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Quasi-variational coupled-cluster methods are applied to a selection of diatomic molecules. The poten-
tial energy curves, spectroscopic constants, and size consistency errors are calculated and compared
to those obtained from both single- and multi-reference methods. The effects of connected triple exci-
tations are introduced with either the standard perturbative (T) formulation, or in the renormalised
form, and its symmetrised approximation. It is found that the renormalised ansatz is significantly supe-
rior to the standard formulation when describing bond breaking and that in most circumstances, the
computationally simpler symmetrisation gives nearly identical results. Published by AIP Publishing.
https://doi.org/10.1063/1.5006037

I. INTRODUCTION

Coupled-cluster (CC) theory1–3 is well established as the
ab initio method of choice for the prediction of molecular
properties with controlled accuracy when the Hartree-Fock
reference state is known to be a reasonable approxima-
tion. Geometries, vibrational frequencies, and reaction energy
changes can all be computed with errors that are small enough
for meaningful predictive chemistry with a cluster operator
containing up to double (CCSD), triple (CCSDT), or quadruple
(CCSDTQ) excitations. In many circumstances, perturbatively
treating the effects of connected triple excitations, CCSD(T),4

is sufficient. However, it is well understood that standard
truncated coupled-cluster methods, like CCSD and CCSD(T),
result in significant errors when used to describe chemical sys-
tems with strong non-dynamic correlation.5,6 For molecules,
this occurs typically when covalent bonds are extended and
is the most pronounced for the breaking of double and triple
bonds. Normally, such situations have to be investigated with
multireference (MR) methods, which means selecting a suit-
able active space into which the approximate wavefunction can
be expanded. The use of a multiconfigurational self-consistent
field (MCSCF), with subsequent treatment of dynamical corre-
lation effects through multireference configuration interaction
(MRCI),7 has been very successful in generating global ground
and excited state potential energy surfaces for small molecules.
Nevertheless, for larger molecules, the difficulty of choosing
a suitable active space, the computational scaling with sys-
tem size, and the lack of a general size-extensive formulation
all provide an impetus for seeking alternative approaches.
Recent research has led to the development of single ref-
erence (SR) methods that are able to model inherently MR
systems.8–12 One such family of methods is quasi-variational
coupled-cluster doubles (QVCCD), hereafter collectively
denoted as the QV methods, which have been shown to pro-
duce accurate potential energy surfaces along dissociation
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paths despite being based on a single-determinant reference
function.11,13,14

The first computational implementation of the QVCCD
method contained significant inefficiencies, meaning that pre-
vious studies were limited in the scope of the problem that
could be addressed. We have completely reimplemented the
method with near-optimum efficiency within the integrated
tensor framework (ITF)15,16 contained in the Molpro16 soft-
ware package, to allow the investigation of larger systems.17

The ITF is a platform that allows developers to write code
in a simplified domain-specific language based around ten-
sor manipulations and contractions. This code is then com-
piled into optimised instructions for a general virtual machine
that provides an efficient parallel evaluation of the tensor
contractions.

In the first part of this work, the potential energy
curves (PECs) and vibrational constants of several diatomic
molecules have been investigated and compared with single-
reference coupled-cluster methods and multireference config-
uration interaction (MRCI). Size consistency errors have also
been determined by comparing the asymptotic values that the
QV methods converge to and the sum of the calculated energies
for the separated atoms.

The likely invalidity of the standard (T) triples correc-
tion to CCSD and QVCCD in cases where the reference
wavefunction is a poor approximation led in our earlier work to
the introduction of a renormalised triples correction,18 based
on the formulation presented by Kowalski and Piecuch19 and
by Nooijen and LeRoy.20 The asymmetric formulation of this
theory leads to an increased computational cost, and we there-
fore also proposed a symmetrised approximation, denoted
OQVCCDR(T). In this work, we explore, through exam-
ples, the effects of the renormalisation and of the symmetric
approximation.

II. THEORY

The starting point for QVCCD is the observation that
fully variational coupled cluster (VCC) calculations with the
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cluster operator manifold restricted to a particular excitation
level are capable of reliably representing the potential energy
curve on molecular dissociation, in contrast to the corre-
sponding “traditional” (i.e., projection)21 coupled-cluster the-
ory.22–25 On dissociation, standard projection coupled-cluster
theory can give energies that are unphysically below the exact
energy, sometimes even diverging without bound, whereas this
cannot happen with VCC, for which the energy is a strict
upper bound to the exact Schrödinger eigenvalue. However,
VCC, even with only single and double excitation operators
(VCCSD),6 is an impractical theory because of its very high
computational cost.5 QVCCD introduces an energy functional
that is a closed form based on matrix powers, whose expansion
in powers of the cluster operator T̂ agrees with the corre-
sponding expansion of VCCD to third order in T̂ , and which
is exact for an assembly of non-interacting electron pairs.11

This is achieved by modifying the linearized coupled elec-
tron pair approximation [CEPA(0)] function,26 which itself is
a second-order approximation to VCCD, to use modified clus-
ter amplitudes defined to have the desired properties. These
modified amplitudes can be generated via a transformation of
the true cluster amplitudes, which remain as the parameters to
be varied,
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where the Einstein summation convention has been used, τij

permutes labels i, j, and the U tensors are responsible for gener-
ating the four unique O(T3) VCCD terms. The meaning of the
powers of the four-index U tensors is that they are considered
as matrices where the upper and lower index pairs each form
a composite single matrix row or column index. The result-
ing set of amplitudes are denoted transformed amplitudes and
pre-labeled by the power of the U tensor.11

In the two-electron limit, the QVCCD energy simply
reduces to configuration interaction doubles (CID). In the
N-electron case, the series expansion of the U−

q
2 tensors gen-

erates series of Feynman diagrams, some of which match
those arising from the equivalent expansion of VCCD at each
power of T ; in the case of non-interacting electron pairs, addi-
tional relationships between the various diagrams emerge, and
render QVCCD exact.18 Note that in the implementation of
QVCCD, this series is never evaluated term by term and there-
fore need not be truncated. The implicit inclusion of not just
O(T3) contributions but also an infinite subset of higher-order
terms may suggest why QVCCD can correctly describe bond
dissociations.

A simple QVCC formulation involving both single and
double excitation operators that is exact for two electrons
has not so far been found. However the effects of single
excitations can be included via orbital rotations, using the
doubles-only energy expression, and auxiliary conditions from

either the Brueckner ansatz27–29 or variational minimisation of
the correlated energy functional with respect to the reference
determinant.30 The latter, denoted OQVCCD, has been used
in calculations reported here.

To go beyond OQVCCD and include the effects of con-
nected triple excitations, the standard (T) correction4 can sim-
ply be added to the OQVCCD energy.13 However, it has been
argued that when T is large, one should use a formulation
involving the transformed amplitudes, as well as additional
quadratic terms, in the perturbation expression,18–20
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An additional, Asymmetric-Renormalised [AR(T)], approxi-
mation omits the term quadratic in T,

EAR(T) =
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Equation 5 requires two different matrix elements to be
evaluated compared to just one in the standard (T) correc-
tion. As a result, the computational time to calculate EAR(T) is
nearly double that of E(T). A computationally simpler approx-
imation can be developed by replacing the different cluster
amplitudes by 1T̂2,
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which we refer to as the symmetric-renormalised triples cor-
rection, OQVCCDR(T), and which has the same computa-
tional effort as E(T).

These corrections are also related to the non-iterative
corrections of quasivariational method-of-moments coupled
cluster (QVMMCC) and quadratic method-of-moments cou-
pled cluster (QMMCC),31,32 as well as the triples corrections
designed for full extended singles and doubles coupled cluster
(ECCSD) and quadratic extended singles and doubles cou-
pled cluster (QECCSD) methods.33,34 Each try to approxi-
mate the VCC norm which occurs in the denominator of the
triples corrections. Our corrections attempt this via the use
of the transformed amplitudes which have the effect of div-
ing the E(T) correction by the CID norm in the limit of two
electrons, whereas QVMMCC uses a truncated VCC norm
which includes second-order triples effects in the excitation
manifold.

III. RESULTS AND DISCUSSION

All calculations have been carried out using Molpro and a
new ITF-based implementation of the QV methods.17 For each
diatomic system, a PEC has been calculated, from which spec-
troscopic constants can be calculated by polynomial fitting.
The number of points in the curve and the degree of the poly-
nomial were chosen such that the constants were stable to at
least the digits presented below. All energies and spectroscopic
quantities have been calculated using CCSD(T), the three
QV methods [OQVCCD(T), OQVCCDR(T), and OQVCC-
DAR(T)], and MRCI, with and without relaxed quadratic clus-
ter corrections.35 Only valence-shell electrons were included
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in the correlation treatment. In the multireference calculations,
the valence space was taken as the active space, except in the
case of Cl2, for which an additional set of πu and πg orbitals
were included.

A well-established alternative to using QV for simulta-
neously representing static and dynamic correlation with a
closed-shell reference wavefunction is the completely renor-
malised coupled-cluster (CR-CC) family of methods.9 It is
already well documented that CR-CC(2,3) performs well in
describing the breaking of at least single covalent bonds.36

Previous work has also indicated the need to extend beyond
CR-CC(2,3) when connected quadruple excitations assume
importance; in some cases, their effects can be introduced
through an additive correction.37,38 Calculations have also
been performed with the CR-CC(2,3), variant D, and CR-
CC(2,3)+Q, variant B, methods from the GAMESS compu-
tational package39,40 and used as a comparison to the QV
results.

The cc-pVQZ and cc-pV5Z basis sets41 were used, with
the standard X�3 extrapolation of the correlation energy to the
basis-set limit.42

In order to support comparison with empirical values,43

additional CCSD(T) calculations have been carried out by
correlating the core orbitals and including relativistic scalar
effects via the second-order Douglas-Kroll-Hess Hamilto-
nian44 using the cc-pwCVQZ-DK and cc-pwCV5Z-DK basis
sets45 extrapolated to estimate the limit.

All the calculations carried out used closed-shell Hartree-
Fock to define the reference wavefunction. At dissociation,
therefore, there will be a large size-consistency error in the
reference energy, meaning that the reference energy is signif-
icantly higher than the sum of the Hartree-Fock energies of
separate ground-state atoms. This error would disappear in a
subsequent full configuration interaction treatment, but in any
approximate theory there will be only partial cancellation. The
size consistency error was estimated by taking the difference
of the QV energy calculated at long bond lengths and the sum
of the CCSD(T) energies of the separate atoms; in the case
of open-shell atoms, the fully spin-restricted RCCSD(T)46,47

ansatz was used. Open-shell QV methods are currently not
available, but they would be expected to give similar ener-
gies in the case of the atoms where there is no strong static
correlation; this aspect is quantified below.

Full details, including geometries for each diatomic
species, are available at https://doi.org/10.17035/d.2017.
0038224345.

A. Singly bonded molecules

A majority of chemical reactions involve breaking and
forming single bonds. Therefore it is important for a quan-
tum chemical method to describe this phenomenon correctly.
To start, we investigate the breaking of three singly bonded
molecules: HCl, BCl, and Cl2.

1. HCl

For the dissociation of HCl (Fig. 1), we observe the
typical behavior of CCSD(T) at long bond lengths: the
energy forms a maximum, in this case around 3.0 Å, before
falling rapidly. OQVCCD(T) also matches this behavior,

FIG. 1. Calculated potential energy curves for HCl with extrapolated
cc-pVQZ:cc-pV5Z basis set.

illustrating the breakdown of the (T) correction. Eigenvalues
of the Fock matrix appear in the denominator of this correc-
tion and so can lead to an over-estimation of the effects of
the triples when these eigenvalues are close in energy. This
problem can be corrected by using a renormalised triples
scheme.

OQVCCDR(T) performs well, leading to a flat dissocia-
tion limit of around �460.201 hartree, which is bounded by
both the MRCI and MRCI+Q energies.

CR-CC(2,3) has already been shown to dissociate HCl
and reproduce the behavior of CCSDT at bond lengths up to
5 Å.48 This behavior is reproduced by the two CR-CC methods;
both predict a curve that is almost identical to MRCI+Q.

The size consistency error for the renormalised QV meth-
ods, shown in Table I, is an order of magnitude larger than the
MRCI error; however, it is an order of magnitude less than the
OQVCCD(T) error.

All the QV methods predict a first vibrational constant in
agreement with the CCSD(T) value (Table II); there is a slight
overprediction of around 5 cm�1 from the renormalised QV
methods. The CR-CC methods underpredict these values com-
pared to CCSD(T); CR-CC(2,3)+Q predicts a constant that is
3 cm�1 lower.

2. BCl

For BCl (Fig. 2), the error in the CCSD(T) energy comes
mainly from the inability to model multi-reference systems as
OQVCCD(T) produces an energy that is qualitatively sim-
ilar to the MR methods. At around 4.0 Å, the CCSD(T)
energy sharply drops. The renormalised QV methods do not
form this maximum and flatten out to asymptotic limits. The
symmetric- and asymmetric-renormalised triples predict a
slightly higher energy than the standard triples at long bond
lengths; the difference being 0.014 hartree. Surprisingly, the
standard triples correction produces a lower size consistency
error than the renormalised QV methods by two orders of
magnitude.

Both the CR-CC(2,3) fall and CR-CC(2,3)+Q fall appear
to follow parallel to the OQVCCDR(T) energy at longer bond
lengths. These methods failed to converge past 4.5 Å.

https://doi.org/10.17035/d.2017.0038224345
https://doi.org/10.17035/d.2017.0038224345
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TABLE I. Size consistency error/hartree with extrapolated cc-pVQZ:cc-pV5Z basis set.

HCl BCl Cl2 AlO� S2

OQVCCD(T) �0.019 280 �0.000 896 �0.020 608 �0.022 369 0.013 717
OQVCCDR(T) 0.004 131 0.012 843 0.012 595 0.002 785 0.055 709
OQVCCDAR(T) 0.004 121 0.012 866 0.012 609 0.002 837 0.057 487
MRCI �0.000 213 0.030 943 0.004 076 �0.007 330 0.018 244
MRCI+Q 0.000 009 0.034 257 �0.001 939 �0.021 658 0.004 454

TABLE II. ωe/cm�1 with extrapolated cc-pVQZ:cc-pV5Z basis set.

HCl BCl Cl2 AlO� S2 P2 SiO

CCSD(T) 2996.1 841.3 561.4 971.1 699.0 786.7 1241.8
CCSD(T)a 2997.1 841.3 561.4 972.8 702.1 792.9 1249.0
OQVCCD(T) 2999.0 842.6 565.2 978.6 707.8 797.2 1251.0
OQVCCDR(T) 3002.0 843.2 567.5 979.9 713.8 801.6 1253.1
OQVCCDAR(T) 3002.0 843.1 567.3 983.4 713.9 801.9 1252.8
CR-CC(2,3) 2995.5 840.2 567.4 980.6 . . . 790.8 1069.7
CR-CC(2,3)+Q 2993.1 840.0 566.1 974.0 . . . 783.1 1062.3
MRCI 2992.8 869.7 559.2 958.9 693.6 778.8 1227.8
MRCI+Q 2989.8 856.0 556.0 951.4 697.4 776.6 1222.0

Empirical 2991.0 839.1 559.7 . . . 699.7 780.8 1241.6

aDouglas-Kroll Hamiltonian and all electrons correlated.

The QV and CR-CC methods predict vibrational con-
stants which are close to the CCSD(T) and empirical
values; the difference being 1.8 cm�1 between CCSD(T)
and OQVCCDAR(T) and 1.3 cm�1 between CCSD(T) and
CR-CC(2,3)+Q.

3. Cl2
Again, CCSD(T) produces a maximum at long bond

lengths for Cl2, in part, due to the breakdown of the triples
correction (Fig. 3). Both renormalised QV methods follow
the MCRI+Q energy, with an overprediction in energy from
around 3.0 Å. The energy for both these methods slowly begin
to fall at 4.3 Å, the difference between here and 6.5 Å being

FIG. 2. Calculated potential energy curves for BCl with extrapolated
cc-pVQZ:cc-pV5Z basis set.

1.8×10�3 hartree. This can be explained by the non-variational
nature of the QV methods; therefore, the energy is not bounded
from below by the exact Schrödinger energy.

Both the CR-CC methods are also able to qualitatively dis-
sociate this system and predict an energy curve that is closer to
the MRCI+Q energy than OQVCRT(T). However, like the QV
results, they also form a maximum, though at the longer bond
lengths of 4.8 and 5.3 Å for CR-CC(2,3) and CR-CC(2,3)+Q,
respectively.

The renormalised QV methods and MRCI converge to
a larger asymptotic limit compared to OQVCCD(T) and
MRCI+Q. The size consistency error for all the QV methods
is an order of magnitude greater than the MR methods.

FIG. 3. Calculated potential energy curves for Cl2 with extrapolated
cc-pVQZ:cc-pV5Z basis set.
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Again, all the QV and CR-CC methods predict vibra-
tional constants that are close to the CCSD(T) values. Both
the renormalised methods slightly overpredict this value by
6 cm�1.

4. AlO−

Figure 4 presents the PECs for AlO�, formally a singly
bonded anion. The CCSD(T) method fails when the MR nature
of the system becomes too large at around 3.4 Å. The QV meth-
ods are able to dissociate the molecule and lead to an asymp-
totic limit. The renormalised triples methods are bounded by
the MRCI and MRCI+Q energies, but lead to an asymptotic
limit at around �316.985 hartree, which is lower than the
MRCI+Q energy by 0.02 hartree. All the QV and MR methods
predict a lower asymptotic limit, producing size consistency
errors that are comparable in magnitude; however, the cluster
correction on MRCI appears to increase this error by an order
of magnitude.

All QV methods predict spectroscopic constants in agree-
ment with CCSD(T) though the differences are larger than
the previous molecules. OQVCCDR(T) deviates from the
CCSD(T) value by 8.8 cm�1, whereas this difference grows
to 12.3 cm�1 when OQVCCDAR(T) is used. CR-CC(2,3)+Q
predicts a vibrational frequency that is closer to the CCSD(T)
value; this differs by 2.9 cm�1.

B. Multiply bonded molecules
1. S2

For the Σ+
g excited state of S2, the QV methods are able

to dissociate the molecule and produce a qualitatively correct
PEC (Fig. 5). Renormalised QV methods predict a slightly
higher asymptotic value than MCRI, while the standard triples
method flattens out to a limit above the MRCI+Q energy. The
multireference energies are quicker to reach an asymptotic
limit compared to the renormalised QV methods, which is a
characteristic of the residual ionic character in the wavefunc-
tion at long bond lengths. Interestingly the standard triples

FIG. 4. Calculated potential energy curves for AlO� with extrapolated
cc-pVQZ:cc-pV5Z basis set.

FIG. 5. Calculated potential energy curves for S2 with extrapolated
cc-pVQZ:cc-pV5Z basis set.

QV method does not exhibit this ionic character and follows
the MRCI+Q energy well; nevertheless, the energy gradually
begins to fall at longer bond lengths. Both CR-CC methods
failed to converge for any points along this surface.

The QV and MR methods overpredict the dissociation
energy, with OQVCCDAR(T) producing the largest size con-
sistency error of 0.057 hartree. The cluster correction to MRCI
reduces this error by an order of magnitude compared to MRCI
without the correction. In the case of the sulfur atom, QV cal-
culations can be carried out for the single-determinant mixture
of 1D and 1S terms, and we find that the OQVCCDR(T) energy
lies only 0.003 hartree above RCCSD(T). Thus the majority
of the extensivity error cannot be explained by the adoption of
RCCSD(T) for the atoms.

All QV methods predict larger vibrational constants com-
pared to the CCSD(T) value; both the renormalised methods
deviate from this by around 15 cm�1.

2. P2

To break a triple bond, excitations up to hextuples should
be included in the wavefunction expansion. CCSD(T) does
not disprove this as the energy shows the unphysical maxi-
mum in Fig. 6. The QV results show a marked improvement
even for these challenging systems. This is most likely due
to the implicit inclusion of higher excitations via the U−

q
2

tensors.
The CR-CC methods were not designed to model the

breaking of more than double bonds. This is evident in the
curves produced for P2. The CR-CC(2,3) potential curve is
almost identical to CCSD(T), exhibiting unphysical diver-
gence at long bond lengths, and does not display the flat-
tening to an asymptotic energy. The inclusion of the additive
quadruples correction does not improve the method for this
case.

The QV energy for P2, an analog of N2, shows it is
able to predict a qualitatively correct PEC, even in large non-
dynamic correlation regimes. The standard triples correction
appears to perform better in this case, as the energy closely
follows the MRCI energy, whereas the renormalised methods
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FIG. 6. Calculated potential energy curves for P2 with extrapolated
cc-pVQZ:cc-pV5Z basis set.

exhibit a strong ionic character, leading to larger asymptotic
limits.

The QV methods all overpredict the first vibrational
constant compared to the CCSD(T) value. The small-
est deviation occurs for OQVCCD(T) which overpredicts
the constant by 10.5 cm�1. This difference increases to
15.2 cm�1 when OQVCCDAR(T) is applied. The CR-CC
methods however produce constants that are closer in value
to CCSD(T); CR-CC(2,3)+Q underpredicts this by 3.6 cm�1.

3. SiO

Again, at the bond lengths examined, all the QV methods
can dissociate SiO without the energy dropping toward nega-
tive infinity; however, all the triples schemes predict a higher
energy at long bond lengths compared to MRCI (Fig. 7). The
energy is no longer bounded by the MRCI and MRCI+Q result.
The standard (T) correction produces a very similar answer to
the renormalised methods.

The CR-CC methods reproduce the behavior seen in
the P2 system; CR-CC(2,3)+Q clearly forms a maximum at

FIG. 7. Calculated potential energy curves for SiO with extrapolated
cc-pVQZ:cc-pV5Z basis set.

2.6 Å, while the CR-CC(2,3) curve is still rising in energy
before failing to converge at longer bond lengths.

The QV methods produce larger vibrational constants by
around 10–12 cm�1 compared with the CCSD(T) result. Sur-
prisingly, given the shape of the PEC, both CR-CC methods
drastically underpredict the vibrational constant by around
180–12 cm�1. This value is stable with respect to the addi-
tion and removal of points along the curve and the degree of
the polynomial fit.

C. Asymmetric triples correction

Previous work has not tested the assumptions made in
arriving at the renormalised triples corrections, i.e., whether
Eq. (6) is a good approximation to Eq. (5). Table III shows the
equilibrium bond lengths and the first and second vibrational
constants calculated with both the symmetric and asymmetric
renormalised triples corrections. These results show that there
is little difference between the methods. The largest differences
occur for the first vibrational constant, with OQVCCDAR(T)
generally producing larger values. The largest difference
occurs for AlO� of around 4 cm�1.

For sake of clarity, the OQVCCDAR(T) PECs have not
been included in the graphs as they are indistinguishable from
those arising from OQVCCDR(T) on the scale of the graphs.
However, in general, the energies are not exactly the same,
and OQVCCDAR(T) produces slightly higher energies than
OQVCCDR(T).

For singly bonded molecules like Cl2 (Fig. 8), the differ-
ences in energy are around 1× 10�5 hartree and so are virtually
insignificant at all bond lengths. The difference rises to a max-
imum at around 3.4 Å before falling to an apparent limiting
value at longer bond lengths.

This behavior is not observed for the triply bonded P2

molecule (Fig. 9), where the energy difference rises to the
order of 1× 10�3 hartree; the largest difference occurs at
3.8 Å which converts to an energy of 6.8 kJ/mol. After

TABLE III. Comparison between OQVCCDR(T) and OQVCCDAR(T)
spectroscopic constants with extrapolated cc-pVQZ:cc-pV5Z basis set.

System Method Re (Å) ωe (cm�1) ωexe (cm�1) En (hartree)

HCl OQVCCDR(T) 1.276 3002.0 53.3 �460.376 699
OQVCCDAR(T) 1.276 3001.9 53.0 �460.376 694

BCl OQVCCDR(T) 1.721 843.2 5.4 �484.502 851
OQVCCDAR(T) 1.721 843.1 5.3 �484.502 847

Cl2 OQVCCDR(T) 1.987 567.5 2.6 �919.505 526
OQVCCDAR(T) 1.987 567.3 2.5 �919.505 519

AlO� OQVCCDR(T) 1.643 979.9 4.8 �317.227 567
OQVCCDAR(T) 1.644 983.4 5.3 �317.227 557

S2 OQVCCDR(T) 1.900 713.8 2.8 �795.484 077
OQVCCDAR(T) 1.900 713.9 2.8 �795.484 063

P2 OQVCCDR(T) 1.893 801.6 2.7 �681.844 750
OQVCCDAR(T) 1.893 801.9 2.7 �681.844 735

SiO OQVCCDR(T) 1.513 1253.1 4.4 �364.248 231
OQVCCDAR(T) 1.513 1252.8 3.9 �364.248 219
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FIG. 8. Energy differences between OQVCCDAR(T) and OQVCCDR(T) for
Cl2 with extrapolated cc-pVQZ:cc-pV5Z basis set.

FIG. 9. Energy differences between OQVCCDAR(T) and OQVCCDR(T) for
P2 with extrapolated cc-pVQZ:cc-pV5Z basis set.

3.8 Å, it becomes difficult to converge the OQVCCD energy
and so it is not possible to establish unambiguously the
dissociation limiting value.

IV. CONCLUSIONS

This investigation has provided further evidence of the
performance of QV methods when dissociating and breaking
apart singly and multiply bonded molecules. The unphysical
maximum that is typically encountered when calculating PECs
with CCSD(T) is avoided in most cases with the QV methods,
apart from OQVCCD(T), which is susceptible to the break-
down of the non-iterative (T) correction. The QV methods
also compare well with the CR-CC methods investigated in
this paper, which produce similar results for the singly bonded
molecules, while avoiding the CCSD(T)-like maximum for
diatomics like P2.

The QV methods can provide reasonable estimates to
the vibrational wavenumber and first anharmonicity constants

though, as has previously been recognised, they do not per-
form as well as CCSD(T). CCSD(T) generally behaves well
in the immediate region of PEC minima and is therefore well
suited to calculating spectroscopic constants.

Estimates of the QV size consistency error have shown
that there are large energy differences between the apparent
asymptotic limit and the energy of the separated atoms. From
the molecules examined, the largest difference is around 0.057
hartree for OQVCCDAR(T) and S2. For the multiply bonded
molecules, the renormalised QV methods tend to overpre-
dict the energy at longer bond lengths for molecules like S2,
P2, and SiO, in some cases yielding potential energy curves
whose slope goes only very slowly to zero in the limit. This
can be interpreted as a characteristic of the residual ionic
character in the wavefunction as a consequence of the char-
acter of the symmetry-restricted single-determinant reference
wavefunction. The near-variational character of OQVCCD
means that the energy will for this reason be above the exact
energy, even when the proper (renormalised) additive cor-
rection for the effects of triple excitations is applied. The
unrenormalised (T) correction becomes increasingly negative
with bond length and provides a compensation that may some-
times mean that the overall size-consistency error is reduced
fortuitously.

The large energy differences for the multiply bonded
molecules can possibly be explained by the lack of higher-
order connected excitations included in the QV ansatz, which
may become more important when dissociating P2 com-
pared to N2, which can be qualitatively dissociated even
by OQVCCD(T).13 Other research has shown that a correct
description of the connected quadruples may be necessary
when describing the breaking of multiply bonded molecules;
for example, it was shown that these excitations when added to
ECCSD described N2 more accurately.33 This suggests that the
QV ansatz could be improved by including connected quadru-
ple excitations via an additive correction in the same vain as
the renormalised quadruples corrected, described by Fan et al.
in Ref. 34.

The asymmetric renormalised triples correction has also
been investigated. It is apparent that Eq. (6) is an excellent
approximation to Eq. (5) based on the calculation of differ-
ent diatomic constants and PECs. Differences in energy do
become larger for P2 as it is dissociated and the multirefer-
ence character of the system becomes more pronounced. In
such cases, OQVCCDAR(T) may be preferable, but normally
the reduced computational cost of OQVCCDR(T) means that
it is the method of choice in its class.
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