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Abstract

This paper analyses the generic singularities that can occur in wavefields driven by
point acoustic sources moving steadily or accelerating in homogeneous or stratified
atmospheres. These situations are unified by the result that the strongest wavefields
satisfy the Tricomi equation, except in cases of very strong focusing of acoustic rays.
The implications for sonic boom carpets are discussed.
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1 Introduction

This paper concerns the mathematical description of some of the com-
mon singularities that can occur in the acoustic wavefields emitted by a
localised sound source moving in a homogeneous or inhomogeneous at-

mosphere. Most of our investigations have been stimulated by the need
to gain better understanding of secondary and primary sonic boom, and

models for these two phenomena will form the basis of our discussion. The
former concerns the singularities produced in the acoustic field generated

1 Part of this work is contained in the DPhil (PhD) thesis of K. Kaouri, and it was undertaken
at the University of Oxford [8].
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by a supersonic source moving horizontally in an atmosphere in which the
ambient sound speed, c, varies; we will pay particular attention to atmo-

spheres where the sound speed increases with distance above the source
and attains the source speed at a critical height. The latter concerns the

analogous singularities in the sound field of a point source accelerating in
a homogeneous atmosphere, with its speed varying through the ambient

sound speed. The mathematical descriptions appropriate to each will be
seen to be closely related to each other.

Our principal aim is to find representations for the singularities of the

solution of the wave equation

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
=

1

c2

∂2φ

∂t2
(1)

that are both relevant to sonic boom and simple enough for us to be able
to give a precise local description of the wavefield. In the remainder of the
introduction, we will review the background geometry and analysis asso-

ciated with the singularities and then in §2-§5 we will find their precise
form.

The usual analysis of singularities of the solution of (1) starts from repre-

senting the solution as a superposition of pulses emitted from the source
[1]. Indeed, when c is constant this can be done explicitly, using the re-

tarded potential solution. But in any case, each pulse engenders a wave-

front that propagates in space, and the normals to these wavefronts form

a three-parameter family of rays in (x, y, z) coordinates. 2 Moreover, in
the cases in which we are interested, the wavefronts will have a wave enve-

lope or Mach envelope which is a time-dependent surface in (x, y, z)-space

and we will call the special rays that terminate on the Mach envelope the
boom rays. At any instant of time, there will be a two-parameter family of

boom rays embedded in the three-parameter family of “ordinary” rays. 3

In this paper, the Mach envelope will be central to our discussion because

2 In mathematical terms, it is usual to think of rays as being the generators (or bicharac-

teristics) of the ray cone (or characteristic cone) emanating from the point source when
it is at any particular point in the (x, y, z, t)-space. The physical wavefronts at time t = t0
are the intersections of all the ray cones with the plane t = t0 and the physical rays are the
projections of the bicharacteristics onto this plane.
3 As the source moves, the ray cones will usually envelop a characteristic surface generated
by boom “bicharacteristics” whose intersection with t = t0 is the Mach envelope.
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it is only on this envelope that φ can have singularities. As we shall see,
many kinds of such singularities are possible, especially when the Mach

envelope itself has singularities. The simplest situation is for an instanta-
neous δ-function source at the origin, whose wavefield is the fundamental

solution of (1). When c is constant and we are in two or three dimensions
the wavefield is respectively H(ct− r)/

√
c2t2 − r2 and δ(r − ct)/r, where

r denotes the radial coordinate and H is the Heaviside function. The only
singularities are at the wavefront r = ct and the rays are radial. How-

ever, when the source is moving a Mach envelope can be formed and the
singularities which it supports are less easy to discern. For example, for a
point source accelerated impulsively to constant supersonic speed, along

the negative x-axis, we expect the wavefront picture to be as in Figure 1,
with the Mach envelope being the well-known Mach wedge or cone. The

normals to the Mach envelope, starting at the source and terminating at
the envelope, are the boom rays.

Fig. 1. Wavefronts (circles), boom rays and the Mach envelope (bold) for a source accelerated
impulsively to constant supersonic speed, from right to left.

For a smoothly accelerated source Figure 1 is replaced by Figure 2, in

which the Mach envelope has two components joined at a cusp at any
instant after that at which the source passed the sound speed (Lilley et

al. [7]). In §3, we will show that the singularity at the cusp is stronger than
at either Mach envelope component and, as time evolves, the cusps form

a locus which, in the cases of two-dimensional or axisymmetric flow, is
the envelope of the boom rays terminating at one of the two components
of the Mach envelope, as shown in Figure 3.
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Fig. 2. The wavefronts for a source smoothly accelerated through the sound speed, from right
to left. The Mach envelope has “front” and “back” components joined by cusps. The thicker
line is the cusp locus.
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Fig. 3. Boom rays for a source smoothly accelerating through the sound speed. The Mach
envelope, which consists of two components joined by cusps, is the dashed line. One family of
boom rays terminates at one component of the Mach envelope and the other family of boom
rays terminates at the other component. The second family of boom rays forms an envelope
(shown with a thicker line), which is also the locus of the cusps.

Figures 4 and 5 show the corresponding figures for the travelling wave
solution for steady wave propagation in a stratified atmosphere, resulting

from a supersonic source moving horizontally below a “sonic height” at
which the sound speed equals the source speed. The locus of the cusps

joining the two Mach envelope components is the sonic height, which
is again an envelope of boom rays. The cusps in the Mach envelope of

Figures 2, 4 both move with the local sound speed. Although the locus
of wavefront cusps in Figure 4 (dashed line) could technically be thought
of as a wave envelope in (x, z)-space it is not the projection in this space
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Fig. 4. The wavefronts in z < 1 and the Mach envelope for a source moving with speed U =
√

2
in the atmosphere c = 1/

√
1 − z. The “sonic height” z = 1/2 is the locus of the Mach envelope

cusps. (The dashed curve is the locus of the wavefront cusps.) We have ignored waves radiated
downwards from z = 1.
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Fig. 5. Boom rays for a source moving with speed U =
√

2 in the atmosphere c = 1/
√

1 − z.
The family of boomrays that terminate at the reflected component of the Mach envelope
themselves form an envelope. The Mach envelope is the dashed line.

of a Mach envelope in (x, z, t)-space, and there will be no singularities of

the wavefield on this locus. Neither are there any singularities at the cusp
locus in Figure 2, except at the cusp itself. 4

Before investigating these types of singularity in detail, we can anticipate

the structure of the singularity near a Mach envelope cusp by consider-
ing wavefields that have rapid variations near a point moving along the
cusp locus with the local sound speed, as mentioned above. Suppose, for

example, that the problem is two-dimensional, with φ = φ(x, z, t), and
that the cusp locus, C say, is (x0(t), z0(t)), so that the local sound speed

4 It is common in the aeronautical literature to focus attention on the cusps in the Mach
envelope and this can be done without reference to the wavefronts by simply finding the
boomrays and plotting their envelope; the cusp is located at the extremity of the envelope.
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is c0(t) = c(x0(t), z0(t)). We make the key assumption that the curvature
of C differs from the curvature of the family of boom rays forming it. 5

We write

ẋ0(t) = c0(t) cos θ(t), ż0(t) = c0(t) sin θ(t), (2)

so that θ(t) is the local slope of C. Then near the point of interest we
want to change to local coordinates (ξ, ζ) along and normal to C, so that











ξ

ζ











=











cos θ sin θ

− sin θ cos θ





















x − x0

z − z0











. (3)

We must transform (1) from (x, z, t) to (ξ, ζ, t), using

(

∂

∂x

)

z,t
= cos θ

(

∂

∂ξ

)

ζ,t

− sin θ

(

∂

∂ζ

)

ξ,t

, (4)

(

∂

∂z

)

x,t
= sin θ

(

∂

∂ξ

)

ζ,t

+ cos θ

(

∂

∂ζ

)

ξ,t

, (5)

(

∂

∂t

)

x,z
= (−c0 + ζθ̇)

(

∂

∂ξ

)

ζ,t

− ξθ̇

(

∂

∂ζ

)

ξ,t

+

(

∂

∂t

)

ξ,ζ
. (6)

The equation in full is then

φtt − ċ0φξ − 2c0φξt + ζθ̈φξ + 2ζθ̇φξt − ξθ̈φζ − 2ξθ̇φζt + c2
0φξξ − 2c0ζθ̇φξξ

+ c0θ̇φζ + 2c0ξθ̇φξζ + ζ2θ̇2φξξ − ζθ̇2φζ − 2ξζθ̇2φξζ − ξθ̇2φξ + ξ2θ̇2φζζ

= c2(φξξ + φζζ)

= (φξξ + φζζ)

(

c2
0 + 2c0

∂c

∂x

∣

∣

∣

∣

∣

0
(ξ cos θ − ζ sin θ)+ (7)

2c0
∂c

∂z

∣

∣

∣

∣

∣

0
(ξ sin θ + ζ cos θ) + O(ξ2 + ζ2).

On the right we have expanded c(x, z)2 as a Taylor series since we are

interested in the local behaviour near (x0, z0). In this equation, the term
c2
0φξξ cancels, and the distinguished limit we wish to consider is when

ξ = ε3/2Ξ and ζ = εZ, so that we write

φ = φ(Ξ, Z, t) = φ(ε−3/2ξ, ε−1ζ, t). (8)

5 For example, in Figure 3 the cusp locus is curved and the boom rays are straight whereas
in Figure 5 the cusp locus is straight but the boom rays are curved.
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In this limit, the leading terms, at order ε−2, are

−2c0Zθ̇φΞΞ = c2
0φZZ + 2c0ZφΞΞ

(

∂c

∂z

∣

∣

∣

∣

∣

0
cos θ − ∂c

∂x

∣

∣

∣

∣

∣

0
sin θ

)

. (9)

The quantity in brackets is the derivative of c normal to the curve C, and
we denote it by ∂c/∂ζ|0. The equation is then

∂2φ

∂Z2
+

2

c0



θ̇ +
∂c

∂ζ

∣

∣

∣

∣

∣

0



 Z
∂2φ

∂Ξ2
= 0, (10)

which is Tricomi’s equation, with the coefficient depending on the dif-
ference in curvature between the curve C and the local curvature of the

boom rays whose envelope it is. If, for example, C lies to the right of the
boom rays, as seen by someone moving along the ray, then θ̇ < −∂c/∂ζ|0,
and the boom rays occupy the region Z > 0, which is the region to the
left of C in Figures 3, 5. In either case the half-space occupied by the

boom rays coincides with the half-space in which (10) is hyperbolic.

In §2 we will apply these ideas to the case of a point source that moves
impulsively in a horizontally stratified atmosphere in two dimensions, as
in Figures 4 and 5. Our analysis in terms of wavefronts will reveal the

evolution of the Mach envelope reflection at the cusp and also indicate
the three-dimensional generalisation.

In §3, we will consider a point source accelerating smoothly through the

sound speed in a homogeneous atmosphere in two dimensions as shown in
Figures 2 and 3. In this case we will have the luxury of the exact retarded

potential solution against which we can check the predictions of (10).

Then, in §4 we will again use the retarded potential to describe a dramatic
singularity proposed by Dempsey [2]. This can occur when the source

accelerates more and more rapidly to hypersonic velocities, in which case
the Mach envelopes can take the form of shrinking concentric circles. This

generates a particularly violent singularity at a single point at just one
instant of time.

Next, in §5 we will generalise these ideas to three dimensions in more

detail, which will enable us to make two brief remarks about sonic boom
“carpets”. Finally, in the Appendix we will make some comments about
the combined effects of acceleration and inhomogeneity.
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2 Waves in a two-dimensional stratified atmosphere

We begin by considering wave propagation in two dimensions in an at-

mosphere in which there is a sonic height, so that, over some altitudes,
the speed of sound increases with height. For the subsequent analysis, the

simplest case is when c2 = 1/(1− z) in (1), where the source speed U is a
constant, and we only consider the wavefield in the region z < 1, thereby

ignoring all waves that may be reflected from, or generated in z ≥ 1.
We consider the canonical situation in which a unit point source moves

impulsively along the x-axis. If this source is a monopole, (1) becomes

−∂2φ

∂x2
− ∂2φ

∂z2
+ (1 − z)

∂2φ

∂t2
= δ(x + Ut)δ(z)H(t). (11)

Once this problem has been solved, the response to dipoles, etc., can be
found by differentiation. For this choice of c(z) the wavefronts, boom rays

and Mach envelope can all be calculated analytically.

The advantage of our choice of c is that if we move in the aerodynamic
frame and seek a travelling wave solution of (11) in which φ = φ(ξ, z), ξ =

x + Ut, we obtain

−∂2φ

∂z2
−

(

1 − U 2 + U 2z
) ∂2φ

∂ξ2
= δ(ξ)δ(z), (12)

which makes it easy to relate to (10). Our first step is to draw the wave-
fronts that are generated by the source. These are shown in the “subsonic”

case U = 1
2 in Figure 6 and in the supersonic case U =

√
2 in Figure 4.

There is only a Mach envelope in the supersonic case and its most inter-

esting part is formed by the tips of the upward-launched boomrays. These
tips form two components of the envelope, namely an upward propagating

component from the source and the reflection of this component from the
sonic line z = 1

2 . These components have a very important qualitative dif-

ference; the former is outside the wavefronts, whereas the latter is inside
the wavefronts. This difference is shown more clearly in the schematic
Figure 7.

The boomrays of Figure 5 form a smooth envelope at the sonic line z =
1/2. The upward propagating component is formed by boomrays that
have not touched this envelope but the reflected component is formed by

8
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Fig. 6. Picture of the wavefronts for the subsonic motion with U = 1/2 in the medium for
which c = 1/

√
1 − z. The sonic line (z = −3) and the locus of wavefront cusps are shown with

dashed lines.

Fig. 7. Schematic diagrams that show the difference in the formation of the two components
of the Mach envelope. In each case the thin curves are the wavefronts and the thick curve is
their envelope. In the left picture the wavefronts are “inside” the envelope and in the right
picture the wavefronts are “outside” the envelope.

boomrays that have touched the envelope. This is a second criterion for

distinguishing between the two Mach envelope components.

With the translation z − 1
2

= Z and U =
√

2 equation (12) becomes

∂2φ

∂Z2
+ 2Z

∂2φ

∂ξ2
= 0, (13)

which is (10) with Ξ = ξ since c0 =
√

2, (∂c/∂ζ)|0 =
√

2 and θ̇ = 0. To

obtain the boundary conditions that need to be imposed on (13) in order
to reveal the structure of the singularity at the cusp of the Mach envelope,
we begin by noting that, near the source, φ is the Riemann function for
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a wave equation with constant coefficients. Hence, the singularity on the
Mach envelope is a jump in φ from its value ahead of the envelope. There

will be a nontrivial wavefield ahead of the envelope because of the waves
emitted from the subsonic region Z > 1/2, but, as stated earlier, we will

not consider this small wavefield here.

To understand how the jump in φ propagates, we need to consider local
solutions of (13) in the form φ ∼ Af

(

(ξ/
√

2 − 2
3
(−Z)3/2)/ε

)

for small

ε, where A is an amplitude that is independent of ε to lowest order.
Substituting into (13) and equating terms of O(ε−1) gives

∂A

∂Z
− (−2Z)1/2∂A

∂ξ
+

1

4Z
A = 0. (14)

Hence the variation of A along
ξ√
2

=
2

3
(−Z)3/2 is governed by

dA =
∂A

∂ξ
dξ +

∂A

∂Z
dZ = − A

4Z
dZ, (15)

and thus A grows to be O(|Z|−1/4) as Z → 0. Hence the far field boundary

conditions for (13) are that

φ → 0 as Z → +∞, (16)

and

φ → |Z|−1/4H

(

ξ√
2
− 2

3
(−Z)3/2

)

+ outgoing wave, as Z → −∞. (17)

The wavefield near the cusp can now be written down in terms of the

transform φ(k, Z) =
∫∞
−∞ φ(ξ, Z)eikξdξ. Since d2φ/dZ2 − 2k2Zφ = 0, we

find that, as Z → −∞,

φ ∼ (−Z)−1/4



exp





ik(−2Z)3/2

3



 H+(k) + exp





ik(−2Z)3/2

3



 H−(k)



 ,

(18)
where H+(k) is the Fourier transform of the Heaviside function and H−(k)

is to be determined. However, since we require that φ should not grow
exponentially as Z → +∞, φ must be proportional to Ai(21/3k2/3Z) and

hence, from the connection formulae for the Airy function

H−(k) = sgn(k)H+(k) (19)
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and H− is the Hilbert transform of H+. This argument, which holds for
any incoming wave and not just the Heaviside function in (17), reveals

that the reflected Mach envelope is associated with a logarithmic sin-
gularity as Z → −∞ with ξ/

√
2 = −2

3
(−Z)3/2. This problem has, in

various guises, been discussed by many authors over the years (Howarth
[3], Lighthill [6], Guiraud [5], Rosales and Tabak [9], etc.). The represen-

tation of φ as the Fourier transform of an Airy function is not convenient
for describing its behaviour in more detail, except to confirm that φ has

no upstream influence in Z < 0 for ξ/
√

2 < 2
3(−Z)3/2. We can avoid

connection formulae altogether if we write the general solution of (13) as

φ(ξ, Z) =
∫ ∞

−∞
F





λ3

3
+ λZ +

ξ√
2



 dλ, (20)

for some function F for which the integral exists. Then (18) corresponds
to setting

F (s) = H(s)/
√

s, (21)

which leads us to an elementary integrand which can be analysed us-

ing the method of §3, and for which the singularities of φ occur where
9ξ2 + 8Z3 = 0.

3 Waves from an accelerating source in a homogeneous atmosphere

We begin by considering the singularities in the wavefield produced by
a source accelerating along the negative x-axis in a homogeneous atmo-

sphere. Generally, if the source position at t is x = X(t), (11) is replaced
by

−∂2φ

∂x2
− ∂2φ

∂z2
+

∂2φ

∂t2
= δ(x − X(t))δ(z)H(t), (22)

for which we have the explicit retarded potential solution

φ =
1

2π

∫ t

0

H(Q(τ))dτ
√

Q(τ)
, (23)

where Q(τ) = (t − τ)2 − (x − X(τ))2 − z2.
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3.1 Impulsive Supersonic Motion

When X(t) = −Ut, with U = constant and U > 1, the wavefront geom-

etry is as in Figure 1, and the Mach wedge is the Mach envelope. The
wavefield is displayed graphically in Figure 8; it is simply the Riemann

-4
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0

2
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0

2
0

1

2

3
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-2

0

2

x

z

2πφ

Fig. 8. Plot of the wavefield for a point source travelling with constant speed U =
√

2 from
right to left (c0 = 1).

function for the wave equation in the aerodynamic frame in the region be-
tween the Mach wedge and the circular wavefront x2 + z2 = t2. Huygens’

principle asserts that ∇φ should be zero in the aerodynamic frame inside
the Mach wedge and we see that the wavefield conforms to this principle

as soon as we are outside the wavefront x2 + z2 = t2. Analytically, this
happens because the limits of the integral in (23) become the two zeros

of Q when we cross the wedge from the outside, and hence the integral
becomes independent of x, z and t. Inside the wavefront x2 + z2 = t2, the
wavefield is given by

φ =
1

2π
√

U 2 − 1
arccos





xU + t
√

(x + Ut)2 − (U 2 − 1)z2



 , (24)

which joins continuously to the Riemann function in the Mach wedge (see
Strang [10], [11], [12]).
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3.2 Accelerating Source

The situation is more complicated when X(t) = −1
2
t2, so that the source

traverses the sound speed when t = 1. The Mach envelope is

x(τ ; t) = −1

2
τ 2 − t − τ

τ
, z(τ ; t) = ±(t − τ)

(

1 − 1

τ 2

)1/2

, (25)

displayed in Figure 3. The cusps are where

τ = τc = t1/3, x = xc = 1 − 3

2
t2/3, z = zc = ±(t2/3 − 1)3/2. (26)

There are, as we have seen in Figure 2, front and back components to

the envelope. Figure 3 shows, with a thicker line, the cusp locus which
is the envelope of the family of boom rays that terminate at the back
component. As in §2, for a fixed time t, the boom rays that terminate at

the front Mach envelope have not passed through the cusp locus, but the
boom rays that terminate on the back Mach envelope have touched it.

Despite this apparent complexity, we have the convenient representation

(23) for the wavefield everywhere, which we now analyse. On the Mach
envelope, φ again has a jump discontinuity because a local maximum of

Q(τ) passes downwards through zero as the Mach envelope is crossed.
This is shown schematically as the transition C → B → A in Figure 9,
and it is qualitatively similar to the supersonic motion of §3.1.

A local analysis can now be carried out by expanding Q(τ) in the vicinty

of a point τ = τE at which x = xE, z = zE and t = tE satisfy (25). Since
the envelope is never parallel to the z-axis, we hold zE fixed and since

Q = ∂Q/∂τ = 0 on the envelope, (25) means we can write

Q ≈ 2(t − τE)

τE
(x − xE) +

t − τ 3
E

2τE
(τ − τE)2 + . . . . (27)

Q is thus approximated by a quadratic in τ whose roots are τ1, τ2 say
and in case A of Figure 9 the contribution from near τE is zero. However,

in case C, when t > τE, this contribution is approximately

1

2π

√

√

√

√

τE

τ 3
E − t

∫ τ2

τ1

dτ
√

(τ2 − τ)(τ − τ1)
=

1

2

√

√

√

√

τE

τ 3
E − t

. (28)
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On the back envelope, where 1 ≤ τ < t1/3, a similar analysis of the
transition E → F → G in Figure 9 shows that the singular part of φ is

− 1

2π

√

√

√

√

τE

t − τ 3
E

ln |x − xE|. (29)

The contrast with (28) results from the fact that there are two con-

tributions to φ in E and only one in G. This necessitates integrating
over τ < τE − ε and τ > τE + ε respectively where, from (27), ε =
√

2
(

t−τE

t−τ3
E

)

(xE − x). It is this principal value calculation that spawns the

logarithm in (29).

A

B

C

D �Cusp�

E F G

Τ

Q

Τ

Q

Τ

Q

Τ

Q
Τ

Q
Τ

Q
Τ

Q

A B C D

E F G

Fig. 9. The Mach envelope and the initial wavefront for a source smoothly accelerated through
the sound speed. The points A, B, C, D, E, F and G are typical of regions with different
wavefield behaviour, as indicated by the different local behaviours of Q(τ).

The expressions (28) and (29) break down as we approach a cusp, which

is where Q(τ) has an inflection point as in plot D of Figure 9. Writing

τ = τc + τ ′, x = xc + x′, z = zc + z′, (30)
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where primed variables are small, we see that

Q ∼ 2(τ 2
c − 1)x′ − 2(τ 2

c − 1)3/2z′ − 2τcx
′τ ′ − τcτ

′3. (31)

Assuming first that we are not too close to the tangent to the cusp Z ′ = 0,
where

Z ′ =
−x′ + (τ 2

c − 1)1/2z′

τc
, (32)

we can neglect the penultimate term in (31) to retrieve

27/6πτ 1/2
c (τ 2

c − 1)1/6φ ∼



























(Z ′)−1/6
∫ ∞

1

dv

(v3 − 1)1/2
, Z ′ > 0,

(−Z ′)−1/6
∫ ∞

−1

dv

(v3 + 1)1/2
, Z ′ < 0.

(33)

Since

∫ ∞

−1

dv

(v3 + 1)1/2
= 31/2

∫ ∞

1

dv

(v3 − 1)1/2
=

1

2π1/2
Γ

(

1

6

)

Γ

(

1

3

)

, (34)

the field for Z ′ < 0 exceeds that for Z ′ > 0 by a factor of 31/2. However, if

Z ′ is sufficiently small, we need to work with the perpendicular coordinate
X ′ = ((τ 2

c − 1)1/2x′ + z′)/τc. In this situation, the first two terms in (31)

can be neglected, leading to the estimate

25/4πτ 1/4
c (τ 2

c − 1)1/8φ ∼



























(X ′)−1/4
∫ ∞

0

dv

(v3 + v)1/2
, X ′ > 0,

(−X ′)−1/4
{

∫ 0

−1
+

∫ ∞

1

}

dv

(v3 − v)1/2
, X ′ < 0.

(35)

Here
{

∫ 0

−1
+

∫ ∞

1

}

dv

(v3 − v)1/2
= 2

∫ ∞

1

dv

(v3 − v)1/2
(36)

= 21/2
∫ ∞

0

dv

(v3 + v)1/2
=

1

(2π)1/2

{

Γ

(

1

4

)}2

, (37)

so that the field for X ′ < 0 exceeds that for X ′ > 0 by a factor of 21/2.
We can match (33) and (35) together by considering the region where

Z ′ = O(|X ′|3/2). Here we can write

φ ∼ 2−5/4π−1τ−1/4
c (τ 2

c − 1)−1/8ρ−1/4I±(ζ), (38)
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in X ′ > 0, X ′ < 0 respectively, where

ρ2 = X ′2 + Z ′2, ζ = 2−1/2τ 3/2
c (τ 2

c − 1)1/4ρ−3/2Z ′, (39)

and

I±(ζ) =
∫ ∞

−∞

H(v3 ± v − ζ)

(v3 ± v − ζ)1/2
dv. (40)

Equation (38) agrees with (33) and (35) when |ζ| → ∞, i.e. when

τ−3/2
c (τ 2

c − 1)−3/4|X ′|3/2 � |Z ′| � |X ′|. (41)

The integral I− reveals the discontinuity

∆I = lim
ζ→ζ+

1

I (ζ) − lim
ζ→ζ−1

I (ζ) = −3−1/4π (42)

at ζ = ζ1 = 2/33/2, and the singular term

I−s = −3−1/4 ln |ζ − ζ2| (43)

at ζ = ζ2 = −2/33/2. These agree with (28) and (29) as we move away

from the cusp. The similarity variable ζ has been anticipated in (10) and
the singularities are precisely those identified in §2 for the reflection of

a jump discontinuity at a “Tricomi cusp”. Indeed, (38) is the solution of
(13) subject to (16), (17) and, furthermore, it is in the form (20), but it

is in a more convenient form than the Fourier transform discussed after
(17). In addition, (38) describes the smooth “ridge” where φ is largest on
the opposite side Z ′ > 0 of the cusp, near the positive X ′ axis.

Near the source, the jump in φ across the Mach envelope is 1
2(t

2−1)−1/2 to
lowest order and the singular part of φ on the x-axis at the back envelope

is −(2π)−1(t2 − 1)−1/2 ln |x + t − 1
2 −

1
2(t − 1)−1z2|. For t < 1, when the

source is subsonic, the field nearby is

φ ∼ − 1

4π
(1 − t2)−1/2 ln





(

x +
1

2
t2

)2

+ (1 − t2)z2



 . (44)

These results fail near the sonic time t = 1, which is when this singularity
configuration is born, as we now describe.
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3.3 Birth of the Mach Envelope

Near the sonic time, we replace (30) by

t = 1 + t′, τ = 1 + t′ + τ ′, x = −1

2
(1 + t′)2 + x′, z = z′, (45)

where primed variables are again small and τ ′ ≤ 0. Then, instead of (31)

we have

Q ∼ −z′2 − 2x′τ ′ − 2t′τ ′2 − τ ′3. (46)

At the sonic time t′ = 0, (23) can be written asymptotically as

φ ∼ (2π)−1|z′|−1/3
∫ ∞

0

H(v3 + 2|z′|−4/3x′v − 1)

(v3 + 2|z′|−4/3x′v − 1)1/2
dv, z′ �= 0, (47)

or

φ ∼ 2−5/4π−1|x′|−1/4
∫ ∞

0

H(v3 + sgn(x′)v − (2|x′|)−3/2z′2)

(v3 + sgn(x′)v − (2|x′|)−3/2z′2)1/2
dv, x′ �= 0.

(48)
These expressions coincide except on the x′ and z′ axes. The field φ is of

order |z′|−1/3 on x′ = 0, and is of order |x′|−1/4 on z′ = 0.

When t′ �= 0, the terms in (46) all have equal weight when τ ′ ∼ O(t′),

x′ ∼ O(t′2) and z′ ∼ O(|t′|3/2). Hence the key to the birth of the Mach
envelope is to be found in such a region, the limiting position of the
cusps of the previous section being reassuringly found to be at τ ′ ∼ −2

3
t′,

x′ ∼ 2
3t

′2, z′ ∼ ±
(

2
3t

′
)3/2

. We therefore introduce two similarity variables

x′
b =

x′

2t′2
, z′b =

2−3/2z′

|t′|3/2
, (49)

so that, with τ ′ = −2|t′|v, (23) becomes

φ ∼ 2−3/2π−1|t′|−1/2
∫ ∞

0

H(v3 − sgn(t′)v2 + x′
bv − z′2b )

(v3 − sgn(t′)v2 + x′
bv − z′2b )1/2

dv. (50)

As t′ increases through zero, (50) describes the strong field near the source

just before the birth, as given by (44) for t < 1, and the result (48) when
t′ = 0. Indeed, from (50), (48) also applies when t′ �= 0 as long as |x′| � t′2

or |z′| � |t′|3/2, because the similarity variable |x′|/|z′|4/3 is independent
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of t′ from (49). For small positive t′, φ varies rapidly in an “arrowhead”-
shaped region as in the Mach envelope in Figure 2, when shrunk strongly

in the x-direction, and not so strongly in the z-direction.

4 The Dempsey singularity

While the singularity evolution described above is expected to apply to
most of the phenomena associated with two-dimensional sonic boom,

Dempsey [2] has proposed a more dramatic singularity resulting from
accelerating a source. In the simplest case, the source accelerates from

Mach one at a large negative time t = t0 to infinite Mach number at time
t = −1, so that

X(t) = −
√

t2 − 1, for t < −1. (51)

The source is switched off at t = −1 so that the right-hand side of (22)
is just δ(x − X(t))δ(z)H(−t − 1). When we consider only the upward-

launched boom rays and look at the right-angled triangle POF in Fig-
ure 10, where O is the origin, perfect focusing will occur at a point F , as
long as the component of the source velocity towards F equals the sound

speed. Hence all boom rays pass through the perfect focus F = (0, 1), at

x

F = (0, 1)

z

0

|τ |

P = (X(τ), 0)
X(τ) = −

√
τ2 − 1

Fig. 10. A perfect focus of boom rays (motion in a straight line).

t = 0. The field φ is

φ =
1

2π

∫ t

t0

H(Q(τ))H(−τ − 1)dτ
√

Q(τ)
, (52)
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where

Q(τ) = (t − τ)2 − (x + (τ 2 − 1)1/2)2 − z2 (53)

and the Mach envelope is

x = − t

τ
(τ 2 − 1)1/2, z = −t − τ

τ
, (54)

where t0 ≤ τ ≤ min(−1, t). It is always part of the circle

x2 + (z − 1)2 = t2, (55)

but it takes different forms in the time intervals t < −1, −1 < t < 0,

and t > 0, as shown in Figures 11(a), 11(b), 11(d). In the figures, the
solid arc is the Mach envelope, the dashed arc is part of the wavefront

x2+z2 = (1+t)2 from the origin at t = −1 and the nearly vertical dashed
line is the wavefront from x = z = 0, t = t0. The perfect focus at (0, 1)
occurs at time t = 0, when the Mach envelope consists instantaneously

of this single point.

(i) t < 0. On the Mach envelope for t < 0, the pressure field has a
discontinuity because, as in Figure 9, a local maximum of Q(τ) passes

downwards through zero as the Mach envelope is crossed from “behind”
to “ahead”. A local analysis near this maximum shows that the jump
from ahead to behind is

∆φ =







τ(τ − 1)(τ + 1)

4t







1/2

. (56)

Since (54) and (55) give

τ =
t

1 − z
= −{x2 + (1 − z)2}1/2

1 − z
, (57)

we obtain

∆φ = − x

2(1 − z)3/2
. (58)

Thus, in Figure 11(b), ∆φ → ∞ as (x, z) approaches the left-most point
(t, 1), whereas ∆φ → 0 as (x, z) approaches the right-most point

(0, 1 + t). The transition between large and small ∆φ takes place in the
region 1 − z ∼ (−x)2/3, which is close to the z-axis. Thus the region of
small ∆φ is the vicinity of an upward-pointing cusp at (0, 1).
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(ii) t > 0. For t > 0, the field has a logarithmic singularity on the Mach
envelope because a local minimum of Q passes upwards through zero as

the Mach envelope is crossed from right to left. A local analysis near this
minimum of Q, similar to that leading to (29), shows that the singular
part φs of the field on a line of fixed z is

φs = −1

π







τ(τ − 1)(τ + 1)

−4t







1/2

ln |x − xE|, (59)

where xE is the value of x at which the line of fixed z intersects the Mach

envelope, while τ is the corresponding emission time. Thus (57) gives

∆φ = − 1

2π

x

(z − 1)3/2
ln |x − xE|. (60)

This is the singularity at the solid curve in Figure 11(d). The coefficient

in (60) tends to infinity as (x, z) approaches (t, 1), and it tends to zero as
(x, z) approaches (0, 1+ t). The transition between large and small values

of the coefficient now takes place where z − 1 ∼ x2/3, so that the region
of small values of the coefficient lies near a downward-pointing cusp at
(0, 1).

t

z

1

−(t2 − 1)1/2 0 x

(a) t < −1

1 + t x0t

1 + t

1

z

(b) −1 < t < 0

0 1

z

1

x

(c) t = 0

0 t 1 + t x

1 + t

z

1

(d) t > 0

Fig. 11. Mach envelopes for the Dempsey singularity.

As pointed out in [2], [8] perfect focusing can also occur when a point
source moves along an equiangular spiral, in which case the Mach en-
velope consists of a smooth component terminating in a perfect focus.

However, all such highly symmetric focusing is structurally unstable be-
cause any small perturbation to the sound speed or source path will lead

to curvature variations in the Mach envelope, which, in turn, will produce
swallowtails in the Mach envelope near a perfect focus.

In all the two-dimensional configurations described so far, we can char-
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acterise Mach envelopes and their singularities in terms of travel times
along boom rays. If we consider two signals emitted from the source at

time ∆t apart then, at a smooth Mach envelope, the two signals arrive
with a time difference of order (∆t)2. However at a cusp the two signals

arrive with a time difference of order (∆t)3 and Q needs locally to be
approximated by a cubic in τ , and, at a perfect focus, there is no time

difference at all. In the Appendix we will mention a situation where the
two signals arrive with a time difference of order (∆t)4 in connection with

the birth of a swallowtail.

5 Waves in a three-dimensional homogeneous atmosphere

When (22) is replaced by

−∂2φ

∂x2
− ∂2φ

∂y2
− ∂2φ

∂z2
+

∂2φ

∂t2
= δ(x − X(t))δ(y)δ(z)H(t), (61)

the retarded potential solution analogous to (23) becomes

φ =
1

4π

∫ t

0

δ(t − τ −
√

(x − X(τ))2 + y2 + z2)
√

(x − X(τ))2 + y2 + z2
dτ. (62)

This gives (Bateman [4], p.115; Guiraud [5], p. 218)

φ =
1

2π

∑

Q(τ)=0

∣

∣

∣

∣

∣

∂Q

∂τ

∣

∣

∣

∣

∣

−1

, (63)

where now Q(τ) = (t− τ)2 − (x−X(τ))2 − y2 − z2 and the sum is taken
over those values of τ for which Q(τ) = 0 and τ ≤ t. In contrast with §3,

we now only have the algebraic task of solving Q(τ) = 0 and computing
∂Q/∂τ . Also, by symmetry, we need only consider the solution in the

(x, z) plane.

5.1 Impulsive motion

When the source is in steady supersonic motion after starting impulsively,
the wavefronts and Mach envelope are generated by revolving the wave-
fronts and the Mach wedge in Figure 1 about the x-axis. However, the
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wavefield now has an inverse square root singularity as we approach the
Mach envelope, which is now the familiar Mach cone, from the interior.

This is in accordance with the fundamental solution of (1) in the aerody-
namic frame. Moreover, the sum of the contributions from the two zeros

of ∂Q/∂τ which emerge as we cross the Mach envelope from the outside
is non-constant. Hence, in accordance with Huygens’ principle, the wave-

field is always non zero inside the Mach envelope and it remains of O(1)
at distances of O(1) from the source for all time.

For an accelerating source, the Mach envelope is given by rotating (25)
about the x-axis. On the incident part of the Mach envelope and away
from the cusp, with t1/3 < τ < t, the passage of a local maximum of Q

through zero shows that φ jumps from zero to

φ = 2−3/2π−1τ(t − τ)−1/2(τ 3 − t)−1/2(x − xE)−1/2, (64)

instead of (28); xE is the value of x at which a line z = constant meets

the Mach envelope [8]. Equation (64) can be written as

φ = 2−7/43−1/4π−1(t − τc)
−1/2(xc − x)−1





x − xE

(xc − x)3/2





−1/2

, (65)

as the cusp is approached, the final term suggesting the similarity variable
to be used near the cusp. In contrast to the two-dimensional case, on the

back envelope where 1 ≤ τ < t1/3, the three-dimensional calculation is
very similar to that for near the incident part of the Mach envelope; there

is no asymmetry as there was between (28) and (29). The singular part
of φ is

φs = 2−3/2π−1τ(t − τ)−1/2(t − τ 3)−1/2(xE − x)−1/2

∼ 2−7/43−1/4π−1(t − τc)
−1/2(xc − x)−1/4(xE − x)−1/2, (66)

as τ → τc, where xE is now the value of x at the back envelope on a line

z = constant.

In the neighbourhood of the cusp we again have different representations
on the two sides of the tangent to the cusp, i.e. in Z ′ > 0, Z ′ < 0, where
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Z ′ is defined in (32). The results, which are analogous to (33), are

φ ∼



















2−5/33−1π−1τ−1(τ 2 − 1)−2/3(−Z ′)−2/3, Z ′ < 0,

2−5/33−1π−1τ−1(τ 2 − 1)−2/3(Z ′)−2/3, Z ′ > 0.
(67)

Here the coefficient for Z ′ < 0 is the same as that for Z ′ > 0, in contrast
to (33). For small Z ′, the results analogous to (35) are

φ ∼



















1

4π
(τ 2 − 1)−1/2(X ′)−1, X ′ > 0,

1

2π
(τ 2 − 1)−1/2(−X ′)−1, X ′ < 0,

(68)

so that the field jumps by a factor of 2 across X ′ = 0. Finally, in the

matching region where Z ′ = O(|X ′|3/2), the result analogous to (40), (42)
is, in X ′ > 0,

φ ∼ 1

4π
(τ 2 − 1)−1/2ρ−1|3v2(ζ) + 1|−1, (69)

where
ζ = 2−1/2τ 3/2(τ 2 − 1)1/4ρ−3/2Z ′, (70)

and v(ζ) is the unique real root of v3 + v − ζ = 0. Meanwhile, in X ′ < 0,

there are three contributions from the three real roots vi of v3−v−ζ = 0,
where ζ is still given by (70), and hence

φ ∼ 1

4π
(τ 2 − 1)−1/2ρ−1

3
∑

i=1

|3v2
i (ζ) − 1|−1. (71)

As in the two-dimensional case, it is easy to verify that these results
match with (67)–(68) as ζ → ∞. The singularities analogous to (43) are

φ ∼



















3−1/4(4π)−1(τ 2 − 1)−1/2ρ−1(2/33/2 − ζ)−1/2 when ζ < 2/33/2,

3−1/4(4π)−1(τ 2 − 1)−1/2ρ−1(ζ + 2/33/2)−1/2 when ζ > −2/33/2.

(72)

Here the coefficient for ζ < 2/33/2 is the same as that for ζ > −2/33/2.
Since the wavefield near the cusp is locally two-dimensional, there must

still be a region near the cusp where the solution satisfies a Tricomi
equation of the form (10). Indeed, in the same way that (38) satisfied

such a Tricomi equation, so does (69). Whereas the former described the
conversion of an incoming jump singularity to an outgoing logarithmic
one, (69) describes the conversion of an incoming inverse square-root
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singularity to an outgoing one. Also (69) is of the form (20), with F
being a delta function.

For t < 1, when the source is subsonic, the local field is such that

φ ∼ 1

4π

(

(x +
1

2
t2)2 + (1 − t2)z2

)−1/2

, (73)

in contrast to (44).

5.2 Birth of the Mach Envelope

Near the sonic time, we again use (45), but (46) must be replaced by

Q ∼ −z′2 − x′2 − 2x′τ ′ − 2t′τ ′2 − τ ′3. (74)

At the sonic time t′ = 0, (63) gives the approximate functional forms

φ ∼ |z′|−4/3f(|z′|−4/3x′), (z′ �= 0) (75)

and
φ ∼ |x′|−1g(|x′|−3/4z′, sgn(x′)), (x′ �= 0) (76)

(cf. (48)) where the functions f and g are obtained by solving the cubic
equation Q(τ ′) = 0, with Q given by (74). In particular, when |x′| � |z′|4/3,

(75) gives φ ∼ 1
6π

−1|z′|−4/3, and when |x′| � |z′|4/3, (76) gives φ ∼ 1
4π

−1x′−1

for x′ > 0, and φ ∼ 1
8π

−1(−x′)−1 for x′ < 0. These results depend on the

fact that for t′ = 0 the three roots τ ′ of Q(τ ′) = 0 all scale as |z′|2/3 for
|x′| � |z′|4/3 or |x′| ∼ |z′|4/3, but scale separately as |x′|1/2, |x′|1/2 and
(x′2 + z′2)/|x′| for |x′| � |z′|4/3.

For t′ > 0, an arrowhead envelope is again present, governed by the

same equations as for the two-dimensional problem. The cusps occur for
τ ′ ∼ −2

3
t′ and are at x′ ∼ 2

3
t′2, z′ ∼ ±(2

3
t′)3/2. A scaling analysis analogous

to that of (49), (50) shows that for t′ �= 0 the field contains an inner region
in the form of a box defined by |x′| ≤ O(t′2), z′ ≤ O(|t′|3/2) within which

the field has the approximate form

φ ∼ |t′|−2h(|t′|−2x′, |t′|−3/2z′, sgn(t′)), (77)

where the function h is obtained from the roots of the cubic equation
Q(τ ′) = 0. This inner region exists not only for t′ > 0, when it contains
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the arrowhead and its cusps, but also for t′ < 0, when it is a region of
high pressure which exists just before the birth of the arrowhead. This
high pressure region presages the birth of the arrowhead. In (77) the form

of h is such that the limit |x′| � |t′|2 or |z′| � |t′|3/2, or both, recovers
(76) or (75). Thus the results we derived above for t′ = 0 also apply for

t′ �= 0 outside the inner region.

5.3 Other singularities in three dimensions

The discussions in §3.2 and §5 have revealed that the focusing that oc-
curs at a cusp in the Mach envelope is locally described by a Tricomi

equation, no matter whether the flow is two-dimensional or axisymmet-
ric. However, the singularities that occur in the far field of the solution
of the Tricomi equation are quite different in two and three dimensions;

for a line source in a two-dimensional flow these singularities are of the
“jump-log” type but for a point source in a three-dimensional flow there

is a switch from one inverse square root to another 6 . Corresponding sim-
ilarities and contrasts occur in other situations and we will give just two

examples.

(i) Point sources moving supersonically. It is easy to write down the
wavefronts and boom rays and hence plot a Mach envelope typified by

Figure 12. However we cannot reduce the three-dimensional version of
(13) to (14) without either performing a Fourier analysis or repeating the
asymptotics leading to (10). Nonetheless, as in any axisymmetric problem

driven by a point source on the axis, there will be a “square root” to
“square root” switch between the two branches of the Mach envelope at

any point of the cusp locus in Figure 12.

(ii) The Dempsey singularity in three dimensions. In three dimensions
the effect of the source motion (51) is to produce a perfect focus at t = 0

in the plane x = 0 on the circle r2 = y2 + z2 = 1. The diagrams of the
wavefronts and Mach envelope are obtained by rotating those for two

dimensions about the x-axis. For t < 0, as distinct from the “jump-log”

6 These different configurations could be reconciled by considering a distribution of three-
dimensional point sources along the y-axis in a non-axisymmetric flow. Near the middle of
this distribution, cusps in the Mach envelope would have approximately jump-log singularities
and near the ends they would have square root-square root singularities.
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Fig. 12. Bicharacteristics for the model atmosphere c = 2/(2 − z) with source speed U =
√

2.
They are truncated at z = zg = −1/2 and the corresponding carpet is plotted. The bicharac-
teristic in the x-y plane through the source is plotted with a thicker line—it has its maximum
at the sonic line z = 1. This maximum is a cusp, as in the two-dimensional geometry of
Figure 5.

singularity which would arise from a line source, there is an inverse square
root singularity on the quarter-circular arc x2+(1−r)2 = t2, x < 0, r < 1,

with the local form

φs ∼ − x

2π(1 − r)
√

r

1
√

(1 − r)2 + x2 − t2
, (78)

analogous to the discontinuity (58) in the two-dimensional case. When
t > 0, this is converted into an outgoing inverse square root singularity

in the region x > 0, r > 1, having the same form.

6 Discussion and Conclusion

The main aim of this paper has been to elucidate the details of the acous-
tic field in the vicinity of the singularities that are most likely to occur
when a wave field is generated by a supersonic source. The generic sin-

gularity is that at a smooth component of the Mach envelope. Near the
source the singularity is simply that associated with the Mach wedge or

Mach cone from the source, but the Mach envelope can easily develop
singularities at which more intense acoustic focusing can take place. The

generic focusing of the Mach envelope into a cusp, be it produced by in-
homogeneities in the atmosphere or accelerations of the source, is always

described locally by a Tricomi equation of the form (11). However, as
described in §3.3, there is a complicated sectoral structure to the wave-
field near the cusp and the solution of the full wave equation is needed to
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delineate this structure. The Tricomi equation describes the most intense
amplitudes and it captures the transition in the singularities that occur

at the Mach envelope components on either side of the cusp.

We have derived, in §4, the extreme (but non-generic) focusing of the
wavefield that was suggested by Dempsey [2], in which a violent singular-

ity occurs at one point of space and one instant of time. Between these
singularities and the Mach envelope cusp, other kinds of intermediate
focusing can occur. For example, the Mach envelope can develop a new

locus of cusp singularities through a swallowtail. This is illustrated in the
Appendix, and is also generic. Alternatively, a source could accelerate

continuously from rest into a Dempsey-like focusing motion, e.g.

X(t) =



































−t2/2 for t ≤ M0;

−(3M2
0/2 − 1 −

√

(M3
0 − t)2 − (M2

0 − 1)3)

for M0 ≤ t ≤ M3
0 − (M2

0 − 1)3/2.

(79)

An example of this for M0 = 2 is shown in Figure 13.
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Fig. 13. Trace of the Mach cone on the ground (z = −1) for a source moving as in (79) with
M0 = 2. The form of the envelope due to constant acceleration (on the right) develops inwardly
focusing arcs with foci at the points marked × where the Dempsey focal circle intersects the
ground.

Although it was not our primary aim to give a detailed account of the im-

plications of our singularity analysis for the sonic boom heard at ground
level beneath a supersonic source, we will conclude with three observa-
tions concerning the “carpet” of the wavefield.
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(i) For the primary boom of a smoothly accelerating source, the carpet
created by the Mach envelope and the cusp locus are contrasted with

the carpet caused by an impulsive source in Figures 14(a) and 14(b).
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(a) Constant speed
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(b) Constant acceleration

Fig. 14. The trace of the Mach cone on the ground (z = −1) for an aircraft moving to the
left in a uniform atmosphere. The position of the sonic boom on the ground is plotted for the
times when the aircraft is at the 4 marked positions. In (a) the speed is constant, X(t) = −2t.
In (b) the acceleration is constant, X(t) = −t2/2.

(ii) In a homogeneous atmosphere, it is possible to contrive acceleration
profiles which produce more intense focusing at certain times and posi-

tions than does the cusp locus of Figure 14(b), while being less intense
than the Dempsey singularity. These profiles can be characterised by

the arrival time differences mentioned at the end of § 4. When these
are of order (∆t)4 a typical carpet for y > 0 is shown in Figure 15.

(iii) For the secondary boom generated by steady motion in the atmosphere
c2 = 2/(2 − z) in which there is a sonic height, the Mach envelope

(spanned by bicharacteristics) is illustrated in Figure 12 and the cor-
responding carpet in Figure 16. The reflection of sonic boom from the
ground and subsequent refraction in the atmosphere has not been in-

cluded here, but will of course add further features to the ground carpet.

Acknowledgements

We thank M. Taroni for his assistance with the calculations relating to the accelerating source
while he was in receipt of an undergraduate summer bursary at the University of Keele.
Also, K. Kaouri acknowledges the support of the Sonic Boom European Research Programme
(SOBER, G4RD-CT-2000-00398).

28



−30 −25 −20 −15 −10 −5 0
0

5

10

15

20

25

30

x

y

Fig. 15. Trace of the Mach envelope on the ground z = −1 in the region y > 0, for a source
accelerating from rest with Ẍ(t) = −(1 − t/5)2. Two new cusps are formed on the Mach
envelope via a swallowtail, where the arrival time differences are O(∆t)4. The locus of the
cusps on the ground is the dashed line.
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Fig. 16. The carpet for B2 = 1 − z at z = zg = −1/2. The primary and secondary carpets
are joined because all bicharacteristics that are launched upwards reflect at a certain height
(according to generalised Snell’s law) and eventually reach zg.
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A Two-dimensional accelerating motion in a stratified atmosphere

For a constant acceleration source at (−1

2
t2, 0) in a stratified medium with sound speed profile

c = 1/
√

1 − z, it is shown in [8] that there are singularities of higher order than those discussed
in §2 and §3. The motion is supersonic when t ≥ 1 and the boom rays at t = 3 are plotted in
Figure A.1. 7
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Fig. A.1. Constant acceleration in the stratified medium with sound speed profile c = 1/
√

1 − z.
The boomrays are illustrated for t = 3, τ = 1.01 to τ = 2.9 (in increments of 0.01). The Mach
envelope is also plotted and has 2 cusps.

In Figure 5 only upward-launched boomrays form an envelope but in Figure A.1 and Figure 3
both upward and downward launched boomrays form envelopes. These envelopes of boomrays
are also loci of the cusps on the Mach envelope. The upper cusp locus starts at z = 0 and goes

7 The Mach envelope is still determined analytically.
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up to z ≈ 0.75, and the lower starts at z = 0 and goes down to z ≈ −1. The Mach envelope
is open in Figure 5 and closed in Figure 3 and Figure A.1, consisting of an incident (“Mach
wedge”-like) and a reflected component.

As t increases further, we see in Figure A.2 that the reflected envelope component changes
curvature (at about t = 5), and at about t = 8 it develops a curvature discontinuity. This
discontinuity corresponds to a travel time delay of order (∆t)4 in the discussion at the end of
§4.
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Fig. A.2. The Mach envelope for t = 3, t = 5, t = 8. It is a closed curve (for all times) and
the part formed by upward-launched boom rays has an incident and a reflected component.
By the time t = 5 the curvature of the reflected component has changed. A ‘kink’ develops for
t ≈ 8, giving rise to two cusps. (The envelope for t = 8 is very elongated in the x-direction so
not all of it is shown.)
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Fig. A.3. The Mach envelope for t = 20 and t = 21: magnified view of the new cusps near
x = −6 which are produced by the formation of a cusp caustic of boom rays. The lower original
cusp is also shown on each envelope.

As t increases further, the Mach envelope forms a swallowtail and so gives rise to two new
cusps. Such swallowtails correspond to the formation of a so-called cusp caustic of boom rays:
they have been observed experimentally by Sturtevant and Kulkarny [13], and our example
shows that they can arise in a sonic boom scenario. In Figure A.3 we show a magnified version
of these new cusps at times t = 20 and t = 21.
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