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Abstract

Interferon lambda (IFNλ) is a group of cytokines that belong to the IL-10 family. They exhibit

antiviral activities against certain viruses during infection of the liver and mucosal tissues.

Here we report that IFNλ restricts in vitro replication of the β-herpesvirus murine cytomega-

lovirus (mCMV). However, IFNλR1-deficient (Ifnλr1-/-) mice were not preferentially suscepti-

ble to mCMV infection in vivo during acute infection after systemic or mucosal challenge, or

during virus persistence in the mucosa. Instead, our studies revealed that IFNλ influences

NK cell responses during mCMV infection. Ifnλr1-/- mice exhibited defective development of

conventional interferon-gamma (IFNγ)-expressing NK cells in the spleen during mCMV

infection whereas accumulation of granzyme B-expressing NK cells was unaltered. In vitro,

development of splenic IFNγ+ NK cells following stimulation with IL-12 or, to a lesser extent,

IL-18 was abrogated by IFNλR1-deficiency. Thus, IFNλ regulates NK cell responses during

mCMV infection and restricts virus replication in vitro but is redundant in the control of acute

and persistent mCMV replication within mucosal and non-mucosal tissues.

Introduction

The β-herpesvirus human cytomegalovirus (HCMV) is typically controlled by immune-com-

petent individuals. However, HCMV causes disease in immune-suppressed adults such as

transplant recipients, and in immunologically immature children following congenital infec-

tion. HCMV infects multiple tissues within the host and is transmitted horizontally via urine,

breast milk and mucosal secretions including saliva [1]. Thus, understanding how CMV is

controlled in peripheral tissues and identifying the factors that regulate these responses may

inform therapeutic strategies.
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Cytokines are important regulators of antiviral immunity during CMV infection (reviewed

in [2]). The interleukin-10 (IL-10) cytokine superfamily consists of nine members that exhibit

diverse functions ranging from immune regulation to tissue protection [3]. The importance of

this superfamily in CMV pathogenesis is indicated by the evolutionary acquisition by HCMV

[4] (and other herpesviruses [5, 6]) of IL-10 orthologues that suppress immune activation.

Moreover, the rhesus CMV IL-10 orthologue restricts inflammation at the site of infection

whilst suppressing long-lived virus-specific immunity in vivo [7]. Studies in the murine CMV

(mCMV) model of infection, which recapitulates many aspects of HCMV tropism, immunity

and pathogenesis [8] although notably not the acquisition of an obvious IL-10 orthologue, has

highlighted the importance of cellular IL-10 in modulation of antiviral immunity during CMV

infection in vivo. mCMV induces IL-10 [9], and the IL-10-IL-10R pathway inhibits virus-spe-

cific immunity and control of mCMV persistence in mucosal tissue [10–14] whilst limiting

pathology and activation-induced NK cell death during acute infection [10, 15–17]. Addition-

ally, the IL-10-related cytokine IL-22 is induced upon mCMV infection [18, 19] and restricts

mCMV replication during acute infections of peripheral tissues via the recruitment of antiviral

neutrophils [18]. Thus, IL-10 family members significantly influence CMV pathogenesis in
vivo.

Interferon lambdas (IFNλ1–4, type III IFNs) are IL-10 superfamily members that exhibit

functional parallels to type I IFNs with respect to induction of antiviral cellular immunity. In

experimental models, IFNλ limits replication of numerous viruses (reviewed in [20]), includ-

ing herpesviruses [21, 22]. IFNλ receptor (IFNλR) primarily signals in epithelial cells [23] and

subsequently affords robust protection from viruses that target mucosal surfaces [24–28].

Given the importance of mucosal CMV infection in dissemination and pathogenesis, we inves-

tigated the mCMV model of infection to ascertain whether IFNλ influences the outcome of

acute and persistent cytomegalovirus infection in mucosal and other peripheral tissues in vivo.

Materials and methods

Mice, infections and ethics

Smith strain murine cytomegalovirus (mCMV) originally obtained from the ATCC was gener-

ated following in vivo propagation in weanling BALB/c mice and purification of salivary

gland-derived virus performed by spinning organ homogenate over a sorbital gradient, as pre-

viously described [18]. Ifnlr1tm1a(EUCOMM)Wtsi (Ifnλr1-/-) mice were generated using gene tar-

geting as part of the International Knockout Mouse Consortium (www.knockoutmouse.org)

using high throughput methods as described by Skarnes et al., 2011 [29]. Ifnλr1-/- and age/sex-

matched wild type C57BL6/n mice were bred in-house at the Wellcome Trust Sanger Institute

(WTSI) research support facility. Mice were infected with either 3 x 104 or 5 x 104 PFU

mCMV (i.p.). In some experiments mice were infected with 1 x 104 mCMV (i.n) under iso-

fluothane anesthesia. Virus load in homogenized tissues was measured by plaque assay using

3T3 cells [18]. In vitro infections were performed in 3T3 and BNLCL2 cell lines (ATCC). Cells

were treated with IFNλ2 (IL-28A) (Peprotech), IFNα or IFNβ (PBL Assay Science) for 24

hours prior to infection with Smith strain mCMV. After 4 days of infection, virus was assessed

by plaque assay [18].

Ethics statement

All mice experiments were performed under the UK Home Office-approved project Licence

(Reference: PPL 80/2596) at the Wellcome Trust Sanger Institute research support facility. Iso-

fluothane was used for anesthesia (for intranasal infections) and all mice were sacrificed

according to UK Home Office guidelines.
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Assessment of in vivo immune responses

Splenocytes were isolated as previously described [16]. Liver leukocytes were isolated by pass-

ing leukocytes through a 70μM sieve prior to cell purification over a percoll gradient. NK cell

responses were measured as previously described [16], with additional direct ex vivo assess-

ment of intracellular granzyme B NK cell expression (Biolegend). Assessment of neutrophils

and virus-specific T cell responses (quantified by detecting peptide-specific cytokine produc-

tion) have been previously described [12, 14, 18]. IL-12 p70 (Biolegend), IL-18 (Thermo

Fisher), IFNγ (Biolegend) and IFNλ2/3 (IL-28A/B, R&D Systems) protein was measured using

ELISAs.

Measured for Ifnλr1 gene expression

RNA was extracted from cells using RNAeasy mini kit (Qiagen). Genomic DNA was elimi-

nated from the samples using the Turbo DNA-free™ kit (Ambion) prior to cDNA synthesis

(Applied Biosystems). Gene expression was measured by quantitative reverse transcription

PCR using a QuantStudio™ 3 thermal cycler (Thermo Fisher Scientific) and iTaq Universal

SYBR1 Green supermix (Bio-rad laboratories) using primers for Ifnλr1 (Forward: 5’-GTG
ACC TAT TTC GTG ACC TAC C—3’, Reverse: R 5’-CTG CCT GTA CTC GTC CTT TG
—3’) and β-actin (Forward: 5’-TGC AGA TTC CTC TCC AGC AA—3’, Reverse: 5’-GTC
TTC ACC CCC TGA AAC CA—3’).

In vitro NK cell assays

For analysis of NK cell function, splenocytes were isolated from naïve Ifnλr1-/- mice and corre-

sponding WT controls, plated in R10 medium supplemented with IL-12, IL-18 or IL-12/18 +/-

IL-28a (10ng/ml, all Peprotech; 1 x 106 cells per condition), and incubated for 5h with the addi-

tion of monensin (BD Biosciences). Cells were then incubated with Fc block (BioLegend), sur-

face stained with anti-NK1.1 and anti-CD3ε, and then washed with DPBS (Gibco) and stained

with zombie aqua dye (BioLegend). Surface-stained cells were then fixed and permeabilized

using BD Cytofix/Cytoperm, and stained with anti-IFN-γ (BioLegend). To detection IFNλ-

induced pSTAT1 activation in NK cells, splenocytes from naïve and mCMV infected mice

were incubated for 1–6 hours with or without 10000U/mL IFN-β or 50ng/mL IFN-λ2. Cells

were then surface-stained and phosphorylated STAT1 (pSTAT1) was detected according to

the manufacturer’s instructions (BD Biosciences). Cells were analyzed on a Becton Dickinson

FACsAriaIII using FACS Diva software (v8) or using an Attune NxT Flow Cytometer. Data

were subsequently analysed using FlowJo software version 10.2.

Statistics

Statistical significance was assessed using Mann-Whitney U for paired analysis of viral-load

data whereas students T-test was used to analyze paired flow cytometry and ELISA data.

1-Way ANOVA was used to determine statistical significance where more than 2 groups were

assessed concurrently (in vitro virus replication). For all tests performed, p values are reported

as ��0.05, ���0.01, and ����0.001.

Results and discussion

IFNλ restricts mCMV replication in vitro
We first assessed whether IFNλ directly influences mCMV replication, using murine cell lines

representative of embryonic liver cells (BNLCL2) or fibroblasts (3T3) that expressed or did not

express IFNλR, respectively (Fig 1A). Cells were pre-treated for 24 hours with or without
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Fig 1. IFNλ can restrict mCMV replication in vitro. (A) Ifnλr1 expression by 3T3 and BNLCL2 cells was determined by

qPCR. (B) 3T3 (top) and BNLCL2 (bottom) cells were incubated with/without 50U/ml IFNα and/or IFNβ, or 50ng/ml IFNλ2

(IL-28A) for 24hrs and infected with mCMV at multiplicities of infection (MOI), as stated in the figure. After 4 days,

infectious virions in supernatant were quantified by plaque assay. Statistical significance of PFU in IFNλ2-treated versus

control cells is shown. Virus load in spleen (C), liver (D) and salivary glands (E) of WT and Ifnλr1-/- mice was assessed 4

(D&E) and 33 (E) days p.i. (F) IFNλ2/3 protein in spleen (left), liver (middle) and salivary glands (right) was measured at day

0 and 2 days p.i (spleen and liver) or 0 and 26 days p.i (salivary glands). Results are shown as mean + SEM of 3–7 mice/group.

(G) WT and Ifnλr1-/- mice were infected (i.n) with mCMV in a volume of 25μl or 50μl and after 4 days, lung infectious viral

load was quantified by plaque assay. Statistical significance was assessed using 1-way ANOVA (B) or Mann Whitney-U (C-E,

G) or students T-Test (F) and is depicted where appropriate. Panel G represents merged data from two experiments whereas

all other data represent at least two biological replicates performed separately.

https://doi.org/10.1371/journal.pone.0197596.g001
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IFNλ2, or as a positive control for cytokine-mediated control of mCMV replication, IFNα
and/or IFNβ. In accordance with receptor expression data (Fig 1A), IFNλ did not impact upon

mCMV replication in 3T3 cells following infection with a range of infection inoculums (Fig

1B). However, incubation of BNLCL2 cells with IFNλ prior to mCMV infection led to a reduc-

tion of replicative-competent virions in supernatant by ~1 log (Fig 1B). Induction of IFNλR in

human astrocytes enables IFNλ-mediated control of HCMV replication in vitro [30]. Thus,

our data is consistent with the conclusion that IFNλ is capable of restricting human and

mouse cytomegalovirus infection within IFNλR-expressing cells.

IFNλ does not impinge upon mCMV replication in vivo
We next studied IFN lambda receptor deficient mice (Ifnλr1-/-) to determine whether IFNλmod-

ulated mCMV replication in vivo. Upon systemic (i.p.) challenge, we observed no effect of

IFNλR1 deficiency on control of acute mCMV replication in the spleen or liver (Fig 1C and 1D),

in accordance with previously published observations [31]. Although IFNλ restricted mCMV

replication in a murine liver-derived cell line (Fig 1B), murine hepatocytes respond poorly to

IFNλ [32]. However, epithelial cells are responsive to IFNλ in vivo [23]. Thus, we examined the

impact of IFNλR1 deficiency on mCMV persistence in glandular epithelial cells within salivary

glands. Again, Ifnλr1-/- mice exhibited no defect in control of mCMV (Fig 1E). The absence of

an antiviral function of IFNλwas not attributed to the lack of cytokine induction in vivo as signif-

icant expression was observed during acute and chronic infection (Fig 1F). Thus, we concluded

that IFNλ does not contribute to the control of mCMV in vivo following systemic infection.

IFNλ restricts viral replication within the mucosa (reviewed in [20]). Using an established

intranasal mucosal challenge model of mCMV infection [33–35], we investigated whether

IFNλ restricted primary mucosal mCMV infection. We challenged adult mice with mCMV

either in 25μl or 50μl volumes, reasoning that 25μl would restrict mCMV delivery to the nose

and not trachea and thus serve to specifically probe the impact of IFNλR signaling on control

of initial mCMV replication within the nasal cavity. As shown in Fig 1G, we observed no

impact of IFNλR1 deficiency on mCMV infection of lung tissue following mCMV infection

using either volume (Fig 1G). Thus, although the caveat exists that the unresponsive nature of

murine hepatocytes to IFNλ may mask a possible antiviral role for IFNλ in controlling CMV

replication within the liver, overall our data supports the conclusion that IFNλR signaling

plays no significant role in controlling mCMV replication in vivo.

IFNλ does not influence the development of mCMV-specific T cell

immunity

IFNλ has been implicated in shaping adaptive immunity [20]. Studies of lymphochoriomenin-

gitis infection revealed that IFNλ can restrict effector T cell responses and memory develop-

ment following acute virus infection whilst paradoxically promoting T cell responses during

virus chronicity [36]. Using intracellular staining for IFNγ following ex vivo stimulation with

mCMV-derived peptides, we measured mCMV-specific CD8+ and CD4+ T cell responses dur-

ing acute (d7 p.i) and persistent (d26 p.i) infection. We detected no discernable differences in

the accumulation of functional virus-specific CD4+ or CD8+ T cells between WT and Ifnλlr1-/-

mice at either time-point (Fig 2A–2D). Furthermore, IFNλR1 deficiency did not influence the

frequency of mCMV-specific T cells that co-express TNFα following re-stimulation ex vivo
(Fig 2E and 2F). Therefore, although these data do not preclude a role for IFNλ in modulating

T cell and humoral immunity during the chronic/latent phase of mCMV infection, these

results demonstrate that IFNλ does not alter the magnitude or quality of mCMV-specific T

cell responses during acute and persistent mCMV infection.
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IFNλR1 promotes splenic IFNγ+ NK cell responses during mCMV infection

We next investigated whether IFNλ modulates innate immune activation during mCMV

infection. Neutrophils limit mCMV replication and pathogenesis [18, 37], and IFNλ has been

reported to directly modulate neutrophil responses in vivo [38, 39]. However, neutrophil accu-

mulation in the spleen and liver during mCMV infection was unaltered in Ifnλr1-/- mice (Fig

3A). In contrast, however, studies of NK cell responses revealed a marked reduction in NK

Fig 2. IFNλR signaling does not influence mCMV-specific T cell responses in vivo. mCMV-derived peptide-specific CD8+ (A&C) and CD4+

(B&D) T cell responses in WT and Ifnλr1-/- mice infected for 7 (A&B) or 26 (C&D) days were quantified ex vivo following peptide re-

stimulation. Mean + SEM of 6–7 mice/group is shown and represent 2–3 experiments. Statistical significance was tested using an unpaired

student’s T-test. (E) Representative bivariate FACS plots of IFNγ and/or TNFα expression by CD8+ T cells stimulation with media alone (M) or

2μg/ml MHC class I restricted peptide derived from mCMV M45 (HGIRNASFI) or M38 (SSPPMFRVP) proteins. % positive cells are shown in

the plots. Data are representative of 6 mice/group. (F) Mean + SEM from 6 mice/group is shown. Results represent 2 separate experiments.

https://doi.org/10.1371/journal.pone.0197596.g002
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Fig 3. IFNλ promotes IFNγ+ NK cell responses. (A) Neutrophil numbers in the spleens and livers of mCMV-infected

WT and Ifnλr1-/- mice was assessed 4 days p.i. IFNγ+ (B&D) and granzyme B+ (C&E) NK cell accumulations in spleens

(B-C) and livers (E&F) were quantified day 4 pi. Individual mice + mean is shown from 2 independent experiments and

represent 4 (liver) or 5 (spleen) experiments in all. (D) Representative bivariant FACS plots of IFNγ versus granzyme B

expression by live NK1.1+CD3- cells 4 days post-infection. Plots show concatenated samples from 4 (WT) and 6

(Ifnλr1-/-) mice. Results represent 3 experiments. (G) IFNγ protein in the serum was measured 4 days pi. Mean + SEM of

3–4 mice/group is shown. (H&I) IL-12 (H) and IL-18 (I) protein was measured in naïve spleen tissue or after 2 days of

mCMV infection. Mean + SEM of 3 (naïve) or 7 (infected) mice is shown. (J) IFNγ expression by NK cells stimulated

Interferon lambda regulation of antiviral NK cell responses during cytomegalovirus infection
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cells from spleens from Ifnλr1-/- mice during acute mCMV infection that spontaneously pro-

duce IFNγ ex-vivo (Fig 3B). Defective IFNγ+ NK cell accumulation was not defined by a broad

deficit in NK cell responses in Ifnλr1-/- mice as, although we observed a trend in reduced accu-

mulation of cytotoxic (granzyme B+) splenic NK cells in Ifnλr1-/- mice, this was not statistically

significant (Fig 3C and 3D). NK cell populations that are present in the liver form a distinct

lineage from splenic NK cells [40]. Interestingly, we observed no statistically significant impact

of IFNλR deficiency on the accumulation of IFNγ+ or granzyme B+ hepatic NK cells (Fig 3E

and 3F) nor did we detect a defect in systemic IFNγ protein concentrations (Fig 3G), suggest-

ing that IFNλ preferentially promoted the development of IFNγ+ conventional splenic NK cell

responses during mCMV infection rather than broadly impacting upon NK cell responses in

other tissues and influencing systemic cytokine production.

We next examined the mechanism(s) through which IFNλ regulates IFNγ+ NK cells. IL-18

and IL-12 promote these responses during mCMV infection [41–43]. However, IL-12 and IL-

18 protein concentrations were comparable in spleen supernatants from WT and Ifnλr1-/-

mice post-infection (Fig 3H and 3I), suggesting that IFNλ did not promote IFNγ+ NK cell

responses indirectly via the regulation of IFNγ-inducing cytokines. Instead, incubating spleno-

cytes from naïve mice with IL-12 revealed impaired development of Ifnλr1-/- IFNγ+ NK cells,

as assessed by flow cytometry after 5hrs (Fig 3J). A similar, albeit not significantly significant,

trend was observed in splenocytes incubated with IL-18 (Fig 3J). These data support the con-

clusion that IFNλR signaling promotes NK cell responsiveness to IFNγ-inducing cytokines.

Souza-Fonseca-Guimaraes et al [31] previously reported no impact of IFNλR deficiency on

cytokine-induced IFNγ secretion by purified NK cells. In our experiments, we studied whole

splenocytes and examined IFNγ+ NK cell generation by flow cytometry and not ELISA, and at

earlier time-points than Souza-Fonseca-Guimaraes and colleagues. Thus, variations in experi-

mental designs may explain these disparate findings. Importantly, however, we saw no influ-

ence of IFNλR signaling on IFNγ+ NK cell development that was induced following co-

incubation of splenocytes with IL-12 and IL-18 (Fig 3H). Given that Souza-Fonseca-Guimar-

aes and colleagues performed assays using purified NK cells that involved co-incubation of

multiple cytokines, our data suggest that the influence of IFNλR1 on IFNγ+ NK cell develop-

ment may be redundant in situations where cells receive strong stimuli via concurrent stimula-

tion of multiple cytokine receptors. Indeed, the observation that IL-12 and IL-18 are often co-

expressed during mCMV infection [41] may explain why hepatic NK cell responses and sys-

temic IFNγ responses were unaltered in Ifnλr1-/- mice. Whether early IL-18 production in the

spleen in the absence of robust IL-12 secretion following systemic mCMV infection [41] is

responsible for the observation that Ifnλr1-/- mice mount reduced IFNγ+ NK cell responses in

this tissue, is unclear.

IFNλR1 has been shown to directly induce IFNγ production by NK cells in vivo [31],

although whether direct IFNλR signaling occurs in human NK cells and induces IFNγ expres-

sion remains controversial [44, 45]. In agreement with Souza-Fonseca-Guimaraes et al, we

found that IFNλ (IL-28A) protein appeared not to directly increase IFNγ+ NK cell develop-

ment in our studies (Fig 3H), suggesting that IFNλ does not act as a co-factor for IL-12 and/or

IL-18 induction of IFNγ+ NK cells, at least in vitro in the time-frame examined. Furthermore,

IFNλ failed to induce STAT1 phosphorylation in NK cells derived from naïve or mCMV-

infected mice (S1 Fig). Instead, the observation that Ifnλr1-/- NK cells from naïve mice are less

responsive to IL-12 and IL-18 implies that although NK cell repertoires are comparable in WT

with IL-12, IL-18 or IL-12/IL-18 +/- IL-28A was detected by flow cytometry. Data represent the mean +/- SD for 3 mice

per group. All experiments were performed at least twice.

https://doi.org/10.1371/journal.pone.0197596.g003
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and Ifnλr1-/- mice [31], IFNλ may promote NK cell responsiveness to IL-12/IL-18 prior to

stimulation with these cytokines. It is feasible that this occurs during NK cell development or

in either a different anatomical location or over a different timescale to that studies herein.

Alternatively, our data does not preclude the possibility that dysregulated IL-10R2 expression,

signaling and/or distribution that may occur in Ifnλr1-/- mice as a consequence of genetic dele-

tion of this partner of IL-10R2 may impact on NK cell responses.

Overall our data suggest that although IFNλ can directly restrict mCMV replication in
vitro, this is non-essential during the acute and mucosal persistence phases of in vivo infection.

IFNλ predominantly protects mucosal tissue from viral infections [24–28]. Upon mucosal

challenge with mCMV, rapid viral dissemination into the spiral ganglia can occur that is inde-

pendent of local mCMV replication [35]. Thus, initial control of virus replication within

mucosal tissue may be unimportant for host protection. Alternatively, given similarities in

signaling pathways induced by IFNλR and type I IFN receptor [46], type I IFN may render

IFNλR signaling redundant in immune control of mCMV replication in vivo. Furthermore,

mCMV may blunt direct antiviral activities of IFNλ. Indeed, IFNλ induces STAT2 activation

[46] and the mCMV-encoded pM27 promotes proteasomal degradation of STAT2 [47]. Fur-

ther, our data does not preclude the possibility that mCMV may interfere with IFNλR abun-

dance and/or localization. Therefore, although IFNλ is capable of limiting mCMV replication

in in vitro assays, it is possible that viral immune evasion mechanisms may blunt this antiviral

cytokine pathway in vivo.

Rather than acting as an antiviral cytokine during mCMV infection in vivo, our data revealed

that IFNλ exhibits immune modulatory activity by regulating the accumulation of functional

NK cells. IFNλ did not impact broadly on NK cell responses, in contrast to the induction of NK

cell proliferation by IL-28B during influenza infection [48]. Instead, IFNλ preferentially pro-

moted the development of IFNγ+ conventional NK cells in the spleen, and our data implied that

this occurred via regulation of NK cell responsiveness to IL-12 and, possibly, IL-18. IFNλ specif-

ically induced NK cell responses that express IFNγ but not granzyme B and did not impact on

systemic IFNγ secretion. This selective influence on NK cell responses may explain why IFNλR

deficiency had no impact on control of virus replication. Overall, our data demonstrate that

IFNλ modulates conventional NK cell responses in response to systemic virus infection.

Supporting information

S1 Fig. IFNλ does not induce STAT1 phosphorylation in NK cells from naïve or mCMV-

infected mice. Splenocytes from naïve mice (A&B) or from mice infected (i.p) for 4 days with

mCMV (C&D) were stimulated with/without IFNβ or IFNλ and after 1, 3 and 6 hours, STAT1

phosphorylation was measured. (A&C) STAT1 phosphorylation by NK1.1+CD3- is expressed

as Median fluorescent intensity (MFI) and mean + SEM of 5 mice is shown. (B&D) Represen-

tative histogram overlays of STAT1 phosphorylation in viable NK1.1+CD3- cells after 1 hour

of stimulation with/without cytokines. Data are representative of 5 separate mice from infected

or naïve groups.
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