
Kasia Isabel Zalewska  MD Thesis 

I 

 

Circulating blood immunophenotyping 
and metabolite profiling in pulmonary 

vascular diseases    
 

Submitted for the degree of MD  
March 2018 

 

 

Dr Kasia Isabel Zalewska 
 

Cardiff University 



Kasia Isabel Zalewska  MD Thesis 

II 

 

 

Acknowledgements 

 

I am sincerely grateful to the following individuals and organisations who have supported this work; 

 

- My supervisors Dr Joanna Pepke Zaba and Dr Mark Toshner at Papworth Hospital and 

Professor Chris Pepper at Cardiff University for their guidance, nurturing, patience and 

constructive criticism. 

- All the staff of the Pulmonary Vascular Diseases Unit and other departments at Papworth 

Hospital who have facilitated this work, in particular Dr John Cannon, Dr Dolores Taboada and 

Dr Emilia Swietlik. 

- The Morrell Laboratory, University of Cambridge and Biomedical Research Centre 

Immunophenotyping Service, Addenbrookes Hospital for their assistance with 

immunophenotyping studies. In particular I would like to thank Emily Groves and Natalia 

Savinykh Yarkoni. 

- Patients who have participated in this research. 

- Papworth Hospital NHS Foundation Trust, Actelion, the NIHR-TRC and The Dinosaur Trust for 

their financial support. 

- My husband David for his patience, understanding and good humour, which has been 

invaluable throughout the challenges of this work. 

- My mother Hanna for her unwavering support and for always inspiring me and encouraging 

me to aim high and achieve my goals.  

 



Kasia Isabel Zalewska  MD Thesis 

V 

 

 

Summary  

Pulmonary hypertension is an abnormal physiological state associated with a variety of medical 

conditions. However, the ability to accurately phenotype disease subtypes within this 

heterogeneous syndrome is limited.  

In this thesis, I utilised advanced phenotyping techniques, guided by pathophysiological processes 

known to be dysregulated in pulmonary vascular diseases; immunity and metabolism. I used flow 

cytometry based immunophenotyping to study circulating leukocyte subpopulations and 

metabolomic analysis to study metabolite profiles in circulating blood. I hypothesised that there 

would be differences between disease and health, and differences between disease subgroups. 

In the immunophenotyping studies, I identified an immune cell signature in Idiopathic Pulmonary 

Arterial Hypertension (IPAH) and Heritable Pulmonary Arterial Hypertension (HPAH) characterised by 

increased frequencies of T follicular helper (Tfh) cells, plasmablasts and PD1-expressing CD8+ T cells. 

This signature was not found in Chronic Thromboembolic Pulmonary Hypertension (CTEPH). These 

findings support the hypothesis that dysfunctional immune activation may be implicated in IPAH 

pathobiology, and that IPAH and HPAH may have shared immunopathological mechanisms.  

In the metabolomic studies, I identified wide ranging metabolic changes in pulmonary vascular 

disease, including evidence of disrupted energy metabolism, increased cellular proliferation and 

reduction in antioxidant metabolites. Additionally, by comparing paired samples from different 

anatomical sites, it was possible to differentiate metabolic perturbations which are localised to 

specific anatomical sub-compartments. 

Key to the clinical applications of this research, I have demonstrated immunological and metabolic 

alterations which are a shared feature amongst different pulmonary vascular disease subgroups, but 

also some changes which are specific to disease subsets. Future advances in disease phenotyping 

may facilitate effective new targeted therapy for pulmonary vascular diseases. 
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1 Chapter 1 - Introduction 

 

1.1 Historical overview 

The first accurate description of the pulmonary circulation was by the Arab Physician Ibn al-Nafis 

(1210–1288) in the 13th century AD. Ibn al-Nafis was the first to challenge the teachings of Galen, 

which had been accepted since the 2nd century AD. Galen had erroneously stated that blood passed 

from the right to the left ventricle through invisible pores in the interventricular septum and that 

only a small amount of blood passed into the pulmonary artery, solely to nourish the lungs.  

Contrary to the belief that blood passed through the interventricular septum, Ibn al-Nafis deduced 

that the route of transit of blood from the right to left side of the heart was in fact via the lung, 

through the pulmonary circulation (West, 2008). 

However, the insights of Ibn al-Nafis did not reach the Western world, and it was not until 300 years 

later that the European scholar Michael Servetus (1511-1553) reached a similar conclusion. Ibn al-

Nafis had also recognised the existence of small communications between the pulmonary artery and 

vein, but it was not until 400 years later that the pulmonary capillaries were further described by 

Marcello Malpighi (1628-1698) (Azizi et al., 2008).  

In the 17th century, development of experimental models by William Harvey (1578-1657) 

demonstrated the mechanistic principles of both the systemic and pulmonary circulation. However, 

invasive study of pulmonary haemodynamics in humans, finally providing direct insight into 

pulmonary circulation physiology, was not conducted until the 1940s (Cournand and Ranges, 1941). 

The technique of right heart catheterisation, pioneered through self-experimentation by Forssman 

(Meyer, 1990), was used in human studies to measure multiple parameters including pressure, flow 

and gas content in the pulmonary circulation (Cournand et al., 1944, Cournand et al., 1945), thus 

providing information essential to our current understanding of both normal physiology and disease 

pathophysiology. 

Over the last 50 years it has been increasingly recognised that the pulmonary circulation is not 

merely a passive conduit for blood flow. It is now known that it has a multitude of dynamic roles in 

homeostatic, metabolic and immunological processes (Comroe, 1966, Said, 1982, Mellins, 1982, 

Orfanos et al., 2004, Millar et al., 2016), and there is developing understanding of disease processes 
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that involve or affect the pulmonary circulation and therapeutic interventions which target this 

system. 

 

1.2 Pulmonary vascular development 

Pulmonary vascular development occurs through the processes of vasculogenesis- de novo 

formation of vessels, and angiogenesis- sprouting of new vessels from existing ones. 

Embryologically, the main pulmonary arteries develop from the 6th aortic arch by angiogenesis. 

Capillaries later form by vasculogenesis, with differentiation of progenitor endothelial cells in the 

primitive mesenchyme and fusion of channels of endothelial cells with the existing vessels (deMello 

and Reid, 2000, Hislop and Pierce, 2000). 

Growth factors regulating blood vessel formation include vascular endothelial growth factors 

(VEGFs) and angiopoietins (Hislop, 2005, Crivellato, 2011, Hato et al., 2009, Asahara et al., 1998, Suri 

et al., 1996). In addition to playing a critical role in lung development, in adult life they are involved 

in the response to lung injury (Voelkel et al., 2006, Lahm et al., 2007, Mura et al., 2006, Lomas-Neira 

et al., 2014, Wada et al., 2013, Schlosser et al., 2017, Uehara et al., 2016). 

The foetal pulmonary circulation receives less than 10% of cardiac output, with the majority of 

circulating blood volume bypassing the lungs via the foramen ovale to the left atrium or ductus 

arteriosus to descending aorta. It is characterized by a high vascular resistance. However, with the 

closure of the ductus arteriosus at birth, there is a dramatic increase in pulmonary blood flow and 

rapid fall in pulmonary vascular resistance, resulting in the classic haemodynamic features of the 

normal pulmonary circulation- a high flow, low resistance system (Hislop, 2005). 

 

1.3 Normal anatomical structure of the pulmonary circulation 

The pulmonary circulation consists of a branching network of vessels, which run in parallel with the 

airways. This ‘pulmonary arterial tree’ branches from large proximal pulmonary arteries into 

repeatedly smaller divisions, transitioning to arterioles and finally the alveolar capillaries, prior to 

return of blood to the left heart via the pulmonary veins (Townsley, 2012, JMB and NW, 2001, 

Hughes and Morrell, 2001).  

The reduction in vessel diameter as the pulmonary arterial tree divides is accompanied by 

morphological changes which reflect the properties of these vessels (Brenner, 1935). 
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The large proximal vessels (external diameter > 1mm) have thin walls relative to the size of the 

lumen and have a predominance of elastic fibres in the media. These proximal elastic vessels 

primarily serve a conducting function and act to protect against pressure fluctuations via their 

‘windkessel’ effect (Lammers et al., 2012). 

The small arterioles and capillaries are the primary determinants of the vascular resistance. 

(Bhattacharya and Staub, 1980, Bhattacharya et al., 1982). As the arteries become smaller, the 

elastic laminae are replaced by smooth muscle. Small arteries (0.1-1mm external diameter) have a 

predominance of smooth muscle constituting the vessel media. However, in the most distal pre-

capillary segments of the pulmonary vascular bed (vessels of 20-30 micrometres internal diameter), 

the muscular layer is lost and there is subsequent transition into pulmonary capillaries, whose wall 

consists of only a thin layer of endothelial cells, which share their basement membrane with that of 

the type I pneumocytes lining the alveolar space (Townsley, 2012). 

 

1.4 Normal pulmonary circulation haemodynamics 

The normal pulmonary circulation is a high flow, low resistance system. Pulmonary circulation blood 

flow is approximately 3.5L/min/m2 body area at rest (West, 2011). Flow into the pulmonary circuit, 

like the systemic circuit, is pulsatile, but pressures are much lower (Table 1.1). In a healthy individual 

at rest, mean pulmonary arterial pressure is around 1/6 of the systemic arterial pressure at rest 

(West, 2011). 

Table 1.1- Normal systemic and pulmonary circulation pressures. 

 Systemic Pulmonary 

Arterial pressure 120/80 mmHg; 95 mmHg (mean) 25/10 mmHg; 15 mmHg (mean) 

Capillary pressure 30 mmHg (mean) 10 mmHg (mean) 

Venous pressure 2-5 mmHg 2-5 mmHg 

 

Due to gravity, intravascular pressures are lowest at the lung apex and highest at the base, resulting 

in regional distribution in pulmonary blood flow (Powell et al., 2016). 

In health, low resistance to flow allows optimal conditions for gas exchange, prevents movement of 

fluid from the vessels into the interstitial space and enables the right ventricle to operate at minimal 

energy cost. Pulmonary vascular resistance falls below resting values upon exercise, facilitated by 
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distension of existing vessels, allowing increase in calibre, along with pulmonary vascular 

recruitment, whereby previously closed vessels open up (Frank L. Powell, Powell et al., 2016). 

Pulmonary vascular resistance (PVR) can be considered according to Poiseuille’s Law, which states 

that resistance to flow is inversely related to r4 (where r refers to vessel radius). Therefore, small 

changes in vessel radius result in large changes in resistance and the pulmonary circulation is very 

sensitive to small changes in vessel calibre. However, it must be noted that Poiseuille’s Law provides 

only an approximation of true PVR as it is intended to be applied to Newtonian fluid in laminar flow 

through a straight tube of constant cross section, whereas pulmonary blood flow is pulsatile, the 

pulmonary vascular tree has a complex branching structure and the circulation is both distensible 

and compressible.  

In comparison with systemic arteries and arterioles, there is much less smooth muscle in the walls of 

the vessels of the pulmonary arterial tree (West, 2011).  Additionally, there is a relative lack of 

supporting tissue surrounding the vessels. As a consequence of this, the pulmonary vessels are more 

distensible than systemic arteries. This distensibility (along with vascular recruitment) allows 

accommodation of relatively large increases in blood volume, such as occurs with exercise (Naeije 

and Chesler, 2012). However, the distensibility also means that pressure-flow relationships in the 

pulmonary circulation are sensitive to mechanical influences such as changes in alveolar and 

intrapleural pressures, which can have significant effects on PVR (Powell et al., 2016). In addition, 

intravascular pressures, blood viscosity, lung volume, gravity and RV output can all have significant 

effect on PVR without alterations in pulmonary vascular cross-sectional area (Powell et al., 2016). 

Aside from the passive mechanisms affecting PVR, the pulmonary vasculature shows dynamic 

responses to various stimuli. For example, the vessels undergo constriction in response to alveolar 

hypoxia and release vasoactive substances such as nitric oxide, endothelins and prostacyclin in 

response to mechanical forces such as shear stress and cyclic stretch of the vessel wall (Powell et al., 

2016). Although sympathetic, parasympathetic and sensory neural fibres are present in the proximal 

pulmonary arteries, this neural network plays a very limited role influencing overall pulmonary 

vascular resistance, as innervation does not extend beyond the small intrapulmonary vessels, with 

the more distal arterioles being devoid of innervation (Kummer, 2011). 

In clinical practice, pulmonary vascular resistance (PVR) is calculated using measurements taken 

during right heart catheterisation (described further in chapter 2). Calculation is based on the 

principle that PVR equals inflow pressure minus outflow pressure, divided by mean pulmonary blood 

flow. 
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Using directly measured haemodynamic parameters; 

PVR = (mPAP- PCWP)/CO    

mPAP - mean pulmonary artery pressure 

PCWP - pulmonary capillary wedge pressure (surrogate for left atrial pressure) 

CO - Cardiac output (equal to pulmonary blood flow in absence of significant shunting) 

 

1.5 Metabolic functions of the pulmonary circulation 

 

1.5.1 Historical overview 

For centuries, the lung was thought to have little metabolic activity and the pulmonary circulation 

was considered to be a passive conduit for blood transit to the lungs for gas exchange. However, the 

much wider roles of the pulmonary circulation are now increasingly recognised. 

Perhaps the first recorded observation of the metabolic function of the pulmonary circulation was in 

the 1920s, by Starling and Verney (Starling and Verney, 1925).  In their experiments, they were 

unable to perfuse an isolated kidney without a heart-lung circuit, reporting that a serum 

vasoconstrictor substance (later found to be serotonin) was detoxicated on passing through the 

lung.  

However, it was not until 40 years later that studies were conducted specifically to assess pulmonary 

circulation metabolic function. This included confirmation of pulmonary circulation clearance of 

serotonin (Gaddum et al., 1953), providing a pathophysiological explanation for the predominance 

of right sided heart lesions found in carcinoid syndrome and thus, recognition of the role of the lungs 

in detoxification and regulatory processes. This was followed by studies demonstrating that 

prostaglandins E1, E2 and F2alpha are stable in systemic blood but ‘rapidly inactivated by lung’ 

(Ferreira and Vane, 1967), and that conversion of angiotensin I to angiotensin II occurs more rapidly 

in the lung vasculature than in other tissues (Ng and Vane, 1968). 

Astonishingly, to this day, the metabolism of the pulmonary circulation has not been fully 

investigated and it is likely that the true extent of metabolic processes occurring in the pulmonary 

circulation is not yet appreciated.  However, advances in currently available technologies may 

provide a means for us to address the gaps in our knowledge, and allow us to more fully appreciate 

the true extent and complexity of pulmonary circulation metabolic function.  
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1.5.2 Fate of substances in the pulmonary circulation 

Substances present in pulmonary blood flow may undergo uptake or biotransformation, may be 

released as a result of endothelial cell activity, or may be unaffected during transit (Kayyali and 

Fanburg, 2009, Hughes and Morrell, 2011).  

The pulmonary vascular bed has a vast surface area facilitating interaction between the endothelium 

and circulating factors in the bloodstream. By receiving almost the entire circulating blood volume, it 

has the potential to modify the composition of blood entering the systemic circulation, and through 

synthesis and release of substances, can influence biological activity at distal sites (Jernigan et al., 

2009).  

However, it is also vulnerable to particles which may become trapped in the small calibre vessels, 

such as emboli, and noxious substances such as toxins which may be transmitted to the lungs in 

circulating blood (Jorens et al., 2009).  

The pulmonary vascular endothelial cell is recognised to be an important mediator of the pulmonary 

circulation metabolic function, and expresses proteins that facilitate different functions such as 

hydrolysis (e.g. ACE, lipoprotein lipase) and active transport (e.g. the serotonin transporter (SERT)) 

(Kayyali and Fanburg, 2009, Hughes and Morrell, 2011, Stan, 2009). It is also responsible for the 

transmission of communications from the endothelial surface to vascular smooth muscle cells and 

fibroblasts (Grinnell and Harrington, 2009). 

The metabolic function of the pulmonary vascular endothelium shows structural specificity (Table 

1.2). For example; although >95% of circulating serotonin (5-HT) is removed in a single 

transpulmonary passage, melatonin (which is very closely related in structure to 5-HT) is not 

significantly cleared by the lungs. Likewise, 30% of noradrenaline is removed in a single pass through 

the lungs while adrenaline is unaffected.  Similarly, although prostaglandins E1 E2 and F2α undergo 

90% first pass metabolism, prostaglandins A2 and I2 pass through with very little clearance (Said, 

1982, Ryan et al., 1971, Hughes et al., 2001).  

In addition to these selective processes, the endothelium is involved in non-specific binding of other 

substances. For example, many drugs show non-specific uptake onto the endothelial cell membrane, 

which allows the lungs to act as a temporary site of retention and may provide a buffering function. 

Specific binding or uptake of drugs by pulmonary endothelial cells is limited to a small number of 

substances (Geddes et al., 1979, Boer, 2003, Roerig DL, 1989, Suhara et al., 1998).   
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Table 1.2-Fate of substances in blood upon pulmonary circulation transit. 

Cleared Unaffected 

Arachidonic acid (> 90%) Prostaglandin A2, I2  

Prostaglandins E 1+2, F2α (>90%) Leukotrienes 

Adenosine + derivatives (> 95%) Adrenaline 

Serotonin (98%) Dopamine 

Angiotensin I (80%) Histamine 

Bradykinin (80%) Angiotensin II 

Endothelin 1 (50%+) ANP 

Noradrenaline (30-40%) Majority of hormones 

 

 

1.5.3 Metabolic function of the pulmonary circulation in disease states 

In the same way that dysfunction of the liver or kidney can alter blood metabolite profile, it can be 

expected that the disease processes of the lung vasculature will alter the metabolite profile of blood 

passing through the pulmonary circulation. 

Changes in metabolites present may be a primary reflection of processes occurring as an intrinsic 

part of the disease pathobiology, such as endothelial damage. Conversely, the effects of disease 

upon the local environment may impact upon metabolic activity.  

For example, a reduction in functional surface area in diseases such as emphysema, acute lung injury 

and chronic thromboembolic pulmonary hypertension affect receptor availability and binding and 

biotransformation of substances (Boer, 2003, Maniatis et al., 2008, Orfanos et al., 2008, Orfanos et 

al., 2000).  Also hypoxaemia is known to has a significant effect on some metabolic pathways e.g. 

ACE activity is reduced if PO2 is low (Milledge, 1984), and acidosis results in changes in the ratio of 

ionised to non-ionised forms of drugs and other substances, thereby altering their properties and 

uptake (Boer, 2003).  
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Therefore, alterations in lung metabolic function may occur both as a direct result of the disease 

itself, but the disease process may also result in structural and environmental changes which may 

further affect metabolic processes.  

1.6 Pulmonary Hypertension 

Pulmonary hypertension (PH) is an abnormal physiological state where there is elevated pressure in 

the pulmonary circulation. It is defined as a mean pulmonary artery pressure ≥ 25mmHg at rest, 

when measured in the supine position by cardiac catheterisation (Hoeper et al., 2013b). Normal 

mean pulmonary artery pressure (mPAP) at rest is 14 ± 3 (Kovacs et al., 2009). This haemodynamic 

state is associated with a variety of medical conditions and can occur due to primary pressure 

elevation in the pulmonary arterial system, or secondary to elevations in the pulmonary venous 

system (as may occur with left heart disease). 

Pulmonary Hypertension is classified into five main clinical groups (Galiè et al., 2015):   

1- Pulmonary Arterial Hypertension (PAH) including Idiopathic Pulmonary Arterial Hypertension 

(IPAH) and Heritable Pulmonary Arterial Hypertension (HPAH) 

2- Pulmonary Hypertension due to left heart disease,  

3- Pulmonary Hypertension due to lung diseases and/or hypoxia 

4- Chronic Thromboembolic Pulmonary Hypertension (CTEPH), and 

5- Pulmonary Hypertension with unclear and/or multi-factorial mechanisms. 

 

Regardless of the aetiology of pulmonary hypertension, the physiological effects of sustained 

elevation in pulmonary circulation pressure are shared by the groups. The ultimate consequences of 

this are the development of right heart dysfunction and failure, leading to premature death. The 

expanded classification of disease subtypes is shown in Table 1.3 (Galiè et al., 2015). 

The research presented in this thesis is primarily focussed on Group 1 (Pulmonary Arterial 

Hypertension) and Group 4 (Chronic Thromboembolic Pulmonary Hypertension), which are 

described further in sections 1.8-1.13 and 1.15-1.16. 
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Table 1.3- Clinical classification of Pulmonary Hypertension.  

1. Pulmonary arterial hypertension (PAH)  
 

1.1 Idiopathic  
1.2 Heritable  
1.2.1 BMPR2 mutation  
1.2.2 Other mutations  
1.3 Drugs and toxins induced  
1.4 Associated with:  
1.4.1 Connective tissue disease  
1.4.2 HIV infection  
1.4.3 Portal hypertension  
1.4.4 Congenital heart disease  
1.4.5 Schistosomiasis  
1’. Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis  
1”. Persistent pulmonary hypertension of the newborn  
 

2. Pulmonary hypertension due to left heart disease  
 

2.1 Left ventricular systolic dysfunction  
2.2 Left ventricular diastolic dysfunction 
2.3 Valvular disease obstruction and congenital cardiomyopathies 
2.4 Congenital/acquired left heart inflow/outflow tract obstruction and congenital 
cardiomyopathies 
2.5 Other  
 

3. Pulmonary hypertension due to lung diseases and/or hypoxia  
 

3.1 Chronic obstructive pulmonary disease  
3.2 Interstitial lung disease  
3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern  
3.4 Sleep-disordered breathing  
3.5 Alveolar hypoventilation disorders  
3.6 Chronic exposure to high altitude  
3.7 Developmental lung diseases  
 

4. Chronic thromboembolic pulmonary hypertension and other pulmonary artery obstructions  
 

4.1 Chronic thromboembolic pulmonary hypertension  
4.2 Other pulmonary artery obstructions  
 

5. Pulmonary hypertension with unclear and/or multifactorial mechanisms  
 

5.1 Haematological disorders 
5.2 Systemic disorders 
5.3 Metabolic disorders  
5.4 Others 
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1.7 Relationship between the right ventricle and pulmonary circulation 

The function of the right ventricle (RV) is intricately linked with the function of the pulmonary 

circulation (Pinsky, 2016, Champion et al., 2009). Compared to the left ventricle, which needs to 

generate sufficient pressure to perfuse the whole systemic circulation, the right ventricle usually has 

to generate a much lower pressure to perfuse the pulmonary vasculature.  

However, in pulmonary arterial hypertension, where there is a sustained increase in pulmonary 

vascular resistance, the increase in RV afterload necessitates a compensatory increase in RV systolic 

pressure. Chronic pressure overload of the RV results in initial hypertrophy, but with increasing 

afterload the RV is overwhelmed, leading to decompensation (Champion et al., 2009, Vonk 

Noordegraaf and Galiè, 2011, Naeije and Manes, 2014).  

Decompensation is characterised by dilatation, reduced ejection fraction and a drop in cardiac 

output (Figure 1.1). Development of RV failure is strongly associated with poor prognosis in PAH and 

this is the primary mechanism of death in the disease (Forfia et al., 2006, Ghio et al., 2011, Raymond 

et al., 2002, Vonk Noordegraaf and Galiè, 2011).  

The reduction in cardiac output is further exacerbated by the mechanical effects of the RV on the 

left heart, where compression of the left heart by the dilated, pressure and volume overloaded right 

heart impairs left ventricular filling and results in further drop in cardiac output (Puwanant et al., 

2010, Chua et al., 2013, Naeije and Manes, 2014). 

 

 

 

 

 

 

 

 



Kasia Isabel Zalewska  MD Thesis 

21 

 

 

Figure 1.1-Progression of pulmonary vascular disease and subsequent effect on RV function. Schematic showing 
the theoretical progression of pulmonary vascular disease: as pulmonary vascular resistance progressively 
resistance increases, RV remodelling and subsequent RV failure occur (adapted from Champion et al., 2009). 

 

 

1.8 Group 1 - Pulmonary Arterial Hypertension 

Pulmonary arterial hypertension (clinical classification group 1) is a rare condition with an annual 

incidence of 1.1 cases per million population in the UK, a prevalence of 6.6 cases per million (Ling et 

al., 2012). Median age at diagnosis is 50 years (Ling et al., 2012). It is defined by the presence of pre-

capillary pulmonary hypertension (mPAP ≥ 25mmHg and PCWP ≤ 15 mmHg) with PVR >3 Wood 

units, in the absence of other causes of PH such as lung disease and chronic thromboembolic disease 

(Hoeper et al., 2013b). Within group 1 (PAH) there are a number of subtypes, defined by the 

presence or absence of associated features or a genetic basis for the disease (see Table 1.3).  

1.9 PAH diagnosis and treatment 

Although non-invasive investigations may suggest the presence of pulmonary arterial hypertension, 

unlike systemic blood pressure, there is no non-invasive way of accurately determining pulmonary 

circulation haemodynamics. Confirmation of the diagnosis can only be made by specialist 
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assessment which includes invasive measurement of haemodynamics by right heart catheterisation 

(Galie 2015). There is no non-invasive test or biomarker which can reliably diagnose PAH. 

Existing treatment of the disease centres on the use of drugs which primarily act as vasodilators, 

with some drugs also demonstrating weak anti-proliferative effect. Currently available treatments 

include prostacyclin pathway agonists, endothelin receptor antagonists and phosphodiesterase 5 

inhibitors, calcium channel blockers and a guanylate cyclase stimulant (Lang and Gaine 2015) (Figure 

1.2). These treatments primarily focus on reducing pulmonary vascular resistance, thereby reducing 

right heart strain, delaying or ameliorating right heart failure and improving cardiac output. 

However, they do not arrest or reverse the underlying vascular remodelling process. 

 

Figure 1.2- Involvement of the endothelin, nitric oxide and prostacyclin pathways in the pathogenesis of 
pulmonary arterial hypertension. In the endothelin pathway, the effects of endothelin (ET)-1 are mediated via 
the ETA and ETB receptors. Receptor binding leads to activation of phospholipase-C and mobilisation of calcium, 
resulting in vasoconstriction. Selective and dual endothelin receptor antagonists (ERAs) inhibit this pathway. In 
the pulmonary artery the prostanoid receptors IP, EP3 and TP regulate vessel tone. The prostacyclin pathway 
involves prostacyclin binding to the IP receptor, which belongs to a family of prostanoid target receptors. 
Prostanoid binding to the IP receptor induces adenylate cyclase activity, cAMP production and ultimately 
reduction of Ca2+ concentrations, and leads to vasodilation. TP binding activates phospholipase C, mediating 
mobilisation of calcium and vasoconstriction. EP3 receptor binding leads to a decrease in cAMP, which blocks 
vasodilation. Prostacyclin analogues activate this pathway (EP3 pathway). The nitric oxide (NO) pathway involves 
the production of cGMP, which leads to inhibition of calcium entry, resulting in vasodilation. Phosphodiesterase 
type 5 inhibitors (PDE-5i) and soluble guanylate cyclase (sGC) stimulators activate this pathway (figure 
reproduced from Lang and Gaine, 2015).   
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1.10 Heritable PAH 

Heritable pulmonary arterial hypertension (HPAH) refers to pulmonary arterial hypertension 

occurring due to mutations in predisposing genes or in a familial context. In 2000, mutations in 

BMPR2 (bone morphogenetic protein receptor type 2) were identified as the first known genetic 

variant predisposing to PAH (Lane et al., 2000, Deng et al., 2000). Mutations in this gene remain the 

most common genetic abnormality implicated in cases of HPAH. Pathogenic mutations vary in nature 

(e.g. deletion, missense, duplication or nonsense mutation) but all result in a loss of function. The 

ultimate consequence of this loss of function is an adverse response of the pulmonary circuit to 

injury, with increased endothelial cell susceptibility to apoptosis and loss of inhibitory effects of 

BMPR2 upon vascular proliferation (Teichert-Kuliszewska et al., 2006). 

BMPR2 mutations implicated in PAH are transmitted as an autosomal dominant trait with 

incomplete penetrance and are found in around 80% of cases where there is familial PAH. However, 

only 20-30% of those with a mutation develop the disease and therefore it is thought that a ‘second 

hit’ is required (Fessel et al., 2011, Austin and Loyd, 2014).  BMPR2 mutations are also found in 

seemingly sporadic cases of PAH, where it has either not manifested in relatives due to the low 

penetrance, or occurs as a de novo mutation. 

Although BMPR2 mutations associated with HPAH are germline in nature and therefore distributed 

throughout bodily cells, the pathology caused by BMPR2 mutations appears to be localised to the 

pulmonary vasculature. The reasons for this lung-specific susceptibility remain unclear. PAH patients 

with a BMPR2 mutation are less likely to respond to vasodilator treatment (Rosenzweig et al., 2008), 

develop clinical manifestations of the disease at a younger age, have more severe haemodynamics 

and a worse prognosis (Sztrymf et al., 2008). 

To date, a number of other genes implicated in PAH have also been identified including ALK 1 

(Harrison et al., 2003), endoglin (Pousada et al., 2016), BMPR1B (Chida et al., 2012), NOTCH3  (Chida 

et al., 2014), CAV1 (Austin et al., 2012), CBLN2 (Germain et al., 2013) and KCNK3 (Ma et al., 2013). 

This is an area of continuing interest and it is likely that more cases than are currently recognised 

involve genetic mutations or genetic modifiers.  

 

1.11 Idiopathic PAH: Epidemiology, clinical presentation and natural history 

Idiopathic pulmonary arterial hypertension (IPAH) is a diagnosis of exclusion and refers to cases of 

pulmonary arterial hypertension in which no underlying cause can be identified. IPAH shows a 
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female predominance with the disease being 2-4 times more common in women as in men (Badesch 

et al., 2010, Frost et al., 2011). There are no apparent ethnic differences in incidence.  

Presentation of IPAH is often insidious, with non-specific symptoms including breathlessness, 

exercise intolerance, fatigue, palpitations, chest pain, dizziness, syncope and oedema. The rare 

nature of the disease, along with lack of early distinguishing features, means that the condition may 

not be recognised without a high index of suspicion. As a consequence, diagnosis and initiation of 

treatment is often delayed (Ling et al., 2012), and the disease is most frequently diagnosed when it is 

already at an advanced stage (Humbert et al., 2010). Although survival rates have improved over the 

last 20 years, there are no curative treatments for IPAH and long-term prognosis remains poor 

(D'Alonzo et al., 1991, Strange et al., 2017, Peacock et al., 2007, Humbert et al., 2010).  

 

1.12 Idiopathic PAH- Pathobiology    

IPAH is a vasculopathy characterised by remodelling of the small pulmonary arteries ≤500 µm in 

diameter (Figure 1.3). Remodelling affects all the vessel layers- endothelium, neointima, media and 

adventitia and involves endothelial cell, fibroblast and vascular smooth muscle cell activation and 

proliferation (Tuder et al., 1994, Pietra, 1994, Dorfmüller, 2013). Ultimately this process results in 

reduction of the luminal diameter and altered function of the vascular endothelium.  

Characteristic histological lesions which are found in the small muscular pulmonary arteries in IPAH 

include: 

1. Medial hypertrophy/hyperplasia 

Increased muscularity of the vessel develops by enlargement and proliferation of smooth 

muscle cells within the tunica media. In health, the cross-sectional diameter of a single layer 

of the media is approximately 5% of the thickness of the external vessel diameter, but in 

PAH this is increased to >10% of the vessel diameter.  

 

2. Thickening and fibrosis of the intima 

Normally in health, the intima consists of a single layer of endothelial cells overlying the 

internal elastic lamina. In the disease, thickening and fibrosis occurs due to migration and 

proliferation of fibroblasts and myofibroblasts, with subsequent collagen deposition. This 

thickening may be concentric (with layers resembling an onion skin) or eccentric. 
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3. Complex vascular lesions 

a) Plexiform lesions - the classical vascular lesion in IPAH, consisting of disorganised 

proliferation of endothelial cells to form a capillary like plexus of channels. They are 

often located at arterial branching points.  

b) Dilatation lesions - vein-like dilated vessels, most frequently found distal to plexiform 

lesions. In contrast to the muscular arteries which precede them, they have very thin 

walls. Occasionally, extremely dilated branches may cluster together and are referred to 

as angiomatoid lesions. 

c) Classical arteritis - this is rare and is manifest by fibrinoid necrosis of the vessel walls.  

 

The factors which precipitate and propagate this abnormal vascular remodelling remain unclear. 

However, there is mounting evidence to suggest a role for inflammation, immune disturbances and 

metabolic alterations in the disease. This is discussed further in Section 1.18 and 1.19. 

 

Figure 1.3- Histopathology of IPAH.  Haematoxylin and eosin staining of; a) normal small pulmonary artery b) 
remodelled vessel in IPAH c) lung section containing remodelled pulmonary artery and plexiform lesion.  Images 
courtesy of Mark Southwood, Papworth Hospital. 
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1.13 Clinical phenotypes in IPAH  

The population of patients classified as having IPAH is clinically heterogenous. Different disease 

phenotypes within the IPAH population are evident and individuals with the disease differ 

significantly in haemodynamic profile, responses to treatment and clinical outcomes (Ling et al., 

2012, Hoeper and Gibbs, 2014, Dweik et al., 2014, Halliday and Hemnes, 2017). 

The mean age of diagnosis varies significantly among different cohorts (Idrees et al., 2015, Badesch 

et al., 2010, Frost et al., 2011, Humbert et al., 2006). However, registries suggest that the mean age 

at diagnosis is increasing and there is a growing proportion of elderly male patients being diagnosed 

with IPAH (McGoon et al., 2013, Frost et al., 2011, Ling et al., 2012). Therefore, the classical 

description of IPAH as a disease typically affecting young women is changing. 

Younger patients have been noted to have more severe hemodynamic impairment but better 

survival, compared with older patients who have more comorbidities, including systemic 

hypertension, hyperlipidaemia, obesity and type 2 diabetes mellitus (Ling et al., 2012). Age-related 

changes in the pulmonary and cardiovascular systems are likely to play some part in the differences 

observed. These changes include progressive decline in lung function, systemic vascular stiffening 

and decreased left ventricular compliance leading to LV diastolic dysfunction. LV diastolic 

dysfunction with preserved systolic function (HEFPEF) can be difficult to clinically discern, and in 

older individuals it can be challenging to  discriminating true pulmonary vasculopathy from the 

consequences of ageing and comorbidities (Lam et al., 2009). 

Over recent years there has been a shift towards identifying different patient phenotypes in various 

diseases. Examples of this include asthma and COPD (Miravitlles et al., 2013, Wenzel, 2012) where 

disease phenotyping is being increasingly used to tailor treatment. In this evolving era of 

‘personalised medicine’, improved characterisation of different IPAH phenotypes may enhance our 

ability to understand subgroups within this heterogeneous disease classification and may lead to 

more targeted and personalised approaches to treatment. This is discussed further in section 1.14. 
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1.14 Future directions in PAH 

1.14.1 Disease specific biomarkers 

Despite expansion of treatment options for PAH over the last 30 years, prognosis remains poor. Due 

to the insidious and non-specific nature of presenting symptoms, there is often significant delay 

between symptom onset and diagnosis (Strange et al., 2013). Early detection and treatment have 

been shown to improve outcomes (Humbert et al., 2010), but remains challenging. 

Unfortunately, there is no biomarker available for clinical use which is specific for PAH, nor any 

biomarker which can reliably identify early or pre-clinical disease.  

Diagnosis relies on assessment of haemodynamics by right heart catheterisation, which is not only 

invasive, but is costly and requires expertise.  A number of non-invasive investigations are used in 

subsequent longitudinal follow up (such as 6MWD, echocardiography and blood BNP or NT-proBNP 

level), however, there are significant limitations associated with the use of these methods (Galiè et 

al., 2015), necessitating repeated cardiac catheterisation in many cases. 

For example, although BNP correlates with haemodynamics, exercise capacity and survival in PAH 

(Leuchte et al., 2004, Nagaya et al., 2000), it is not disease specific, being elevated in a wide range of 

conditions causing cardiac failure and is affected by other factors such as renal function (Balion et 

al., 2008). In essence, BNP is only a surrogate marker for PAH, reflecting the RV dysfunction which 

occurs in established disease, rather than the primary vascular bed pathology. This limits its 

usefulness in detecting early or pre-clinical disease or differentiating PAH from left heart disease 

other causes of cardiac failure. 

As a result of the limitations of existing biomarkers, there has been increasing interest in the 

identification and development of new, disease specific biomarkers for PAH. 

Historically, biomarker discovery research has focussed upon a single molecule or pathway. 

However, the expectation that a single biomarker can unambiguously identify a disease appears 

increasingly simplistic.  More recently, there has been a paradigm shift towards a ‘systems biology’ 

approach, which recognises that diseases involve the dysregulation of multiple gene regulatory 

networks, proteins, and metabolic processes (Chan and Loscalzo, 2012). Adopting this approach 

allows identification of multiple compounds that correlate with a disease state and characterise a 

disease ‘signature’. Thus, identification of different signatures within the spectrum of PAH may play 

an important future role in disease phenotyping. 
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1.14.2 Disease phenotyping and personalised medicine 

The current clinical classification of pulmonary hypertension fails to adequately characterise the 

diversity of clinical phenotypes. This is particularly apparent in IPAH (see section 1.13). By nature of 

being a diagnosis of exclusion, the IPAH group is likely to represent a range of underlying disease 

subtypes. 

There is considerable heterogeneity found in clinical practice. For example, the RV response to the 

presence of pulmonary hypertension differs between individuals with the same haemodynamic 

profile, with some quickly developing decompensated right heart failure and others being stable for 

many years (adaptive vs maladaptive clinical phenotype) (Dweik et al., 2014).  A further example is 

the difference between older and younger patients with PAH- the older cohort being characterised 

by a higher incidence of LV diastolic dysfunction and vascular stiffness (Ling et al., 2012). Patients 

also vary considerably in terms of response to therapies (Humbert et al., 2010, Benza et al., 2010, 

Sitbon et al., 2005, Sitbon et al., 2002). 

The ability to identify different phenotypes within this heterogeneous syndrome may be useful for 

prognostication and for customising treatment (Dweik et al., 2014, Brittain and Chan, 2016). 

Additionally, integration of data obtained using a number of different analytical strategies (for 

example genomics, proteomics and metabolomics) allows more extensive characterisation of 

phenotypes (‘deep phenotyping’), with further potential to advance mechanistic understanding of 

the disease and improve the targeting of therapies. 

 

1.14.3 National Cohort Study of Idiopathic and Heritable PAH (COHORT) 

The National Pulmonary Hypertension Centres of the UK and Ireland have established a research 

network to study factors which may be implicated in PAH development. The National Cohort Study 

of Idiopathic and Heritable PAH (COHORT) study involves longitudinal follow-up of patients and 

healthy relatives. As part of the study, participants undergo whole genome sequencing to look for 

genetic mutations which may be associated with PAH. 

The aim of this is to provide a more complete understanding of the genetic contribution to PAH, and 

how genetic factors influence response to treatment and clinical outcomes. Additionally, this study 

will assess for environmental triggers which may be involved in the development of PAH. It is 

anticipated that in addition to identifying new genetic variants which contribute to PAH 

development, this research may identify genetic prognostic markers and new therapeutic targets.  
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1.15 Group 4 – CTEPH: Epidemiology, clinical presentation and natural history 

Chronic thromboembolic pulmonary hypertension (CTEPH) is thought to result from failure of 

thrombus resolution in the pulmonary arteries with subsequent fibrosis and vascular remodelling 

(Lang et al., 2016).  

CTEPH is an uncommon complication of pulmonary thromboembolism. The incidence of CTEPH 

following an acute pulmonary embolus (PE) is estimated to be 1–4.8% within the first 2 years after a 

symptomatic PE event (Pengo et al., 2004, Talati et al., 2016). Diagnosis is based on findings 

obtained after at least 3 months of effective anti-coagulation, in order to discriminate from 

‘subacute’ PE. European registry data reported a history of previous acute PE in 74.8% of 

CTEPH patients (Pepke-Zaba et al., 2011). However, in a proportion of individuals, the disease may 

occur in the absence of a definite history of acute PE. It is unknown why some individuals develop 

chronic occlusion of the pulmonary vasculature after an acute pulmonary embolus, whereas others 

do not. However, a number of factors are known to predispose to abnormal thrombus resolution 

(Table 1.4) (Piazza and Goldhaber, 2011, Kim and Lang, 2012, Lang et al., 2013, Bonderman et al., 

2009). 

As with other types of pulmonary hypertension, persistently elevated pulmonary vascular resistance 

ultimately results in right heart failure. However, there is a curative treatment available for CTEPH- 

pulmonary endarterectomy. This involves surgical removal of the organised fibrous material from 

the lumen of proximal occluded vessels (Figure 1.4) along with resection of the neointima, whilst 

under cardiopulmonary bypass (Jenkins, 2015). In experienced centres, operative mortality is <5% 

(Jamieson et al., 2003) with very favourable long term clinical outcomes (Delcroix et al., 2016).  

 



Kasia Isabel Zalewska  MD Thesis 

30 

 

 

Figure 1.4- Pulmonary endarterectomy specimen.  Organised fibrotic chronic vascular occlusion, removed from 

the pulmonary arteries during pulmonary endarterectomy. (Image courtesy of Mr David Jenkins, Papworth 

Hospital). 

 

In inoperable cases where disease is in surgically inaccessible sites, patients may be treated with 

medical vasodilator therapies (Galiè et al., 2015). These therapies may also be used in cases where a 

patient is deemed unsuitable for surgery due to comorbidities or those in whom distal arteriopathy 

is thought to be the principal contributor to elevated pulmonary vascular resistance. More recently, 

the technique of balloon pulmonary angioplasty has been developed, providing an additional 

therapeutic option for selected CTEPH patients (Sato et al., 2016).  
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Table 1.4- CTEPH risk factors. 

PE related factors  

• Recurrent, unprovoked or idiopathic PE 
• Large perfusion defects when PE was detected 
• Younger or older age when PE was detected 
• PASP >50 mmHg at PE first manifestation  

Haematological factors 

• Lupus anticoagulant or antiphospholipid antibodies 
• Dysfibrinogenaemia 
• ABO blood groups other than O 
• Increased factor VIII 
• Increased lipoprotein(a) 
• Protein S and C deficiency 
• Anti-thrombin III deficiency 
• Activated Protein C resistance 
• Factor V Leiden mutation, prothrombin gene mutation 

Other medical conditions 

• Infected pacemaker or defibrillator leads, VA shunt 
• Splenectomy 
• Chronic inflammatory disorders (e.g. Inflammatory bowel disease, RA) 
• Hypothyroidism 
• Cancer 

 

 

1.16 CTEPH pathobiology 

The characteristic histological finding in CTEPH is occlusion of the proximal pulmonary arteries by 

eccentric, irregular intimal fibrosis and intravascular fibrous septa. Small areas of recanalisation in 

occluding organised thrombus may also be found, referred to as “colander” lesions (Wagenvoort, 

1995, Lang et al., 2016, Simonneau et al., 2017).  

In contrast with PAH, hyperplasia of the vessel media is not a significant feature (either mild or 

absent). However, it is recognised in addition to the occlusion of the large proximal pulmonary 

arteries in CTEPH, a distal arteriopathy is found in the arterioles and capillaries downstream. (Lang et 

al., 2016, Simonneau et al., 2017). These vessels show some similar changes to advanced PAH. 

Therefore, the increase in vascular resistance which occurs in CTEPH is not only due to the proximal 

fibrous occlusions, but also related to vascular dysfunction distal to the occluded arteries.  
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1.17 Chronic thromboembolic pulmonary vascular disease (CTED) 

Chronic thromboembolic disease (CTED) is characterised by pulmonary vascular thromboembolic 

occlusions that persist despite anti-coagulation, without development of pulmonary hypertension.  

Currently the natural history of CTED is poorly defined, but it is thought that CTED and CTEPH share 

the same underlying aetiology, and these two conditions may be considered as different ends of a 

spectrum of disease which results from failure of normal resolution of acute pulmonary emboli.  

As routine follow up imaging after acute pulmonary embolism is not commonplace, the true 

prevalence of this condition is unknown. However, it is apparent that a significant proportion of 

individuals who suffer a symptomatic pulmonary embolus are left with persistent perfusion defects 

on imaging after at least 3 months of anticoagulation (Cosmi et al., 2011, Wartski and Collignon, 

2000). The incidence may be as high as 50% (Nijkeuter et al., 2006), with larger initial clot burden 

increasing the likelihood of persistent perfusion defects (Alhadad et al., 2012). It is not clear why 

some patients with chronic unresolved pulmonary emboli develop PH and others do not, despite a 

similar burden of vascular occlusion seen on imaging.  

Although many individuals with CTED will be asymptomatic, a proportion suffer symptomatic 

limitation, despite a mPAP below the diagnostic cut-off for PH and normal cardiac chamber size. 

These individuals have been shown to have impaired adaptation to exercise with delayed right 

ventricular relaxation and inefficient gas exchange on exertion (McCabe et al., 2013, McCabe et al., 

2014). In contrast to CTEPH, pulmonary endarterectomy is not routinely recommended for patients 

with CTED. However, in carefully selected cohorts of CTED patients, pulmonary endarterectomy may 

result in improvement in symptoms and quality of life (Taboada et al., 2014).  

 

1.18 The Immune Hypothesis: Inflammation and immunity in PAH  

The association of PAH (particularly IPAH) with immune dysregulation has long been recognised 

(Rich et al., 1986, Asherson et al., 1984). However, the role of immune dysfunction in the disease 

pathogenesis remains poorly understood. Evidence of inflammation is frequently observed in the 

vascular lesions in PAH. It is uncertain whether this is of pathogenic importance or occurs as an 

epiphenomenon of the disease process. Other evidence indicating a role for inflammation and 

systemic immune disturbance in the disease process includes an association with connective tissue 

diseases (CTD) and other autoimmune conditions, increased frequency of circulating autoantibodies 

in individuals with PAH, increases in pro-inflammatory cytokines and abnormalities in circulating 

immune cells in peripheral blood. These aspects are further discussed in this section. 
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1.18.1 Local histological changes in the lung 

Structural changes are found in PAH lungs consistent with an inflammatory mediated immune 

response. Changes within the arterial wall have been reported including elevated levels of RANTES 

(an important chemoattractant for monocytes and T‐cells) and the presence of T lymphocytes 

(Dorfmüller et al., 2002), and increased numbers of dendritic cells in the arterial wall (Perros et al., 

2007). 

In addition to changes within the vessel wall, perivascular changes are also present. Infiltrates 

consisting of B and T lymphocytes and macrophages are found around the diseased vessels (Fig 1.5) 

(Tuder et al., 1994), with subsequent formation of tertiary lymphoid follicles (Fig 1.5) (Perros et al., 

2012). Lymphoid neogenesis in the target organ is considered to be a hallmark of autoimmune 

diseases. For example, this feature is found in the joints and lungs in rheumatoid arthritis, the 

pancreas in autoimmune diabetes and salivary glands in Sjogren’s syndrome (Pitzalis et al., 2014). 

This suggests that pulmonary lymphoid neogenesis in IPAH represents a local immune response to 

threat by pathogen or antigen in the lungs.  

Additionally, in the peripheral lung of IPAH patients, 4-fold increases in the number of CD3+/CD8+ T 

lymphocytes have been reported, compared to healthy controls (Austin et al., 2010b). These 

changes were not limited to the areas of vascular remodelling, suggesting a more widespread 

process of immune activation in the lung. 

 

Figure 1.5- IPAH lung tissue histology. Haematoxylin and eosin examination of lung biopsy specimens from 
patients with IPAH; a) plexiform lesion with strong, mainly lymphocytic perivascular inflammatory infiltrate 
(Dorfmüller et al., 2003), b) lymphoid follicles adjacent to remodelled vessels (Perros et al., 2012). 

 



Kasia Isabel Zalewska  MD Thesis 

34 

 

1.18.2 Association with inflammatory states and autoimmune conditions 

Pulmonary arterial hypertension occurs as a secondary complication to many connective tissue 

diseases such as systemic sclerosis where there is a reported prevalence of 8-14%, (Hachulla et al., 

2005), systemic lupus erythematosus where prevalence is 0.5-14% (Haas, 2004) and others including 

mixed connective tissue disease (MCTD), polymyositis and primary Sjogren’s syndrome. PAH is also 

associated with other immune-mediated conditions including HIV (Schwarze-Zander et al., 2015), 

and schistosomiasis (Mauad et al., 2014). 

For over 30 years, the hypothesis that autoimmune mechanisms may be implicated in IPAH has been 

suggested (Holt et al., 1980), with speculation that IPAH is an autoimmune disease localised to the 

pulmonary vasculature. Indeed, there are a number of features in common between IPAH and 

autoimmune conditions. For example, both IPAH and autoimmune conditions traditionally show a 

female predominance and similar age distribution. The percentage of female IPAH patients is 60-83% 

according to various registries (McGoon et al., 2013). Additionally, there is a higher prevalence of 

autoimmune conditions in those with IPAH, suggesting a common immunogenetic susceptibility. In 

particular, there is a high prevalence of autoimmune thyroid disease in IPAH, which is 3-4 times 

greater than in age and sex matched cohorts (Wawrzyńska et al., 2004).  

 

1.18.3 Circulating autoantibodies 

Many autoantibodies are detected with increased frequency in IPAH, including anti-nuclear 

antibodies, anti-ssDNA, anti-phospholipid and anti-Ku antibodies (Rich et al., 1986). More recently, 

circulating autoantibodies directed against endothelial cells and fibroblasts have been detected in 

the serum of patients with IPAH and SSc-PAH (Tamby et al., 2005, Tamby et al., 2006), adding 

additional weight to the theory that autoimmune mechanisms are implicated in abnormal vascular 

remodelling.  

 

1.18.4 Circulating immune cell abnormalities 

1.18.4.1 Lymphopenia 

A high prevalence of peripheral blood lymphopenia amongst various PH subtypes has been reported 

(Ulrich et al., 2006). However, the mechanism responsible for this and the role of lymphopenia in 

PAH pathobiology has not been explored. It is unclear whether lymphopenia may be implicated in 

the disease pathogenesis, whether it is secondary to heart failure, the treatment of the disease or 

whether it is an epiphenomenon of the chronic disease process.  
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Lymphopenia has recognised associations with immune-mediated conditions such as Sjogren’s 

syndrome (Kirtava et al., 1995), SLE (Hochberg, 1997), Wegener’s granulomatosis (Izzedine et al., 

2002) and Rheumatoid Arthritis (Duquenne et al., 2015). In these diseases, peripheral blood 

lymphopenia may occur by a number of mechanisms including: reduced lymphocyte production due 

to bone marrow suppression, increased destruction through defective production or stress from 

unresolved antigenic stimulation, anti-lymphocyte antibodies and changes in lymphocyte 

distribution in intravascular and organ compartments. 

Manipulations that generate functional T cell lymphopenia in animal models result in the 

development of a variety of autoimmune diseases (Barrett et al., 1995), thought to occur by allowing 

expansion of autoreactive T cells. Similarly, in an animal model of pulmonary hypertension, absence 

of T cells promotes development of the disease and vascular remodelling (Taraseviciene-Stewart et 

al., 2007), raising the question as to whether T cell deficiency may facilitate or potentiate 

development of pulmonary arterial hypertension. 

 

1.18.4.2 T Lymphocytes 

There has been particular focus on regulatory T cells in IPAH, which play an important role in 

maintaining self-tolerance and preventing inappropriate autoimmune responses by suppressing 

activation and expansion of self-reactive T cells. They are qualitatively and/or quantitatively deficient 

in many autoimmune conditions such as SLE, RA, graft versus host disease and multiple sclerosis 

(MS) (Bonelli et al., 2008). Increases in circulating regulatory T cells in the peripheral blood in IPAH 

have been reported in some studies (Ulrich et al., 2008a, Sada et al., 2016), whereas others have 

demonstrated deficiencies in Treg function (Huertas et al., 2012, Huertas et al., 2016). 

Abnormalities in CD8+ T cells have also been reported, although results have been conflicting. Austin 

et al. reported significant increase in CD45RA+CCR7- cytotoxic effector memory cells and reduction 

in CD45+CCR7+ naïve CD8+ cells (Austin et al., 2010a). These findings were not replicated by Ulrich 

and colleagues who in fact found CD8+ T lymphocytes to be globally diminished in IPAH compared to 

controls (Ulrich et al., 2008a). 

1.18.4.3 B lymphocytes, Natural Killer cells, monocytes and dendritic cells 

Perturbations in other circulating immune cell subsets have also been reported, including altered 

gene expression by peripheral blood B lymphocytes suggesting B cell activation (Ulrich et al., 2008b), 

reduced activation of monocytes (Raychaudhuri et al., 2002a) and impaired natural killer cell 

phenotype and function (Ormiston et al., 2012). 
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1.18.4.4 Association with haematological conditions 

PAH is found to occur in association with POEMS syndrome (Wang et al., 2017, Li et al., 2013) and 

multicentric Castleman’s disease (Bull et al., 2003), raising the possibility of mechanistic links 

between these lymphoproliferative disorders and pulmonary vasculopathy. There has been some 

speculation that development of PAH in this setting may be a cytokine mediated process, which may 

be ameliorated by immunomodulatory therapy (Taniguchi et al., 2009). 

 

1.18.5 Cytokines, chemokines and C- reactive protein 

Cytokines in the lung are integral to the initiation and maintenance of immune and inflammatory 

responses. High levels of pro-inflammatory cytokines such as IL-1, IL-6 and TNF alpha are found in 

patients with IPAH and CTD associated PAH (Humbert et al., 1995), and correlation between the 

levels of inflammatory cytokines and survival in IPAH and familial PAH has been demonstrated (Soon 

et al., 2010). 

Elevated levels of inflammatory chemokines including CX3CL1 (Balabanian et al., 2002), MIP1α 

(Fartoukh et al., 1998) and CCL2 (Sanchez et al., 2007) have also been reported in IPAH.  Additionally, 

levels of C reactive protein (CRP) are increased in PAH, with higher levels predicting worse response 

to therapy and decreased survival (Quarck et al., 2009). 

 

1.18.6 Viral infection and PAH 

A causal relationship between viral infection and development of PAH has not been established, 

however there is speculation that viral infection of pulmonary endothelial cells could be the trigger 

for initial apoptosis and subsequent angiogenic activity and proliferation (Cool et al., 2011). There 

are recognised associations between HIV infection and PAH, which develops in 0.5% individuals with 

HIV (Sitbon et al., 2008). It is plausible that viral infection may lead to exposure of epitopes not 

normally exposed and thereby trigger an autoimmune response, or that infection and associated 

inflammation provide a permissive environment for other initiating factors. 

 

1.18.7 Therapeutic targeting of inflammation and immune dysfunction in PAH 

There is some evidence to suggest that current drug therapies used in PAH treatment play a role in 

modulating the inflammatory components of PAH, in addition to their vasodilatory effects. 

Treprostinil has been demonstrated to inhibit inflammatory cytokine secretion and gene expression 
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by alveolar macrophages from healthy human volunteers (Raychaudhuri et al., 2002b) and in 

children, epoprostenol and bosentan have been found to reduce endothelial HLA-DR expression 

(Hall et al., 2009). 

In animal models of PH, a number of anti-inflammatory and immunomodulatory treatments 

including glucocorticoids (Price et al., 2011), mycophenolate mofetil (Suzuki et al., 2006), rapamycin 

(Houssaini et al., 2013), triptolide (Faul et al., 2000) and the TNFα inhibitor etanercept (Sutendra et 

al., 2011) have been shown to attenuate development of the disease. Unfortunately, many agents 

which have shown promise in animal models do not result in similar success in humans with the 

disease. However, in humans there have been reports of significant improvement in PAH associated 

with CTD (particularly SLE) after immunosuppressive treatment, and in some cases even complete 

reversibility of PAH (Jais et al., 2008), demonstrating that effective treatment of the inflammatory 

condition can ameliorate the associated PAH. 

Recent attention has been given to a potential role for tyrosine kinase inhibitors in attenuating 

pulmonary arterial remodelling. Similarly, despite promising effects in animal models (Schermuly et 

al., 2005), this success has not been replicated in human clinical trials. Imatinib as an add-on therapy 

in patients already on dual targeted therapy resulted in only a modest improvement in clinical 

outcomes and drug discontinuations were high, with significant serious adverse events (Hoeper et 

al., 2013a). Therefore, the search continues for new therapies which can effectively target immune 

and inflammatory mechanisms in PAH. 

It is clear that inflammatory and immune responses contribute to the abnormal vascular remodelling 

which is central to development and progression of the disease. However, major questions remain 

unanswered, including: What triggers and propagates the abnormal host immune and inflammatory 

responses? Is autoimmunity implicated in this response? Why is the response localised to the 

pulmonary vasculature? Can we characterise immune profiles which identify patients who may 

respond to immunomodulatory treatment, allowing effective targeted therapy? 

 

1.19 The Metabolic Hypothesis: Metabolic dysfunction in PAH 

There is increasing evidence to suggest both local and systemic metabolic derangements in 

pulmonary arterial hypertension. However, it remains unclear as to whether metabolic 

abnormalities in PAH are fundamentally implicated in disease pathogenesis and progression or 

whether they are simply a marker of the disease process. 
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1.19.1 Changes in the metabolic function of the pulmonary circulation  

Early evidence of impaired metabolic function of the pulmonary circulation in pulmonary 

hypertension was provided by Sole and colleagues (Sole et al., 1979) who demonstrated impaired 

clearance of noradrenaline in PH. They found that clearance by the pulmonary circulation was <2% 

in PH compared to ~25% in healthy individuals (Sole et al., 1979). This was followed by a number of 

studies demonstrating altered metabolism of substances which play a key role in the disease 

pathobiology, such as the vasoconstrictor endothelin which may undergo both excess synthesis and 

reduced clearance (Dupuis et al., 1998, Langleben et al., 2006). Additionally, studies have confirmed 

that this metabolic dysfunction can be ameliorated by PAH therapies (Langleben et al., 1999). 

It must also be remembered that in addition to functional impairment of the vascular bed, the 

effects of raised pulmonary artery pressure and reduced cardiac output have consequences for 

distant organs. This includes ‘back pressure’ effects on liver and ‘forward pressure’ effects due to 

reduced cardiac output (thereby reduced perfusion of skeletal muscle, kidneys and other organs), 

which may also influence systemic metabolite profile. A key aspect in studying the metabolic 

function of the pulmonary circulation concerns the localisation of metabolic processes to the 

vasculature itself, which presents a number of challenges, which as discussed further in section 

1.19.3. 

 

1.19.2 Systemic metabolic abnormalities in PAH 

Although pulmonary arterial hypertension is considered a disease localised to the lung vasculature, 

there has been recent research suggesting more widespread metabolic disturbances. This includes 

alterations in energy metabolism and evidence that metabolic factors are implicated the way that 

the right heart adapts to stress.  

The hypothesis that PAH is a multi-organ metabolic disorder has recently emerged, with some 

researchers going as far as to suggest that global mitochondrial abnormalities may underpin the 

disease pathogenesis (Dromparis et al., 2010, Sutendra and Michelakis, 2014). This is supported by a 

number of studies in animal models, where metabolic changes predate development of elevated 

pulmonary pressures, and penetrance and severity of disease can be modulated by interventions 

against metabolic derangements (West et al., 2013, Rafikova et al., 2016, Michelakis et al., 2002).  
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1.19.2.1 Mitochondria in PAH 

In health, cellular energy metabolism predominantly consists of ATP production by oxidation of 

pyruvate in the mitochondria.  However, in PAH, mitochondria are hyperpolarised and their 

respiration is depressed, resulting in reduced mitochondrial ATP production and increased 

cytoplasmic glycolysis (Xu et al., 2007). 

This ‘glycolytic shift’ in cellular energy metabolism is akin to the metabolic change observed in 

proliferating cancers, known as the Warburg effect (Warburg, 1956). This is manifest by 

predominant energy production via glycolysis followed by lactic acid fermentation in the cytosol. The 

Warburg effect is considered an adaptive mechanism exhibited by rapidly proliferating cells that 

allows for unrestrained growth. Additionally, mitochondria-dependent apoptosis is suppressed in 

PAH; a further similarity with cancer cells (Archer et al., 2008). 

It is unclear whether the features observed are due to a primary intra-mitochondrial abnormality or 

a generalised extra-mitochondrial trigger that suppresses mitochondrial function, such as 

inflammation. In addition to being affected by systemic processes such as inflammation, the 

mitochondria themselves may have wider systemic effects besides those involved in energy 

metabolism by secretion of ‘mitokines’ and activation of the inflammasome NLPR3 (Kepp et al., 

2011). 

1.19.2.2 Insulin resistance and lipid profile in PAH 

Dysregulated glucose metabolism and insulin resistance have well recognised effects in the systemic 

circulation, where this phenotype is associated with an inflammatory environment and endothelial 

dysfunction. It is now apparent that these factors may act as a modifier of pulmonary vascular 

disease, contributing to more severe disease. Individuals with PAH have been shown to have 

increases in insulin and HbA1c and abnormal lipid profile, biochemically resembling the metabolic 

syndrome, although they are neither obese nor diabetic (Zamanian et al., 2009).  

 

1.19.2.3 Right ventricle metabolism 

RV response to chronic pressure overload may result in adaptive RV hypertrophy with relatively 

preserved ejection fraction or maladaptive changes characterised by RV ischaemia, dilatation and 

hypokinesis. The structural changes which occur in the right ventricle are accompanied by a change 

in energy utilisation. Under normal circumstances, fatty acid oxidation is the primary cardiac energy 

source, whereas glucose metabolism is a secondary source. In health, the RV can switch its energy 

utilisation from fatty acids to glucose as needed. However, in dysfunctional RVH there is persistent 
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reliance on glucose metabolism, characterized by decreased expression of genes involved in fatty 

acid and glucose oxidation and impaired mitochondrial respiration (Gomez-Arroyo et al., 2013). This 

increase in glycolysis can be demonstrated by increased uptake of FDG-PET (Wang et al., 2016a).  

Glycolysis in the context of ischaemia results in reduced contractility of RV myocytes, exacerbates RV 

impairment and worsens RV dysfunction, creating a vicious cycle. Therefore, in parallel with the 

altered cellular metabolism occurring in the PH pulmonary vasculature, right ventricular myocytes 

also develop an altered metabolic phenotype. (Piao et al., 2010).  It is also recognised that systemic 

metabolic derangements such as insulin resistance and the metabolic syndrome influence right 

ventricle structure and function (Tadic et al., 2011, Zamanian et al., 2012). Additionally, presence of 

BMPR2 mutation in animal models has been shown to affects RV stress response, with impaired RV 

hypertrophy and lipid deposition in the ventricle (Hemnes et al., 2014).  

 

1.19.3 Methods to assess the metabolic function of the pulmonary circulation  

1.19.3.1 Measurement of transpulmonary gradient of substances 

By comparing the nature and concentration of substances in blood prior to entering the pulmonary 

circulation with blood which has passed through the pulmonary circulation (e.g. pulmonary artery vs 

aorta), we can make inferences about the biological processes occurring in this circuit. The 

difference in the quantity of substances is referred to as the transpulmonary gradient. This 

technique has been used in assessing the gradient of a limited number of substances including 

endothelin, catecholamines and growth factors (Wilkens et al., 2003, Sole et al., 1979), and has been 

used to assess the effect of therapeutic agents on their target pathways (Langleben et al., 1999). 

 

1.19.3.2 Indicator dilution method  

This method is based upon detection of the amount of a particular substance which survives a single 

transpulmonary passage. It can be used to assess pulmonary endothelial ectozyme activity in vivo. It 

has predominantly been used to assess pulmonary endothelial ACE and endothelin receptor ETB 

activity. A radiolabelled substance is injected as rapid bolus into a central vein and arterial blood is 

simultaneously withdrawn by a peristaltic pump into a fraction collector. A ‘STOP’ solution is added 

to prevent further metabolic activity. The amount of radioactivity associated with the substrate 

which survived the transpulmonary passage is then quantified. 

For example, pulmonary endothelial ACE activity can be assessed using a radiolabelled synthetic 

peptide specifically metabolised by ACE (3H-BPAP) (Orfanos et al., 1999). PCEB-ACE is uniformly 
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distributed along the luminal endothelial surface; therefore, its activity can be used to assess 

functional capillary surface area. Pulmonary endothelial ACE dysfunction has been shown to be an 

index of lung vascular injury (Orfanos et al., 2000).  

 

1.19.3.3 Metabolic imaging- Detection of metabolic glycolytic shift using 18F-FDG PET 

Positron Emission Tomography (PET) scanning has developed as a useful tool in investigation and 

diagnoses of malignancies through detection of increased glucose metabolism demonstrated by 

cancer cells. This imaging modality has more recently been applied in a number of vascular diseases 

such as atherosclerosis (Rudd et al., 2002, Rudd et al., 2007) and large vessel vasculitis (Bucerius, 

2016), where inflammatory lesions display enhanced 18F-fluorodeoxyglucose (18F-FDG) uptake. 

In cell culture, IPAH pulmonary artery endothelial cells display higher rates of glycolytic metabolism 

(Xu et al., 2007). A number of studies have investigated whether FDG PET could be useful in non-

invasive assessment of the inflammatory remodelling and abnormal metabolism in PH. In animal 

models (murine monocrotaline and Sugen hypoxia PAH models), there is increased pulmonary 18F-

FDG uptake, which occurs early and correlates with disease severity (Marsboom et al., 2012). 

However, studies in humans have highlighted a number of difficulties in clinical application of 18F-

FDG PET scanning in pulmonary vascular disease. Although increased uptake of 18F-FDG tracer in 

IPAH lungs has been demonstrated, (Hagan et al., 2011) there is wide variability between subjects, 

heterogeneous distribution within the lungs and a lack of specificity for the lung vasculature (Hagan 

et al., 2011). Therefore, this strategy has not found practical clinical application in PAH. 

 

1.19.3.4 Metabolomics 

Traditionally, techniques to assess metabolism have been limited to a very narrow approach, usually 

targeted to a single substance or biochemical reaction.  However, recent technological advances in 

the field of metabolomics now permit simultaneous assessment of thousands of metabolites in a 

tissue, organ or system. This technology can be used in a targeted fashion to study particular 

metabolites of interest, or in an untargeted fashion to assess the ‘metabolome’ of a system. It 

provides a snapshot of a multiple interconnected metabolic processes and can be used to assess the 

changes in metabolite milieu that occur in a disease or in response to an intervention.  

Using an untargeted metabolomics approach, previously unrecognised metabolic derangements are 

being detected in many diseases. This is paving the way for advances in our understanding of 

complex disease processes, as well as aiding biomarker discovery, development of new diagnostic 
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tests, improved disease phenotyping and personalised therapies. For example, identification of 

hydroxybutyrate as an early biomarker for insulin resistance has resulted in development of the 

Quantose IR™ blood test, which is now used for clinical assessment, risk stratification and 

monitoring of patients and allows early targeting of disease modifying interventions (Milburn and 

Lawton, 2013) and metabolomics has been used to identify urinary metabolites which are sensitive 

markers of drug toxicity (Boudonck et al., 2009). 

In PAH, several recent studies have used metabolomics technology to identify metabolites and 

pathways which may be important in the disease pathobiology. In cultured human pulmonary 

microvascular endothelial cells expressing BMPR2 mutations, increases in aerobic glycolysis, 

upregulation of the pentose phosphate pathway, increases in nucleotide salvage and polyamine 

biosynthesis, decreases in carnitine and fatty acid oxidation and impairment of the TCA cycle have 

been demonstrated (Fessel et al., 2012). 

Metabolomic analysis of explanted lung tissue from patients with very advanced pulmonary arterial 

hypertension has also detected changes in glucose and fatty acid metabolism and the TCA cycle. 

Additionally, increased levels of multiple bile acid metabolites were found in lung tissue, leading the 

researchers to speculate that de-novo synthesis of bile acids may occur in the PAH lung (Zhao et al., 

2014b). Metabolomic analysis of peripheral blood has recently provided further evidence of 

disrupted energy metabolism in PAH (Bujak et al., 2016), and has identified metabolites which 

distinguish IPAH and HPAH patients from healthy controls and metabolites which are prognostic 

(Rhodes et al., 2017). Metabolomic analysis of exhaled breath condensate has also identified 

metabolites which may distinguish patients with very severe IPAH from healthy controls (Mansoor et 

al., 2014). 

By providing simultaneous assessment of multiple metabolic pathways, metabolomics technology is 

allowing us to more fully appreciate the extent the metabolic alterations in pulmonary vascular 

disease. However, it is unclear which of these metabolic alterations are attributable to pulmonary 

vascular endothelial dysfunction, changes in right heart metabolism or are indicative of systemic 

metabolic changes. Further research to address this question and to determine the mechanism of 

these metabolic changes is required.  

 

1.20 The link between inflammatory and metabolic aspects of PAH pathogenesis 

There is an evolving paradigm of PAH as an inflammatory disease in which there is immune 

dysregulation. This is supported by evidence of lung histological changes and disturbances in 
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circulating immune factors including cytokines, chemokines, autoantibodies and immune cells. 

Currently, it is unclear how inflammation may contribute to the pathogenesis of PAH. Indeed, it is 

possible that inflammation may initiate vascular remodelling (may be an “initial hit”), may be 

integral in its propagation (a “secondary hit”), or just be a reactive response to ongoing remodelling 

(“bystander” phenomenon). 

It is likely that PAH develops as a consequence of multiple contributing factors including a permissive 

genotype, susceptible phenotype and exogenous triggers.  In a susceptible individual, altered 

immune responses may result in transformation of a self-limited inflammatory response into a 

perpetuating injurious process. Given that vascular endothelium is distributed throughout the body, 

the question remains as to why the disease specifically affects the pulmonary circulation? Whether 

this is a reflection of a unique feature of the pulmonary circulation and its response to insult or 

injury or perhaps pathogen or autoantigen localisation to the lung circulation remains uncertain. 

It is clear that immunological and inflammatory processes result in cellular metabolic changes. 

Therefore, immune and inflammatory disturbances are mechanistically linked to disturbances in 

metabolic processes. An example of this interplay is the induction of a PAH phenotype in PASMC via 

inhibition of pyruvate dehydrogenase activity by TNFα (Sutendra et al., 2011), demonstrating a link 

between excessive inflammation and altered PASMC glucose metabolism. Likewise, disturbances in 

metabolic function may not only act as a marker of abnormal vascular endothelial cell activity 

occurring as a consequence of the disease process, but metabolic factors such as insulin resistance 

may play an integral role in disease evolution and progression.  

It is highly probable that the full extent of metabolic processes that occur in the pulmonary 

circulation is not yet appreciated, both in health and disease of this system. The nature of these 

metabolic processes and changes which reflect or influence disease pathology require further 

investigation and characterisation.  
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1.21 Fundamental concepts explored by this thesis 

In pulmonary vascular disease, there are many routes by which abnormal endothelial cell responses 

and vascular remodelling may be initiated and propagated. There is an accumulating body of 

evidence linking both immune and metabolic derangements to pulmonary vascular disease. 

However, key questions remain as to how immunological and metabolic processes are a) implicated 

in and b) affected by the disease.  

Additionally, the current ability to accurately phenotype disease subtypes within this heterogeneous 

syndrome is limited and advances in disease phenotyping are required for effective targeting of 

therapies. 

Part 1 - Immunophenotyping 

Using peripheral blood immunophenotyping, this thesis will explore the following questions: 

1. Do patients with Idiopathic Pulmonary Arterial Hypertension have a peripheral blood 

immune cell ‘signature’ which differs from healthy controls?  

 

2. Does the peripheral blood immune cell phenotype shed further light on the contribution of 

immunological mechanisms to the disease pathobiology? 

 

Part 2 - Metabolomics 

Using untargeted metabolomic profiling of circulating metabolites, including pre- and post- lung 

sampling, the following questions will also be explored: 

1. Does the pulmonary circulation have previously unrecognised metabolic functions?  

 

2. Is there a metabolic ‘signature’ which characterises pulmonary vascular diseases? 

 

3. Does the metabolic phenotype shed further light on the contribution of metabolic 

mechanisms to the disease pathobiology? 
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2 Chapter 2- Study population, materials and methods 

2.1 Part 1 - Immunophenotyping 

 

2.1.1 Study population 

Subjects were recruited prospectively from the Pulmonary Vascular Diseases Unit, Papworth 

Hospital, Cambridge UK. The unit is one of the 9 designated centres across the UK and Ireland 

providing specialist investigation and management for patients with pulmonary hypertension. All 

recruited patients provided written consent to participate under the Papworth Hospital tissue bank 

ethical approval (Donation for the collection and storage of human biological material for research; 

Cambridgeshire East Research Ethics Committee reference 08/H0304/56, tissue bank project 

number T01990). All recruited healthy controls provided written consent as per the Papworth 

Hospital pathology laboratory protocol (Version 1.1, 15th October 2013). 

 

2.1.1.1 IPAH patients and healthy controls 

28 IPAH patients and 28 healthy age and sex matched controls were recruited. IPAH patients 

enrolled met standard diagnostic criteria for IPAH, with presence of pulmonary arterial hypertension 

having been previously established by right heart catheterisation. This is defined by a mean 

pulmonary artery pressure (mPAP) ≥ 25mmHg, pulmonary capillary wedge pressure (PCWP) ≤ 

15mmHg, pulmonary vascular resistance (PVR) > 3 Wood units and exclusion of other causes of 

pulmonary hypertension. Both incident and prevalent IPAH cases were recruited. Exclusion criteria 

included recent or active infection or use of medication known to alter immune cell profile.  

Patients and healthy control subjects were matched according to age, gender, body mass index 

(BMI) and smoking status, as these are factors known to influence peripheral blood lymphocyte 

subsets (Santagostino et al., 1999). Controls were healthy staff members from Papworth Hospital.  

Control subjects were asked a series of screening questions to ensure no significant co-morbidity, 

immunomodulatory medication, active or recent infection or any known haematological disorder. 

 

2.1.1.2 Other Pulmonary hypertension subgroups: HPAH, SSc-PAH and CTEPH 

In addition to the IPAH patients recruited, 9 patients with HPAH, 12 patients with systemic sclerosis 

associated PAH (SSc-PAH) and 21 patients with chronic thromoboembolic pulmonary hypertension 

(CTEPH) were recruited. Both incident and prevalent cases were recruited. All patients recruited met 
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diagnostic criteria for pulmonary hypertension (Galiè et al., 2015). All IPAH and HPAH patients were 

also enrolled in the National Cohort Study of Idiopathic and Heritable PAH (COHORT). Therefore, 

HPAH patients had undergone whole genome DNA sequencing, with confirmation of the presence of 

a pathogenic mutation in the BMPR2 gene. SSc-PAH patients had disease confirmed according to the 

ACR/EULAR 2013 criteria for the classification of systemic sclerosis (van den Hoogen et al., 2013). 

CTEPH patients had a diagnosis made at the national surgical referral centre MDT with a minimum of 

two imaging modalities consistent with chronic thromboembolic pulmonary vascular occlusion with 

exclusion of other underlying causes of PH. 

 

2.1.2 Peripheral blood immunophenotyping method 

The immunophenotyping assay for this research was performed by Natalia Savinykh and Simon 

McCallum, National Institute for Health Research (NIHR) Biomedical Research Centre 

Immunophenotyping service, Department of Medicine, Addenbrooke’s Hospital, Cambridge, UK. 

  

2.1.2.1 Immunophenotyping - an overview 

Immunophenotyping allows detection of specific cell subsets within a mixed population, according 

to their characteristic cell surface markers. Cells are stained and incubated with fluorescently 

labelled antibodies, designed to bind to the cell surface markers of interest. Labelled cells are then 

passed through a flow cytometer and subclasses detected based upon their size, internal complexity 

and the fluorescence emitted by the labelled antibodies bound by the cell [Figure 2.1]. 

 

Figure 2.1- Overview of the Immunophenotyping process. Whole blood is drawn from the subject and PBMCs are 
separated from other blood components by density gradient separation. Cells are stained with fluorescently 
labelled antibodies and passed through a flow cytometer. Cell populations of interest are then identified 
according to the fluorescence emitted by the antibody conjugates bound to their cell surface markers (adapted 
from (Maecker et al., 2012)). 
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2.1.2.2 Blood sample collection 

Whole blood was drawn from each subject by peripheral upper limb venepuncture. Samples from 

patient and control were taken within 1 hour of each other, to avoid effects which may be seen due 

to circadian variation in leukocyte profile.  Blood was collected into S-Monovette® trisodium citrate 

blood tubes (Sarstedt AG & Co, Nümbrecht, Germany) through a 21-gauge needle. Fresh whole 

blood samples were processed as outlined below, to obtain peripheral blood mononuclear cells 

(PBMCs) which were then prepared for immediate immunophenotyping.   

 

2.1.2.3 Peripheral blood mononuclear cell (PBMC) extraction 

PBMCs were isolated from citrated whole blood by Histopaque 1077 (Sigma-Aldrich, Missouri, USA) 

density gradient separation. MACS (magnetic activated cell sorting) rinsing buffer was constituted by 

mixing 996mls 1 x phosphate buffered saline (PBS) with 4mL 0.5M ethylenediaminetetraacetic acid 

(EDTA). MACS running buffer was constituted by mixing 996mL 1 x PBS with 4mL 0.5M EDTA and 5g 

bovine serum albumin (BSA). Whole blood was diluted with MACS rinsing buffer to give a total 

volume of 150mL and was then mixed by inversion. The diluted blood was layered over the 15mL 

Histopaque in 4 x 50mL Falcon tubes (BD Biosciences, Oxford, UK), with an equal volume in each of 

the 4 tubes. The tubes were centrifuged at 700xg for 20 mins (ThermoScientific ST16R centrifuge, 

Waltham, USA) at room temperature.  

Following centrifugation, 20-25mL of plasma was aspirated from each Falcon tube, then the PBMC 

interface was aspirated and transferred into a new Falcon tube. The PBMC interface from 2 tubes 

were then transferred into one Falcon tube, resulting in two PBMC-containing Falcon tubes. Rinsing 

buffer chilled to 4oC was added to the two PBMC-containing Falcon tubes to give a volume of 50mL 

per tube, with mixing by inversion. This was followed by centrifugation at 700xg for 10 mins at 4oC. 

Supernatant was poured off and cell pellets dispersed by flicking the tubes. Cells were resuspended 

in 50mL rinsing buffer chilled to 4oC. This was followed by centrifugation at 200xg for 10 mins at 4oC. 

Once again, supernatant was removed, cell pellets were dispersed by flicking the tubes and then 

were resuspended in 50mL running buffer, chilled to 4oC. 

Cell viability was then determined by trypan blue exclusion. A 5L aliquot of cell suspension was 

removed and stained with trypan blue (Sigma Aldrich Ltd, Dorset, UK). The trypan blue treated cell 

suspension was then pipetted under the cover slip of a haemocytometer and live (unstained) cells 

and dead (stained) cells were counted to determine percentage viability. Samples included for 

analysis had a percentage viability of ≥80%. The PBMC suspension was again centrifuged for 8 mins 

at 4oC and the supernatant was removed. PBMCs were divided into aliquots for each of the 
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immunophenotyping panels and resuspended in chilled running buffer at a concentration of 1x 106 

cells/ml (1.5 x106 cells/mL for the B cell panel). 

 

2.1.2.4 Immunofluorescence staining of peripheral blood mononuclear cells (PBMCs) 

The immunophenotyping panels were adapted from the Human Immunology Project (Maecker et 

al., 2012).  Antibodies were pipetted into polystyrene FACS tubes (one for each panel) [Table 2.1]. 

FcR blocking reagent (Miltenyi Biotec Ltd, Bisley, UK) was added to prevent non-specific antibody 

binding. Following vortexing, 1 x 106 PBMCs were added to each tube (1.5 x 106 PBMCs for the B cell 

panel). 

The following anti-human monoclonal antibodies were obtained from:  

eBioscience Inc. (San Diego, CA, USA); CD56 FITC, CD45RA PerCP-Cy5.5, CD123 PerCP-Cy5.5, CD27 

PE-Cy7, CD16 APC, CD161 APC, PD1 APC, HLA-DR v450, CD3 NC605, CD14 NC605, CD4 APCeF780, 

CD20 APCeF780, CD19 APCeF780, CD62L APCeF780, CD8 NC650, CD3 NC650 

Biolegend (San Diego, CA, USA); PECy7, CD4 v450 

BD Biosciences (Oxford, UK); CXCR5 FITC, IgD FITC, CCR7 PE, CD25 PE, IgG PE, CD116 PE, CD24 

PerCP-Cy5.5, CD38 APC, CD127 APC, CD19 v450  

Miltenyi Biotec Ltd. (Bisley, UK); CCR4 PECy7, CD11c PECy7 

R&D Systems Inc. (Minneapolis, MN, USA); CXCR3 FITC, CXCR5 PE 

Cells were stained in the dark for 20 mins at 4oC. The staining was then quenched by adding 2mL of 

chilled rinsing buffer to each tube. This was followed by centrifuging at 325xg for 8 minutes.  
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Table 2.1 - Immunophenotyping panels. Fluorochromes used for each panel and their corresponding cell surface 
markers are listed. 

Panel Fluorochromes  

FITC PE PerCP-

Cy5.5 

PE 

Cy7 

AF647 

APC 

APC-

eF780 

PB 

v450 

NC605 NC650 

T cell 

1 x 106 PBMC 

CXCR3 CCR7 CD45RA CCR6 CD38 CD4 HLA-DR CD3 CD8 

Tfh 

1 x 106 PBMC 

CXCR3 CXCR5 CD45RA CCR6 PD1 CD62L CD4 CD3 CD8 

Th17 

1 x 106 PBMC 

CXCR3 CCR7 CD45RA CCR6 CD161 CD4 HLA-DR CD3 CD8 

Tregs 

1 x 106 PBMC 

CXCR5 CD25 CD45RA CCR4 CD127 CD4 HLA-DR CD3  

B cells 

1.5 x 106 PBMC 

IgD IgG CD24 CD27 CD38 CD20 CD19 CD3  

Myeloid 

1 x 106 PBMC 

CD56 CD116 CD123 CD11c CD16 CD19/20 HLA-DR CD14 CD3 

 

A live/dead stain, Zombie Aqua (Biolegend, San Diego, CA, USA) was included with each phenotyping 

panel. Single stain controls and unstained controls were run before each pair of samples were 

processed to obtain a fresh compensation matrix. Fluorescence minus one (FMO) controls and 

isotype controls were used when testing and validating the panels. Cells were analysed using a BD 

LSRFortessa™ analyser (BD Biosciences, Singapore) equipped with 4 lasers: blue 488nm, violet 

405nm, red 640nm and yellow-green 561nm. 

 

2.1.2.5 Flow cytometry gating 

Data analysis was performed using FlowJo software (Version 10.0.7, Ashland, Oregon). The gating 

strategy was based upon The Human Immunophenotyping Consortium standards. This was carried 

with the assistance of by National Institute for Health Research (NIHR) Biomedical Research Centre 

Immunophenotyping service, Department of Medicine, Addenbrooke’s Hospital, Cambridge, and by 

Miss Emily Groves, Morrell Laboratory, University of Cambridge. 
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A time vs side scattered light area (SSC-A) plot of all events was firstly used to check for even flow 

during the run and allow for identification of any artefacts caused by poor flow. A plot of SSC-A vs 

forward scattered light area (FSC-A) was used to distinguish lymphocytes and FSC-A vs forward 

scatter width (FSC-W) was used to eliminate doublets. A live-dead stain vs SSC-A plot was used to 

eliminate dead cells. Subsequently, sequential gating was carried out to distinguish subpopulations 

of T lymphocytes, B lymphocytes, natural killer (NK) cells, monocytes and dendritic cells were using 

bivariate dot plots based on cell surface marker expression, as described below, for each of the six 

panels; B cell, T cell, Tfh, Treg, Th17 and myeloid [Figure 2.2-2.7]. Programmed cell death 1 protein 

(CD279) expression by CD4+ T cell and CD8+ T cell subpopulations was also assessed. 
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Figure 2.2- B cell panel gating strategy. FSC (A) vs SSC (A) was used to distinguish lymphocytes. FSC (A) vs FSC (W) 
was used to eliminate doublets. A live-dead stain vs SSC (A) plot was used to eliminate dead cells. B cells were 
identified from the lymphocyte population as CD3-CD19+ cells. The CD19+ cells were then divided according to 
expression of CD27 and IgD into the following subpopulations; non-switched memory cells (IgD+ CD27+), naïve 
B cells (IgD+ CD27-) and class switched (IgD-) cells. Class switched (IgD-) B cells were then further subdivided 
into plasmablasts (CD20- CD38+) and non-plasmablasts (CD20+ CD38-). The non-plasmablasts (CD20+CD38-IgD- 
B cells) were then gated into double negative (CD27-IgD-) and switched memory (CD27+IgD-) subsets. Naïve B 
cells (IgD+) were further analysed to distinguish transitional B cells (CD24hi CD38hi).  
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Figure 2.3- T cell panel gating strategy. FSC (A) vs SSC (A) was used to distinguish lymphocytes. FSC (A) vs FSC (W) 
was used to eliminate doublets. A live-dead stain vs SSC (A) plot was used to eliminate dead cells. T cells were 
distinguished from the lymphocyte population as CD3+ cells. T cells were then separated into CD4+ and CD8+ T 
cell subclasses. CCR7 and CD45 expression were used to identify effector memory RA (CCR7- CD45RA+), effector 
memory (CCR7-CD45RA-), naïve (CCR7+CD45RA+) and central memory (CCR7+CD45RA-) subsets.  
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Figure 2.4- Tfh cell panel gating strategy. FSC (A) vs SSC (A) was used to distinguish lymphocytes. FSC (A) vs FSC 
(W) was used to eliminate doublets. A live-dead stain vs SSC (A) plot was used to eliminate dead cells. T cells 
were distinguished from the lymphocyte population as CD3+ cells. T cells were then separated into CD4+ and 
CD8+ T cell subclasses according to cell surface marker expression. Within the CD4+ T cell population, Tfh 
(CXCR5+ CD45RA-), Th1-like (CXCR3+ CCR6-), Th2-like (CXCR3- CCR6-), Th17-like (CXCR3- CCR6+) and Th1, Th17-
like (CXCR3+ CCR6+) cells were identified. Within the CD8+ T cell population, CXCR5+ T cells were identified. 
Programmed cell death 1 protein (CD279) expressing Tfh and CXCR5+ CD8+ T cells were also subsequently 
identified. 
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Figure 2.5- Treg cell panel gating strategy. FSC (A) vs SSC (A) was used to distinguish lymphocytes. FSC (A) vs FSC 
(W) was used to eliminate doublets. A live-dead stain vs SSC (A) plot was used to eliminate dead cells. T cells 
were distinguished from the lymphocyte population as CD3+ cells. CD4+ T cell expression of CD25, CD127 and 
was used to identify Tregs (CD25+ CD127low CCR4+). HLA-DR and CD45RA expression were used to distinguish 
memory Tregs (CD45RA+), naïve Tregs (CD45RA-) and to identify activated T regs (HLA DR+). 
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Figure 2.6- Th17 cell panel gating strategy. FSC (A) vs SSC (A) was used to distinguish lymphocytes. FSC (A) vs FSC 
(W) was used to eliminate doublets. A live-dead stain vs SSC (A) plot was used to eliminate dead cells. T cells 
were distinguished from the lymphocyte population as CD3+ cells. T cells were then separated into CD4+ and 
CD8+ T cell subclasses according to cell surface marker expression. Within the CD4+ and CD8+ T cell 
populations, cells expressing CD161 were gated. Subpopulations within the CD161+ population were then 
identified; effector memory RA (CCR7- CD45RA+), effector memory (CCR7-CD45RA-) naïve (CCR7+CD45+) and 
central memory (CCR7+CD45-). 
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Figure 2.7- Myeloid cell panel gating strategy. FSC (A) vs SSC (A) was used to identify PBMCs. FSC (A) vs FSC (W) 
was used to eliminate doublets. A live-dead stain vs SSC (A) plot was used to eliminate dead cells. Myeloid cells 
were identified from the PBMC population as CD3-CD19-CD20- cells. These cells were then gated according to 
CD14 and CD56 expression. This allowed monocytes (CD14+) and NK cells (CD14-CD56+) to be distinguished.  
CD3-CD19-CD20-CD14-CD56- cells were classed as lineage negative and the population expressing HLA-DR 
identified as dendritic cells, with subsequent division of myeloid dendritic cells (CD11c+) and plasmacytoid 
dendritic cells (CD123+). NK Cells were further subdivided into CD56 hi and CD16 hi populations. Monocytes 
were further subdivided into CD16 low and CD16 hi populations. 
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2.1.3 Measurement of serum immunoglobulin concentration 

Immunoglobulin subclasses IgA, IgM, total IgG, IgG1, IgG2, IgG3 and IgG4 were analysed in serum 

from patients and age and sex matched controls. Serum samples were obtained by upper limb 

venepuncture as described above. Samples were analysed by the Cambridge Biomedical Campus 

Pathology Partnership Immunology laboratory, Addenbrooke’s Hospital, Cambridge. 

Serum IgA, IgM and total IgG were quantified using polyethylene glycol (PEG) enhanced 

immunoturbidometric assay. This was done using the ADVIA 2400 Chemistry system analyser 

(Siemens. Camberley, Surrey), according to manufacturer’s protocol. Via an automated process, 

diluted antigen solution was combined with serum containing the corresponding immunoglobulin, 

resulting in the formation of immunoprecipitates (accelerated by the use of polyethylene glycol). 

The effect of precipitate formation on the transmission of infrared light through the sample was 

then measured. Transmitted light intensity was detected by the analyser photodiode and by 

constructing a standard curve from the transmitted light intensity of known standards, the 

concentration of each immunoglobulin in the serum was automatically determined. 

Serum IgG subclasses IgG1, IgG2, IgG3 and IgG4 were quantified using nephelometry. This was also a 

fully automated process, using the BN™ II System analyser (Siemens, Camberley, Surrey), equipped 

with an infrared light source. Similarly, a solution containing antigen specific to each IgG subclass 

was combined with the serum, resulting in the formation of immunoprecipitates. Scattered light 

intensity of the sample was detected by a photodiode and IgG subclass concentration automatically 

determined by comparison with the scattered light intensity of known standards. 

 

2.1.4 Measurement of serum Interleukin 21 (IL-21) concentration 

Serum IL-21 was measured in stored serum from 45 IPAH patients and 60 healthy controls by a 

‘sandwich’ enzyme linked immunosorbent assay (ELISA), using a capture antibody and a biotin 

conjugated IL-21 detection antibody. This was carried out by Emily Groves, Department of Medicine, 

University of Cambridge, using the affymetrix human IL-21 ELISA Ready set GO! kit, 2nd generation 

(eBioscience, San Diego, CA, USA). 

The ELISA plate was coated with 100µL per well of capture antibody in coating buffer (10X 

phosphate buffered saline (PBS)), the plate sealed and incubated overnight at 2-8°C. Following 

incubation, the wells were aspirated and then washed with wash buffer (1x PBS, 0.05% Tween-20). 

One part 5X ELISA/ELISPOT diluent was diluted with 4 parts deionised (DI) water and 200µL was 

added to each well, followed by incubation at room temperature for 1 hour. Reference standards 

were prepared by serial dilution of the ELISA/ELISPOT diluent, constructing a standard curve for a 

total of 8 points. 100µL of serum was added to each of the test wells, the plate sealed and incubated 

at room temperature for 2h. This was followed by aspiration and washing of the wells. 

100µL of detection antibody (diluted in 1X ELISA/ELISPOT diluent) was then added to each well and 

the plate was incubated at room temperature for 1h, followed by aspiration and washing of the 

wells. 100µL/well of the detection enzyme Avidin-HRP (diluted in 1X ELISA/ELISPOT diluent) was 

then added to each well. The plate was sealed and incubated at room temperature for 30 mins. 

Aspiration of the wells and further washes were carried out. 

100µL of chromogenic substrate solution (1X tetramethylbenzidine (TMB)) was then added to each 

well and the plate was incubated at room temperature for 15minutes. 50µL of stop solution (1M 
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H3PO4) was added to each well. The plate was read at a wavelength of 450 nm and absorbance 

compared to the standard curve to quantify IL-21 level. 

 

2.1.5 Statistical analysis 

2.1.5.1 IPAH compared to healthy age and sex matched controls 

The D’Agostino-Pearson test was used to assess whether data were normally distributed for each 

parameter or population. Unpaired t tests (with Welch’s correction if unequal standard deviation) 

were used to compare data which were normally distributed, and the Mann Whitney U test was 

used to analyse data which did not conform to a normal distribution. A p value <0.05 was considered 

statistically significant. False discovery rate correction for multiple testing was subsequently applied 

to each of the six panels [Appendix table 1.1]. 

 

2.1.5.2 Correlation with clinical markers of disease severity 

Pearson’s correlation coefficient (for normally distributed data) or Spearman’s rank correlation (for 

data which did not conform to a normal distribution) was used to assess correlation between 

immune cell subsets and clinical parameters which are used to assess disease severity; mean 

pulmonary artery pressure (mPAP), pulmonary vascular resistance (PVR), N-terminal-pro-brain 

natriuretic peptide (NTproBNP) and cardiac index (CI). Cell subsets were assessed relative to clinical 

deterioration from time of diagnosis (time to clinical worsening), to explore whether the immune 

cell phenotype observed was associated with clinical disease progression.  

Time to clinical worsening (TTCW) was defined as either disease progression (based on a ≥15% 

decrease in 6-minute walk distance, plus either worsening of functional class or need for additional 

PAH therapy), hospitalisation for worsening PAH, need for atrial septostomy or lung transplant or 

the introduction of parenteral prostacyclin therapy. 

 

2.1.5.3 Other PH subtypes 

Identification of leukocyte subpopulations in which statistically significant differences were present 

between IPAH and controls facilitated a targeted analysis of selected leukocyte subpopulations 

between the disease groups. Tfh cells, B cell subpopulations, regulatory T cells and PD1+ CD8+ T cells 

were compared. The Kruskal-Wallis test or ANOVA (depending on normality of distribution of cell 

subpopulations) was used to assess for statistically significant differences between the groups. 

The data were also analysed comparing each disease subgroup separately to IPAH and to the healthy 

controls using t tests with Welch’s correction or the Mann Whitney U test (depending on normality 

of distribution of cell subpopulations). 
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2.2 Part 2- Metabolomics 

2.2.1 Study Population 

Participants aged 18 to 80 years were recruited prospectively from the Pulmonary Vascular Diseases 

Unit, Papworth Hospital, Cambridge UK. All recruited participants provided written consent. Ethical 

approval for the study was obtained from the Research Ethics Committee, East of England, 

Cambridge South (reference REC EE/15/0201).  

 

2.2.1.1 Pulmonary vascular disease patients 

A total of 60 patients with pulmonary vascular disease were recruited. Patients were recruited from 

the following disease groups; 

 

1. Chronic thromboembolic pulmonary vascular occlusions (n=48) 

This included patients with Chronic Thromboembolic Pulmonary Hypertension (CTEPH) and 

chronic thromboembolic vascular occlusions without pulmonary hypertension (chronic 

thromboembolic disease- ‘CTED’).   

2. Idiopathic Pulmonary Arterial Hypertension (IPAH) (n=9) 

 

Patients recruited met standard diagnostic criteria as defined by the ESC/ERS Guidelines 2015 (Galiè 

et al., 2015). Both incident and prevalent cases were recruited. Principal exclusion criteria included 

the following:   

1. Cognitive or psychiatric impairment affecting capacity to give informed consent 

2. Co-existing lung disease (e.g. obstructive airways disease, parenchymal lung disease). This was 

assessed by review of medical history, thoracic radiological imaging and pulmonary function tests. 

Subjects with significantly abnormal pulmonary function tests (including FEV1 <80% predicted or 

with KCO (transfer coefficient) <60% predicted) were excluded  

3. Chronic Kidney Disease stage 4 or 5 

4. Left heart disease, including pulmonary capillary wedge pressure (PCWP) >15mmHg and/or left 

sided valvular heart disease or ventricular impairment on echocardiogram 

5. Peripheral arterial vascular disease which would preclude radial arterial blood sampling 

6. Active infection 
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7. Known hepatic cirrhosis, liver failure or history of alcohol excess 

8. Current illicit substance use 

Demographic and clinical data collected from all participants included; age, gender, ethnicity, body 

mass index (BMI), body surface area (BSA), World Health Organisation (WHO) functional class, 

comorbidities, medications, smoking status, alcohol consumption and haemodynamics at the time of 

right heart catheterisation. Additionally, biochemical data (full blood count, urea and electrolytes, 

liver function tests and NTproBNP), pulmonary function test parameters, 6-minute walk distance, 

echocardiographic parameters and Cambridge Pulmonary Hypertension Outcome Review score 

(CAMPHOR) were recorded. 

2.2.1.2 Healthy controls 

27 individuals without pulmonary vascular disease were recruited. These control subjects were 

healthy staff members from Papworth Hospital.  The control subjects were asked a series of 

screening questions to ensure no significant co-morbidity, prior to recruitment to the study. 

 

2.2.2 Blood sample collection and initial processing 

All blood samples were obtained in the morning, from non-fasted individuals.  

In the healthy controls, a single 5mL blood sample was drawn from a vein in the antecubital fossa 

using a 23-gauge needle and 10mL syringe. 

In pulmonary vascular disease patients, blood samples were collected during elective right heart 

catheterisation procedures (described further in section 2.2.3), allowing simultaneous blood sample 

collection and measurement of haemodynamics.  

Blood samples in the patient group were collected from three anatomical sites; the superior vena 

cava (via the catheter device), pulmonary artery (via the catheter device) and radial artery (via 

peripheral arterial puncture). A 5mL sample of blood was collected from each site. The three 

samples were obtained within 10 mins. 

Firstly, the superior vena cava and pulmonary artery blood samples were collected. Immediately 

after this, the peripheral arterial sample was obtained from the radial artery. Radial artery puncture 

was carried out using a 23-gauge needle attached to a syringe. 1 hour prior to arterial sampling, 

topical local anaesthetic gel was applied (4% w/w tetracaine) to the overlying skin to reduce patient 

discomfort during blood sampling. 
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All blood samples were collected in plastic K2 EDTA BD Vacutainer blood tubes (Becton, Dickinson 

and Company, New Jersey, USA), with each tube inverted several times to ensure mixing with 

anticoagulant. Samples were immediately placed on ice to arrest ongoing metabolic activity and 

transferred to a ThermoScientific ST16R centrifuge (ThermoFisher Scientific, Waltham, USA) which 

had been pre-chilled to 4 degrees Celsius.  Blood samples were centrifuged at 1000xg for 10 mins for 

plasma separation. Plasma samples were aliquoted into chilled Sarstedt Cryopure cryovials (Sarstedt 

AG & Co, Nümbrecht,Germany) and immediately flash frozen in liquid nitrogen. All samples were 

then stored at -80oC. Within 6 months from the time of collection, all frozen samples were shipped 

on dry ice Metabolon Laboratories (Durham, North Carolina, USA) and analysed as a single batch. 

Untargeted, semi-quantitative metabolic profiling of samples was conducted using the Metabolon 

Discovery HD4 platform, as described in Section 2.2.5. 

 

2.2.3 Right heart catheterisation 

Cardiopulmonary haemodynamic data and blood samples for analysis were collected during right 

heart catheterisation. Quadruple lumen 6 French fluid-filled Swan-Ganz catheters [Figure 2.8], 

(Edwards Lifesciences, Irvine, CA, USA) connected to a Philips Haemosphere cardiac catheterisation 

monitor (Philips Medical Systems, Surrey, UK) were used for the procedures.  

Patients were non-fasted and had a standard light hospital breakfast on the morning of the 

procedure. Height and weight for each patient was recorded. All catheterisation measurements 

were taken with the patient in the supine position, at rest, breathing room air.  Study participants 

were non-sedated and no haemodynamically altering medications were given prior to sample 

collection. The catheter was inserted into a central vein (internal jugular or femoral vein) under local 

anaesthetic, using ultrasound guidance. The catheter was floated through the right atrium and right 

ventricle into the proximal pulmonary circulation. Characteristic pressure waveforms seen at the 

different anatomical locations were used to establish catheter position, with correct position also 

confirmed using fluoroscopy.  

The following pressure measurements were recorded: mean right atrial pressure (RAP), right 

ventricular systolic pressure (RVSP), right ventricular end diastolic pressure (RVEDP), systolic 

pulmonary artery pressure (sPAP), diastolic pulmonary artery pressure (dPAP), mean pulmonary 

artery pressure (mPAP) and pulmonary capillary ‘wedge’ pressure (PCWP). All pressure 

measurements were taken during breath holding at end-expiration.  
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Heart rate (HR), systemic blood pressure (BP) and peripheral oxygen saturations were recorded non-

invasively using electrocardiography, an electronic blood pressure monitor and fingertip pulse 

oximeter. Cardiac rhythm during the procedure was also noted. Cardiac output was measured by 

thermodilution method using a Datex Ohmeda S/5 machine (Datex-Ohmeda Inc., WI, USA) and was 

also calculated using the Fick method.   

 

Pulmonary artery oxygen saturation and mixed venous oxygen saturation were recorded using an 

Avoximeter 1000E machine (Accriva diagnostics CA, USA). Transpulmonary pressure gradient and 

pulmonary vascular resistance were calculated using standard haemodynamic formulae. 

 

Figure 2.8- Quadruple lumen Swan-Ganz catheter used for right heart catheterisation. The catheter is inserted 
into a central vein. The balloon is then inflated and used to float the catheter into the right heart and proximal 
pulmonary vessels. Blood samples are taken and fluid injected via the catheter ports. The intravascular pressure 
at the catheter tip is recorded by a pressure transducer.  Connection to a thermistor allows cardiac output 
assessment by the thermodilution method.  
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2.2.4 Global metabolomic analysis- an overview 

Metabolomic profiling involves the identification of multiple metabolites (principally small molecules 

with a molecular weight <1500 Da) within a biological sample. 

The process of analysing a biological sample involves [Figure 2.9]: 

1. Separation of metabolites within a complex mixture- usually using chromatography 

2. Detection and identification of metabolites using mass spectrometry 

3. Data pre-processing, metabolite and biochemical pathway analysis 

4. Biological interpretation 

 

 

Figure 2.9 - Overview of Metabolomic sample processing and analysis. Metabolites are separated by liquid 
chromatography or gas chromatography. Following ionisation, mass spectrometry is used to detect metabolites 
and their ion fragments and subsequently identify them according to retention time and mass-to-charge ratio 
(adapted from (Last et al., 2007)).  
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2.2.5 Metabolomic profiling- sample processing and analysis 

Sample preparation for metabolomic analysis, metabolite separation and detection was carried out 

by Metabolon Inc. (Durham, NC, USA) using the Metabolon HD4 Discovery platform. A total of 209 

plasma samples were analysed.  

 

2.2.5.1 Sample preparation 

Sample preparation was carried out using the automated MicroLab STAR system (Hamilton 

Company, Reno, NV, USA). Several recovery standards were added to the samples prior to 

extraction, allowing monitoring and verification of the extraction process. 

Proteins were removed by precipitation with methanol, with vigorous shaking using a SPEX 

SamplePrep 2000 Geno Grinder (Elvatech, Kiev, Ukraine), followed by centrifugation. Organic solvent 

was removed using a Zymark TurboVap (SOTAX AG, Aesch, Switzerland). The resulting extract was 

divided into aliquots which were prepared for analysis using solvents compatible with the different 

separation and detection methods described below. Each reconstitution solvent contained a series 

of standards at fixed concentrations to ensure injection and chromatographic consistency. 

 

2.2.5.2 Metabolite separation and detection 

Several different methods were used for metabolite separation and detection, in order to maximise 

the number of metabolites identified. Samples were divided into 4 aliquots and analysed using ultra 

high-performance liquid chromatography methods.  Three aliquots were analysed using reversed 

phase ultra-high-performance liquid chromatography with tandem mass spectrometry (RP UHPLC-

MS/MS). Electrospray ionisation (ESI) was used to reduce ion fragmentation. For two of the RP 

UHPLC aliquots, positive ion mode electrospray ionisation (ESI) was used. For the third aliquot, 

negative ion mode ESI was used for one aliquot. 

The fourth aliquot was analysed using hydrophilic interaction liquid chromatography (HILIC UPLC-

MS/MS) with negative ion mode ESI. Liquid chromatography was performed using Waters ACQUITY 

UPLC systems (Waters Corporation, Milford, MA, USA).  4 separation conditions were used, 

optimised for different metabolite species [Table 2.2]. 
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Table 2.2- Liquid chromatography columns used for metabolite extraction. 

Chromatography 

method 

Column Constituents 

Reversed phase liquid 

chromatography 

C18 column (Waters 

UPLC BEH C18-

2.1x100 mm, 1.7 µm) 

1. Methanol, water, 0.05% perfluoropentanoic 

acid (PFPA) and 0.1% formic acid (FA). 

2. Methanol, acetonitrile, water, 0.05% PFPA and 

0.01% FA 

3. Methanol, water, 6.5mM ammonium 

bicarbonate at pH 8. 

Hydrophilic 

interaction liquid 

chromatography 

HILIC column (Waters 

UPLC BEH Amide 

2.1x150 mm, 1.7 µm) 

4. Water, acetonitrile with 10mM ammonium 

formate, pH 10.8. 

 

Mass spectrometry was performed using a ThermoScientific Q-Exactive mass spectrometer with 

heated electrospray ionisation (HESI-II) and Orbitrap mass analyser operated at 35,000 mass 

resolution (ThermoFisher Scientific, MA, USA). Following detection by mass spectrometry, chemical 

identity of the molecules was determined.  

 

2.2.5.3 Metabolite identification 

All molecular ions, fragments and adducts were searched against a reference library of >14,000 

compounds, based on authenticated standards. This was used to identify molecules based upon the 

retention time/index (RI), mass to charge ratio (m/z), and fragment ion spectra.  

Metabolite identification criteria included a retention index within a narrow window of the proposed 

metabolite and accurate mass match to the library +/- 10 ppm. Probability based MS/MS forward 

and reverse scores were also used to control against false positive rates. Any ions which could not be 

definitively identified were given a numerical designation. Molecules matched to the reference 

library by software were manually confirmed by chemical spectral analysts, along with removal of 

artefacts, mis-assignments and background noise. 

Metabolite concentration was determined by area under the curve analysis. The peak area of the 

metabolite in the sample was compared with the peak area of the standard of a known 

concentration in order to determine metabolite concentration. 
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2.2.5.4 Quality assurance and quality control measures 

 Samples analysed in each batch were randomised and interspersed with a number of controls: 

 

1. Ultra-pure water samples served as ‘blanks’  

 

2. A sample consisting of solvents used in the extraction process was used to identify any 

contamination induced by the extraction process 

 

3. A pooled matrix sample was produced by taking a small amount of each sample in the batch. 

This was used as a technical replicate throughout the batch in order to help distinguish 

biological variability from process variability 

 

4. A pooled matrix sample not derived from the batch being analysed was also used. This 

pooled matrix sample was developed from a large pool of human plasma which has been 

extensively characterised. Standards in this pool were chosen on the basis that they were 

known not to interfere with measurement of endogenous compounds. Each sample in the 

batch being analysed was spiked with this QC sample allowing instrument performance 

monitoring. 

 

The median relative standard deviation (RSD) of the internal standards that were added to each 

sample was used to assess instrument variability. The median RSD for all endogenous metabolites in 

the pooled matrix sample was used to assess overall process variability. 

 

2.2.5.5 Data pre-processing 

Raw data of metabolite concentrations were pre-processed and reported in the form of 

standardised intensities. Each metabolite in original scale was then rescaled to set the median equal 

to 1 (by dividing each metabolite concentration by the median for that metabolite). This provided 

the concentration of the metabolite in each sample, relative to the median of all the samples 

processed as part of the study.  Where a metabolite was not detected, standardised intensity was 

set as the minimum detected value for that compound. 
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2.2.5.6 Statistical analysis 

Data analysis was conducted using R package for statistical analysis (Version 3.3.1, R Core Team 

2013, Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.ref), Excel 

2016 (Version 16.0, Microsoft, Redmond, WA, USA) and GraphPad Prism for Windows (Version 7, 

GraphPad Software Inc, La Jolla, CA, USA). 

The concentration (median scaled standardised intensity) of each metabolite within the total batch 

of 209 samples was assessed to determine whether each metabolite was normally distributed, using 

the D’Agostino-Pearson test. The concentration of the majority of metabolites detected did not 

follow a Gaussian distribution. Therefore, non-parametric tests were used in all subsequent 

analyses. 

 

Analysis 1- Comparison of metabolite concentration in disease venous samples and healthy 

control venous samples  

The Mann Whitney U test was used to compare metabolite concentration in the disease group with 

healthy controls. False discovery rate adjustment for multiple testing was applied, using the 

Benjamini-Krieger-Yekutieli method (Q=0.05).  

Metabolites in which there was a significant difference between disease and control were then 

grouped according to super pathway (eg. lipids, amino acids, carbohydrate) and subpathway (e.g. 

phospholipids, sphingolipids, long chain fatty acids). For each metabolite, calculation of the ratio of 

metabolite concentration between disease and control was used to indicate the direction of change 

in metabolite concentration between disease and control and allowed identification of groups and 

subgroups of metabolites with consistent unidirectional perturbations. Over-representation analysis 

of the metabolites which were found to be significantly different between disease and control also 

performed. This was calculated using the formula:    

 

Enrichment value =   k/m                                        

                                       N/n 

 

k= number of significant metabolites in pathway; m= number of detected metabolites in pathway; 

N= total number of significant metabolites in the experiment; n= total number of detected 
metabolites in the experiment 

 

http://www.r-project.org/.ref
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Analysis 2- Comparison of metabolite concentration in paired samples from different anatomical 

sites  

In those individuals in whom multisite samples were obtained, differences in metabolite 

concentration between paired samples from the different sites (SVC and PA, PA and ART, ART and 

SVC) were assessed using the Wilcoxon matched pairs signed rank test. False discovery rate 

adjustment for multiple testing was applied, using the Benjamini-Krieger-Yekutieli method.  
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3 Chapter 3- Immunophenotyping IPAH and healthy controls 

3.1 Introduction and objectives 

There is increasing evidence of an association between Idiopathic Pulmonary Arterial Hypertension 

(IPAH) and immune dysregulation. This includes the presence of perivascular immune cell infiltrates 

and pulmonary lymphoid neogenesis in IPAH lungs, increased frequencies of circulating 

autoantibodies and a recognised association with autoimmune diseases (Chapter 1, 1.18).  

However, there has been only limited study of circulating immune cell populations in IPAH, primarily 

focussed on T cells (Ulrich 2008, Austin 2010, Huertas 2012). We set out to undertake a more 

detailed phenotyping of leukocyte subsets in the peripheral blood of IPAH patients, to further 

characterise circulating immune cell alterations in the disease. 

Primary objectives 

 To phenotype circulating peripheral blood leukocytes in patients with IPAH and compare 

this immune cell phenotype to healthy age and sex matched controls. 

 To measure serum immunoglobulin concentration in patients with IPAH and compare this to 

healthy controls 

 

Hypothesis 1- Patients with IPAH have a different peripheral blood immune cell profile to healthy 

individuals. 

Hypothesis 2- The concentration of serum immunoglobulins differs between patients with IPAH and 

healthy individuals. 

Hypothesis 3- IPAH patients with more severe clinical markers of disease will have a more deranged 

immune cell profile than those with milder disease. 

 

3.2 Study population and methods 

Peripheral blood leukocytes from 28 patients with IPAH were compared to 28 healthy matched 

controls. Patients and controls were matched according to age, sex, smoking status and body mass 

index. Whole blood was drawn from each subject by peripheral upper limb venepuncture. Following 

this, the blood was processed to separate out the peripheral blood mononuclear cells (PBMCs) and 

immunophenotyping was carried out, as described in chapter 2.  
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In brief, PBMCs were isolated from citrated whole blood by Histopaque 1077 density gradient 

separation. Cells were surface stained with antibodies and their conjugate fluorochromes. A 

standardised flow cytometry panel for cell surface markers of leukocyte sub-populations was used, 

adapted from the Human Immunology Project (Maecker et al., 2012).  Subpopulations of T and B 

lymphocytes and myeloid cells were distinguished using bivariate dot plots based on cell surface 

marker expression. Additionally, immunoglobulin (Ig) subclasses in serum from IPAH patients and 

controls were analysed by PEG enhanced immunoturbidometric assay and nephelometry, and serum 

IL-21 levels were measured by enzyme linked immunosorbent assay (ELISA), using a capture 

antibody and a biotin conjugated IL-21 detection antibody. 

 

3.3 Data analysis 

The D’Agostino-Pearson test was used to assess whether data were normally distributed for each 

parameter or population. Unpaired t tests (with Welch’s correction if unequal standard deviation) 

were used to compare normally distributed data and the Mann Whitney U test was used to analyse 

data which did not conform to a normal distribution. A p value < 0.05 was considered statistically 

significant. A total of 52 cell subpopulations were compared between IPAH patients and controls 

[appendix table 1]. False discovery rate adjustment for multiple testing was then applied to each of 

the 6 panels.  

Subsequently, Pearson’s correlation coefficient (for normally distributed data) or Spearman’s rank 

correlation (for data which did not conform to a normal distribution) was used to assess correlation 

between immune cell subsets and clinical parameters. 

 

3.4 Subject demographics  

28 patients with IPAH and 28 healthy age and sex matched controls were recruited. Study 

population demographics are summarised in Table 3.1 and Table 3.2.  

Mean IPAH patient age was 42 years. Mean control age was 42 years. 82% of subjects recruited were 

female, in keeping with the female predominance typically seen in IPAH populations (McGoon et al., 

2013). IPAH haemodynamic characteristics included a mean pulmonary arterial pressure (mPAP) of 

51.3±12.5mmHg, Cardiac index (CI) of 2.47±0.79 L/min/m2 and pulmonary vascular resistance (PVR) 

of 9.7± 4.4 Wood units. Patients recruited were in World Health Organisation (WHO) functional class 

I-III at the time of sampling. Both incident IPAH cases and prevalent IPAH cases were recruited.  
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Consistent with the reported high prevalence of co-existing thyroid disease (Wawrzyńska et al., 

2004), 7 IPAH patients had a past history of autoimmune thyroid disease. 4 IPAH patients had 

previously been treated for Graves thyroid disease (autoimmune thyrotoxicosis) and 3 patients had a 

history of hypothyroidism. All patients were euthyroid at the time of recruitment. 

Patients recruited were receiving a range of targeted therapies for pulmonary arterial hypertension 

including 17 (61%) on phosphodiesterase 5 inhibitors, 14 (50%) on prostanoid therapy and 10 (36%) 

on endothelin receptor antagonists. 2 patients were newly diagnosed and treatment naïve. 21 

patients (75%) were treated with a combination of pulmonary hypertension therapies. 

 

Table 3.1-Study population demographics - IPAH and healthy controls. Populations were matched according to 
age, sex, BMI and smoking status. Results are presented as mean ± standard deviation, except where stated 
otherwise. 

 IPAH Control 

Number of subjects 28 28 

Age (years) 41.8 ± 10.5  42 ± 12.1 

Sex (female:male ratio) 23:5 23:5 

Caucasian (%) 86% 93% 

BMI 27.8 ± 6.1 24.2 ± 3.5 

Current smoker (number) 1/28 1/28 

 

Table 3.2-IPAH population clinical characteristics. Results are presented as mean ± standard deviation, except 
where stated otherwise. 

Clinical parameter IPAH patients 

WHO Class (I/II/III/IV) 4/10/14/0 

Age at diagnosis (years) 35.5 ± 13.1 

Time from diagnosis to sampling 

(years-mean, range) 

6.7 (0-17) 

Haemodynamics  

RAP (mmHg) 

mPAP (mmHg) 

PCWP (mmHg) 

PVR (Wood units) 

CI (L/min/m2)- thermodilution 

method 

   

8.7 ± 3.4 

51.3 ±  12.5 

10.7±  3.1 

9.7±  4.4 

2.47± 0.79 
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6 minute walk distance (metres) 461± 109 

Serum NTproBNP levels (pg/ml) 547± 922 

Pulmonary hypertension therapy 26 (93%) 

Nil/monotherapy/combination 

therapy 

2/5/21  

PDE5 inhibitor 17 

Endothelin receptor antagonist 10 

Prostanoid 14 

Calcium channel blocker 5 

sGC stimulator 1 

 

3.5 Results 

Results of all populations and subpopulations analysed are summarised in appendix Table 1. 

3.5.1 Lymphocytes  

Total lymphocyte count (cells per million PBMCs) was reduced in IPAH compared to controls 

(p=0.0042) [Figure 3.1]. The relative reduction in lymphocyte count was attributable to reduction of 

T lymphocytes in IPAH (p=0.0253) [Figure 3.2A]. B lymphocyte count did not differ significantly 

between IPAH and controls [Figure 3.2B]. Although both mean CD4+ and mean CD8+ T lymphocyte 

count were lower in IPAH, the reduction noted was not statistically significant [Figure 3.3].  
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Figure 3.1- Total lymphocyte count (cells per 106 PBMCs) in IPAH and healthy controls. Peripheral blood samples 
from 28 IPAH patients and 28 age and sex matched healthy controls were obtained. PBMCs were isolated and 
stained with fluorescently labelled antibodies. Lymphocytes were identified from the PBMC population by flow 
cytometry by gating of FSC (A) vs SSC (A). Plots show cell frequencies with mean ± SD for each group.  
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Figure 3.2- T and B lymphocyte count (cells per 106 PBMCs) in IPAH and healthy controls. Peripheral blood 
samples from 28 IPAH patients and 28 age and sex matched healthy controls were obtained. PBMCs were 
isolated and stained with fluorescently labelled antibodies. Lymphocytes were identified from the PBMC 
population by flow cytometry by gating of FSC (A) vs SSC (A).  (A) T cells were identified as CD3+ lymphocytes, 
(B) B cells were identified as CD19+ CD3- lymphocytes. Plots show cell frequencies with mean ± SD for each 
group. 
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Figure 3.3- CD4+ and CD8+ T lymphocyte count (cells per 106 PBMCs) in IPAH and healthy controls. Peripheral 
blood samples from 28 IPAH patients and 28 age and sex matched healthy controls were obtained. PBMCs were 
isolated and stained with fluorescently labelled antibodies. Lymphocytes were identified from the PBMC 
population by flow cytometry by gating of FSC (A) vs SSC (A). T cells were identified as CD3+ lymphocytes, and 
subsequently subdivided according to; (A) CD4 expression and (B) CD8 expression. Plots show cell frequencies 
with mean ± SD for each group. 
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3.5.2 B cells  

The most striking differences were observed in B cell subpopulations, with a significant decrease in 

both switched memory B cells (p= 0.0143) [Figure 3.4A] and non-switched memory B cells (p= 

0.0026) [Figure 3.4B] and a significant increase in plasmablasts (p= 0.0099) [Figure 3.4C] and ‘double 

negative’ (CD27- IgD-) B cells in IPAH (p= 0.0143) [Figure 3.4D]. 
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Figure 3.4- B cell subpopulations in IPAH and healthy controls. Peripheral blood samples from 28 IPAH patients 
and 28 age and sex matched healthy controls were obtained. PBMCs were isolated and stained with 
fluorescently labelled antibodies. Lymphocytes were identified from the PBMC population by flow cytometry by 
gating of FSC (A) vs SSC (A). B cells were identified as CD19+ CD3- lymphocytes. Sequential gating was used to 
identify; (A) switched memory B cells (CD27+ IgD-), (B) non-switched memory B cells (CD27+ IgD+), (C) 
plasmablasts (CD27+ IgD- CD20- CD38+) and (D) double negative B cells (CD27- IgD-). Plots show cell frequencies 
with mean ± SD. 
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3.5.3 CD4+ T cells  

The frequencies of CD4+ T cells (T helper cells) and CD4+ naïve, effector memory, central memory 

and effector memory RA subpopulations were not significantly different between disease and 

control. However, there was a significant increase in T follicular helper (Tfh) cells (p=0.0111) [Figure 

3.5A] and Th2-like Tfh cells (p=0.0212) [Figure 3.5B].    

Numbers of regulatory T cells (Tregs) did not differ significantly between IPAH patients and controls 

(p =0.3308) [Figure 3.6A]. Analysis of activated Tregs (HLA-DR+) also did not demonstrate any 

significant difference between disease and control (p =0.7345) [Figure 3.6B]. 
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Figure 3.5- Tfh cells in IPAH and healthy controls. Peripheral blood samples from 28 IPAH patients and 28 age and 
sex matched healthy controls were obtained. PBMCs were isolated and stained with fluorescently labelled 
antibodies. Lymphocytes were identified from the PBMC population by flow cytometry by gating of FSC (A) vs 
SSC (A). T cells were identified as CD3+ lymphocytes. Sequential gating was used to identify; (A) Tfh cells 
(CXCR5+ CD45RA- PD1+) and (B)Th2-like Tfh cells (CXCR3- CCR6-). Plots show cell frequencies with mean ± SD. 

 

 

 

 

 

 

 

A

a 

B B



Kasia Isabel Zalewska  MD Thesis 

76 

 

            

Figure 3.6-Regulatory T cells (Tregs) in IPAH and healthy controls. Peripheral blood samples from 28 IPAH patients 
and 28 age and sex matched healthy controls were obtained. PBMCs were isolated and stained with 
fluorescently labelled antibodies. Lymphocytes were identified from the PBMC population by flow cytometry by 
gating of FSC (A) vs SSC (A). T cells were identified as CD3+ lymphocytes. Sequential gating identified; (A) Tregs 
(CD25+ CD127low CCR4+) and (B) activated Tregs (HLA-DR+ Tregs). Plots show cell frequencies with mean ± SD. 

 

3.5.4 CD8+ T cells  

The frequencies of CD8+ T cells [Figure 3.7A] and CD8+ naïve, effector memory, central memory and 

effector memory RA subpopulations were not significantly different between disease and control. 

However, there was a significant increase in PD1+ CD8+ T cells in IPAH (p= 0.0332) [Figure 3.7B]. 
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Figure 3.7- CD8+ T cells in IPAH and healthy controls. Peripheral blood samples from 28 IPAH patients and 28 age 
and sex matched healthy controls were obtained. PBMCs were isolated and stained with fluorescently labelled 
antibodies. Lymphocytes were identified from the PBMC population by flow cytometry by gating of FSC (A) vs 
SSC (A) and T cells were identified as CD3+ lymphocytes. Sequential gating was used to identity; (A) CD8+ T cells 
and (B) CD8+ PD1+ T cells. Plots show cell frequencies with mean ± SD. 
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3.5.5 Th17 cells 

CD4+ and CD8+ cell naive, central memory, effector memory and effector memory subpopulations 

expressing CD16 were compared between IPAH and control. There were no significant differences 

between IPAH and control in any Th17 (CD16 expressing) T cell population. 

 

3.5.6 Natural killer, dendritic cells and monocytes  

Dendritic cells, monocytes and their subsets were not significantly different between IPAH and 

control. Although the natural killer cell population as a whole did not differ between disease and 

control [Figure 3.8A], there was altered balance in NK cell subsets in IPAH, with a significant 

reduction in CD16hi natural killer cells in IPAH (p =0.12) [Figure 3.8B]. Although CD56 NK cell mean 

was higher in IPAH, this was not statistically significant (p= 0.5). 
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Figure 3.8- Total Natural Killer cell and CD16hi Natural Killer cells in IPAH and healthy controls. Peripheral blood 
samples from 28 IPAH patients and 28 age and sex matched healthy controls were obtained. PBMCs were 
isolated and stained with fluorescently labelled antibodies. Using flow cytometry, myeloid cells were identified 
from the PBMC population as CD3-CD19-CD20- cells. Sequential gating was used to identify; (A) NK cells (CD14-
CD56+) and (B) CD16 hi NK cells. Plots show cell frequencies with mean ± SD. 
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3.5.7 Serum immunoglobulins  

Serum IgA, IgM, total IgG and IgG subclasses 1-4 were quantified in 27 patients and 27 age and sex 

matched controls. No significant differences in immunoglobulin concentration were present in IPAH 

compared to controls [Figure 3.9, Figure 3.10].   
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Figure 3.9- Serum immunoglobulin concentration in IPAH and healthy controls. Immunoglobulin subclasses (A) 
IgA, (B) IgM and (C) IgG were measured in serum from 27 IPAH patients and 27 age and sex matched healthy 
controls using polyethylene glycol (PEG) enhanced immunoturbidometric assay. Plots show immunoglobulin 
concentration with mean ± SD. 
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Figure 3.10- Serum immunoglobulin concentration in IPAH and healthy controls. Immunoglobulin G subclasses 
IgG1, IgG2, IgG3 and IgG4 (A-D) were analysed in serum from 27 IPAH patients and 27 age and sex matched 
healthy controls using nephelometry. Plots show immunoglobulin concentration with mean ± SD. 
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3.5.8 Serum IL-21 

Serum IL-21 was subsequently measured in stored serum from 45 IPAH patients and 60 healthy 

controls by enzyme linked immunosorbent assay (ELISA), using a biotin conjugated IL-21 detection 

antibody. Serum IL-21 levels were significantly higher in the IPAH group (p= 0.0024) [Figure 3.11]. 
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Figure 3.11- Serum IL-21 concentration in IPAH and healthy controls. Serum IL-21 was measured in stored serum 
from 45 IPAH patients and 60 healthy controls by a ‘sandwich’ enzyme linked immunosorbent assay (ELISA), 
using a capture antibody and a biotin conjugated IL-21 detection antibody. Plots show IL-21 concentration with 
mean ± SD.  

 

3.5.9 Clinical parameters  

The correlation was assessed between immune cell subsets and clinical parameters which are used 

to assess disease severity; mean pulmonary artery pressure (mPAP), pulmonary vascular resistance 

(PVR), N-terminal-pro-brain natriuretic peptide (NTproBNP) and cardiac index (CI). 

The immune cell subsets assessed were plasmablasts, memory B cells, double negative B cells, Tfh 

cells, Th2-like Tfh and PD1-expressing CD8+ T cells. These cell subsets were also assessed relative to 

TTCW (time to clinical worsening, as defined in 2.5.2), to explore whether the immune cell 

phenotype observed was associated with clinical disease progression. Plasmablasts showed a 

moderate positive correlation with mean pulmonary artery pressure, but did not correlate with PVR, 

cardiac index or NTproBNP. Conversely, both Tfh and PD1+ CD8+ T cells showed an inverse 

correlation with mPAP [Figure 3.12]. 
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Figure 3.12- Correlation of cell subpopulations with clinical markers of disease severity. Pearson’s correlation 
coefficient or Spearman’s rank correlation was used to assess correlation between immune cell subsets and 
clinical parameters which are used to assess disease severity. Shown above are; (A) mPAP vs plasmablast 
frequency (B) mPAP vs Tfh frequency (C) PD1+ CD8+ T cell frequency vs mPAP.  

 

There were no statistically significant correlations between TTCW and the immune cell 

subpopulations assessed. 16 out of 28 patients had a clinical worsening event between the time of 

diagnosis and the time of sampling. The IPAH group was subsequently divided into 2 groups 

according to clinical evidence of significant disease progression, defined as follows: 

1. ‘Deteriorating’- patients who met the criteria for at least 1 clinical and worsening event since 

diagnosis 

2. ‘Stable’-patients who had not had a clinical worsening event since diagnosis. 
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Although there was a trend towards higher plasmablasts and Tfh cells [Figure 3.13] and lower 

memory B cells in those who had a disease worsening event, these differences were not statistically 

significant. 
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Figure 3.13- Plasmablast and Tfh cell frequency in IPAH, according to clinical worsening. For each IPAH patient, 
clinical records were reviewed to determine time to clinical worsening (TTCW). TTCW was defined as either 
disease progression (based on a ≥15% decrease in 6-minute walk distance, plus either worsening of functional 
class or need for additional PAH therapy), hospitalisation for worsening PAH, need for atrial septostomy or lung 
transplant or the introduction of parenteral prostacyclin therapy. Patients were divided into 2 groups; those 
who had not had a clinical worsening event since the time of diagnosis (‘stable’) and those who had 1 or more 
clinical worsening events (‘deteriorating’) and the frequency of (A) plasmablasts and (B) Tfh cells were 
compared between the 2 groups. Plots show cell frequency with mean ± SD. 
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3.6 Discussion 

 

3.6.1 Total lymphocytes 

My results confirm the presence of a relative lymphopenia in IPAH, compared to age and sex 

matched healthy controls. The potential mechanisms for lymphopenia in IPAH are multiple.  

Lymphopenia is a recognised feature of a number of inflammatory conditions (Núñez et al., 2011), 

and chronic diseases such as renal failure (Pernice et al., 2006). Depletion in lymphocytes also occurs 

in heart failure, as a consequence of neurohormonal activation, oxidative stress and increased 

gastrointestinal lymphatic pressure (Weng et al., 2014).  

As both inflammation and neurohormonal activation are present in IPAH, it is possible that these 

mechanisms could lead to lymphopenia. Additionally, the progressive right sided heart failure which 

develops during the disease, with consequent increase in oxidative stress and increased GI lymphatic 

pressure, may predispose to lymphocyte loss in IPAH. 

 

It is also plausible that inflammation in IPAH may result in lymphopenia through a redistribution of 

circulating lymphocytes towards areas of disease activity, whereby lymphocytes migrate into lung 

tissue, depleting the circulating lymphocyte pool. This concept is supported by the presence of 

lymphocytic perivascular lung infiltrates in IPAH (Tuder et al., 1994). 

 

Notably, the depletion in lymphocytes in IPAH is not global in nature, but is localised to the CD4+ T 

lymphocyte population. This selective depletion suggests that the lymphopenia observed in IPAH is 

not simply attributable to systemic physiological stress, generalised bone marrow or thymic 

suppression or non-selective gastrointestinal losses. This contrasts with previous findings of Ulrich et 

al (Ulrich et al., 2008a), who found a depletion of CD8+ rather than CD4+ T cells. The mechanisms 

underlying the CD4+ T cell depletion I have detected are unclear and require further investigation.   

 

T cell lymphopenia has recognised associations with autoimmunity and immune dysfunction. For 

example, lymphopenia is one of the clinical and immunologic criteria used in the diagnosis and 

classification of SLE (Hochberg, 1997), and correlates with disease severity (Vilá et al., 2006). Anti-

lymphocyte antibodies are commonly detected in this disease (Chun Li 2014). Other examples 

include Sjogren’s syndrome, which is associated with severe lymphopenia in 5% of patients (Kirtava 

et al., 1995), Wegener’s granulomatosis (Izzedine et al., 2002) and treatment naive rheumatoid 

arthritis (Duquenne et al., 2015).  
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The presence of T cell lymphopenia in IPAH and the recognised increased autoantibody production 

in IPAH (Rich et al., 1986) are features in common with autoimmune conditions. It is plausible that 

there may be shared mechanisms in these disease processes, raising the question as to whether 

anti-lymphocyte antibodies may be implicated in IPAH pathobiology.  

 

A further consideration is whether the lymphopenia observed in some T lymphocyte subpopulations 

may be responsible for expansion of other T lymphocyte subpopulations. Lymphopenia induced 

proliferation (LIP) is recognised as a homeostatic mechanism to maintain a constant number of T 

cells in the circulation (Rocha et al., 1989). In a T cell deficient environment, T cells are able to 

proliferate without the presence of antigen, in an attempt to restore T cell numbers (Min et al., 

2005, Rocha et al., 1989).  

 

LIP is not only of importance in normal physiological situations, but may also be important in 

diseases where lymphopenia occurs, including autoimmune disease. There is some evidence to 

suggest that in susceptible individuals, LIP may promote development of autoimmune disease 

(Baccala and Theofilopoulos, 2005). In these individuals, a higher background frequency of 

potentially autoreactive T cells, coupled with frequent or chronic lymphopenia, promotes expansion 

of these autoreactive cells. Therefore, it is possible that dysregulated immune responses may not be 

caused simply by the absence of a T cell subpopulation, but potentially by the disturbed T cell 

repertoire which forms in attempt to maintain homeostasis of total T cell numbers. 

 

3.6.2 B cells 

My research has detected novel and striking differences in B cell subpopulations in IPAH compared 

to healthy controls. Although other immunophenotyping studies have assessed T lymphocytes in 

IPAH (Huertas et al., 2012, Austin et al., 2010a, Ulrich et al., 2008a), investigation of B lymphocytes 

has been largely neglected. There have been no reported studies characterising B lymphocyte 

subpopulations. However, a very small study of 5 patients, which analysed the RNA expression 

profile of peripheral blood B lymphocytes suggested the presence of B cell activation (Ulrich et al., 

2008b).  

Activation of naïve B cells occurs within the germinal centres of secondary lymphoid organs, where B 

cells undergo further antigen dependent maturation. After proliferation and affinity maturation, 

follicular B cells receive a final differentiation signal and exit the germinal centre as either an 



Kasia Isabel Zalewska  MD Thesis 

85 

 

antibody producing plasma cell or memory B cell. This final stage of maturation occurs under the 

influence of cytokines secreted by T helper cells.  

The finding of increased plasmablasts in IPAH, accompanied by a decrease in memory B cells (both 

switched and non-switched) provides evidence of altered B cell differentiation in IPAH, with 

deviation towards antibody production rather than immunological memory. In addition to being 

found in the context of both acute and chronic infection, increased circulating plasmablasts are 

present in autoimmune conditions such as SLE and RA and decreased non-switched memory B cells 

have been reported in systemic sclerosis and SLE (Wang et al., 2013).  

The increase in plasmablasts present in IPAH is also accompanied by an increase in Tfh cells. This is 

consistent with stimulation of a pathway which usually leads to B cell antibody production, and 

matches the immune cell phenotype seen in SLE and Sjogrens syndrome (Szabó et al., 2016, 

Bohnhorst et al., 2001a, Bohnhorst et al., 2001b). These findings, along with a decrease in memory B 

cells suggest presence of B cell activation, which may be driven by an unresolved antigenic stimulus 

in IPAH, which in turn may lead to a humoral immune response. The presence of B cell activation in 

is also supported by evidence of upregulation of multiple B cell RNA transcripts in IPAH (Ulrich et al., 

2008b). 

The reduction in classical memory B cells (IgD- CD27+) in IPAH was also accompanied by an increase 

in ‘double negative’ (IgD- CD27-) B cells. These cells have short telomeres and low replicative ability 

and characteristics of cell senescence. Expansion of this cell subpopulation is found with advancing 

age (Bulati et al., 2011), and has been reported in SLE (Wei et al., 2007) and Alzheimer’s disease 

(Bulati et al., 2015). Increases in this cell subpopulation in disease have been speculated to occur as 

a result of chronic inflammation, leading to state of premature biological ageing of the immune 

system (Bulati et al., 2011). This hypothesis could equally be applied to IPAH, where there is clear 

evidence of inflammation in the disease pathobiology (as discussed in Chapter 1, section 1.18). 

3.6.3 T cells 

After development in the bone marrow, followed by selection in the thymus, ‘naïve’ forms of CD4+ 

and CD8+ T lymphocytes circulate in the periphery. After priming of a naïve T cell by encounter with 

antigen, the cell receives signals which direct it to proliferate and differentiate. Some of the progeny 

become short lived effector cells and some form long lived memory T cells that will survive in a 

quiescent state until they re-encounter the same antigen, reactivate and provide an accelerated 

immune response.  
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3.6.3.1 CD4+ T cells 

CD4+ T cell lineages  

CD4+ (T helper cells) develop into one of a number of lineages; Tfh, Th1, Th2, Th17, Th9 or Treg. The 

differentiation pathway the cell takes depends on the cytokine milieu, concentration of antigens, 

type of antigen presenting cells and costimulatory molecules present. 

Th1 and Th2 cells 

Th1 cells are involved in cell mediated inflammatory reactions and secrete IL-2, granulocyte-

macrophage colony-stimulating factor and the inflammatory cytokines IFN-y and tumour necrosis 

factor. They are involved in elimination of intracellular pathogens and are associated with organ-

specific autoimmunity and delayed hypersensitivity reactions (Annunziato et al., 2015).  

Th2 cells mount the immune response to extracellular parasites, including helminths and produce 

cytokines such as IL-4 and IL-5 that help B cells to survive, proliferate and differentiate and are 

associated with humoral-type immune responses. Th2 cytokines particularly encourage IgE 

responses which play a major role in induction and persistence of allergic diseases (Cohn et al., 

2004). 

Notably, alterations in the Th1/Th2 balance have been identified in a number of autoimmune 

diseases and can have an impact on the outcome of autoimmune responses (Ogawara et al., 2003). 

In IPAH, there was an increase in Th2 cells but not Th1 cells. It may be that cytokine production by 

this subpopulation provides further stimulus to B cell proliferation in IPAH. 

Th17  

Th17 cells are defined by their ability to produce IL-17 cytokines, which are pro-inflammatory with 

roles in defensive immunity against bacteria and fungi, particularly at mucosal sites such as lung, gut 

and the oral cavity (Guglani and Khader, 2010). Increases in CD161+ CD4+ cells have been linked to a 

number of different inflammatory, immune and autoimmune related diseases including multiple 

sclerosis, psoriasis, Crohn’s disease and RA, as well as allograft rejection (Annibali et al., 2011, Martin 

et al., 2013). However, CD161 expressing T cell subsets were not altered in IPAH, suggesting that 

these do not play a major role in established disease. 
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Tfh cells (CD4+ CXCR5+ PD1+) 

Despite overall depletion in the CD4+ T cell compartment, IPAH patients demonstrated significantly 

increased populations of T follicular helper (Tfh) cells. Tfh are critical in the selection and survival of 

B cells, therefore play a key role in regulating antigen-specific humoral immunity. They direct 

somatic hypermutation and isotype switching of follicular B cells and within the germinal centres 

continue to provide B cell help, facilitating formation of antibody producing plasma cells and 

memory B cells.  

Diseases in which there is chronic unresolved antigenic stimulation are associated with increases in 

Tfh cells. For example, increases are found in systemic lupus erythematosus (SLE), Sjogrens 

syndrome, rheumatoid arthritis (RA), autoimmune thyroid disease and myasthenia gravis (Arroyo-

Villa et al., 2014). This increase usually correlates with clinical disease severity.  

Tfh are also increased in human immunodeficiency virus (HIV) infection and their number positively 

correlates with plasma viraemia (Cubas et al., 2013, Lindqvist et al., 2012, Perreau et al., 2013). This 

occurs despite the progressive decline in total CD4+ T cells, and is accompanied by a decrease in 

memory B cells and an increase in plasma cells, similar to the findings in the IPAH group studied. 

In summary, the expansion of Tfh in IPAH is a feature in common with other diseases where there is 

immune dysfunction, and is consistent with activation of a pathway which is directed towards 

humoral immune responses by B cells. This hypothesis is supported by the accompanied expansion 

of plasmablasts in IPAH (see section 3.6.2) and the increase in IL-21 (see section 3.6.4). 

 

Tfh subsets  

Tfh cells (CXCR5+CD4+ T cells) may be further classified into three subsets; Tfh1 (CXCR3+CCR6−), Tfh2 

(CXCR3−CCR6−) and Tfh17 (CXCR3−CCR6+) (Morita et al., 2011). Skewed distribution of circulating 

memory Tfh subsets have been reported in some autoimmune diseases. For example, higher levels 

of Th2 and Th17 over Th1 have been reported in SLE (Le Coz et al., 2013), juvenile dermatomyositis 

(Morita et al., 2011) and Guillan-Barre syndrome (Che et al., 2016). There is evidence to suggest that 

Tfh2 and Tfh17 but not Tfh1 promote differentiation of B cells towards antibody-producing cells 

(Morita et al., 2011) via secretion of IL-21.  

My results demonstrate an increase in Th2-like Tfh cells in IPAH, paralleling the changes seen in 

immune disorders. It is possible that Tfh2 may play a role in the pathogenesis of IPAH, yielding more 

antibody-producing cells and subsequent antibody-mediated humoral immune response. This is 
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supported by the differences noted in IPAH B cell subpopulations and elevated IL-21 levels found in 

IPAH. 

 

Regulatory T cells (Tregs) 

Regulatory T cells play an important role in immune homeostasis, self-tolerance and prevention of 

autoimmunity. They maintain the balance between an appropriate degree of immune activation 

required to respond to noxious stimuli, whilst preventing excessive tissue damage. Therefore, 

reactive increases in regulatory T cell number may be seen in response to a threat to self-tolerance 

and regulatory T cell depletion may result in failure of immune homeostasis (Vignali et al., 2008, 

Sakaguchi et al., 2008). 

The role of Tregs in autoimmune disease is well demonstrated in animal models where depletion of 

Tregs results in a range of autoimmune diseases, and repletion results in reversal of the disease 

(Sakaguchi and Sakaguchi, 2005). Similarly, in an animal model of PAH, the importance of regulatory 

T cells in protecting against the development of PAH has been demonstrated (Tamosiuniene et al., 

2011). Treg deficits in number and/or function have been noted in a number of human autoimmune 

diseases including multiple sclerosis (MS) (Viglietta et al., 2004), RA (Lawson et al., 2006) and SLE 

(Valencia et al., 2007), suggesting that Treg quantitative or functional deficiencies may be implicated 

in these diseases.   

Contrary to previously published studies in IPAH where increases in Treg number were reported 

(Austin et al., 2010a, Ulrich et al., 2008a), I did not find any significant differences in Tregs in IPAH 

patients compared to controls. However, it must be noted that the markers used to define the Treg 

population were different. The marker FoxP3 was used in previous studies. However, it is now 

known that FoxP3 expression is not restricted to Tregs (Gavin et al., 2006, Wang et al., 2007). In my 

research, Tregs were instead defined as CD25+ CD127low CCR4+ CD4+ T cells (Maecker et al., 2012). 

Treg functional deficiency in PAH has also been reported, despite the Treg population being normal 

in size (Huertas et al., 2016).  It is feasible that in response to vascular injury, a functional deficiency 

in Tregs may result in failure of these cells to ensure appropriate injury resolution, which may then 

result in inappropriate inflammation and exuberant vascular remodelling.  However, further 

functional study of Tregs are needed to establish their role in IPAH pathobiology. 
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3.6.3.2 CD8+ T cells 

Following activation by interaction with antigen presenting cells in the presence of CD4+ T help, 

CD8+ cells undergo clonal expansion and can travel throughout the body in search of antigen 

positive cells. Upon encounter with antigen, they are then able to carry out direct cytotoxic 

functions.  

Within the CD8+ T cell group, there was a reduction in CD8+ CCR7 T cells which was attributable to 

the naïve CD8+ T cell population (CCR7+CD45RA+). This is consistent with previous findings of Austin 

et al (Austin et al., 2010a). 

In contrast to the depletion of naïve T cells detected, I identified a significant increase in PD1-

expressing CD8+ T cells in IPAH. This finding is consistent with increased T cell activation. However, 

this may also indicate CD8+ T cell exhaustion. T cell exhaustion refers to a state whereby T cells 

become progressively less effective and eventually undergo apoptosis (Yi et al., 2010). The 

phenomenon has been described in situations of chronic antigenic stimulation such as malignancy, 

chronic infections including HIV, hepatitis B and hepatitis C and autoimmune diseases (Jiang et al., 

2015). In the presence of antigen, under normal circumstances naïve T cells are stimulated to 

differentiate into effector T cells and after clearance of antigen they develop into memory T cells. 

When there is persistence of antigenic stimulus, T cells do not transit to memory phenotype. 

Instead, these T cells progressively lose effector function (Wherry et al., 2003) and there is sustained 

expression of inhibitory receptors, culminating in T cell anergy and finally apoptosis. In particular, 

PD1 (Programmed Death 1), is a hallmark of CD8+ T cell exhaustion. 

Antigen and CD4+ T cell help strongly influence CD8+ T cell exhaustion; as antigen increases and/or 

CD4+ help decreases, virus-specific T cells become more exhausted. In chronic viral infections, the 

severity of T cell exhaustion correlates with viral load and or the number of epitopes presented, 

longer duration of infection and loss of CD4+ T cell help (Wherry et al., 2003, Day et al., 2006). It has 

been postulated that block the PD1–PDL pathway may have therapeutic potential in ameliorating T 

cell exhaustion (Barber et al., 2006).  

However, PD1 expression is not necessarily synonymous with terminal differentiation to ‘exhaustion’ 

and inevitable decline and death. An alternative view is now emerging, whereby some authors have 

challenged the notion that this phenomenon represents a dysfunctional state in overwhelmed T 

cells, suggesting instead that increased PD1 expression may in fact represent an adaptive state. 

(Utzschneider et al., 2013, Hong et al., 2013, Paley et al., 2012, Duraiswamy et al., 2011). For 

example, Utzscheneider et al. (2013) have proposed that during persistent infection, effector T cells 
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may stably differentiate into this state to allow viral replication to be limited without causing 

overwhelming immunological pathology.  

This concept may also apply to autoimmune diseases in which there is persistent antigenic 

stimulation. In a range of autoimmune diseases, presence of CD8 T cell ‘exhaustion’ has been found 

to be associated with a better prognosis (McKinney et al., 2015). Notably, in the IPAH group I 

studied, PD1+ CD8+ T cells showed an inverse correlation with mean pulmonary artery pressure. 

However, the true significance of this finding is uncertain.  

In summary, the reduction in naïve CD8+ T cells and increase in PD1-expressing T cells in IPAH is 

consistent with an activated CD8+ T cell population, indicating a response to the presence of an 

antigenic stimulus. Whether PD1 expression constitutes solely activation, whether it is indicative of 

deleterious ‘exhaustion’ or whether it represents an adaptive mechanism to limit immunological 

damage is unclear. This could be further explored by analysis of other cell surface inhibitory markers 

and studies of CD8+ T cell function.   

 

3.6.4 IL-21 

Serum IL-21 was increased in IPAH patients compared to healthy controls. Interleukin-21 (IL-21) is 

predominantly produced by CD4+ T cell populations. The highest production is by Tfh cells and Th17 

cells. The IL-21 receptor is broadly expressed on many lymphoid and myeloid cell populations 

allowing a diverse range of actions.  

IL-21 triggers a primarily proliferative response in CD4+ T cell, Tfh, Th17, NK, NKT, B cell and to a 

lesser extent, CD8+ t cell populations and enhances macrophage phagocytosis, whereas it inhibits 

generation and survival of Treg populations (Attridge et al., 2012) and inhibits mast and dendritic cell 

immune and inflammatory responses. It plays a major role in B cell immunoglobulin responses. In 

the context of a co-stimulatory T cell signal, IL-21 induces differentiation of naïve B cells to form 

plasma cells and has been implicated in the promotion of autoimmune disease (Gharibi et al., 2016, 

Tangye, 2015). GWAS studies have identified variants of the IL-21 gene (along with IL-2) as 

susceptibility locus for SLE (Hughes et al., 2011), type 1 diabetes (Asano et al., 2007) and 

inflammatory bowel disease (Márquez et al., 2009). Serum IL-21 levels are raised in SLE and RA 

(Wang et al., 2014, Rasmussen et al., 2010), in conjunction with increased Tfh number, and levels 

correlate with disease severity.  

Similarly, IL-21 has been implicated in other immune-mediated diseases including autoimmune 

hepatitis (Abe et al., 2016), psoriasis (Caruso et al., 2009, He et al., 2012) and allergic disorders (Chao 
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et al., 2015, Xiao et al., 2015). It also plays an important role in the context of malignancies where it 

can induce antitumor responses through activation of T and NK cells (Bhatt et al., 2015).  

Elevation of IL-21 in IPAH, in conjunction with an increase in the Tfh cells known to secrete this 

cytokine adds further evidence to suggest Tfh-mediated immune activation in IPAH. This is also 

supported by evidence of infiltration of IL21+ cells in vascular lesions in the lungs of IPAH patients 

(Hashimoto-Kataoka et al., 2015), prominence of these cells in tertiary lymphoid follicles which 

develop in IPAH lung (Perros et al., 2012) and IL-21 potentiation of the development of PAH in mice 

(Hashimoto-Kataoka et al., 2015). 

 

3.6.5 Myeloid cells 

Amongst myeloid cells, altered NK cell differentiation was observed. These cells play a role in both 

innate and adaptive immune responses. CD16hi NK cells (CD56 dim) are considered to be the most 

cytotoxic NK subset (Poli et al., 2009), facilitating both antibody-dependent cellular cytotoxicity and 

direct cytotoxicity independent of antibody (Mandelboim et al., 1999). This subpopulation was 

reduced in IPAH.  

The reduction in CD16hi NK cells was accompanied by a relative increase in CD56hi NK cells, although 

this was not statistically significant. The CD56hi subtype usually comprises a minority of NK cells in 

PBMC (<10%) but is the major NK subtype in tissues and secondary lymphoid organs. CD56hi NK cells 

are considered to be more proliferative, to have a higher capacity for cytokine production after 

stimulation and to have poor cytotoxic effector activity at rest, compared with CD56dim cells (Poli et 

al., 2009).  

Impaired natural killer cell phenotype and function has previously been reported in PAH patients 

(Ormiston et al., 2012). In contrast to my findings, the study found that the CD16hi (CD56low) 

population was expanded, but functionally defective. Another study has suggested that deficiencies 

in NK cells may be associated with an increased risk of death in PAH patients (Edwards et al., 2013). 

However, whether these cells play a role in the disease pathobiology remains uncertain.  
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3.7 Summary and Conclusion 

Within the group of IPAH patients studied, a peripheral blood signature suggesting immune 

dysregulation is found.  Increases in T follicular helper cells (particularly Th2 like Tfh) and 

plasmablasts are consistent with activation of a pathway which usually culminates in a humoral 

immune response. This is supported by the elevation in IL-21 which is secreted by activated Tfh and 

stimulates B cell differentiation. Additionally, an increase in PD1-expressing CD8 T cells is consistent 

with T cell activation in response to presence or persistence of antigen.  

Notably, the peripheral blood immune cell phenotype detected in IPAH is similar to the profile found 

in a number of autoimmune diseases. This supports the hypothesis that in some patients with IPAH, 

the disease may be mediated by shared mechanisms. Although there were no significant differences 

in immunoglobulin quantity between IPAH patients and healthy controls, the potential role of 

antibodies in the disease process should not be discounted. The analysis presented has only 

explored immunoglobulin quantity rather than function and thereby does not shed light on 

immunoglobulin specificity or self-reactivity. Further research to explore these functional aspects are 

warranted. 

This analysis also revealed statistically significant correlations between some key clinical markers of 

disease severity and B cell abnormalities observed. However, this correlation was not statistically 

significant for all markers of disease severity. This may be explained by the fact that a number of 

clinical variables (such as haemodynamics) are only measured infrequently due to their invasive 

nature. Because of this, their value may not accurately represent the clinical state at the time of 

blood sampling, particularly in patients who have undergone recent changes to their treatment. 

Sampling at the time of right heart catheterisation in all patients would provide immediate pairing of 

haemodynamics with immunophenotype, thereby providing more robust evidence of correlation 

with haemodynamics. 

It must also be noted that IPAH is a clinically heterogeneous disease and these findings should not be 

generalised to all IPAH patients. Disease heterogeneity is particularly notable amongst older IPAH 

patients when compared with younger IPAH patients (Chapter 1, Section 1.13). Therefore, we would 

not necessarily expect the immune signature I have identified to be a universal feature of IPAH. In 

this cohort studied, few older individuals were recruited, due to the presence of comorbidity in 

these patients and lack of availability of healthy age-matched controls.  
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Due to the nature of the clinical presentation of IPAH, often the disease is diagnosed at an advanced 

stage. The lack of early detection makes it difficult to study early disease and to establish at which 

point in the disease development the immune cell alterations become evident. Studies in animal 

models of the disease may provide further insight into this process. Additionally, longitudinal 

assessment of immune cell profile in IPAH patients paired with haemodynamic and biochemical 

clinical data are required to establish whether immune profile correlates with disease activity and 

whether therapeutic strategies modulate both immune cell profile and clinical outcomes. Together 

these findings provide evidence of immune dysregulation in IPAH which requires further exploration.  
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4 Chapter 4- Immunophenotyping of other pulmonary hypertension 

subgroups 

 

4.1 Introduction and objectives 

Immunophenotyping of peripheral blood leukocytes has demonstrated distinct differences in IPAH 

immune cell profile compared to healthy individuals (Chapter 3). This supports the growing body of 

evidence for the role of immune responses in the disease pathobiology. 

 I sought to further explore these findings by characterising the immune cell phenotypes of other 

pulmonary hypertension subgroups: 1. Chronic thromboembolic pulmonary hypertension (CTEPH), 

2. Systemic sclerosis associated PAH (SSc-PAH) and 3. Heritable pulmonary arterial hypertension 

(HPAH). 

The purpose of this was to determine whether the findings in IPAH indicate immune dysfunction 

which is specific to IPAH disease pathobiology, or whether these findings are a universal feature 

shared by the disease subtypes. Therefore, IPAH immune cell phenotypes were compared with a 

type of pulmonary hypertension which does not have strong associations with autoimmunity 

(CTEPH), a type of pulmonary hypertension with a strong autoimmune basis (systemic sclerosis 

associated PAH) and a type of pulmonary hypertension where a genetic mutation in the BMPR2 gene 

plays a role in the disease pathogenesis. 

 

Pulmonary hypertension subgroups 

1. CTEPH 

CTEPH is thought to occur as a result of failure of thrombus resolution in the pulmonary arteries, 

leading to chronic vascular occlusion coupled with dysfunction of the distal vasculature (Lang et al., 

2016). In contrast to IPAH and CTD associated PAH, it does not show a female predominance or have 

strong associations with immune dysfunction. However, there is a recognised association with 

chronic inflammatory states, such as chronic infection and malignancy, which are thought to confer 

risk of developing the disease by causing impairment of thrombus resolution (Lang et al., 2013).  

2. SSc-PAH 

SSc-PAH refers PAH which occurs as a secondary complication of the autoimmune connective tissue 

disease systemic sclerosis. Although PAH is associated with a number of connective tissue diseases, 
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it is particularly prevalent in systemic sclerosis and is the leading cause of death in this disease 

(Chaisson and Hassoun, 2013).  As in IPAH, immune cell infiltrates have been identified in pulmonary 

arterial vascular lesions in systemic sclerosis-PAH (Dorfmüller et al., 2007). Additionally, anti-

fibroblast and anti-endothelial antibodies have been identified, which may be implicated in vascular 

injury and remodelling (Tamby et al., 2005, Tamby et al., 2006). 

3. HPAH 

Heritable pulmonary arterial hypertension (HPAH) refers to pulmonary arterial hypertension 

occurring due to mutations in predisposing genes or in a familial context. Mutations in the BMPR2 

gene remain the most common genetic abnormality implicated in heritable PAH (Chapter 1, Section 

1.10). However, disease penetrance is low, and therefore other factors must be implicated in disease 

development. These factors are currently not known. 

 

Objective 

To phenotype circulating leukocytes in patients with CTEPH, SSc-PAH and HPAH to determine 

whether the immune cell ‘signature’ found in IPAH is specific to this disease or whether it is common 

amongst pulmonary hypertension subtypes. 

 

Hypothesis  

Peripheral blood leukocyte phenotype differs between IPAH and other PH subtypes, reflecting their 

different disease pathoaetiologies. 

 

4.2 Study population 

Subjects were recruited prospectively from the Pulmonary Vascular Diseases Unit, Papworth 

Hospital, Cambridge UK, as described in section 2.1.  21 patients with CTEPH, 12 patients with SSc-

PAH and 9 patients with HPAH were recruited. All patients recruited met diagnostic criteria as 

described in 2.1.2. An additional 6 controls were added to the 28 controls originally recruited. These 

disease subgroups and expanded control group were compared to the group of 28 IPAH patients 

detailed in chapter 3. 
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4.3 Subject demographics 

Subject demographics and clinical parameters are summarised in Table 4.1 and Table 4.2.  

Similar to the IPAH group studied, patients in all groups were predominantly prevalent cases and the 

majority were receiving medical treatment for pulmonary arterial hypertension. 

The mean age in the SSc-PAH and CTEPH groups was higher than the other groups studied. In all 

IPAH, HPAH and SSc-PAH, there was a marked predominance of females, reflecting the known 

female predilection for development of these diseases. 

In each disease group, patients were on a range of pulmonary hypertension therapies, although 

notably prostanoid therapy was much more common in the IPAH group, compared to the other 

disease subgroups studied. 

Table 4.1- Subject demographics: Healthy controls and pulmonary hypertension sub-groups. 

Clinical parameter Controls IPAH CTEPH SSc-PAH HPAH 

Number of subjects 34 28 21 12 9 

Age (years) 41.7 ± 12.4 41.8 ± 10.5  

 

63.1± 14.2 64.6 ± 12.5 49 ± 15.1 

Sex (Female:Male) 29:5 23:5 11:10 9:3 8:1 

BMI (kg/m2) 24.6 ± 3.6 27.8 ± 6.1 29.3 ± 7.5 24 ± 5.4 28.4 ± 4.4 

 

Table 4.2- Pulmonary hypertension subgroup clinical parameters. 

Clinical parameter IPAH  CTEPH SSc-PAH HPAH 

Number of subjects 28 21 12 9 

WHO Class (I/II/III/IV) 4/10/14/0 1/10/10/0 0/2/10/0 0/4/5/0 

RAP (mmHg) 8.7 ± 3.4 

 

8.9 ± 4.5 

 

8.3 ± 4.4 

 

9.7 ± 4.2 

 
mPAP (mmHg) 51.3 ± 12.5 

 

41.4 ± 9.7 40 ± 12 58 ± 15.7 

PCWP (mmHg) 10.7 ± 3.1 11 ± 4.5 10 ± 4 10.6 ± 4.4 

PVR (Wood units) 9.7 ± 4.4 7.5 ± 3.1 7.5 ± 3.1 17.2 ± 10 
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CI (L/min/m2)- Thermodilution method 2.5 ± 0.8 2.2 ± 0.5 2.5 ± 0.5 1.8 ± 0.5 

6 minute walk distance (metres) 461 ± 109 

 

316 ± 133 326 ± 116 365 ± 106 

Serum NTproBNP levels (pg/mL) 547 ± 922 1033 ± 1345 2027 ± 2822 1085 ± 891 

Pulmonary hypertension therapy  

Nil/monotherapy/combination 2/5/21 

 

5/10/6 2/2/8 0/1/8 

PDE5 inhibitor 17 12 9 6 

Endothelin receptor antagonist 10 6 2 7 

Prostanoid 14 0 3 5 

sGC stimulator 1 4 0 0 

 

 

4.4 Methods 

Whole blood was drawn from each subject by peripheral upper limb venepuncture. PBMC isolation 

and immunophenotyping of fresh blood samples was carried out immediately, as described in 

section 2.2.  

 

4.5 Data analysis 

Previous identification of leukocyte subpopulations in which statistically significant differences were 

present between IPAH and controls guided a targeted analysis of cell subpopulations. This included 

analysis of Tfh cells, B cell subpopulations and PD1-expressing CD8+ T cells. In view of regulatory T 

cell abnormalities previously identified by other studies (Austin et al., 2010a), this cell subpopulation 

was also assessed in all groups. Firstly, the Kruskal-Wallis test or ANOVA (depending on whether the 

cell populations conformed to a normal distribution) were used to assess for statistically significant 

differences between the groups. Secondly, to further characterise differences between the 

subgroups, each disease subgroup was in turn compared to each of the other groups using t tests 

with Welch’s correction (for normally distributed data) or the Mann Whitney U test (when the data 

did not conform to a normal distribution). 
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4.6 Results 

4.6.1 Lymphocytes 

Total lymphocyte count (cells per million PBMCs) differed between the 5 groups (p< 0.0001), [Figure 

4.1]. In addition to the lymphopenia detected in IPAH compared to controls, total lymphocyte count 

was reduced in both SSc-PAH and CTEPH relative to control (p= 0.0039 and p < 0.0001 respectively). 

The reduction in total lymphocytes detected in all of these groups was attributable to a reduction in 

T cells [Figure 4.2A]. Total B cell count did not differ significantly between the 5 groups (p= 0.3) 

[Figure 4.2B]. 

In SSc-PAH, both CD4+ and CD8+ T cells were depleted relative to the age-matched controls (p = 

0.0103 and p = 0.0253 respectively). In HPAH, although total lymphocytes were not significantly 

reduced when compared with controls (p = 0.0940), there was a significant reduction in CD4+ T cells 

(p = 0.0368). Conversely, in CTEPH there was significant reduction in CD8+ T cells only (p= 0.0168) 

[Figure 4.3]. These comparisons are summarised in Table 4.3. 
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Figure 4.1- T and B lymphocyte count (cells per 106 PBMCs) in healthy controls, IPAH, HPAH, SSc-PAH and CTEPH. 
Peripheral blood samples from 34 healthy controls, 28 IPAH patients, 21 CTEPH, 12 SSc-PAH and 9 HPAH 
patients were obtained. PBMCs were isolated and stained with fluorescently labelled antibodies. Lymphocytes 
were identified from the PBMC population by flow cytometry by gating of FSC (A) vs SSC (A). Plot shows cell 
frequencies with mean ± SD.  
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Figure 4.2- T and B lymphocyte count (cells per 106 PBMCs) in healthy controls, IPAH, HPAH, SSc-PAH and CTEPH. 
Peripheral blood samples from 34 healthy controls, 28 IPAH patients, 21 CTEPH, 12 SSc-PAH and 9 HPAH 
patients were obtained. PBMCs were isolated and stained with fluorescently labelled antibodies. Lymphocytes 
were identified from the PBMC population by flow cytometry by gating of FSC (A) vs SSC (A). (A) T cells were 
identified as CD3+ lymphocytes, (B) B cells were identified as CD19+ CD3- lymphocytes. Plots show cell 
frequencies with mean ± SD. 
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Figure 4.3- CD4+ and CD8+ T lymphocyte count (cells per 106 PBMCs) in healthy controls, IPAH, HPAH, SSc-PAH 
and CTEPH. Peripheral blood samples from 34 healthy controls, 28 IPAH patients, 21 CTEPH, 12 SSc-PAH and 9 
HPAH patients were obtained. PBMCs were isolated and stained with fluorescently labelled antibodies. 
Lymphocytes were identified from the PBMC population by flow cytometry by gating of FSC (A) vs SSC (A). T cells 
were identified as CD3+ lymphocytes, and subsequently subdivided according to (A) CD4 expression and (B) CD8 
expression. Plots show cell frequencies with mean ± SD. 
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Table 4.3- Comparison of total lymphocytes, total T cells, CD4+ T cell and CD8+ T cell populations between 
individual subgroups. p values for unpaired t test or Mann Whitney U test. Significant p values (p <0.05) are 
highlighted. 

 

Comparison T cell subpopulation 

Total lymphocytes T cells CD4+  CD8+ 

IPAH vs HPAH 0.0631 0.8814 0.6428 0.7382 

Control vs HPAH 0.9903 0.0940 *0.0368 0.6021 

IPAH vs SSc 0.0837 0.2347 0.2548 *0.0254 

Control vs SSc **0.0039 *0.0103 *0.0126 *0.0253 

IPAH vs CTEPH 0.2913 0.7607 0.5888 0.3271 

Control vs CTEPH ****<0.0001 **0.0079 0.2052 *0.0168 

SSc vs CTEPH 0.1946 0.3352 0.1231 0.1968 

SSc vs HPAH **0.0083 0.2527 0.4843 0.1754 

HPAH vs CTEPH *0.0191 0.7092 0.3437 0.2534 

 

 

 

 

4.6.2 B cells 

Memory B cells (both class switched and non-switched) and double negative B cells showed 

significant differences between the groups [Figure 4.4a, Figure 4.4b].  Subsequent comparisons are 

summarised in Table 4.4. Although SSc-PAH and CTEPH groups also showed differences in these B 

cell subpopulations relative to controls, the increase in plasmablasts seen in both IPAH and HPAH 

was not found in SSc-PAH or CTEPH [Table 4.4]. 

Notably, in all four B cell subpopulations assessed, HPAH patients showed a significant difference 

compared to control. Similar to IPAH patients, those with HPAH showed a reduction in switched and 

non-switched memory B cells, an increase in plasmablasts and increase in double negative B cells 

[Figure 4.4, Table 4.4]. 
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Figure 4.4- B cell subpopulations in healthy controls, IPAH, HPAH, SSc-PAH and CTEPH. Peripheral blood samples 
from 34 healthy controls, 28 IPAH patients, 21 CTEPH, 12 SSc-PAH and 9 HPAH patients were obtained. PBMCs 
were isolated and stained with fluorescently labelled antibodies. Lymphocytes were identified from the PBMC 
population by flow cytometry by gating of FSC (A) vs SSC (A). B cells were identified as CD19+ CD3- lymphocytes. 
Sequential gating was used to identify; (A) switched memory B cells (CD27+ IgD-), (B) non-switched memory B 
cells (CD27+ IgD+), (C) plasmablasts (CD27+ CD20- CD38+ IgD-) and (D) double negative B cells (CD27- IgD-). 
Plots show cell frequencies with mean ± SD. 
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Table 4.4- Comparison of B cell subpopulations between individual subgroups. p values for unpaired t test or 
Mann Whitney U test. Significant p values (p < 0.05) are highlighted. 

Comparison B cell subpopulation 

Non-switched memory Switched memory Plasmablasts Double negative 

IPAH vs HPAH 0.2993 0.1030 0.5148 0.0562 

Control vs HPAH **0.0014  **0.0027 *0.0463 **0.0024 

IPAH vs SSc-PAH 0.1534 **0.0076 0.9369 *0.0401 

Control vs SSc-PAH ***0.0007 *0.0230 0.2920 ***0.0002 

IPAH vs CTEPH >0.99 0.7256 0.1370 0.7138 

Control vs CTEPH **0.0055 **0.0029 0.6994 **0.0029 

SSc-PAH vs CTEPH 0.2154 0.0567 0.1306 0.0565 

SSc-PAH vs HPAH 0.9170 0.4434 0.3958 0.8078 

HPAH vs CTEPH 0.1450 0.1540 0.0938 0.0827 

 

 

4.6.3 T cells 

Comparisons between the groups are summarised in Table 4.5. Tfh cells and Th2-like Tfh cells 

showed a significant difference in frequency between the five disease groups [Figure 4.5].  In HPAH, 

Tfh and Th2-like Tfh were elevated relative to controls (p= 0.0423 and p= 0.002 respectively), similar 

to the previous findings in IPAH. In contrast, in the other disease groups, Tfh frequencies were not 

significantly different to controls. 

Frequencies of PD1-expressing CD8+ T cells did not differ significantly between the five groups (p= 

0.2230), [Figure 4.6]. However, it is evident that the proportion of PD1+ CD8+ T cells showed much 

greater variability in the disease groups compared to controls. Regulatory T cells did not show any 

significant difference between the five groups (p= 0.3686) [Figure 4.7]. 
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Figure 4.5- Tfh cells in healthy controls, IPAH, HPAH, SSc-PAH and CTEPH. Peripheral blood samples from 34 
healthy controls, 28 IPAH patients, 21 CTEPH, 12 SSc-PAH and 9 HPAH patients were obtained. PBMCs were 
isolated and stained with fluorescently labelled antibodies. Lymphocytes were identified from the PBMC 
population by flow cytometry by gating of FSC (A) vs SSC (A). T cells were identified as CD3+ lymphocytes. 
Sequential gating was used to identify (A) Tfh cells (CXCR5+ CD45RA- PD1+) and (B) Th2-like Tfh cells (CXCR3- 
CCR6-). Plots show cell frequencies with mean ± SD. 
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Figure 4.6- PD1+ CD8+ T cells in healthy controls, IPAH, HPAH, SSc-PAH and CTEPH. Peripheral blood samples 
from 34 healthy controls, 28 IPAH patients, 21 CTEPH, 12 SSc-PAH and 9 HPAH patients were obtained 
Peripheral blood samples from 28 IPAH patients and 28 age and sex matched controls healthy controls were 
obtained. PBMCs were isolated and stained with fluorescently labelled antibodies. Lymphocytes were identified 
from the PBMC population by flow cytometry by gating of FSC (A) vs SSC (A) and T cells were identified as CD3+ 
lymphocytes. Sequential gating was used to identity CD8+ T cells. Plot shows cell frequencies with mean ± SD. 
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Figure 4.7- Regulatory T cells (Tregs) in healthy controls, IPAH, HPAH, SSc-PAH and CTEPH. Peripheral blood 
samples from 34 healthy controls, 28 IPAH patients, 21 CTEPH, 12 SSc-PAH and 9 HPAH patients were obtained. 
PBMCs were isolated and stained with fluorescently labelled antibodies. Lymphocytes were identified from the 
PBMC population by flow cytometry by gating of FSC (A) vs SSC (A). T cells were identified as CD3+ lymphocytes. 
Sequential gating was used to identify Tregs (CD25+ CD127low CCR4+). Plot shows cell frequencies with mean ± 
SD. 

 

Table 4.5- Comparison of T cell subpopulations between individual subgroups. Significant p values (p <0.05) are 
highlighted. 

Comparison T cell subpopulation 

CD8+ PD1+ Tfh Th2 like Tfh Treg 

IPAH vs HPAH 0.9570 0.4580 0.1454 0.2363 

Control vs HPAH 0.9531 *0.0423 **0.0020 0.7339 

IPAH vs SSc 0.7192 0.9388 0.4659 0.5839 

Control vs SSc 0.6428 0.0815 0.0707 0.4757 

IPAH vs CTEPH 0.6517 **0.0012 0.6714 0.0593 

Control vs CTEPH 0.7890 0.5944 0.1262 0.555 

SSc vs CTEPH 0.2665 0.1469 0.3425 0.3432 

SSc vs HPAH 0.3944 0.6422 0.8732 0.4274 

HPAH vs CTEPH 0.8919 0.1340 0.0896 0.9850 
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4.6.4 Overview of similarities and differences between groups 

4.6.4.1 CTEPH  

Similar to the other PH subgroups studied, patients with CTEPH showed a reduction in switched 

memory B cells and increase in double negative B cells relative to controls. However, in contrast to 

the difference detected between IPAH and healthy controls (Chapter 3), increased frequencies of 

Tfh, Th2-like Tfh and plasmablasts were not present in CTEPH. Comparisons are summarised in Table 

4.6.  

Table 4.6- Summary of comparisons between CTEPH and other groups. 

Comparison Sig. diff. Higher in CTEPH p value Lower in CTEPH P value 

CTEPH vs control YES  Double negative B 

cells  

0.0029 Total lymphocytes  

T cells  

CD8+ T cells  

Switched memory B   

< 0.0001 

0.0079 

0.0168 

0.0029 

CTEPH vs IPAH YES   Tfh  0.0012 

CTEPH vs HPAH YES   Total lymphocytes 0.0191 

CTEPH vs SSc-PAH NO     

 

4.6.4.2 SSc-PAH  

The immune cell phenotype of SSc-PAH also shows a reduction in memory B cells and increased 

double negative B cells relative to healthy controls. Consistent with activation of humoral mediated 

immunity which is a known feature of SSc-PAH, mean levels of both plasmablasts and Tfh were 

higher in SSc-PAH than controls [Table 4.7]. However, these differences were not statistically 

significant.  Comparison are summarised in Table 4.8. 

 

Table 4.7- Summary of Tfh and plasmablast frequencies in groups studied.  Median, mean and standard deviation 
are shown. 

Tfh IPAH Control HPAH SSc-PAH CTEPH 

Median 5.78 3.81 5.03 7.37 4.09 

Mean 7.54 4.11 6.31 11.24 4.08 

SD 5.02 1.23 3.7 14.86 0.84 

Plasmablasts 
     

Median 7.60 4.56 9.2 7.19 4.97 

Mean 11.65 7.16 23.27 15.03 7.53 

SD 9.59 8.94 24.69 15.48 5.36 
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Table 4.8- Summary of comparisons between SSc-PAH and other groups. 

Comparison Sig. diff. Higher in SSc-PAH p value Lower in SSc-PAH p value 

SSc-PAH vs control YES  Double negative B cells 0.0002 Total lymphocytes          

T cells                          

CD4+ T cells                

CD8+ T cells         

Switched memory B 

Non-switched mem. B  

0.0039 

0.0103 

0.0126 

0.0253 

0.0230 

0.0007 

SSc-PAH vs IPAH YES Double negative B cells 0.0401 CD8+ T cells           

Switched memory B  

0.0254 

0.0076 

SSc-PAH vs HPAH YES   Total lymphocytes 0.0083 

SSc-PAH vs CTEPH NO     

 

4.6.4.3 HPAH  

In HPAH, differences in immune cell phenotype are found compared to healthy controls, which 

parallel those seen in IPAH (Chapter 3). In the T cell subpopulations assessed, this included increases 

in Tfh and Th2-like Tfh, as in IPAH. In the B cell subpopulations assessed, this included increases in 

plasmablasts and double negative B cells and a reduction in switched and non-switched memory B 

cells, as in IPAH. The derangements in some immune cell subsets was even more pronounced in 

HPAH than IPAH. For example, non-switched memory B cells were lower in HPAH than in any other 

group studied. Comparisons are summarised in Table 4.9. 

Table 4.9- Summary of comparisons between HPAH and other groups. 

 Sig. diff. Higher in HPAH p value Lower in HPAH p value 

HPAH vs control YES Plasmablasts 

Double negative B  

Tfh                                  

Th2-like Tfh              

0.0463 

0.0024 

0.0423 

0.0020 

Switched memory B  

Non-switched mem. B 

0.0027 

0.0014 

HPAH vs IPAH NO     

HPAH vs SSc-PAH YES Lymphocytes 0.0083   

HPAH vs CTEPH YES Lymphocytes 0.0191   
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4.7 Discussion  

Previously, there have been no published immunophenotyping studies in the CTEPH population and 

there has been only limited study of SSc-PAH and HPAH, focused predominantly on functional 

aspects of regulatory T cells (Huertas et al., 2012). Therefore, my research has provided the most 

comprehensive immunophenotyping assessment to date not only in IPAH, but also in these disease 

subgroups. 

My results demonstrate both a number of differences and a number of similarities in immune cell 

phenotype in between PH disease subgroups, and between disease subgroups and healthy controls. 

In all PH subgroups except HPAH, there were depletions in total numbers of T lymphocytes, when 

compared with the healthy controls. In SSc-PAH and CTEPH, there was a global T cell depletion. In 

contrast, in both IPAH and HPAH compared to healthy controls, there was a selective reduction in 

CD4+ T cells. Therefore, it is possible that different mechanisms may be responsible for the different 

patterns of lymphopenia observed in these subgroups (potential mechanisms are previously 

discussed in Chapter 3, Section 3.5.1). 

Notably, the increases in Tfh, Th2-like Tfh and plasmablasts found in IPAH and HPAH compared to 

healthy controls are not found in CTEPH. This immunophenotypic signature which characterises IPAH 

and HPAH has also been reported in immunoinflammatory diseases including multiple sclerosis 

(Romme Christensen et al., 2013), active rheumatoid arthritis (Arroyo-Villa et al., 2014), and graft 

versus host disease (Forcade et al., 2016). Therefore, my findings support the hypothesis that 

immuno-inflammatory mechanisms are implicated in the pathogenesis of IPAH and HPAH but not 

CTEPH.  

Although antibody-mediated immune activation is a recognised feature of active SSc, surprisingly I 

did not detect a statistically significant increase in plasmablasts or Tfh in the SSc-PAH population. 

This may be partly due to the small sample size and also due to the fact that SSc patients who 

develop PAH usually have advanced disease, where much of the immune-mediated damage may 

have occurred earlier in the disease process. Further study in a larger population may clarify this. 

Interestingly, a reduction in memory B cells and an increase in double negative B cells are features of 

all PH subgroups studied, regardless of disease pathoaetiology. The fact that these B cell 

abnormalities are present in the different disease subgroups raises the question as to whether these 

changes are attributable to the presence of the abnormal haemodynamics, chronic heart failure, 

inflammation associated with vascular remodelling or medication used to treat the disease.   
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An increase in ‘double negative’ B cells has been reported as a feature of ageing and chronic 

inflammatory states (Colonna-Romano et al., 2009), whereas reduction in memory B cells has 

previously been reported both in chronic heart failure (Seeger et al., 2013) and in a range of 

immunologically mediated diseases including HIV (De Milito et al., 2001), systemic sclerosis (Simon 

et al., 2016), hashimoto’s thyroiditis (Liu et al., 2017) and ulcerative colitis (Wang et al., 2016b). 

However, the mechanism responsible for these B cell changes shared by the PH subtypes is unclear 

and requires further investigation.  

Intriguingly, there were no significant differences in immune cell phenotype between IPAH and 

HPAH. Clinically these PAH subtypes closely resemble one another, although HPAH patients tend to 

present at a younger age and have a more rapid disease progression (Sztrymf et al., 2008).  Studies 

of animal models and pulmonary artery smooth muscle cells (PASMCs) suggest that loss of BMPR2 

gene function promotes an exaggerated inflammatory response in response to antigen, hypoxia and 

inflammatory stimuli, thereby predisposing to the development of pulmonary hypertension (Park et 

al., 2013). However, the exact mechanisms leading to the development of PAH in BMPR2 mutation 

carriers is not fully understood. It is plausible that the presence of the mutation acts as a 

susceptibility factor for disease or potentiates disease development, and that the underlying 

mechanism (and perhaps the initial trigger(s) for the disease) are shared in IPAH and HPAH, which is 

the reason that these diseases exhibit a shared immunophenotype.  

Limitations 

My data provide a small-scale study of peripheral blood immunophenotype in different PH subtypes, 

with novel findings which warrant further exploration. It should be acknowledged that the subjects 

recruited in the CTEPH, SSc-PAH and HPAH disease populations were not as closely matched as the 

initial IPAH and control cohorts studied in Chapter 3. Of particular note, both CTEPH and SSc-PAH 

patients were older, and the CTEPH group contained a higher proportion of male subjects. 

Therefore, age-related changes may have had some potential influence on immune cell phenotype 

in these groups (Apoil et al., 2017, Montecino-Rodriguez et al., 2013, Stervbo et al., 2015). 

Additionally, although care was taken to recruit individuals who did not have other diseases, older 

individuals are more likely to have had undiagnosed comorbidity. Additionally, samples collected 

from the CTEPH, SSc-PAH and HPAH groups may be influenced by circadian and seasonal factors 

(Mazzoccoli et al., 2011, Kirsch et al., 2012, Paglieroni and Holland, 1994, Lévi et al., 1988) as they 

were not collected at the same time as the initial IPAH and control samples.  
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Within the disease subgroups, most patients were receiving treatment for their disease, although 

the nature of treatment differed. In particular, intravenous prostanoid therapy was common 

amongst the IPAH group but not CTEPH. Both treatment of the disease and differences in the type of 

treatment received could potentially have influences on immune cell phenotype. However, 

immunophenotyping studies which assess treatment effect are lacking. These potential influences 

could be further studied by immunophenotyping a greater number of treatment naïve patients and 

subsequently monitoring immune phenotype in response to initiation of treatment. Longitudinal 

monitoring of immunophenotype would also provide insights into the potential role of circulating 

immune cell phenotype in disease progression and whether immunophenotyping has a prognostic 

value. 

 

4.8 Conclusion 

In comparison to healthy controls, the immune cell phenotype in IPAH and HPAH has a number of 

features which are not found in CTEPH, including an increase in Tfh cells and an increase in 

plasmablasts. This suggests that these abnormalities are a feature of IPAH and HPAH disease 

pathobiology, rather than secondary to the presence of abnormal haemodynamics or medication 

used to treat the disease.  This adds to the growing body of evidence implicating immuno-

inflammatory dysfunction in the pathobiology of IPAH, and also sheds new light on the potential 

shared mechanisms in HPAH. 

In addition to the differences found between subgroups, I have also demonstrated that reduction in 

memory B cells and an increase in double negative B cells is a feature common to all PH subgroups 

studied. These findings are present despite different disease pathoaetiologies. However, it is unclear 

as to whether these abnormalities are the result of altered cardiopulmonary haemodynamics 

common to all pulmonary hypertension subgroups, whether it is a reflection of treatment of the 

disease, or whether there are other mechanisms responsible for this B cell derangement. Further 

research is required to elucidate the mechanisms behind the derangements in immune cell 

phenotype that I have detected and to explore the functional consequences of these abnormalities. 
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5 Chapter 5- Circulating blood metabolite profile in pulmonary 

vascular disease 

5.1 Introduction 

Historically, assessment of metabolism in pulmonary vascular disease has been limited to a narrow 

approach, usually targeted to a single substance or biochemical reaction. However, recent advances 

in metabolomics now permit simultaneous assessment of thousands of metabolites in a tissue, 

organ or system. Several studies have used metabolomics technology to identify metabolites and 

pathways which may be important in the pathobiology of PAH by studying cultured human 

pulmonary microvascular endothelial cells (Fessel et al., 2012), explanted lung tissue (Zhao et al., 

2014a) and exhaled breath condensate (Mansoor et al., 2014). Few studies have assessed metabolite 

profile of circulating blood in humans (Bujak et al., 2016, Rhodes et al., 2017). 

It is unknown whether the metabolic changes identified by these studies are a marker of pulmonary 

vascular bed dysfunction associated with abnormal vascular remodelling and loss of functional 

vascular surface area, whether they are markers of right heart strain or whether they reflect a more 

widespread metabolic dysfunction in the disease. Additionally, there have been no studies which 

have characterised the circulating blood metabolome in CTEPH and CTED. Therefore, it is also 

unknown whether the metabolic abnormalities detected in PAH are unique to this disease subtype, 

or whether they are a shared feature in other disease processes affecting the pulmonary 

vasculature.  

I sought to explore this further, by profiling circulating metabolites in patients with a spectrum of 

pulmonary vascular diseases, including IPAH, CTEPH and CTED. Firstly, I set out to establish whether 

there are significant differences in the metabolite profile of venous blood between the disease 

population and healthy controls. I then sought to determine whether blood metabolite profile 

differs between the disease subgroups, and whether there is a correlation between metabolite 

concentration and cardiopulmonary haemodynamics. 

 

 

5.2 Objectives and hypotheses 

Objective 1: To profile circulating metabolites in venous blood samples from patients with 

pulmonary vascular disease and healthy controls and identify metabolites which show a difference in 

concentration between disease and control. 
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Hypothesis 1: Metabolites in venous blood of patients with pulmonary vascular disease will differ 

from healthy individuals. 

Objective 2: To identify circulating metabolites which show a difference in concentration between 

disease subtypes; IPAH, CTEPH and CTED. 

Hypothesis 2: Metabolite concentration in venous blood will differ between patients with IPAH, 

CTEPH and CTED. 

Objective 3: To identify metabolites which correlate with abnormal pulmonary haemodynamics and 

with markers of cardiac dysfunction.  

Hypothesis 3: Metabolic abnormalities detected in patients with pulmonary vascular disease are 

associated with abnormal pulmonary haemodynamics and with markers of cardiac dysfunction. 

 

5.3 Methods 

Blood samples were collected as described in Chapter 2.  In summary, blood samples from patients 

were collected at the time of right heart catheterisation. Blood samples from healthy controls were 

collected by peripheral upper limb venepuncture. After collection in K2 EDTA tubes, the samples 

were immediately placed on ice and processed to obtain plasma (as described in section 2.2.2). 

Samples were frozen and stored at -80˚C and later processed in a single batch by Metabolon Inc. 

(Durham, NC, USA). Untargeted metabolic profiling was carried out using the Metabolon 

DiscoveryHD4™ platform (as described in section 2.2.5). 

The concentration of each metabolite (expressed as median scaled standardised intensity) was 

compared between venous samples from patients with pulmonary vascular disease and healthy 

controls using the Mann Whitney U test, with false discovery rate (FDR) adjustment for multiple 

testing. Subsequently, the concentration of each metabolite (expressed as median scaled 

standardised intensity) was compared between venous samples from patients with different 

subtypes of pulmonary vascular disease, using the Mann Whitney U test, with false discovery rate 

adjustment for multiple testing. 

For metabolites which showed a significant difference in concentration between disease and control, 

correlation of the median scaled metabolite concentration with the following clinical parameters 

was assessed; pulmonary vascular resistance (PVR), mean pulmonary artery pressure (mPAP), 

cardiac index (CI) and N-terminal pro brain natriuretic peptide (NTproBNP) level. A two-tailed test 

was conducted, using Spearman’s rank correlation. Metabolite concentration is expressed as relative 

standardised intensity (RSI). Spearman r is quoted with 95% confidence interval. 
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5.4 Study population 

The study population included 57 patients with pulmonary vascular disease and 27 healthy controls 

[Table 5.1]. The disease group consisted of 9 patients with IPAH and 48 patients with chronic 

thromboembolic pulmonary vascular occlusions [Table 5.2]. Within the chronic thromboembolic 

pulmonary vascular occlusions group, there were patients both with and without pulmonary 

hypertension [Table 5.3].  

There were some patients who had been treated with pulmonary endarterectomy, with varying 

degrees of haemodynamic improvement. The heterogeneous nature of the disease population was 

intended to firstly reflect the disease population in clinical practice, secondly to allow comparisons 

to be made between patients with and without pulmonary hypertension, and thirdly to assess 

whether metabolic changes may potentially be reversed by pulmonary endarterectomy. 

 

Table 5.1- Demographics of the disease group and the control group.  

 All pulmonary vascular disease All control 

Number of individuals 57 27 

Gender (% male) 58 56 

Age (mean, range) 56.3 (22-79) 44.6 (19-75) 

Body Mass Index 29.7 26 

Ethnicity (% Caucasian) 91% 93% 
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Table 5.2- Clinical characteristics of the disease group.  

 Chronic vascular occlusions IPAH 

Number of individuals 48 9 

Gender (% male) 63 33 

Age (mean, range) 57.7 (22-79) 49 (28-77) 

Body Mass Index 30 28 

Ethnicity (% Caucasian) 90% 100% 

RAP (mmHg) 8 8 

mPAP (mmHg) 32 48 

PVR (Wood units) 5.9 12.3 

CI (L/min/m2) 2.1 1.9 

Creatinine (µmol/L) 98 92 

Bilirubin (µmol/L) 12 40 

NTproBNP (ng/L) 839 384 

 

Table 5.3- Chronic pulmonary vascular occlusions subgroup characteristics. 

Chronic pulmonary vascular occlusions subgroup Number of 

patients 

PULMONARY HYPERTENSION 27 

Proximal CTEPH- treatment naïve 13 

Previous pulmonary endarterectomy for proximal CTEPH, residual PH 11 

Distal CTEPH 3 

NO PULMONARY HYPERTENSION 21 

Chronic thromboembolic vascular occlusions without PH 8 

Previous pulmonary endarterectomy for proximal CTEPH, no residual PH 13 
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5.5 Results 

5.5.1 Comparison of disease with controls 

The concentration of metabolites in SVC blood samples from 57 patients with pulmonary vascular 

disease was compared to peripheral venous blood samples from 27 healthy controls. A total of 1375 

metabolites were detected [shown in appendix Table 2], of which 430 metabolites showed a 

significant difference between disease and control after FDR adjustment for multiple testing [Table 

5.4]. This consisted of 283 endogenous metabolites, 27 xenobiotics and 120 unidentified 

compounds. (Using the more stringent Bonferroni adjustment, 69 metabolites showed a significant 

difference between disease and control). Of the endogenous metabolites, this comprised of 166 lipid 

metabolites, 63 amino acids, 24 peptides, 16 nucleotides, 5 carbohydrate metabolites, 5 cofactors 

and vitamins and 4 TCA cycle metabolites. Enrichment analysis confirmed that amongst the 

metabolites which showed a significant difference between disease and control, 42 sub-pathways 

were over-represented [Table 5.5].  

Amongst the metabolites which showed a significant difference between disease and control, fold-

change in mean metabolite concentration between disease and control was calculated. Subgroups of 

metabolites with consistent unidirectional perturbations were then identified. Key findings are 

shown in Figure 5.1. 

 

 

Table 5.4- Metabolite pathways in which there was a significant difference in concentration between venous 
blood samples from disease and controls. Metabolite concentration expressed as median scaled standardised 
intensity was used and false discovery rate adjustment for multiple testing was applied. * indicates metabolites 
sub-pathways which retain statistical significance after Bonferroni method adjustment. 

SUPER_PATHWAY Number of 

metabolites 

SUB_PATHWAY Number of 

metabolites 

Amino Acid 63 Leucine, Isoleucine and Valine Metabolism* 10 
  

Methionine, Cysteine, SAM and Taurine 

Metabolism* 

10 

  

Tryptophan Metabolism* 7 
  

Histidine Metabolism* 6 
  

Phenylalanine and Tyrosine Metabolism* 6 
  

Lysine Metabolism* 5 
  

Glutamate Metabolism* 4 
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Polyamine Metabolism* 4 
  

Urea cycle; Arginine and Proline Metabolism* 4 
  

Alanine and Aspartate Metabolism* 3 
  

Glutathione Metabolism 2 
  

Glycine, Serine and Threonine Metabolism 2 

Carbohydrate 5 Aminosugar Metabolism* 3 
  

Fructose, Mannose and Galactose 

Metabolism 

1 

  

Glycogen Metabolism 1 

Cofactors and Vitamins 5 Ascorbate and Aldarate Metabolism 3 
  

Vitamin A Metabolism* 2 

Energy 4 TCA Cycle 4 

Lipid 166 Lysolipid* 38 
  

Steroid* 24 
  

Phospholipid Metabolism* 19 
  

Plasmalogen* 15 
  

Fatty Acid, Monohydroxy 9 
  

Long Chain Fatty Acid* 9 
  

Sphingolipid Metabolism 9 
  

Fatty Acid Metabolism (Acyl Carnitine)* 8 
  

Lysoplasmalogen* 6 
  

Medium Chain Fatty Acid* 5 
  

Polyunsaturated Fatty Acid (n3 and n6) 4 
  

Fatty Acid, Dicarboxylate 3 
  

Glycerolipid Metabolism* 3 
  

Lyso-phospho-ether* 3 
  

Fatty Acid Metabolism (Acyl Choline) 2 
  

Fatty Acid Metabolism (Acyl Glycine) 2 
  

Fatty Acid Metabolism (Acyl Glutamine)* 1 
  

Fatty Acid, Amide 1 
  

Fatty Acid, Amino 1 
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Fatty Acid, Branched 1 
  

Ketone Bodies 1 
  

Mevalonate Metabolism 1 
  

Sterol 1 

Nucleotide 16 Purine Metabolism, Adenine containing 5 
  

Pyrimidine Metabolism, Uracil containing 3 
  

Purine Metabolism, Guanine containing* 2 
  

Pyrimidine Metabolism, Cytidine containing 2 
  

Pyrimidine Metabolism, Thymine containing 2 
  

Purine Metabolism, (Hypo)Xanthine/Inosine 

containing* 

1 

  

Pyrimidine Metabolism, Orotate containing 1 

Peptide 24 Dipeptide* 17 
  

Gamma-glutamyl Amino Acid 4 
  

Acetylated Peptides 2 
  

Polypeptide 1 

 

 

Table 5.5- Metabolite sub-pathways over-represented in disease compared to control. Of the metabolite 
pathways in which significant differences were identified between disease and controls, a number of sub-
pathways which were over-represented (enrichment value >1). 

Sub-pathway 

 

Compounds in pathway  Enrichment value 

 

significant detected 

 

Polyamine Metabolism 4 4 3.20 

Vitamin A Metabolism 2 2 3.20 

Lysoplasmalogen 6 6 3.20 

Glycerolipid Metabolism 3 3 3.20 

Lyso-phospho-ether 3 3 3.20 

Fatty Acid Metabolism (Acyl Choline) 2 2 3.20 

Mevalonate Metabolism 1 1 3.20 

Pyrimidine Metabolism, Thymine containing 2 2 3.20 

Ascorbate and Aldarate Metabolism 3 4 2.40 

Steroid 24 32 2.40 
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Medium Chain Fatty Acid 5 7 2.28 

Fatty Acid Metabolism(Acyl Glycine) 2 3 2.13 

Purine Metabolism, Guanine containing 2 3 2.13 

Plasmalogen 15 23 2.09 

Fatty Acid, Monohydroxy 9 14 2.06 

Long Chain Fatty Acid 9 14 2.06 

Lysolipid 38 60 2.03 

Purine Metabolism, Adenine containing 5 8 2.00 

Methionine, Cysteine, SAM and Taurine Metabolism 10 20 1.60 

Histidine Metabolism 6 12 1.60 

Aminosugar Metabolism 3 6 1.60 

Glycogen Metabolism 1 2 1.60 

Fatty Acid Metabolism (Acyl Glutamine) 1 2 1.60 

Fatty Acid, Amide 1 2 1.60 

Fatty Acid, Amino 1 2 1.60 

Ketone Bodies 1 2 1.60 

TCA Cycle 4 9 1.42 

Fatty Acid Metabolism (Acyl Carnitine) 8 18 1.42 

Alanine and Aspartate Metabolism 3 7 1.37 

Pyrimidine Metabolism, Uracil containing 3 7 1.37 

Leucine, Isoleucine and Valine Metabolism 10 24 1.33 

Lysine Metabolism 5 12 1.33 

Dipeptide 17 41 1.33 

Glutathione Metabolism 2 5 1.28 

Pyrimidine Metabolism, Cytidine containing 2 5 1.28 

Acetylated Peptides 2 5 1.28 

Glutamate Metabolism 4 11 1.16 

Tryptophan Metabolism 7 20 1.12 

Polyunsaturated Fatty Acids 4 12 1.07 

Fatty Acid, Branched 1 3 1.07 

Pyrimidine Metabolism, Orotate containing 1 3 1.07 

Polypeptide (bradykinin) 1 3 1.07 
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Figure 5.1- Heat map displaying key groups of endogenous metabolites which showed a significant difference in 
concentration between disease and control venous plasma. Metabolic profiling of venous plasma from 57 
patients with pulmonary vascular disease and 27 healthy controls was carried out using the Metabolon 
DiscoveryHD4™ platform. The concentration of each metabolite (median scaled standardised intensity) was 
compared between venous samples from patients with pulmonary vascular disease and healthy controls using 
the Mann Whitney U test, with FDR adjustment. Metabolites which were increased in the disease group 
compared to healthy controls are shown in red, metabolites which were decreased in the disease group 
compared to healthy controls are shown in green. BCAA-branched chain amino acids, TCA- tricarboxylic acid, 
LCFA-long chain fatty acid, MCFA-medium chain fatty acid, PUFA-polyunsaturated fatty acid.  
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5.5.2 Disease subgroup analysis 

Chronic thromboembolic vascular occlusions: CTEPH vs CTED 

228 metabolites showed a significant difference between CTEPH and CTED prior to FDR adjustment 

for multiple testing. However, after FDR adjustment, only one metabolite, the diacylglycerol 

linoleoyl-linolenoyl-glycerol (18:2/18:3) showed a significant difference between CTEPH and CTED. 

The concentration of this metabolite was higher in those without pulmonary hypertension [Figure 

5.2]. 
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Figure 5.2- Linoleoyl-linolenoyl-glycerol (18:2/18:3) concentration in CTEPH compared to CTED patients. The 

concentration of each metabolite (median scaled standardised intensity) was compared between venous 
plasma samples from 27 patients with CTEPH and 21 patients with CTED, using the Mann Whitney U test with 
FDR adjustment. Linoleoyl-linolenoyl-glycerol (18:2/18:3) was the only metabolite to show a significant 
difference in concentration between the groups. 

 

2. CTEPH vs IPAH 

130 metabolites showed a significant difference between CTEPH and IPAH prior to FDR adjustment 

for multiple testing. However, none retained statistical significance after FDR adjustment. 

 

3. IPAH vs CTED 

After FDR adjustment, only one metabolite, the lysolipid 1-lignoceroyl-GPC (24:0) showed a 

significant difference between IPAH and CTED. The concentration of this metabolite was higher in 

the CTED group than the IPAH group [Figure 5.3]. 
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Figure 5.3- 1-lignoceroyl-GPC (24:0) in IPAH compared to CTED patients. The concentration of each metabolite 
(median scaled standardised intensity) was compared between venous plasma samples from 27 patients with 
CTEPH and 21 patients with CTED, using the Mann Whitney U test with FDR adjustment. 1-lignoceroyl-GPC 
(24:0) was the only metabolite to show a significant difference in concentration between the groups. 
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5.5.3 Clinical correlations 

Many metabolites which showed a significant difference in concentration between disease and 

control were correlated with clinical markers of disease severity, providing evidence of an 

increasingly severe metabolic derangement in patients with more advanced disease. A number of 

key correlations are illustrated below [Figure 5.4]. Full results of all correlations assessed are 

detailed in appendix 3. 

Polyamines and catecholamine metabolites were positively correlated with PVR, mPAP and 

NTproBNP level, and were negatively correlated with CI, indicating an association between these 

metabolites all 4 markers of disease severity. TCA cycle metabolites and histidine metabolites also 

showed a positive correlation with PVR mPAP and NTproBNP. Aminosugars such as N-

acetylglucosaminylasparagine showed a positive correlation with PVR and NTproBNP. Arginine was 

negatively correlated with PVR, mPAP and BNP whereas associated metabolites dimethylarginine 

and urea were positively correlated. Modified nucleotides such as N1-methyladenosine, N1-

methylinosine and N2, N2-dimethylguanosine were also significantly correlated with markers of 

disease severity. 

Fatty acid metabolites (including medium and long chain fatty acids and PUFAs) show a significant 

correlation with NTproBNP and CI, indicating an association between these metabolites and 

impaired cardiac function. However, fatty acid metabolites did not show significant correlation with 

pulmonary haemodynamics (mPAP and PVR). In contrast, acylcarnitine concentration shows a 

positive correlation with both PVR, mPAP and BNP. Diacylglycerols were negatively correlated with 

PVR, mPAP and BNP. Steroid hormones such as DHEA were positively correlated with cardiac index. 
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Figure 5.4- Heat map showing correlation of metabolite subgroups with markers of disease severity. Metabolic 
profiling of venous plasma from 57 patients with pulmonary vascular disease was carried out using the 
Metabolon DiscoveryHD4™ platform. For metabolites which showed a significant difference in concentration 
between disease and control, correlation of metabolite concentration (RSI) with PVR, mPAP, CI and NTproBNP 
level was assessed. A two-tailed test was conducted, using Spearman’s rank correlation. Metabolites which 
showed a significant correlation with clinical markers of disease severity are shown in red scale. Those which did 
not show a significant correlation are shown in black. TCA- tricarboxylic acid, PUFA-polyunsaturated fatty acid.  
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Figure 5.5-Correlation of polyamine metabolites with markers of disease severity. Metabolic profiling of venous 
plasma from 57 patients with pulmonary vascular disease was carried out using the Metabolon DiscoveryHD4™ 
platform. Correlation of metabolite concentration (RSI) with PVR, mPAP, CI and NTproBNP level was assessed. A 
two-tailed test was conducted, using Spearman’s rank correlation. Representative plots above show correlation 
of; (A) 4-acetamidobutanoate vs PVR (B) acisoga vs mPAP (C) 4-acetamidobutanoate vs NTproBNP (D) 4-
acetamidobutanoate vs CI. 
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Figure 5.6- Correlation of vanillylmandelate with markers of disease severity. Metabolic profiling of venous 
plasma from 57 patients with pulmonary vascular disease was carried out using the Metabolon DiscoveryHD4™ 
platform. Correlation of metabolite concentration (RSI) with PVR, mPAP, CI and NTproBNP level was assessed. A 
two-tailed test was conducted, using Spearman’s rank correlation. Representative plots above show correlation 
of; (A) vanillylmandelate vs PVR (B) vanillylmandelate vs mPAP (C) vanillylmandelate vs NTproBNP (D) 
vanillylmandelate vs CI. 
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Figure 5.7- Correlation of TCA cycle metabolites with markers of disease severity. Metabolic profiling of venous 
plasma from 57 patients with pulmonary vascular disease was carried out using the Metabolon DiscoveryHD4™ 
platform. Correlation of metabolite concentration (RSI) with PVR, mPAP, CI and NTproBNP level was assessed. A 
two-tailed test was conducted, using Spearman’s rank correlation. Representative plots above show correlation 
of; (A) citrate vs PVR (B) alpha-ketoglutarate vs mPAP (C) alpha-ketoglutarate vs NTproBNP. 
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Figure 5.8- Correlation of arginine metabolites with markers of disease severity. Metabolic profiling of venous 
plasma from 57 patients with pulmonary vascular disease was carried out using the Metabolon DiscoveryHD4™ 
platform. Correlation of metabolite concentration (RSI) with PVR, mPAP, CI and NTproBNP level was assessed. A 
two-tailed test was conducted, using Spearman’s rank correlation. Representative plots above show correlation 
of; (A) arginine vs PVR (B) arginine vs mPAP (C) dimethylarginine vs NTproBNP (D) urea vs PVR. 
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Figure 5.9- Correlation of modified nucleotides with markers of disease severity. Metabolic profiling of venous 
plasma from 57 patients with pulmonary vascular disease was carried out using the Metabolon DiscoveryHD4™ 
platform. Correlation of metabolite concentration (RSI) with PVR, mPAP, CI and NTproBNP level was assessed. A 
two-tailed test was conducted, using Spearman’s rank correlation. Representative plots above show correlation 
of; (A) N2,N2-dimethylguanosine vs PVR (B) N1-methylinosine vs mPAP (C) N2,N2-dimethylguanosine vs mPAP 
(D) N1-methylinosine vs NTproBNP. 
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Figure 5.10-Correlation of fatty acid concentration with markers of disease severity. Metabolic profiling of venous 
plasma from 57 patients with pulmonary vascular disease was carried out using the Metabolon DiscoveryHD4™ 
platform. Correlation of metabolite concentration (RSI) with PVR, mPAP, CI and NTproBNP level was assessed. A 
two-tailed test was conducted, using Spearman’s rank correlation. Representative plots above show correlation 
of; (A) suberate vs CI (B) palmitoleate vs NTproBNP.  
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Figure 5.11- Correlation of acylcarnitines with markers of disease severity. Metabolic profiling of venous plasma 
from 57 patients with pulmonary vascular disease was carried out using the Metabolon DiscoveryHD4™ 
platform. Correlation of metabolite concentration (RSI) with PVR, mPAP, CI and NTproBNP level was assessed. A 
two-tailed test was conducted, using Spearman’s rank correlation. Representative plots above show correlation 
of; (A) adipoylcarnitine vs PVR (B) oleoyl-linoleoyl-glycerol vs PVR (C) palmitoylcarnitine vs mPAP  (D) linoleoyl-
linolenoyl-glycerol vs mPAP (E) palmitoylcarnitine vs NTproBNP (F) oleoyl-linoleoyl-glycerol vs NTproBNP. 
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Figure 5.12- Correlation of steroid hormones with markers of disease severity. Metabolic profiling of venous 
plasma from 57 patients with pulmonary vascular disease was carried out using the Metabolon DiscoveryHD4™ 
platform. Correlation of metabolite concentration (RSI) with PVR, mPAP, CI and NTproBNP level was assessed. A 
two-tailed test was conducted, using Spearman’s rank correlation. Representative plots above show correlation 
of; (A) DHEA-S vs CI (B) 4-androsten-3beta,17beta-diol monosulfate vs CI. 
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5.6 Discussion 

My findings provide evidence of disrupted energy metabolism in PVD. In particular, there is evidence 

of disrupted fatty acid metabolism. Metabolic changes consistent with increased cellular 

proliferation and a reduction in antioxidant metabolites were also apparent in my dataset. These 

findings are further discussed below. 

 

5.6.1 Evidence of disrupted fatty acid metabolism 

Long chain fatty acids and acylcarnitines 

The concentration of both long chain fatty acids (LCFA) and acylcarnitines is increased in PVD, 

compared with healthy controls. In health, LCFA are the primary cardiac energy source. 

Acylcarnitines play an important role in metabolism of LCFA, facilitating their transport into the 

mitochondria for beta oxidation and may accumulate when fatty acid beta oxidation is impaired 

(Koves et al., 2008). 

Increases in LCFA and acylcarnitines have been previously found in the blood of patients with PAH, 

compared to controls (Brittain et al., 2016), and in lung tissue of PAH patients (Zhao et al., 2014a). 

Additionally, abnormalities in fatty acid metabolism have been demonstrated in a number of 

experimental models of PAH (Sutendra et al., 2010). Decreased RV fatty acid use may lead to 

myocardial lipid accumulation, exacerbating RV dysfunction (Brittain et al., 2016). Additionally, 

accumulation of acylcarnitines may promote cardiac dysfunction via pro-arrhythmogenic effects 

(Bonnet et al., 1999). 

My findings of increased plasma LCFA and acylcarnitines, combined with the increased myocardial 

glucose uptake and elevated myocardial lipid content reported in other studies, suggests a switch in 

cardiac substrate utilisation from fatty acids to glucose in PVD. Whether this metabolic switch is a 

result of impaired mitochondrial ability to utilise fatty acids, or whether this occurs due to 

preferential use of glucose remains uncertain. 

The concentration of the majority of fatty acids showed a significant correlation with cardiac 

haemodynamics, but did not correlate with pulmonary haemodynamics. This supports the 

hypothesis that myocardial failure to utilise fatty acids drives fatty acid accumulation (Sutendra et 

al., 2010). Acylcarnitine concentration, however, correlated with both cardiac and pulmonary 

markers of disease severity and therefore may be a more general feature of altered metabolism in 

the disease. 
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Fatty acid dicarboxylates and acylglycines 

The increased levels of fatty acid dicarboxylates and acylglycines detected in PVD provides further 

evidence to that fatty acid beta oxidation is impaired in the disease.  

Usually, direct mitochondrial beta oxidation is the preferred route for fatty acid oxidation. However, 

omega oxidation in the endoplasmic reticulum is upregulated when beta oxidation is defective 

(Wanders et al., 2011, Sanders et al., 2006). In addition to the increase concentration observed in 

circulating blood, increased levels of fatty acid dicarboxylates have previously been reported in PAH 

lung tissue (Zhao et al., 2014a). Acylglycines are normal intermediates of amino acid and fatty acid 

metabolism. However, elevated levels of these metabolites have also been found in the urine and 

blood of patients with various fatty acid oxidation disorders (Bonafé et al., 2000, Kimura and 

Yamaguchi, 1999).  

 

5.6.2 Other perturbations in energy metabolism 

TCA cycle  

A number of previous studies have suggested that TCA cycle dysfunction exists in PAH, as part of a 

shift towards glycolytic metabolism (Bujak et al., 2016). However, I did not detect any significant 

increase in glycolytic intermediates in the disease group studied. Key TCA cycle intermediates 

including citrate, malate, alpha-ketoglutarate and aconitate were increased in our PVD group, 

suggesting upregulation of the TCA cycle, perhaps in an attempt to meet increased bionenergetic 

demands. These findings are consistent with those found by Zhao in lung tissue of PAH patients 

(Zhao et al., 2014a). However, this contrasts with findings of a depletion of TCA intermediates in 

cultured BMPR2 mutant pulmonary microvascular endothelial cells (Fessel et al., 2012). It is possible 

that the lack of concordance in findings may be due to the different metabolic environment in cell 

culture compared to tissue and circulating blood.   

Nucleotides 

Adenine containing nucleotides such as adenosine monophosphate (AMP), adenosine diphosphate 

(ADP) and N1-methyladenosine were increased in the disease group. This was accompanied by an 

increase in cytidine containing nucleotides. In addition to their role in energy metabolism, both 

adenine and cytosine are required for DNA and RNA synthesis. Increases in these nucleotides may 

therefore be reflective of both increased bioenergetic and biosynthetic demands in the disease 

group. 
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Ketone bodies 

Elevation of ketone bodies often represents a state in which there is insufficient carbohydrate supply 

to meet bioenergetic demands. However, ketones also become an increasingly important cardiac 

fuel source in the context of heart failure where myocardial capacity for oxidising fatty acids is 

deficient and they are elevated in proportion to the severity of cardiac dysfunction (Aubert et al., 

2016).   

An increase in ketones is also observed in the metabolic syndrome phenotype where insulin 

resistance results in low glucose uptake by cells despite glucose being plentiful (Cotter et al., 2013). 

A number of studies have identified an association between insulin resistance and PAH (Heresi et al., 

2017, Grinnan et al., 2016, West et al., 2013, Pugh et al., 2011), therefore, insulin resistance may 

also contribute to the increase in ketones we detected in the disease group. 

Another situation in which ketone formation may occur is when the rate of fatty acid oxidation 

exceeds TCA cycle capacity. When fatty acid oxidation produces more acetyl CoA than the TCA cycle 

can utilise, the acetyl CoAs are used to generate ketone bodies. My findings suggest that fatty acid 

oxidation may be impaired in the disease group, therefore the increase in ketones detected is more 

likely to be due to reduced capacity for oxidising fatty acids rather than exceeded TCA cycle capacity. 

 

5.6.3 Evidence of increased cellular proliferation  

Polyamines 

 A significant increase in polyamine metabolites was detected in the disease group. This is consistent 

with findings in cell culture, human lung tissue and animal models of pulmonary hypertension  

(Fessel et al., 2012, Barnes et al., 2015, Olson et al., 1984, Orlinska et al., 1988, Atkinson et al., 1987). 

Polyamines have a diverse range of functions including modulation of chromatin structure, gene 

transcription and translation, DNA stabilisation, signal transduction, cell growth, proliferation and 

migration, membrane stability, functioning of ion channels and receptor-ligand interactions (Pegg, 

2009, Casero and Marton, 2007). The lung exhibits a higher polyamine uptake than any other major 

organ (Hoet and Nemery, 2000). 

The most marked synthesis and accumulation of polyamines occurs in rapidly growing tissues. 

Conversely, a reduction in polyamines results in cell growth arrest or senescence. Polyamine content 

is increased in many cancers, where increased levels are coupled with decreased apoptosis, 

increased tumour invasion and increased metastasis (Gerner and Meyskens, 2004, Milovic and 

Turchanowa, 2003, Schipper et al., 2003, Xu et al., 2016, Takahashi et al., 2015, Huang et al., 2015) 
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and levels are also increased in other hyperproliferative diseases, such as psoriasis (Broshtilova et 

al., 2013, Tierney et al., 1985).  

It is plausible that the increased polyamine levels in PVD are reflective of cellular proliferation and 

remodelling of the pulmonary vasculature (Morrison and Seidel, 1995, Barnes et al., 2015).   

Suppression of polyamine biosynthesis in animal models of PH has been shown to inhibit the 

pathological vascular remodelling found in the disease (Olson et al., 1986).  

Nitric oxide is a potent inhibitor of polyamine synthesis (Hillary and Pegg, 2003), therefore, reduced 

nitric oxide bioavalibility which has been demonstrated in PAH (Tonelli et al., 2013) may also be 

implicated in the elevation of polyamines observed. I found that higher levels of polyamines are 

correlated with both adverse cardiac and adverse pulmonary haemodynamics. As discussed 

previously, polyamines play an important role in supporting tissues with high cell turnover. 

Therefore, their concentration is likely to increase in association with increasing biosynthetic 

demands of both pulmonary vasculature and myocardium in the context of increasing disease 

severity.  

 

Glutamate metabolites 

In the PVD group, there was also a reduction in glutamine, accompanied by increases in glutamate 

and its metabolites, consistent with glutaminolysis. Glutaminolysis is a feature of proliferating cells 

and plays an important role in replenishing metabolic intermediates (Dang, 2010, Yang et al., 2017). 

This finding provides further evidence of a metabolic shift to enable cellular proliferation. Recent 

studies have also implicated glutaminolysis in right ventricular maladaptive changes in PAH (Piao et 

al., 2013, Bertero et al., 2016).  

 

Sphingolipids, lysolipids (hydrolysed phospholipids) and acylcholines 

Sphingolipids are key components of cell membranes, involved in cellular protection, cell recognition 

and signalling (Bartke and Hannun, 2009, Hannun and Obeid, 2008, El Alwani et al., 2006). In 

pulmonary vascular disease, depletion in sphingolipids may represent increased utilisation for cell 

membranes in the context of vascular remodelling. However, it has recently been revealed that 

sphingolipid metabolites such as ceramide and sphingosine-1-phosphate have many other functions 

which may be relevant in the disease pathogenesis, as they have been shown to mediate cellular 

apoptosis, proliferation, differentiation, stress responses and inflammation (Maceyka and Spiegel, 

2014). 
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Lysophospholipids and acylcholines are also an important constituent of cell membranes. Therefore, 

depletion of lysophospholipids and acylcholines may also reflect increased cell turnover associated 

with vascular remodelling. However, lysophospholipids also play a role in cell signalling, proliferation 

and differentiation, cell morphological changes and regulation of gap junctions (Lundbaek and 

Andersen, 1994, Morris et al., 2009). They are involved in regulation of endothelial cell function and 

phenotypic modulation of vascular smooth muscle cells (Hayashi et al., 2001). Therefore, depletion 

of these metabolites may be implicated in disordered vascular endothelial and smooth muscle cell 

behaviour in PVD. 

 

Aminosugars 

There was a significant increase in aminosugars, such N-acetylglucosamine and glucoronate in PVD. 

These metabolites are important building blocks for glycoproteins, glycosaminoglycans, glycolipids 

and polysaccharides and are required for cellular proliferation, wound healing and repair. 

Additionally, glucuronic acid is required for waste removal and detoxification (Perreault et al., 2013). 

Post-translational modification of proteins by O-linked N-acetylglucosamine is associated with 

cellular stress responses (Wende, 2016) where it is thought to serve as an autoprotective 

mechanism, promoting cell survival (Zachara et al., 2004). This attachment to cardiac proteins is 

increased in cardiovascular disease and heart failure (Medford and Marsh, 2014, Dassanayaka and 

Jones, 2014, Laczy et al., 2009). It is possible that this process may also occur in PVD, leading to a 

reactive increase in N-acetylglucosamine, conversely, this process may be impaired, leading to 

accumulation in the plasma. I propose that the increase in aminosugars in PVD may be a reactive 

phenomenon, to support increase cellular biosynthetic demands associated with vascular 

remodelling, attempted cardiac auto-protection and the increased need for elimination of waste 

products. 

 

5.6.4 Reduction in antioxidant metabolites 

A reduction in metabolites with antioxidant roles, including glutathione, vitamin A metabolites and 

plasmalogens was found in PVD, which may represent increased consumption and/or deficiency of 

these metabolites. Glutathione deficiency contributes to oxidative stress (Wu et al., 2004), and a 

reduction in glutathione biosynthesis has previously been observed in the monocrotaline rat model 

of PAH (Rafikova et al., 2016). Therefore, the reduced levels of glutathione we have identified may 

potentiate development and progression of PVD. 
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Retinol and 4-oxo retinoic acid, in addition to their importance in photoreceptor function and vision, 

have antioxidant effects and more diverse metabolic roles including involvement in immune cell 

function, hormone synthesis, haematopoiesis and modulation of iron metabolism (Guo and Nolle, 

2013, Brown et al., 2015, Raverdeau and Mills, 2014, Hall et al., 2011, Mendes et al., 2016).  

In the monocrotaline rat model of PAH, administration of all trans retinoic acid has been shown to 

attenuate pulmonary vascular remodelling (Xin et al., 2015, Qin et al., 2001). Additionally, IPAH 

patients have previously been found to have reduced retinoic acid levels, and retinoic acid treatment 

has been shown to inhibit pulmonary artery smooth muscle cell growth in vitro (Preston et al., 

2005). Therefore, reduction in vitamin A metabolites may potentiate the development of pulmonary 

hypertension by permitting proliferation of vascular smooth muscle cells. 

Plasmalogens are a subtype of cell membrane glycerophospholipids, enriched in the brain, heart, 

skeletal muscle, lung, spleen and peripheral blood lymphocytes and neutrophils (Braverman and 

Moser, 2012, Nagan and Zoeller, 2001). They are recognised to have antioxidant effects, with 

plasmalogen deficient endothelial cells being more sensitive to hypoxia and reactive oxygen species 

(Zoeller et al., 2002, Engelmann, 2004, Lessig and Fuchs, 2009). Therefore, it is possible that the 

decreased plasmalogen concentration we have detected in the disease group may exacerbate 

vascular injury. Reduced plasmalogen levels have also been identified in association with coronary 

artery disease and myocardial ischaemia (Scherrer and Gross, 1989, Sutter et al., 2015, Sutter et al., 

2016). 

 

5.6.5 Other notable metabolic changes in PVD 

5.6.5.1 Polyunsaturated fatty acids (PUFAs) 

Docosadienoate and linoleate metabolites were increased in the pulmonary vascular disease group. 

These N6 polyunsaturated fatty acids (PUFAs) are precursors for the synthesis of arachidonic acid 

and prostaglandins and play a role in mediating both pro and anti-inflammatory effects (Russo, 

2009). PUFAs are essential fatty acids (must be ingested and cannot be synthesized de novo), 

therefore the increase in PUFA metabolites detected in the disease group may simply represent 

differences in dietary intake. 

 

5.6.5.2 Steroids 

Many sex steroids, including dehydroepiandrosterone-sulfate (DHEA-S) and pregnenalone were 

depleted in the pulmonary vascular disease group. Depletion in sex steroids as a consequence of 
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chronic neurohormonal activation is a recognised feature of chronic heart failure (Jankowska et al., 

2006, Güder et al., 2010) and chronic inflammatory diseases (Imrich, 2002, Straub et al., 2000). 

Lower levels of DHEA-S have previously been reported in men with PAH (Ventetuolo et al., 2016). 

DHEA is known to have a vasodilatory effect on the pulmonary circulation (Patel et al., 2014, Oka et 

al., 2007) and in animal models has been shown to prevent or ameliorate pulmonary hypetension 

associated with hypoxia (Bonnet et al., 2003, Hampl et al., 2003, Dumas de la Roque et al., 2013). 

The concentration of steroid hormones was found to be lower in those with a lower cardiac output, 

consistent with the known depletion of these hormones in the context of heart failure (Jankowska et 

al., 2006). 

 

5.6.5.3 Branched chain amino acids 

Branched chain amino acids (leucine, isoleucine and valine) act as a precursor for keto acids, and are 

also a precursor for muscle protein synthesis. In conditions where there is protein or muscle loss (eg. 

starvation, trauma, sepsis, cancer, rheumatic conditions), supplementation of BCAAs promotes 

protein synthesis and reduces protein catabolism (Tsien et al., 2015, Yoshikawa et al., 2017). 

Sarcopenia and reduced muscle strength is observed in PAH (Mainguy et al., 2010, Batt et al., 2014) 

and whether supplementation of BCAA in this setting is of clinical benefit is unknown. 

In addition to their role in anabolism, BCAAs also play an important role in immunity and are 

required for lymphocyte growth and proliferation (Calder, 2006). Supplementation of depleted 

BCAAs has been shown to increase lymphocyte proliferation, modify the pattern of cytokine 

production and shift of the immune response from Th2 to Th1 (Bassit et al., 2002). However, 

excessive levels may in fact promote inflammation and oxidative stress (Zhenyukh et al., 2017, Zhang 

et al., 2017). Therefore, BCAA depletion may have other implications in PVD, beyond protein 

metabolism. 

 

5.6.5.4 Bradykinin 

Bradykinin is an inflammatory mediator and endothelium dependent vasodilator. Binding of 

bradykinin to endothelial B2-receptors results in release of NO and formation of prostaglandins, 

thereby exerting vasodilator, anti- ischemic, and anti-proliferative effects (Golias et al., 2007). 

Therefore, decreased bradykinin levels detected in the disease group may have multifaceted adverse 

effects. Conversely, administration of a bradykinin agonist has been shown to reduce pulmonary 
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artery pressure and RV hypertrophy in animal models of pulmonary hypertension (Taraseviciene-

Stewart et al., 2002, Taraseviciene-Stewart et al., 2005).  

 

5.6.5.5 Others 

Several other metabolites including vanillylmandelate, arginine and histidine metabolites and the 

modified nucleosides N2, N2- dimethylguanosine and N1-methylinosine showed a significant 

correlation with both pulmonary and cardiac haemodynamic indices. Vanillylmandelate is an end-

stage metabolite of the catecholamines, epinephrine, and norepinephrine. Increased sympathetic 

nervous system activation is present in PH, therefore, it is unsurprising that vanillylmandelate levels 

are increased in the disease group, and show a strong correlation with disease severity. 

Arginine, which is required to support nitric oxide synthesis was found to be negatively correlated 

with PVR, mPAP and BNP, consistent with reduced nitric oxide bioavailibity known to be implicated 

in pulmonary hypertension (Tonelli et al., 2013). Conversely, levels of arginine metabolites (such as 

dimethylarginines) which have been implicated in inhibition of NO synthesis (Franceschelli et al., 

2013) were positively correlated with disease severity.  

Increased levels of N1-methylinosine and N2, N2-dimethylguanosine have been reported to 

distinguish PAH patients from symptomatic patients without pulmonary hypertension and also 

correlate with prognosis (Rhodes C, 2016). Increases in the concentration of these post-

transcriptional modifications of tRNA may reflect upregulation of the translational apparatus due to 

high tRNA turnover associated with oxidative stress and cell damage. However, further study is 

required to determine the role of these metabolites in the disease process. 

 

5.6.6 Disease subgroup analysis 

I hypothesised that there would be differences in circulating metabolite concentration between 

pulmonary hypertension subtypes with a different pathological basis (IPAH vs CTEPH) and between 

patients with chronic thromboembolic vascular occlusions with and without associated pulmonary 

hypertension (CTEPH vs CTED).  

Unfortunately, subgroup analysis was limited by small sample size and underpowered to detect 

differences between disease subgroups. Only 2 metabolites showed a statistically significant 

difference between disease subgroups. However, the potential for metabolite profile to differentiate 

between disease subgroups should not be discounted. Future analysis with an increased sample size 

may help to identify additional metabolic differences between the subgroups. 
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5.7 Conclusions 

Comparison of circulating metabolites in pulmonary vascular disease with healthy controls has 

demonstrated differences in multiple metabolic pathways. My data suggest altered bioenergetic 

metabolism in the disease. Firstly, elevated long chain fatty acids, acylcarnitines and acylglycines are 

in keeping with a decrease in lipid beta oxidation. The accompanying increase in fatty acid 

dicarboxylates, formed by omega oxidation, suggests that beta oxidation may be impaired or 

inhibited.  The elevation of ketone bodies detected in the disease group may also be a consequence 

of impaired capacity for oxidising fatty acids, necessitating the use of alternative energy sources by 

the myocardium.  

Secondly, increases in TCA cycle intermediates suggest upregulation of this cycle, in keeping with the 

increased energy requirements associated with vascular remodelling and increased right ventricular 

workload. The concept of increased requirement for substrate to support cellular proliferation and 

vascular remodelling is supported by the finding of increased polyamines and aminosugars in the 

disease group. 

My data also suggest that in pulmonary vascular disease there is depletion of substances important 

in the response to oxidative stress, including vitamin A metabolites, plasmalogens and glutathione 

metabolites.  

These findings demonstrate that metabolic abnormalities in pulmonary vascular disease are more 

wide-ranging than previously recognised, and are present not only in PAH but are also present in 

CTEPH and CTED. Further research is required to determine the mechanism of these metabolic 

changes and to establish their role in disease evolution and progression. 
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6 Chapter 6- Assessment of the gradient of circulating metabolites 

between anatomical sites 

6.1 Introduction 

I have demonstrated that the concentration of many metabolites in venous blood differs between 

patients with pulmonary vascular disease and healthy controls (Chapter 5). However, the source of 

these metabolic disturbances is unknown. It is unclear whether the metabolic changes detected in 

PVD are the result of alterations in metabolism which are localised to the pulmonary circulation or 

right heart, or whether they represent systemic metabolic dysfunction in the disease process.  

Comparison of the metabolite concentration in circulating blood sampled from different anatomical 

sites may allow localisation of the metabolic changes and provide further insight into their role in the 

disease process.  For example, comparison of paired blood samples from the superior vena cava 

(SVC) and pulmonary artery (PA) may provide insight into the right heart metabolism and its 

contribution to the circulating metabolite profile. Similarly, comparison of paired pulmonary artery 

and radial artery (RA) samples may be used to make inferences about changes in metabolite 

concentration which occur during transpulmonary passage, and paired radial artery (RA) and 

superior vena cava (SVC) samples may be used to make inferences about changes in metabolite 

concentration which occur across the systemic circulation. 

 

6.2 Objective and hypothesis 

Objective: To assess the gradient of circulating metabolites between anatomical sites, by comparing 

metabolite concentration in paired blood samples: 

1. Superior vena cava (SVC) to pulmonary artery (PA) 

2. Pulmonary artery (PA) to radial artery (RA) 

3. Radial artery (RA) to superior vena cava (SVC) 

 

Hypothesis: Metabolic abnormalities that we have identified in the disease population are due to 

local metabolic dysfunction of the pulmonary vasculature or right heart. Therefore, a significant 

difference in the concentration of metabolites will be detected between anatomical sites.  
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6.3 Study population 

The disease population consisted of 57 patients with pulmonary vascular disease; 9 patients with 

IPAH and 48 patients with chronic thromboembolic pulmonary vascular occlusions [Chapter 5, table 

5.2].  

 

6.4 Methods 

Blood samples were collected at the time of right heart catheterisation, as described in Section 2.2. 

Metabolite concentration (expressed as median scaled relative standard intensity) was compared 

between paired samples taken from the different anatomical sites using Wilcoxon matched pairs 

signed rank test. False discovery rate adjustment for multiple testing was applied. Metabolite groups 

in which significant differences were detected between the 2 sites were subsequently included in 

over-representation analysis. 

 

6.5 Results 

6.5.1 Transcardiac metabolite gradients 

Amongst 1375 metabolites detected, 79 showed a significant difference in concentration between 

the SVC and PA site. Of these 79 metabolites, there were 65 endogenous metabolites, 13 

unidentified metabolites and 1 xenobiotic. The endogenous metabolites are shown in Table 6.1. 

Amongst the metabolite subgroups in which a significant change in concentration was detected 

between SVC and PA blood samples, 24 sub-pathways were over-represented [Table 6.2]. 

Multiple lipid groups showed a significant reduction in concentration in PA compared to SVC blood, 

including long chain fatty acids, medium chain fatty acids and polyunsaturated fatty acids. There was 

also a significant reduction in the concentration of TCA cycle metabolites in PA compared to SVC 

blood. Additionally, there was reduction in the concentration of n-acetylputrescine, 1-

methylnicotinamide and a number of nucleotides.  

Conversely, there was a significant increase in glutamate, 4-hydroxyglutamate and 

isoleucylglutamate PA compared to SVC blood, accompanied by depletion in glutamine. There was 

also an increase in ketones, creatine, phenylacetylcarnitine and 3- phosphoglycerate. These changes 

are summarised in Figure 6.1.  



Kasia Isabel Zalewska  MD Thesis 

141 

 

Table 6.1-Endogenous metabolites which showed a significant difference in concentration between paired SVC 
and PA samples. Blood samples were collected at the time of right heart catheterisation. Metabolite 
concentration (expressed as median scaled relative standard intensity) was compared between paired samples 
using the Wilcoxon matched pairs signed rank test with FDR adjustment.  

BIOCHEMICAL SUPER PATHWAY SUB PATHWAY p value 

Aspartate Amino Acid Alanine and Aspartate Metabolism 0.0280 

Creatine Amino Acid Creatine Metabolism 0.0077 

Creatinine Amino Acid Creatine Metabolism 0.0466 

4-hydroxyglutamate Amino Acid Glutamate Metabolism 0.0037 

S-1-pyrroline-5-carboxylate Amino Acid Glutamate Metabolism 0.0054 

Glutamine Amino Acid Glutamate Metabolism 0.0163 

Glutamate Amino Acid Glutamate Metabolism <0.0001 

imidazole lactate Amino Acid Histidine Metabolism 0.0194 

trans-urocanate Amino Acid Histidine Metabolism 0.0394 

Isovalerylcarnitine Amino Acid Leucine, Isoleucine and Valine Metabolism 0.0044 

Isoleucine Amino Acid Leucine, Isoleucine and Valine Metabolism 0.0054 

Leucine Amino Acid Leucine, Isoleucine and Valine Metabolism 0.0181 

2-hydroxybutyrate/2-hydroxyisobutyrate Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism 0.0194 

N-acetylmethionine Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism 0.0330 

alpha-ketobutyrate Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism 0.0416 

N-acetylputrescine Amino Acid Polyamine Metabolism 0.0002 

trans-4-hydroxyproline Amino Acid Urea cycle; Arginine and Proline Metabolism 0.0204 

Citrulline Amino Acid Urea cycle; Arginine and Proline Metabolism 0.0335 

3-phosphoglycerate Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 
Metabolism 

0.0114 

Glucose Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 
Metabolism 

<0.0001 

1-methylnicotinamide Cofactors and 
Vitamins 

Nicotinate and Nicotinamide Metabolism <0.0001 

alpha-ketoglutarate Energy TCA Cycle 0.0003 

Succinate Energy TCA Cycle 0.0013 

Citrate Energy TCA Cycle 0.0017 

aconitate [cis or trans] Energy TCA Cycle 0.0018 

Fumarate Energy TCA Cycle <0.0001 

Malate Energy TCA Cycle <0.0001 

oleoyl ethanolamide Lipid Endocannabinoid 0.0258 

azelate (nonanedioate) Lipid Fatty Acid, Dicarboxylate 0.0019 

3-hydroxylaurate Lipid Fatty Acid, Monohydroxy 0.0005 

9-hydroxystearate Lipid Fatty Acid, Monohydroxy 0.0119 

2-hydroxypalmitate Lipid Fatty Acid, Monohydroxy 0.0370 

3-hydroxydecanoate Lipid Fatty Acid, Monohydroxy 0.0418 

Glycerol Lipid Glycerolipid Metabolism 0.0245 

Acetoacetate Lipid Ketone Bodies 0.0005 

3-hydroxybutyrate (BHBA) Lipid Ketone Bodies <0.0001 

myristoleate (14:1n5) Lipid Long Chain Fatty Acid 0.0002 

pentadecanoate (15:0) Lipid Long Chain Fatty Acid 0.0002 

10-heptadecenoate (17:1n7) Lipid Long Chain Fatty Acid 0.0004 

palmitoleate (16:1n7) Lipid Long Chain Fatty Acid 0.0026 
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palmitate (16:0) Lipid Long Chain Fatty Acid 0.0038 

oleate/vaccenate (18:1) Lipid Long Chain Fatty Acid 0.0155 

10-nonadecenoate (19:1n9) Lipid Long Chain Fatty Acid 0.0370 

myristate (14:0) Lipid Long Chain Fatty Acid <0.0001 

caprate (10:0) Lipid Medium Chain Fatty Acid 0.0178 

laurate (12:0) Lipid Medium Chain Fatty Acid 0.0417 

5-dodecenoate (12:1n7) Lipid Medium Chain Fatty Acid <0.0001 

Choline Lipid Phospholipid Metabolism 0.0007 

linolenate [alpha or gamma; (18:3n3 or 6)] Lipid Polyunsaturated Fatty Acid (n3 and n6) 0.0002 

linoleate (18:2n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) 0.0002 

eicosapentaenoate (EPA; 20:5n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) 0.0008 

arachidonate (20:4n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) 0.0013 

stearidonate (18:4n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) 0.0018 

dihomo-linolenate (20:3n3 or n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) 0.0034 

docosapentaenoate (n3 DPA; 22:5n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) 0.0051 

dihomo-linoleate (20:2n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) 0.0304 

docosahexaenoate (DHA; 22:6n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) <0.0001 

7-alpha-hydroxy-3-oxo-4-cholestenoate (7-
Hoca) 

Lipid Sterol 0.0012 

Xanthine Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 
containing 

0.0013 

7-methylguanine Nucleotide Purine Metabolism, Guanine containing 0.0009 

Orotate Nucleotide Pyrimidine Metabolism, Orotate containing 0.0005 

5,6-dihydrothymine Nucleotide Pyrimidine Metabolism, Thymine containing 0.0010 

Phenylacetylcarnitine Peptide Acetylated Peptides <0.0001 

Isoleucylalanine Peptide Dipeptide 0.0006 

Isoleucylglutamate Peptide Dipeptide <0.0001 
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Table 6.2 -Over-representation analysis of metabolite subgroups which showed a significant difference in 
concentration between paired SVC and PA samples. Metabolite subgroups which showed an enrichment value >1 
are listed. 

SUPER PATHWAY SUB PATHWAY ENRICHMENT VALUE 

Lipid Ketone Bodies 17.41 

Lipid Polyunsaturated Fatty Acid (n3 and n6) 13.05 

Amino Acid Creatine Metabolism 11.60 

Energy TCA Cycle 11.60 

Lipid Long Chain Fatty Acid 9.95 

Nucleotide Pyrimidine Metabolism, Thymine containing 8.70 

Lipid Medium Chain Fatty Acid 7.46 

Amino Acid Glutamate Metabolism 6.33 

Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism 5.80 

Lipid Glycerolipid Metabolism 5.80 

Nucleotide Purine Metabolism, Guanine containing 5.80 

Nucleotide Pyrimidine Metabolism, Orotate containing 5.80 

Lipid Fatty Acid, Monohydroxy 4.97 

Amino Acid Polyamine Metabolism 4.35 

Cofactors and Vitamins Nicotinate and Nicotinamide Metabolism 3.48 

Lipid Endocannabinoid 3.48 

Peptide Acetylated Peptides 3.48 

Amino Acid Histidine Metabolism 2.90 

Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism 2.61 

Amino Acid Alanine and Aspartate Metabolism 2.49 

Lipid Sterol 2.49 

Amino Acid Leucine, Isoleucine and Valine Metabolism 2.18 

Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine containing 2.18 

Amino Acid Urea cycle; Arginine and Proline Metabolism 1.93 
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Figure 6.1- Heat map displaying endogenous metabolites which showed a significant difference in concentration between SVC and PA plasma in patients with pulmonary 
vascular disease. Paired blood samples were taken from the SVC and PA sites during right heart catheterisation of 57 patients with pulmonary vascular disease. Untargeted 
metabolic profiling of the plasma was carried out using the Metabolon DiscoveryHD4™ platform. The concentration of each metabolite (median scaled standardised 
intensity) was compared between SVC and PA samples using the Wilcoxon matched pairs signed rank test with FDR adjustment. Metabolites which were increased in the PA 
compared to SVC samples are shown in red, metabolites which were decreased in the PA compared to SVC samples are shown in green. SVC-superior vena cava, PA-
pulmonary artery, TCA- tricarboxylic acid, LCFA-long chain fatty acid, MCFA-medium chain fatty acid, PUFA-polyunsaturated fatty acid. 
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6.5.2 Transpulmonary metabolite gradients 

Amongst 1375 metabolites, 268 showed a significant difference in concentration between the paired 

pulmonary artery (PA) and radial artery (RA) blood samples, after false discovery rate adjustment. Of 

these 268 metabolites, 208 were endogenous metabolites, 42 were unidentified metabolites and 18 

were xenobiotics. Of the xenobiotics, 1 was a drug (lignocaine), the others were food components 

and chemicals. The endogenous metabolites are shown in Table 7.3. 

42 sub-pathways were over-represented. This included carbohydrate metabolites such as 

disaccharides, glycogen products and aminosugars, TCA cycle metabolites and multiple lipid groups 

including acylcholines, lysolipids and fatty acids, amongst others [Table 7.4].  

There was predominant reduction in the concentration of many metabolites in RA compared to PA 

blood samples. These changes are summarised in Figure 6.2. 

6.5.2.1 Amino acids 

There was depletion of amino acids in RA compared to paired PA samples. This included amino acids 

involved in many different sub-pathways, such as alanine and aspartate metabolism, glutamate 

metabolism and tryptophan metabolism. However, an exception to this was sarcosine, which 

showed a significant increase in concentration in RA samples. 

 

6.5.2.2 Carbohydrates 

Carbohydrates showed a decrease in concentration in the RA compared to PA sample, including 

glucose, fructose and galactose metabolites, and glucose precursors maltose and maltotriose. 

Aminosugars such as glucuronate and N-acetylneuraminate were also depleted. 

 

6.5.2.3 Cofactors and vitamins 

There was a significant increase in haem concentration in the RA compared to PA sample. 

Conversely, there was depletion of ascorbate and aldarate metabolites. There were differences in 

the concentration of nicotinate metabolites, with a reduction in nicotinamide concentration, 

accompanied by an increase in 1-methylnicotinamide. 
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6.5.2.4 TCA cycle 

There was an increase in citrate concentration in RA compared to PA blood.  However, there was a 

depletion of other TCA cycle metabolites such as aconitate and malate. 

 

6.5.2.5 Lipids 

Numerous lipids showed a significant decrease in concentration in RA compared to PA blood, 

including acylcholines, the eicosanoid 12-Hydroxyeicosatetraenoic acid (12-HETE) and other lipid 

groups including lysolipids, plasmalogens, medium chain and polyunsaturated fatty acids. Amongst 

glycerolipids, there was a decrease in glycerophosphoglycerol, but an increase in glycerol 3 

phosphate. Acylcarnitines showed a significant increase in concentration in RA compared to PA 

blood. This was accompanied by a decrease in carnitine. 

 

6.5.2.6 Peptides 

There was a predominant decrease in concentration of peptides in the RA compared to PA sample, 

such as leucyleucine and histadylphenylalanine. However, there was increase in 

phenylacetylcarnitine. Additionally, there was an increase in concentration of fibrinogen cleavage 

peptides, although these metabolites were only detected in a small proportion of patients. 

 

6.5.2.7 Nucleotides 

Nucleotide metabolites such as adenine, cytidine, IMP and ADP showed a significant decrease in 

concentration in RA samples compared to PA samples. Only dihydroorotate showed an increase in 

concentration between PA and RA. 
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Table 6.3- Endogenous metabolites which showed a significant difference in concentration between paired RA and 
PA samples. Blood samples were collected at the time of right heart catheterisation. Metabolite concentration 
(expressed as median scaled relative standard intensity) was compared between paired samples using the 
Wilcoxon matched pairs signed rank test with FDR adjustment. 

BIOCHEMICAL SUPER 
PATHWAY 

SUB PATHWAY p value 

asparagine Amino Acid Alanine and Aspartate Metabolism 0.0005 

N-acetylasparagine Amino Acid Alanine and Aspartate Metabolism 0.0014 

N-carbamoylalanine Amino Acid Alanine and Aspartate Metabolism 0.0073 

aspartate Amino Acid Alanine and Aspartate Metabolism < 0.0001  

creatine Amino Acid Creatine Metabolism 0.0003 

pyroglutamine Amino Acid Glutamate Metabolism 0.0002 

N-acetylglutamate Amino Acid Glutamate Metabolism 0.0003 

N-acetyl-aspartyl-glutamate (NAAG) Amino Acid Glutamate Metabolism 0.0003 

gamma-carboxyglutamate Amino Acid Glutamate Metabolism 0.0146 

beta-citrylglutamate Amino Acid Glutamate Metabolism < 0.0001  

S-1-pyrroline-5-carboxylate Amino Acid Glutamate Metabolism < 0.0001  

glutamate Amino Acid Glutamate Metabolism < 0.0001  

N-acetylglycine Amino Acid Glycine, Serine and Threonine Metabolism 0.0018 

N-acetylserine Amino Acid Glycine, Serine and Threonine Metabolism 0.0034 

glycine Amino Acid Glycine, Serine and Threonine Metabolism 0.0370 

sarcosine Amino Acid Glycine, Serine and Threonine Metabolism < 0.0001  

4-guanidinobutanoate Amino Acid Guanidino and Acetamido Metabolism 0.0116 

hydantoin-5-propionic acid Amino Acid Histidine Metabolism 0.0049 

ethylmalonate Amino Acid Leucine, Isoleucine and Valine Metabolism 0.0011 

3-hydroxyisobutyrate Amino Acid Leucine, Isoleucine and Valine Metabolism 0.0185 

isoleucine Amino Acid Leucine, Isoleucine and Valine Metabolism 0.0229 

N2-acetyllysine Amino Acid Lysine Metabolism 0.0002 

glutarate (pentanedioate) Amino Acid Lysine Metabolism 0.0110 

pipecolate Amino Acid Lysine Metabolism 0.0498 

cysteine sulfinic acid Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

0.0001 

methionine sulfoxide Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

0.0041 

methionine sulfone Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

0.0220 

S-adenosylhomocysteine (SAH) Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

0.0260 

N-methyltaurine Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

0.0359 

cystine Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

0.0498 

taurine Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

< 0.0001  

hypotaurine Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

< 0.0001  

xanthurenate Amino Acid Tryptophan Metabolism 0.0040 

C-glycosyltryptophan Amino Acid Tryptophan Metabolism 0.0072 

thioproline Amino Acid Tryptophan Metabolism 0.0136 
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tryptophan Amino Acid Tryptophan Metabolism 0.0205 

serotonin Amino Acid Tryptophan Metabolism < 0.0001  

trans-4-hydroxyproline Amino Acid Urea cycle; Arginine and Proline Metabolism 0.0024 

N-methylproline Amino Acid Urea cycle; Arginine and Proline Metabolism 0.0130 

homocitrulline Amino Acid Urea cycle; Arginine and Proline Metabolism 0.0133 

arginine Amino Acid Urea cycle; Arginine and Proline Metabolism 0.0194 

N-acetylglucosamine/N-acetylgalactosamine Carbohydrate Aminosugar Metabolism 0.0010 

glucuronate Carbohydrate Aminosugar Metabolism 0.0033 

N-acetylneuraminate Carbohydrate Aminosugar Metabolism < 0.0001  

erythronate Carbohydrate Aminosugar Metabolism < 0.0001  

sucrose Carbohydrate Disaccharides and Oligosaccharides 0.0381 

mannitol/sorbitol Carbohydrate Fructose, Mannose and Galactose 
Metabolism 

0.0018 

mannose Carbohydrate Fructose, Mannose and Galactose 
Metabolism 

0.0139 

galactonate Carbohydrate Fructose, Mannose and Galactose 
Metabolism 

0.0194 

fructose Carbohydrate Fructose, Mannose and Galactose 
Metabolism 

< 0.0001  

maltose Carbohydrate Glycogen Metabolism < 0.0001  

maltotriose Carbohydrate Glycogen Metabolism < 0.0001  

glucose Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 
Metabolism 

0.0017 

glycerate Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 
Metabolism 

< 0.0001  

arabonate/xylonate Carbohydrate Pentose Metabolism 0.0002 

arabitol/xylitol Carbohydrate Pentose Metabolism 0.0443 

ribonate Carbohydrate Pentose Metabolism < 0.0001  

threonate Cofactors and 
Vitamins 

Ascorbate and Aldarate Metabolism 0.0002 

oxalate (ethanedioate) Cofactors and 
Vitamins 

Ascorbate and Aldarate Metabolism 0.0014 

gulonate Cofactors and 
Vitamins 

Ascorbate and Aldarate Metabolism 0.0340 

heme Cofactors and 
Vitamins 

Hemoglobin and Porphyrin Metabolism 0.0003 

bilirubin (E,E) Cofactors and 
Vitamins 

Hemoglobin and Porphyrin Metabolism 0.0105 

quinolinate Cofactors and 
Vitamins 

Nicotinate and Nicotinamide Metabolism 0.0002 

1-methylnicotinamide Cofactors and 
Vitamins 

Nicotinate and Nicotinamide Metabolism 0.0049 

nicotinamide Cofactors and 
Vitamins 

Nicotinate and Nicotinamide Metabolism < 0.0001  

citrate Energy TCA Cycle 0.0003 

aconitate [cis or trans] Energy TCA Cycle 0.0005 

malate Energy TCA Cycle 0.0027 

2-methylcitrate/homocitrate Energy TCA Cycle 0.0370 

alpha-ketoglutarate Energy TCA Cycle 0.0406 

carnitine Lipid Carnitine Metabolism 0.0260 
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oleoyl-linoleoyl-glycerol (18:1/18:2) [2] Lipid Diacylglycerol 0.0014 

oleoyl-arachidonoyl-glycerol (18:1/20:4) [2] Lipid Diacylglycerol 0.0047 

oleoyl-oleoyl-glycerol (18:1/18:1) [2] Lipid Diacylglycerol 0.0143 

12-HETE Lipid Eicosanoid 0.0024 

oleoylcholine Lipid Fatty Acid Metabolism (Acyl Choline) 0.0002 

palmitoylcholine Lipid Fatty Acid Metabolism (Acyl Choline) < 0.0001  

methylmalonate (MMA) Lipid Fatty Acid Metabolism (also BCAA 
Metabolism) 

0.0035 

suberoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 0.0019 

3-hydroxybutyrylcarnitine (1) Lipid Fatty Acid Metabolism(Acyl Carnitine) 0.0022 

linoleoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 0.0157 

myristoleoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 0.0290 

acetylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) < 0.0001  

3-hydroxybutyrylcarnitine (2) Lipid Fatty Acid Metabolism(Acyl Carnitine) < 0.0001  

2-hydroxyglutarate Lipid Fatty Acid, Dicarboxylate 0.0130 

adipate Lipid Fatty Acid, Dicarboxylate 0.0149 

2-hydroxystearate Lipid Fatty Acid, Monohydroxy 0.0113 

2-hydroxypalmitate Lipid Fatty Acid, Monohydroxy < 0.0001  

glycerol 3-phosphate Lipid Glycerolipid Metabolism 0.0008 

glycerophosphoglycerol Lipid Glycerolipid Metabolism < 0.0001  

myo-inositol Lipid Inositol Metabolism 0.0016 

chiro-inositol Lipid Inositol Metabolism 0.0418 

2-stearoyl-GPI (18:0) Lipid Lysolipid 0.0003 

2-oleoyl-GPE (18:1) Lipid Lysolipid 0.0003 

1-nonadecanoyl-GPC (19:0) Lipid Lysolipid 0.0004 

2-arachidonoyl-GPC (20:4) Lipid Lysolipid 0.0009 

1-dihomo-linolenoyl-GPE (20:3n3 or 6) Lipid Lysolipid 0.0009 

1-palmitoyl-GPC (16:0) Lipid Lysolipid 0.0014 

1-oleoyl-GPS (18:1) Lipid Lysolipid 0.0015 

1-myristoyl-GPC (14:0) Lipid Lysolipid 0.0016 

1-pentadecanoyl-GPC (15:0) Lipid Lysolipid 0.0019 

1-oleoyl-GPE (18:1) Lipid Lysolipid 0.0031 

1-erucoyl-GPC (22:1) Lipid Lysolipid 0.0047 

1-docosapentaenoyl-GPC (22:5n6) Lipid Lysolipid 0.0049 

1-palmitoleoyl-GPI (16:1) Lipid Lysolipid 0.0067 

2-docosahexaenoyl-GPC (22:6) Lipid Lysolipid 0.0073 

2-oleoyl-GPC (18:1) Lipid Lysolipid 0.0116 

2-linoleoyl-GPC (18:2) Lipid Lysolipid 0.0224 

1-arachidonoyl-GPE (20:4n6) Lipid Lysolipid 0.0232 

1-palmitoyl-GPE (16:0) Lipid Lysolipid 0.0324 

1-dihomo-linoleoyl-GPC (20:2) Lipid Lysolipid < 0.0001  

1-eicosenoyl-GPC (20:1) Lipid Lysolipid < 0.0001  

1-palmitoyl-GPI (16:0) Lipid Lysolipid < 0.0001  

1-adrenoyl-GPC (22:4) Lipid Lysolipid < 0.0001  

1-dihomo-linolenoyl-GPC (20:3n3 or 6) Lipid Lysolipid < 0.0001  
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1-linoleoyl-GPI (18:2) Lipid Lysolipid < 0.0001  

1-arachidonoyl-GPC (20:4n6) Lipid Lysolipid < 0.0001  

1-arachidonoyl-GPI (20:4) Lipid Lysolipid < 0.0001  

1-arachidoyl-GPC (20:0) Lipid Lysolipid < 0.0001  

1-docosahexaenoyl-GPC (22:6) Lipid Lysolipid < 0.0001  

1-linoleoyl-GPC (18:2) Lipid Lysolipid < 0.0001  

1-eicosapentaenoyl-GPC (20:5) Lipid Lysolipid < 0.0001  

1-stearoyl-GPE (18:0) Lipid Lysolipid < 0.0001  

1-oleoyl-GPC (18:1) Lipid Lysolipid < 0.0001  

1-stearoyl-GPI (18:0) Lipid Lysolipid < 0.0001  

1-linolenoyl-GPC (18:3) Lipid Lysolipid < 0.0001  

1-oleoyl-GPI (18:1) Lipid Lysolipid < 0.0001  

1-margaroyl-GPC (17:0) Lipid Lysolipid < 0.0001  

1-stearoyl-GPC (18:0) Lipid Lysolipid < 0.0001  

1-docosapentaenoyl-GPC (22:5n3) Lipid Lysolipid < 0.0001  

1-palmitoleoyl-GPC (16:1) Lipid Lysolipid < 0.0001  

1-stearyl-GPC (O-18:0) Lipid Lyso-phospho-ether < 0.0001  

1-palmityl-GPC (O-16:0) Lipid Lyso-phospho-ether < 0.0001  

1-palmityl-GPE (O-16:0) Lipid Lyso-phospho-ether < 0.0001  

1-(1-enyl-stearoyl)-GPC (P-18:0)  Lipid Lysoplasmalogen 0.0016 

1-(1-enyl-oleoyl)-GPE (P-18:1) Lipid Lysoplasmalogen < 0.0001  

1-(1-enyl-palmitoyl)-GPE (P-16:0) Lipid Lysoplasmalogen < 0.0001  

1-(1-enyl-stearoyl)-GPE (P-18:0) Lipid Lysoplasmalogen < 0.0001  

1-(1-enyl-palmitoyl)-GPC (P-16:0) Lipid Lysoplasmalogen < 0.0001  

1-(1-enyl-oleoyl)-GPC (P-18:1) Lipid Lysoplasmalogen < 0.0001  

laurate (12:0) Lipid Medium Chain Fatty Acid 0.0025 

heptanoate (7:0) Lipid Medium Chain Fatty Acid 0.0370 

3-hydroxy-3-methylglutarate Lipid Mevalonate Metabolism < 0.0001  

1-arachidonylglycerol (20:4) Lipid Monoacylglycerol 0.0396 

1-stearoyl-2-oleoyl-GPS (18:0/18:1) Lipid Phosphatidylserine (PS) 0.0003 

1-stearoyl-2-arachidonoyl-GPS (18:0/20:4) Lipid Phosphatidylserine (PS) 0.0049 

1-stearoyl-2-adrenoyl-GPE (18:0/22:4) Lipid Phospholipid Metabolism 0.0007 

1-stearoyl-2-docosapentaenoyl-GPE (18:0/22:5n3) Lipid Phospholipid Metabolism 0.0025 

docosahexaenoylcholine Lipid Phospholipid Metabolism 0.0026 

1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) Lipid Phospholipid Metabolism 0.0030 

1-stearoyl-2-docosahexaenoyl-GPS (18:0/22:6) Lipid Phospholipid Metabolism 0.0034 

1-palmityl-2-stearoyl-GPC (O-16:0/18:0) Lipid Phospholipid Metabolism 0.0133 

1-arachidoyl-2-arachidonoyl-GPC (20:0/20:4) Lipid Phospholipid Metabolism 0.0214 

1-stearyl-2-docosapentaenoyl-GPC (O-
18:0/22:5n3) 

Lipid Phospholipid Metabolism 0.0370 

glycerophosphoethanolamine Lipid Phospholipid Metabolism < 0.0001  

glycerophosphorylcholine (GPC) Lipid Phospholipid Metabolism < 0.0001  

phosphoethanolamine Lipid Phospholipid Metabolism < 0.0001  

glycerophosphoinositol Lipid Phospholipid Metabolism < 0.0001  

arachidonoylcholine Lipid Phospholipid Metabolism < 0.0001  
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choline phosphate Lipid Phospholipid Metabolism < 0.0001  

dihomo-linolenoyl-choline Lipid Phospholipid Metabolism < 0.0001  

cytidine 5'-diphosphocholine Lipid Phospholipid Metabolism < 0.0001  

1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-
18:0/20:4) 

Lipid Plasmalogen 0.0003 

1-(1-enyl-stearoyl)-2-docosapentaenoyl-GPE (P-
18:0/22:5n3) 

Lipid Plasmalogen 0.0007 

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-
16:0/20:4) 

Lipid Plasmalogen 0.0013 

1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1) Lipid Plasmalogen 0.0028 

1-(1-enyl-stearoyl)-2-docosahexaenoyl-GPE (P-
18:0/22:6) 

Lipid Plasmalogen 0.0066 

1-(1-enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1) Lipid Plasmalogen 0.0181 

1-(1-enyl-palmitoyl)-2-docosahexaenoyl-GPE (P-
16:0/22:6) 

Lipid Plasmalogen 0.0227 

eicosapentaenoate (EPA; 20:5n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) 0.0001 

docosahexaenoate (DHA; 22:6n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) 0.0011 

docosapentaenoate (n3 DPA; 22:5n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) 0.0041 

arachidonate (20:4n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) < 0.0001  

dihomo-linolenate (20:3n3 or n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) < 0.0001  

sphinganine-1-phosphate Lipid Sphingolipid Metabolism 0.0001 

sphinganine Lipid Sphingolipid Metabolism 0.0002 

sphingosine Lipid Sphingolipid Metabolism 0.0014 

N-stearoyl-sphingosine (d18:1/18:0) Lipid Sphingolipid Metabolism 0.0453 

sphingosine 1-phosphate Lipid Sphingolipid Metabolism < 0.0001  

campesterol Lipid Sterol 0.0189 

allantoin Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 
containing 

0.0002 

inosine 5'-monophosphate (IMP) Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 
containing 

0.0003 

adenosine 5'-diphosphate (ADP) Nucleotide Purine Metabolism, Adenine containing 0.0001 

adenosine 5'-monophosphate (AMP) Nucleotide Purine Metabolism, Adenine containing < 0.0001  

adenine Nucleotide Purine Metabolism, Adenine containing < 0.0001  

cytidine 5'-monophosphate (5'-CMP) Nucleotide Pyrimidine Metabolism, Cytidine containing 0.0027 

cytidine Nucleotide Pyrimidine Metabolism, Cytidine containing < 0.0001  

orotidine Nucleotide Pyrimidine Metabolism, Orotate containing 0.0001 

dihydroorotate Nucleotide Pyrimidine Metabolism, Orotate containing 0.0003 

orotate Nucleotide Pyrimidine Metabolism, Orotate containing 0.0084 

beta-alanine Nucleotide Pyrimidine Metabolism, Uracil containing 0.0110 

3-ureidopropionate Nucleotide Pyrimidine Metabolism, Uracil containing 0.0136 

uracil Nucleotide Pyrimidine Metabolism, Uracil containing 0.0146 

phenylacetylcarnitine Peptide Acetylated Peptides 0.0007 

phenylacetylglutamine Peptide Acetylated Peptides 0.0464 

phenylalanyltryptophan Peptide Dipeptide 0.0019 

tryptophylleucine Peptide Dipeptide 0.0022 

phenylalanylarginine Peptide Dipeptide 0.0029 

isoleucylglutamate Peptide Dipeptide 0.0030 
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isoleucylalanine Peptide Dipeptide 0.0035 

serylalanine Peptide Dipeptide 0.0043 

cyclo(pro-val) Peptide Dipeptide 0.0260 

prolylproline Peptide Dipeptide < 0.0001  

histidylphenylalanine Peptide Dipeptide < 0.0001  

leucylleucine Peptide Dipeptide < 0.0001  

DSGEGDFXAEGGGVR Peptide Fibrinogen Cleavage Peptide 0.0240 

ADSGEGDFXAEGGGVR Peptide Fibrinogen Cleavage Peptide 0.0354 

gamma-glutamyl-alpha-lysine Peptide Gamma-glutamyl Amino Acid 0.0209 

 

 

Table 6.4- Over-representation analysis of metabolites which showed a significant difference in concentration 
between paired SVC and PA samples. Metabolites which showed an enrichment value >1 are listed. 

SUPER PATHWAY SUB PATHWAY ENRICHMENT 
VALUE 

Carbohydrate Disaccharides and Oligosaccharides 5.13 

Carbohydrate Fructose, Mannose and Galactose Metabolism 5.13 

Carbohydrate Glycogen Metabolism 5.13 

Lipid Eicosanoid 5.13 

Lipid Fatty Acid Metabolism (Acyl Choline) 5.13 

Lipid Inositol Metabolism 5.13 

Lipid Lyso-phospho-ether 5.13 

Lipid Lysoplasmalogen 5.13 

Lipid Mevalonate Metabolism 5.13 

Lipid Phosphatidylserine (PS) 5.13 

Nucleotide Pyrimidine Metabolism, Orotate containing 5.13 

Peptide Fibrinogen Cleavage Peptide 5.13 

Cofactors and Vitamins Ascorbate and Aldarate Metabolism 3.85 

Carbohydrate Aminosugar Metabolism 3.42 

Lipid Glycerolipid Metabolism 3.42 

Lipid Lysolipid 3.33 

Amino Acid Glutamate Metabolism 3.26 

Cofactors and Vitamins Nicotinate and Nicotinamide Metabolism 3.08 

Amino Acid Alanine and Aspartate Metabolism 2.93 

Energy TCA Cycle 2.85 

Carbohydrate Pentose Metabolism 2.57 

Lipid Carnitine Metabolism 2.57 

Lipid Fatty Acid Metabolism (also BCAA Metabolism) 2.57 

Nucleotide Pyrimidine Metabolism, Uracil containing 2.20 

Lipid Polyunsaturated Fatty Acid (n3 and n6) 2.14 

Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism 2.05 

Nucleotide Pyrimidine Metabolism, Cytidine containing 2.05 

Peptide Acetylated Peptides 2.05 

Nucleotide Purine Metabolism, Adenine containing 1.92 
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Amino Acid Glycine, Serine and Threonine Metabolism 1.87 

Amino Acid Creatine Metabolism 1.71 

Amino Acid Guanidino and Acetamido Metabolism 1.71 

Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism 1.71 

Lipid Fatty Acid Metabolism (Acyl Carnitine) 1.71 

Lipid Plasmalogen 1.56 

Cofactors and Vitamins Hemoglobin and Porphyrin Metabolism 1.47 

Lipid Medium Chain Fatty Acid 1.47 

Amino Acid Lysine Metabolism 1.28 

Amino Acid Tryptophan Metabolism 1.28 

Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine containing 1.28 

Peptide Dipeptide 1.25 

Amino Acid Urea cycle; Arginine and Proline Metabolism 1.14 
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aspar agine
aspar tate
N -acetylaspar agine
N -car bam oylalanine
cr eatine
beta-citr ylglutam ate
gam m a-car boxyglutam ate
glutam ate
N -acetyl-aspar tyl-glutam ate (N A A G )
N -acetylglutam ate
pyr oglutam ine
S -1-pyr r oline-5-car boxylate
glycine
N -acetylglycine
N -acetylser ine
sar cosine
4-guanidinobutanoate
hydantoin-5-pr opionic acid
3-hydr oxyisobutyr ate
ethylm alonate
isoleucine
glutar ate (pentanedioate)
N 2-acetyllysine
pipecolate
cysteine sulfinic acid
cystine
hypotaur ine
m ethionine sulfone
m ethionine sulfoxide
N -m ethyltaur ine
S -adenosylhom ocysteine (S A H )
taur ine
C -glycosyltr yptophan
ser otonin
thiopr oline
tr yptophan
xanthur enate
ar ginine
hom ocitr ulline
N -m ethylpr oline
tr ans-4-hydr oxypr oline
er ythr onate
glucur onate
N -acetylglucosam ine/N -acetylgalactosam ine
N -acetylneur am inate
sucr ose
fr uctose
galactonate
m annitol/sor bitol
m annose
m altose
m altotr iose
glucose
glycer ate
ar abitol/xylitol
ar abonate/xylonate
r ibonate
gulonate
oxalate (ethanedioate)
thr eonate
bilir ubin (E ,E )
hem e
1-m ethylnicotinam ide
nicotinam ide
quinolinate
2-m ethylcitr ate/hom ocitr ate
aconitate [c is or  tr ans]
alpha-ketoglutar ate
citr ate
m alate
car nitine
oleoyl-ar achidonoyl-glycer ol (18:1/20:4) [2]
oleoyl-linoleoyl-glycer ol (18:1/18:2) [2]
oleoyl-oleoyl-glycer ol (18:1/18:1) [2]
12-H E TE
oleoylcholine
palm itoylcholine
m ethylm alonate (M M A )
3-hydr oxybutyr ylcar nitine (1)
3-hydr oxybutyr ylcar nitine (2)
acetylcar nitine
linoleoylcar nitine
m yr istoleoylcar nitine
suber oylcar nitine
2-hydr oxyglutar ate
adipate
2-hydr oxypalm itate
2-hydr oxystear ate
glycer ol 3-phosphate
glycer ophosphoglycer ol
chir o-inositol
m yo-inositol
1-adr enoyl-G P C  (22:4)*
1-ar achidonoyl-G P C  (20:4n6)*
1-ar achidonoyl-G P E  (20:4n6)*
1-ar achidonoyl-G P I (20:4)*
1-ar achidoyl-G P C  (20:0)
1-dihom o-linolenoyl-G P C  (20:3n3 or  6)*
1-dihom o-linolenoyl-G P E  (20:3n3 or  6)*
1-dihom o-linoleoyl-G P C  (20:2)*
1-docosahexaenoyl-G P C  (22:6)*
1-docosapentaenoyl-G P C  (22:5n3)*
1-docosapentaenoyl-G P C  (22:5n6)*
1-eicosapentaenoyl-G P C  (20:5)*
1-eicosenoyl-G P C  (20:1)*
1-er ucoyl-G P C  (22:1)*
1-linolenoyl-G P C  (18:3)*
1-linoleoyl-G P C  (18:2)
1-linoleoyl-G P I (18:2)*
1-m ar gar oyl-G P C  (17:0)
1-m yr istoyl-G P C  (14:0)
1-nonadecanoyl-G P C  (19:0)
1-oleoyl-G P C  (18:1)
1-oleoyl-G P E  (18:1)
1-oleoyl-G P I (18:1)*
1-oleoyl-G P S  (18:1)
1-palm itoleoyl-G P C  (16:1)*
1-palm itoleoyl-G P I (16:1)*
1-palm itoyl-G P C  (16:0)
1-palm itoyl-G P E  (16:0)
1-palm itoyl-G P I (16:0)
1-pentadecanoyl-G P C  (15:0)*
1-stear oyl-G P C  (18:0)
1-stear oyl-G P E  (18:0)
1-stear oyl-G P I (18:0)
2-ar achidonoyl-G P C  (20:4)*
2-docosahexaenoyl-G P C  (22:6)*
2-linoleoyl-G P C  (18:2)*
2-oleoyl-G P C  (18:1)*
2-oleoyl-G P E  (18:1)*
2-stear oyl-G P I (18:0)*
1-palm ityl-G P C  (O -16:0)
1-palm ityl-G P E  (O -16:0)*
1-stear yl-G P C  (O -18:0)*
1-(1-enyl-oleoyl)-G P C  (P -18:1)*
1-(1-enyl-oleoyl)-G P E  (P -18:1)*
1-(1-enyl-palm itoyl)-G P C  (P -16:0)*
1-(1-enyl-palm itoyl)-G P E  (P -16:0)*
1-(1-enyl-stear oyl)-G P C  (P -18:0) *
1-(1-enyl-stear oyl)-G P E  (P -18:0)*
heptanoate (7:0)
laur ate (12:0)
3-hydr oxy-3-m ethylglutar ate
1-ar achidonylglycer ol (20:4)
1-stear oyl-2-ar achidonoyl-G P S  (18:0/20:4)
1-stear oyl-2-oleoyl-G P S  (18:0/18:1)
1-ar achidoyl-2-ar achidonoyl-G P C  (20:0/20:4)*
1-palm ityl-2-stear oyl-G P C  (O -16:0/18:0)*
1-stear oyl-2-adr enoyl-G P E  (18:0/22:4)*
1-stear oyl-2-ar achidonoyl-G P E  (18:0/20:4)
1-stear oyl-2-docosahexaenoyl-G P S  (18:0/22:6)*
1-stear oyl-2-docosapentaenoyl-G P E  (18:0/22:5n3)*
1-stear yl-2-docosapentaenoyl-G P C  (O -18:0/22:5n3)*
ar achidonoylcholine
choline phosphate
cytidine 5 '-diphosphocholine
dihom o-linolenoyl-choline
docosahexaenoylcholine
glycer ophosphoethanolam ine
glycer ophosphoinositol
glycer ophosphor ylcholine (G P C )
phosphoethanolam ine
1-(1-enyl-palm itoyl)-2-ar achidonoyl-G P E  (P -16:0/20:4)*
1-(1-enyl-palm itoyl)-2-docosahexaenoyl-G P E  (P -16:0/22:6)*
1-(1-enyl-palm itoyl)-2-oleoyl-G P E  (P -16:0/18:1)*
1-(1-enyl-stear oyl)-2-ar achidonoyl-G P E  (P -18:0/20:4)*
1-(1-enyl-stear oyl)-2-docosahexaenoyl-G P E  (P -18:0/22:6)*
1-(1-enyl-stear oyl)-2-docosapentaenoyl-G P E  (P -18:0/22:5n3)*
1-(1-enyl-stear oyl)-2-oleoyl-G P E  (P -18:0/18:1)
ar achidonate (20:4n6)
dihom o-linolenate (20:3n3 or  n6)
docosahexaenoate (D H A ; 22:6n3)
docosapentaenoate (n3 D P A ; 22:5n3)
eicosapentaenoate (E P A ; 20:5n3)
N -stear oyl-sphingosine (d18:1/18:0)*
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sphinganine-1-phosphate
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sphingosine 1-phosphate
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allantoin
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adenosine 5 '-diphosphate (A D P )
adenosine 5 '-m onophosphate (A M P )
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cytidine 5 '-m onophosphate (5 '-C M P )
dihydr oor otate
or otate
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3-ur eidopr opionate
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ur acil
phenylacetylcar nitine
phenylacetylglutam ine
cyclo(pr o-val)
histidylphenylalanine
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isoleucylglutam ate
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phenylalanyltr yptophan
pr olylpr oline
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tr yptophylleucine
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D S G E G D FX A E G G G V R
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 C h a n g e  in  m e ta b o lite  c o n c e n tra t io n  (P A  to  A R T )

In c re a s e d  (p  <  0 .0 0 0 1 )

In c re a s e d   (p  <  0 .0 0 1 )

In c re a s e d  (p  <  0 .0 0 1 )

In c re a s e d   (p  <  0 .0 5 )

D e c re a s e d  (p  < 0 .0 5 )

D e c re a s e d   (p  < 0 .0 1 )

D e c re a s e d   (p  <  0 .0 0 1 )

D e c re a s e d   (p  <  0 .0 0 0 1 )

 

Figure 6.2- Heat map displaying endogenous metabolites which showed a significant difference in concentration 
between PA and ART plasma in patients with pulmonary vascular disease. Paired blood samples were taken from 
the PA and ART sites during right heart catheterisation of 57 patients with pulmonary vascular disease. 
Untargeted metabolic profiling of the plasma was carried out using the Metabolon DiscoveryHD4™ platform. 
The concentration of each metabolite (median scaled standardised intensity) was compared between PA and 
ART samples using Wilcoxon matched pairs signed rank test with FDR adjustment. Metabolites which were 
increased in the ART compared to PA samples are shown in red, metabolites which were decreased in the PA 
compared to SVC samples are shown in green. PA-pulmonary artery, ART-radial artery, PUFA-polyunsaturated 
fatty acid.  
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6.5.3 Systemic metabolite gradients 

Amongst 1375 metabolites, 341 showed a significant difference in concentration between the paired 

radial artery (RA) and superior vena cava (SVC) blood samples, after false discovery rate adjustment. 

Of these 341 metabolites, 266 were endogenous, 58 were unidentified metabolites and 17 were 

xenobiotics. The endogenous metabolites are shown in Table 6.5. 49 sub-pathways were over-

represented [Table 6.6]. 

In SVC samples compared to RA samples, there was a predominant increase in concentration of 

carbohydrate, energy, lipid and nucleotide metabolites, including glycogen metabolites, TCA cycle 

intermediates and fatty acids.  There were also increases in acylcholines, phosphatidylserines and 

polyamines. A reduction in glutamate was observed, accompanied by an increase in glutamate 

metabolites, and acylcarnitine concentration was also reduced. These findings are summarised in 

Figure 6.3.  

 

Table 6.5- Endogenous metabolites which showed a significant difference in concentration between paired RA and 
PA samples. Blood samples were collected at the time of right heart catheterisation. Metabolite concentration 
(expressed as median scaled relative standard intensity) was compared between paired samples using the 
Wilcoxon matched pairs signed rank test with FDR adjustment. 

BIOCHEMICAL SUPER PATHWAY SUB PATHWAY p value 

asparagine Amino Acid Alanine and Aspartate Metabolism 0.0001 

N-acetylasparagine Amino Acid Alanine and Aspartate Metabolism 0.0208 

N-carbamoylalanine Amino Acid Alanine and Aspartate Metabolism 0.0376 

guanidinoacetate Amino Acid Creatine Metabolism 0.0014 

creatinine Amino Acid Creatine Metabolism 0.0023 

beta-citrylglutamate Amino Acid Glutamate Metabolism 0.0001 

N-acetyl-aspartyl-glutamate (NAAG) Amino Acid Glutamate Metabolism 0.0001 

glutamate Amino Acid Glutamate Metabolism 0.0010 

gamma-carboxyglutamate Amino Acid Glutamate Metabolism 0.0010 

pyroglutamine Amino Acid Glutamate Metabolism 0.0048 

N-acetylglutamine Amino Acid Glutamate Metabolism 0.0049 

glutamine Amino Acid Glutamate Metabolism 0.0081 

N-acetylglutamate Amino Acid Glutamate Metabolism < 0.0001 

5-oxoproline Amino Acid Glutathione Metabolism 0.0051 

cys-gly, oxidized Amino Acid Glutathione Metabolism 0.0401 

N-acetylserine Amino Acid Glycine, Serine and Threonine Metabolism 0.0011 

threonine Amino Acid Glycine, Serine and Threonine Metabolism 0.0100 

glycine Amino Acid Glycine, Serine and Threonine Metabolism 0.0210 

N-acetylglycine Amino Acid Glycine, Serine and Threonine Metabolism 0.0336 

sarcosine Amino Acid Glycine, Serine and Threonine Metabolism < 0.0001 

4-guanidinobutanoate Amino Acid Guanidino and Acetamido Metabolism 0.0002 
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imidazole lactate Amino Acid Histidine Metabolism 0.0028 

hydantoin-5-propionic acid Amino Acid Histidine Metabolism 0.0065 

formiminoglutamate Amino Acid Histidine Metabolism 0.0068 

1-methylimidazoleacetate Amino Acid Histidine Metabolism 0.0097 

N-acetyl-3-methylhistidine Amino Acid Histidine Metabolism 0.0246 

ethylmalonate Amino Acid Leucine, Isoleucine and Valine Metabolism 0.0002 

2-methylbutyrylcarnitine (C5) Amino Acid Leucine, Isoleucine and Valine Metabolism 0.0025 

3-hydroxyisobutyrate Amino Acid Leucine, Isoleucine and Valine Metabolism 0.0159 

N2-acetyllysine Amino Acid Lysine Metabolism 0.0010 

glutarate (pentanedioate) Amino Acid Lysine Metabolism 0.0023 

hypotaurine Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

0.0001 

taurine Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

0.0006 

cysteine sulfinic acid Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

0.0008 

alpha-ketobutyrate Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

0.0018 

cystine Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

0.0085 

methionine sulfoxide Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

0.0155 

methionine sulfone Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

0.0294 

cysteine s-sulfate Amino Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

0.0337 

phenylalanine Amino Acid Phenylalanine and Tyrosine Metabolism 0.0472 

N-acetylputrescine Amino Acid Polyamine Metabolism 0.0028 

4-acetamidobutanoate Amino Acid Polyamine Metabolism 0.0467 

kynurenine Amino Acid Tryptophan Metabolism 0.0035 

3-hydroxykynurenine Amino Acid Tryptophan Metabolism 0.0047 

serotonin Amino Acid Tryptophan Metabolism 0.0068 

C-glycosyltryptophan Amino Acid Tryptophan Metabolism 0.0130 

indolelactate Amino Acid Tryptophan Metabolism 0.0387 

ornithine Amino Acid Urea cycle; Arginine and Proline Metabolism 0.0130 

homocitrulline Amino Acid Urea cycle; Arginine and Proline Metabolism 0.0163 

trans-4-hydroxyproline Amino Acid Urea cycle; Arginine and Proline Metabolism < 0.0001 

glucuronate Carbohydrate Aminosugar Metabolism 0.0001 

N-acetylneuraminate Carbohydrate Aminosugar Metabolism 0.0019 

erythronate Carbohydrate Aminosugar Metabolism < 0.0001 

mannitol/sorbitol Carbohydrate Fructose, Mannose and Galactose Metabolism 0.0007 

fructose Carbohydrate Fructose, Mannose and Galactose Metabolism 0.0017 

galactonate Carbohydrate Fructose, Mannose and Galactose Metabolism 0.0484 

maltose Carbohydrate Glycogen Metabolism < 0.0001 

maltotriose Carbohydrate Glycogen Metabolism 0.0011 

3-phosphoglycerate Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 
Metabolism 

0.0326 

glycerate Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 
Metabolism 

< 0.0001 
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arabonate/xylonate Carbohydrate Pentose Metabolism 0.0001 

ribitol Carbohydrate Pentose Metabolism 0.0002 

arabitol/xylitol Carbohydrate Pentose Metabolism 0.0074 

ribonate Carbohydrate Pentose Metabolism < 0.0001 

threonate Cofactors and 
Vitamins 

Ascorbate and Aldarate Metabolism 0.0002 

oxalate (ethanedioate) Cofactors and 
Vitamins 

Ascorbate and Aldarate Metabolism 0.0017 

gulonate Cofactors and 
Vitamins 

Ascorbate and Aldarate Metabolism 0.0092 

heme Cofactors and 
Vitamins 

Hemoglobin and Porphyrin Metabolism 0.0003 

quinolinate Cofactors and 
Vitamins 

Nicotinate and Nicotinamide Metabolism 0.0001 

1-methylnicotinamide Cofactors and 
Vitamins 

Nicotinate and Nicotinamide Metabolism 0.0020 

nicotinamide Cofactors and 
Vitamins 

Nicotinate and Nicotinamide Metabolism 0.0044 

trigonelline (N'-methylnicotinate) Cofactors and 
Vitamins 

Nicotinate and Nicotinamide Metabolism 0.0326 

alpha-ketoglutarate Energy TCA Cycle 0.0001 

succinate Energy TCA Cycle 0.0004 

2-methylcitrate/homocitrate Energy TCA Cycle 0.0048 

citrate Energy TCA Cycle 0.0270 

fumarate Energy TCA Cycle < 0.0001 

malate Energy TCA Cycle < 0.0001 

aconitate [cis or trans] Energy TCA Cycle < 0.0001 

deoxycarnitine Lipid Carnitine Metabolism 0.0047 

oleoyl-linoleoyl-glycerol (18:1/18:2) [2] Lipid Diacylglycerol 0.0078 

oleoyl-arachidonoyl-glycerol (18:1/20:4) [2] Lipid Diacylglycerol 0.0140 

oleoyl-oleoyl-glycerol (18:1/18:1) [2] Lipid Diacylglycerol 0.0337 

12-HETE Lipid Eicosanoid 0.0165 

oleoyl ethanolamide Lipid Endocannabinoid 0.0016 

palmitoyl ethanolamide Lipid Endocannabinoid 0.0048 

oleoylcholine Lipid Fatty Acid Metabolism (Acyl Choline) < 0.0001 

palmitoylcholine Lipid Fatty Acid Metabolism (Acyl Choline) < 0.0001 

methylmalonate (MMA) Lipid Fatty Acid Metabolism (also BCAA Metabolism) 0.0004 

propionylcarnitine Lipid Fatty Acid Metabolism (also BCAA Metabolism) 0.0044 

3-hydroxybutyrylcarnitine (2) Lipid Fatty Acid Metabolism(Acyl Carnitine) 0.0001 

3-hydroxybutyrylcarnitine (1) Lipid Fatty Acid Metabolism(Acyl Carnitine) 0.0018 

suberoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 0.0090 

acetylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) < 0.0001 

malonate Lipid Fatty Acid Synthesis 0.0016 

pimelate (heptanedioate) Lipid Fatty Acid, Dicarboxylate 0.0014 

2-hydroxyglutarate Lipid Fatty Acid, Dicarboxylate 0.0015 

adipate Lipid Fatty Acid, Dicarboxylate 0.0044 

azelate (nonanedioate) Lipid Fatty Acid, Dicarboxylate 0.0228 

2-hydroxystearate Lipid Fatty Acid, Monohydroxy 0.0001 
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9-hydroxystearate Lipid Fatty Acid, Monohydroxy 0.0002 

3-hydroxylaurate Lipid Fatty Acid, Monohydroxy 0.0022 

3-hydroxydecanoate Lipid Fatty Acid, Monohydroxy 0.0379 

2-hydroxypalmitate Lipid Fatty Acid, Monohydroxy < 0.0001 

glycerophosphoglycerol Lipid Glycerolipid Metabolism 0.0002 

glycerol Lipid Glycerolipid Metabolism 0.0005 

glycerol 3-phosphate Lipid Glycerolipid Metabolism 0.0044 

myo-inositol Lipid Inositol Metabolism 0.0004 

3-hydroxybutyrate (BHBA) Lipid Ketone Bodies 0.0014 

palmitate (16:0) Lipid Long Chain Fatty Acid 0.0001 

10-heptadecenoate (17:1n7) Lipid Long Chain Fatty Acid 0.0002 

palmitoleate (16:1n7) Lipid Long Chain Fatty Acid 0.0002 

eicosenoate (20:1) Lipid Long Chain Fatty Acid 0.0019 

10-nonadecenoate (19:1n9) Lipid Long Chain Fatty Acid 0.0046 

oleate/vaccenate (18:1) Lipid Long Chain Fatty Acid 0.0082 

nonadecanoate (19:0) Lipid Long Chain Fatty Acid 0.0167 

stearate (18:0) Lipid Long Chain Fatty Acid 0.0249 

myristate (14:0) Lipid Long Chain Fatty Acid < 0.0001 

myristoleate (14:1n5) Lipid Long Chain Fatty Acid < 0.0001 

pentadecanoate (15:0) Lipid Long Chain Fatty Acid < 0.0001 

1-docosahexaenoyl-GPC (22:6) Lipid Lysolipid 0.0001 

1-oleoyl-GPC (18:1) Lipid Lysolipid 0.0001 

1-eicosapentaenoyl-GPC (20:5) Lipid Lysolipid 0.0001 

1-nonadecanoyl-GPC (19:0) Lipid Lysolipid 0.0001 

1-linolenoyl-GPC (18:3) Lipid Lysolipid 0.0001 

1-oleoyl-GPI (18:1) Lipid Lysolipid 0.0002 

1-docosapentaenoyl-GPC (22:5n3) Lipid Lysolipid 0.0002 

1-stearoyl-GPC (18:0) Lipid Lysolipid 0.0002 

1-docosapentaenoyl-GPC (22:5n6) Lipid Lysolipid 0.0002 

1-margaroyl-GPC (17:0) Lipid Lysolipid 0.0002 

1-arachidoyl-GPC (20:0) Lipid Lysolipid 0.0003 

1-stearoyl-GPE (18:0) Lipid Lysolipid 0.0003 

2-arachidonoyl-GPC (20:4) Lipid Lysolipid 0.0004 

1-palmitoleoyl-GPC (16:1) Lipid Lysolipid 0.0005 

2-docosahexaenoyl-GPC (22:6) Lipid Lysolipid 0.0011 

2-stearoyl-GPI (18:0) Lipid Lysolipid 0.0022 

1-oleoyl-GPS (18:1) Lipid Lysolipid 0.0032 

1-palmitoyl-GPC (16:0) Lipid Lysolipid 0.0044 

2-linoleoyl-GPC (18:2) Lipid Lysolipid 0.0044 

1-palmitoleoyl-GPI (16:1) Lipid Lysolipid 0.0066 

1-myristoyl-GPC (14:0) Lipid Lysolipid 0.0074 

2-oleoyl-GPE (18:1) Lipid Lysolipid 0.0080 

2-oleoyl-GPC (18:1) Lipid Lysolipid 0.0081 

1-palmitoleoyl-GPE (16:1) Lipid Lysolipid 0.0085 
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1-pentadecanoyl-GPC (15:0) Lipid Lysolipid 0.0249 

1-dihomo-linolenoyl-GPE (20:3n3 or 6) Lipid Lysolipid 0.0326 

1-oleoyl-GPE (18:1) Lipid Lysolipid 0.0337 

1-erucoyl-GPC (22:1) Lipid Lysolipid 0.0339 

1-lignoceroyl-GPC (24:0) Lipid Lysolipid 0.0437 

1-palmitoyl-GPI (16:0) Lipid Lysolipid < 0.0001 

1-arachidonoyl-GPI (20:4) Lipid Lysolipid < 0.0001 

1-linoleoyl-GPI (18:2) Lipid Lysolipid < 0.0001 

1-adrenoyl-GPC (22:4) Lipid Lysolipid < 0.0001 

1-stearoyl-GPI (18:0) Lipid Lysolipid < 0.0001 

1-dihomo-linoleoyl-GPC (20:2) Lipid Lysolipid < 0.0001 

1-dihomo-linolenoyl-GPC (20:3n3 or 6) Lipid Lysolipid < 0.0001 

1-arachidonoyl-GPC (20:4n6) Lipid Lysolipid < 0.0001 

1-eicosenoyl-GPC (20:1) Lipid Lysolipid < 0.0001 

1-linoleoyl-GPC (18:2) Lipid Lysolipid < 0.0001 

1-stearyl-GPC (O-18:0) Lipid Lyso-phospho-ether 0.0001 

1-palmityl-GPC (O-16:0) Lipid Lyso-phospho-ether < 0.0001 

1-palmityl-GPE (O-16:0) Lipid Lyso-phospho-ether < 0.0001 

1-(1-enyl-stearoyl)-GPE (P-18:0) Lipid Lysoplasmalogen 0.0001 

1-(1-enyl-palmitoyl)-GPC (P-16:0) Lipid Lysoplasmalogen 0.0001 

1-(1-enyl-palmitoyl)-GPE (P-16:0) Lipid Lysoplasmalogen 0.0001 

1-(1-enyl-stearoyl)-GPC (P-18:0)  Lipid Lysoplasmalogen 0.0002 

1-(1-enyl-oleoyl)-GPC (P-18:1) Lipid Lysoplasmalogen < 0.0001 

1-(1-enyl-oleoyl)-GPE (P-18:1) Lipid Lysoplasmalogen < 0.0001 

caprate (10:0) Lipid Medium Chain Fatty Acid 0.0001 

laurate (12:0) Lipid Medium Chain Fatty Acid < 0.0001 

5-dodecenoate (12:1n7) Lipid Medium Chain Fatty Acid < 0.0001 

3-hydroxy-3-methylglutarate Lipid Mevalonate Metabolism < 0.0001 

1-arachidonylglycerol (20:4) Lipid Monoacylglycerol 0.0026 

1-stearoyl-2-oleoyl-GPS (18:0/18:1) Lipid Phosphatidylserine (PS) 0.0035 

1-stearoyl-2-arachidonoyl-GPS (18:0/20:4) Lipid Phosphatidylserine (PS) 0.0479 

choline Lipid Phospholipid Metabolism 0.0004 

1-oleoyl-2-linoleoyl-GPC (18:1/18:2) Lipid Phospholipid Metabolism 0.0018 

1-stearoyl-2-docosahexaenoyl-GPC (18:0/22:6) Lipid Phospholipid Metabolism 0.0022 

phosphoethanolamine Lipid Phospholipid Metabolism 0.0033 

1-palmitoyl-2-docosahexaenoyl-GPC (16:0/22:6) Lipid Phospholipid Metabolism 0.0051 

cytidine 5'-diphosphocholine Lipid Phospholipid Metabolism 0.0052 

1-myristoyl-2-linoleoyl-GPC (14:0/18:2) Lipid Phospholipid Metabolism 0.0063 

1-palmitoyl-2-arachidonoyl-GPI (16:0/20:4) Lipid Phospholipid Metabolism 0.0067 

phosphatidylcholine (15:0/18:1, 17:0/16:1) Lipid Phospholipid Metabolism 0.0083 

1-stearoyl-2-docosapentaenoyl-GPC (18:0/22:5n6) Lipid Phospholipid Metabolism 0.0085 

1-stearoyl-2-adrenoyl-GPE (18:0/22:4) Lipid Phospholipid Metabolism 0.0095 

1-palmitoyl-2-eicosapentaenoyl-GPC (16:0/20:5) Lipid Phospholipid Metabolism 0.0121 

1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) Lipid Phospholipid Metabolism 0.0121 
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1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) Lipid Phospholipid Metabolism 0.0124 

1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) Lipid Phospholipid Metabolism 0.0124 

1-stearoyl-2-docosapentaenoyl-GPE (18:0/22:5n3) Lipid Phospholipid Metabolism 0.0124 

1-linoleoyl-2-arachidonoyl-GPE (18:2/20:4) Lipid Phospholipid Metabolism 0.0155 

1-stearoyl-2-linoleoyl-GPC (18:0/18:2) Lipid Phospholipid Metabolism 0.0208 

1-stearoyl-2-oleoyl-GPC (18:0/18:1) Lipid Phospholipid Metabolism 0.0212 

choline phosphate Lipid Phospholipid Metabolism 0.0216 

1-stearoyl-2-docosahexaenoyl-GPS (18:0/22:6) Lipid Phospholipid Metabolism 0.0228 

1-palmitoyl-2-oleoyl-GPC (16:0/18:1) Lipid Phospholipid Metabolism 0.0238 

1-palmitoyl-2-stearoyl-GPE (16:0/18:0) Lipid Phospholipid Metabolism 0.0269 

1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) Lipid Phospholipid Metabolism 0.0273 

1-stearoyl-2-oleoyl-GPE (18:0/18:1) Lipid Phospholipid Metabolism 0.0294 

1-oleoyl-2-docosahexaenoyl-GPC (18:1/22:6) Lipid Phospholipid Metabolism 0.0337 

phosphatidylcholine (18:0/20:2, 20:0/18:2) Lipid Phospholipid Metabolism 0.0371 

1-pentadecanoyl-2-docosahexaenoyl-GPC (15:0/22:6) Lipid Phospholipid Metabolism 0.0484 

glycerophosphorylcholine (GPC) Lipid Phospholipid Metabolism < 0.0001 

arachidonoylcholine Lipid Phospholipid Metabolism < 0.0001 

glycerophosphoinositol Lipid Phospholipid Metabolism < 0.0001 

glycerophosphoethanolamine Lipid Phospholipid Metabolism < 0.0001 

dihomo-linolenoyl-choline Lipid Phospholipid Metabolism < 0.0001 

docosahexaenoylcholine Lipid Phospholipid Metabolism < 0.0001 

1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1) Lipid Plasmalogen 0.0112 

1-(1-enyl-stearoyl)-2-docosapentaenoyl-GPE (P-
18:0/22:5n3) 

Lipid Plasmalogen 0.0119 

1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4) Lipid Plasmalogen 0.0148 

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-
16:0/20:4) 

Lipid Plasmalogen 0.0191 

dihomo-linoleate (20:2n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) 0.0001 

docosadienoate (22:2n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) 0.0072 

arachidonate (20:4n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) < 0.0001 

dihomo-linolenate (20:3n3 or n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) < 0.0001 

eicosapentaenoate (EPA; 20:5n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) < 0.0001 

docosahexaenoate (DHA; 22:6n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) < 0.0001 

docosapentaenoate (n3 DPA; 22:5n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) < 0.0001 

linolenate [alpha or gamma; (18:3n3 or 6)] Lipid Polyunsaturated Fatty Acid (n3 and n6) < 0.0001 

linoleate (18:2n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) < 0.0001 

stearidonate (18:4n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) < 0.0001 

sphinganine Lipid Sphingolipid Metabolism 0.0005 

sphingosine Lipid Sphingolipid Metabolism 0.0023 

sphinganine-1-phosphate Lipid Sphingolipid Metabolism 0.0061 

sphingosine 1-phosphate Lipid Sphingolipid Metabolism 0.0080 

7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) Lipid Sterol 0.0005 

N1-methylinosine Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 
containing 

0.0004 

xanthine Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 
containing 

0.0017 
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inosine 5'-monophosphate (IMP) Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 
containing 

0.0021 

inosine Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 
containing 

0.0054 

allantoin Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 
containing 

0.0130 

adenosine 5'-monophosphate (AMP) Nucleotide Purine Metabolism, Adenine containing 0.0001 

adenosine Nucleotide Purine Metabolism, Adenine containing 0.0049 

adenosine 5'-diphosphate (ADP) Nucleotide Purine Metabolism, Adenine containing 0.0130 

adenine Nucleotide Purine Metabolism, Adenine containing < 0.0001 

7-methylguanine Nucleotide Purine Metabolism, Guanine containing 0.0001 

N2,N2-dimethylguanosine Nucleotide Purine Metabolism, Guanine containing 0.0159 

N4-acetylcytidine Nucleotide Pyrimidine Metabolism, Cytidine containing 0.0458 

cytidine Nucleotide Pyrimidine Metabolism, Cytidine containing < 0.0001 

orotidine Nucleotide Pyrimidine Metabolism, Orotate containing 0.0005 

dihydroorotate Nucleotide Pyrimidine Metabolism, Orotate containing 0.0127 

orotate Nucleotide Pyrimidine Metabolism, Orotate containing < 0.0001 

5,6-dihydrothymine Nucleotide Pyrimidine Metabolism, Thymine containing 0.0081 

uracil Nucleotide Pyrimidine Metabolism, Uracil containing 0.0004 

3-ureidopropionate Nucleotide Pyrimidine Metabolism, Uracil containing 0.0105 

beta-alanine Nucleotide Pyrimidine Metabolism, Uracil containing 0.0458 

phenylacetylcarnitine Peptide Acetylated Peptides < 0.0001 

leucylleucine Peptide Dipeptide 0.0001 

tryptophylleucine Peptide Dipeptide 0.0007 

serylalanine Peptide Dipeptide 0.0026 

phenylalanylarginine Peptide Dipeptide 0.0049 

histidylphenylalanine Peptide Dipeptide 0.0244 

phenylalanyltryptophan Peptide Dipeptide 0.0262 

isoleucylglutamate Peptide Dipeptide < 0.0001 

isoleucylalanine Peptide Dipeptide < 0.0001 

prolylproline Peptide Dipeptide < 0.0001 

gamma-glutamylglutamine Peptide Gamma-glutamyl Amino Acid 0.0010 

gamma-glutamyl-alpha-lysine Peptide Gamma-glutamyl Amino Acid 0.0015 

gamma-glutamylmethionine Peptide Gamma-glutamyl Amino Acid 0.0023 

gamma-glutamylhistidine Peptide Gamma-glutamyl Amino Acid 0.0097 

gamma-glutamyltyrosine Peptide Gamma-glutamyl Amino Acid 0.0163 

gamma-glutamylalanine Peptide Gamma-glutamyl Amino Acid 0.0213 

gamma-glutamyl-epsilon-lysine Peptide Gamma-glutamyl Amino Acid 0.0233 

gamma-glutamylglycine Peptide Gamma-glutamyl Amino Acid 0.0484 
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Table 6.6- Over-representation analysis of metabolites which showed a significant difference in concentration 
between paired RA and SVC samples. Metabolites which showed an enrichment value >1 are listed. 

SUPER PATHWAY SUB PATHWAY ENRICHMENT 
VALUE 

Carbohydrate Glycogen Metabolism 5.17 

Lipid Eicosanoid 5.17 

Lipid Fatty Acid Metabolism (Acyl Choline) 5.17 

Lipid Fatty Acid Metabolism (also BCAA Metabolism) 5.17 

Lipid Glycerolipid Metabolism 5.17 

Lipid Lyso-phospho-ether 5.17 

Lipid Lysoplasmalogen 5.17 

Lipid Mevalonate Metabolism 5.17 

Lipid Phosphatidylserine (PS) 5.17 

Nucleotide Pyrimidine Metabolism, Orotate containing 5.17 

Lipid Polyunsaturated Fatty Acid (n3 and n6) 4.31 

Cofactors and Vitamins Nicotinate and Nicotinamide Metabolism 4.14 

Lipid Long Chain Fatty Acid 4.06 

Energy TCA Cycle 4.02 

Carbohydrate Fructose, Mannose and Galactose Metabolism 3.88 

Cofactors and Vitamins Ascorbate and Aldarate Metabolism 3.88 

Amino Acid Glutamate Metabolism 3.76 

Amino Acid Creatine Metabolism 3.45 

Carbohydrate Pentose Metabolism 3.45 

Nucleotide Purine Metabolism, Guanine containing 3.45 

Lipid Lysolipid 3.36 

Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine containing 3.23 

Peptide Gamma-glutamyl Amino Acid 2.76 

Amino Acid Polyamine Metabolism 2.58 

Carbohydrate Aminosugar Metabolism 2.58 

Lipid Carnitine Metabolism 2.58 

Lipid Fatty Acid Synthesis 2.58 

Lipid Inositol Metabolism 2.58 

Lipid Ketone Bodies 2.58 

Nucleotide Purine Metabolism, Adenine containing 2.58 

Nucleotide Pyrimidine Metabolism, Thymine containing 2.58 

Amino Acid Glycine, Serine and Threonine Metabolism 2.35 

Amino Acid Alanine and Aspartate Metabolism 2.22 

Lipid Medium Chain Fatty Acid 2.22 

Nucleotide Pyrimidine Metabolism, Uracil containing 2.22 

Amino Acid Histidine Metabolism 2.15 

Amino Acid Glutathione Metabolism 2.07 

Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism 2.07 

Lipid Endocannabinoid 2.07 

Nucleotide Pyrimidine Metabolism, Cytidine containing 2.07 

Lipid Phospholipid Metabolism 1.87 
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Lipid Fatty Acid, Monohydroxy 1.85 

Amino Acid Guanidino and Acetamido Metabolism 1.72 

Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism 1.72 

Amino Acid Tryptophan Metabolism 1.29 

Lipid Fatty Acid Metabolism(Acyl Carnitine) 1.15 

Lipid Fatty Acid, Dicarboxylate 1.15 

Peptide Dipeptide 1.13 

Peptide Acetylated Peptides 1.03 
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Figure 6.3- Heat map displaying endogenous metabolites which showed a significant difference in concentration 
between ART and SVC plasma in patients with pulmonary vascular disease. Paired blood samples were taken from 
the ART and SVC sites during right heart catheterisation of 57 patients with pulmonary vascular disease. 
Untargeted metabolic profiling of the plasma was carried out using the Metabolon DiscoveryHD4™ platform. 
The concentration of each metabolite (median scaled standardised intensity) was compared between ART and 
SVC samples using Wilcoxon matched pairs signed rank test with FDR adjustment. Metabolites which were 
increased in the SVC compared to ART samples are shown in red, metabolites which were decreased in the SVC 
compared to ART samples are shown in green. ART-radial artery, SVC-superior vena cava, DAG-diacyclglycerol, 
LCFA-long chain fatty acids, MCFA-medium chain fatty acid, PUFA-polyunsaturated fatty acid.  
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6.6 Summary of key metabolic changes  

Table 6.7- Summary of key metabolic differences between disease and control and between anatomical sites. 

Metabolite 

subgroup 

Concentration in 

disease v control 

Across right heart 

(SVC-PA) 

Across pulm circ, 

(PA-ART) 

Across systemic circ, 

(ART-SVC) 

Acylcarnitine ↑  ↑ ↓ 

Long chain fatty acids ↑ ↓  ↑ 

Polyamines ↑ ↓  ↑ 

Ketone bodies ↑ ↑  ↑ 

Aminosugars ↑   ↑ 

TCA cycle ↑ ↓ ↓ ↑ 

PUFA ↑ ↓ ↓ ↑ 

Adenine nucleotides ↑  ↓ ↑ 

Acylcholines ↓  ↓ ↑ 

Lysolipid ↓  ↓  

Lysophosphoether ↓   ↑ 

Lysoplasmalogen ↓  ↓ ↑ 

Plasmalogen ↓  ↓ ↑ 

 

6.7 Discussion 

6.7.1 Transcardiac metabolite gradients 

The products of cardiac metabolism and cardiac dysfunction may be released into blood circulating 

through the heart. Therefore, changes in metabolite profile between paired blood samples pre- right 

heart transit (SVC) and post- right heart transit (PA) can be expected to reflect right heart 

metabolism. The changes in metabolite concentration detected between SVC and PA confirm that 

right heart metabolism contributes to alterations in circulating metabolite profile. The metabolite 

changes detected are primarily reflective of cardiac bioenergetic demand. This is evidenced by 

transcardiac changes in glutamate metabolites, ketones and TCA cycle metabolites. As would be 

expected, fatty acids, which are the preferred cardiac energy source, were universally depleted in PA 

blood. This is likely to reflect myocardial consumption. Additionally, TCA cycle metabolites were 

depleted, again suggesting myocardial utilisation. The depletion of fatty acids observed suggests that 
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there remains ongoing myocardial fatty acid utilisation, despite evidence of altered fatty acid 

metabolism that I and others have detected in PVD (Section 5.6.1). 

The increase in glutamate metabolites, in conjunction with the depletion of glutamine suggests 

glutaminolysis. This process can provide alpha ketoglutarate which can then enter the TCA cycle, 

providing additional energy to cardiac muscle in the context of increased myocardial bioenergetic 

demand. Recent studies have implicated this process in right ventricular maladaptive changes in PAH 

(Piao et al., 2013). 

There was also an increase in ketones, which are recognised as an important energy source in heart 

failure (Aubert et al., 2016, Bedi et al., 2016) and an increase in the glycolytic intermediate 3-

phosphoglycerate, suggesting that there is also active glycolytic cardiac metabolism. Creatine 

showed an increase across the right heart. Creatine is abundant in both skeletal muscle and 

myocardial cells, and is known to increase in the blood in response to insults to the myocardium 

(Zervou et al., 2016). Therefore, the increase in creatine observed may reflect release by the failing 

heart. 

Additionally, the polyamine metabolite n-acetyl putrescine was depleted. Polyamines have been 

shown to be associated with cardiac remodelling (Meana et al., 2016, Giordano et al., 2012) and 

therefore may play a role in altered cardiac structure and function in PVD. Large increases in 

myocardial polyamine content have been demonstrated in a mouse model of cardiac remodelling 

(Sansbury et al., 2014) and polyamine supplementation may also have potential cardioprotective 

effects (Eisenberg et al., 2016). Therefore, the depletion observed may represent myocardial uptake 

to support cardiac remodelling. Amongst other metabolite changes detected included depletion of 

1-methylnicotinamide across the right heart. This metabolite of nicotinamide has anti-inflammatory 

properties, and may activate prostacyclin production (Chlopicki S, 2007), therefore may play a role in 

PVD pathobiology. 

 

6.7.2 Transpulmonary metabolite gradients 

A predominant reduction in metabolite concentration across the pulmonary circulation was found, 

suggesting uptake, metabolism or biotransformation of these metabolites. 

6.7.2.1 Amino acid 

The lungs are known to be involved in regulation of circulating amino acids, which are taken up by 

active transport (Hughes et al., 2001). Therefore, evidence of depletion of multiple amino acid 

groups across the pulmonary circulation is unsurprising. 
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Despite depletion of other amino acid metabolites across the pulmonary circulation, sarcosine 

showed an increase in concentration. Sarcosine (n-methylglycine) is an intermediate in the 

metabolism of choline to glycine.  

A number of studies have suggested that sarcosine is an oncometabolite. Elevated levels have been 

reported in association with metastatic prostate and breast cancer (Heger et al., 2016, Lucarelli et 

al., 2013, Cha et al., 2014), administration of sarcosine has been reported to induce an invasive 

phenotype in benign cells and sarcosine inhibition has been reported to suppress tumour growth 

(Khan AP 2013). Higher expression of sarcosine related proteins has also been associated with worse 

cancer prognosis (Cha et al., 2014, Yoon et al., 2014). Sarcosine may also promote angiogenesis, by 

modulating expression of angiogenic growth factors (Sudhakaran et al., 2014). 

Dysregulated angiogenesis appears to play a role in the evolution of CTEPH (Alias et al., 2014) and 

PAH (Voelkel and Gomez-Arroyo, 2014, Tuder et al., 2001). Therefore, the increase in sarcosine 

concentration I have detected across the pulmonary circulation could perhaps be or a marker or a 

modulator of angiogenesis in pulmonary vascular disease.  

6.7.2.2 Carbohydrate and TCA cycle 

The major fuel source for the metabolic processes of the lung is glucose. As gluconeogenesis does 

not occur in lung tissue and glycogen stores are limited, the lung relies upon the pulmonary 

circulation for its glucose requirement (Fisher, 1984). Therefore, the observed depletion of glucose 

and associated metabolites is a feature of normal lung metabolism. A number of previous studies 

that have demonstrated accentuated glucose uptake in PAH lungs (Zhao et al., 2013, Hagan et al., 

2011). It has been suggested that the increased glucose uptake reflects high metabolic demands 

associated with inflammation and vascular remodelling. To confirm whether this is the case in the 

population that I studied, comparison of the glucose uptake in disease with healthy individuals is 

required.  

Glucose, fatty acids or amino acids can all be metabolised to produce acetyl CoA, which fuels the 

TCA cycle. The conversion of this acetyl Co-A to citrate is the key ‘entry point’ into the cycle. When 

TCA cycle intermediates such as malate are consumed, a reactive increase in citrate may occur to 

sustain the cycle. Therefore, the increase in citrate across the pulmonary circulation, coupled with 

the depletion of other components of the TCA cycle, may represent TCA cycle upregulation in the 

lung. Conversely, this could represent failure of citrate utilisation (hence accumulation), therefore 

reduction in TCA cycle activity.  
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6.7.2.3 Cofactors and vitamins 

There was a significant increase in haem in RA compared to PA samples. This could represent a 

degree of intravascular haemolysis during red cell transit through the dysfunctional 

microvasculature. Chronic intravascular haemolysis is known to be associated with endothelial 

dysfunction (Reiter et al., 2002, Rother et al., 2005), and free haemoglobin released by haemolysis 

may result in abnormally high levels of nitic oxide consumption, impaired vasodilatation (Reiter et 

al., 2002, Minneci et al., 2005) and a pro-coagulant state (Ataga et al., 2007, Cappellini, 2007). 

Alternatively, the increase in haem observed may represent increased haemolysis associated with 

arterial sampling procedures. Radial arterial samples were obtained from a small calibre vessel, 

which may increase the potential for haemolysis. Additionally, the higher flow rates in the systemic 

circulation may also increase the potential for erythrocyte shear stress. Although I would have 

ideally liked to sample from a proximal arterial site, a compromise was required in order for the 

study to be practically and ethically feasible. 

A significant difference in the concentration of ascorbate and aldarate metabolites between PA and 

RA sites was also observed. Ascorbate itself was not detected in any of the samples, likely due to its 

short half-life in the circulation. However, ascorbate metabolites such as threonate were detectable. 

Ascorbate acts as an antioxidant, and supplementation has potential benefit in a range of conditions 

including emphysema, sepsis and malignancy (Gupta et al., 2016, Mikirova et al., 2012, Han et al., 

2010). Therefore, depletion of ascorbate metabolites in the context of PVD may represent 

consumption by the ‘injured’ pulmonary circulation.  

There were also differences in the concentration of nicotinate metabolites across the pulmonary 

circulation, with a reduction in nicotinamide concentration, accompanied by an increase in the 

concentration of its primary metabolite, 1-methylnicotinamide. 1 methylnicotinamide is recognised 

to have anti-inflammatory and antithrombotic properties, with actions mediated by a prostacyclin 

(PGI2)-dependent mechanism (Biedroń et al., 2008, Bartuś et al., 2008, Tanaka et al., 2015, 

Mateuszuk et al., 2009). Vascular inflammation is associated with the upregulation of nicotinamide 

N-methyltransferase activity and subsequent increase in plasma 1 methylnicotinamide levels 

(Mateuszuk et al., 2009) and data suggests that in animal models, treatment with 1-

methylnictonamide can prevent the impairment of NO-dependent endothelial function (Bartuś et al., 

2008). 

Activation of the nicotinamide pathway has recently been demonstrated in pulmonary hypertension 

in rats and humans (Fedorowicz et al., 2016) with progressive increases in plasma 1-
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methylnicotinamide occurring as the disease progresses. Given the protective role of 1-

methylnicotinamide in the context of vascular inflammation, this may play a compensatory, 

protective role in pulmonary vascular disease. 

 

6.7.2.4 Lipids 

Although pulmonary eicosanoid metabolism is well characterised (Bakhle and Ferreira, 2011), the 

fate of many circulating lipids during transpulmonary passage in health has not been previously 

reported. My research provides novel evidence to suggest that a wide variety of lipids undergo 

pulmonary circulation uptake or metabolism. 

Fatty acids, phospholipids, lysolipids 

Numerous lipids showed a significant decrease in concentration in RA compared to PA blood, 

including acylcholines, the eicosanoid 12-HETE and others including lysolipids, plasmalogens, 

medium chain and polyunsaturated fatty acids. 

Lipids form 90% of the constituents of surfactant, in particular, phosphatidylcholine and 

phosphatidylglycerol molecules predominate (Goerke, 1998). Additionally, eicosanoids are formed 

from fatty acids. Therefore, depletion of fatty acids, phospholipids and groups such as acylcholines 

(which are a constituent of phospholipids) across the pulmonary circulation, may represent uptake 

of these molecules by the lung for synthesis of surfactant, eicosanoids and cell membranes.   

Acylcarnitines 

In contrast to all other groups of lipids, there was a significant increase in acylcarnitines across the 

pulmonary circulation. I previously demonstrated an increase in acylcarnitines in patients with PVD 

compared to controls (Chapter 5). The transpulmonary increase in these metabolites suggests that 

the increased acylcarnitine levels in PVD may be due to a metabolic disturbance localised to the 

pulmonary circulation. 

As described previously, (Chapter 5), acylcarnitines accumulate when fatty acid oxidation is 

impaired. These molecules have been shown to accumulate in the lungs of mice that lack the fatty 

acid oxidation enzyme long-chain acyl-CoA dehydrogenase (LCAD). This accumulation then inhibits 

pulmonary surfactant and thereby predisposes to lung injury (Otsubo et al., 2015). Therefore, 

defective pulmonary mitochondrial fatty acid oxidation in PVD may result in increased acylcarnitine 

production. This is supported by a number of studies which demonstrate the presence of 

mitochondrial dysfunction in PAH  (Xu et al., 2007, Archer et al., 2008). Whether mitochondrial 
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dysfunction is also a feature of CTEPH is unknown. In turn, acylcarnitines, via effects on surfactant, 

may increase the risk of lung injury when exposed to a harmful stimulus. 

 

Eicosanoids 

In my study, only one eicosanoid was detected, 12-HETE, which showed a decrease in concentration 

across the pulmonary circulation. 12-HETE has pro-inflammatory properties and has been implicated 

in the pathogenesis of vasculopathies in diabetes mellitus and Churg-Strauss syndrome (Szczeklik et 

al., 2012, Al-Shabrawey et al., 2011, Issan et al., 2013) and hyperproliferative conditions such as 

cancer and psoriasis (Nguyen et al., 2016, Hussain et al., 1994). It has been shown to promote 

neovascularisation and angiogenesis. Increased levels have been detected In PAH and higher levels 

have been found to be associated with worse survival (Al-Naamani et al., 2016, Ross et al., 2015). My 

results suggested clearance of 12-HETE during transpulmonary passage, therefore increased levels of 

12-HETE may be a marker of impaired pulmonary vascular bed metabolism. 

 

6.7.2.5 Peptides  

Fibrinogen cleavage peptides were only detected in a small proportion of patients, in whom there 

was an increase in concentration across the pulmonary circulation, in-keeping with active conversion 

to fibrin. Additionally, phenylacetylcarnitine concentration was increased, which may reflect 

carnitine accumulation secondary to impairment of fatty acid oxidation. 

 

6.7.2.6 Nucleotides 

The pulmonary vascular endothelium is known to remove > 95% of adenosine and its derivatives 

from the pulmonary circulation (Hughes et al., 2001). As expected, there was predominant reduction 

in the concentration of circulating nucleotides across the pulmonary circulation. The exception was 

an increase in the orotate precursor dihydroorotate. This pathway is important in pyrimidine 

synthesis, and dihydroorotate dehydrogenase inhibition has been suggested as a therapeutic target 

in autoimmune and inflammatory diseases and cancers (Vyas and Ghate, 2011). However, the role of 

this pathway in PVD is unclear.  
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6.7.3 Systemic metabolite gradients 

The difference in metabolite concentration between paired radial artery and superior vena cava 

samples (RA vs SVC) may reflect systemic metabolic processes and/or dietary intake. However, this 

does not allow localisation of systemic metabolic processes to any particular organ or tissue.  

There was an increase in glycogen metabolites across the systemic circulation, consistent with 

glycogenolysis which occurs in the liver and muscle tissues. Additionally, there were increases in 

metabolites associated with energy metabolism including carbohydrates and TCA cycle 

intermediates. There was also a large increase in the concentration of short and medium chain fatty 

acids (which are absorbed directly into the blood) and long chain fatty acids (which require 

fragmentation and absorption via the lymphatic pathway). There were particularly marked increases 

in acylcholines and phosphatidylserines which are key components of cell membranes and are 

important in cell signalling. 

The increase in fatty acids detected was accompanied by reduction in acylcarnitine concentration. 

This may indicate acylcarnitine utilisation for fatty acid transport into the mitochondria, facilitating 

mitochondrial fatty acid utilisation for energy. 

A reduction in glutamate was also observed in SVC compared to ART samples, accompanied by an 

increase in glutamate metabolites, which may reflect systemic consumption of glutamate. 

Glutamate is used to fuel the TCA cycle (via conversion to alpha-ketoglutarate, which was increased 

in SVC samples), but also may be used for processes such as aminosugar metabolism, protein 

biosynthesis, pyrimidine and porphyrin metabolism. 

An increase in polyamines was also detected. Polyamines may be absorbed from dietary intake or 

synthesised endogenously via the amino acids L-methionine and L-ornithine. Although ornithine 

concentration was reduced in SVC samples, methionine concentration was found to be increased. It 

is unclear whether the increase in polyamines observed reflects de novo synthesis or dietary 

absorption. 

6.8 Study limitations 

My research has provided novel insights into metabolic perturbations in pulmonary vascular disease 

compared to health. Furthermore, by comparing metabolite concentration between different 

anatomical sites, this study has provided insight into the contribution of different components of the 

circuit to the circulating metabolite profile. 

However, there are a number of limitations to this study, which are discussed below. 
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6.8.1.1 Study population and sample size 

Firstly, there was a relatively small number of subjects included in the study, especially relative to 

the number of metabolites assessed. Secondly, the cohort of patients recruited was heterogeneous. 

Although representative of the PVD population seen in our clinical practice, it is unclear whether 

there are distinct metabolic differences between disease subgroups as the study was underpowered 

for subgroup analysis.  

 

6.8.1.2 Comparisons with health 

Remarkably, to date, the metabolic function of the pulmonary circulation has not been fully 

investigated in health, let alone disease. The fate of many metabolites during transpulmonary 

passage is not well documented in the literature. Although there are a greater number of studies 

describing cardiac metabolism, again, published data remains limited. The studies which do exist are 

largely based on animal models and are usually focussed on a single molecule of a limited array of 

molecules. Therefore, there is a lack of published data in health with which we can compare these 

findings. In order to fully establish the extent to which circulating metabolite gradients are abnormal 

in PVD, comparison of metabolite concentration between anatomical sites is required in a healthy 

population.  

As part of this research, I was able to obtain paired blood samples from the SVC, PA and RA sites 

from 5 healthy individuals. However, due to this very small sample size, there were no statistically 

significant differences in the concentration of metabolites between the anatomical sites (even prior 

to FDR adjustment for multiple testing). In order to make meaningful comparisons between health 

and disease, a larger sample size of healthy individuals is required. However, invasive sampling in a 

truly healthy comparator population has ethical implications and implications for study recruitment. 

 

6.8.1.3 Untargeted Metabolomics approach 

The untargeted metabolomics approach is both a strength and a weakness of this study. By assessing 

all identifiable metabolites, whether expected or unexpected, pathways which have not previously 

been implicated in the disease pathobiology have been highlighted as avenues for further 

exploration.  However, the untargeted approach does not provide truly unbiased profiling- in this 

study, the metabolites which could be identified were limited to those contained in the Metabolon 

reference library. Many ‘unknown’ metabolites were detected, for which standards for identification 

or quantification are lacking, resulting in a fragmented picture of the metabolome.  
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Another disadvantage of the untargeted metabolomics approach is the lack of absolute 

quantification of metabolite concentration. Lack of absolute quantification means that metabolite 

concentration in my study population cannot easily be compared to existing clinical reference ranges 

or other studies.  

 

6.8.1.4 Alternative sources of metabolite variation 

The differences I have identified between health and disease need to be interpreted with caution. 

There are many exogenous factors which may influence circulating metabolite profile, including diet, 

medication, stress, physical activity and circadian rhythms (Yin et al., 2015a, Salvagno et al., 2017, 

Ang et al., 2012, Berton et al., 2017, Lewis et al., 2010, Yan et al., 2009, Winnike et al., 2009). In this 

study, where possible, steps were taken to minimise unwanted sources of variation. However, the 

effects of these potential confounders must be considered.  Additionally, sampling at a single point 

in time provides only a ‘snapshot’ of metabolism at that time point and may not necessarily be 

indicative of the overall metabolic phenotype of the disease. Therefore, longitudinal data is required 

to determine the relationship of metabolic changes to the natural history of the disease.   

 

6.8.1.5 Biological interpretation 

Existing knowledge about the function of many metabolites and their biological interactions is 

lacking. Thus, their true role in metabolism and their relevance in the context of disease cannot be 

fully established.  Many metabolites play a role in several pathways and are the product or substrate 

of many different enzymes or processes. Thus, it is a challenge to pinpoint an altered metabolite to a 

specific pathway or enzyme, and alterations in metabolite profile must be considered in the context 

of the wider matrix of its biological interactions. 

Additionally, I have suggested that variation in plasma metabolite concentration between 

anatomical sites is the result of local metabolic processes. However, it cannot be assumed that 

plasma levels necessarily reflect tissue or cellular metabolism. For example, mitochondrial 

metabolite concentration may be very different from the cytoplasmic concentration, which may be 

very different from plasma concentration. Furthermore, time lags are involved between organ 

changes and plasma changes. Therefore, inferences relating changes in plasma to cellular, tissue and 

organ processes should be treated with caution. 
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6.9 Future directions 

This study forms a ‘discovery cohort’. However, these findings need to be confirmed in an 

independent ‘validation cohort’. Following confirmation of my findings, metabolites of interest could 

then be further studied using a targeted approach, with absolute quantification of metabolite 

concentration. This may allow identification and quantification of metabolites which discriminate 

health from disease, differentiate disease subgroups and provide an indicator of disease severity and 

prognosis. However, for this approach to provide a potential biomarker for pulmonary vascular 

diseases, a number of factors need to be considered. 

Identification of disease specific biomarkers may be hampered by dynamic fluctuations in metabolite 

concentration and exogenous factors which may influence metabolite profile. The differences in 

metabolite concentration we have detected between different anatomical sites also has implications 

for clinical testing. Therefore, the variability in the concentration of a potential metabolite 

biomarker, both within and between individuals, would need to be considered. As disease changes 

not only one metabolite, but entire metabolic pathways, a multi-marker panel, made up of several 

metabolites may be a more robust biomarker than a single metabolite. 

Translation of a metabolic biomarker into a clinically useful test must also take into account the 

potential effects of pre-analytical variation. For example, factors such as collection technique and 

sample storage have the potential to significantly affect many metabolites (Yin et al., 2015a). 

Therefore, adherence to standardised protocols for sample collection, handling and storage would 

be important to preserve sample stability. 

In addition to discrimination of health from disease, it would be important to ensure that pulmonary 

vascular diseases could be distinguished from other disease states. This could be further explored by 

studying a number of disease comparator groups. Radiolabelling of metabolites of interest could also 

provide further insight into site specific metabolism. Additionally, integration of metabolomic data 

with immunophenotyping data, proteomics, transcriptomics and genomics may provide a deeper 

biological understanding of the disease process. 
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6.10 Conclusions 

Transcardiac metabolite gradients in PVD are consistent with myocardial bioenergetic demand, with 

consumption of fatty acids and TCA cycle metabolites, accompanied by an increase in glutamate 

metabolites and ketones. Depletion of polyamines and 1-methylnicotinamide are also present, 

which may be implicated in maladaptive cardiac remodelling.  

Transpulmonary metabolite gradients show a predominant depletion of metabolites across the 

pulmonary circulation. My results are the first to characterise the fate of many circulating 

metabolites upon transpulmonary passage, demonstrating the importance of the pulmonary 

circulation in wide ranging metabolic processes. In particular, I have provided novel insight into the 

flux of many circulating lipid species. Additionally, I have identified a number of metabolites which 

show an increase in concentration across the pulmonary circulation, including acylcarnitines, 

sarcosine and 1- methylnicotinamide. These metabolites show plausible links to the disease 

pathogenesis and highlight areas for further research. 

In contrast to transpulmonary metabolite gradients, across the systemic circulation there was a 

predominant increase in circulating metabolite concentration. Some of these changes, for example 

the increase in glutamate metabolites are likely to reflect systemic organ metabolism. Other 

changes, such as the increase in carbohydrates and fatty acids are likely to represent systemic 

dietary absorption of metabolites required for bioenergetic processes. Confirmation of these 

findings is required in an independent ‘validation cohort’ as well as a comparison of metabolite 

gradients in disease with appropriately matched healthy individuals. 
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7 Chapter 7- Final summary and concluding remarks 

 

7.1 Summary of major findings and conclusions 

The work in this thesis was undertaken to investigate and better understand systemic features of 

pulmonary vascular diseases by utilising unbiased metabolomics an immunophenotyping platforms. 

The primary aims were to characterise the circulating blood immune cell phenotype and metabolite 

profile and to identify differences between disease and healthy controls, and differences between 

disease subtypes.  

The findings presented in this thesis may guide future developments in disease phenotyping, which 

may ultimately facilitate tailored therapy and improved prognostication. Additionally, these findings 

may inform the future development of disease specific biomarkers to assist diagnosis and 

monitoring. My main findings are summarised below. 

 

7.1.1 Peripheral blood immunophenotyping 

My study provides the most comprehensive assessment of peripheral blood immune cell phenotype 

in patients with IPAH to date. It is also the first to assess peripheral blood immunophenotype in 

CTEPH and HPAH. 

I have identified significant differences between IPAH and healthy controls in peripheral blood. This 

includes evidence of altered B cell differentiation in IPAH, with an increase in plasmablasts, 

accompanied by a decrease in memory B cells, indicating a shift towards B cell activation and 

effector function. My research has also demonstrated alterations in T cell subsets in IPAH, 

characterised by an increase in Tfh cells and PD1-expressing CD8+ T cells and a reduction in naïve 

CD8+ T cells. Together, the increase in plasmablasts, Tfh cells and IL-21 detected in IPAH is consistent 

with stimulation of a pathway which usually results in a humoral immune response.  

Importantly, this immunophenotype was not found in CTEPH, suggesting that immunological 

changes reflect fundamental differences in pathophysiology between disease subgroups, and are not 

simply the consequence of altered pulmonary haemodynamics or disease-associated heart failure. 

Surprisingly, HPAH patients showed an immune cell phenotype which did not differ significantly 

from IPAH patients. Similar to IPAH, HPAH patients showed a significant reduction in memory B cells, 

increase in plasmablasts, increase in double negative B cells and increase in Tfh, when compared 

with healthy controls. This suggests shared immunological mechanisms may exist in IPAH and HPAH. 
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This supports the hypothesis that mutation of the BMPR2 receptor acts as a susceptibility factor for 

disease or potentiates disease development, and that second hit mechanisms (and perhaps initial 

triggers for the disease) are shared in IPAH and HPAH.  

Conclusions: In IPAH, a peripheral blood signature suggesting immune dysregulation is found, with 

evidence of both B cell and T cell aberrations. These findings support the hypothesis that 

dysfunctional immune activation may be implicated in the pathobiology of IPAH. 

Peripheral blood immune cell phenotype did not differ significantly between IPAH and HPAH 

associated with BMPR2 mutation, suggesting these subtypes may have a shared 

immunopathological mechanisms.  

Further research to determine the mechanisms responsible for the derangements in immune cell 

phenotype detected is required, and to explore the functional consequences of these abnormalities. 

Additionally, longitudinal assessment of immune cell phenotype, paired with haemodynamic, 

biochemical and clinical data is also required to establish whether immune profile correlates with 

disease activity and whether immunomodulation may improve disease outcomes. 

 

7.1.2 Metabolomic profiling of circulating blood 

My research has identified metabolic abnormalities in pulmonary vascular disease which are more 

wide-ranging than previously recognised. The findings I have presented confirm that a number of 

metabolic abnormalities which have been previously reported in PAH are also present in CTEPH and 

CTED.  

My findings provide evidence of altered energy metabolism in pulmonary vascular disease, in 

particular, the presence of impaired fatty acid beta oxidation. I have also identified metabolic 

changes consistent with increased cellular proliferation, such as increases in polyamines and 

aminosugars, accompanied by depletion of metabolites important in the response to oxidative 

stress, including vitamin A metabolites and glutathione. These metabolic changes may potentiate 

disease development and progression. 

Additionally, I have provided novel insight into metabolite flux between different anatomical sites.  

I have identified metabolic changes which do not appear to be localised to a particular site, and are 

therefore likely to be due to global rather than site specific metabolic changes. However, I have also 

identified metabolic changes which localise to sub-compartments of the circulation, including a set 

of metabolites which are pulmonary-specific. 
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My analysis of transcardiac metabolite gradients showed depletion of energy substrates between 

SVC and PA, consistent with myocardial bioenergetic demand.  

Transpulmonary metabolite gradients showed predominant clearance of a diverse range of 

metabolites, illustrating the extensive function of the pulmonary circulation in metabolite uptake 

and biotransformation. In particular, my findings provide novel insight into the fate of many classes 

of lipids, which have not previously been described and suggest that a wide variety of lipids undergo 

pulmonary circulation uptake or metabolism. 

In contrast to all other lipid-associated metabolites, acylcarnitines showed a significant increase in 

concentration across the pulmonary circulation. This suggests that impaired pulmonary fatty acid 

metabolism may be the primary source for the increased levels of acylcarnitines detected in the 

disease group. This finding is shared amongst disease subtypes. 

Additionally, a number of other metabolites including sarcosine (a promoter of angiogenesis), and 1-

methylnicotinamide (which is associated with vascular inflammation) showed a localised increase 

across the pulmonary circulation. The potential role of these metabolites in the disease requires 

exploration. 

Most importantly, further study of metabolite gradients between anatomical sites in healthy 

individuals is also required, to allow comparisons of site specific metabolism between health and 

disease.  

Conclusion:  My findings demonstrate that both local and systemic metabolic dysfunction are 

present in PVD, involving numerous complex and interconnected pathways.  

Alterations in energy metabolism are a shared feature amongst different disease subgroups 

including PAH, CTEPH and CTED, suggesting that therapies targeting this aspect of metabolism may 

potentially have benefits across the spectrum of disease. Additional research is required to 

determine how these pathways may be manipulated for therapeutic benefit. 

Ultimately, in order to fully understand the ways in which circulating metabolites are altered in PVD, 

studies which assess transcardiac and transpulmonary gradients in a healthy population are 

required. 
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7.2 Relationship between metabolic and immunological mechanisms 

My research has demonstrated clear evidence of both immunological and metabolic aberrations in 

patients with pulmonary vascular disease compared with healthy individuals.  

However, it is unclear how immunological and metabolic alterations are linked, whether they are 

both a reactive phenomenon in the disease pathology, or whether they are intrinsic to the disease 

initiation, and whether they occur in parallel, or in sequence.  

It is well recognised that host metabolic state affects immune cell function, differentiation and 

ability to respond to threat (Gerriets and MacIver, 2014, Cohen et al., 2017). Conversely, 

inflammation and immune activation are involved in the pathogenesis of ‘metabolic’ diseases such 

type 2 diabetes (Pickup, 2004, Keane et al., 2017), and diseases which are traditionally thought of as 

immunoinflammatory, such as rheumatoid arthritis and HIV are associated with metabolic 

complications (Chimenti et al., 2015, Kerekes et al., 2014, Nguyen et al., 2017, Hemkens and Bucher, 

2014). 

In the context of PVD, regardless of disease subtype, disease initiation may be triggered by vascular 

injury (whether this is due to infection, thrombus, autoantibodies, toxins or other noxious stimuli), 

resulting in an inflammatory response and immune activation. During immune activation, 

lymphocytes switch from a resting state to a highly active state. This is associated with a shift in the 

metabolism of these cells towards high rates of glycolysis and reduced mitochondrial fatty acid 

oxidation (Pearce et al., 2013, Rhoads et al., 2017, Frauwirth and Thompson, 2004, Doughty et al., 

2006, Sukumar et al., 2013, Cham et al., 2008). Conversely, cells associated with immune 

quiescence, such as memory T cells and Tregs, rely predominantly on fatty acid uptake and oxidation 

(Michalek et al., 2011, Angelin et al., 2017, Howie et al., 2017, Pearce et al., 2009, van der Windt and 

Pearce, 2012). 

Therefore, it is plausible that impaired mitochondrial fatty acid oxidation in PVD (and consequent 

increased glycolysis) may promote the function of pro-inflammatory, activated immune cells and 

may hinder the generation and function of regulatory and memory cell subsets. 
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7.3 Therapeutic targeting of the immunometabolic axis 

As metabolic substrate provision is integral to immune cell activation, differentiation and function, 

selective metabolic inhibitors may have a role in therapeutic immunomodulation. By inhibiting the 

appropriate pathway, or targeting several pathways simultaneously, this approach may allow 

immune cell subset specific blockade (Patel and Powell, 2017, Bettencourt and Powell, 2017, Lee and 

Tian, 2015, Lee et al., 2015, Yin et al., 2015b, Shriver and Manchester, 2011, Byersdorfer et al., 

2013). 

Conversely, using immunomodulatory treatments which suppress exuberant immune activation may 

have beneficial effects on metabolic state in disease processes (Larsen et al., 2007, Cugno et al., 

2010, Bhargava et al., 2012). 

The results I have presented in this thesis have demonstrated that in pulmonary vascular diseases a 

number of immunological aberrations are shared amongst disease subtypes, for example, reduction 

in memory B cells. Similarly, a number of metabolic abnormalities are shared between disease 

subtypes, such as increases in long chain fatty acids and acylcarnitines. However, my findings also 

demonstrate features which differ between disease subtypes. For example, increased Tfh cells and 

increased plasmablasts are found in IPAH but not in CTEPH. Therefore, I have identified a number of 

pathways which may be therapeutic targets for all disease subtypes, but also pathways which may 

be targeted in specific subgroups. Future advances in disease phenotyping may therefore facilitate 

tailored therapy. Further research is required to establish whether altered metabolic and immune 

fingerprints may also be useful in predicting the development of PVD as well as the response to the 

therapy. 
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7.4 Conclusions 

There is evidently a complex interplay between metabolic factors, inflammation and immunity in 

pulmonary vascular diseases. There is increasing appreciation that immune cells affect important 

non-immune functions, including metabolism. Conversely, the behaviour of immune cells is 

influenced by metabolic factors.  

Further studies which increase our understanding of the immunological–metabolic crosstalk in PVD 

are required. In particular, studies to determine the extent to which metabolic changes are 

instructive vs responsive during changes in immune cell function and to determine whether altered 

immune cell mitochondrial metabolism influences lymphocyte activation and differentiation. 

In addition, the differing response of pulmonary vascular and systemic vascular mitochondria to 

noxious stimuli require further investigation to determine whether differing pulmonary and systemic 

mitochondrial properties are implicated in disease localisation to the pulmonary vasculature.  

This research has also highlighted the wider role of the pulmonary circulation in multiple metabolic 

processes. These functions have not been comprehensively studied in health. Further research is 

required to characterise the full extent of normal pulmonary vascular metabolic functions in health, 

to allow us to more fully understand the ways in which metabolism is altered in disease, and to 

determine whether this may be targeted for therapeutic benefit. 
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Appendices 

Table 1. Summary of 52 peripheral blood mononuclear cell subpopulations compared between IPAH patients and 
healthy controls. Peripheral blood samples from 28 IPAH patients and 28 age and sex matched healthy controls 
were obtained. PBMCs were isolated and stained with fluorescently labelled antibodies. A standardised flow 
cytometry panel for cell surface markers of leukocyte sub-populations was used. Subpopulations of T and B 
lymphocytes and myeloid cells were distinguished using bivariate dot plots based on cell surface marker 
expression. Cell frequencies were compared between IPAH and control for each of the 52 subpopulations.  

Panel Population Defined by 

B cell B-cells  CD3- CD19 +  

Naive CD3- CD19+ CD27- IgD+  

Transitional CD3- CD19+ CD27- IgD+ CD24hi CD38hi  

NSM CD3- CD19+ CD27+ IgD+  

Switched CD3- CD19+ IgD- 

IgD- excluding plasmablasts CD3- CD19+ IgD-, excluding plasmablasts 

Double neg CD3- CD19+ CD27- IgD-, excluding plasmablasts 

Switched mem CD3- CD19+ CD27+ IgD-, excluding plasmablasts 

Plasmablasts CD3- CD19 + CD20- IgD- CD38hi 

T cell T cell CD3+  

CD4+ T-cells CD3+ CD4+  

CD4+ CM CD3+ CD4+ CCR7+ CD45RA- 

CD4+ EM CD3+ CD4+ CCR7- CD45RA- 

CD4+ EMRA CD3+ CD4+ CCR7- CD45RA+ 

CD4+ Naive CD3+ CD4+ CCR7+ CD45RA+ 

CD8+ T-cells CD3+ CD8+ 

CD8+ CCR7+ CD3+ CD8+ CCR7+ 

CD8+ CM CD3+ CD8+ CCR7+ CD45RA- 

CD8+ EM CD3+ CD8+ CCR7- CD45RA- 

CD8+ EMRA CD3+ CD8+ CCR7- CD45RA+ 

CD8+ Naive CD3+ CD8+ CCR7+ CD45RA+ 

Tfh  CD4+ CD45RA-  

CD4+ CD45RA- CXCR5+  

CD4+ PD1+  
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Tfh CD45RA- CXCR5+ PD1+ 

Th1,17-like Tfh CCR6+, CXCR3+  

Th1-like Tfh CCR6- CXCR3+  

Th2-like Tfh CXCR3- CCR6- 

Th17-like Tfh CCR6+ CXCR3- 

CD8+ CXCR5+  

T regs 

 

Treg parent CD3+ CD4+ CD25+ CD127 low 

Treg CD3+ CD4+ CD25+ CD127 low, CCR4+ 

Naïve Treg  CD3+ CD4+ CD25+ CD127 low, CCR4+ CD45RA- 

Memory Treg CD3+ CD4+ CD25+ CD127 low, CCR4+ CD45+  

Activated Treg CD3+ CD4+ CD25+ CD127 low, CCR4+ HLA DR+ 

Th17 Th17 CD3+ CD161+ 

CD4+ CD161+ CD3+ CD4+ CD161+ 

CD8+ CD161+ CD3+ CD8+ CD161+  

CD4+ CCR7+ CD3+ CD4+ CD161+ CCR7+ 

CD8+ CCR7+ CD3+ CD8+ CD161+ CCR7+ 

Myeloid Non T cells CD3- 

Non T non B cells CD3- CD19- CD20- 

Lineage negative CD3- CD19- CD20- CD14- CD56- 

Dendritic cells CD3- CD19- CD20- CD14- CD56- HLA-DR+ 

Plasmacytoid DC CD3- CD19- CD20- CD14- CD56- HLA-DR+ CD123+ 

Myeloid DC CD3- CD19- CD20- CD14- CD56- HLA-DR+ CD11c+ 

Monocytes CD3- CD19- CD20- CD14 + 

CD16 high Monocytes CD3- CD19- CD20- CD14 + 

CD16 low Monocytes CD3- CD19- CD20- CD14 + 

NK cells CD14- CD56+ 

CD16 high NK cells CD14- CD56+ CD16hi 
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Table 2. Metabolites detected in venous plasma from patients with pulmonary vascular disease and healthy 
controls. Untargeted metabolic profiling of venous plasma from 57 patients with pulmonary vascular disease 
and 27 healthy controls was carried out using the Metabolon DiscoveryHD4™ platform. 1375 metabolites were 
detected. X denotes metabolites which could not be definitively identified according to the Metabolon 
biochemical reference library. 

BIOCHEMICAL SUPER PATHWAY SUB PATHWAY 

alanine Amino Acid Alanine and Aspartate Metabolism 

asparagine Amino Acid Alanine and Aspartate Metabolism 

aspartate Amino Acid Alanine and Aspartate Metabolism 

N-acetylalanine Amino Acid Alanine and Aspartate Metabolism 

N-acetylasparagine Amino Acid Alanine and Aspartate Metabolism 

N-acetylaspartate (NAA) Amino Acid Alanine and Aspartate Metabolism 

N-carbamoylalanine Amino Acid Alanine and Aspartate Metabolism 

creatine Amino Acid Creatine Metabolism 

creatinine Amino Acid Creatine Metabolism 

guanidinoacetate Amino Acid Creatine Metabolism 

4-hydroxyglutamate Amino Acid Glutamate Metabolism 

beta-citrylglutamate Amino Acid Glutamate Metabolism 

carboxyethyl-GABA Amino Acid Glutamate Metabolism 

gamma-carboxyglutamate Amino Acid Glutamate Metabolism 

glutamate Amino Acid Glutamate Metabolism 

glutamine Amino Acid Glutamate Metabolism 

N-acetyl-aspartyl-glutamate (NAAG) Amino Acid Glutamate Metabolism 

N-acetylglutamate Amino Acid Glutamate Metabolism 

N-acetylglutamine Amino Acid Glutamate Metabolism 

pyroglutamine Amino Acid Glutamate Metabolism 

S-1-pyrroline-5-carboxylate Amino Acid Glutamate Metabolism 

5-oxoproline Amino Acid Glutathione Metabolism 

cys-gly, oxidized Amino Acid Glutathione Metabolism 

cysteine-glutathione disulfide Amino Acid Glutathione Metabolism 

cysteinylglycine Amino Acid Glutathione Metabolism 

glutathione, oxidized (GSSG) Amino Acid Glutathione Metabolism 

allo-threonine Amino Acid Glycine, Serine and Threonine Metabolism 

betaine Amino Acid Glycine, Serine and Threonine Metabolism 
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dimethylglycine Amino Acid Glycine, Serine and Threonine Metabolism 

glycine Amino Acid Glycine, Serine and Threonine Metabolism 

N-acetylglycine Amino Acid Glycine, Serine and Threonine Metabolism 

N-acetylserine Amino Acid Glycine, Serine and Threonine Metabolism 

N-acetylthreonine Amino Acid Glycine, Serine and Threonine Metabolism 

O-acetylhomoserine Amino Acid Glycine, Serine and Threonine Metabolism 

sarcosine Amino Acid Glycine, Serine and Threonine Metabolism 

serine Amino Acid Glycine, Serine and Threonine Metabolism 

threonine Amino Acid Glycine, Serine and Threonine Metabolism 

1-methylguanidine Amino Acid Guanidino and Acetamido Metabolism 

4-guanidinobutanoate Amino Acid Guanidino and Acetamido Metabolism 

guanidinosuccinate Amino Acid Guanidino and Acetamido Metabolism 

1-methylhistidine Amino Acid Histidine Metabolism 

1-methylimidazoleacetate Amino Acid Histidine Metabolism 

3-methylhistidine Amino Acid Histidine Metabolism 

formiminoglutamate Amino Acid Histidine Metabolism 

histidine Amino Acid Histidine Metabolism 

hydantoin-5-propionic acid Amino Acid Histidine Metabolism 

imidazole lactate Amino Acid Histidine Metabolism 

imidazole propionate Amino Acid Histidine Metabolism 

N-acetyl-1-methylhistidine Amino Acid Histidine Metabolism 

N-acetyl-3-methylhistidine Amino Acid Histidine Metabolism 

N-acetylhistidine Amino Acid Histidine Metabolism 

trans-urocanate Amino Acid Histidine Metabolism 

2-hydroxy-3-methylvalerate Amino Acid Leucine, Isoleucine and Valine Metabolism 

2-methylbutyrylcarnitine (C5) Amino Acid Leucine, Isoleucine and Valine Metabolism 

3-hydroxy-2-ethylpropionate Amino Acid Leucine, Isoleucine and Valine Metabolism 

3-hydroxyisobutyrate Amino Acid Leucine, Isoleucine and Valine Metabolism 

3-methyl-2-oxobutyrate Amino Acid Leucine, Isoleucine and Valine Metabolism 

3-methyl-2-oxovalerate Amino Acid Leucine, Isoleucine and Valine Metabolism 

3-methylglutaconate Amino Acid Leucine, Isoleucine and Valine Metabolism 

4-methyl-2-oxopentanoate Amino Acid Leucine, Isoleucine and Valine Metabolism 
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alpha-hydroxyisocaproate Amino Acid Leucine, Isoleucine and Valine Metabolism 

alpha-hydroxyisovalerate Amino Acid Leucine, Isoleucine and Valine Metabolism 

beta-hydroxyisovalerate Amino Acid Leucine, Isoleucine and Valine Metabolism 

ethylmalonate Amino Acid Leucine, Isoleucine and Valine Metabolism 

isobutyrylcarnitine Amino Acid Leucine, Isoleucine and Valine Metabolism 

isoleucine Amino Acid Leucine, Isoleucine and Valine Metabolism 

isovalerate Amino Acid Leucine, Isoleucine and Valine Metabolism 

isovalerylcarnitine Amino Acid Leucine, Isoleucine and Valine Metabolism 

isovalerylglycine Amino Acid Leucine, Isoleucine and Valine Metabolism 

leucine Amino Acid Leucine, Isoleucine and Valine Metabolism 

methylsuccinate Amino Acid Leucine, Isoleucine and Valine Metabolism 

N-acetylisoleucine Amino Acid Leucine, Isoleucine and Valine Metabolism 

N-acetylleucine Amino Acid Leucine, Isoleucine and Valine Metabolism 

N-acetylvaline Amino Acid Leucine, Isoleucine and Valine Metabolism 

tiglylcarnitine Amino Acid Leucine, Isoleucine and Valine Metabolism 

valine Amino Acid Leucine, Isoleucine and Valine Metabolism 

2-aminoadipate Amino Acid Lysine Metabolism 

3-methylglutarylcarnitine  Amino Acid Lysine Metabolism 

5-hydroxylysine Amino Acid Lysine Metabolism 

6-oxopiperidine-2-carboxylate Amino Acid Lysine Metabolism 

glutarate (pentanedioate) Amino Acid Lysine Metabolism 

glutarylcarnitine (C5) Amino Acid Lysine Metabolism 

lysine Amino Acid Lysine Metabolism 

N2-acetyllysine Amino Acid Lysine Metabolism 

N6,N6,N6-trimethyllysine Amino Acid Lysine Metabolism 

N6-acetyllysine Amino Acid Lysine Metabolism 

N-acetyl-cadaverine Amino Acid Lysine Metabolism 

pipecolate Amino Acid Lysine Metabolism 

2-aminobutyrate Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

2-hydroxybutyrate/2-hydroxyisobutyrate Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 
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alpha-ketobutyrate Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

cystathionine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

cysteine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

cysteine s-sulfate Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

cysteine sulfinic acid Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

cystine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

hypotaurine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

methionine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

methionine sulfone Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

methionine sulfoxide Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

N-acetylmethionine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

N-acetyltaurine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

N-formylmethionine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

N-methyltaurine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

S-adenosylhomocysteine (SAH) Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

S-methylcysteine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

S-methylmethionine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

taurine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

2-hydroxyphenylacetate Amino Acid Phenylalanine and Tyrosine Metabolism 

3-(3-hydroxyphenyl)propionate Amino Acid Phenylalanine and Tyrosine Metabolism 
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3-(3-hydroxyphenyl)propionate sulfate Amino Acid Phenylalanine and Tyrosine Metabolism 

3-(4-hydroxyphenyl)lactate Amino Acid Phenylalanine and Tyrosine Metabolism 

3-hydroxyphenylacetate sulfate Amino Acid Phenylalanine and Tyrosine Metabolism 

3-methoxytyrosine Amino Acid Phenylalanine and Tyrosine Metabolism 

3-phenylpropionate (hydrocinnamate) Amino Acid Phenylalanine and Tyrosine Metabolism 

4-hydroxyphenylacetate Amino Acid Phenylalanine and Tyrosine Metabolism 

4-hydroxyphenylacetatoylcarnitine Amino Acid Phenylalanine and Tyrosine Metabolism 

4-hydroxyphenylpyruvate Amino Acid Phenylalanine and Tyrosine Metabolism 

5-bromotryptophan Amino Acid Phenylalanine and Tyrosine Metabolism 

catechol glucuronide Amino Acid Phenylalanine and Tyrosine Metabolism 

dopamine sulfate (1) Amino Acid Phenylalanine and Tyrosine Metabolism 

dopamine sulfate (2) Amino Acid Phenylalanine and Tyrosine Metabolism 

gentisate Amino Acid Phenylalanine and Tyrosine Metabolism 

homovanillate (HVA) Amino Acid Phenylalanine and Tyrosine Metabolism 

N-acetylphenylalanine Amino Acid Phenylalanine and Tyrosine Metabolism 

N-acetyltyrosine Amino Acid Phenylalanine and Tyrosine Metabolism 

N-formylphenylalanine Amino Acid Phenylalanine and Tyrosine Metabolism 

o-cresol sulfate Amino Acid Phenylalanine and Tyrosine Metabolism 

p-cresol sulfate Amino Acid Phenylalanine and Tyrosine Metabolism 

p-cresol-glucuronide Amino Acid Phenylalanine and Tyrosine Metabolism 

phenol sulfate Amino Acid Phenylalanine and Tyrosine Metabolism 

phenylacetate Amino Acid Phenylalanine and Tyrosine Metabolism 

phenylalanine Amino Acid Phenylalanine and Tyrosine Metabolism 

phenyllactate (PLA) Amino Acid Phenylalanine and Tyrosine Metabolism 

phenylpropionylglycine Amino Acid Phenylalanine and Tyrosine Metabolism 

phenylpyruvate Amino Acid Phenylalanine and Tyrosine Metabolism 

thyroxine Amino Acid Phenylalanine and Tyrosine Metabolism 

tyramine O-sulfate Amino Acid Phenylalanine and Tyrosine Metabolism 

tyrosine Amino Acid Phenylalanine and Tyrosine Metabolism 

vanillactate Amino Acid Phenylalanine and Tyrosine Metabolism 

vanillic alcohol sulfate Amino Acid Phenylalanine and Tyrosine Metabolism 

vanillylmandelate (VMA) Amino Acid Phenylalanine and Tyrosine Metabolism 
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4-acetamidobutanoate Amino Acid Polyamine Metabolism 

5-methylthioadenosine (MTA) Amino Acid Polyamine Metabolism 

acisoga Amino Acid Polyamine Metabolism 

N-acetylputrescine Amino Acid Polyamine Metabolism 

spermidine Amino Acid Polyamine Metabolism 

3-hydroxykynurenine Amino Acid Tryptophan Metabolism 

3-indoxyl sulfate Amino Acid Tryptophan Metabolism 

5-hydroxyindole sulfate Amino Acid Tryptophan Metabolism 

5-hydroxyindoleacetate Amino Acid Tryptophan Metabolism 

C-glycosyltryptophan Amino Acid Tryptophan Metabolism 

indole-3-carboxylic acid Amino Acid Tryptophan Metabolism 

indoleacetate Amino Acid Tryptophan Metabolism 

indoleacetylglutamine Amino Acid Tryptophan Metabolism 

indolelactate Amino Acid Tryptophan Metabolism 

indolepropionate Amino Acid Tryptophan Metabolism 

kynurenate Amino Acid Tryptophan Metabolism 

kynurenine Amino Acid Tryptophan Metabolism 

N-acetylkynurenine (2) Amino Acid Tryptophan Metabolism 

N-acetyltryptophan Amino Acid Tryptophan Metabolism 

picolinate Amino Acid Tryptophan Metabolism 

serotonin Amino Acid Tryptophan Metabolism 

thioproline Amino Acid Tryptophan Metabolism 

tryptophan Amino Acid Tryptophan Metabolism 

tryptophan betaine  Amino Acid Tryptophan Metabolism 

xanthurenate Amino Acid Tryptophan Metabolism 

2-oxoarginine Amino Acid Urea cycle; Arginine and Proline Metabolism 

arginine Amino Acid Urea cycle; Arginine and Proline Metabolism 

argininosuccinate Amino Acid Urea cycle; Arginine and Proline Metabolism 

citrulline Amino Acid Urea cycle; Arginine and Proline Metabolism 

dimethylarginine (SDMA + ADMA) Amino Acid Urea cycle; Arginine and Proline Metabolism 

homoarginine Amino Acid Urea cycle; Arginine and Proline Metabolism 

homocitrulline Amino Acid Urea cycle; Arginine and Proline Metabolism 
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N2,N5-diacetylornithine Amino Acid Urea cycle; Arginine and Proline Metabolism 

N-acetylarginine Amino Acid Urea cycle; Arginine and Proline Metabolism 

N-acetylcitrulline Amino Acid Urea cycle; Arginine and Proline Metabolism 

N-alpha-acetylornithine Amino Acid Urea cycle; Arginine and Proline Metabolism 

N-delta-acetylornithine Amino Acid Urea cycle; Arginine and Proline Metabolism 

N-methylproline Amino Acid Urea cycle; Arginine and Proline Metabolism 

ornithine Amino Acid Urea cycle; Arginine and Proline Metabolism 

pro-hydroxy-pro Amino Acid Urea cycle; Arginine and Proline Metabolism 

proline Amino Acid Urea cycle; Arginine and Proline Metabolism 

trans-4-hydroxyproline Amino Acid Urea cycle; Arginine and Proline Metabolism 

urea Amino Acid Urea cycle; Arginine and Proline Metabolism 

N6-carboxymethyllysine Carbohydrate Advanced Glycation End-product 

6-sialyl-N-acetyllactosamine Carbohydrate Aminosugar Metabolism 

erythronate Carbohydrate Aminosugar Metabolism 

glucuronate Carbohydrate Aminosugar Metabolism 

N-acetylglucosamine/N-acetylgalactosamine Carbohydrate Aminosugar Metabolism 

N-acetylglucosaminylasparagine  Carbohydrate Aminosugar Metabolism 

N-acetylneuraminate Carbohydrate Aminosugar Metabolism 

sucrose Carbohydrate Disaccharides and Oligosaccharides 

fructose Carbohydrate Fructose, Mannose and Galactose Metabolism 

galactonate Carbohydrate Fructose, Mannose and Galactose Metabolism 

mannitol/sorbitol Carbohydrate Fructose, Mannose and Galactose Metabolism 

mannose Carbohydrate Fructose, Mannose and Galactose Metabolism 

maltose Carbohydrate Glycogen Metabolism 

maltotriose Carbohydrate Glycogen Metabolism 

1,5-anhydroglucitol (1,5-AG) Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 

Metabolism 

3-phosphoglycerate Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 

Metabolism 

glucose Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 

Metabolism 

glycerate Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 

Metabolism 
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lactate Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 

Metabolism 

pyruvate Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 

Metabolism 

arabinose Carbohydrate Pentose Metabolism 

arabitol/xylitol Carbohydrate Pentose Metabolism 

arabonate/xylonate Carbohydrate Pentose Metabolism 

ribitol Carbohydrate Pentose Metabolism 

ribonate Carbohydrate Pentose Metabolism 

xylose Carbohydrate Pentose Metabolism 

ascorbate (Vitamin C) Cofactors and 

Vitamins 

Ascorbate and Aldarate Metabolism 

gulonate Cofactors and 

Vitamins 

Ascorbate and Aldarate Metabolism 

oxalate (ethanedioate) Cofactors and 

Vitamins 

Ascorbate and Aldarate Metabolism 

threonate Cofactors and 

Vitamins 

Ascorbate and Aldarate Metabolism 

bilirubin (E,E) Cofactors and 

Vitamins 

Hemoglobin and Porphyrin Metabolism 

bilirubin (E,Z or Z,E) Cofactors and 

Vitamins 

Hemoglobin and Porphyrin Metabolism 

bilirubin (Z,Z) Cofactors and 

Vitamins 

Hemoglobin and Porphyrin Metabolism 

biliverdin Cofactors and 

Vitamins 

Hemoglobin and Porphyrin Metabolism 

heme Cofactors and 

Vitamins 

Hemoglobin and Porphyrin Metabolism 

I-urobilinogen Cofactors and 

Vitamins 

Hemoglobin and Porphyrin Metabolism 

L-urobilin Cofactors and 

Vitamins 

Hemoglobin and Porphyrin Metabolism 

1-methylnicotinamide Cofactors and 

Vitamins 

Nicotinate and Nicotinamide Metabolism 

N1-Methyl-2-pyridone-5-carboxamide Cofactors and 

Vitamins 

Nicotinate and Nicotinamide Metabolism 
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nicotinamide Cofactors and 

Vitamins 

Nicotinate and Nicotinamide Metabolism 

quinolinate Cofactors and 

Vitamins 

Nicotinate and Nicotinamide Metabolism 

trigonelline (N'-methylnicotinate) Cofactors and 

Vitamins 

Nicotinate and Nicotinamide Metabolism 

pantothenate Cofactors and 

Vitamins 

Pantothenate and CoA Metabolism 

alpha-CEHC glucuronide Cofactors and 

Vitamins 

Tocopherol Metabolism 

alpha-CEHC sulfate Cofactors and 

Vitamins 

Tocopherol Metabolism 

alpha-tocopherol Cofactors and 

Vitamins 

Tocopherol Metabolism 

gamma-CEHC Cofactors and 

Vitamins 

Tocopherol Metabolism 

gamma-CEHC glucuronide Cofactors and 

Vitamins 

Tocopherol Metabolism 

gamma-tocopherol/beta-tocopherol Cofactors and 

Vitamins 

Tocopherol Metabolism 

4-oxo-retinoic acid Cofactors and 

Vitamins 

Vitamin A Metabolism 

retinol (Vitamin A) Cofactors and 

Vitamins 

Vitamin A Metabolism 

pyridoxate Cofactors and 

Vitamins 

Vitamin B6 Metabolism 

phosphate Energy Oxidative Phosphorylation 

2-methylcitrate/homocitrate Energy TCA Cycle 

aconitate [cis or trans] Energy TCA Cycle 

alpha-ketoglutarate Energy TCA Cycle 

citraconate/glutaconate Energy TCA Cycle 

citrate Energy TCA Cycle 

fumarate Energy TCA Cycle 

malate Energy TCA Cycle 

succinate Energy TCA Cycle 

succinylcarnitine Energy TCA Cycle 
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carnitine Lipid Carnitine Metabolism 

deoxycarnitine Lipid Carnitine Metabolism 

diacylglycerol (14:0/18:1, 16:0/16:1) [1] Lipid Diacylglycerol 

diacylglycerol (14:0/18:1, 16:0/16:1) [2] Lipid Diacylglycerol 

diacylglycerol (16:1/18:2 [2], 16:0/18:3 [1]) Lipid Diacylglycerol 

linoleoyl-arachidonoyl-glycerol (18:2/20:4) [1] Lipid Diacylglycerol 

linoleoyl-arachidonoyl-glycerol (18:2/20:4) [2] Lipid Diacylglycerol 

linoleoyl-docosahexaenoyl-glycerol (18:2/22:6)  Lipid Diacylglycerol 

linoleoyl-linolenoyl-glycerol (18:2/18:3)  Lipid Diacylglycerol 

linoleoyl-linoleoyl-glycerol (18:2/18:2)  Lipid Diacylglycerol 

oleoyl-arachidonoyl-glycerol (18:1/20:4) Lipid Diacylglycerol 

oleoyl-linolenoyl-glycerol (18:1/18:3)  Lipid Diacylglycerol 

oleoyl-linoleoyl-glycerol (18:1/18:2) [1] Lipid Diacylglycerol 

oleoyl-linoleoyl-glycerol (18:1/18:2) [2] Lipid Diacylglycerol 

oleoyl-oleoyl-glycerol (18:1/18:1)  [1] Lipid Diacylglycerol 

oleoyl-oleoyl-glycerol (18:1/18:1) [2] Lipid Diacylglycerol 

palmitoleoyl-linoleoyl-glycerol (16:1/18:2)  Lipid Diacylglycerol 

palmitoyl-arachidonoyl-glycerol (16:0/20:4) [1] Lipid Diacylglycerol 

palmitoyl-arachidonoyl-glycerol (16:0/20:4) [2] Lipid Diacylglycerol 

palmitoyl-docosahexaenoyl-glycerol  Lipid Diacylglycerol 

palmitoyl-linoleoyl-glycerol (16:0/18:2) [1] Lipid Diacylglycerol 

palmitoyl-linoleoyl-glycerol (16:0/18:2) [2] Lipid Diacylglycerol 

palmitoyl-oleoyl-glycerol (16:0/18:1) [1] Lipid Diacylglycerol 

palmitoyl-oleoyl-glycerol (16:0/18:1) [2] Lipid Diacylglycerol 

12-HETE Lipid Eicosanoid 

linoleoyl ethanolamide Lipid Endocannabinoid 

N-oleoyltaurine Lipid Endocannabinoid 

oleoyl ethanolamide Lipid Endocannabinoid 

palmitoyl ethanolamide Lipid Endocannabinoid 

stearoyl ethanolamide Lipid Endocannabinoid 

oleoylcholine Lipid Fatty Acid Metabolism (Acyl Choline) 

palmitoylcholine Lipid Fatty Acid Metabolism (Acyl Choline) 



Kasia Zalewska                                                                                                                                      MD Thesis 

194 

 

hexanoylglutamine Lipid Fatty Acid Metabolism (Acyl Glutamine) 

N-octanoylglutamine Lipid Fatty Acid Metabolism (Acyl Glutamine) 

butyrylcarnitine Lipid Fatty Acid Metabolism (also BCAA Metabolism) 

methylmalonate (MMA) Lipid Fatty Acid Metabolism (also BCAA Metabolism) 

propionylcarnitine Lipid Fatty Acid Metabolism (also BCAA Metabolism) 

propionylglycine Lipid Fatty Acid Metabolism (also BCAA Metabolism) 

3-hydroxybutyrylcarnitine (1) Lipid Fatty Acid Metabolism(Acyl Carnitine) 

3-hydroxybutyrylcarnitine (2) Lipid Fatty Acid Metabolism(Acyl Carnitine) 

acetylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

adipoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

cis-4-decenoyl carnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

decanoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

hexanoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

laurylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

linoleoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

myristoleoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

myristoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

octanoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

oleoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

palmitoleoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

palmitoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

pimeloylcarnitine/3-methyladipoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

stearoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

suberoylcarnitine Lipid Fatty Acid Metabolism(Acyl Carnitine) 

3,4-methylene heptanoylglycine Lipid Fatty Acid Metabolism(Acyl Glycine) 

hexanoylglycine Lipid Fatty Acid Metabolism(Acyl Glycine) 

N-palmitoylglycine Lipid Fatty Acid Metabolism(Acyl Glycine) 

malonate Lipid Fatty Acid Synthesis 

malonylcarnitine Lipid Fatty Acid Synthesis 

oleamide Lipid Fatty Acid, Amide 

palmitic amide Lipid Fatty Acid, Amide 

2-aminoheptanoate Lipid Fatty Acid, Amino 
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2-aminooctanoate Lipid Fatty Acid, Amino 

15-methylpalmitate Lipid Fatty Acid, Branched 

17-methylstearate Lipid Fatty Acid, Branched 

pristanate Lipid Fatty Acid, Branched 

2-hydroxyadipate Lipid Fatty Acid, Dicarboxylate 

2-hydroxyglutarate Lipid Fatty Acid, Dicarboxylate 

3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) Lipid Fatty Acid, Dicarboxylate 

3-methyladipate Lipid Fatty Acid, Dicarboxylate 

4-hydroxy-2-oxoglutaric acid Lipid Fatty Acid, Dicarboxylate 

adipate Lipid Fatty Acid, Dicarboxylate 

azelate (nonanedioate) Lipid Fatty Acid, Dicarboxylate 

docosadioate Lipid Fatty Acid, Dicarboxylate 

dodecanedioate Lipid Fatty Acid, Dicarboxylate 

eicosanodioate Lipid Fatty Acid, Dicarboxylate 

hexadecanedioate Lipid Fatty Acid, Dicarboxylate 

maleate Lipid Fatty Acid, Dicarboxylate 

octadecanedioate Lipid Fatty Acid, Dicarboxylate 

pimelate (heptanedioate) Lipid Fatty Acid, Dicarboxylate 

sebacate (decanedioate) Lipid Fatty Acid, Dicarboxylate 

suberate (octanedioate) Lipid Fatty Acid, Dicarboxylate 

tetradecanedioate Lipid Fatty Acid, Dicarboxylate 

undecanedioate Lipid Fatty Acid, Dicarboxylate 

12,13-DiHOME Lipid Fatty Acid, Dihydroxy 

9,10-DiHOME Lipid Fatty Acid, Dihydroxy 

13-HODE + 9-HODE Lipid Fatty Acid, Monohydroxy 

16-hydroxypalmitate Lipid Fatty Acid, Monohydroxy 

2-hydroxydecanoate Lipid Fatty Acid, Monohydroxy 

2-hydroxylaurate Lipid Fatty Acid, Monohydroxy 

2-hydroxyoctanoate Lipid Fatty Acid, Monohydroxy 

2-hydroxypalmitate Lipid Fatty Acid, Monohydroxy 

2-hydroxystearate Lipid Fatty Acid, Monohydroxy 

3-hydroxydecanoate Lipid Fatty Acid, Monohydroxy 
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3-hydroxyhexanoate Lipid Fatty Acid, Monohydroxy 

3-hydroxylaurate Lipid Fatty Acid, Monohydroxy 

3-hydroxyoctanoate Lipid Fatty Acid, Monohydroxy 

3-hydroxysebacate Lipid Fatty Acid, Monohydroxy 

5-hydroxyhexanoate Lipid Fatty Acid, Monohydroxy 

9-hydroxystearate Lipid Fatty Acid, Monohydroxy 

glycerol Lipid Glycerolipid Metabolism 

glycerol 3-phosphate Lipid Glycerolipid Metabolism 

glycerophosphoglycerol Lipid Glycerolipid Metabolism 

chiro-inositol Lipid Inositol Metabolism 

myo-inositol Lipid Inositol Metabolism 

3-hydroxybutyrate (BHBA) Lipid Ketone Bodies 

acetoacetate Lipid Ketone Bodies 

10-heptadecenoate (17:1n7) Lipid Long Chain Fatty Acid 

10-nonadecenoate (19:1n9) Lipid Long Chain Fatty Acid 

arachidate (20:0) Lipid Long Chain Fatty Acid 

eicosenoate (20:1) Lipid Long Chain Fatty Acid 

erucate (22:1n9) Lipid Long Chain Fatty Acid 

margarate (17:0) Lipid Long Chain Fatty Acid 

myristate (14:0) Lipid Long Chain Fatty Acid 

myristoleate (14:1n5) Lipid Long Chain Fatty Acid 

nonadecanoate (19:0) Lipid Long Chain Fatty Acid 

oleate/vaccenate (18:1) Lipid Long Chain Fatty Acid 

palmitate (16:0) Lipid Long Chain Fatty Acid 

palmitoleate (16:1n7) Lipid Long Chain Fatty Acid 

pentadecanoate (15:0) Lipid Long Chain Fatty Acid 

stearate (18:0) Lipid Long Chain Fatty Acid 

1-adrenoyl-GPC (22:4) Lipid Lysolipid 

1-arachidonoyl-GPA (20:4) Lipid Lysolipid 

1-arachidonoyl-GPC (20:4n6) Lipid Lysolipid 

1-arachidonoyl-GPE (20:4n6) Lipid Lysolipid 

1-arachidonoyl-GPI (20:4) Lipid Lysolipid 
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1-arachidoyl-GPC (20:0) Lipid Lysolipid 

1-behenoyl-GPC (22:0) Lipid Lysolipid 

1-dihomo-linolenoyl-GPC (20:3n3 or 6) Lipid Lysolipid 

1-dihomo-linolenoyl-GPE (20:3n3 or 6) Lipid Lysolipid 

1-dihomo-linoleoyl-GPC (20:2) Lipid Lysolipid 

1-docosahexaenoyl-GPC (22:6) Lipid Lysolipid 

1-docosahexaenoyl-GPE (22:6) Lipid Lysolipid 

1-docosapentaenoyl-GPC (22:5n3) Lipid Lysolipid 

1-docosapentaenoyl-GPC (22:5n6) Lipid Lysolipid 

1-eicosapentaenoyl-GPC (20:5) Lipid Lysolipid 

1-eicosapentaenoyl-GPE (20:5) Lipid Lysolipid 

1-eicosenoyl-GPC (20:1) Lipid Lysolipid 

1-erucoyl-GPC (22:1) Lipid Lysolipid 

1-lignoceroyl-GPC (24:0) Lipid Lysolipid 

1-linolenoyl-GPC (18:3) Lipid Lysolipid 

1-linoleoyl-GPA (18:2) Lipid Lysolipid 

1-linoleoyl-GPC (18:2) Lipid Lysolipid 

1-linoleoyl-GPE (18:2) Lipid Lysolipid 

1-linoleoyl-GPG (18:2) Lipid Lysolipid 

1-linoleoyl-GPI (18:2) Lipid Lysolipid 

1-margaroyl-GPC (17:0) Lipid Lysolipid 

1-margaroyl-GPE (17:0) Lipid Lysolipid 

1-meadoyl-GPC (20:3n9) Lipid Lysolipid 

1-myristoyl-GPC (14:0) Lipid Lysolipid 

1-nonadecanoyl-GPC (19:0) Lipid Lysolipid 

1-oleoyl-GPC (18:1) Lipid Lysolipid 

1-oleoyl-GPE (18:1) Lipid Lysolipid 

1-oleoyl-GPG (18:1) Lipid Lysolipid 

1-oleoyl-GPI (18:1) Lipid Lysolipid 

1-oleoyl-GPS (18:1) Lipid Lysolipid 

1-palmitoleoyl-GPC (16:1) Lipid Lysolipid 

1-palmitoleoyl-GPE (16:1) Lipid Lysolipid 
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1-palmitoleoyl-GPI (16:1) Lipid Lysolipid 

1-palmitoyl-GPC (16:0) Lipid Lysolipid 

1-palmitoyl-GPE (16:0) Lipid Lysolipid 

1-palmitoyl-GPG (16:0) Lipid Lysolipid 

1-palmitoyl-GPI (16:0) Lipid Lysolipid 

1-pentadecanoyl-GPC (15:0) Lipid Lysolipid 

1-stearoyl-GPC (18:0) Lipid Lysolipid 

1-stearoyl-GPE (18:0) Lipid Lysolipid 

1-stearoyl-GPI (18:0) Lipid Lysolipid 

2-arachidonoyl-GPC (20:4) Lipid Lysolipid 

2-arachidonoyl-GPE (20:4) Lipid Lysolipid 

2-docosahexaenoyl-GPC (22:6) Lipid Lysolipid 

2-docosahexaenoyl-GPE (22:6) Lipid Lysolipid 

2-linoleoyl-GPC (18:2) Lipid Lysolipid 

2-linoleoyl-GPE (18:2) Lipid Lysolipid 

2-myristoyl-GPC (14:0) Lipid Lysolipid 

2-oleoyl-GPC (18:1) Lipid Lysolipid 

2-oleoyl-GPE (18:1) Lipid Lysolipid 

2-palmitoleoyl-GPC (16:1) Lipid Lysolipid 

2-palmitoyl-GPC (16:0) Lipid Lysolipid 

2-palmitoyl-GPE (16:0) Lipid Lysolipid 

2-stearoyl-GPE (18:0) Lipid Lysolipid 

2-stearoyl-GPI (18:0) Lipid Lysolipid 

1-palmityl-GPC (O-16:0) Lipid Lyso-phospho-ether 

1-palmityl-GPE (O-16:0) Lipid Lyso-phospho-ether 

1-stearyl-GPC (O-18:0) Lipid Lyso-phospho-ether 

1-(1-enyl-oleoyl)-GPC (P-18:1) Lipid Lysoplasmalogen 

1-(1-enyl-oleoyl)-GPE (P-18:1) Lipid Lysoplasmalogen 

1-(1-enyl-palmitoyl)-GPC (P-16:0) Lipid Lysoplasmalogen 

1-(1-enyl-palmitoyl)-GPE (P-16:0) Lipid Lysoplasmalogen 

1-(1-enyl-stearoyl)-GPC (P-18:0)  Lipid Lysoplasmalogen 

1-(1-enyl-stearoyl)-GPE (P-18:0) Lipid Lysoplasmalogen 
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10-undecenoate (11:1n1) Lipid Medium Chain Fatty Acid 

5-dodecenoate (12:1n7) Lipid Medium Chain Fatty Acid 

caprate (10:0) Lipid Medium Chain Fatty Acid 

caproate (6:0) Lipid Medium Chain Fatty Acid 

caprylate (8:0) Lipid Medium Chain Fatty Acid 

heptanoate (7:0) Lipid Medium Chain Fatty Acid 

laurate (12:0) Lipid Medium Chain Fatty Acid 

3-hydroxy-3-methylglutarate Lipid Mevalonate Metabolism 

1-arachidonylglycerol (20:4) Lipid Monoacylglycerol 

1-dihomo-linolenylglycerol (20:3) Lipid Monoacylglycerol 

1-linolenoylglycerol (18:3) Lipid Monoacylglycerol 

1-linoleoylglycerol (18:2) Lipid Monoacylglycerol 

1-myristoylglycerol (14:0) Lipid Monoacylglycerol 

1-oleoylglycerol (18:1) Lipid Monoacylglycerol 

1-palmitoleoylglycerol (16:1) Lipid Monoacylglycerol 

1-palmitoylglycerol (16:0) Lipid Monoacylglycerol 

2-linoleoylglycerol (18:2) Lipid Monoacylglycerol 

1-stearoyl-2-arachidonoyl-GPS (18:0/20:4) Lipid Phosphatidylserine (PS) 

1-stearoyl-2-oleoyl-GPS (18:0/18:1) Lipid Phosphatidylserine (PS) 

1,2-dilinoleoyl-GPC (18:2/18:2) Lipid Phospholipid Metabolism 

1,2-dilinoleoyl-GPE (18:2/18:2) Lipid Phospholipid Metabolism 

1,2-dipalmitoyl-GPC (16:0/16:0) Lipid Phospholipid Metabolism 

1,2-dipalmitoyl-GPE (16:0/16:0) Lipid Phospholipid Metabolism 

1-arachidoyl-2-arachidonoyl-GPC (20:0/20:4) Lipid Phospholipid Metabolism 

1-linoleoyl-2-arachidonoyl-GPC (18:2/20:4n6) Lipid Phospholipid Metabolism 

1-linoleoyl-2-arachidonoyl-GPE (18:2/20:4) Lipid Phospholipid Metabolism 

1-linoleoyl-2-docosahexaenoyl-GPC (18:2/22:6) Lipid Phospholipid Metabolism 

1-linoleoyl-2-docosapentaenyol-GPC (18:2/22:5n3) Lipid Phospholipid Metabolism 

1-linoleoyl-2-eicosapentaenoyl-GPC (18:2/20:5) Lipid Phospholipid Metabolism 

1-linoleoyl-2-linolenoyl-GPC (18:2/18:3) Lipid Phospholipid Metabolism 

1-margaroyl-2-arachidonoyl-GPC (17:0/20:4) Lipid Phospholipid Metabolism 

1-margaroyl-2-docosahexaenoyl-GPC (17:0/22:6) Lipid Phospholipid Metabolism 
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1-margaroyl-2-linoleoyl-GPC (17:0/18:2) Lipid Phospholipid Metabolism 

1-margaroyl-2-oleoyl-GPC (17:0/18:1) Lipid Phospholipid Metabolism 

1-myristoyl-2-arachidonoyl-GPC (14:0/20:4) Lipid Phospholipid Metabolism 

1-myristoyl-2-docosahexaenoyl-GPC (14:0/22:6) Lipid Phospholipid Metabolism 

1-myristoyl-2-linoleoyl-GPC (14:0/18:2) Lipid Phospholipid Metabolism 

1-myristoyl-2-palmitoyl-GPC (14:0/16:0) Lipid Phospholipid Metabolism 

1-oleoyl-2-arachidonoyl-GPI (18:1/20:4)  Lipid Phospholipid Metabolism 

1-oleoyl-2-docosahexaenoyl-GPC (18:1/22:6) Lipid Phospholipid Metabolism 

1-oleoyl-2-docosahexaenoyl-GPE (18:1/22:6) Lipid Phospholipid Metabolism 

1-oleoyl-2-linoleoyl-GPC (18:1/18:2) Lipid Phospholipid Metabolism 

1-oleoyl-2-linoleoyl-GPE (18:1/18:2) Lipid Phospholipid Metabolism 

1-palmitoleoyl-2-docosahexaenoyl-GPC (16:1/22:6) Lipid Phospholipid Metabolism 

1-palmitoleoyl-2-linolenoyl-GPC (16:1/18:3) Lipid Phospholipid Metabolism 

1-palmitoyl-2-adrenoyl-GPC (16:0/22:4) Lipid Phospholipid Metabolism 

1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) Lipid Phospholipid Metabolism 

1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4) Lipid Phospholipid Metabolism 

1-palmitoyl-2-arachidonoyl-GPI (16:0/20:4) Lipid Phospholipid Metabolism 

1-palmitoyl-2-docosahexaenoyl-GPC (16:0/22:6) Lipid Phospholipid Metabolism 

1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) Lipid Phospholipid Metabolism 

1-palmitoyl-2-docosahexaenoyl-GPI (16:0/22:6) Lipid Phospholipid Metabolism 

1-palmitoyl-2-eicosapentaenoyl-GPC (16:0/20:5) Lipid Phospholipid Metabolism 

1-palmitoyl-2-eicosapentaenoyl-GPE (16:0/20:5) Lipid Phospholipid Metabolism 

1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) Lipid Phospholipid Metabolism 

1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) Lipid Phospholipid Metabolism 

1-palmitoyl-2-linoleoyl-GPI (16:0/18:2) Lipid Phospholipid Metabolism 

1-palmitoyl-2-oleoyl-GPC (16:0/18:1) Lipid Phospholipid Metabolism 

1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phospholipid Metabolism 

1-palmitoyl-2-oleoyl-GPI (16:0/18:1) Lipid Phospholipid Metabolism 

1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) Lipid Phospholipid Metabolism 

1-palmitoyl-2-palmitoleoyl-GPE (16:0/16:1) Lipid Phospholipid Metabolism 

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) Lipid Phospholipid Metabolism 

1-palmitoyl-2-stearoyl-GPE (16:0/18:0) Lipid Phospholipid Metabolism 
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1-palmityl-2-arachidonoyl-GPC (O-16:0/20:4) Lipid Phospholipid Metabolism 

1-palmityl-2-linoleoyl-GPC (O-16:0/18:2) Lipid Phospholipid Metabolism 

1-palmityl-2-oleoyl-GPC (O-16:0/18:1) Lipid Phospholipid Metabolism 

1-palmityl-2-palmitoyl-GPC (O-16:0/16:0) Lipid Phospholipid Metabolism 

1-palmityl-2-stearoyl-GPC (O-16:0/18:0) Lipid Phospholipid Metabolism 

1-pentadecanoyl-2-arachidonoyl-GPC (15:0/20:4) Lipid Phospholipid Metabolism 

1-pentadecanoyl-2-docosahexaenoyl-GPC (15:0/22:6) Lipid Phospholipid Metabolism 

1-pentadecanoyl-2-linoleoyl-GPC (15:0/18:2) Lipid Phospholipid Metabolism 

1-stearoyl-2-adrenoyl-GPC (18:0/22:4) Lipid Phospholipid Metabolism 

1-stearoyl-2-adrenoyl-GPE (18:0/22:4) Lipid Phospholipid Metabolism 

1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) Lipid Phospholipid Metabolism 

1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) Lipid Phospholipid Metabolism 

1-stearoyl-2-arachidonoyl-GPI (18:0/20:4) Lipid Phospholipid Metabolism 

1-stearoyl-2-dihomo-linolenoyl-GPC (18:0/20:3n3 or 6) Lipid Phospholipid Metabolism 

1-stearoyl-2-dihomo-linolenoyl-GPE (18:0/20:3n3 or 6) Lipid Phospholipid Metabolism 

1-stearoyl-2-dihomo-linolenoyl-GPI (18:0/20:3n3 or 6) Lipid Phospholipid Metabolism 

1-stearoyl-2-docosahexaenoyl-GPC (18:0/22:6) Lipid Phospholipid Metabolism 

1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6) Lipid Phospholipid Metabolism 

1-stearoyl-2-docosahexaenoyl-GPI (18:0/22:6) Lipid Phospholipid Metabolism 

1-stearoyl-2-docosahexaenoyl-GPS (18:0/22:6) Lipid Phospholipid Metabolism 

1-stearoyl-2-docosapentaenoyl-GPC (18:0/22:5n3) Lipid Phospholipid Metabolism 

1-stearoyl-2-docosapentaenoyl-GPC (18:0/22:5n6) Lipid Phospholipid Metabolism 

1-stearoyl-2-docosapentaenoyl-GPE (18:0/22:5n3) Lipid Phospholipid Metabolism 

1-stearoyl-2-docosapentaenoyl-GPE (18:0/22:5n6) Lipid Phospholipid Metabolism 

1-stearoyl-2-linoleoyl-GPC (18:0/18:2) Lipid Phospholipid Metabolism 

1-stearoyl-2-linoleoyl-GPE (18:0/18:2) Lipid Phospholipid Metabolism 

1-stearoyl-2-linoleoyl-GPI (18:0/18:2) Lipid Phospholipid Metabolism 

1-stearoyl-2-meadoyl-GPC (18:0/20:3n9) Lipid Phospholipid Metabolism 

1-stearoyl-2-oleoyl-GPC (18:0/18:1) Lipid Phospholipid Metabolism 

1-stearoyl-2-oleoyl-GPE (18:0/18:1) Lipid Phospholipid Metabolism 

1-stearoyl-2-oleoyl-GPI (18:0/18:1) Lipid Phospholipid Metabolism 

1-stearyl-2-arachidonoyl-GPC (O-18:0/20:4) Lipid Phospholipid Metabolism 
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1-stearyl-2-docosapentaenoyl-GPC (O-18:0/22:5n3) Lipid Phospholipid Metabolism 

arachidonoylcholine Lipid Phospholipid Metabolism 

choline Lipid Phospholipid Metabolism 

choline phosphate Lipid Phospholipid Metabolism 

cytidine 5'-diphosphocholine Lipid Phospholipid Metabolism 

dihomo-linolenoyl-choline Lipid Phospholipid Metabolism 

docosahexaenoylcholine Lipid Phospholipid Metabolism 

glycerophosphoethanolamine Lipid Phospholipid Metabolism 

glycerophosphoinositol Lipid Phospholipid Metabolism 

glycerophosphorylcholine (GPC) Lipid Phospholipid Metabolism 

phosphatidylcholine (14:0/14:0, 16:0/12:0) Lipid Phospholipid Metabolism 

phosphatidylcholine (15:0/18:1, 17:0/16:1) Lipid Phospholipid Metabolism 

phosphatidylcholine (16:0/22:5n3, 18:1/20:4) Lipid Phospholipid Metabolism 

phosphatidylcholine (18:0/20:2, 20:0/18:2) Lipid Phospholipid Metabolism 

phosphatidylcholine (18:0/20:5, 16:0/22:5n6) Lipid Phospholipid Metabolism 

phosphoethanolamine Lipid Phospholipid Metabolism 

trimethylamine N-oxide Lipid Phospholipid Metabolism 

1-(1-enyl-oleoyl)-2-docosahexaenoyl-GPE (P-18:1/22:6) Lipid Plasmalogen 

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) Lipid Plasmalogen 

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/20:4) Lipid Plasmalogen 

1-(1-enyl-palmitoyl)-2-docosahexaenoyl-GPC (P-

16:0/22:6) 

Lipid Plasmalogen 

1-(1-enyl-palmitoyl)-2-docosahexaenoyl-GPE (P-

16:0/22:6) 

Lipid Plasmalogen 

1-(1-enyl-palmitoyl)-2-eicosapentaenoyl-GPE (P-

16:0/20:5) 

Lipid Plasmalogen 

1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) Lipid Plasmalogen 

1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (P-16:0/18:2) Lipid Plasmalogen 

1-(1-enyl-palmitoyl)-2-myristoyl-GPC (P-16:0/14:0) Lipid Plasmalogen 

1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1) Lipid Plasmalogen 

1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1) Lipid Plasmalogen 

1-(1-enyl-palmitoyl)-2-palmitoleoyl-GPC (P-16:0/16:1) Lipid Plasmalogen 

1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) Lipid Plasmalogen 
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1-(1-enyl-stearoyl)-2-arachidonoyl-GPC (P-18:0/20:4) Lipid Plasmalogen 

1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4) Lipid Plasmalogen 

1-(1-enyl-stearoyl)-2-dihomo-linolenoyl-GPE (P-

18:0/20:3) 

Lipid Plasmalogen 

1-(1-enyl-stearoyl)-2-docosahexaenoyl-GPC (P-18:0/22:6) Lipid Plasmalogen 

1-(1-enyl-stearoyl)-2-docosahexaenoyl-GPE (P-18:0/22:6) Lipid Plasmalogen 

1-(1-enyl-stearoyl)-2-docosapentaenoyl-GPE (P-

18:0/22:5n3) 

Lipid Plasmalogen 

1-(1-enyl-stearoyl)-2-linoleoyl-GPC (P-18:0/18:2) Lipid Plasmalogen 

1-(1-enyl-stearoyl)-2-linoleoyl-GPE (P-18:0/18:2) Lipid Plasmalogen 

1-(1-enyl-stearoyl)-2-oleoyl-GPC (P-18:0/18:1) Lipid Plasmalogen 

1-(1-enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1) Lipid Plasmalogen 

adrenate (22:4n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) 

arachidonate (20:4n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) 

dihomo-linoleate (20:2n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) 

dihomo-linolenate (20:3n3 or n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) 

docosadienoate (22:2n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) 

docosahexaenoate (DHA; 22:6n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) 

docosapentaenoate (n3 DPA; 22:5n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) 

docosapentaenoate (n6 DPA; 22:5n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) 

eicosapentaenoate (EPA; 20:5n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) 

linoleate (18:2n6) Lipid Polyunsaturated Fatty Acid (n3 and n6) 

linolenate [alpha or gamma; (18:3n3 or 6)] Lipid Polyunsaturated Fatty Acid (n3 and n6) 

stearidonate (18:4n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) 

chenodeoxycholate Lipid Primary Bile Acid Metabolism 

cholate Lipid Primary Bile Acid Metabolism 

glycochenodeoxycholate Lipid Primary Bile Acid Metabolism 

glycochenodeoxycholate glucuronide (1) Lipid Primary Bile Acid Metabolism 

glycochenodeoxycholate sulfate Lipid Primary Bile Acid Metabolism 

glycocholate Lipid Primary Bile Acid Metabolism 

tauro-beta-muricholate Lipid Primary Bile Acid Metabolism 

taurochenodeoxycholate Lipid Primary Bile Acid Metabolism 

taurocholate Lipid Primary Bile Acid Metabolism 
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3b-hydroxy-5-cholenoic acid Lipid Secondary Bile Acid Metabolism 

7-ketodeoxycholate Lipid Secondary Bile Acid Metabolism 

deoxycholate Lipid Secondary Bile Acid Metabolism 

glycocholenate sulfate Lipid Secondary Bile Acid Metabolism 

glycodeoxycholate Lipid Secondary Bile Acid Metabolism 

glycodeoxycholate sulfate Lipid Secondary Bile Acid Metabolism 

glycohyocholate Lipid Secondary Bile Acid Metabolism 

glycolithocholate Lipid Secondary Bile Acid Metabolism 

glycolithocholate sulfate Lipid Secondary Bile Acid Metabolism 

glycoursodeoxycholate Lipid Secondary Bile Acid Metabolism 

hyocholate Lipid Secondary Bile Acid Metabolism 

lithocholate Lipid Secondary Bile Acid Metabolism 

taurocholenate sulfate Lipid Secondary Bile Acid Metabolism 

taurodeoxycholate Lipid Secondary Bile Acid Metabolism 

taurolithocholate Lipid Secondary Bile Acid Metabolism 

taurolithocholate 3-sulfate Lipid Secondary Bile Acid Metabolism 

tauroursodeoxycholate Lipid Secondary Bile Acid Metabolism 

ursodeoxycholate Lipid Secondary Bile Acid Metabolism 

behenoyl dihydrosphingomyelin (d18:0/22:0) Lipid Sphingolipid Metabolism 

behenoyl sphingomyelin (d18:1/22:0) Lipid Sphingolipid Metabolism 

glycosyl-N-palmitoyl-sphingosine (d18:1/16:0) Lipid Sphingolipid Metabolism 

glycosyl-N-stearoyl-sphingosine (d18:1/18:0) Lipid Sphingolipid Metabolism 

lactosyl-N-nervonoyl-sphingosine (d18:1/24:1) Lipid Sphingolipid Metabolism 

lactosyl-N-palmitoyl-sphingosine (d18:1/16:0) Lipid Sphingolipid Metabolism 

lignoceroyl sphingomyelin (d18:1/24:0) Lipid Sphingolipid Metabolism 

myristoyl dihydrosphingomyelin (d18:0/14:0) Lipid Sphingolipid Metabolism 

N-behenoyl-sphingadienine (d18:2/22:0) Lipid Sphingolipid Metabolism 

N-palmitoyl-sphinganine (d18:0/16:0) Lipid Sphingolipid Metabolism 

N-palmitoyl-sphingosine (d18:1/16:0) Lipid Sphingolipid Metabolism 

N-stearoyl-sphingosine (d18:1/18:0) Lipid Sphingolipid Metabolism 

palmitoyl dihydrosphingomyelin (d18:0/16:0) Lipid Sphingolipid Metabolism 

palmitoyl sphingomyelin (d18:1/16:0) Lipid Sphingolipid Metabolism 
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sphinganine Lipid Sphingolipid Metabolism 

sphinganine-1-phosphate Lipid Sphingolipid Metabolism 

sphingomyelin (d18:1/14:0, d16:1/16:0) Lipid Sphingolipid Metabolism 

sphingomyelin (d18:1/15:0, d16:1/17:0) Lipid Sphingolipid Metabolism 

sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0) Lipid Sphingolipid Metabolism 

sphingomyelin (d18:1/18:1, d18:2/18:0) Lipid Sphingolipid Metabolism 

sphingomyelin (d18:1/20:0, d16:1/22:0) Lipid Sphingolipid Metabolism 

sphingomyelin (d18:1/20:1, d18:2/20:0) Lipid Sphingolipid Metabolism 

sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0) Lipid Sphingolipid Metabolism 

sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1) Lipid Sphingolipid Metabolism 

sphingomyelin (d18:1/24:1, d18:2/24:0) Lipid Sphingolipid Metabolism 

sphingomyelin (d18:2/14:0, d18:1/14:1) Lipid Sphingolipid Metabolism 

sphingomyelin (d18:2/16:0, d18:1/16:1) Lipid Sphingolipid Metabolism 

sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1) Lipid Sphingolipid Metabolism 

sphingomyelin (d18:2/24:1, d18:1/24:2) Lipid Sphingolipid Metabolism 

sphingosine Lipid Sphingolipid Metabolism 

sphingosine 1-phosphate Lipid Sphingolipid Metabolism 

stearoyl sphingomyelin (d18:1/18:0) Lipid Sphingolipid Metabolism 

tricosanoyl sphingomyelin (d18:1/23:0) Lipid Sphingolipid Metabolism 

16a-hydroxy DHEA 3-sulfate Lipid Steroid 

17alpha-hydroxypregnanolone glucuronide Lipid Steroid 

17alpha-hydroxypregnenolone sulfate Lipid Steroid 

21-hydroxypregnenolone disulfate Lipid Steroid 

4-androsten-3alpha,17alpha-diol monosulfate (2) Lipid Steroid 

4-androsten-3alpha,17alpha-diol monosulfate (3) Lipid Steroid 

4-androsten-3beta,17beta-diol disulfate (1) Lipid Steroid 

4-androsten-3beta,17beta-diol disulfate (2) Lipid Steroid 

4-androsten-3beta,17beta-diol monosulfate (1) Lipid Steroid 

4-androsten-3beta,17beta-diol monosulfate (2) Lipid Steroid 

5alpha-androstan-3alpha,17beta-diol disulfate Lipid Steroid 

5alpha-androstan-3alpha,17beta-diol monosulfate (1) Lipid Steroid 

5alpha-androstan-3alpha,17beta-diol monosulfate (2) Lipid Steroid 
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5alpha-androstan-3beta,17alpha-diol disulfate Lipid Steroid 

5alpha-androstan-3beta,17beta-diol disulfate Lipid Steroid 

5alpha-androstan-3beta,17beta-diol monosulfate (2) Lipid Steroid 

5alpha-pregnan-3(alpha or beta),20beta-diol disulfate Lipid Steroid 

5alpha-pregnan-3beta,20alpha-diol disulfate Lipid Steroid 

5alpha-pregnan-3beta,20alpha-diol monosulfate (2) Lipid Steroid 

5alpha-pregnan-3beta,20beta-diol monosulfate (1) Lipid Steroid 

andro steroid monosulfate (1) Lipid Steroid 

androsterone sulfate Lipid Steroid 

cortisol Lipid Steroid 

cortisone Lipid Steroid 

dehydroisoandrosterone sulfate (DHEA-S) Lipid Steroid 

epiandrosterone sulfate Lipid Steroid 

etiocholanolone glucuronide Lipid Steroid 

pregn steroid monosulfate Lipid Steroid 

pregnanediol-3-glucuronide Lipid Steroid 

pregnanolone/allopregnanolone sulfate Lipid Steroid 

pregnen-diol disulfate Lipid Steroid 

pregnenolone sulfate Lipid Steroid 

3beta,7alpha-dihydroxy-5-cholestenoate Lipid Sterol 

3-hydroxy-5-cholestenoic acid Lipid Sterol 

4-cholesten-3-one Lipid Sterol 

7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) Lipid Sterol 

beta-sitosterol Lipid Sterol 

campesterol Lipid Sterol 

cholesterol Lipid Sterol 

allantoin Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 

containing 

hypoxanthine Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 

containing 

inosine Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 

containing 

inosine 5'-monophosphate (IMP) Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 

containing 
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N1-methylinosine Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 

containing 

urate Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 

containing 

xanthine Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 

containing 

xanthosine Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 

containing 

adenine Nucleotide Purine Metabolism, Adenine containing 

adenosine Nucleotide Purine Metabolism, Adenine containing 

adenosine 5'-diphosphate (ADP) Nucleotide Purine Metabolism, Adenine containing 

adenosine 5'-monophosphate (AMP) Nucleotide Purine Metabolism, Adenine containing 

N1-methyladenosine Nucleotide Purine Metabolism, Adenine containing 

N6-carbamoylthreonyladenosine Nucleotide Purine Metabolism, Adenine containing 

N6-methyladenosine Nucleotide Purine Metabolism, Adenine containing 

N6-succinyladenosine Nucleotide Purine Metabolism, Adenine containing 

7-methylguanine Nucleotide Purine Metabolism, Guanine containing 

guanosine Nucleotide Purine Metabolism, Guanine containing 

N2,N2-dimethylguanosine Nucleotide Purine Metabolism, Guanine containing 

3-methylcytidine Nucleotide Pyrimidine Metabolism, Cytidine containing 

cytidine Nucleotide Pyrimidine Metabolism, Cytidine containing 

cytidine 5'-monophosphate (5'-CMP) Nucleotide Pyrimidine Metabolism, Cytidine containing 

cytosine Nucleotide Pyrimidine Metabolism, Cytidine containing 

N4-acetylcytidine Nucleotide Pyrimidine Metabolism, Cytidine containing 

dihydroorotate Nucleotide Pyrimidine Metabolism, Orotate containing 

orotate Nucleotide Pyrimidine Metabolism, Orotate containing 

orotidine Nucleotide Pyrimidine Metabolism, Orotate containing 

3-aminoisobutyrate Nucleotide Pyrimidine Metabolism, Thymine containing 

5,6-dihydrothymine Nucleotide Pyrimidine Metabolism, Thymine containing 

3-ureidopropionate Nucleotide Pyrimidine Metabolism, Uracil containing 

5-methyluridine (ribothymidine) Nucleotide Pyrimidine Metabolism, Uracil containing 

beta-alanine Nucleotide Pyrimidine Metabolism, Uracil containing 

N-acetyl-beta-alanine Nucleotide Pyrimidine Metabolism, Uracil containing 

pseudouridine Nucleotide Pyrimidine Metabolism, Uracil containing 
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uracil Nucleotide Pyrimidine Metabolism, Uracil containing 

uridine Nucleotide Pyrimidine Metabolism, Uracil containing 

4-hydroxyphenylacetylglutamine Peptide Acetylated Peptides 

phenylacetylcarnitine Peptide Acetylated Peptides 

phenylacetylglutamate Peptide Acetylated Peptides 

phenylacetylglutamine Peptide Acetylated Peptides 

phenylacetylglycine Peptide Acetylated Peptides 

alpha-glutamylalanine Peptide Dipeptide 

alpha-glutamylglycine Peptide Dipeptide 

aspartylaspartate Peptide Dipeptide 

aspartylisoleucine Peptide Dipeptide 

aspartylleucine Peptide Dipeptide 

cyclo(ala-pro) Peptide Dipeptide 

cyclo(met-pro) Peptide Dipeptide 

cyclo(pro-val) Peptide Dipeptide 

glycylglycine Peptide Dipeptide 

histidylglycine Peptide Dipeptide 

histidylleucine Peptide Dipeptide 

histidylphenylalanine Peptide Dipeptide 

histidyltryptophan Peptide Dipeptide 

isoleucylalanine Peptide Dipeptide 

isoleucylglutamate Peptide Dipeptide 

isoleucylglycine Peptide Dipeptide 

isoleucylleucine/leucylisoleucine Peptide Dipeptide 

isoleucylthreonine Peptide Dipeptide 

leucylglutamine Peptide Dipeptide 

leucylglycine Peptide Dipeptide 

leucylleucine Peptide Dipeptide 

methionylalanine Peptide Dipeptide 

phenylalanylarginine Peptide Dipeptide 

phenylalanylglycine Peptide Dipeptide 

phenylalanylisoleucine Peptide Dipeptide 
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phenylalanylleucine Peptide Dipeptide 

phenylalanylphenylalanine Peptide Dipeptide 

phenylalanyltryptophan Peptide Dipeptide 

prolylalanine Peptide Dipeptide 

prolylglycine Peptide Dipeptide 

prolylphenylalanine Peptide Dipeptide 

prolylproline Peptide Dipeptide 

pyroglutamylvaline Peptide Dipeptide 

serylalanine Peptide Dipeptide 

threonylalanine Peptide Dipeptide 

tryptophylleucine Peptide Dipeptide 

valylarginine Peptide Dipeptide 

valylglutamine Peptide Dipeptide 

valylglycine Peptide Dipeptide 

valylleucine Peptide Dipeptide 

valylphenylalanine Peptide Dipeptide 

N-acetylcarnosine Peptide Dipeptide Derivative 

ADSGEGDFXAEGGGVR Peptide Fibrinogen Cleavage Peptide 

DSGEGDFXAEGGGVR Peptide Fibrinogen Cleavage Peptide 

gamma-glutamylalanine Peptide Gamma-glutamyl Amino Acid 

gamma-glutamyl-alpha-lysine Peptide Gamma-glutamyl Amino Acid 

gamma-glutamyl-epsilon-lysine Peptide Gamma-glutamyl Amino Acid 

gamma-glutamylglutamate Peptide Gamma-glutamyl Amino Acid 

gamma-glutamylglutamine Peptide Gamma-glutamyl Amino Acid 

gamma-glutamylglycine Peptide Gamma-glutamyl Amino Acid 

gamma-glutamylhistidine Peptide Gamma-glutamyl Amino Acid 

gamma-glutamylisoleucine Peptide Gamma-glutamyl Amino Acid 

gamma-glutamylleucine Peptide Gamma-glutamyl Amino Acid 

gamma-glutamylmethionine Peptide Gamma-glutamyl Amino Acid 

gamma-glutamylphenylalanine Peptide Gamma-glutamyl Amino Acid 

gamma-glutamylthreonine Peptide Gamma-glutamyl Amino Acid 

gamma-glutamyltryptophan Peptide Gamma-glutamyl Amino Acid 
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gamma-glutamyltyrosine Peptide Gamma-glutamyl Amino Acid 

gamma-glutamylvaline Peptide Gamma-glutamyl Amino Acid 

bradykinin Peptide Polypeptide 

bradykinin, des-arg(9) Peptide Polypeptide 

bradykinin, hydroxy-pro(3) Peptide Polypeptide 

tartronate (hydroxymalonate) Xenobiotics Bacterial/Fungal 

2-ethylphenylsulfate Xenobiotics Benzoate Metabolism 

2-hydroxyhippurate (salicylurate) Xenobiotics Benzoate Metabolism 

3-hydroxyhippurate Xenobiotics Benzoate Metabolism 

3-methoxycatechol sulfate (1) Xenobiotics Benzoate Metabolism 

3-methoxycatechol sulfate (2) Xenobiotics Benzoate Metabolism 

3-methyl catechol sulfate (1) Xenobiotics Benzoate Metabolism 

3-methyl catechol sulfate (2) Xenobiotics Benzoate Metabolism 

4-ethylphenylsulfate Xenobiotics Benzoate Metabolism 

4-hydroxyhippurate Xenobiotics Benzoate Metabolism 

4-methylcatechol sulfate Xenobiotics Benzoate Metabolism 

4-vinylphenol sulfate Xenobiotics Benzoate Metabolism 

benzoate Xenobiotics Benzoate Metabolism 

catechol sulfate Xenobiotics Benzoate Metabolism 

hippurate Xenobiotics Benzoate Metabolism 

methyl-4-hydroxybenzoate sulfate Xenobiotics Benzoate Metabolism 

O-methylcatechol sulfate Xenobiotics Benzoate Metabolism 

propyl 4-hydroxybenzoate sulfate Xenobiotics Benzoate Metabolism 

1,2,3-benzenetriol sulfate (1) Xenobiotics Chemical 

1,2,3-benzenetriol sulfate (2) Xenobiotics Chemical 

1,3-propanediol Xenobiotics Chemical 

2-aminophenol sulfate Xenobiotics Chemical 

2-methoxyresorcinol sulfate Xenobiotics Chemical 

3-acetylphenol sulfate Xenobiotics Chemical 

3-hydroxypyridine sulfate Xenobiotics Chemical 

4-hydroxychlorothalonil Xenobiotics Chemical 

6-hydroxyindole sulfate Xenobiotics Chemical 
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benzoylcarnitine Xenobiotics Chemical 

dimethyl sulfone Xenobiotics Chemical 

ectoine Xenobiotics Chemical 

EDTA Xenobiotics Chemical 

ethyl glucuronide Xenobiotics Chemical 

iminodiacetate (IDA) Xenobiotics Chemical 

lanthionine Xenobiotics Chemical 

N-methylpipecolate Xenobiotics Chemical 

O-sulfo-L-tyrosine Xenobiotics Chemical 

rhodamine B Xenobiotics Chemical 

succinimide Xenobiotics Chemical 

sulfate Xenobiotics Chemical 

trizma acetate Xenobiotics Chemical 

1-hydroxy-2-naphthalenecarboxylate Xenobiotics Drug 

2-acetamidophenol sulfate Xenobiotics Drug 

2-hydroxyacetaminophen sulfate Xenobiotics Drug 

2-hydroxyibuprofen Xenobiotics Drug 

2-methoxyacetaminophen glucuronide Xenobiotics Drug 

2-methoxyacetaminophen sulfate Xenobiotics Drug 

3-(cystein-S-yl)acetaminophen Xenobiotics Drug 

3-(N-acetyl-L-cystein-S-yl) acetaminophen Xenobiotics Drug 

3-hydroxyquinine Xenobiotics Drug 

4-acetamidophenol Xenobiotics Drug 

4-acetamidophenylglucuronide Xenobiotics Drug 

4-acetaminophen sulfate Xenobiotics Drug 

4-acetylphenol sulfate Xenobiotics Drug 

4-aminophenol sulfate (2) Xenobiotics Drug 

4-hydroxycoumarin Xenobiotics Drug 

allopurinol Xenobiotics Drug 

allopurinol riboside Xenobiotics Drug 

alpha-hydroxymetoprolol Xenobiotics Drug 

amoxicillin Xenobiotics Drug 



Kasia Zalewska                                                                                                                                      MD Thesis 

212 

 

aripiprazole Xenobiotics Drug 

atenolol Xenobiotics Drug 

atorvastatin (lipitor) Xenobiotics Drug 

candesartan Xenobiotics Drug 

carbamazepine Xenobiotics Drug 

carbamazepine 10,11-epoxide Xenobiotics Drug 

carbamazepine glucuronide Xenobiotics Drug 

carboxyibuprofen Xenobiotics Drug 

Cetirizine Xenobiotics Drug 

chlorthalidone Xenobiotics Drug 

deferasirox (DFX) Xenobiotics Drug 

deferoxamine (DFO) Xenobiotics Drug 

desmethylnaproxen Xenobiotics Drug 

desmethylnaproxen sulfate Xenobiotics Drug 

diltiazem Xenobiotics Drug 

diphenhydramine Xenobiotics Drug 

doxycycline Xenobiotics Drug 

enalapril Xenobiotics Drug 

escitalopram Xenobiotics Drug 

fexofenadine Xenobiotics Drug 

fluoxetine Xenobiotics Drug 

furosemide Xenobiotics Drug 

gabapentin Xenobiotics Drug 

homoveratric acid Xenobiotics Drug 

hydrochlorothiazide Xenobiotics Drug 

hydroquinone sulfate Xenobiotics Drug 

hydroxypioglitazone (M-IV) Xenobiotics Drug 

ibuprofen Xenobiotics Drug 

ibuprofen acyl glucuronide Xenobiotics Drug 

ketopioglitazone Xenobiotics Drug 

lamotrigine Xenobiotics Drug 

lidocaine Xenobiotics Drug 
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lisinopril Xenobiotics Drug 

metformin Xenobiotics Drug 

metoprolol Xenobiotics Drug 

metoprolol acid metabolite Xenobiotics Drug 

mycophenolic acid Xenobiotics Drug 

mycophenolic acid glucuronide Xenobiotics Drug 

naproxen Xenobiotics Drug 

N-desmethyl tramadol Xenobiotics Drug 

N-ethylglycinexylidide Xenobiotics Drug 

O-desmethyltramadol Xenobiotics Drug 

O-desmethyltramadol glucuronide Xenobiotics Drug 

O-desmethylvenlafaxine Xenobiotics Drug 

o-hydroxyatorvastatin Xenobiotics Drug 

o-hydroxyatorvastatin lactone Xenobiotics Drug 

olmesartan Xenobiotics Drug 

omeprazole  Xenobiotics Drug 

oxycodone Xenobiotics Drug 

oxypurinol Xenobiotics Drug 

pantoprazole  Xenobiotics Drug 

p-hydroxyatorvastatin Xenobiotics Drug 

p-hydroxyatorvastatin lactone Xenobiotics Drug 

pioglitazone Xenobiotics Drug 

pivaloylcarnitine Xenobiotics Drug 

prednisolone Xenobiotics Drug 

prednisone Xenobiotics Drug 

pregabalin Xenobiotics Drug 

quetiapine Xenobiotics Drug 

quinine Xenobiotics Drug 

ranitidine Xenobiotics Drug 

rivaroxaban Xenobiotics Drug 

salicylate Xenobiotics Drug 

salicyluric glucuronide Xenobiotics Drug 



Kasia Zalewska                                                                                                                                      MD Thesis 

214 

 

S-carboxymethyl-L-cysteine Xenobiotics Drug 

sertraline Xenobiotics Drug 

sildenafil Xenobiotics Drug 

sitagliptin Xenobiotics Drug 

solifenacin Xenobiotics Drug 

sulfamethoxazole Xenobiotics Drug 

tadalafil Xenobiotics Drug 

topiramate Xenobiotics Drug 

Tramadol Xenobiotics Drug 

valsartan Xenobiotics Drug 

venlafaxine Xenobiotics Drug 

verapamil Xenobiotics Drug 

warfarin Xenobiotics Drug 

2,3-dihydroxyisovalerate Xenobiotics Food Component/Plant 

2-keto-3-deoxy-gluconate Xenobiotics Food Component/Plant 

2-piperidinone Xenobiotics Food Component/Plant 

4-allylphenol sulfate Xenobiotics Food Component/Plant 

4-vinylguaiacol sulfate Xenobiotics Food Component/Plant 

acesulfame Xenobiotics Food Component/Plant 

cinnamoylglycine Xenobiotics Food Component/Plant 

dihydroferulic acid Xenobiotics Food Component/Plant 

ergothioneine Xenobiotics Food Component/Plant 

erythritol Xenobiotics Food Component/Plant 

eugenol sulfate Xenobiotics Food Component/Plant 

ferulic acid 4-sulfate Xenobiotics Food Component/Plant 

ferulylglycine (1) Xenobiotics Food Component/Plant 

gluconate Xenobiotics Food Component/Plant 

homostachydrine Xenobiotics Food Component/Plant 

indolin-2-one Xenobiotics Food Component/Plant 

isoeugenol sulfate Xenobiotics Food Component/Plant 

linamarin Xenobiotics Food Component/Plant 

methyl glucopyranoside (alpha + beta) Xenobiotics Food Component/Plant 
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methyl indole-3-acetate Xenobiotics Food Component/Plant 

N-(2-furoyl)glycine Xenobiotics Food Component/Plant 

N-acetylalliin Xenobiotics Food Component/Plant 

naringenin 7-glucuronide Xenobiotics Food Component/Plant 

phytanate Xenobiotics Food Component/Plant 

piperine Xenobiotics Food Component/Plant 

pyrraline Xenobiotics Food Component/Plant 

quinate Xenobiotics Food Component/Plant 

retinal Xenobiotics Food Component/Plant 

saccharin Xenobiotics Food Component/Plant 

S-allylcysteine Xenobiotics Food Component/Plant 

solanidine Xenobiotics Food Component/Plant 

stachydrine Xenobiotics Food Component/Plant 

syringol sulfate Xenobiotics Food Component/Plant 

tartarate Xenobiotics Food Component/Plant 

theanine Xenobiotics Food Component/Plant 

thymol sulfate Xenobiotics Food Component/Plant 

umbelliferone sulfate Xenobiotics Food Component/Plant 

3-hydroxycotinine glucuronide Xenobiotics Tobacco Metabolite 

cotinine Xenobiotics Tobacco Metabolite 

cotinine N-oxide Xenobiotics Tobacco Metabolite 

hydroxycotinine Xenobiotics Tobacco Metabolite 

1,3,7-trimethylurate Xenobiotics Xanthine Metabolism 

1,3-dimethylurate Xenobiotics Xanthine Metabolism 

1,7-dimethylurate Xenobiotics Xanthine Metabolism 

1-methylurate Xenobiotics Xanthine Metabolism 

1-methylxanthine Xenobiotics Xanthine Metabolism 

3,7-dimethylurate Xenobiotics Xanthine Metabolism 

3-methylxanthine Xenobiotics Xanthine Metabolism 

5-acetylamino-6-amino-3-methyluracil Xenobiotics Xanthine Metabolism 

5-acetylamino-6-formylamino-3-methyluracil Xenobiotics Xanthine Metabolism 

7-methylurate Xenobiotics Xanthine Metabolism 
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7-methylxanthine Xenobiotics Xanthine Metabolism 

caffeic acid sulfate Xenobiotics Xanthine Metabolism 

caffeine Xenobiotics Xanthine Metabolism 

paraxanthine Xenobiotics Xanthine Metabolism 

theobromine Xenobiotics Xanthine Metabolism 

theophylline Xenobiotics Xanthine Metabolism 

X - 01911 Unknown Unknown 

X - 02249 Unknown Unknown 

X - 02269 Unknown Unknown 

X - 07765 Unknown Unknown 

X - 09789 Unknown Unknown 

X - 11261 Unknown Unknown 

X - 11299 Unknown Unknown 

X - 11305 Unknown Unknown 

X - 11308 Unknown Unknown 

X - 11315 Unknown Unknown 

X - 11334 Unknown Unknown 

X - 11357 Unknown Unknown 

X - 11372 Unknown Unknown 

X - 11378 Unknown Unknown 

X - 11381 Unknown Unknown 

X - 11407 Unknown Unknown 

X - 11429 Unknown Unknown 

X - 11438 Unknown Unknown 

X - 11440 Unknown Unknown 

X - 11441 Unknown Unknown 

X - 11442 Unknown Unknown 

X - 11444 Unknown Unknown 

X - 11452 Unknown Unknown 

X - 11470 Unknown Unknown 

X - 11478 Unknown Unknown 

X - 11483 Unknown Unknown 
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X - 11485 Unknown Unknown 

X - 11491 Unknown Unknown 

X - 11522 Unknown Unknown 

X - 11530 Unknown Unknown 

X - 11537  Unknown Unknown 

X - 11538 Unknown Unknown 

X - 11540 Unknown Unknown 

X - 11549 Unknown Unknown 

X - 11564 Unknown Unknown 

X - 11593 Unknown Unknown 

X - 11787 Unknown Unknown 

X - 11795 Unknown Unknown 

X - 11805 Unknown Unknown 

X - 11838 Unknown Unknown 

X - 11843 Unknown Unknown 

X - 11847 Unknown Unknown 

X - 11849 Unknown Unknown 

X - 11850 Unknown Unknown 

X - 11852 Unknown Unknown 

X - 11858 Unknown Unknown 

X - 11871 Unknown Unknown 

X - 11880 Unknown Unknown 

X - 11905 Unknown Unknown 

X - 12007 Unknown Unknown 

X - 12013 Unknown Unknown 

X - 12026 Unknown Unknown 

X - 12063 Unknown Unknown 

X - 12100 Unknown Unknown 

X - 12101 Unknown Unknown 

X - 12104 Unknown Unknown 

X - 12117 Unknown Unknown 

X - 12126 Unknown Unknown 
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X - 12127 Unknown Unknown 

X - 12170 Unknown Unknown 

X - 12199 Unknown Unknown 

X - 12206 Unknown Unknown 

X - 12212 Unknown Unknown 

X - 12216 Unknown Unknown 

X - 12221 Unknown Unknown 

X - 12230 Unknown Unknown 

X - 12231 Unknown Unknown 

X - 12257 Unknown Unknown 

X - 12261 Unknown Unknown 

X - 12283 Unknown Unknown 

X - 12329 Unknown Unknown 

X - 12407 Unknown Unknown 

X - 12410 Unknown Unknown 

X - 12411 Unknown Unknown 

X - 12442 Unknown Unknown 

X - 12450 Unknown Unknown 

X - 12459 Unknown Unknown 

X - 12462 Unknown Unknown 

X - 12472 Unknown Unknown 

X - 12511 Unknown Unknown 

X - 12524 Unknown Unknown 

X - 12543 Unknown Unknown 

X - 12544 Unknown Unknown 

X - 12565 Unknown Unknown 

X - 12636 Unknown Unknown 

X - 12680 Unknown Unknown 

X - 12681  Unknown Unknown 

X - 12686 Unknown Unknown 

X - 12688 Unknown Unknown 

X - 12701 Unknown Unknown 
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X - 12707 Unknown Unknown 

X - 12714 Unknown Unknown 

X - 12718 Unknown Unknown 

X - 12726 Unknown Unknown 

X - 12729 Unknown Unknown 

X - 12730 Unknown Unknown 

X - 12731 Unknown Unknown 

X - 12738 Unknown Unknown 

X - 12739 Unknown Unknown 

X - 12740 Unknown Unknown 

X - 12753 Unknown Unknown 

X - 12798 Unknown Unknown 

X - 12812 Unknown Unknown 

X - 12814 Unknown Unknown 

X - 12816 Unknown Unknown 

X - 12818 Unknown Unknown 

X - 12819 Unknown Unknown 

X - 12822 Unknown Unknown 

X - 12830 Unknown Unknown 

X - 12831 Unknown Unknown 

X - 12844 Unknown Unknown 

X - 12846 Unknown Unknown 

X - 12847 Unknown Unknown 

X - 12849 Unknown Unknown 

X - 12851 Unknown Unknown 

X - 12906 Unknown Unknown 

X - 13431 Unknown Unknown 

X - 13435 Unknown Unknown 

X - 13529 Unknown Unknown 

X - 13553 Unknown Unknown 

X - 13658 Unknown Unknown 

X - 13684 Unknown Unknown 
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X - 13723 Unknown Unknown 

X - 13729 Unknown Unknown 

X - 13737 Unknown Unknown 

X - 13835 Unknown Unknown 

X - 13844 Unknown Unknown 

X - 13846 Unknown Unknown 

X - 13866 Unknown Unknown 

X - 13891 Unknown Unknown 

X - 14056 Unknown Unknown 

X - 14314 Unknown Unknown 

X - 14568 Unknown Unknown 

X - 14626 Unknown Unknown 

X - 14658 Unknown Unknown 

X - 14662 Unknown Unknown 

X - 14838 Unknown Unknown 

X - 14939 Unknown Unknown 

X - 15245 Unknown Unknown 

X - 15461 Unknown Unknown 

X - 15469 Unknown Unknown 

X - 15486 Unknown Unknown 

X - 15492 Unknown Unknown 

X - 15497 Unknown Unknown 

X - 15503 Unknown Unknown 

X - 15666 Unknown Unknown 

X - 15728 Unknown Unknown 

X - 16071 Unknown Unknown 

X - 16083 Unknown Unknown 

X - 16087 Unknown Unknown 

X - 16124 Unknown Unknown 

X - 16132 Unknown Unknown 

X - 16135 Unknown Unknown 

X - 16397 Unknown Unknown 
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X - 16570 Unknown Unknown 

X - 16576 Unknown Unknown 

X - 16580 Unknown Unknown 

X - 16649 Unknown Unknown 

X - 16654 Unknown Unknown 

X - 16935 Unknown Unknown 

X - 16938 Unknown Unknown 

X - 16944 Unknown Unknown 

X - 16946 Unknown Unknown 

X - 16947 Unknown Unknown 

X - 16964 Unknown Unknown 

X - 17010 Unknown Unknown 

X - 17145 Unknown Unknown 

X - 17146 Unknown Unknown 

X - 17162 Unknown Unknown 

X - 17185 Unknown Unknown 

X - 17189 Unknown Unknown 

X - 17299 Unknown Unknown 

X - 17306 Unknown Unknown 

X - 17325 Unknown Unknown 

X - 17327 Unknown Unknown 

X - 17328 Unknown Unknown 

X - 17335 Unknown Unknown 

X - 17337 Unknown Unknown 

X - 17340 Unknown Unknown 

X - 17343 Unknown Unknown 

X - 17348 Unknown Unknown 

X - 17350 Unknown Unknown 

X - 17351 Unknown Unknown 

X - 17353 Unknown Unknown 

X - 17354 Unknown Unknown 

X - 17355 Unknown Unknown 
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X - 17357 Unknown Unknown 

X - 17359 Unknown Unknown 

X - 17361 Unknown Unknown 

X - 17367 Unknown Unknown 

X - 17398 Unknown Unknown 

X - 17438 Unknown Unknown 

X - 17469 Unknown Unknown 

X - 17653 Unknown Unknown 

X - 17654 Unknown Unknown 

X - 17655 Unknown Unknown 

X - 17673 Unknown Unknown 

X - 17676 Unknown Unknown 

X - 17677 Unknown Unknown 

X - 17685 Unknown Unknown 

X - 17690 Unknown Unknown 

X - 18249 Unknown Unknown 

X - 18345 Unknown Unknown 

X - 18603 Unknown Unknown 

X - 18779 Unknown Unknown 

X - 18886 Unknown Unknown 

X - 18887 Unknown Unknown 

X - 18889 Unknown Unknown 

X - 18899 Unknown Unknown 

X - 18901 Unknown Unknown 

X - 18913 Unknown Unknown 

X - 18914 Unknown Unknown 

X - 18921 Unknown Unknown 

X - 18922 Unknown Unknown 

X - 18938 Unknown Unknown 

X - 19141 Unknown Unknown 

X - 19183 Unknown Unknown 

X - 19438 Unknown Unknown 
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X - 19561 Unknown Unknown 

X - 21258 Unknown Unknown 

X - 21285 Unknown Unknown 

X - 21286 Unknown Unknown 

X - 21295 Unknown Unknown 

X - 21310 Unknown Unknown 

X - 21312 Unknown Unknown 

X - 21318 Unknown Unknown 

X - 21319 Unknown Unknown 

X - 21339 Unknown Unknown 

X - 21343 Unknown Unknown 

X - 21353 Unknown Unknown 

X - 21358 Unknown Unknown 

X - 21364 Unknown Unknown 

X - 21365 Unknown Unknown 

X - 21383 Unknown Unknown 

X - 21410 Unknown Unknown 

X - 21411 Unknown Unknown 

X - 21441 Unknown Unknown 

X - 21442 Unknown Unknown 

X - 21444 Unknown Unknown 

X - 21448 Unknown Unknown 

X - 21467 Unknown Unknown 

X - 21470 Unknown Unknown 

X - 21471 Unknown Unknown 

X - 21474 Unknown Unknown 

X - 21607 Unknown Unknown 

X - 21626 Unknown Unknown 

X - 21657 Unknown Unknown 

X - 21658 Unknown Unknown 

X - 21659 Unknown Unknown 

X - 21662 Unknown Unknown 
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X - 21666 Unknown Unknown 

X - 21668 Unknown Unknown 

X - 21729 Unknown Unknown 

X - 21735 Unknown Unknown 

X - 21736 Unknown Unknown 

X - 21737 Unknown Unknown 

X - 21752 Unknown Unknown 

X - 21792 Unknown Unknown 

X - 21795 Unknown Unknown 

X - 21796 Unknown Unknown 

X - 21803 Unknown Unknown 

X - 21807 Unknown Unknown 

X - 21815 Unknown Unknown 

X - 21821 Unknown Unknown 

X - 21829 Unknown Unknown 

X - 21834 Unknown Unknown 

X - 21840 Unknown Unknown 

X - 21845 Unknown Unknown 

X - 21849 Unknown Unknown 

X - 22035 Unknown Unknown 

X - 22102 Unknown Unknown 

X - 22145 Unknown Unknown 

X - 22147 Unknown Unknown 

X - 22162 Unknown Unknown 

X - 22379 Unknown Unknown 

X - 22412 Unknown Unknown 

X - 22475 Unknown Unknown 

X - 22509 Unknown Unknown 

X - 22515 Unknown Unknown 

X - 22520 Unknown Unknown 

X - 22716 Unknown Unknown 

X - 22764 Unknown Unknown 
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X - 22771 Unknown Unknown 

X - 22775 Unknown Unknown 

X - 22834 Unknown Unknown 

X - 22836 Unknown Unknown 

X - 23160 Unknown Unknown 

X - 23196 Unknown Unknown 

X - 23283 Unknown Unknown 

X - 23291 Unknown Unknown 

X - 23293 Unknown Unknown 

X - 23294 Unknown Unknown 

X - 23295 Unknown Unknown 

X - 23297 Unknown Unknown 

X - 23314 Unknown Unknown 

X - 23369 Unknown Unknown 

X - 23585 Unknown Unknown 

X - 23587 Unknown Unknown 

X - 23588 Unknown Unknown 

X - 23590 Unknown Unknown 

X - 23593 Unknown Unknown 

X - 23636 Unknown Unknown 

X - 23637 Unknown Unknown 

X - 23639 Unknown Unknown 

X - 23641 Unknown Unknown 

X - 23644 Unknown Unknown 

X - 23648 Unknown Unknown 

X - 23649 Unknown Unknown 

X - 23652 Unknown Unknown 

X - 23662 Unknown Unknown 

X - 23665 Unknown Unknown 

X - 23666 Unknown Unknown 

X - 23669 Unknown Unknown 

X - 23671 Unknown Unknown 
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X - 23680 Unknown Unknown 

X - 23739 Unknown Unknown 

X - 23749 Unknown Unknown 

X - 23756 Unknown Unknown 

X - 23765 Unknown Unknown 

X - 23780 Unknown Unknown 

X - 23782 Unknown Unknown 

X - 23997 Unknown Unknown 

X - 24020 Unknown Unknown 

X - 24027 Unknown Unknown 

X - 24106 Unknown Unknown 

X - 24129 Unknown Unknown 

X - 24243 Unknown Unknown 

X - 24272 Unknown Unknown 

X - 24293 Unknown Unknown 

X - 24295 Unknown Unknown 

X - 24306 Unknown Unknown 

X - 24307 Unknown Unknown 

X - 24309 Unknown Unknown 

X - 24328 Unknown Unknown 

X - 24329 Unknown Unknown 

X - 24337 Unknown Unknown 

X - 24411 Unknown Unknown 

X - 24422 Unknown Unknown 

X - 24431 Unknown Unknown 

X - 24432 Unknown Unknown 

X - 24435 Unknown Unknown 

X - 24449 Unknown Unknown 

X - 24452 Unknown Unknown 

X - 24455 Unknown Unknown 

X - 24456 Unknown Unknown 

X - 24462 Unknown Unknown 
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X - 24475 Unknown Unknown 

X - 24490 Unknown Unknown 

X - 24512 Unknown Unknown 

X - 24513 Unknown Unknown 

X - 24527 Unknown Unknown 

X - 24529 Unknown Unknown 

X - 24531 Unknown Unknown 

X - 24542 Unknown Unknown 

X - 24544 Unknown Unknown 

X - 24546 Unknown Unknown 

X - 24549 Unknown Unknown 

X - 24550 Unknown Unknown 

X - 24551 Unknown Unknown 

X - 24552 Unknown Unknown 

X - 24554 Unknown Unknown 

X - 24555 Unknown Unknown 

X - 24557 Unknown Unknown 

X - 24558 Unknown Unknown 

X - 24559 Unknown Unknown 

X - 24561 Unknown Unknown 

X - 24568 Unknown Unknown 

X - 24571 Unknown Unknown 

X - 24576 Unknown Unknown 

X - 24580 Unknown Unknown 

X - 24585 Unknown Unknown 

X - 24588 Unknown Unknown 

X - 24637 Unknown Unknown 

X - 24682 Unknown Unknown 

X - 24693 Unknown Unknown 

X - 24699 Unknown Unknown 

X - 24736 Unknown Unknown 

X - 24738 Unknown Unknown 
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X - 24747 Unknown Unknown 

X - 24748 Unknown Unknown 

X - 24765 Unknown Unknown 

X - 24766 Unknown Unknown 

X - 24803 Unknown Unknown 

X - 24804 Unknown Unknown 

X - 24806 Unknown Unknown 

X - 24809 Unknown Unknown 

X - 24812 Unknown Unknown 

X - 24813 Unknown Unknown 

X - 24831 Unknown Unknown 

X - 24832 Unknown Unknown 

X - 24845 Unknown Unknown 

X - 24849 Unknown Unknown 

X - 24870 Unknown Unknown 
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