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ABSTRACT 

Foundational advances in eicosanoid signaling, the free radical biology of oxygen and nitric oxide and mass 

spectrometry all converged to enable the discovery of nitrated unsaturated fatty acids. Due to the unique 

biochemical characteristics of fatty acid nitroalkenes, these species undergo rapid and reversible Michael 

addition of biological nucleophiles such as cysteine, leading to the post-translational modification of low 

molecular weight and protein thiols. This capability has led to the present understanding that nitro-fatty acid 

reaction with the alkylation-sensitive cysteine proteome leads to physiologically-beneficial alterations in 

transcriptional regulatory protein function, gene expression and in vivo rodent model responses to metabolic 

and inflammatory stress. These findings motivated the preclinical and clinical development of nitro-fatty 

acids as new drug candidates for treating acute and chronic metabolic and inflammatory disorders. 
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Highlights 

 

 The discovery of nitro-fatty acids (NO2-FA) was motivated by new insight into the 

biochemistry of nitration reactions and the signaling actions of oxidized fatty acids. 

 Four main areas of discovery supported the notion that NO2-FA serve as mediators of 

physiological homeostasis and in pure form as pharmacologically-active agents: 

o The reversible reaction of electrophilic nitro-fatty acids with cysteine and the central 

role of this reaction in modulating key signaling and gene expression responses. 

o The identification of conjugated diene-containing fatty acids such as conjugated 

linoleic acid as main substrate for nitration. 

o The digestive and inflammatory formation of NO2-FA in humans and rodents. 

o The protective anti-inflammatory and anti-fibrotic actions of NO2-FA in a wide range of 

preclinical animal models of metabolic and inflammatory disease. 
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Introduction 

Three foundational discoveries helped direct us down the experimental pathway leading 

to the discovery of fatty acid nitroalkene derivatives (nitro-fatty acids, NO2-FA). 

Prostaglandins and leukotrienes were identified as unsaturated fatty acid oxygenation products 

that mediate receptor-dependent regulation of inflammation, metabolism, and vascular function 

(1). Prior to this discovery, fatty acids and complex lipids were typically viewed as sources of 

metabolic energy and structural constituents of membranes, rather than as substrates for 

signaling mediator biosynthesis. At about the same time, seminal discoveries that led to the 

fields of free radical biology and redox signaling were being made.  Specifically, the generation 

of superoxide (O2
.-), hydrogen peroxide (H2O2) and other oxygen-derived species was identified 

in microbes, plants, fish and mammals, along with the existence of small molecule and 

enzymatic antioxidant networks that regulate cell levels of these oxidizing species (2). This led 

to the rapid acceptance of “reactive oxygen species” as mediators of xenobiotic toxicity and host 

defense and later, as cell signaling mediators. Finally, the free radical gas nitric oxide (
.
NO) was 

identified as a product of nitric oxide synthase-catalyzed arginine oxidative deamination and the 

roles of 
.
NO as a mediator of endothelial-dependent vascular relaxation and neurotransmission 

were described (3). With this critical perspective in mind, we discovered that convergent 

reactions of unsaturated fatty acids and reactive species derived from oxygen, nitric oxide and 

nitrite (NO2
-) yield a family of chemically-reactive products that mediate pleiotropic metabolic 

and anti-inflammatory signaling actions.  Moreover, synthetic homologs of NO2-FA may have 

pharmacologic utility, as present data indicates oral bioavailability, good pharmacokinetics, 

signaling pathway engagement and a promising safety profile in model systems and humans.  

There were a number of critical steps that had to be taken and pitfalls to overcome in this 

process of discovery: 

1. Overcoming an initial bias that 
.
NO-derived reactive species primarily mediated 

pro-inflammatory and pathogenic oxidation and nitration reactions.   

We had discovered that the toxicity of O2
.- and 

.
NO could be transduced by peroxynitrite 

(ONOO-), the product of their radical-radical reaction, and by the product of ONOO- and carbon 

dioxide (CO2) reaction, nitrosoperoxocarbonate (ONOOCO2). These nitrogen oxides can react 

directly or rapidly undergo homolytic scission (as ONOOH) to yield nitrogen dioxide (
.
NO2), 

hydroxyl radical (
.
OH) and, in the case of ONOOCO2, carbonate radical (CO3

-.)(4-7). We also 

had discovered that the neutrophil-derived heme protein myeloperoxidase (MPO), upon 

degranulation and reaction with H2O2, catalytically consumes 
.
NO and further oxidizes NO2

- to 

the nitrating species nitrogen dioxide (
.
NO2)(8-10).  Because of the facile ability of MPO to 

generate 
.
NO2 during inflammatory responses and the unique ability of MPO to become 

anatomically “locked” in place by high affinity glycosaminoglycan binding, we also discovered a 

strong spatial co-distribution between MPO and nitrated biomolecules (11,12).  More recently, 

we demonstrated that during 
.
NO autooxidation, NO2

- directly participates in fatty acid nitration 

reactions at neutral pH via the formation of symmetrical dinitrogen trioxide (ONONO)(13).  

These reactions, all operative in cell and murine models of inflammation and clinical 

observations, support the physiological relevance of these diverse mechanisms of nitro-

oxidative stress (13,14).  
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2. How we overcame bias and preconceived notions.   

In testing the concept that 
.
NO exacerbates oxidative inflammatory responses in more 

biologically-relevant model systems, we evaluated biochemical, cellular and in vivo responses to 

the co-generation of O2
.-, H2O2 and 

.
NO.  It was first observed that 

.
NO more potently inhibited 

the oxidation of membranes and plasma lipoproteins than -tocopherol (15,16).  We then 

extended these studies to more biological model systems by showing that elevated rates of 
.
NO 

biosynthesis or the introduction of 
.
NO donors led to protection of pulmonary and vascular cells 

having elevated rates of O2
.- and H2O2 generation.  Similarly, rodents inhaling 95% oxygen (thus 

enhancing rates of pulmonary O2
.- and H2O2 generation) were protected from pulmonary oxygen 

toxicity by the introduction of 8 ppm
.
NO, a concentration of inhaled 

.
NO that is within the range 

of that used clinically to treat pulmonary hypertension (17-19).  In these studies, anti-

inflammatory, antioxidant and tissue-protective responses prevailed that were contrary to 

dogma at the time regarding the biochemical effects of 
.
NO during oxidative inflammatory 

reactions (20).   

 

3. New perspective was gained regarding the tissue-protective and anti-inflammatory 

actions of 
.
NO during oxidative-stress.   

The antioxidant actions of 
.
NO were first ascribed to its kinetically rapid reaction with lipid 

peroxyl radicals, thus terminating autocatalytic free radical-mediated chain propagation 

reactions (15,16,21).  It had become apparent that, depending on concentration and the nature 

of the local free radical milieu, the reactions of 
.
NO could promote both pro-inflammatory and 

anti-inflammatory responses.  This was exemplified in a biochemical reaction system where 

rates of 
.
NO introduction and enzymatic O2

.- and H2O2 generation were varied inversely (15).  

The continuous variation of the 
.
NO/O2

.- ratios showed that when 
.
NO concentrations exceeded 

those of O2
.- and consequent ONOO-/ONOOH formation, lipid peroxidation was inhibited. The 

HPLC-MS/MS analysis of the different reaction conditions in this study also gave the first mass 

spectra showing the nitration of unsaturated fatty acids by oxidative inflammatory conditions. 

Further studies of linoleic acid reaction with ONOO-, ∙NO2, NO2
+ or NO2

-/HONO also revealed 

both linoleate oxidation and nitration products (22,23).  Previously, photochemical air pollution-

related studies of gaseous nitrogen dioxide (∙NO2) reaction with fatty acids and phospholipids 

had also shown the formation of nitration products (24-26).  Prior to appreciating that NO2-FA 

induce cell signaling responses via the PTM of nucleophilic protein targets, additional 

understanding of the chemical reactions that led to unsaturated fatty acid nitration was acquired 

(27-30).  The fact that nitroalkene-containing hydrocarbons, released at high pressure by a 

termite soldier gland, act as a termite chemical warfare armament for establishing turf domain 

also suggested that fatty acid nitroalkenes might have some unique reactivities (31).  

 

4. Nitric oxide and its secondary products were observed to regulate lipid signaling 

by modulating the enzymatically-catalyzed oxygenation of unsaturated fatty acids.   

The small molecular radius, lipophilicity and free radical character of ∙NO all contribute to the 

broad range of actions that both ∙NO and its secondary nitrogen oxides will exert on the 

oxidative generation of bioactive unsaturated fatty acid products.  These effects have been 

extensively reviewed and include the regulation of the gene expression and changes in the 

catalytic activities and oxygenated lipid product profiles of cyclooxygenase-1 and -2, multiple 

lipoxygenases, CYP450s and soluble epoxide hydrolase (32-34).  When catalyzing fatty acid 

oxidation, cyclooxygenase-1 and -2 and lipoxygenases were observed to catalytically consume 
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∙NO and impair downstream cGMP-dependent signaling actions (10,35-37).  Moreover, 

electrophilic NO2-FA species inhibit cyclooxygenase and lipoxygenase catalysis and gene 

expression (38,39).  These observations affirmed to us that there is a very strong and diverse 

array of biochemical linkages between lipid and ∙NO signaling. 

 

5. The organic synthesis of nitro-oleic, nitro-linoleic and nitro-arachidonic acid 

provided the key to unlocking the analytical, biochemical and pharmacological 

characteristics of nitro-fatty acids.  

The characterization of nitration products of unsaturated fatty acids in model system reactions 

prioritized the first NO2-FA to be synthesized. This was first accomplished by a selenium-

catalyzed nitration reaction that gave mixed regioisomers of linoleic and oleic acid nitroalkenes 

(40-42). Later, the synthesis of specific nitro-oleic acid regioisomers by the Henry nitro-aldol 

reaction further facilitated the discovery of the pleiotropic signaling actions of NO2-FA and the 

definition of structure-function relationships in the responses of signaling networks to different 

fatty acid nitroalkene derivatives (43-49).  Moreover, these synthetic approaches allowed the 

synthesis of isotopically-labeled NO2-FA (13C, 15N and 18O), permitting the development of 

HPLC-based isotopic dilution mass spectrometry methods.  Overall, these capabilities and 

reagents were crucial for defining the endogenous generation, tissue levels, metabolism, and 

signaling actions of this new class of mediators (22,43,44,50-54). Nonetheless, some mistakes 

and incorrect assumptions were made in early studies of the structure and concentrations of 

NO2-FA species in biological systems (15,50). These analytical challenges were similar to the 

those faced in other studies of electrophilic fatty acid derivatives, for example 15-deoxy-

prostaglandin J2 (15d-PGJ2), 4-hydroxy-2-nonenal and -unsaturated fatty acid ketone 

derivatives, when trying to establish their endogenous tissue and plasma levels, with net tissue 

concentrations of these species still remaining controversial.  The later development of 

improved sample preparation, chromatographic separations, and more refined mass 

spectrometric analyses improved NO2-FA structural and concentration determinations (51,55-

63).  Also, better understanding of the bond scission mechanisms operative in mass 

spectrometer-based fragmentation studies permitted the definition of NO2-conjugated linoleic 

acid as the principal nitrated fatty acid regioisomer present in cellular models of inflammation, 

and endogenously in both animal models and humans (13,14,55-57,64).  The availability of solid 

analytical approaches and critical reagents for studying lipid nitroalkene pharmacology were 

crucial for obtaining consistent results between investigators and labs focused on defining the 

mechanisms of NO2-FA generation, metabolism and how these species impact cell and organ 

function.  As discussed in the translational chapter of this series, these goals were 

accomplished in parallel with the acquisition of intellectual property protection, studies of NO2-

FA actions in preclinical models of inflammatory and metabolic diseases and the attainment of 

investment for supporting new drug development activities. Importantly, freely sharing reagents, 

standards, analytical expertise and ideas with colleagues was crucial for correcting mistakes, 

improving methods, replicating results and advancing understanding. 

 

6. Critical issues and novel insights regarding the unique nature of NO2-FA as 

endogenous mediators and new drug candidates. 

Do NO2-FA generate ∙NO? We initially viewed that NO2-FA might serve as an endogenous 

reserve of ∙NO that would be formed by metabolic and inflammatory reactions, and that after 

decay or metabolism would subsequently mediate cGMP-dependent vascular relaxation.  To 
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this extent, we and others have documented very low stoichiometric levels of ∙NO release by 

NO2-FA under aqueous conditions (40,44,65-70).  While the mechanism of ∙NO release is still a 

matter of debate (via a modified Nef reaction or a rearrangement to a nitrite ester and N-O bond 

homolysis), these potential reactions are inhibited in membranes and in the presence of plasma 

constituents such as protein and lipoproteins (44,65,70).  Further lines of evidence coming from 

more biologically relevant systems such as rodent model and clinical studies also do not support 

the occurrence of ∙NO-mediated, cGMP-dependent signaling actions of NO2-FA.  For example, 

acute intravenous infusion of low to high concentrations of NO2-FA does not affect blood 

pressure or heart rate in rodents, dogs and humans (71).  Still, there are other biochemical and 

cellular studies that still suggest that fatty acid nitroalkenes yield ∙NO.  We view that additional 

experimental evidence is needed, that must be supported by the reactions of 15N-labeled NO2-

FA and the subsequent detection of 15NO2
- and/or∙15NO.  These approaches are important for 

eliminating the confounding effects of adventitious NO2
-, contamination and the concomitant 

modulation of cellular or in vivo sources of ∙NO generation.  In the latter regard, NO2-FA a) 

induce endothelial nitric oxide synthase gene expression and catalytic activity and b) promote 

the upregulation of multiple antioxidant mechanisms that will “preserve” ∙NO by limiting its 

oxidative inactivation and the subsequent generation of secondary nitrogen oxides.(72) 

NO2-FA displays a unique pharmacology that is dissimilar from 
.
NO. In the early 2000s, two cell 

biological studies documented non-cGMP-dependent inhibition of platelet and neutrophil 

function by nitro-linoleic acid (73,74). This work significantly transformed our understanding of 

the mechanisms accounting for the potential signaling actions NO2-FA signaling. Both of these 

studies revealed that, in the absence of cytotoxicity, NO2-FA induced novel anti-inflammatory 

signaling actions at very low concentrations.  This data affirmed that there were effects of NO2-

FA on calcium homeostasis and cAMP/adenyl cyclase signaling that occurred in the absence of 

transcriptional responses and reactions that could be attributable to ∙NO/cGMP. 

Michael acceptor properties – a crucial mechanism of action underlying NO2-FA signaling.  The 

cGMP-independent signaling actions of NO2-FA pointed to non-canonical signaling actions 

being defined by the nitroalkene group of NO2-FA.  This functionality confers unique electrophilic 

character to the -carbon of nitro-activated alkenes. The -NO2 substituent is one of the most 

electron-withdrawing moieties in chemistry, thus when bonded to an alkene it promotes a 

kinetically rapid and reversible NO2-FA Michael addition with cysteine (Cys), a reaction that 

induces the post-translational modification (PTM) of proteins and potentially alters target protein 

structure and function (59,75,76).  These biochemical characteristics (kinetically rapid and 

reversible) differentiate NO2-FA from most other endogenous signaling electrophiles such as 

cyclopentanone prostaglandins and aldehydic lipid oxidation products (e.g., 15d-PGJ2 and 4-

hydroxy-2-nonenal).  These non-nitrated lipid electrophiles, while potentially abundant, react 

slowly with nucleophiles, do not readily -eliminate and can form irreversible Schiff’s base 

products.  Unlike fatty acid cyclopentenone and lipid aldehyde derivatives, NO2-FA will not 

accumulate as thiol addition products or promote toxicity at low concentrations.  The irreversible 

reaction of many Michael adducts under biological conditions can be a main cause of cell 

toxicity (77). Current model systems, preclinical pharmacokinetics and toxicology studies and 

Phase 1 safety evaluation in healthy and obese individuals continue to support that NO2-FA 

such as 10-nitro-oleic acid is safe in humans at pharmacologically-active doses.  A single 

exception to this generalization comes from the topical application of NO2-FA in a model of 
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allergic contact dermatitis. While oral and subcutaneous NO2-FA administration inhibits dermal 

responses to hapten-induced inflammation, the topical administration of solvated NO2-FA results 

in a sustained neutrophil-dependent inflammation (78,79). Even though the inflammatory milieu 

of psoriasis in humans actually increases dermal production and levels of NO2-FA, it appears 

that the high local epithelial concentrations that would result from dermal administration of 

solvated NO2-FA induces pro-inflammatory responses. 

NO2-FA detection approaches evolved in response to new understanding of NO2-FA 

electrophilic character and metabolism. HPLC-MS/MS was crucial for resolving and detecting 

fatty acids having NO2 substituents. Early bioanalysis of NO2-FA was occasionally complicated 

by acid-catalyzed nitration occurring by the formation of nitrous acid from the protonation of 

NO2
- to nitrous acid (HNO2) during lipid extractions and de-esterification reactions, leading to 

further generation of NO2-FA.  We learned that one could control for this artifact by including 
15NO2

- during tissue handling and extractions, with the formation of 15NO2-FA indicating 

unwanted processing-induced nitration.  Upon realizing that these species were electrophilic, 

new strategies were developed for “fishing out” protein-adducted NO2-FA for MS-based 

structural and quantitative analysis.  Three techniques have been particularly revealing. The first 

involves addition of a high concentration of -mercaptoethanol to cell preparations and tissue 

homogenates to force the -elimination of adducted NO2-FA and reaction with excess -

mercaptoethanol, yielding higher molecular weight adducts that would yield a fragment ion of 

m/z 78.  A second approach is the addition of HgCl2 to biological fluid or tissue samples.  Since 

NO2-FA form reversible adducts with thiols, after an “off reaction” (-elimination of NO2-FA from 

a thiol) Hg will react with the free thiol formed by NO2-FA dissociation, resulting in the inhibition 

of subsequent thiol reactions.  Overall, this results in a net increase in detectable “free” NO2-FA 

and still-electrophilic NO2-FA metabolites. The chemistry of this reaction has not been studied in 

depth and direct interactions of Hg with the NO2-FA adduct should not be excluded. Applying 

this approach to healthy human urine, the Hg-induced NO2-FA displacement strategy increases 

detectable “free” NO2-FA levels by 10-20 fold (57).  More recently, the clinical administration of 
15N-labeled nitrite and nitrate has convincingly shown that fatty acid nitration occurs in humans 

during digestion (Fig. 1) (80,81).  This observation in turn motivated the proposal that the 

cardiovascular benefits of a Mediterranean-like diet, rich in both vegetable-derived NO2
- and 

NO3
- and marine or olive oil-derived unsaturated fatty acids, could be (in part) ascribed to 

increased NO2-FA generation and the downstream elevation of vasoactive and anti-

inflammatory lipid mediators (82). 

In intracellular environments, where the concentration of low molecular weight and protein thiols 

can exceed 15 mM, the concentration of free NO2-FA is expected to be below 1% of total 

available NO2-FA, given the calculated equilibrium constants (83).  This underscores the need 

to identify the specific protein targets of these bioactive electrophilic lipids.  While biotin 

derivatives of the carboxylate of NO2-FA were initially used, these suffer from increased 

bulkiness, the intrinsic problem of esterase cleavage and disruption of potential CoA ester 

formation, potentially impairing detection and altering intracellular distribution and 

pharmacokinetics.  To address this, -terminal azido derivatives of NO2-FA were synthesized 

for click chemistry-based definition of protein targets. Finally, NO2-FA alkylation increases HPLC 

retention times of modified peptides, allowing for more facile target identification and providing 

an alternative mass spectrometry-based approach for target protein determinations (84). 
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NO2-FA reaction with the cysteine proteome regulates protein expression by the electrophile-

responsive genome.  Affinity labeling and mass spectrometry studies have identified susceptible 

NO2-FA protein targets and now focus has been placed on understanding the biochemical and 

cellular consequences of NO2-FA-protein reactions.  Current perspective holds that transient 

post-translational modification (PTM) of hyperreactive protein thiols by NO2-FA modulates 

signaling pathways involved in cell proliferation and inflammatory responses(85). This occurs as 

a result of the alkylation of functionally-significant Cys residues in transcriptional regulatory 

proteins, including the Kelch-like ECH-associated protein-1 (Keap1) regulator of nuclear factor 

(erythroid-derived-2)-like 2 (Nrf2) signaling, the nuclear lipid receptor peroxisome proliferator-

activated receptor  (PPAR), heat shock factor-1 (HSF-1) and NF-B (48,86,87). Of relevance 

to the anti-inflammatory actions of NO2-FA is the potent and multifaceted inhibition of NF-κB-

mediated signaling, as demonstrated in diverse cell and murine models of cancer, metabolic 

syndrome, cardiopulmonary disease and both acute and chronic renal disease (87-90). 

Unbiased gene expression response studies in human vascular endothelial and smooth muscle 

cells affirm the broad and pleiotropic modulation of adaptive cell responses by NO2-FA that 

would be anticipated from the PTM of key transcriptional regulatory proteins (91,92). Functional 

enrichment analysis of differentially expressed genes reveals multiple cellular processes will be 

affected, including cell proliferation, lipid metabolism, antioxidant and inflammatory-related gene 

expression responses.  

NO2-FA esterification in complex lipids. Since the initial demonstration of increased cholesterol 

nitrolinoleate levels in post-prandial human plasma, further advances related to the 

characterization and quantitation of esterified NO2-FA have been scarce (53,61).  These 

analyses are complicated by the instability of NO2-FA in most hydrolysis conditions, ion 

suppression by native complex lipids during direct mass spectrometric analysis and the 

complexity of the different molecular species expected from various esters of NO2-FA in 

phospholipids, glycerides and sterols. Fortunately, recent advances in the detection and 

characterization of esterified NO2-FA have been made. While phospholipid analysis has not yet 

been translated into in vivo measurements, the presence of NO2-FA containing triglycerides has 

been reported in animal models supplemented with NO2-FA (93,94). Of importance, triglycerides 

are an important storage depot and distribution mechanism for remote organ deposition of NO2-

FA. In this regard, the hydrophobic environment of membranes, lipid droplets, and lipoproteins 

abrogates any nitroalkene reactivity with thiols, even those present in small molecules such as 

-mercaptoethanol, cysteine and glutathione. In addition to these accessibility limitations for 

Michael addition by esterified NO2-FA, current data indicates that NO2-FA also do not add to 

thiolates in organic solvents, supporting that acid-base chemistry for NO2-FAnucleophile 

reactivity. 

7. Conclusions 

The study of interactions between 
.
NO-derived species and lipid peroxidation intermediates 

motivated the discovery of a functionally unique class of endogenous mediators (lipid 

nitroalkenes). The unique biochemical qualities of the electrophilic nitroalkene substituent 

prompted the evaluation of downstream signaling responses, the acquisition of better 

understanding of the pharmacokinetics and potential toxicity of orally and intravenously-

administered NO2-FA and the in vivo testing of NO2-FA pharmacology in preclinical models of 

metabolic and inflammatory disease.  Moreover, the detection of fatty acid nitroalkenes in plants 
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and their linkage with plant stress responses expands the scope of actions of this class of 

mediators.  These data, reinforced by the observation that NO2-FA are endogenously-generated 

during digestion, inflammatory responses and metabolic stress, has motivated their evaluation 

as therapeutic agents for treating pathogenic cell proliferation, metabolic and inflammatory-

related diseases in humans.  
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Figure 1.  Fatty acid nitration is induced by nitrite and nitric oxide dependent 
mechanisms.  The concentrations of nitrogen oxide precursors for nitrogen dioxide 
generation and levels of readily-nitrated unsaturated fatty acids such as conjugated 
linoleic acid will impact rates of formation and tissue concentrations of fatty acid 
nitroalkene derivatives. 


