
c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

Early-stage malware prediction using

recurrent neural networks

✩

Matilda Rhode

b , ∗, Pete Burnap

b , Kevin Jones

a

a Cyber Operations Team, Airbus, Newport, Wales, UK

b School of Computer Science & Informatics, Cardiff University, 5 The Parade, Roath, Cardiff, Wales CF24 3AA, UK

a r t i c l e i n f o

Article history:

Received 22 December 2017

Revised 8 April 2018

Accepted 15 May 2018

Available online 22 May 2018

Keywords:

Malware detection

Intrusion detection

Recurrent neural networks

Machine learning

Deep learning

a b s t r a c t

Static malware analysis is well-suited to endpoint anti-virus systems as it can be conducted

quickly by examining the features of an executable piece of code and matching it to pre-

viously observed malicious code. However, static code analysis can be vulnerable to code

obfuscation techniques. Behavioural data collected during file execution is more difficult to

obfuscate, but takes a relatively long time to capture - typically up to 5 min, meaning the

malicious payload has likely already been delivered by the time it is detected.

In this paper we investigate the possibility of predicting whether or not an executable is

malicious based on a short snapshot of behavioural data. We find that an ensemble of re-

current neural networks are able to predict whether an executable is malicious or benign

within the first 5 s of execution with 94% accuracy. This is the first time general types of

malicious file have been predicted to be malicious during execution rather than using a

complete activity log file post-execution, and enables cyber security endpoint protection to

be advanced to use behavioural data for blocking malicious payloads rather than detecting

them post-execution and having to repair the damage.

© 2018 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license.

(http://creativecommons.org/licenses/by/4.0/)

1

A
r
a
w
n

v
o

s

H
d
s

O
a
d

i
n
r

h
0
(

. Introduction

utomatic malware detection is necessary to process the
apidly rising rate and volume of new malware being gener-
ted. Virus Total, a free tool which can be used to evaluate
hether files are malicious, regularly approaches one million

ew, distinct files for analysis each day 1 (VirusTotal, 2017).
Commonly, automatic malware detection used in anti-

irus systems compares (features extracted from) the code
f an incoming file to a known list of malware signatures.
✩ This research was funded by the Engineering and Physical Science
tudentship (ref. EP/P510452/1 project #1852525).
∗ Corresponding author.

E-mail addresses: rhodem@cardiff.ac.uk (M. Rhode), burnapp@cardiff
1 0.935 million on 2nd December 2017

a

ttps://doi.org/10.1016/j.cose.2018.05.010
167-4048/© 2018 The Authors. Published by Elsevier Ltd. This is an ope
 http://creativecommons.org/licenses/by/4.0/)
owever, this form of filtering using static data is unsuited to
etecting completely new (“zero-day”) malware unless it
hares code with previously known strains (Vinod et al., 2009).
bfuscating the code, now common practice among malware
uthors, can even enable previously seen malware to escape
etection (You and Yim, 2010).

Malware detection research has evolved to respond to the
nadequacies of static detection. Behavioural analysis (dy-
amic analysis) examines a sample file in a virtual envi-
onment whilst it is being executed. Behavioural analysis
pproaches assume that malware cannot avoid leaving a mea-
s Research Council and Airbus by means of an Industrial CASE

.ac.uk (P. Burnap), kevin.jones@airbus.com (K. Jones).

n access article under the CC BY license.

https://doi.org/10.1016/j.cose.2018.05.010
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.05.010&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:rhodem@cardiff.ac.uk
mailto:burnapp@cardiff.ac.uk
mailto:kevin.jones@airbus.com
https://doi.org/10.1016/j.cose.2018.05.010
http://creativecommons.org/licenses/by/4.0/

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4 579

surable footprint as a result of the actions necessary for it
to achieve its aims. However, executing the malware incurs
a time penalty by comparison with static analysis. Whilst
dynamic data can lead to more accurate and resilient detec-
tion models than static data (Damodaran et al., 2017; Grosse
et al., 2016; Nataraj et al., 2011), in practice behavioural data is
rarely used in commercial endpoint anti-virus systems due to
this time penalty. It is inconvenient and inefficient to wait for
several minutes whilst a single file is analysed, and ultimately,
the malicious payload has likely been delivered by the end of
the analysis window so the opportunity to block malicious ac-
tions has been missed.

To avoid waiting, some approaches monitor “live” activity
on the local network or the machine. These detection systems
tend either to look for traits that signify a particular type of
malware (e.g. ransomware) or to flag deviations from a base-
line of “normal” behaviour. These two approaches suffer from
specific flaws. Searching for particular behaviours is analo-
gous to the traditional methods of comparing incoming files
with known variants, and may miss detecting new types of
malware. Whilst anomaly detection is prone to a high false-
positive rate as any activity that deviates from a “normal”
baseline is deemed malicious. In practice anomalous activity
is often investigated by human analysts, making the model
vulnerable to exploitation. An attacker could bring about lots
of anomalous behaviour such that the human analysts are
flooded with investigation requests, reducing the chances of
the activity created by the attack itself from being detected.

We propose a behaviour-based model to predict whether
or not a file is malicious using the first few seconds of file ex-
ecution with a view to developing a tool that could be incor-
porated into an end-point solution. Though general malicious
and benign files comprise a wide range of software and poten-
tial behaviours, our intuition is that malicious activity begins
rapidly once a malicious file begins execution because this re-
duces the overall runtime of the file and thus the window of
opportunity for being disrupted (by a detection system, ana-
lyst, or technical failure). As far as we are aware this is the first
paper attempting to predict malicious behaviour for various
types of malware based on early stage activity.

We feed a concise feature set of file machine activity into
an ensemble of recurrent neural networks and find that we
achieve a 94% accurate detection of benign and malicious files
5 s into execution. Previous dynamic analysis research collects
data for around 5 min per sample.

The main contributions of this paper are:

1. We propose a recurrent neural network (RNN) model to
predict malicious behaviour using machine activity data
and demonstrate its capabilities are superior to other ma-
chine learning solutions that have previously been used for
malware detection.

2. We conduct a random search of hyperparameter configu-
rations and provide details of the configurations leading to
high classification accuracy, giving insight into the meth-
ods required for optimising our malware detection model.

3. We investigate the capacity of our model to detect malware
families and variants which it has not seen previously -
simulating ‘zero day’ and advanced persistent threat (APT)
attacks that are notoriously difficult to detect.
4. We conduct a case-study using 3,000 ransomware samples
and show that our model has high detection accuracy (94%)
at 1 s into execution without prior exposure to examples of
ransomware, and investigate the combinations of features
most relevant to the model decisions.

2. Related work

Automatic malware detection models typically use either
code or behaviour based features to represent malicious and
benign samples. Each of these approaches has its benefits and
drawbacks, such that research continues to explore detection
methods using both kinds of data.

Hybrid approaches use both static and dynamic data,
closer approximating the methods used by anti-virus engines;
why analyse the behaviour of a file if it matches a known mal-
ware signature? But unless static detection is used purely to
filter out known malwares, any dependence on static meth-
ods in a hybrid approach leaves the model open to the same
weaknesses as a purely static model.

Static data Static data, derived directly from code, can be col-
lected quickly. Though signature-based methods fail to de-
tect obfuscated or entirely new malware, researchers have ex-
tracted other features for static detection. Saxe and Berlin
(2015) distinguish malware from benignware using a deep
feed-forward neural network with a true-positive rate of 95.2%
using features derived from code. However, the true-positive
rate falls to 67.7% when the model is trained using files only
seen before a given date and tested using those discovered for
the first time after that date, indicating the weakness of static
methods in detecting completely new malwares. Damodaran
et al. (2017) conducted a comparative study of static, be-
havioural and hybrid detection models for malware detection
and found behavioural data to give the highest area under the
curve (AUC) value, 0.98, using Hidden Markov Models with a
dataset of 785 samples. Additionally, Grosse et al. (2016) show
that, in the case of Android software, static data can be
obfuscated to cause a classifier previously achieving 97%
accuracy to fall as low as 20% when classifying obfuscated
samples. Training using obfuscated samples allowed a par-
tial recovery of accuracy, but accuracy did not improve beyond
random chance.

Dynamic data Methods using dynamic data assume that mal-
ware must enact the behaviours necessary to achieve their
aims. Typically, these approaches capture behaviours such
as API calls to the operating system kernel. Tobiyama et al.
(2016) use RNNs to extract features from 5 min of API call
log sequences which are then fed into a convolutional neu-
ral network to obtain 0.96 AUC score with a dataset of 170
samples. Firdausi et al. (2010) compare machine learning algo-
rithms trained on API calls and achieve an accuracy of 96.8%
using correlation-based feature selection and a J48 decision
tree. The 250 benign samples used for the experiment are all
collected from the WindowsXP System32 directory, which is
likely to give a higher degree of homogeneity than benign
software encountered in the wild. Ahmed et al. (2009) de-
tect malware using API call streams and associated meta-

580 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4

Table 1 – Reported data sample sizes and times collecting dynamic behavioural data per sample.

Ref. Malicious Benign Reported time collecting
samples samples dynamic data

Binary classification

Tobiyama et al.
(2016)

81 69 5 min

Firdausi et al. (2010) 220 250 No time cap mentioned–implicit full
execution

Ahmed et al. (2009) 416 100 No time cap mentioned–implicit full
execution

Damodaran et al.
(2017)

745 40 Fixed time and 5–10 min mentioned but
overall time cap not explicitly stated

Tian et al. (2010) 1368 465 30 s
Pascanu et al. (2015) 25,000 25,000 At least 15 steps–exact time unreported
Huang and Stokes
(2016)

2.85 m 3.65 m No time cap mentioned–implicit full
execution

Malware family classification
Hansen et al. (2016) 5000 837 3.33 min (200 s)
Kolosnjaji et al.
(2016a)

4753 n/a No time cap mentioned–implicit full
execution

d
w
fi
c
9
h
c
l
s
d
a
m
p
m
c
c
f

r
c
a
l

(
c
t
a

(
m
s
o
c
fi
v
t

r
s
f
g

a
g

n
t
f
f
w
n
q
l
t

fi

P
fi
N
f
5
i

c
u
fi
h
e
l
s
fi
b

T

s
l
h
c
a
l
l
t

ata with a Naive Bayes classifier, achieving 0.988 AUC, again

ith the 100 benign samples being WindowsXP 32-bit system

les. Tian et al. (2010) and use Random Forests trained on API
alls and associated metadata to achieve 97% accuracy and a
8% F-Score respectively. Huang and Stokes (2016) achieve the
ighest accuracy in the literature, 99.64%, using System API
alls and features derived from those API calls using a shal-
ow feed-forward neural network. Table 1 outlines the dataset
izes and recording time for the related literature. The median

ataset size for binary classification is 1300 samples. Huang
nd Stokes (2016) and Pascanu et al. (2015) are outliers with

uch larger datasets, both obtained through access to the cor-
us of samples held privately by the authors’ companies. The
ajority of research does not mention a time-cap on file exe-

ution, in these cases we may presume that the files are exe-
uted until activity stops. The median data capture time frame
or those reported is 5 min (see Table 1).

Time-efficiency dynamic analysis methods. Existing methods to
educe dynamic data recording time focus on efficiency. The
ore concept is only to record dynamic data if it will improve
ccuracy, either by omitting some files from dynamic data col-
ection or by stopping data collection early. Shibahara et al.
2016) decide when to stop analysis for each sample based on

hanges in network communication, reducing the total time
aken by 67% compared with a “conventional” method that
nalyses samples for 15 min each. Neugschwandtner et al.
2011) used static data to determine dissimilarity to known

alware variants using a clustering algorithm. If the sample is
ufficiently unlike any seen before, dynamic analysis is carried

ut. This approach demonstrated an improvement in classifi-
ation accuracy by comparison with randomly selecting which

les to dynamically analyse, or selecting based on sample di-
ersity. Similarly, Bayer et al. (2010) create behavioural profiles
o try and identify polymorphic variants of known malware,
educing the number of files undergoing full dynamic analy-
is by 25%. Approaches to date still allow some files to be run

or a long dynamic execution time, whereas here we investi-
ate a blanket cut-off of dynamic analysis for all samples, with
 view to this analysis being run in an endpoint anti-virus en-
ine.

RNNs for malware detection. We propose using a recurrent
eural network (RNN) for predicting malicious activity as as

hey are able to process time-series data, thus capturing in-
ormation about change over time as well as the raw input
eature values. Kolosnjaji et al. (2016b) sought to detect mal-
are families with deep neural networks, including recurrent
etworks, to classify malware into families using API call se-
uences. By combining a convolutional neural network with

ong-short-term memory (LSTM) cells, the authors were able
o attain a recall of 89.4%, but do not address the binary classi-
cation problem of distinguishing malware from benignware.
ascanu et al. (2015) did conduct experiments into whether
les were malicious or benign using RNNs and Echo State
etworks. The authors found that Echo State Networks per-

ormed better with an accuracy of around 95% (error rate of
%) but did not attempt to predict malicious behaviour from

nitial execution.
Ransomware detection. In Section 5.4 we test our model on a

orpus of 3000 ransomware samples. Early prediction is partic-
larly useful for types of malware from which recovery is dif-
cult and/or costly. Ransomware encrypts user files and with-
olds the decryption key until a ransom is paid to the attack-
rs. This type of attack cannot be remedied without financial
oss unless a backup of the data exists. Recent work on ran-
omware detection by Scaife et al. (2016) uses features from

le system data, such as whether the contents appears to have
een encrypted, and number of changes made to the file type.
he authors were able to detect and block all of the 492 ran-
omware samples tested with less than 33% of user data being
ost in each instance. Continella et al. (2016) propose a self-
ealing system, which detects malware using file system ma-
hine activity (such as read/write file counts), the authors were
ble to detect all 305 ransomware samples tested, with a very
ow false-positive rate. These two approaches use features se-
ected specifically for their ability to detect ransomware, but
his requires knowledge of how the malware operates. Our ap-

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4 581

proach seeks to use features which can be used to detect any
malware family, including those which have not been seen be-
fore. That is to say, we will demonstrate the effectiveness of
detecting ransomware without dependence on ransomware-
specific training data. The key purpose of this final experiment
is to show that our general model of malware detection is
able to detect general types of malware as well as time-critical
samples such as ransomware.

3. Methods

Dynamically collected data is more robust to obfuscation
methods than statically collected data (Damodaran et al.,
2017; Grosse et al., 2016), but dynamic collection takes longer.
In order to advance malware detection to a more predictive
model that can respond in seconds we propose a model which
uses only short sequences of the initial dynamic data to in-
vestigate whether this is sufficient to judge a file as malicious
with a high degree of accuracy.

We use 10 machine activity data metrics as feature inputs
to the model. We take a snapshot of the metrics every second
for 20 s whilst the sample executes, starting at 0s, such that at
1s, we have two feature sets or a sequence length of 2. Though
API calls to the operating system kernel are the most popu-
lar behavioural features used in dynamic malware detection,
there are several reasons why we have chosen machine activ-
ity features as inputs to the model instead. Firstly, recent work
has shown that API calls are vulnerable to manipulation, caus-
ing neural networks to misclassify samples (Rosenberg and
Gudes, 2017; Rosenberg et al., 2017). As Burnap et al. (2018) ar-
gue“malware cannot avoid leaving a behavioural footprint” of
machine activity, future work will necessarily examine the ro-
bustness of machine activity to adversarial crafting, but this is
outside the scope of this paper. A key advantage of continuous
data such as machine activity metrics is that the model is able
to infer information from completely unseen input values; any
unseen data values in the test set will still have numerical rel-
evance to the data from the training set as it will have a rel-
ative value that can be mapped onto the learned model. API
calls on the other hand are categorical, such the meaning of
unseen API call cannot be interpolated against existing data.
Practically, categorical features require an input vector with a
placeholder for each category to record whether it is present or
not. Hundreds or even thousands (Huang and Stokes, 2016) of
API calls can be collected, leading to a very large input vector,
which in turn makes the model slower to train. Being categor-
ical, any API calls not present in the training data will have
no placeholder in the input vector at the classification stage
even if they appear in later test samples. The machine activity
data we collected are continuous numeric values, allowing for
a large number of different machine states to be represented
in a small vector of size 10.

As illustrated in Fig. 1 , to collect our activity data we exe-
cuted Portable Executable (PE) samples using Cuckoo Sandbox
(Guarnieri et al., 2012), a virtualised sandboxing tool. While ex-
ecuting each sample we extracted machine activity metrics
using a custom auxiliary module reliant on the Python Psutil
library (Foundation, 2017). The metrics captured were: system
CPU usage, user CPU use, packets sent, packets received, bytes
sent, bytes received, memory use, swap use, the total number
of processes currently running and the maximum process ID
assigned.

As the data are sequential, we chose an algorithm capa-
ble of analysing sequential data. Making use of the time-series
data means that the rate and direction of change in features as
well as the raw values themselves are all inputs to the model.
Recurrent Neural Networks (RNNs) and Hidden Markov Mod-
els are both able to capture sequential changes, but RNNs hold
the advantage in situations with a large possible universe of
states and memory over an extended chain of events (Lipton,
2015), and are therefore better suited to detecting malware us-
ing machine activity data.

RNNs can create temporal depth in the same way that neu-
ral networks are deep when multiple hidden layers are used.
Until the development of the LSTM cell by Hochreiter and
Schmidhuber in 1997, RNNs performed poorly in classifying
long sequences, as the updates required to tune the weights
between neurons would tend to vanish or explode (Bengio
et al., 1994). LSTM cells can hold information back from the
network until such a time as it is relevant or “forget” infor-
mation, thus mitigating the problems surrounding weight up-
dates. The success of LSTM has prompted a number of vari-
ants, though few of these have significantly improved on the
classification abilities of the original model (Greff et al., 2016).
Gated Recurrent Units (GRUs) (Cho et al., 2014), however, have
been shown to have comparable classification to LSTM cells,
and in some instances can be faster to train (Chung et al.,
2014), for this potential training speed advantage, we use GRU
units.

An appropriate architecture and learning procedure of a
neural network is usually integral to a successful model. These
attributes are captured by hyperparameter settings, which are
often hand-crafted. Due to the rapid evolution of malware, we
anticipate that the RNN should be re-trained regularly with
newly discovered samples, thus the architecture may need to
change too. As it needs to be carried out multiple times, this
process should be automated. We chose to conduct a random
search of the hyperparameter space as it can easily be paral-
lelised (unlike a grid search), it is trivial to implement, and has
been found to be more efficient at finding good configurations
than grid search (Bergstra and Bengio, 2012). We chose the con-
figuration which performed best on a 10-fold cross-validation
over the training set for our final model configuration, the hy-
perparameter search space and final configuration is detailed
in Table 2 for reproducibility.

4. Dataset

4.1. Samples

We initially obtained 1000 malicious and 600 “trusted” Win-
dows7 executables from VirusTotal (Quintero et al., 2004)
along with 800 trusted samples from the system files of a
fresh Windows7 64-bit installation. We then downloaded a
further 4000 Windows 7 applications from popular free soft-
ware sources, such as Softonic (sof, 2017), PortableApps (por,
2017) and SourceForge (sou, 2017). We included the online

582 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4

Fig. 1 – High-level model overview.

Table 2 – Possible hyperparameter values and the hyper-
parameters of the best-perfoming configuration on the
training set.

Hyperparameter Possible values Best configuration

Depth 1, 2, 3 3
Bidirectional True, False True
Hidden neurons 1–500 74
Epochs 1–500 53
Dropout rate 0–0.5 (0.1 increments) 0.3
Weight regularisation None, l 1, l 2, l 1 and l 2 l 2
Bias regularisation None, l 1, l 2, l 1 and l 2 None
Batch size 32, 64, 128, 256 64

d
w

p
c
g
a
s
l
t
o
e
t
i
f
w
i

c
fi

(

(

t
o
s

fi
a
t
t
m
o

Table 3 – Number of instances of different malware fam-
ilies in dataset.

Family Total (apt)(ransomware)

Trojan 1382 (0)(76)
Virus 407 (20)(56)
Adware 180 (0)(51)
Backdoor 123 (7)(0)
Bot 76
Worm 24
Rootkit 11
Disputed 83
Total 2239

o
d
a

n
w

d
m
t
f
p
t
A
t
a

4

T
i

T
i

o
c
t
l
l

c
n

n
t

ownload files as they are a better representation the typical
orkload of an anti-virus system than Windows system files.

We used the VirusTotal API (Quintero et al., 2004) as a
roxy to label the downloaded software as benign or mali-
ious. VirusTotal runs files through around 60 anti-virus en-
ines and reports the number of engines that detected the file
s malicious. Similar to Saxe and Berlin (2015) , for malicious
amples, we omitted any files that were deemed malicious by
ess than 5 engines in the VirusTotal API as the labelling of
hese files is contentious. Files not labelled as malicious by any
f the anti-virus engines were deemed ‘trusted’ as there is no
vidence to suggest they are malware. We therefore consider
hese as benign samples. This has the limitation of not detect-
ng previously unseen malware but our samples are selected

rom an extended time period historically so it is likely that it
ould be reported as malware at some point in this period if

t were actually malicious.
The final dataset comprised 2345 benign and 2286 mali-

ious samples, which is consistent with dataset sizes in this
eld of research e.g. Ahmed et al. (2009) ; Damodaran et al.

2017) ; Firdausi et al. (2010) ; Imran et al. (2015) ; Tian et al.
2010) ; Tobiyama et al. (2016) ; Yuan et al. (2016) . We used a fur-
her 2876 ransomware samples obtained from the VirusShare
nline malware repository (Vir, 2017) for the ransomware case
tudy in Section 5.4 .

We were also able to extract the date that VirusTotal had

rst seen each file and the families and variants that each

nti-virus engine classified the malware samples. The dates
hat the files were first seen ranged from 2006 to 2017. We split
he test and training set files according to the date first seen to

imic the arrival of completely new software. The training set
nly comprised samples first seen by VirusTotal before 11:15
n 10th October 2017 and the test set only samples after this
ate, which produced a test set of 500 samples (206 trusted

nd 316 malicious). We choose this date and time as it gave a
umber of each malicious and benign samples that is is line
ith the sample size in the existing literature.

The total instances of the different malware families is
ocumented in Table 3 . The “disputed” class represents those
alware for which a family could not be determined because

he anti-virus engines did not produce a majority vote in

avour of one type. We also found the precise variants where
ossible, and have listed the numbers of advanced persistent
hreat malware (APTs) and ransomware in each category as
PTs are notoriously difficult for static engines to detect and

he ransomware case-study in Section 5.4 required removal of
ll ransomware from the training set.

.2. Input Features

able 4 outlines the minimum and maximum values of the 10
nputs we collected for malware and benignware respectively.
hough the inter-quartile ranges of values are generally sim-

lar (See Fig. 2) The benign data sees a far greater number of
utliers in RAM use (memory and swap) and packets being re-
eived. The malicious data has a large number of outliers in

otal number of processes, but the benign samples have out-
iers in the maximum assigned process ID, indicating that ma-
icious files in this dataset try to carry out lots of longer pro-
esses simultaneously, whereas benign files will carry out a
umber of quick actions in succession.

Data preprocessing. Prior to training and classification, we
ormalise the data to improve model convergence speed in

raining. By keeping data between 1 and −1, the model is able

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4 583

Fig. 2 – Frequency distributions of input features for benign and malicious samples.

Table 4 – Minimum and maximum values of each input
feature for benign and malicious samples.

Benign Malicious

Min. Max. Min. Max.

Total processes 43 57 44 137
Max. process ID 3020 26,924 3020 5084
CPU user (%) 0 100 0 100
CPU system (%) 0 100 0 100
Memory use (MB) 941 8387 939 1,957
Swap use (MB) 941 14,040 941 1,956
Packets sent (000s) 0.3 110 0.3 129
Packets received (000s) 2.9 737 2.9 192
Bytes received (MB) 4 1116 4 266
Bytes sent (MB) 0.4 1434 0.4 1188

to converge more quickly, as the neurons within the network
operate within this numeric range (LeCun et al., 2012). We
achieve this by normalising around the zero mean and unit
variance of the training data. For each feature, i , we establish
the mean, μi , and variance, σ i , of the training data. These val-
ues are stored, after which every feature, x i is scaled:

x i − μi

σi

5. Experimental results

For reproducibility, the code used to implement the follow-
ing experiments can be found at https://github.com/mprhode/
malware-prediction-rnn . Information on the data supporting
the results presented here, including how to access them, can

https://github.com/mprhode/malware-prediction-rnn

584 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4

b
o
t
e
a
V
C
o
O
b
e
g

5

E
s
m
s
t
r
fi
g
s
e
r
c
d
g
t
e
a
w
p
i
t
c

l
r
u
o
o

w
w
l

O
p
r
c

o
p
s
t
g
d
m
o
c

o

c
u

r

5

O
q
s
s
i

r
F

S
b

2

P
o

p
w

T
p
q

g
o
o

t
(
s

T
a

u
fi

t
r
t
t
R

U
s

w
o

c
p
s

p
t

t
u

a
a
d
a
r
p

e found in the Cardiff University data catalogue at http://doi.
rg/10.17035/d.2018.0050524986 . We used Keras (Chollet, 2015)
o implment the RNN experiments, ScikitLearn (Pedregosa
t al., 2011) to implement all other machine lerning algorithms
nd trained the models using an Nvidia GTX1080 GPU. The
irtual Machine used 8GB RAM, 25 GB storage, and a single
PU core running 64-bit Windows 7. We installed Python 2.7
n the machine along with a free office software suite (Libre-
ffice), browser (Google Chrome) and PDF reader (Adobe Acro-
at). The virutal machine was restarted between each sample
xecution to ensure that malicious and benign files alike be-
an from the same machine set-up.

.1. Hyperparameter configuration

ach layer of a neural network learns an abstracted repre-
entation of the data fed in from the previous layer. There
ust be a sufficient number of neurons in each layer and a

ufficient number of layers to represent the distinctions be-
ween the output classes. The network can also learn to rep-
esent the training data too closely, causing the model to over-
t. Choosing hyperparameters is about finding a nuanced, but
eneralisable representation of the data. Table 2 details the
earch space and final hyperparameters selected for the mod-
ls in the later experiments. Although there are only 8 pa-
ameters to tune, but there are 576 million different possible
onfigurations. As well as the hyperparameters above, we ran-
omly select the time into execution of data. Although the
oal is to find the best classifier for the shortest amount of
ime, selecting an arbitrary time such as 5 or 10 s into file ex-
cution may only produce models capable of high accuracy
t that sequence length. We do not know whether a model
ill increase monotonically in accuracy with more data or
eak at a particular time into the file execution. Randomis-

ng the time into execution used for training and classifica-
ion reduces the chances of having a blinkered view of model
apabilities.

Without regularisation measures, the representations
earned by a neural network can fail to generalise well. For
egularisation, we try using dropout as well as l 1 and l 2 reg-
larisation on the weight and bias terms in the network in

ur search space. Dropout (Srivastava et al., 2014) randomly
mits a pre-defined percentage of nodes each training epoch,
hich commonly limits overfitting. l 1 regularisation penalises
eights growing to large values whilst l 2 regularisation al-

ows a limited number of weights to grow to large values.
ur random search indicated that a dropout rate of 0.1–0.3
roduced the best results on the training set, but weight
egularisation was also prevalent in the best-performing
onfigurations.

Bidirectional RNNs use two layers in every hidden layer,
ne processing the time series progressively, and the second

rocessing regressively. Pascanu et al. (2015) found good re-
ults using a bidirectional RNN, as the authors were concerned

hat the start of a file’s processes may be forgotten by a pro-
ressive sequence as if the LSTM cell forgets it in favour of new

ata, the regressive sequence ensures that the initial data re-
ains prevalent in decision-making. We also found that many

f the the best-scoring configurations used a bidirectional ar-
hitecture.
A model depth of 2 or 3 gave the best results. The number
f hidden neurons was 50 or more in each layer to give any ac-
uracy above 60%. All configurations used the “Adam” weight
pdating rule (Kingma and Ba, 2014) as it learns to adjust the
ate at which weights are updated during training.

.2. Predicting malware using early-stage data

ur goal is to predict malware using behavioural analysis
uickly enough that user experience would not (significantly)
uffer from the time delay. If the model is accurate within a
hort time, this sandbox-based analysis could be integrated

nto an endpoint antivirus system.
We tested RNNs against other machine learning algo-

ithms used for behavioural malware classification: Random

orest, J48 Decision Tree, Gradient Boosted Decision Trees,
upport Vector Machine (SVM), Naive Bayes, K-Nearest Neigh-
our and Multi-Layer Perceptron algorithms (as in Fang et al.,
017; Firdausi et al., 2010; Tian et al., 2010; Wu and Hung, 2014).
revious research indicates that Random Forest, Decision Tree
r SVM are likely to perform the best of those considered.

To mimic the challenge of analysing new incoming sam-
les, we have derived a test set using only the samples that
ere first seen by VirusTotal after 11:15 on 10th October 2017.
his does not account for variants of the same family being
resent in both the test and training set, but we explore this
uestion in Section 5.3 .

Fig. 3 shows the accuracy trend as execution time pro-
resses for the 10-fold cross validation on the training set and

n the test set. Random Forest achieves the highest accuracy
ver the 20 s of execution on the training set (see Table 5), but
he RNN achieves the highest accuracy on the unseen test set
see Table 6) and outperforms all other algorithms on the un-
een test set after 1 s of execution (see lower graph in Fig. 3).
his could be because the training set is quite homogeneous
nd so relatively easy for the Random Forest to learn, but it is
nable to generalise as well as the RNN to the completely new

les in the test set. The RNN cannot usefully learn from 0 s as
here is no sequence to analyse so accuracy is equivalent to
andom guess. Using just 1 snapshot (at 0 s) of machine ac-
ivity data, the SVM performs best on the test set and is able
o classify 80% of unseen samples correctly. But after 1 s the
NN performs consistently better than all other algorithms.
sing 4 s of data the RNN correctly classifies 91% of unseen

amples, and achieves 96% accuracy at 19 s into execution,
hereas the highest accuracy at any time predicted by any
ther algorithm is 92% (see Table 7). The RNN improves in ac-
uracy as the amount of sequential data increases. Although

eak accuracy occurs at 19 s, the predictive accuracy gains per
econd begin to diminish after 4 s. From 0 to 4s accuracy im-
roves by 41 percentage points (11 percentage points from 1
o 4 s) but only by 5 points from 4 to 19 s. Our results indicate
hat dynamic data from just a few seconds of execution can be
sed to predict whether or not a file is malicious. At 4 s we are
ble to accurately classify 91% of samples, which constitutes
n 8 percentage point loss from the state of the art dynamic
etection accuracy (Huang and Stokes, 2016) in exchange for
 04:56 min time saved from the typically documented data
ecording time per sample (see Table 1), making our model a
lausible addition to endpoint anti-virus detection systems.

http://doi.org/10.17035/d.2018.0050524986

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4 585

Fig. 3 – Classification accuracy for different machine learning algorithms and a recurrent neural network as time into file
execution increases.

Table 5 – Highest average accuracy over 10-fold cross validation on training set during first 20 s of execution with corre-
sponding false positive rate (FP) and false negative rate (FN).

Classifier Accuracy (%) Time (s) FP (%) FN (%)

RandomForest 95.29 19 5.03 4.5
MultiLayerPerceptron 85.01 20 21.3 9.83
KNearestNeighbors 86.3 20 17.53 10.96
SVM 82.39 10 24.5 10.62
DecisionTree 93.41 20 7.87 5.72
AdaBoost 83.94 2 19.78 12.03
NaiveBayes 77.44 2 29.78 10.7
GradientBoostedDecisionTrees 95.81 19 5.44 3.32
RNN 87.75 20 10.93 15.15

Table 6 – Highest accuracy on unseen test set during first 20 s of execution with corresponding false positive rate (FP) and

false negative rate (FN).

Classifier Accuracy (%) Time (s) FP (%) FN (%)

RandomForest 92.05 20 4.29 12.29
MultiLayerPerceptron 91.07 18 5.53 12.98
KNearestNeighbors 90.38 18 4.66 15.12
SVM 90.57 20 5.13 14.39
DecisionTree 89.17 12 5.22 17.22
AdaBoost 87.82 19 7.24 17.72
NaiveBayes 76.25 0 24.74 21.13
GradientBoostedDecisionTrees 92.62 20 4.33 11.08
RNN 96.01 19 3.17 4.72

Table 7 – RNN prediction Accuracy (Acc.), false negative rate (FN) and false positive rate (FP) on test set from 1 to 20 s into

file execution time.

Time (s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Acc. (%) 80 85 87 91 93 94 93 95 95 94 95 94 95 95 95 95 94 95 96 93
FN (%) 12 14 16 14 10 9 10 5 7 9 6 9 6 7 7 6 9 7 5 7
FP (%) 33 17 9 2 2 3 2 3 2 2 2 2 4 3 2 4 3 3 3 5

586 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4

Table 8 – Test accuracy difference between family omitted

and included in training set.

Family/variant Total

Trojan 1382 (0)(76)
Virus 407 (20)(56)
Adware 180 (0)(51)
Backdoor 123 (7)(0)
Bot 76
Worm 24
Rootkit 11
Dinwod 265
Artemis 228
Eldorado 209
Zusy 135
Wisdomeyes 132
Kazy 116
Scar 101
APTs 27

5

D
t
v
a
v
c

l
i
d
c
t
t
o
s
p
p

p
e
p
i

i
t
d

a
a
i
s
i
o
s
t
t
a
e

d
a

h
m
j
t
s

t
a

b

T
1
c
w
t
r
h

h
r
m
f
i

5

E
s
p
w
b
s
t

e
p
l

2
u
o
d
n
t
r

t
w
s

o
t
n
t
m
e
t
r
h
t

.3. Simulation of zero-day malware detection

ividing the test and training set by date ensures that
he two groups are distinct sets of files. However, a slight
ariant on a known strain is technically a new file. We were
ble to extract information about the malware families and

ariants and want to test how well the model performs when

onfronted with a completely new family or variant.
Table 8 gives the numbers in the test set for the fami-

ies and those variants for which there were more than 100
nstances in the dataset. Dinwod, Eldorado, Zusy and Wis-
omeyes are Trojans; Kazy and Scar are Viruses. We also
ollected all of those variants listed as advanced persistent
hreats (APTs) for as signature based systems struggle to de-
ect these especially if previously unseen. The APTs and some
f the high-level families have less than 100 samples and as
uch the results are unlikely to be indicative for the general
opulation of that family but we test them anyway for com-
arison.

To avoid contamination from those samples that were dis-
uted, these are removed from the dataset for the following
xperiments. For each family in Table 8 , we trained a com-
letely new model without any samples from the family of

nterest.
The test set is entirely malicious, which means accuracy

s an appropriate metric as it is just the rate of correct de-
ection from the only class of interest. Table 9 gives the pre-
ictive accuracy over time for different families and for APTs,
nd Table 10 gives the predictive accuracies for the five vari-
nts for which we collected over 100 samples. Perhaps surpris-
ngly, we see high classification accuracies across these two
ets of results. The families are detected with lower accuracy
n general. For the Trojans particularly, during the first few sec-
nds, accuracy is actually worse than random chance. Because
o much of the dataset set is comprised of Trojans, removing
hese from training halves the number of malware samples, so
his may account for the particularly poor performance. The
ccuracy does increase significantly between 1 and 3 s of ex-
cution. This is probably because Trojans are defined by their
elivery mechanism, and the model has not been trained on

ny examples of this form of malware delivery. The model has,
owever, seen malicious behaviour from other families, which

ay be similar to some of the later behaviours by the Tro-
ans, accounting for the significant rise in accuracy. Though

he Worms are actually detected with a 100% accuracy at each

econd, there were only 24 Worm samples in the dataset.
The variants tend to achieve a higher predictive accuracy

han the families. Other than Dinwod, all families score lower
t 10 s than at 1 s. Each variant is a kind of Trojan or Virus,
ut the model was trained on other types of Trojan and Virus.
his can help explain the slight drop in accuracy over the first
0 s. It is the delivery mechanism which the variants have in

ommon with samples in the training set, so the period over
hich this occurs (the first few seconds) gives the best predic-

ive accuracy. Every variant was detected with over 89% accu-
acy during the first second of execution, despite the model
aving no exposure to that variant previously.

If the model is able to score well on a family without ever
aving seen a sample from that family, the model may hold a
obustness against zero days, and support our hypothesis that

alware do not exhibit wildly different behavioural activity
rom one another as their goals are not wildly divergent, even

f the attack vector mechanisms are.

.4. Ransomware case study

arly prediction that a sample is malicious enables defen-
ive techniques to move from recovery to prevention. This is
articularly desirable for malware such as ransomware, from

hich data recovery is only possible by paying a ransom if a
ackup does not exist. We obtained an additional 2788 ran-
omware samples from the VirusShare website (Vir, 2017) to
est the predictive capability of our model.

Reports in the wake of the high profile ransomware attacks,
.g. WannaCry/WannaDecryptor worm in May 2017, were re-
orted to be preventable if a patch released two months ear-

ier had been installed (UK Government National Audit Office,
017). Endpoint users cannot be relied on to carry out security
pdates as the primary defence against new malware. We test
ur method by removing the 183 ransomware samples and the
isputed-family samples from our original dataset and train a
ew model on the remaining samples, we then test how well

he model is able to detect the VirusShare samples and the
emoved 183 samples.

The model is able to detect 94% of samples at 1 s into execu-
ion without having seen any ransomware previously. When

e include half of the ransomware samples in the training
et, this rises to 99.86% (see Table 11).

In Fig. 6 there is a clear distinction in the accuracy trend

ver execution time between the model which has been

rained on some of the relevant family. The model which has
ever seen ransomware before starts to drop in accuracy after

he initial few seconds. Again we believe this is because the
odel is recognising the delivery mechanism at the start of

xecution, which will be common to other types of malware in

he training set, though the later malicious behaviour is is less
ecognisable to the model by comparison with the later be-
aviour of the other types of malware it has seen. The model

rained with half of the samples knows how ransomware be-

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4 587

Table 9 – Classification accuracy on different malware families with all instances of that family removed from training set
(Fig. 4).

Family Time(s)

1 2 3 4 5 6 7 8 9 10

Trojan 11.16 49.67 70.23 68.07 73.86 69.33 55.63 57.75 60.18 56.24
Virus 91.26 89.58 82.7 83.0 83.54 88.89 84.56 86.31 84.38 82.26
Adware 90.68 90.0 83.33 84.11 59.59 85.71 87.22 66.41 77.31 73.5
Backdoor 91.3 91.21 80.0 83.53 82.28 79.73 87.32 82.61 79.69 80.7
Bot 93.06 91.55 92.86 84.85 90.16 85.71 80.0 86.36 88.1 87.5
Worm 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Rootkit 100.0 75.0 75.0 75.0 100.0 75.0 100.0 100.0 66.67 100.0
APT 96.3 96.3 88.46 92.0 100.0 94.74 94.74 100.0 94.74 89.47

Table 10 – Classification accuracy on different malware variants with all instances of that variant removed from training
set (Fig. 5).

Variant Time(s)

1 2 3 4 5 6 7 8 9 10

Dinwod 90.57 89.43 78.11 91.32 93.96 98.87 99.25 98.11 98.08 97.31
Eldorado 94.3 93.3 92.0 86.42 90.07 82.01 74.81 81.75 85.48 83.61
Wisdomeyes 92.59 90.91 83.72 91.34 89.83 92.63 94.44 84.52 90.36 87.34
Zusy 91.18 89.63 85.94 82.11 81.74 85.19 85.29 88.66 90.43 85.56
Kazy 89.74 82.76 85.22 86.49 87.88 94.94 87.5 88.89 91.43 89.71
Scar 92.08 92.08 75.25 78.22 62.63 81.82 89.69 81.44 86.46 88.42

Fig. 4 – Comparative detection accuracy on various malware families with examples of the family omitted from the training
set.

haves after a few seconds and so maintains a high detection
accuracy.

It would be interesting to see if the model at 1 s and the
model at 5 s rely on different input features to reach accu-
rate predictions. It is difficult to penetrate the decision making
process of a neural network; the architecture presented here
has 1344 neurons almost 4 million trainable parameters, but
we can turn the input features on and off and see the effect
of combinations of features on classification accuracy. By set-
ting the inputs to zero, which is the normalised mean of the

588 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4

Fig. 5 – Comparative detection accuracy on various malware variants with examples of the variant omitted from the training
set.

Fig. 6 – Classification accuracy on ransomware for one model which has not been trained on ransomware (omitted), and for
one which has (half included).

t
f
s
r

t

s
m
m
j
p

raining data, we can turn a feature “off”. By turning off all the
eatures and then turning them back on sequentially, we can

ee which features are needed to gain a certain level of accu-
acy.

In Table 12 , we can see that with just two features, both
he 1 s and the 5 s models trained with and without ran- w
omware are able to beat 50% accuracy (random chance). The
odel trained using ransomware is able to correctly detect
ore than 99% of ransomware samples as malicious using

ust the number of packets sent and either the number of
ackets or number of bytes received. Unlike the model trained

ith ransomware, which draws accurate conclusions from

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4 589

Table 11 – Classification accuracy on ransomware for one model which has not been trained on ransomware (omitted),
and for one which has (half included).

Samples in training set Time(s)

1 2 3 4 5 6 7 8 9 10
Omitted 94.19 93.72 90.94 92.02 86.77 92.46 89.55 87.62 77.88 87.52
Half included 99.86 99.1 97.96 98.83 98.29 97.89 98.78 99.29 97.96 96.46

Table 12 – Maximum accuracy scores in predicting ransomware with only one and two features turned on for a model not
trained on ransomware and for a model trained on ransomware.

Ransomware omitted from training set Ransomware in training set

Features
on 1 s model 5 s model 1 s model 5 s model

Max. Acc. Features on Max. Acc. Features on Max. Acc. Features on Max. Acc. Features on
1 00.03 tx bytes 40.82 memory 89.36 rx packets 14.95 total

processes
2 98.92 memory and

rx bytes
97.54 rx bytes and

rx packets
99.80 tx packets

and {rx
packets, rx
bytes}

71.15 rx bytes and
tx bytes

Table 13 – Highest accuracy-scoring configurations during
first 5 s in 10-fold cross validation on training set.

Hyperparameter A B C

Depth 3 1 2
Bidirectional True True False
Hidden neurons 74 358 195
Epochs 53 112 39
Dropout rate 0.3 0.1 0.1
Weight regularisation l 2 l 2 l 1
Bias regularisation None None None
Batch size 64 64 64

packet data and total processes, when no ransomware is in-
cluded in the training set, memory usage is also a promi-
nent feature in accurate detection. Comparing to the broader
families, in classifying Adware, Trojans and Viruses, mem-
ory and packets a single input feature allowed the model to
achieve more than 50% accuracy, Trojans are the only fam-
ily for which memory contributes to scoring above 50% at
the one-second model, when combined with packets sent
and swap. As Trojans comprise the majority of the dataset
it makes sense that the most relevant features for classi-
fying them help to define what constitutes malware to the
model.

The accuracy in identifying unseen families highlights the
presence of shared dynamic characteristics between differ-
ent malware types. The broad families, which detail the mal-
ware infection mechanism particularly help to identify mal-
ware early on. Whilst new malware variants are likely to ap-
pear, new delivery mechanisms are far less common and help
to distinguish unseen families from benignware.

5.5. Improving prediction accuracy with an ensemble
classifier

As well as accuracy, the values of the model predictions in-
crease with time into file execution. Therefore we now pro-
pose an ensemble method, using the top three best perform-
ing configurations found in the hyperparameter search space
during the previous experiments, to try and improve the clas-
sification confidence earlier in the file execution. Accuracy
does not increase monotonically in our first configuration,
and of the best three configurations on the 10-fold cross-
validation, no single configuration consistently achieved the
highest accuracy at each second, the configuration used in the
previous sections was the configuration that scored the high-
est accuracy at 1 s.
We take the best-scoring configurations on the training set
across the first 5 s, which are 3 distinct hyperparameter sets
(one model was the best at 1 and 2 s, one at 3 and 5 s) and take
the maximum of the predictions of these three RNNs before
thresholding at 0.5 to give a final malicious/benign label. The
configuration details are in Table 13 , configuration “A” is the
same as has been used in the previous experiments.

To combine the predictions of configurations A, B and C
we take the maximum value of the three to bias the pre-
dictions in favour of detecting malware (labelled as 1) over
benignware (labelled as 0). An ensemble of models does tend
to boost accuracy, increasing detection from 92% to 94% at 5 s,
and the maximum accuracy from configuration A alone, 96%,
is reached at 9 s instead of at 19 s (see Table 14). The results
in Table 14 show that the accuracy score improves or matches
the highest scoring model of configurations A, B and C for 12
of the first 20 s. Model A, the original configuration, only bests
the ensemble accuracy once. We tested whether the ensemble
scores improved predictive confidence on the individual sam-
ples compared with the predictions of the best-scoring model.
We can measure predictive confidence by rewarding those cor-
rect predictions closer to 1 or 0 more highly, i.e. a prediction of

590 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4

Table 14 – Ensemble accuracy (acc.), false positive rate (FP) and false negative rate (FN) compared with highest accuracy of
configurations A, B and C. Those marked with a “∗” signify predictions that were statistically significantly more confident
by at the confidence level of 0.01.

Time (s) Highest accuracy of configurations A, B and C Ensemble acc. (%) Ensemble FP (%) Ensemble FN (%)

1 79.69 (C) 79.5 33.5 12.03
2 85.6 (A) 83.69 ∗ 25.73 10.16
3 87.52 (A, C) 88.48 ∗ 15.05 9.21
4 91.54 (A) 91.92 ∗ 8.74 7.64
5 92.38 (B) 93.95 ∗ 3.4 7.84
6 94.09 (A) 95.28 ∗ 4.37 4.97
7 94.92 (A) 95.12 ∗ 4.85 4.9
8 94.25 (A) 95.48 ∗ 4.88 4.26
9 94.97 (A) 96.02 ∗ 4.39 3.68
10 95.53 (C) 95.11 ∗ 5.45 4.48
11 95.91 (C) 96.13 ∗ 4.95 3.04
12 95.46 (C) 95.46 ∗ 5.47 3.82
13 95.16 (A) 95.6 ∗ 5.97 3.15
14 95.93 (C) 95.93 ∗ 5.03 3.29
15 96.1 (C) 95.87 ∗ 4.57 3.77
16 95.62 (C) 96.54 ∗ 4.08 2.94
17 95.34 (C) 96.5 ∗ 3.06 3.86
18 96.67 (C) 96.43 ∗ 4.12 3.1
19 96.51 (C) 96.26 ∗ 4.23 3.3
20 93.81 (A) 94.85 ∗ 8.22 3.31

0
t

c

w

o
h
l
i
e
n
t
m
t
n
t
d
m

t
c

W
u
i
d

z
t
t
t
5
f

F

i
a

e
t
s
o

F
h

w
u
a
f

W
t
t
p
t

p
a

d
p
b
m
t
n
p
c
h
l
t
a

.9 is better than 0.8 when the sample is malicious. The equa-
ion for predictive confidence is as follows:

on f idence = 1 − | b − p|

here b is the true label and p is the predicted label.
Using a one-sided T -test, we found that the confidence

f predictions from the ensemble method were significantly
igher (at 0.01 confidence level) for every second after 1 s, ma-

icious predictions are likely be more confident as we are tak-
ng the maximum value of the three models, but it is inter-
sting that taking the maximum of the benign samples does
ot out weigh the increase in confidence. This indicates that

hree models are more confident about benign samples than

alicious ones. A further benefit of the ensemble approach is
he reduction in the false negative rate. The minimum false
egative rate for Model A was 4.5%, but here the false posi-

ive rate is at least 3 percentage points lower than for model A

uring the first 7 s, and remains lower than Model A’s global
inimum for the remaining 20 s.
If the gains in accuracy for the ensemble classifier are due

o differences in the features learned by the network, this
ould help to protect against adversarial manipulation of data.
e attempt to interpret what configurations A, B, and C are

sing to distinguish malware and benignware. These prelim-
nary tests seek to gauge whether it is possible to analyse the
ecisions made by the trained neural networks.

By setting the test data for a feature (or set of features) to
ero, we can approximate the absence of that information be-
ween samples. We assess the overall impact of turning fea-
ures “off” by observing the fall in accuracy and dividing it by
he number of features turned off. A single feature incurring a
 percentage point loss attains an impact factor of −5, but two
eatures creating the same loss would be awarded −2.5 each.
inally, we take the average across impact scores to assess the
mportance of each feature when a given number of features
re switched off.

Fig. 7 gives the impact factors for each feature at 4 s into file
xecution. Intuitively, the more features omitted, the higher
he impact factors become. Interestingly, there are some very
mall gains in accuracy for configurations A and B when only
ne feature is missing but no more than 0.2 percentage points.
or each of the configurations, CPU use on the system has the
ighest impact factor. It is most integral for configuration A,
hich is also the best-scoring model. The CPU use in config-
ration A does not really see an increase in its impact factor
s we remove more input features, but for configuration B, all
eatures attain higher impact factors the more are removed.

e can infer that configuration B has learned a representa-
ion of the data which combines the inputs to decide whether
he output is malicious or benign, whereas configuration A ap-
ears to have learned at least one representation of CPU sys-
em use as a predictor of malware.

The difference between the impact scores and their em-
hasis can help us to see which features are most predictive
t different time steps (at 4 s this is CPU usage) and to un-
erstand how an ensemble classifier is able to outperform the
redictions of its components. As all three models suffer the
iggest loss from CPU usage, if an adversary knew this she
ight be able to manipulate CPU system use to avoid detec-

ion. Future work should examine the decision processes of
etworks to detect potential weaknesses that could be ex-
loited to evade detection. The ensemble offers a small in-
rease in accuracy but more importantly, this analysis can

elp to understand ways in which the models may be manipu-
ated, by biasing results towards malicious predictions (taking
he maximum prediction) we introduce a form of safety-net
gainst the manipulation of a single model.

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4 591

Fig. 7 – Impact scores for features with 1, 2 and 3 features
turned off 4 s into file execution.

6. Limitations and future work

Our results indicate that behavioural data can provide a good
indication of whether or not a file is malicious based only on
its initial behaviours, even when the model has not been ex-
posed to a particular malware variant before. Dynamic anal-
ysis could reasonably be incorporated into endpoint antivirus
systems if the analysis only takes a few seconds per file. Fur-
ther challenges which must be addressed before this is possi-
ble include:

6.1. Other file types and operating systems

So far we have only examined Windows7 executables. Though
Windows7 is the most prevalent operating system globally
(NetMarketShare.com, 2017) and Windows executables are the
most commonly submitted file to VirusTotal (VirusTotal, 2017),
we should extend these methods to see if the model is capable
of detecting malicious PDFs, URLs and other potential vehicles
for malware, as well as applications which run on other oper-
ating systems.

6.2. Robustness to adversarial samples

The robustness of this approach is limited if adversaries know
that the first 5 s are being used to determine whether a file
will run in the network. By planting long sleeps or benign be-
haviour at the start of a malicious file, adversaries could avoid
detection in the virtual machine. We hypothesised that mali-
cious executables begin attempting their objectives as soon as
possible to mitigate the chances of being interrupted, but this
would be likely to change if malware authors knew that only
subsections of activity were the basis of anti-virus system de-
cisions. We envisage future work examining a sliding-window
approach to behavioral prediction.

The sliding-window approach will take snapshots (of 5 s) of
data and monitor machine activity on a per-process basis to
try and predict whether or not a file is malicious. This would
run in the background as the file is executed in a live envi-
ronment. The advantage of this approach is that we eliminate
the waiting time before a user is allowed to access the file.
The challenges in implementing these next steps are recali-
bration for endpoint machines (see Section 6.3 below) and suf-
ficiently quick killing of the malicious process once it has been
detected, i.e. before the malicious payload is executed.

Despite the future worry that executables could be
amended to avoid detection by the model proposed in this pa-
per, this does not invalidate the use of our proposed method.
Whilst some attacks may be altered specifically to evade an
behavioral early-detection system, this would be in response
the attacker knowing that the target in question was employ-
ing these types of defence. However, there would still be many
malwares without benign behaviour injections at the start
of the file. We continue to use signature-based detection in
antivirus systems despite the use of static obfuscation tech-
niques, because it is still an invaluable method for quickly de-
tecting previously seen malwares. The model proposed here
indicates that we can quickly detect unseen variants, and we
hope that future research will evaluate the robustness of the
sliding window approach using adversarially crafted samples.
subsectionProcess blocking

6.3. Process blocking

If a live monitoring system is implemented, processes pre-
dicted to be malicious will need to be terminated. Future
work should examine the ability of the model to block once
the classifier anticipates malicious activity, and to investigate
whether the malicious payload has been executed.

6.4. Portability to other machines and operating systems

The machine activity metrics are specific to the context of the
virtual machine used in this experiment. To move towards
adoption in an endpoint anti-virus system, the RNN should
be retrained on the input data generated by a set of samples
on the target machine. Though this recalibration will take a
few hours at the start of the security system installation, it

592 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4

w
(
p
v

t
c
t
a
a
w
o
w
c
c
f
v
t
a
s
c
p
w
t
t
m
i
r
s
o
t
b
t

7

D
s
f
o
i
a
o
h
t
b
r

w
o
a
c
t

p
o
o
d

r

d
w
a

m
v
t

w
l
i
a
t
i
a
o
m
d
n
a
o
i
d
i
r

c
a
i
t
m
m
m
n
t

e
d
p
t
i
s

R

A

B

B

B

B

ill only need to be performed when hardware is upgraded

once per machine for most users) and opens the possibility of
orting the model to other operating systems, including other
ersions of Windows.

Though we have not tested the portability of the data be-
ween machines, i.e. training with data recorded on one ma-
hine and testing with data recorded on another, it is easy
o see cases in which this will not work. Some metrics, such

s CPU usage are relative (measured as a percentage of total
vailable processing power) and so will change dramatically
ith hardware capacities. For example, a file requiring 100%

f CPU capacity on one machine may use just 30% on another
ith more cores. However, we see no reason why the model

annot be re-calibrated to a new machine. There is cause for
oncern if the hardware means that the granularity of the data
alls below that which is used in this paper. For example a
ery small amount of RAM could limit the memory usage such

hat the useful information that one sample uses 1.1 MB and

nother 1.2 MB are both capped at 1 MB, thus appearing the
ame to the model. Whilst the experiments in this paper are
onducted in a virtual machine and the memory, storage and

rocessing power can be replicated, we hope that future work
ill extend this model to run live in the background on the in-

ended recipient machine. Since the hardware capacities of a
ypical modern computer are greater than those for the virtual

achine used here, this may in turn provide more granularity
n the data and possibly allow the model to learn a better rep-
esentation of the difference between malicious and benign

oftware. The different results that we would be likely to see
n a more powerful machine offer a potential advantage in

raining but also necessitate re-calibration on a per-machine
asis. Since this is a one-off time cost, it is not a major limita-
ion of the proposed solution.

. Conclusions

ynamic malware detection methods are often preferred to
tatic detection as the latter are particularly susceptible to ob-
uscation and evasion when attackers manipulate the code
f an executable file. However, dynamic methods previously

ncurred a time penalty due to the need to execute the file
nd collect its activity footprint before making a decision

n its malicious status. This meant the malicious payload

ad likely already been executed before the attack was de-
ected. We have developed a novel malware prediction model
ased on recurrent neural networks (RNNs) that significantly
educes dynamic detection time, to less than 5 s per file,
hilst retaining the advantages of a dynamic model. This
ffers the new ability to develop methods that can predict
nd block malicious files before they execute their payload

ompletely, preventing attacks rather than having to remedy
hem.

Through our experimental results we have shown that it is
ossible to achieve a detection accuracy of 94% with just 5 s
f dynamic data using an ensemble of RNNs and an accuracy
f 96% in less than 10 s, whilst typical file execution time for
ynamic analysis is around 5 min.

The best RNN network configurations discovered through

andom search each employed bidirectional hidden layers, in-
icating that making use of the input features progressing as
ell as regressing in time aided distinction between malicious
nd benign behavioural data.

A single RNN was capable of detecting completely unseen

alware variants with over 89% accuracy for the 6 different
ariants tested at just 1 s into file execution. The accuracy
ended to fall a little after the first 2 s, implying that the model
as best able to recognise the infection mechanism at a family

evel (e.g. Trojan, Virus) given that this would be the first activ-
ty to occur. The RNN was less accurate at detecting malware
t a family level when that family had been omitted from the
raining data (11% accuracy at 1 s detecting Trojans), further
ndicating that the model was easily able to detect new vari-
nts, provided it had been exposed to examples of that family
f infection mechanisms. Our ransomware use case experi-
ent supported this theory further, as the RNN was able to

etect ransomware, which shares common infection mecha-
isms with other types of attack such as Trojans, with 94%

ccuracy, without being exposed to any ransomware previ-
usly. However, this accuracy fell as time into file execution

ncreased, again implying that the model was easily able to
etect a malicious delivery mechanism, better than the activ-

ty itself. After exposure to ransomware, the model accuracy
emained above 96% for the first 10 s.

The RNN models outperformed other machine learning
lassifiers in analysing the unseen test set, though the other
lgorithms performed competitively on the training set. This
ndicates that the RNN was more robust against overfitting to
he training set than the other algorithms and had learnt a

ore generalisable representation of the difference between

alicious and benign files. This is particularly important in

alware detection as adversaries are constantly developing
ew malware strains and variants in an attempt to evade au-

omatic detection.
To date this is the first analysis of the extent to which gen-

ral malware executable files can be predicted to be malicious
uring its execution rather than using the complete log file
ost-execution, we anticipate that future work can build on

hese results to integrate file-specific behavioural detection

nto endpoint anti-virus systems across different operating
ystems.

E F E R E N C E S

hmed F , Hameed H , Shafiq MZ , Farooq M . Using spatio-temporal
information in api calls with machine learning algorithms for
malware detection. Proceedings of the 2nd workshop on

security and artificial intelligence. ACM; 2009. p. 55–62 .
ayer U , Kirda E , Kruegel C . Improving the efficiency of dynamic

malware analysis. Proceedings of the ACM Symposium on

Applied Computing. ACM; 2010. p. 1871–8 .
engio Y , Simard P , Frasconi P . Learning long-term dependencies

with gradient descent is difficult. IEEE Trans Neural Netw

1994;5(2):157–66 .
ergstra J , Bengio Y . Random search for hyper-parameter

optimization. J Mach Learn Res 2012;13:281–305 .
urnap P , French R , Turner F , Jones K . Malware classification

using self organising feature maps and machine activity data.
Comput Secur 2018;73:399–410 .

http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0005

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4 593

Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F,
Schwenk H, Bengio Y. Learning phrase representations using
RNN encoder–decoder for statistical machine translation.
Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP). Doha, Qatar:
Association for Computational Linguistics; 2014. p. 1724–34 .
http://www.aclweb.org/anthology/D14-1179

Chollet, F. (2015). Keras. https://github.com/fchollet/keras .
Chung J, Gülçehre Ç, Cho K, Bengio Y. Empirical evaluation of

gated recurrent neural networks on sequencemodeling. CoRR

2014 . 1412.3555 .
Continella A , Guagnelli A , Zingaro G , De Pasquale G , Barenghi A ,

Zanero S , Maggi F . Shieldfs: a self-healing, ransomware-aware
filesystem. Proceedings of the 32nd annual conference on

computer security applications. ACM; 2016. p. 336–47 .
Damodaran A, Troia FD, Visaggio CA, Austin TH, Stamp M. A

comparison of static, dynamic, and hybrid analysis for
malware detection. J Comput Virol Hack Tech 2017;13(1):1–12.
doi: 10.1007/s11416-015-0261-z .

Fang Y , Yu B , Tang Y , Liu L , Lu Z , Wang Y , Yang Q . A new malware
classification approach based on malware dynamic analysis.
In: Pieprzyk J, Suriadi S, editors. Information security and

privacy. Cham: Springer International Publishing; 2017.
p. 173–89 .

Firdausi I, lim C, Erwin A, Nugroho AS. Analysis of machine
learning techniques used in behavior-based malware
detection. Proceedings of the second international conference
on advances in computing, control, and telecommunication

technologies; 2010. p. 201–3 .
Foundation P.S. Psutil python library. 2017.
Greff K , Srivastava RK , Koutník J , Steunebrink BR , Schmidhuber J .

LSTM: a search space odyssey. IEEE Trans Neural Netw Learn

Syst 2016 .
Grosse K, Papernot N, Manoharan P, Backes M, McDaniel PD.

Adversarial examples for malware detection. Computer
security - ESORICS 2017 - 22nd european symposium on

research in computer security, Oslo, Norway, september 11-15,
2017, proceedings, part II; 2017. p. 62–79
doi: 10.1007/978- 3- 319- 66399- 9 _ 4 .

Guarnieri C, Tanasi A, Bremer J, Schloesser M. The cuckoo
sandbox. 2012.

Hansen SS, Larsen TMT, Stevanovic M, Pedersen JM. An approach

for detection and family classification of malware based on

behavioral analysis. Proceedings of the international
conference on computing, networking and communications
(ICNC); 2016. p. 1–5 doi: 10.1109/ICCNC.2016.7440587 .

Huang W, Stokes JW. Mtnet: a multi-task neural network for
dynamic malware classification. Proceedings of the 13th

international conference on detection of intrusions and

malware, and vulnerability assessment - Volume 9721. New

York, NY, USA: Springer-Verlag New York, Inc.; 2016.
p. 399–418 . DIMVA 2016. doi: 10.1007/978- 3- 319- 40667- 1 _ 20 .

Imran M, Afzal MT, Qadir MA. Using hidden Markov model for
dynamic malware analysis: First impressions. Proceedings of
the 12th international conference on fuzzy systems and

knowledge discovery (FSKD); 2015. p. 816–21
doi: 10.1109/FSKD.2015.7382048 .

Kingma DP, Ba J. Adam: A method for stochastic optimization.
CoRR 2014;abs/1412.6980 . http://arxiv.org/abs/1412.6980

Kolosnjaji B , Zarras A , Webster G , Eckert C . Deep learning for
classification of malware system call sequences. Proceedings
of the Australasian joint conference on artificial intelligence.
Springer; 2016a. p. 137–49 .

Kolosnjaji B., Zarras A., Webster G., Eckert C., Bai Q. Deep learning
for classification of malware system call sequences; Cham:
Springer International Publishing. p. 137–149.
doi: 10.1007/978- 3- 319- 50127- 7 _ 11 .
LeCun YA , Bottou L , Orr GB , Müller KR . Efficient backprop. Neural
networks: tricks of the trade. Springer; 2012. p. 9–48 .

Lipton ZC. A critical review of recurrent neural networks for
sequence learning. CoRR 2015;abs/1506.00019 .
http://arxiv.org/abs/1506.00019

Nataraj L, Yegneswaran V, Porras P, Zhang J. A comparative
assessment of malware classification using binary texture
analysis and dynamic analysis. Proceedings of the 4th ACM

workshop on security and artificial intelligence. New York, NY,
USA: ACM; 2011. p. 21–30 . AISec ’11. doi:
10.1145/2046684.2046689 .

NetMarketShare.com. Windows7 market share. 2017.
Neugschwandtner M , Comparetti PM , Jacob G , Kruegel C .

Forecast: skimming off the malware cream. Proceedings of the
27th annual computer security applications conference. ACM;
2011. p. 11–20 .

Pascanu R, Stokes JW, Sanossian H, Marinescu M, Thomas A.
Malware classification with recurrent networks. Proceedings
of the IEEE international conference on acoustics, speech and

signal processing (ICASSP); 2015. p. 1916–20
doi: 10.1109/ICASSP.2015.7178304 .

Pedregosa F , Varoquaux G , Gramfort A , Michel V , Thirion B ,
Grisel O , Blondel M , Prettenhofer P , Weiss R , Dubourg V ,
Vanderplas J , Passos A , Cournapeau D , Brucher M , Perrot M ,
Duchesnay E . Scikit-learn: machine learning in python. J Mach
Learn Res 2011;12:2825–30 .

Porteableapps.com. https://portableapps.com/ 2017.
Quintero B., Martínez E., Manuel Álvarezv V., Hiramoto K., Canto

J., Bermúdez A. Virustotal. 2004.
Rosenberg I, Gudes E. Bypassing system calls-based intrusion

detection systems. Concur Comput Pract Exp

2017;29(16):e4023. doi: 10.1002/cpe.4023 . cpe.4023.
Rosenberg I, Shabtai A, Rokach L, Elovici Y. Generic black-box

end-to-end attack against rnns and other API calls based

malware classifiers. CoRR 2017;abs/1707.05970 .
http://arxiv.org/abs/1707.05970

Saxe J, Berlin K. Deep neural network based malware detection

using two dimensional binary program features. Proceedings
of the 10th international conference on malicious and

unwanted software (MALWARE); 2015. p. 11–20 .
Scaife N, Carter H, Traynor P, Butler KR. Cryptolock (and drop it):

stopping ransomware attacks on user data. Proceedings of the
36th international conference on distributed computing
systems (ICDCS). IEEE; 2016. p. 303–12
doi: 10.1109/MALWARE.2015.7413680 .

Shibahara T, Yagi T, Akiyama M, Chiba D, Yada T. Efficient
dynamic malware analysis based on network behavior using
deep learning. Proceedings of the IEEE global communications
conference (GLOBECOM); 2016. p. 1–7
doi: 10.1109/GLOCOM.2016.7841778 .

Srivastava N , Hinton GE , Krizhevsky A , Sutskever I ,
Salakhutdinov R . Dropout: a simple way to prevent neural
networks from overfitting. J Mach Learn Res
2014;15(1):1929–58 .

Softonic.com, https://en.softonic.com/ 2017.
Sourceforge.net, https://sourceforge.net/ 2017.
Tian R , Islam R , Batten L , Versteeg S . Differentiating malware

from cleanware using behavioural analysis. Proceedings of
the 5th international conference on malicious and unwanted
software (MALWARE). IEEE; 2010. p. 23–30 .

Tobiyama S, Yamaguchi Y, Shimada H, Ikuse T, Yagi T. Malware
detection with deep neural network using process behavior.
Proceedings of the IEEE 40th annual computer software and

applications conference (COMPSAC); 2016. p. 577–82
doi: 10.1109/COMPSAC.2016.151 .

UK Government National Audit Office D.o.H. Investigation:
Wannacry cyber attack and the nhs. 2017.

http://www.aclweb.org/anthology/D14-1179
https://github.com/fchollet/keras
https://www.abs/1412.3555
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0007
https://doi.org/10.1007/s11416-015-0261-z
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0011
https://doi.org/10.1007/978-3-319-66399-9_4
https://doi.org/10.1109/ICCNC.2016.7440587
https://doi.org/10.1007/978-3-319-40667-1_20
https://doi.org/10.1109/FSKD.2015.7382048
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0092
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0092
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0092
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0092
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0092
https://doi.org/10.1007/978-3-319-50127-7_11
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0018
http://arxiv.org/abs/1506.00019
https://doi.org/10.1145/2046684.2046689
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref00275
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref00275
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref00275
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref00275
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref00275
https://doi.org/10.1109/ICASSP.2015.7178304
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0023
https://portableapps.com/
https://doi.org/10.1002/cpe.4023
http://arxiv.org/abs/1707.05970
https://doi.org/10.1109/MALWARE.2015.7413680
https://doi.org/10.1109/GLOCOM.2016.7841778
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0029
https://en.softonic.com/
https://sourceforge.net/
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0030
https://doi.org/10.1109/COMPSAC.2016.151

594 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 5 7 8 – 5 9 4

V

V

V
W

Y

Y

M
t

M
2
f
t
l

P
a
R
I
S
h
c
D
p
r
f
s
e

K
S
a
a
c
B
g
t
S

https://www.nao.org.uk/wp-content/uploads/2017/10/
Investigation-WannaCry-cyber-attack-and-the-NHS.pdf.

inod P , Jaipur R , Laxmi V , Gaur M . Survey on malware detection

methods. Proceedings of the 3rd Hackers’ workshop on

computer and internet security (IITKHACK’09); 2009. p. 74–9 .
irusTotal (2017). Statistics - virustotal. [Data for 26 April 2017]

https://www.virustotal.com/en/statistics/ .
irusshare, Virusshare.com 2017.
u WC , Hung SH . Droiddolphin: a dynamic android malware

detection framework using big data and machine learning.
Proceedings of the 2014 conference on research in adaptive
and convergent systems. ACM; 2014. p. 247–52 .

ou I, Yim K. Malware obfuscation techniques: a brief survey.
Proceedings of the international conference on broadband,
wireless computing, communication and applications; 2010.
p. 297–300 .

uan Z , Lu Y , Xue Y . Droiddetector: android malware
characterization and detection using deep learning. Tsinghua
Sci Technol 2016;21(1):114–23 .

atilda Rhode is a Ph.D. candidate at Cardiff University under-
aking re- search jointly with the Airbus Cyber Operations team.
atilda completed her M.Sc. Computing at Cardiff University in

016 and her B.A. in Politics, Philos- ophy and Economics at Ox-
ord University in 2014. Her research is concerned with the role
hat machine learning and artificial intelligence can play in tack-
ing cyber security challenges.
ete Burnap is a Reader (Associate Professor) at Cardiff University
nd is seconded to Airbus Group to lead Cyber Security Analytics
esearch heading projects involving the application of Artificial

ntelligence, Machine Learning and Statistical Modeling to Cyber
ecurity problems (most recently malware analysis). Pete obtained

is B.Sc. in Computer Science in 2002 and his Ph.D.: Advanced Ac-
ess Control in support of Distributed Collaborative Working and

e-perimeterization in 2010, both from Cardiff University. He has
ublished more than 60 academic articles stemming from funded
esearch projects worth over £8 m and has advised the Home Af-
airs Select Committee, Home Office and Metropolitan Police on

ocio-technical research outcomes associated with cyber risk and

volving cyber threats.

evin Jones is Head of Cyber Security Architecture, Innovation and

cout- ing at Airbus, leading a global network of; teams, projects
nd collaborations including; research & innovation, state of the
rt solutions development, and technology scouting for cyber se-
urity across; IT, ICS and product security do- mains. He holds a
.Sc. in Computer Science and M.Sc. in Distributed Systems Inte-
ration from De Montfort University, Leicester where he also ob-
ained his Ph.D.: A Trust Based Approach to Mobile Multi-Agent
ystem Security in 2010.

https://www.nao.org.uk/wp-content/uploads/2017/10/Investigation-WannaCry-cyber-attack-and-the-NHS.pdf
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0032
https://www.virustotal.com/en/statistics/
http://www.Virusshare.com
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30554-6/sbref0035

	Early-stage malware prediction using recurrent neural networks
	1 Introduction
	2 Related work
	3 Methods
	4 Dataset
	4.1 Samples
	4.2 Input Features

	5 Experimental results
	5.1 Hyperparameter configuration
	5.2 Predicting malware using early-stage data
	5.3 Simulation of zero-day malware detection
	5.4 Ransomware case study
	5.5 Improving prediction accuracy with an ensemble classifier

	6 Limitations and future work
	6.1 Other file types and operating systems
	6.2 Robustness to adversarial samples
	6.3 Process blocking
	6.4 Portability to other machines and operating systems

	7 Conclusions

	Reference

