and thus gives 
an idea of the time saved when using built-in methods, which can be extrapolated 
according to the size of the model. The first one requires less than 5 ms even to 
construct up to 900 cubes, whereas the manual method grows linearly up to around 10 
seconds to generate the same number of cubes. 
 

 
 

Fig. 6: The time complexities of the cubes construction processes using OCCT’s built-in 
class and a manual construction method. 

6.2 Exploration Tests 

Topological explorations in this paper are divided into three categories: 
1. Upward explorations, involving traversals from a higher level to a lower level 

sub-entity. 
2. Downward explorations, involving traversals from a lower level to a higher level 

sub-entity. 
3. Sideways explorations/adjacency queries, involving traversals between sub-

entities at the same hierarchical level. 
OCCT allows both downward and upward explorations, respectively giving access to a 
sub-entity’s parents and children at any level. Downward explorations can start from any 
type of sub-entities, and an iterator of the children of the parent sub-entity will be 
provided. Upward exploration is available; however, it requires a higher level entity which 
provides context to the navigation, and contains both the input sub-entity and its desired 
parents. In fact, the implementation of upward navigation performs downward 
navigation from the higher-level entity to find the sub-entities that have the requested 
types and are parents to the input sub-entity, rather than relying on an explicit 
relationship from a child to its parents. Despite these two features, OCCT does not 
provide a direct means to directly perform sideways explorations. For example, to iterate 
through a series of connected edges, the parent wire must firstly be examined before the 
constituent edges can be checked for adjacency. A mechanism that allows traversal 
between connected edges would therefore be convenient to the library users. 

6.3 Merge Operation 

The merge operation was examined by uniting two cubes in 11 configurations, according 
to the various ways they could be linked. These configurations are shown in Appendix B 
(Tabs. 7 and 8). It was found following this testing that OCCT satisfactorily returned the 



 

correct number of sub-entities. In addition, it could be verified that the cube and the 
tetrahedron in Test 11 shared exactly one vertex, which was the tetrahedron’s vertex 
lying on the cube’s face. Shifting this vertex slightly outside the cube will result in no 
intersection, whereas shifting it inside will slice the tetrahedron and create a new cell, 
which is the portion of the original tetrahedron that is inside the cube, akin to Tests 7 
and 8. 

The time complexity of this functionality was tested by performing the merge 
operation on three arrangements (1D, 2D, and 3D) of overlapping cubes as visualized in 
Fig. 7. These arrangements were designed such that the same number of input cubes will 
result in different numbers of sub-entities. It was found, as depicted in Fig. 8, that while 
all processing times similarly rose polynomially, the most significant rise occurred with 
the 3D arrangements, which created the most complex structures, followed by the 2D and 
finally the 1D arrangements. 

 

 
 
Fig. 7: Three types of cubes arrangements that were used to assess the merge operation’s 

performance. 
 

 
 

Fig. 8: The merge operation’s performance given different numbers of cubes in three 
arrangements. 

6.4 Non-Regular Slice Operation 

The non-regular slice operation available in OCCT was assessed by successively slicing a 
box with parallel finite planes, each regularly arranged within an interval of 1 unit from 
the other. Fig. 9 shows three arrangements of planes that were designed, and in each 
arrangement the planes were perpendicular to 1, 2, and 3 axes of the coordinate system. 
After each iteration, the new shape’s topology was checked, and the numbers of sub-
entities should abide the equations written in Tabs. 2–4. The derivation of the equations 
presented in these tables are given in Appendix C (Tabs. 9–11). It can be seen from the 
same tables that this operation produced the correct numbers of sub-entities. 

 



 

 

 
Fig. 9: Illustrations of the slice operation evaluation. More slicing planes were inserted to 
the cube along the directions of the arrows as the evaluation progressed. 

 

Sub-entity 
Topological 

equation 

Actual numbers of sub-entities on after n slices  

0 1 2 3 4 5 6 7 8 9 10 

Vertex 8+4n 8 12 16 20 24 28 32 36 40 44 48 

Edge 12+8n 12 20 28 36 44 52 60 68 76 84 92 

Face 6+5n 6 11 16 21 26 31 36 41 46 51 56 

Wire 6+5n 6 11 16 21 26 31 36 41 46 51 56 

Shell 1+n 1 2 3 4 5 6 7 8 9 10 11 

Cell 1+n 1 2 3 4 5 6 7 8 9 10 11 

 
Tab. 2: The expected and the actual topologies of the resulting shapes after the cube is 
sliced with planes perpendicular to one axis. 
 

Sub-entity 
Topological 

equation 

Actual numbers of sub-entities on after n slices on each direction 

0 1 2 3 4 5 6 7 8 9 10 

Vertex 8+8n+2n2 8 18 32 50 72 98 128 162 200 242 288 

Edge 12+16n+5n2 12 33 64 105 156 217 288 369 460 561 672 

Face 6+10n+4n2 6 20 42 72 110 156 210 272 342 420 506 

Wire 6+10n+4n2 6 20 42 72 110 156 210 272 342 420 506 

Shell (1+n)2 1 4 9 16 25 36 49 64 81 100 121 

Cell (1+n)2 1 4 9 16 25 36 49 64 81 100 121 

 
Tab. 3: The expected and the actual topologies of the resulting shapes after the cube is 
sliced with planes perpendicular to two axes. The number of slicing planes is thus equal 
to n multiplied by 2. 

 

Sub-

entity 

Topological 

equation 

Actual numbers of sub-entities on after n slices on each direction 

0 1 2 3 4 5 6 7 8 9 10 

Vertex 8+12n+6n2+n3 8 27 64  125 216 343 512 729 1000 1331 1728 

Edge 12+24n+15n2+3n3 12 54 144 300 540 882 1344 1944 2700 3630 4752 

Face 6+15n+12n2+3n3 6 36 108 240 450 756 1176 1728 2430 3300 4356 



 

Wire 6+15n+12n2+3n3 6 36 108 240 450 756 1176 1728 2430 3300 4356 

Shell (1+n)3 1 8 27 64 125 216 343 512 729 1000 1331 

Cell (1+n)3 1 8 27 64 125 216 343 512 729 1000 1331 

 
Tab. 4: The expected and the actual topologies of the resulting shapes after the cube is 
sliced with planes perpendicular to three axes. The number of slicing planes is thus equal 
to n multiplied by 3. 

 

The same planes arrangements were used to assess the operation’s performance. The 
recorded times are shown in Fig. 10 with respect to the corresponding number of planes 
and the arrangement types. Similar to the merge’s performance, the processing times for 
the non-regular slice also rose polynomially, with operations involving 3D planes 
arrangements rising more steeply than the other arrangements due to the resulting 
shapes’ complexity. 

 

 
 

Fig. 10: The slice operation’s performance given different numbers of planes in three 
arrangements. 

7 CONCLUSION 

The advantages of non-manifold topology with regard to architectural design, energy 
analysis, structural analysis and digital fabrication have been recognized in various 
studies. In this paper the entities’ terminology in academic studies and geometry kernels 
was reviewed and the kernels’ characteristics were shown. It is expected that the kernel 
review will be useful to the professions relevant to modeling towards the selection of the 
most suitable one according to the desired task. It was also revealed that there is an 
inconsistency regarding the terminology and hierarchy of the topological entities, 
especially in the higher levels of the hierarchy, not only among the various non-manifold 
geometry kernels, but also among the broader areas of industry and academia. This 
indicates that the current approach in non-manifold modeling is fragmented in terms of 
terminology and there is scope for a more sophisticated environment that would harness 
the capabilities of non-manifold kernels. In this respect, a new class hierarchy was 
proposed in this paper, with the vision of a more standardized topological framework, 
providing aliases for the diverse usage across different disciplines, particularly for 
conceptual architectural design, structural design, building energy analysis, spatial 
reasoning or digital fabrication. This paper also presented a set of tests to assess a 
geometry kernel’s support of non-manifold models, including its structural 



 

representations, navigations, as well as non-regular Boolean operations. The kernel 
evaluation shows that while OCCT provides non-manifold representations and 
operations, there are still some room for extensions, especially with regard to sideways 
traversal/adjacency queries. Future work includes extending these tests to evaluate 
structures with undulating faces (e.g. cuboids with NURBS faces) and also to evaluate 
other geometry kernels. 
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APPENDIX A TOPOLOGICAL ENTITIES’ HIERARCHY IN ACADEMIC RESEARCH AND 
IN THE INDUSTRY 

Detailed information regarding the review of the topological entities’ hierarchy in 
academic research and in the industry is shown in Tabs. 5 and 6. 
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Researcher(s) 
Data structure 
(if available) 

Extended 
by 

Adopted by Topological entities hierarchy 
Entity 

no 
Further 
entities 

Requicha and 
Voelcker [47] 

- - - body - - - face - edge vertex 4 - 

Weiler [58] Radial-edge structure Gursoz, 
Choi, and 
Prinz [16], 
Lee and Lee 
[34] 
Luo and 
Lukacs [37] 

Crocker and Reinke 
[11], Muuss and Butler 
[41], Cavalcanti, 
Carvalho, and Martha 
[9] 

model - region shell face loop edge vertex 7 - 

Masuda et al. [39] - - Masuda [38], 
Jabi [23] 

complex - volume shell face loop edge vertex 7 - 

Rossignac and 
O’Connor [50] 

Simplicial Geometric 
Complexes 

- Rossignac and 
Requicha [49] 

complex - - - face - edge vertex 4 - 

Karasick [26] Star-edge boundary 
representation 

- - - - - shell face cycle edge vertex 5 - 

Gursoz, Choi, and 
Prinz [16], [17] 

Tri-cyclic cusp 
structure (Vertex-
based data structure) 

- - - - region shell face loop edge vertex 6 zones, 
disks 

Kiumarse Zamanian, 
Fenves, and Levent 
Gursoz [29] 

- - - - solid - shell face cycle edge vertex 6 - 

Higashi et al. [20] Cycle structure - - - - region shell face loop edge vertex 6 - 

Gueorguieva and 
Marcheix [15] 

- - - complex
/ 
object 

primitive volume shell face loop edge vertex 9 scene 

Yamaguchi and 
Kimura [62] 

Coupling entities data 
structure 

- - - - region shell face loop edge vertex 6 - 

Cavalcanti, Carvalho, 
and Martha [9] 

Complete Geometric 
complexes 

- - - - region shell face loop edge vertex 6 - 

Lipson and Shpitalni 
[36] 

- - - - compo-
nent 

volume - face genus edge vertex  6 free 
edge, 
bend, 
weld 

Lee and Lee [34] Partial edge structure - - model - region shell face loop edge vertex 7 - 

de Floriani and Hui 
[14] 

Non-manifold indexed 
data structure with 
adjacencies 

- - - - - tetrahedron dangling 
face 

- wire-
edge 

vertex 4 - 

de Arruda et al. [3] - - Pereira et al. [45] group solid region shell face wire edge vertex 8 - 

Hui and de 
Floriani[21] 

Incidence Simplicial 
Data Structure 

- - complex - - - face - edge vertex 4 - 

Hachenberger, 
Kettner, and 

SNC(Nef complex) 
structure 

- - - - volume shell face/ 
facet 

loop edge vertex 6 - 



 

Mehlhorn [18] 

Aish and Pratap [1] - - - body solid cell shell face loop edge vertex 7 - 

Zeng et al. [63] Q-complex data 
structure 

- - body - region shell face loop edge vertex 7 - 

Landier [32] - -  - - cell polyhedron face - edge vertex 4 - 

Boguslawski and Gold 
[6] 

Dual half-edge data 
structure  

- Basanow et al. [27] complex - cell shell face loop edge vertex 7 - 

 
Tab. 5: Topological entities’ hierarchy found in academic research for non-manifold modeling. 

 

 
Developer 

Open-
source 

License 
Topological entities hierarchy 

Entity 
no Extra 

entities 
9th level 8th level 7th level 6th level 5th level 4th level 3rd level 2nd level 

1st 
level 

9 

OCCT 
Open Cascade 
SAS 

YES LGPL compound CompSolid solid shell face - wire edge vertex 8 - 

OpenVolumeMesh 
Rwth Aachen 
University 

YES LGPL - - cell - 
face 

(half-face) 
- - 

edge 
(half-edge) 

vertex 4 
half-face, 
half-edge 

CGAL various YES 

Dual license: 
open source 
(LGPL, GPL) 

/commercial 

- - volume shell 
facet 

(half-facet) 
loop 

- 
 
 

Edge 
(half-edge) 

vertex 6 
half-facet, 
half-edge 

LibIGL ETH Zurich YES MPL2 (Mozilla) - - - - face - - - vertex 2 - 

ARCHMIND 
Theo 
Athanasiadis 

YES Zlib - - - - face - - edge vertex 3 - 

BMesh (Blender) various YES GPL - - - - face loop 
- 
 

edge vertex 4 - 

ACIS 
Spatial 
Corporation  

NO commercial body - lump 
shell, 

(subshel
l) 

face loop wire 
edge 

(coedge) 
vertex 8 

subshell, 
coedge 

SOLIDS++ IntegrityWare NO commercial 
brep 

object 
- region shell face loop - edge vertex 7 - 

Parasolid Siemens NO commercial body - region shell face loop - fin, edge vertex 7 Fin 

ASM Autodesk NO commercial body - cell shell face loop - edge vertex 7 - 

Rhino SDK 
McNeel and 
Associates 

NO commercial - solid region - face loop - edge vertex 6 - 

SMLib 
Solid Modeling 
Solutions 

NO commercial model - region shell 
face 

(faceuse) 

loop 
(loopuse

) 
- 

edge 
(edgeuse) 

vertex 
(vertex

use) 
7 

faceuse 
loopuse 
edgeuse 

vertexuse 

 
Tab. 6: Characteristics of 3D geometry kernels. 
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APPENDIX B TWO-BOX CONFIGURATIONS FOR THE MERGE OPERATION 

The eleven two-box configurations used in testing the merge operation are shown in 
Table 7. 
 

No. Configuration Description Expected 
Topology 

Actual 
Topology 

1 

 

Two disjoint boxes V: 16 
E: 24 
W: 12 

F: 12 
S: 2 
C: 2 

V: 16 
E: 24 
W: 12 

F: 12 
S: 2 
C: 2 

2 

 

Two boxes sharing a 
vertex 

V: 15 
E: 24 
W: 12 

F: 12 
S: 2 
C: 2 

V: 15 
E: 24 
W: 12 

F: 12 
S: 2 
C: 2 

3 

 

Two boxes with partially 
overlapping edges 

V: 16 
E: 25 
W: 12 

F: 12 
S: 2 
C: 2 

V: 16 
E: 25 
W: 12 

F: 12 
S: 2 
C: 2 

4 

 

Two boxes sharing a 
whole edge 

V: 14 
E: 23 
W: 12 

F: 12 
S: 2 
C: 2 

V:14 
E: 23 
W: 12 

F: 12 
S: 2 
C: 2 

5 

 

Two boxes with partially 
overlapping faces 

V: 16 
E: 26 
W: 13 

F: 14 
S: 2 
C: 2 

V:16 
E: 26 
W: 13 

F: 13 
S: 2 
C: 2 

6 

 

Two boxes sharing a 
whole face 

V: 12 
E: 20 
W: 11 

F: 11 
S: 2 
C: 2 

V: 12 
E: 20 
W: 12 

F: 11 
S: 2 
C: 2 

7 

 

Two boxes with partially 
overlapping edges, 
faces, and cells  

V: 22 
E: 36 
W: 18 

F: 18 
S: 3 
C: 3 

V: 22 
E: 36 
W: 18 

F: 18 
S: 3 
C: 3 

8 

 

Two boxes sharing a 
whole edge, and with 
partially overlapping 
edges, faces, and cells 

V: 20 
E: 34 
W: 18 

F: 18 
S: 3 
C: 3 

V: 20 
E: 34 
W: 18 

F: 18 
S: 3 
C: 3 



 

9 

 

Two boxes sharing a 
whole edge and face, 
and with partially 
overlapping edges, 
faces, and cells 

V:16 
E: 28 
W: 16 

F: 16 
S: 3 
C: 3 

V:16 
E: 28 
W: 16 

F: 16 
S: 3 
C: 3 

10 

 

Two co-located boxes V: 8 
E: 12 
W: 6 

F: 6 
S: 1 
C: 1 

V:16 
E: 12 
W: 6 

F: 6 
S: 1 
C: 1 

11 

 

A tetrahedron with its 
apex touching a box’s 
face 

V: 12 
E: 18 
W: 6 

F: 6 
S: 2 
C: 2 

V: 12 
E: 18 
W: 6 

F: 6 
S: 2 
C: 2 

 
Tab. 7: Eleven two-box configurations with their expected and actual topologies. Initial 
descriptions: V = Vertices, E = Edges, W = Wires, F = Faces, S = Shells, C = Cells. 
Mismatches are in bold. 

APPENDIX C DERIVING THE TOPOLOGICAL EQUATIONS FOR THE SLICE 
OPERATION 

Slicing a cube with a series of planes in different arrangements yield new topologies as a 
result of intersecting and splitting the cube’s sub-entities with the slicing planes. This 
section is dedicated to explain the number of those topological sub-entities created by 
one-axis, two axes, and three-axes slicing planes arrangements. The set of planes parallel 
to the Y- and Z-axes (in other words, perpendicular to the X axis) are called YZ-planes. The 
other two sets of planes are referred to as XY-planes and XZ-planes. The one-axis plane 
arrangement (Tab. 8) entirely uses YZ-planes. On the other hand, the two-axes 
arrangement (Tab. 9) employs XZ- and YZ-planes, whereas in the three-axes arrangement 
(Tab. 10) all sets of planes are in action. 

In the aforementioned tables, it is assumed herein, without any loss of generality, 
that the cube is axis-aligned. The edges parallel to the X, Y, and Z axes will respectively be 
referred to as X-edges, Y-edges, and Z-edges. The faces parallel to the XY, YZ, and XZ 
planes are called XY-faces, YZ-faces, and XZ-faces (similarly, XY-wires, YZ-wires, and XZ-
wires for the wires). 
 

Sub-entity Description Quantity 

Vertex 

 

The cube’s original vertices 

The intersections between the planes and the cube’s X-edges 

8 

4n 

Total 8+4n 

Edge 

The cube’s original Y- and Z-edges, left untouched by the planes 

The cube’s original 4 X-edges each split into n+1 new X-edges 

The planes’ edges merged into the topology 

8 

4(n+1) 

4n 

Total  12+8n 

Wire/Face 

The cube’s original YZ-wires/faces 

The cube’s original 4 XY- and XZ-wires/faces each split into 1+n 
new wires and faces  

The planes themselves, merged into the topology 

2 

4(1+n) 

n 



 

Total  6+5n 

Shell/Cell 

The original cube’s shell/cell 

The new shells/cells as a result of the planes slicing the cube 

1 

n 

Total  1+n 

 
Tab. 8: The numbers of sub-entities as a result of slicing a cube with a one-axis 
arrangement of n YZ-planes. 
 

Sub-entity Description Quantity 

Vertex 

 

The cube’s original vertices 

The intersections between the XZ-planes and the cube’s Y-
edges 

The intersections between the YZ-planes and the cube’s X-
edges 

The intersections between the XZ- and YZ-planes on the 
cube’s XY-faces 

8 

4n 

4n 

2n2 

Total 8+8n+2n2 

Edge 

The cube’s original Z-edges, left untouched by the planes  

The original 8 X- and Y-edges each split into (1+n) edges  

The planes’ edges on the cube’s XY-faces, merged into the 
topology. The edges in turn split each other, and each of the 
plane’s edge is split into n+1 edges. There are n initial edges 
from the XZ-planes and another n edges from the YZ-planes, 
so as many as 2n×(n+1) edges are created on each XY-face. 

The plane’s edges on the cube’s initial XZ- and YZ-faces, 
merged into the topology. A total of n edges are created on 
each face. 

The internal intersections of the XZ-and YZ-planes inside the 
cube 

4 

8(1+n) 

4n(1+n) 
 
 
 
 

4n 
 

n2 

Total  12+16n+5n2 

Wire/Face 

The cube’s XZ- and YZ-faces each split into 1+n faces  

The cube’s 2 XY-faces each split into (1+n)2 faces.  

The internal intersections between the XZ- and YZ-
wires/planes. There are a total of 2n wires/planes, each split 
into 1+n wires/faces. 

4(1+n) 

2(1+n)2 

2n(1+n) 

Total  6+10n+4n2 

Shell/Cell 

The initial shell/cell split each n times into n+1 new 
shells/cells, for both the X- and Y-axes. This includes the 
shells/cells bounded by the internal intersections between 
the slicing XZ- and YZ-planes. 

(1+n)2 

Total  (1+n)2 

 
Tab. 9: The numbers of sub-entities as a result of slicing a cube with a two-axis 
arrangements of n XZ-planes, n YZ-planes, and n XZ-planes. 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sub-entity Description Quantity 

Vertex 

 

The cube’s original vertices 

The intersections between the slicing planes and the 
cube’s edges. There is always an intersection between 
every pair of edge and slicing plane. 

The intersections between the plane’s edges on the 
cube’s faces, n 2 vertices inside each face (that is, 
excluding the intersections on the cube’s edges which 
are written above) 

The internal intersections between the planes inside the 
cube (i.e. excluding the vertices on the faces as written 
above). A vertex is created at every location where three 
perpendicular planes. 

8 

12n 
 

6n2 

 

 

n3 

Total 8+12n+6n2 +n3 

Edge 

The original 12 edges each split into (1+n) edges 

The planes’ edges on the cube faces. There are 2n of 
these edges on each face, each split by other edges into 
n+1 edges. 

Edges created by the internal intersections of the slicing 
planes inside the cube. Every inter section edge between 
two perpendicular planes is further split into 1+n edges. 
There are a total of 3n2 of such intersection edges. 

12(1+n) 

12n(1+n) 
 

3n2(1+n) 

Total  12+24n+15n2 
+3n3 

Wire/Face 

Each of the cube’s wire/face is split into (1+n) 2 
wires/faces. 

Each of the slicing planes is divided by other 
intersecting planes into (1+n) 2 wires/faces. There are in 
total 3n planes. 

6(1+n)2 

3n(1+n)2 

Total  6+15n+12n2 +3n3 

Shell/Cell 

The initial shell/cell split each n times into n+1 new 
cells for all axes. This includes the shells/cells bounded 
by the internal intersections between the slicing planes. 

(1+n)3 

Total  (1+n)3 



 

 
Tab. 10: The numbers of sub-entities as a result of slicing a cube with a three-axis 
arrangement of n XZ-planes, n YZ-planes, and n XZ-planes. 


