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VII 

SUMMARY 
 

A better understanding of the mechanisms of anaesthesia and sedation are expected not 

only to improve the understanding of the neural correlates of consciousness but also to 

help improve safety from the complications of anaesthesia/ sedation and develop safer 

drugs and objective brain function monitoring systems. Neuroimaging modalities such 

as functional MRI, magnetoencephalography and MR spectroscopy provide 

complimentary information about brain functions and can help interrogate brain activity 

in a living human brain. Most anaesthetic drugs act by enhancing the inhibitory actions 

of GABA in the brain. Most neuroimaging research has focused on anaesthetic-induced 

unconsciousness, with only few investigating the earliest levels of sedation-induced 

altered consciousness.  

 

The work in this thesis used a range of advanced neuroimaging modalities to investigate 

the role of GABA (through a GABA-ergic drug, propofol), during mild sedation, in 

humans. This was performed as a series of experiments within two, sequential, scanning 

sessions, MEG followed by fMRI, in the same participants.  

 

Propofol resulted in a dissociation of the visual gamma band response (decreased 

evoked, increased induced power). This was related to a reduced BOLD fMRI response 

but there were no changes in MRS detectable GABA concentration. Response to 

multisensory stimulation also revealed interesting changes with MEG and fMRI. 

Functional connectivity analyses showed changes in connectivities of the posterior 

cingulate cortex (key hub of default-mode network) and thalamus with each other and 

other key brain regions. Resting state networks were identified with MEG too, which 

revealed interesting increases in connectivity in certain band- limited networks while 

motor networks showed no change. Perfusion fMRI using arterial spin labelling 

revealed a global and regional reduction in perfusion, highlighting some of the key 

regions (frontal cortex, precuenus, PCC and thalamus) involved in sedation.  
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 : Introduction and Literature review Chapter 1

“Gentlemen! This is no humbug.”  

 

W. G. Morton, on 16th October, 1846, used ether to facilitate a painless dental 

extraction. This, first reported, demonstration of anaesthesia, stunned the audience and 

led the impressed surgeon to proclaim,  “this is no humbug” (Haridas, 2016). The 

ground-breaking impact of this discovery was immediately obvious and it rapidly 

became popular for all kinds of surgeries. Ability of certain drugs to transiently, 

reversibly and controllably alter consciousness and provide pain relief has made 

surgeries safer and made advances in surgical procedures possible; things, which could 

not have been contemplated without anaesthesia. General anaesthesia is given to nearly 

a million human beings, all over the world, every single day; yet, mechanisms of 

anaesthesia continue to be a ‘humbug’ in some sense.  

 

1.1  Consciousness and anaesthesia 

The basic tenets of anaesthesia include the components of unconsciousness, amnesia 

and immobility. A more comprehensive definition of anaesthesia, however, may include 

suppression of reflexes, analgesia, muscle relaxation, prevention of nausea and vomiting 

and even prevention of long-term side effects such as postoperative delirium 

(confusional state with impairment of memory and attention) (European Delirium and 

American Delirium, 2014) or postoperative cognitive dysfunction (deficits in one or 

more discrete areas of mental state, such as attention, concentration, executive function, 

memory, visuospatial ability and psychomotor speed over a period of weeks to months) 

(Rasmussen et al., 2001, Urban and Bleckwenn, 2002). 

 

Unconsciousness, for anaesthetists, means unresponsiveness to verbal command, tactile 

stimuli or even painful stimuli. While it is clear that unresponsiveness does not really 

mean unconsciousness, it provides a practical endpoint for anaesthetists (Sanders et al., 

2012). Beyond the practicalities of anaesthesia, unconsciousness may be difficult to 

define, since ‘consciousness’ itself continues to be difficult to explain and define. In 

philosophical terms, the subjective experience which makes someone conscious 
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continues to be a ‘hard- problem’ to define, let alone study in a systematic manner 

(Chalmers, 1995).  

 

Indeed, anaesthetic drugs, producing a state of altered consciousness can be used as a 

neurophysiological probe, as suggested by Henry Beecher, to study consciousness 

(Beecher, 1947). This proposition is increasingly bearing fruit, with rapid advances in 

neuroimaging tools and analytic methods.  

 

According to Baar’s ‘global workspace theory’ the human brain can be compared to a 

theatre, where ‘selective attention’ shines a spotlight over various competing conscious 

and unconscious processes (Baars et al., 2003). Various hierarchically organised 

networks synchronise various neuronal workspaces. For example, the area involved in 

attention being the prefrontal cortices and sensory cortices may have their workspaces, 

while other brain regions such as the parietal cortex, doing unconscious processing 

provides the ‘context’. An alternative theory (Information Integration theory) by 

Tononi, proposes that consciousness corresponds to the capacity of a system to integrate 

information (Tononi, 2004). This further depends upon two key concepts- 

‘differentiation’- availability of a large number of conscious experiences and 

‘integration’- the unity of each such experience. Mashour proposed, as an extension of 

the information integration theory, a ‘cognitive unbinding theory’ of anaesthesia where 

isolation of neural activity results in anaesthesia (Mashour, 2013). Some aspects of 

these theories have been able to explain the neuroimaging findings of anaesthesia, and 

these findings in return have helped consolidate these theories of consciousness.   

 

1.2  Mechanisms of anaesthesia 

Early theories of anaesthetic action, presumed that all anaesthetic drugs worked in the 

same way and resulted in a global suppression of neural activity (‘wet blanket theory’). 

However, it soon became clear that regional selectivity may exist and so some brain 

regions may be more crucial than others.   
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Meyer and Overton, showed that the lipophilicity (solubility in Olive oil) of anaesthetic 

drugs correlated with their anaesthetic potencies. This led to the hypothesis that the 

neuronal lipid bilayer was the key site of action of anaesthetic drugs and appeared to 

provide the basis for a ‘unitary’ site of action. This further led to numerous theories of 

how the anaesthetic agents may act with the lipid bilayers (Kopp Lugli et al., 2009). 

These theories could not explain all aspects of anaesthetic actions and so the focus 

shifted to alternate targets. Protein targets emerged as valid targets for anaesthetic 

drugs, and the rapid discovery of the range of potential protein targets meant that a 

unitary protein molecule as target for anaesthetic actions was unlikely.    

 

 Molecular targets for anaesthetic drugs 1.2 .1

There are multiple receptors that target sites for anaesthetic drug actions.  

 

Gamma (γ)- Aminobutyric acid (GABA) receptors are the main inhibitory receptors and 

are targeted by most anaesthetic drugs. GABA-A receptors are heteromeric structures 

with 2α, 2β and 1γ units. The γ-subunit may be replaced by variants such as δ subunits 

(Farrant and Nusser, 2005, Hevers and Luddens, 1998). The receptors with the γ unit 

are commonly located in the post-synaptic membranes while those with the δ units are 

heavily present in the extra-synaptic sites (Nusser et al., 1996). It is the subunit structure 

and their locations that determine most of the actions of the anaesthetic agents. The 

synaptic release of GABA in response to nerve stimuli, resulting in the fast phase 

synaptic inhibition is well known (phasic release). More recently, a ‘tonic’ form of 

inhibition resulting from extra-synaptic release and action of GABA has been identified. 

As the extra-synaptic receptors are not usually saturated and also because they 

desensitise less as compared to the post-synaptic receptors, they are more efficient 

targets for anaesthetic drugs to produce their ‘inhibitory’ actions (Bianchi et al., 2002, 

Mody et al., 1994). 

 

Importance of GABA receptor subunits is further exemplified in the hippocampal 

GABA receptors, with α-5 subunits, which are highly sensitive to anaesthetic drugs (Sur 

et al., 1999). This may be responsible for the early-amnesic effects of anaesthetic drugs. 

Similarly, GABA-A receptors with α-4 subunits may account for the amnesic effects of 
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volatile agents (Rao et al., 2009). Sedative effects of anaesthetic drugs are also highly 

dependent on the subunit structure of the GABA receptors. Replacement of the 

asparagine residue at position 265 in the β-2 or β-3 GABA-A receptor subunit with 

serine or methionine, respectively, rendered GABA-A receptors containing these 

subunits relatively insensitive to etomidate or propofol (Reynolds et al., 2003). 

Similarly, α-1 subunit’s specific constitution is essential for the sedative properties of 

benzodiazepines (Rudolph et al., 1999). Gaboxodol’s sedative actions are dependent on 

the presence of α-4 and δ subunits in the thalamic ventrobasal neurons (Chandra et al., 

2006). Hypnotic (unconsciousness) actions by anaesthetic drugs are dependent on the β-

2 and β-3 subunits (Reynolds et al., 2003). Immobility, an essential component of 

anaesthesia, is mediated through the spinal GABA-A receptors with the β-3 subunits 

(Zeller et al., 2007). Volatile anaesthetics act through multiple receptors including 

GABA-A. GABA receptors containing α-1 and β-3 subunits have been shown to be 

important binding sites for the action of volatiles (Mihic et al., 1997).  

 

Glutamate is the major excitatory neurotransmitter in the brain. It acts on N-Methyl-D-

aspartate (NMDA) and non-NMDA receptors (which include AMPA: α-amino-3-

hydroxy-5-methyl-4-isoxazole-propionic acid and kainite receptors). These non-NMDA 

receptors are responsible for the fast phase of the excitatory post-synaptic potentials. 

Anaesthetic drugs usually have no effect on these non-NMDA receptors. NMDA 

receptors, however, are responsible for the slow phase of the post-synaptic potential and 

are affected by anaesthetic drugs such as ketamine, xenon and nitrous-oxide. 

Ketamine’s main actions on the NMDA receptors are thought to be of non-competitive 

antagonism. Xenon and nitrous oxide also act on NMDA receptors by competing with 

the glycine binding subunit of the NMDA receptor (Dickinson et al., 2007). 

 

Potassium ion (K+) channels may also contribute to the anaesthetic actions of the 

volatile agents, as they may directly activate or enhance the activity of the two-pore 

domain family of K+ channels (Gray et al., 1998). Other ion channels such as 

hyperpolarisation –activated cyclic nucleotide-gated channels which help maintain 

synchrony of neuronal networks and also generation of spontaneous rhythm in 

‘pacemaker’ neurons may also be anaesthetic targets (Biel et al., 2009). Volatile agents, 
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propofol and ketamine: all have been shown to inhibit the activities of these channels 

(Chen et al., 2009).  

  

Through these potential molecular targets, anaesthetics may modulate neuronal function 

by a variety of mechanisms. They can reduce neuronal excitability and disrupt the flow 

of information between neurons. This may be the key mechanism of drugs acting on 

GABA receptors. Anaesthetic agents may also alter long-term potentiation, which 

normally occurs through pre- and post-synaptic firing occurring coincidentally, 

resulting in strengthening of the excitatory synapses. This occurs through the 

stabilisation of glutamate receptors in postsynaptic membrane and growth of new 

synapses. Finally, anaesthetic agents may alter the balance of the excitatory and 

inhibitory activity in neuronal networks leading to changes in network oscillatory 

activity (discussed further in Section 1.4).  

 

1.3  Sleep and anaesthesia 

Research into un-consciousness mechanisms can be looked into through alterations in 

consciousness induced during physiological (such as sleep), pharmacological (such as 

sedation and anaesthesia) and pathological conditions (such as epilepsy and vegetative 

states). Indeed, there is a fair degree of overlap among those conditions. 

  

The phrase “now you will go off to sleep”, is commonly used by anaesthetists as they 

administer anaesthesia. Anaesthetic- unconsciousness is related to natural sleep, by 

patients and clinicians alike, as it provides a sense of comfort and reversibility. While 

sleep has been defined as a naturally occurring, periodic state of rest during which 

consciousness of one’s environment and responses to external stimuli are largely 

suspended (Franks and Zecharia, 2011), it cannot be completely characterised without 

referring to its elements such as spontaneous movements,  variations in muscle tone, 

response to command, self perception, mental imagery, thermodynamic control and 

reversibility upon external stimulation (Bonhomme et al., 2011).  While there are key 

differences between natural sleep and anaesthetic-induced ‘sleep’, there are enough 

commonalities, which has provided a substrate for further research into anaesthetic 

mechanisms.  
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 Target brain sites for anaesthetic drug actions 1.3 .1

Anaesthetics, in part, produce their effects by stimulating natural sleep promoting 

pathways. Some of the key brain regions, responsible for maintaining the sleep-wake 

homeostasis have been studied in detail and the effect of anaesthetic drugs on those 

have been evaluated. The key nuclei lie in the brainstem (forming part of the Reticular 

Activating System- RAS), and subcortical (hypothalamus and thalamus) regions have 

been described below. 

 

Locus Coeruleus 

Locus Coeruleus (LC) is situated in the brainstem and has the highest collection of 

noradrenergic neurons in the brain. It innervates diffusely to other parts of the brain, 

including directly to the cortex, thalamus, hypothalamus, basal forebrain, amygdala, 

hippocampus and other subcortical systems. Firing of the LC neurons promote 

wakefulness through actions on the medial septum, medial preoptic area and substantia 

innominate in the basal forebrain (Berridge, 2008). It also switches the tone of the 

thalamo-cortical neurons from a ‘burst’ pattern (as in sleep) to a ‘spiking’ pattern 

supporting wakefulness. 

 

Raphe nuclei (RN) 

These nuclei are the brain’s major source of serotonin. It may exert biphasic influences 

on arousal, such as its effect on sleep-active ventrolateral preoptic nucleus (VLPO), 

where it inhibits half of the neurons while it stimulates the other half (Gallopin et al., 

2005). 

 

Ventral periaqueductal gray 

It has wake active dopaminergic neurons, so drugs increasing dopamine increase 

wakefulness. Ventral periaqueductal gray (vPAG) efferents go to arousal state 

regulation regions including the basal forebrain, orexinergic neurons in the perifornical 

hypothalamus, midline thalamic and intralaminar thalamus, laterodorsal tegmentum, as 

well as the sleep-active Ventrolateral preoptic nucleus (VLPO) (Lu et al., 2006). 
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Laterodorsal tegmentum (LDT) and pedunculopontine tegmentum (PPT) 

These nuclei constitute the major cholinergic nuclei in the brainstem and promote 

wakefulness or rapid-eye-movement (REM) sleep. They innervate the midline and 

intralaminar thalamic nuclei and thalamic reticular nuclei and alter thalamic activity 

from ‘bursting’ to ‘spiking’ (Steriade et al., 1990). They send projections to the pontine 

reticular formation and fire mainly during REM sleep. They also have GABA-ergic 

neurons (Fuller et al., 2007) which promote REM sleep and so may be influenced by 

GABA-ergic drugs. 

 

Pontine reticular nucleus 

Here Rapid Eye movement (REM)-ON generating nuclei are found, however, they can 

promote wakefulness too.  They receive cholinergic, orexinergic and GABA-ergic 

inputs. Increased GABA promotes wakefulness as demonstrated with anaesthetics 

(Vanini et al., 2008).  

 

Tuberomamillary nucleus 

The brain’s sole histaminergic signalling nucleus has widespread connections. 

Tuberomamillary nucleus (TMN) neurons display state-dependent firing patterns with 

maximal rates of discharge occurring during wakefulness, slower rates in NREM sleep, 

and minimal activity during REM sleep (John et al., 2004). Fluctuating levels of GABA 

modulate activity of TMN neurons and have been shown to produce hypnosis but not 

complete anaesthesia (Nelson et al., 2002). 

 

Hypocretin/ orexin neurons 

These are wake-promoting neurons and show maximal activity during wakefulness 

(Mileykovskiy et al., 2005). They project to all monoaminergic groups and basal 

forebrain, midline thalamic and other regions and participate in modulating emergence 

from anaesthetics (Kelz et al., 2008, Peyron et al., 1998). 

 

Basal forebrain 

Basal forebrain contains acetylcholinergic neurons (wake-active) and receive input from 

the brainstem and hypothalamic arousal-promoting nuclei and project to the cerebral 

cortex (Jones and Cuello, 1989). Physostigmine, an acetylcholinesterase inhibitor has 
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been shown to reverse the effects of sevoflurane anaesthesia (Plourde et al., 2003). 

Basal forebrain also contains GABA-ergic neurons (sleep-active) which too project to 

the cerebral cortex, especially to the inhibitory interneurons (Freund and Meskenaite, 

1992). These neurons also have α2 adrenergic receptors and are inhibited (during 

wakefulness) by noradrenergic projections form the LC (Modirrousta et al., 2004). 

 

Ventrolateral preoptic nucleus  

Ventrolateral preoptic nucleus lies in the anterior hypothalamus and is reciprocally 

interconnected to wake promoting nuclei, including histaimnergic TMN, serotonergic 

RN, noradrenergic LC, cholinergic LDT and PPT and orexinergic neurons of 

hypothamaus. They contain GABA and so can reciprocally inhibit wake-active 

ascending Reticular Activating system (Szymusiak and McGinty, 2008). 

  

Median preoptic nucleus  

Medin preoptic nucleus (MnPO) has sleep-active GABA-ergic neurons which play a 

role in sleep initiation and fire before the onset of sleep (Suntsova et al., 2002). 

Endogenous somnogens stimulate MnPO and it sends inhibitory signals to other 

systems such as orexinergic system or hypothalamus (Szymusiak and McGinty, 2008). 

 

Thalamo-cortical system 

The thalamo-cortical system (TC) receives input from dorsal pathway and wake-active 

regions of hypothalamus. TC system comprises of three types of neurons, which form 

interlocking positive and negative feedback loops. TC neurons send excitatory 

glutamatergic input to the other two populations: the reticular thalamic neurons and the 

corticothalamic (CT) neurons. The CT neurons send depolarizing glutamatergic 

feedback to the TC neurons (forming the positive feedback loop) and excitatory input to 

the reticular neurons (forming the negative feedback loop, since the reticular neurons 

are GABA-ergic and innervate the TC neurons) (Steriade, 2003). Both reticular and TC 

neurons receive monoaminergic and cholinergic input from the brainstem, but with 

opposing results. TC neurons are depolarized, while reticular neurons are 

hyperpolarized. During wakefulness, on-going depolarisation of the TC neurons results 

in a ‘tonic’ firing pattern while during sleep they become hyperpolarised and produce a 

‘bursting’ pattern of activity. During this phase they prevent transmission of sensory 
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stimuli to the cortex (Alkire et al., 2000). Anaesthetic drugs have been shown to affect 

these thalamo-cortical systems in wide ranging sets of experiments (Alkire et al., 1995a, 

Alkire et al., 2000, Alkire et al., 2007, Byas–Smith, 2002, Ching et al., 2010a, Vijayan 

et al., 2013a, Akeju et al., 2014, Alkire et al., 1997, Alkire et al., 1999, Byas-Smith et 

al., 2002, Ni Mhuircheartaigh et al., 2013, Schreckenberger et al., 2004). 

 

Interactions between brainstem, wake-sleep circuits and the cortex 

 

The section above provides an overview of the literature on potential anaesthetic action 

on the brain regions, which regulate physiological consciousness states, including the 

brainstem, wake-sleep circuits and the thalamo-cortical systems. As these systems do 

not work in isolation, interactions between these systems are likely to contribute to the 

unconsciousness related to anaesthesia. 

 

It has been proposed (John and Prichep, 2005) that anaesthetics work by suppressing 

brainstem influence of the RAS on the thalamus and cortex. Further depression of 

mesolimbic-dorsolateral prefrontal cortex interactions leads to blockade of memory 

storage. Further depression of the RAS releases its inhibition of the nucleus reticularis 

of the thalamus, resulting in closure of thalamic gates (especially in the diffuse 

projection system) by hyperpolarizing GABA-mediated inhibitory action of the nucleus 

reticularis (increases inhibitory action), thereby blocking thalamo-cortico-thalamo-

cortical reverberations. This possibly decreases perception. Further anaesthetic action 

results in uncoupling of parietal–frontal transactions (coherence decreases), and blocks 

cognition. Suppression of prefrontal cortex reduces awareness. These changes are 

unlikely to follow a precise sequence but it is conceivable that brainstem actions 

precede those on the cortical-subcortical activity.  

 

The experiments in this thesis have focused mainly on local actions of the GABA-ergic 

drug (propofol) on human cortical and subcortical activity. Any effect on the brainstem 

function or that on primary afferents (e.g. primary order neurons or spinal level activity) 

has not been directly studied. While this presents a limitation of the present set of 

experiments, it reflects the limits of current neuroimaging techniques (in the temporal 

and spatial domains to study finer brainstem and spinal level function). However, as the 



 
     
 

 
 
 

23 

current non-invasive neuroimaging techniques evolve further, it may be possible to 

study these finer brain functions too, in the near future.   

 

 

 

Figure 1-1: Figure showing sagittal view of brain demonstrating some of the key 

areas involved in anaesthesia and sleep.  

Inset highlights key arousal systems with neurotransmitters involved in sleep or 
wakefulness. Sleep-active loci are shown in light blue. When wake-active systems 
(shown in red) are firing they antagonize the sleep-active groups. Conversely, when 
sleep-active neurons are active, they mutually antagonize the wake-active regions to 
further reinforce sleep. Anesthetic drugs are known to interact with this circuitry to 
produce hypnosis. 5-HT: serotonin; ACh: acetylcholine; DA: dopamine; GABA: γ-
aminobutyric acid; Gal: galanin; HA: histamine; Glut: glutamate; NE: norepinephrine; 
BF: basal forebrain; DpME: deep mesencephalic reticular formation; LC: locus 
coeruleus; LDT laterodorsal tegmentum; MnPO: Median preoptic nucleus; mPFC: 
medial prefrontal cortex; Ox: orexin/hypocretin neurons in lateral, perifornical, and 
posterior hypothalamus; PnO: pontine reticular nucleus oral part; PPT 
pedunculopontine tegmentum; RN: raphe nuclei; SCN: suprachiasmatic nucleus; TMN: 
tuberomammillary nucleus; VLPO ventrolateral preoptic nucleus; vPAG: ventral 
periaqueductal gray. Adapted from (Moore and Kelz, 2011) 
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1.4  Cortical cytoarchitecture and cell assemblies: generation of brain 

rhythms 

The human neocortex is a thin, and extended, convoluted sheet of tissue with a surface 

area of ~2600 cm2, and thickness 3–4 mm. It contains up to 28 x109 neurons and 

approximately the same number of glial cells. Cortical neurons are connected with each 

other and with cells in other parts of the brain by a vast number of synapses, of the order 

of 1012 (Mountcastle, 1997). The neurons in the neocortex are structured in relatively 

well-defined horizontal layers (6 laminae) and vertical columns. The basic unit of the 

neocortex is a ‘minicolumn’, a narrow chain of neurons extending through the layers, 

perpendicular to the pial surface. Each minicolum contains 80-100 neurons (a lot more 

in the striate cortex). Cortical columns are formed by minicolumns bound together by 

short-range horizontal connections. Putting these columns in macroscopic perspective, 

assuming that a column with a diameter of 40µm contains 100 cells, the cortical surface 

that would correspond to 50,000 cells (which is the number expected to produce the 

weakest magnetic current of 10nAm) should form a patch with about 0.63 mm2 in area. 

If this cortical patch had a circular form, then its diameter would be about 0.9 mm 

(Lopes da Silva, 2010).  
 

While the neocortex contains hundreds of types of cells, they may, broadly, be 

classified as ‘projection neurons’ and ‘interneurons’. Projection neurons are 

glutamatergic, pyramidal neurons that project to other cortical, subcortical and 

subcerebral regions (Figure 1-1). Interneurons are GABA-ergic and make local, short-

distance connections (Molyneaux et al., 2007). The basis of the columnar arrangement, 

in sensory cortices, is that each column receives selective input from the relay thalamic 

nuclei. Activities, both excitatory and inhibitory, in these cortical pyramidal cells are 

observed on Electroencephalography (EEG) (Kirschstein and Kohling, 2009). 

Pyramidal cells in different layers may have further differentiation of roles depending 

on the inputs ending in those and the afferent sources (Figure 1-2). For example, the 

visual evoked potentials are generated from the activity of the layer IV (Kraut et al., 

1985) while the visual gamma band responses result from the activities of layers II, III 

and IV (Xing et al., 2012). 
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Figure 1-2: Cortical laminar structure: basic circuits.  
Blue and grey fibres are afferents, interneurons are green and efferents are red. Adapted 
from Lynch, 2013 (Lynch, 2013) 

 

Inhibitory interneurons, typically, have short ranges and influence neurons close-by. 

They also have short latencies and faster action potentials than pyramidal cells. These 

cells, thus, prevent runaway excitation of pyramidal cells. There is feed-forward 

inhibition, such that a rapidly occurring inhibitory potential limits the time window for 

summation of excitatory inputs to generate action potentials. There is feedback 

inhibition too, where excitation of the pyramidal cell excites the interneuron which 

inhibits the pyramidal cell (Figure 1-3) (Mohler, 2002). This mechanism results in the 

oscillatory action potentials, which are then recorded as the EEG/ 

Magnetoencephalography (MEG) rhythms.  

 

Neeraj Saxena


Neeraj Saxena
Image protected by copyright. Permission has not been obtained to print it digitally



 
     
 

 
 
 

26 

 
 

Figure 1-3: Scheme of feedforward and feedback inhibition  
Pyr: Pyramidal cells. Adapted from Mohler, 2002 (Mohler, 2002). 

 

1.5  Using advances in neuroimaging techniques 

As is clear from the previous sections that neuronal assemblies, in microscopic scale, 

interact with each other, in microsecond time scales, to produce the behavioural changes 

associated with anaesthesia. In-vivo study of such changes in humans is close to 

impossible. Advances in neuroimaging techniques have provided a non-invasive 

window into such neuronal changes, albeit, occurring at a macroscopic, large scale, 

network-level. The advantages and strengths of different neuroimaging techniques are 

discussed in more detail in Chapter 2.  

 

1.6  Insights into anaesthetic action from neuroimaging research 

Neuroimaging techniques, in humans, have been used to confirm the findings of animal 

(in vivo/ in vitro) research; but also to generate testable hypotheses. Some of the earliest 

neuroimaging studies used positron emission tomography (PET) to study 
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pharmacodynamic effects on the brain and also to study cerebral perfusion changes, 

especially in terms of their usefulness for neuro-anaesthesia, or in patients with a raised 

intracranial pressure. PET was therefore, naturally, used to study perfusion and 

metabolic changes to study anaesthetic mechanisms. The neuroimaging literature may 

be divided into specific questions, in relation to different consciousness levels and 

different anaesthetic drugs, which the neuroimaging researchers have attempted to 

answer.  

 

 Is the anaesthetic effect global or regional? 1.6 .1

Some of the early theories of anaesthetic mechanism suggested a ‘global suppression’ 

by drugs resulting in unconsciousness. However, neuroimaging studies demonstrated 

that there was not only a global reduction in cerebral metabolism and perfusion, but also 

that different anaesthetics affect different regions preferentially. In one of the first 

studies of its kind, Alkire et al, during propofol anaesthesia, showed reduced global 

metabolism along with some regions more depressed than others (Alkire et al., 1995b). 

Inhalational anaesthetic agents isoflurane and halothane revealed a significant global 

suppression of neuronal activity (Alkire et al., 1997, Alkire et al., 1999). There was a 

greater global suppression and regional suppression of cortical metabolism with less 

effect on basal ganglia and midbrain with propofol as compared to the inhalational 

agents. Sedative doses of propofol and sevoflurane reduced perfusion in the cuneus, 

precuneus, posterior limbic system and the thalamus or midbrain, with propofol causing 

additional reduction in frontal and parietal regions (Kaisti et al., 2002). Jeong et al 

described the changes as propofol affecting the neocortex more while sevoflurane 

affected the paleocortex and telencephalon more (Jeong et al., 2006). 

 

Halothane and isoflurane, drugs with similar chemical structure, appeared to have 

different effects on perfusion in different regions (Reinstrup et al., 1995). Even within 

GABA-ergic intravenous anaesthetic drugs, different molecules may have different 

actions on the brain. Propofol at sedative doses decreases cerebral blood flow (CBF) in 

the right-sided anterior brain whereas thiopental decreased CBF mainly in the left 

cerebellum. At hypnotic concentrations both drugs decrease CBF in the posterior 
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cortical regions. Also, at these concentrations propofol reduced thalamic blood flow but 

thiopental did not (Veselis et al., 2004b). 

 

These studies demonstrated the regional effects of anaesthetic agents and pointed 

towards mechanistic differences between propofol and inhalational groups of drugs.  

 

 Relating molecular mechanisms to neuroimaging findings 1.6 .2

The key differences in propofol and the commonly used inhalational anaesthetic agents 

is that while propofol has mainly GABA-ergic activity, inhalational drugs work through 

a number of other receptors. Cerebral metabolic changes with propofol correlated with 

the GABA receptor density (i.e. areas with greater GABA receptors, showed greater 

reduction in activity) but not with isoflurane, which produced metabolic changes 

correlating with the muscarinic (acetylcholinergic) receptor density (Alkire and Haier, 

2001). These findings further provided proof of different receptor mechanisms of the 

two main groups of anaesthetic agents. 

 

 Neural correlates of suppression of sensations and cognition 1.6 .3

Anaesthetic unconsciousness includes reversible cognitive and sensorimotor failure. 

Neuroimaging studies have been done during specific tasks to investigate changes in 

brain activity and the effect of anaesthetic drugs on the regions involved with escalating 

doses. 

 

During isoflurance anaesthesia, blunting of noxious and normal sensory stimuli were 

shown while some sensory cortical and thalamic activity persisted during lower 

(sedative) doses (Antognini et al., 1997). Similarly, at sub-anaesthetic doses, isoflurane 

was shown to affect specific areas including the right anterior insular and intraparietal 

sulcus while performing a visual search task while the sensory cortical and subcortical 

regions were unaffected (Heinke and Schwarzbauer, 2001). With propofol, brain 

responses to a vibrotactile stimulus decreased in a dose-dependent manner in the 

cortical and subcortical regions (Bonhomme et al., 2001). Thalamic activity was lost 

completely only at the doses producing unconsciousness. Propofol related dose-
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dependent suppression of primary cortical activity has been shown by multiple groups 

(Dueck et al., 2005, Veselis et al., 2005). Similarly, dose related suppression of brain 

activity in higher-order regions has been shown by most of these studies. Thalamic 

activity is lost later as sedative depth progresses; however, it stays unclear if thalamic 

suppression is a cause or consequence of cortical suppression. While some of these 

studies supported the concept of a ‘thalamic switch of consciousness’, other 

neuroimaging modalities have revealed other contenders as the key anatomical sites for 

switching consciousness on-off, or a lack of any such specific brain site (See Section 

1.6.7). 

 

 Neural correlates of amnesia 1.6 .4

Amnesia is a key component of anaesthesia and has therefore been an area of interest. 

The focus has been on studying anaesthetic effect on brain regions known to be 

involved in memory and the sequence of amnesia induced as a part of anaesthetic 

process. 

 

Midazolam (a benzodiazepine (BZD), another GABA-ergic drug), is commonly used 

for procedural sedation provides good anterograde amnesia. Decreased CBF in the left 

middle temporal gyrus, left dorsolateral prefrontal cortex and bilateral orbitofrontal 

cortex were shown during midazolam infusion (Reinsel et al., 2000), however activity 

on prefrontal cortex was not associated with amnesia (Bagary et al., 2000). Lorazepam 

(another BZD) and scopolamine (anticholinergic drug) produced amnesia and 

suppressed activity in the hippocampus, fusiform gyrus and inferior prefrontal cortex 

(Sperling et al., 2002). 

 

Right sided prefrontal and parietal areas were involved in the amnesic effects of 

propofol sedation, while medial temporal lobes were more resistant, suggesting an 

indirect effect of propofol on centres known to be key for memory (Veselis et al., 2002). 

During an auditory recall task it was shown that primary and association auditory 

cortical areas remain active during propofol anaesthesia but the regions associated with 

processing and recall, bilateral planum temporale, were suppressed at sedative doses 

(Plourde et al., 2006). Davis et al., studied the brain responses to different states of 
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speech, comprehension and recall (Davis et al., 2007). They showed that superior and 

middle temporal gyri were related to speech perception and active during the mild 

sedation stage but not during deep sedation. Activation of the inferior frontal and 

posterior temporal responses corresponded to comprehension and was absent even 

during mild sedation. 

 

These studies have therefore helped understand some of the key steps in the anaesthetic 

cascade with specific effects on key brain regions involved in memory and recall.  

 

 Atypical anaesthetic drugs 1.6 .5

Anaesthetic drugs with different (non-GABA-ergic) actions, such as ketamine, nitrous 

oxide, xenon and dexmedetomidine are associated with quite different behavioural and 

central effects. Most of these drugs are not useful as sole anaesthetics (except ketamine) 

but they are useful as sedatives and as a component of multimodal anaesthesia. 

Neuroimaging studies of the altered consciousness induced by these drugs have also 

provided a valuable insight into the mechanisms of anaesthesia and the differences with 

typical anaesthetic drugs. 

 

Ketamine is an NMDA antagonist and produces a state of ‘dissociative’ anaesthesia 

where patients are immobile, amnesic and do not experience pain. However, they 

appear awake, although detached from the surroundings and may also be able to talk. 

PET demonstrated a dose dependent CBF increase in the anterior cingulate, thalamus, 

putamen and frontal cortex while the greatest relative increase occurred in the anterior 

cingulate cortex (ACC), insula and frontal cortex (Langsjo et al., 2003).This increase in 

perfusion was associated with an increase in neuronal metabolism (Langsjo et al., 2005, 

Langsjo et al., 2004). Blood oxygen level dependent -functional magnetic resonance 

imaging  (BOLD-fMRI) studies also demonstrated task related deactivations in specific 

brain regions with ketamine (Abel et al., 2003a, Abel et al., 2003b) while its analgesic 

effects were correlated with a reduced activity in the insular cortex and thalamus 

(Rogers et al., 2004). 
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Like ketamine, nitrous oxide has been shown to increase cerebral metabolism. 

Inhalation of nitrous oxide (20%) was associated with significant activation in the 

anterior cingulate cortex, while deactivation was found in the posterior cingulate, 

hippocampus, parahippocampal gyrus, and visual association cortices (Gyulai et al., 

1996). Unlike ketamine and nitrous oxide, xenon was shown not to increase 

metabolism. Xenon resulted in a metabolic suppression and also cortical and sub-

cortical CBF decreases (Rex et al., 2008, Rex et al., 2006). 

 

Dexmedetomidine is an α-2 adrenergic agonist, which produces characteristic sedation 

wherein patients are easily arousable even from deeper stages of unconsciousness. PET 

showed a dose dependent global and regional decrease in CBF with dexmedetomidine 

(Prielipp et al., 2002). Clonidine, another α-2 adrenergic agonist, was shown to reduce 

acts on the prefrontal, orbital and parietal association cortex, precuneus, posterior 

cingulate and thalamus (Bonhomme et al., 2008).  

 

These neuroimaging findings show how different receptor mechanisms affecting 

different brain regions may produce the same behavioural outcomes, i.e. altered 

consciousness.  While this does not completely shift the focus away from having a 

single common final pathway of anaesthetic unconsciousness, it shows that there may 

be a number of different paths in terms of approaching it. 

 

 Connectivity between brain regions 1.6 .6

As the understanding of the anaesthetic effects on the brain regions (and their 

metabolism and perfusion) has improved, the focus has moved on to the interaction of 

different brain regions underlying anaesthesia. This has been facilitated by discovery of 

the temporal coherence in the activity of various brain regions, resting state networks 

and the advances in mathematical modelling, being able to predict the influence of one 

region over another.  

 

Network connectivity studies have studied higher-state (those serving higher cognitive 

functions) and basic-state (those serving primary sensory functions) functional networks 

and consistently demonstrated a disruption of higher state networks earlier in the 
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anaesthetic cascade while the lower-state networks (primary function) maintained their 

activities even during deeper stages of sedation and anaesthesia (Boveroux et al., 2010, 

Liang et al., 2015, Martuzzi et al., 2010, Mhuircheartaigh et al., 2010, Stamatakis et al., 

2010).  

 

While functional connectivity provides a useful measure of the potential relationship 

between different brain regions, efforts have been made to identify more direct 

measures and to be able to demonstrate causal influence of one site on the other to 

establish the sequence of effects. EEG changes following transcranial magnetic 

stimulation (TMS) induced stimulation showed that during midazolam sedation the 

spread of cortical activity was much limited to the stimulation site (Ferrarelli et al., 

2010). This demonstrated a direct measure of loss of cortical connectivity from the 

stimulation site, associated with midazolam. The direction of connectivity within the 

fronto-parietal networks has also been of interest. The feed-forward connections relay 

incoming sensory information while the feedback projections help select and interpret 

those. During the anaesthetic state the feed-forward information transfer may continue 

however the feedback gets reduced and may be responsible for the unconsciousness 

(Imas et al., 2005). Computational modelling has shown this directional suppression of 

feedback activity as a common step between different classes of anaesthetics including 

ketamine, sevoflurane and propofol (Lee et al., 2013b). During propofol induced 

anaesthesia feed-forward connectivity persists suggesting that sensory information 

continues to flow (Ku et al., 2011). 

 

Combining information from neuroimaging tools (as is the focus of this thesis) has also 

provided valuable information about the temporal and spatial sequence of changes in 

the anaesthetic cascade. Slow wave EEG-activity (1Hz) of cortical neurons emerged at 

the point of loss of consciousness with propofol and was associated with thalamo-

cortical dissociation (Ni Mhuircheartaigh et al., 2013).  
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 Consciousness switch 1.6 .7

A great deal of research has focused on identifying a key brain area which results in 

consciousness, a so called ‘consciousness switch’. Neuroimaging techniques have 

provided a tool to investigate if indeed there is such a brain region. 

 

Thalamus had been known to be the gateway to the cortex and therefore naturally 

appeared to be a contender. Thalamic microinjection of nicotine was able to reverse 

sevoflurane induced unconsciousness in mice (Alkire et al., 2007). Selective lesions of 

the medial thalamus can produce coma while stimulation of the central thalamus can 

restore consciousness (Schiff, 2008, Schiff, 2009). Most neuroimaging literature, as 

discussed above, shows thalamus to be more resistant to anaesthetic effects than the 

cortical areas, suggesting that thalamic suppression is related to anaesthetic 

unconsciousness. However, more detailed analyses and recent anaesthetic literature has 

challenged this view. It is unclear whether thalamic suppression is a cause of 

unconsciousness, or the consequence of cortical suppression (and therefore 

unconsciousness) or an equal participant (Mashour and Alkire, 2013a). 

 

Precuneus, which forms a key node of the default mode network has also been 

suggested by some as the key region maintaining consciousness. As one of the brain 

areas with highest resting metabolism, it is one of the commonly affected areas in 

sedation/ anaesthesia (Cavanna and Trimble, 2006). Physostigmine induced reversal of 

propofol sedation was associated with increased perfusion of thalamus and precuneus 

(Xie et al., 2011). More recently the right dorsal anterior insular cortex has been 

proposed as the cortical gate associated with anaesthesia (Warnaby et al., 2016). 

 

These neuroimaging studies have certainly contributed to the understanding of 

anaesthetic mechanisms, the similarities and differences between different anaesthetic 

compounds and the value of using the strengths of different neuroimaging modalities. 

These have informed some of the experimental design used in this thesis. 
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1.7  Need for understanding mechanisms of sedation and anaesthesia 

While anaesthetic drugs may be used as a consciousness probe to understand 

consciousness better, there are other obvious and pressing needs for this area of 

research. The bench to bedside translation of this area of research holds promise for 

clinicians in some of these areas. 

 

 Disorders of consciousness 1.7 .1

Coma has been defined as a state of profound unconsciousness associated with 

markedly depressed cerebral activity, a loss of the ability to maintain awareness of self 

and environment combined with markedly reduced responsiveness to environmental 

stimuli, and a loss of the ability to perceive and respond. This essentially means a lack 

of wakefulness and awareness. Coma, for most people, leads on to irreversible loss of 

brain stem function or brain death. If only wakefulness returns, patients may be in a 

state of unresponsive wakefulness syndrome (UWS: earlier called ‘vegetative state’). 

When patients show return of limited signs of awareness without consistent 

communication with the environment, they are called to be in a state of minimal 

conscious state (MCS). These states are different from the locked-in syndrome, where 

patients have all cognitive functions, but an inability to perform movements except with 

their eyes (Kirsch et al., 2016). 

 

These conditions are not just challenging for clinical management but also pose a 

diagnostic challenge. Wrong diagnosis and classification of altered consciousness states 

can be as high as 40 % (Schnakers et al., 2009). Owen et al, demonstrated presence of 

consciousness in a young woman, who was believed to be in a vegetative state, by using 

activation of relevant brain regions on fMRI on verbal commands (Owen et al., 2006). 

This not only exposed the limited understanding of brain function but also challenged 

the commonly held behaviour-driven definitions of ‘awareness’. Further neuroimaging 

testing revealed awareness and also potentially ability to communicate in a small group 

of patients with minimally conscious states (MCS) (Monti et al., 2010). Similar to 

pharmacological sedation, neuroimaging has revealed disruption of functional 

connectivity in the default-mode network (DMN) and other fronto-parietal resting state 
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networks in patients with UWS/MCS (Noirhomme et al., 2010, MacDonald et al., 

2015). Recovery from UWS/MCS has also been shown to correlate strongly with 

functional connectivity strength of the PCC/ precuneus (Wu et al., 2015). 

Differentiating MCS from UWS has implications in terms of prognosis, but also ethical 

and legal in terms of care and decision-making. Indeed, it has been suggested that 

neuroimaging could be used to facilitate neurorehabilitaiton in such group of patients 

(Laureys et al., 2006). 

 

It is clear that differentiating the various conditions of pathological alterations in 

consciousness is critical in terms of prognosis and overall better quality of care of these 

patients. Neuroimaging techniques have shown value where explicit behaviour has been 

unable to help. It is expected that better understanding of the neurophysiology of 

consciousness will help this particular group of patients.  

 

 Complications of anaesthesia and sedation 1.7 .2

Critically ill patients, being managed in Intensive Care units (ICU), experience a 

number of traumatic experiences during their stay. These include activities such as 

airway instrumentations, placing intravenous / arterial lines, catheterisation and nursing 

care. Most critically ill patients are kept sedated to help them cope with being bed-

bound, dependent and to tolerate mechanical ventilation. Post-traumatic stress disorder 

(PTSD) is fairly common in ICU survivors and while the causes could be many, use of 

benzodiazepine sedatives and ‘frightening’ ICU experiences are common contributors. 

 

The trauma of their clinical condition is compounded by other neurological 

consequences, such as delirium. Delirium, is an acute and fluctuating disturbance of 

consciousness and cognition, a common manifestation of acute brain dysfunction in 

critically ill patients, occurring in up to 80% of the sickest of these patients (Girard et 

al., 2008). This delirium makes the stay distressing; it also has long-term consequences 

including dementia and death. This forms one of the key elements of the ‘triad’ of ICU 

management- pain, agitation and delirium. It has been proposed that sedation should be 

used only after this triad has been managed. Sedation itself can cause delirium and 

different sedatives have been shown to affect the incidence and outcomes of delirium 
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(Reade and Finfer, 2014). Dexmedetomidine has been shown to reduce the incidence of 

ICU delirium when compared with midazolam. It has been suggested that 

dexmedetomidine’s non-GABA-ergic actions, in promoting the natural sleep pathways, 

helps avoid this complication (Pandharipande et al., 2007).   

 

Similarly delirium may occur following surgery (post anaesthesia delirium) and has 

been reported to be as common as 54% in patients undergoing major elective non-

cardiac surgery (Sanders et al., 2011). Certain anaesthetic drugs such as 

benzodiazepines, opioids and inhalational agents are more likely to be associated with 

delirium (Hernandez et al., 2017).  

 

It is likely that a better neurophysiologic understanding of delirium and development of 

cleaner anaesthetic drugs will benefit a large group of surgical and critically ill patients. 

 

 Awareness during anaesthesia 1.7 .3

During general anaesthesia, patients expect to be unconscious and amnesic to their 

surgical experience. Clinically, ensuring amnesia and immobility (which is easily 

achievable by giving high enough doses) needs to be balanced against overdosing 

patients, which may cause cardiovascular compromise or delayed recovery. This is 

where anaesthesia becomes a skillful ‘art’. A better understanding of the brain functions 

which anaesthetic drugs are meant to block can support this art further.  

 

The consequences of accidental awareness during anaesthesia include experiencing 

excruciating pain during the procedure and may have long term neuropsychiatric 

sequelae like PTSD (Ghoneim, 2000). National Audit Project-5 (NAP-5), one of the 

largest surveys of its kind identified the incidence of accidental awareness under general 

anaesthesia (AAGA), its consequences and the factors related to it (Cook et al., 2014). 

They found that although the incidence of AAGA was low, its impact can be 

substantial, with patients experiencing long term distress and psychological 

consequences including PTSD. This was commoner and worse in those patients who 

experienced paralysis (due to the neuromuscular drugs administered) during AAGA. 

NAP recently reported a high degree of awareness during procedures carried out under 
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sedation. This report reflects a failure of explanation on the part of the anaesthetist 

rather than the failure of sedation. While amnesia is not always a goal of procedural 

sedation it would be useful to provide that with reliability and be able to monitor that.  

 

Co-relational depth of anaesthesia monitors have been developed for use during 

anaesthesia and sedation. These are usually indices derived from EEG activity. These 

monitoring systems have, however, not been widely popular due partly to the 

unfamiliarity of anaesthetists with the underlying EEG, but, mainly due to a lack of 

clear understanding of the mechanistic link between anaesthetic drugs and their targets 

of activity. Also, such monitors (and indeed EEG indices) fail to reflect the effects of 

certain drugs that increase EEG activity as opposed to decrease it, with increasing drug 

effect. Therefore, a reliable depth of unconsciousness/ anaesthesia monitor that would 

work with all types of anaesthetic drugs would improve the safety and quality of 

anaesthetic practice. Indeed, it has been suggested that a comprehensive understanding 

of the mechanisms of pharmacological, physiological and pathological consciousness 

may result in development of a ‘consciousness-meter’ (Boly et al., 2013).  

 

With increasing pressures on anaesthetic departments providing clinical cover in non-

operating areas it is increasingly difficult. Sedation, when administered by non-

anaesthetists is associated with a much higher morbidity and mortality (Quine et al., 

1995). If a reliable, responsive sedation monitoring system could be developed, it is 

envisaged that the safety profile of sedatives in non-anaesthetic hands may increase thus 

widening the safe practice that patients enjoy in the hands of anaesthetists. 

 

1.8  Conclusions 

The contents of this chapter provide the relevant background for the experiments in this 

thesis. Understanding of the complexities of some of the receptor mechanisms and 

targets of anaesthesia, brain regions and current neuroimaging literature is required to 

formulate the hypotheses in the following chapters. The focus of this thesis is on mild 

sedation, which is clearly distinct from anaesthetic unconsciousness. While mild 

sedation is the first step towards the loss of consciousness in response to anaesthetic 

drugs, it may also have more in common with other disorders where cognition and 
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memory is affected. A range of advanced neuroimaging tools are used in this thesis in 

an attempt to bring together the metabolic, haemodynamic and electrophysiological 

characteristics of mild sedation to understand its neural correlates. This will undeniably 

assist in understanding the basic mechanisms of sedation. This may, in turn, help 

developments of monitoring techniques to help  make sedation safer in clinical practice.  
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 : Introduction to techniques: General materials Chapter 2

and methods 

 

Each experimental chapter reported in this work involved administering of propofol 

(GABA-ergic drug) in a controlled manner and collecting neurophysiological and 

haemodynamic data using a range of neuroimaging tools. This chapter provides a more 

detailed background of the drug and its administration. It also provides a more detailed 

background of the neuroimaging modalities, their unique characteristics and application 

in the subsequent experiments.  Each following thesis chapter describes the 

experimental paradigm and analytic steps, which complements the information provided 

in this chapter. 

 

2.1  Participants 

This section describes the experimental characteristics, including that of the 

participants, drug choice, administration and safety measures. 

 

 Recruitment 2.1 .1

The project was assessed and approved by the Cardiff University’s Ethical Committee 

(MRSREC no 09/58) and complied with the guidelines of the Declaration of Helsinki. 

Experiments in the project involved healthy volunteers who were recruited through the 

standard recruiting channels of Cardiff University Brain Research and Imaging Centre 

(CUBRIC), as approved by the Ethics Committee. This included contacting previous 

volunteers who had participated in CUBRIC research and were willing to be contacted 

for other neuroimaging research. Flyers asking for volunteers were also placed within 

the Cardiff University departments. An advertisement was also placed through the 

Cardiff University online notice board, the target audience of which included all Cardiff 

University staff and students. The first 20 responders were sent the information sheets, 

medical assessment questionnaire and invited for an initial visit if they met the 

eligibility criteria. The initial visit included confirmation of eligibility criteria (as 
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below), their understanding of the experiments and the risks involved. They were taken 

around the scanner suites to familiarise them with the MR and MEG scanners. They 

were given an opportunity to lie in the ‘mock’ MR scanner (benching) to provide them a 

realistic feel of lying in an MR scanner. This was done as it reduces participant anxiety 

and also the risk of drop-outs during the study session. No study session was arranged 

within at least one week after the consenting/ familiarisation process to give the 

participants enough time to change their mind if they wished to. 

 

2.2  Inclusion and exclusion criteria  

The inclusion criteria included: 

• Participant willing and able to give informed consent for participation in the 

study. 

• Male participants, aged 18 -50 years. 

• In good health and not on any regular medications (American Society of 

Anesthesiologists : ASA grade 1) 

• Fluent English speaker 

• Registered with a GP (the GP will not routinely be informed of the volunteer’s 

participation) 

 

Only male participants were included in these experiments. This was done as one of the 

main hypotheses in these experiments involved investigating the MR detectable GABA 

concentration. There was evidence that variation in Magnetic Resonance Spectroscopy 

(MRS) measures of GABA, in human brain, was related to the different stages of the 

menstrual cycle in female subjects (Harada et al., 2010, Epperson et al., 2002). This 

would have been an additional, difficult to control, confound. Also, the study by 

Muthukumaraswamy et al (Muthukumaraswamy et al., 2009), which had formed the 

basis of a section of this thesis had been performed on male volunteers only. Due to 

these considerations, it was decided to restrict recruitment only to male participants. 
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The exclusion criteria included: 

• Any of the commonly accepted contraindications to MRI scanning or MEG, for 

example, severe claustrophobia, presence of incompatible metallic implants, a 

pacemaker etc.  

• Involvement in another drug study or recent involvement in another drug study 

in the last two weeks 

• Inadequate understanding of verbal and written information in English, 

sufficient to complete an MRI safety screening. 

• Clinically significant condition such as obesity, chronic pain, psychiatric or 

neurological condition. 

• History of: 

o Intolerance/ allergy to propofol 

o Drug dependency 

o Cardiovascular, respiratory, cerebrovascular disease or gastrointestinal 

disorders (such as acid reflux), as determined by the anaesthetist on the 

study. 

o Participants, with a potentially difficult airway (based on external 

assessment) who are likely to be at a greater risk of airway obstruction, 

such as those with a history of snoring, sleep apnoea, obesity or facial 

features such as micrognathia etc. were excluded at the recruitment 

stage. 

 

 Financial compensation 2.2 .1

Participants were paid £10 per hour for their inconvenience. They were also provided 

food and refreshments following the experiments, as they had been fasting prior to that. 

They were also offered a taxi to drive them home or reimbursed such costs. 

 

 Care of participants 2.2 .2

In preparation for the experimental session, all participants were prepared as if they 

were attending for a surgical procedure (which would require a full anaesthetic). This 
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was done as a safety precaution as one of the risks with sedation studies is of 

overdosing, which may create an ‘anaesthetic’ state. Such a state would be associated 

with loss of airway reflexes and potential for regurgitation of gastric contents and 

potential pulmonary aspiration. While the chances for this are very low, the potential 

severity of harm is quite significant. All participants were therefore instructed to fast for 

at least 6 hours prior to the session. They were allowed to have clear fluids up to 2 hours 

prior to the experiment. Following the experimental sessions, all participants were 

monitored for an hour till the effects of sedation had worn off completely. They were 

provided with food and drink when they were able to do so. They were discharged 

home, with an escort, with advice to contact the researchers/medical team in case of any 

problems. They were instructed not to drink alcohol or operate any machinery for the 

next 24 hours.     

 

2.3  GABA-ergic drug- Propofol 

 Investigating mild sedation 2.3 .1

General anaesthesia is defined as a controlled, reversible alteration of consciousness 

induced by pharmacological agents. This state is characterised by unconsciousness, 

amnesia and lack of movement to a surgical stimulus. This is usually associated with 

respiratory suppression and loss of protective airway reflexes. While general 

anaesthesia usually has a well-defined end-point (generally, lack of eyelash reflex in 

clinical practice), end-points of altered consciousness states prior to reaching general 

anaesthesia, are more difficult to define and depend on the context. For procedural 

sedation, the earliest states of sedation involve anxiolysis, followed by deeper stages of 

sedation, such as ‘conscious sedation’, where the patient maintains purposeful contact 

with the operator, either on verbal contact or gentle prodding (Martel and Barnett, 2015) 

but may be amnesic to the experience. At further deeper stages of sedation, the patient 

responds purposefully only on repeated or painful stimulation. At such deep stages of 

sedation the patients start losing control of their airway and their ventilation may be 

depressed. As is clear from this, sedation is a continuum and specific end-points for 

different stages of sedation are difficult to define with objective certainty.    
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Various sedation scales have been developed to help classify the different levels of 

sedation for clinical and research use. Observer’s Assessment of Alertness/ Sedation 

(OAA/S) scale was developed by Chernik et al and has been used extensively (Chernik 

et al., 1990). A modification of the OAA/S scale (Thomson et al., 2009) has been used 

in these experiments (Figure 2-1). To study mild sedation, it was agreed to target the 

earliest identifiable level of sedation (OAA/S level of 4). This state is characterised by a 

participant responding lethargically to normal verbal commands and having a ‘mild 

slowing or thickening’ of the speech.  

 
Figure 2-1: Modified Objective Assessment of Alertness/ Sedation Scale.  
Adapted from Thomson et al (2009). 

 

 Choice of drug 2.3 .2

Most of the anaesthetic agents act through GABA-ergic mechanisms. While volatile 

(inhalational agents) are the commonest anaesthetic drugs used to ‘maintain’ 

anaesthesia, they are rarely used for ‘initiating’ anaesthesia or providing sedation. Their 

administration also requires specialist equipment, such as vapourisers and breathing 

circuits. Therefore the choice of drug, for this series of experiments, was limited to 

commonly use intravenous agents. 

 

Benzodiazepines (such as midazolam and diazepam) are commonly used for peri-

procedural sedation. Midazolam can be used intravenously and the relatively short 

onset, peak and half-life would allow easy titration of drug effects. They work only 
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through the GABA receptors and may be considered the best drug for investigating 

GABA-ergic mechanisms. However, benzodiazepines are not considered anaesthetic 

drugs in the true sense and are never used as a sole anaesthetic drug. The 

pharmacokinetic models for delivering midazolam are less well studied as compared to 

those of propofol making it less practical to administer. In clinical practice, propofol is 

the commonest drug used for ‘initiating’ anaesthesia and is increasingly being used for 

peri-procedural sedation. Considering all these factors propofol was chosen as the drug 

of interest, to study the role of GABA, in the human brain, in producing mild sedation. 

 

 Drug administration 2.3 .3

Sedatives delivered intravenously can be administered using an intermittent bolus 

technique or as a continuous infusion. Continuous infusions may be delivered using 

pharmacokinetic models in which the rate of delivery is altered automatically to achieve 

a desired plasma concentration (target controlled infusion- TCI), considering the 

distribution and elimination pharmacokinetics of the drug. A number of such models 

have been developed for propofol of which Marsh’s (Marsh et al., 1991) and Schnider’s 

(Schnider et al., 1998) are the most commonly used ones. While there are differences in 

how these models have been derived and therefore the calculations they use to decide 

infusion rates, no one model is considered superior to the other, especially for low doses 

in healthy young volunteers (Absalom et al., 2009). Marsh model, which has been 

extensively tested and is more commonly used in clinical practice, was therefore chosen 

for these experiments.  

 

Propofol (Propofol-Lipuro 1%, Braun Ltd.) was administered using an Asena-PK 

infusion pump (Alaris Medical, CareFusion Ltd.) using a TCI based on the Marsh 

pharmacokinetic model (Marsh et al., 1991). Infusion was started targeting an effect-site 

concentration of 0.6 mcg/ml. Once the target was reached, 2 min were given for further 

equilibration. Drug infusion was increased in 0.2 mcg/ml increments until the desired 

level of sedation was achieved. Sedation level was assessed at every two-minute 

intervals by an anaesthetist blinded to the infusion level. At the desired sedation a 

second assessor confirmed the level.  
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 Drug effects and monitoring 2.3 .4

2.3.4.1  Haemodynamic changes 

Most anaesthetic drugs induce hypotension as anaesthesia is induced. The degree of 

hypotension varies among anaesthetic drugs and is usually dose-dependent. Propofol 

causes hypotension both by peripheral vasodilation, reducing systemic vascular 

resistance and also by reducing the contractility of the heart (Claeys et al., 1988, Gauss 

et al., 1991, Robinson et al., 1997). Hypotension is common at anaesthetic doses of 

propofol but uncommon with conscious sedation doses. The degree of hypotension may 

also be related to the rate of drug administration, which is lower using a target 

controlled infusion (TCI) as opposed to a bolus injection. The likelihood of hypotension 

was low considering the amount required for mild sedation and the use of a TCI pump. 

Neurovascular coupling, which forms the basis of some of the neuroimaging modalities, 

in particular BOLD-fMRI, is largely unaffected by propofol (Veselis et al., 2005). 

 

2.3.4.2  Airway and breathing control 

Respiratory suppression is also a requirement of anaesthesia and therefore a desirable 

element of the effects of anaesthetic drugs. Propofol causes significant respiratory 

depression at anaesthetic doses but less so with sedative doses (Goodman et al., 1987). 

This is also dependent on the dose and rate of delivery. Doses required for mild sedation 

are unlikely to cause significant respiratory depression.  Irrespective of this, oxygen was 

supplied to all participants at 2 litres/ minute through nasal cannulae and expired 

carbon-dioxide measured to monitor ventilatory depression. 

 

Airway obstruction may occur as a consequence of a sedated state, especially with 

volunteers lying in a supine position. Airway obstruction may further worsen 

respiratory depression. Conscious/mild sedation is characterised by participants being 

able to maintain their oral/pharyngeal tone, therefore, the likelihood of airway 

obstruction was perceived to be low. Participants who are likely to be at a greater risk of 

airway obstruction, such as those with a history of snoring, sleep apnoea, obesity or 

facial features such as micrognathia etc. were excluded at the recruitment stage.  
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2.3.4.3  Monitoring for side effects 

The order of experiments was chosen with MEG experiments being first and followed 

by the MRI session, at least one week apart. All the volunteers had been given an 

opportunity to lie in the mock MRI scanner as part of the consenting process to reduce 

any apprehension about the scanning environment. The MEG scanning session involved 

participants lying on the flattened bed of the MEG scanner. Herein the participant’s 

head is inside the MEG helmets but the rest of the face is exposed and easily accessible. 

This served as an additional opportunity to ensure safety with the sedation protocol of 

participants prior to their MRI scanning session.  

 

Participants were monitored throughout the scanning sessions by one senior 

anaesthetist, who was not involved in data collection, following the Minimum 

Monitoring Standards, as recommended by the Association of Anaesthetists (Checketts 

et al., 2016). Heart rate (continuous), non-invasive blood pressure (every 5 minutes), 

oxygen saturation, and concentrations of expired (end-tidal) carbon dioxide were 

monitored using a MR-compatible, Veris MR Vital Signs monitoring system 

(MEDRAD Radiology). The volunteer was able to alert the experimenters and 

anaesthetist at any time using a voice call over the continuously active intercom system. 

Standard operating procedures were in place to stop study session if there was 

increasing sedation, reduced respiratory rate, desaturation (blood oxygen saturation 

levels of less than 90% while breathing air enriched with 2 litres of oxygen per minute), 

a drop in pre-baseline blood pressures of more than 20% or if the participant developed 

any intolerance to propofol. Volunteers were monitored for at least one hour following 

the cessation of propofol infusion.  

 

2.4  Experimental design 

The experiments were performed in two sessions, with the same participants. Following 

recruitment, consenting and ‘benching’ as required, the first session was the MEG 

session while the second one was the MR session. This order was maintained 
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throughout the study and the gap between the two scanning sessions was at least one 

week. 

 

The schematic below (Figure 2-2, Figure 2-3) describes the sequence of data collection 

within the two sessions. The different data collected in the two scanning sessions have 

been described as separate experiments, within the thesis, as they test/ investigate 

separate hypotheses. 

 

 MEG session 2.4 .1

An anaesthetist inserted a cannula in a vein of the hand/arm of the volunteer before 

entry to the MEG suite. Median nerve localisation was done for the somatosensory task. 

The electrodes were placed to produce a robust adduction of the thumb, in a non-

painful, repetitive twitch. Once inside the MEG suite, the volunteer lay on the MEG 

trolley and were positioned supine for the scanning. Monitoring was applied as in 

Section 2.3.4.3. The first half of the scanning was done in the Awake state without any 

drug infusion. Participants performed a visual and auditory reaction time test at the start 

and the end of the session. They were presented with various stimuli (Figure 2-2) and 

were asked to perform various tasks.   

 

Propofol infusion was then started and increased slowly till the desired level of sedation 

was achieved. The starting target plasma concentration was 0.6 mcg/ml, as administered 

using the Marsh pharmacokinetic model. Once the target concentration was achieved, 

two minutes were allowed to pass, for further equilibration, before increasing the target 

level by a further 0.2 mcg/ml. This sequence was continued till the desired level of 

sedation was achieved.  

 

Once mild sedation (assessed using an OAA/S level of 4; Figure 2-1) was achieved the 

second part of the scanning (Sedated state) commenced. This included the same tasks 

and stimuli as the Awake session.  
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Figure 2-2: Schematic of the MEG Session  
 

At the end of the scanning in the Sedated session, propofol infusion was stopped and the 

infusion line disconnected. After waiting for a few minutes the participant was 

supported to sit-up and once they were comfortable and recovered enough, assisted to 

walk out of the MEG suite. They were monitored for a further period of about 1 hour to 

ensure recovery from drug effects.  

 

The MRI session followed at least 1 week after the MEG session to allow a complete 

“washout” period in which the drug naturally clears from the system.  

 

 MRI session  2.4 .2

Participants had their scalps prepared for application of an MR compatible EEG cap 

(BrainAmp MR, BrainProducts, Munich, Germany). EEG data was collected 

throughout the MR scanning session, but not analysed as part of this thesis.  

 

A cannula on the dorsum of the hand was then placed. Electrodes were placed to 

stimulate the median nerve. Once inside the MR suite, the volunteer lay on the MR 

trolley and were positioned for the scanning. Respiratory bellows and cardiac 

monitoring for the MR scanner were applied as standard. Further physiological 

monitoring was applied as in Section 2.3.4.3. The first half of the scanning was done in 

the Awake state without any drug infusion. Participants performed a visual and auditory 

reaction time test at the start and the end of the session. They were presented with 

various stimuli (Figure 2-3) and were asked to perform various tasks.   
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Propofol infusion was then started and continued as for the MEG session. Once mild 

sedation was achieved, scanning and stimuli were repeated (Figure 2-3). Termination of 

infusion and participant recovery were performed as in the MEG session.   

 

 

 
Figure 2-3: Schematic of the MR session  
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2.5  Functional Neuroimaging 

Functional brain imaging broadly refers to include the full range of techniques, which 

may be used to define physiological changes accompanying brain activity. In vivo 

methods help gather information at the level of larger neuronal assemblies and 

pathways. This is unlike the in-vitro methods, which allow study of individual neuronal 

level function. These techniques, therefore, provide an extension from microscopic level 

study of brain function and help understand brain function at a larger-scale, 

macroscopic level and provide the bridge between understanding of cellular function 

and clinical/ behavioural responses to those.  

 

 
Figure 2-4: Functional brain mapping tools.  
Relative ranges of the tools in temporal and spatial domains. Adapted from Cohen and 
Bookheimer (1994) 

 

The aspiration of neuroimaging techniques is to provide a complete spatiotemporal 

description of the distribution of the various activities in the brain. Currently this is not 

feasible by any individual neuroimaging modality, however, using modalities in a 

complementary manner may go some distance in providing a comprehensive 

understanding of neural functions. Such a complementary use of neuroimaging 

modalities forms the basis of this work. 
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 Functional MRI 2.5 .1

2.5.1.1  Principles of MRI 

Nuclei with an uneven number of nucleons (sum of protons/ neutrons) develop a 

magnetic moment when placed in a magnetic field. They act as a dipole and may 

rearrange themselves in a higher energy state (opposite to the background field) or 

lower energy state (in line with the field). This magnetisation has a characteristic 

frequency in relation to the oscillating radiofrequency, known as the Larmor frequency. 

 

 
Figure 2-5: Direction of magnetic spins (M) changing with applied magnetic field 
(B0)  
Adapted from Noll (2001) 

 
When radiofrequency (RF) magnetic field is applied in a perpendicular direction, these 

nuclei get ‘excited’. Once the nuclei are excited they return back to the low energy state 

by emitting RF. Transition between the 2 energy states results in emission or absorption 

of energy. Frequency of released energy depends upon the magnetic field and the 

resonance of the nuclei is specific to those; this information can be used to identify / 

map specific groups of nuclei.  

 

This relaxation also depends upon its interaction with adjoining nuclei (lattice). This 

relaxation process (time) is referred to as T1 (spin-lattice relaxation time). This process 

has a relaxation time – rate constant of 1/T1. For example, tissue has a shorter T1 than 

water; therefore by altering repetition time (TR) (providing increasingly inadequate time 

for complete relaxation) different tissues may be preferentially captured. As nuclei start 
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relaxing, each nucleus’ relaxation affects the magnetic field slightly. All this combined 

over larger volumes leads to a loss of coherence of the signal intensity. This ‘spin-spin’ 

interaction is referred to as T2 relaxation time, which is an intrinsic property of a 

nucleus in a particular environment.  Grey matter has longer T2 than white matter. By 

increasing echo time (TE) the signal from tissues with a longer T2 increases. The rate of 

decay changes as molecules pass through zones with different local field gradients. 

These changing local field gradients lead to more rapid decay (e.g. tissue close to blood 

vessels), referred to as T2* relaxation time. So, in areas of rapidly changing fields T2* 

can be shorter than T2. All these principles are used to identify different tissues with 

MRI. 

 

 Spatial localisation 2.5 .2

Spatial localisation of these nuclei is achieved by altering magnetic field gradients in 

different axes (x and y, where z axis is the main magnetic field, for e.g in the axis of the 

bore of a typical MR scanner). By altering these gradient fields and their timings, 

frequency shifts and phase shifts can be induced which are then captured to help localise 

different tissues in the 3 dimensions. 

 

 Physiological basis of fMRI 2.5 .3

To be able to detect changes brain function a contrast is required. It is known that with 

increasing neuronal activity there is an increase in regional blood flow to provide for the 

metabolic requirements of the neurons. This ‘neurovascular coupling’ forms the basis of 

studying changes in blood flow as a surrogate for neuronal activity in the form of a 

Blood Oxygen Level Dependent (BOLD) contrast. 

 

BOLD utilises the magnetic susceptibility of Haemoglobin (Hb); since deoxygenated 

Hb is paramagnetic, while fully oxygenated Hb is diamagnetic. The paramagnetic 

deoxy-Hb alters the static magnetic field making the protons precess at different 

frequencies causing more rapid phase dispersal and decay of NMR signal. This alters 

the T2* signal and intensity. With increasing neuronal activity, as glucose and oxygen 

get utilised, there is a compensatory increase in CBF (oxygenated blood). An increasing 
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oxygenated blood should reduce the inhomogeneity of the magnetic field (reducing 

relative deoxyHb concentration) and therefore increase T2* decay time resulting in 

increased signal intensity. This appears as in increase in BOLD signal intensity, in 

response to neuronal activity and forms the basis of fMRI. 

 

 
 

Figure 2-6: Echo-Planar Imaging sequence 
RF-Radiofrequency pulse, Gy: phase encoding gradient , Gx: Frequency encoding 
gradient. Adapted from Noll (2001). 

 
Figure 2-7: Schematic of a typical BOLD response.  
This represents a brief initial dip, followed by a robust positive response followed by a 
slower post-stimulus undershoot. Adapted from Hoge and Pike (2001). 

 

The haemodynamic response, which forms the basis of BOLD, however, does not 

follow the neuronal changes linearly. Each response has different components as shown 
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in Figure 2-7. The maximum observed amplitude of the BOLD response is about 5% for 

primary sensory stimulation and about 0.1-0.5% for cognitive tasks at 3T. The onset of 

the haemodynamic response occurs within 1-2 seconds, peaks within 4-6 seconds of the 

stimulus and returns to baseline by 12-20 seconds. There is occasionally an initial dip 

that occurs within the first 1-2 seconds and represents the oxygen consumption before 

changes in blood flow and volume occur. A post-stimulus undershoot may persist for up 

to 20 seconds after the stimulus (Hoge and Pike, 2001). 

 

The precise mechanisms of this ‘neurovascular coupling’ are also not completely 

understood.  Synaptic activity, dendritic activity and to a much lesser extent direct 

neuronal activity have been shown to be responsible for the haemodynamic activity, 

seen as BOLD. Although excitatory activity is more likely to produce a BOLD signal 

there is plenty of evidence that inhibitory activity (or that associated with no measurable 

macroscopic electrophysiological activity) may still result in a BOLD signal. To further 

add to the complexity, there is a range of factors, both physiological and technical, 

which may influence the resulting in the signal intensity as observed on MRI (Figure 

2-8). 

 

 Resolution of BOLD-fMRI 2.5 .4

Resolution in fMRI is limited by its signal to noise ratio (SNR). For MRI, SNR depends 

on the pixel size, the slice thickness and the k-space readout time. Accordingly, the 

typical fMRI pixel size is 3–4 mm, although with higher field magnets (for e.g. 7T) it 

can be increased substantially. Functional MRI’s temporal resolution is limited by 

haemodynamic response time; typically the BOLD response has a width of ~3s and a 

peak occurring ~5–6s after the onset of a brief neural stimulus. This is much slower than 

the underlying neural processes, and temporal information is thereby heavily blurred. 

Although by using techniques such as jittering event-related stimuli and with 

appropriate analysis methods, temporal inferences in the range of 100ms may be 

achieved (Glover, 2011).  
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Figure 2-8: Schematic showing the interactions affecting the BOLD response.  
Positive/ negative arrows indicate positive/ negative correlations between the 
parameters. Bold arrows represent the significant modulators. Adapted from Noll 
(2001) 

	

 Designing BOLD-fMRI experiments 2.5 .5

The most basic method of designing BOLD based fMRI experiments involves a 

‘subtraction’ method, wherein the change in the BOLD signal between two conditions 

or populations is deemed as a difference in neuronal activity. Since the change in BOLD 

in response to a task is about 0.5- 3%, repeated stimuli are required to achieve a 

reasonable signal. Also, since BOLD provides a relative change (in percentage terms) a 

baseline state is required.  
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Figure 2-9: Typical BOLD haemodynamic response to repetitive stimuli  
This diagram represents the BOLD fMRI timeseries in an active voxel. Blue trace is the 
signal from the voxel while the red trace is the stimulus timeseries. Adapted from 
Poldrack et al. (2011). 

 

The haemodynamic response is modelled around the stimulus design and averaged over 

a number of trials (Figure 2-9). 

 

 Analysing fMRI data 2.5 .6

The basic principles of analysing fMRI data is to compare the BOLD signal change in 

different brain regions and compare them across conditions or groups, using appropriate 

statistical tests.  However, to be able to do so, the data has to be pre-processed to reduce 

the artefacts and noise components, to enhance the signal available for analysis and also 

prepare the data to be compared across different subjects. 

 

The sequence of these pre-processing steps may vary depending on the software 

package used, however, the principles remain similar. FMRIB’s software library 

package (FSL) was used for most of the fMRI analysis in this thesis and so most steps 

have been described in its context. 

 

2.5.6.1  Quality control 

This involves a quality check to ensure that the data are not corrupted by artifacts, such 

as scanner spikes, ghosting or excessive head motion. 
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2.5.6.2  Distortion correction  

The most common method of fMRI acquisition, Echo-planar imaging (EPI) suffers with 

field inhomogeneties (B0), especially at air-tissue interfaces and results in signal drop-

outs and distortions. Correction of distortions requires information from field maps 

required to ‘unwarp’ the EPI. 

 

2.5.6.3  Motion correction 

Even the most compliant participant’s head will move involuntarily (for example during 

breathing, swallowing etc.). Head motion can induce various forms of errors. Bulk 

movement of the head shifts the images in relation to the reference. Occasionally, 

movement of the protons in a different slice occurs where their excitation level may be 

different to that expected by the scanner resulting in inaccurate identification of the 

tissue (spin history effect). The correction therefore involves estimating the degree of 

motion and then using interpolation and transformation to adjust the slices in relation to 

the reference slice. In FSL, motion correction is performed using FLIRT (FMRIB’s 

Linear Registration Tool) by applying rigid-body (using six parameters) transformations 

or its non-linear transformation counterpart- FMRIB’s Linear Registration Tool 

(FNIRT). 

 

2.5.6.4  Physiological noise correction 

Other sources of noise in fMRI data can be introduced through normal physiological 

activity.  The pulsatile blood flow due to heartbeat and chest movements during 

breathing can introduce changes in blood flow and alterations in magnetic field, 

indirectly affecting the BOLD response.  

 

Corrections for these artefacts have been done using techniques which involve removal 

of the low frequency time-locked oscillations in relation to the heartbeats and breathing, 

as identified by a pulse oximeter, respiratory belt or even measured end-tidal CO2 and 

O2 traces (Birn et al., 2006, Glover et al., 2000, Murphy et al., 2011a), as employed in 

this thesis. 
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2.5.6.5  Slice timing correction 

Functional MRI analysis assumes that all brain slices were acquired at the same time 

point. As this is not the case, correction of the timing of the slices is required. This is 

done by choosing a reference slice and interpolating data from other slices to match the 

timing of the reference slice. Slice timing correction has some disadvantages too, as it 

may result in propagation of artefacts into other slices and is therefore not carried out in 

acquisitions with short TR. 

 

2.5.6.6  Spatial normalization (spatial registration)  

Since the anatomy of different individuals varies with respect to each other, spatial 

normalisation (also called registration) is required to be able to combine their data for 

group analysis. 

 

This involves removing of the non-brain tissues and alteration in the various dimensions 

of the image to match it to a reference image. In FSL it is usually done using FLIRT 

(FMRIB’s linear registration tool) (Jenkinson et al., 2002). Functional (EPI) images are 

first registered to the individual’s high resolution T1 weighted structural scan. A rigid 

body transformation is used for within subject registrations with 7 degrees of freedom 

(x, y, z translations, side-side, front-back, up-down rotations and a single global scaling) 

and sinc interpolation. After registration to subject space, an affine transformation with 

12 degrees of freedom (six for rigid body transformation and an additional three 

scalings and three skews) registered the data to a standard space template (MNI 152 T1 

1mm brain, Montreal Neurological Institute, Quebec, Canada. Further non-linear 

transformation can be done to account for small-scale changes, using more advanced 

level tools (in FSL, it is done using FMRIB’s non-linear registration tool- 

FNIRT)(Andersson et al., 2007b).. Typically FLIRT is used for within subject 

registration, for e.g. when registering functional data to subject’s structural data. 

FNIRT, on the other hand is used to refine the registration of a structural image to a 

standard-space image such as a template brain (after application of FLIRT). These steps 
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have been carried out in for the first level (within subject) analyses in all chapters of the 

thesis. Further group-level analyses have been conducted in the standard space.  

  

The steps above involve registration of the whole-brain EPI data. When analysing data 

with a narrow field of view (such as that of the visual cortex in Chapter 3), a multistage 

registration process is required. The first stage is to acquire an EPI of the whole brain 

using the same imaging parameters so that the image with the narrow FOV can be 

registered with this image. Further registration proceeds as described in the paragraph 

above.  

 

2.5.6.7  Spatial smoothing:  

This step involves applying a filter to reduce high frequency information to ‘blur’ the 

images, with a view of increasing SNR. This helps reduce the mismatch between 

individual datasets, for the purpose of group analysis, although at the cost of spatial 

resolution. 

 

2.5.6.8  Temporal filtering:  

Temporal filtering involves filtering of the data in time to remove high and low-

frequency noise. Low pass filtering is not always applied as it may reduce the strength 

of the signal of interest.  

 

2.5.6.9  Statistics: modelling and inference 

The basic tenet of fMRI is to analyse each voxel’s time series to see if the BOLD signal 

changes in response to any intervention. For a simple ‘on/ off’ block design, it may take 

the form of subtracting the averaged responses between the on and off states. Since 

simple statistics may ignore the temporal structure of the BOLD-HRF and therefore 

general linear model (GLM) based analyses are considered more appropriate. This 

involves comparing the time courses of the voxels to an ‘expected’ model of HRF 

(Webster, 2017). 
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A very simple example of linear modelling is y(t)=a*x(t)+b+e(t).  

 

Here y(t) is the data as a function of time. x(t) is the model, a is the parameter estimate 

for x(t), i.e., the value that the square wave (of x) must be multiplied by to fit the square 

wave component in the data. b is a constant, usually corresponds to the baseline (rest) 

intensity value in the data. e is the error in the model fitting. 

 

For each voxel, this model, generates a parameter estimate (PE) depending upon how 

well the data fits the model. These voxel-wise PEs may be plotted into statistical maps 

by dividing them by the estimate error (t value). Statistical transformation converts 

these t-values into Z values (Gaussianised t values) which is the commonly used 

statistical nomenclature in neuroimaging. So, a Z value of 2 means that the data is 2 

standard deviations away from 0. Z –values represent how strongly each voxel’s data is 

related to the explanatory variable. With more than one explanatory variables they can 

be modelled in different (linear) combinations and then contrasted to identify which 

have a stronger effect than the others.  

 

Comparing the results between groups is more difficult, as with a large number of 

voxels there is a high chance of a false positive result. Bonferroni correction for the 

entire number of voxels could prevent that, but that would be too conservative, as the 

voxels are not truly independent of each other. The practical compromise, therefore, is 

to use ‘cluster –level’ (a predefined number of voxels forming a cluster) thresholding, 

where Gaussian field theory is used to estimate probability based on the cluster size and 

the initial statistical threshold chosen (Woolrich et al., 2001). Thresholded activation 

maps can be visualized by setting an appropriate  Z value (for e.g. Z= 2.3). 

 

Group comparisons may then be done using ‘fixed effects’ or ‘mixed effects’. Mixed 

effects is commonly used as it takes into consideration the between subject and between 

session variability and therefore provides information more representative of the wider 

population. FEAT uses FMRIB's Local Analysis of Mixed Effects (FLAME) for this. 
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2.5.6.10  Functional Connectivity analysis 

The section above describes common analytic techniques of data, especially those 

investigating changes in specific regions of the brain. Increasingly neuroimaging data is 

being used to study changes in the way different brain regions communicate with each 

other. This involves studying the change in the BOLD response in relation to a ‘task-

free’ or ‘during task’ period and correlating the time-courses of discrete and distant 

brain-regions. The different options for such functional connectivity between different 

brain regions are as follows (van den Heuvel and Hulshoff Pol, 2010). 

 

Seed based functional connectivity involves choosing a region of interest (seed) and 

estimating the correlation of its BOLD timeseries with other parts of the brain (specific 

regions or the entire brain), thus creating a whole-brain voxel-wise functional 

connectivity map of covariance with the seed.  In this thesis, correlation of timeseries 

has been limited to grey matter. White matter or CSF have not been used as regressors. 

While reasonably straightforward and statistically robust, it has its limitations. Other 

low frequency oscillations (such as physiological, respiratory, haemodynamic 

fluctuations) can create confounds. Also, selection of seed requires a strong a priori 

hypothesis and variations in seed selection can influence results.  

 

Model free or independent component analysis (ICA), do not require a specific a priori 

hypothesis. This technique can search the whole brain for changes in connectivity 

patterns. ICA methods are designed to search for a mixture of underlying sources that 

can explain the resting- state patterns, looking for the existence of spatial sources of 

resting-state signals that are maximally independent from each other. These two 

approaches have been used with fMRI and MEG data in this thesis. 

 

More advanced techniques include graph based network anlayses. A particular network 

architecture, which is commonly emphasised in this emerging field, is small-worldness 

(Watts and Strogatz, 1998). The small-world property is a qualitative description of a 

network characterized by high levels of local clustering and short path lengths linking 

all nodes of the network. This constitutes a particularly attractive model of brain 

network organization, since it can account for the combination of both specialized and 
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distributed information processing, as well as minimizing wiring cost in brain circuitry 

(Achard et al., 2006, Sporns and Honey, 2006). Given the small-world properties of the 

human brain, graph- based methods provide a valuable tool for elucidating network 

structures. Node centrality is a key concept in network analysis, of which one is 

eigenvector centrality, which, identifies nodes that play central roles among highly 

connected nodes of the network (Lohmann et al., 2010).  

 

2.6  Arterial Spin Labelling – MRI 

Cerebral blood flow (CBF) changes correlate well with brain function and therefore 

changes in CBF can be used to study brain activity in different physiological and 

pathological states. Arterial spin labelling (ASL) is one such technique of measuring 

CBF non-invasively.  

 

This technique involves using endogenous water as the magnetic contrast to measure 

CBF. The proton spins of blood arterial water are ‘labelled’, i.e. their magnetisation 

altered (saturated or inverted). A ‘control’ image of a voxel (or slice) is taken which 

represents tissue and blood water. Following a time delay a ‘labelled’ image is taken of 

the water to allow tagged blood to diffuse into the tissue. The difference between the 

magnetisations of the ‘labelled’ blood and control images is proportional to the blood 

flow and represents the ASL signal. 

 

All CBF measurements rely on compartmental modelling and tracer kinetics following 

the flow of tracer through the arterial tree prior to venous washout. Advantages of ASL 

include utilisation of an endogenous tracer, i.e. arterial water, thus avoiding the risks 

with exogenous tracers. ASL can be repeated over time and can therefore follow disease 

progression and longitudinal drug action. ASL also produces an absolute measurement 

of CBF and better spatial and temporal resolution than most other modalities. 
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 Types of ASL 2.6 .1

The different types of ASL differ based on the methods of magnetic labelling of 

inflowing blood. 

 

2.6.1.1  Continuous ASL  

This involves proton labelling in a thin slice at the neck level including continuous 

pulsed RF application for 2-4 seconds and also a gradient and a magnetic field gradient 

in the direction of flow. The advantage of CASL is an improved SNR, but the downside 

is a high level of energy deposit on the molecules. In practice, the RF amplifiers of most 

modern scanners are not able to deliver the necessary pulse durations, so the scheme is 

little used. 

 

 
Figure 2-10: Principle and stages of Arterial Spin Labelling. 
Adapted from Ferre et al. Ferre et al. (2013) 

 

2.6.1.2  Pulsed ASL (PASL) 

This uses shorter pulses of RF. This is more widely used since it is easier to implement. 

Shorter labelling times means less energy is deposited. Drawbacks include lower SNR, 

high sensitivity to transit times and slice profile artefacts. The basis of PASL is an echo- 

planar MR imaging readout but with arterial labelling (on or off for label and control 

respectively) in a slab proximal to the imaging slices. A number of flavours of PASL 

exist of which we have used PICORE QUIPPSII. PICORE improves the profile of the 

Neeraj Saxena
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Image protected by copyright. Permission has not been obtained to print it digitally
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labelling and QUIPPS (Wong et al., 1998)  reduces the sensitivity to the arterial transit 

time. 

 

 BOLD vs ASL 2.6 .2

BOLD is a susceptibility based method that creates a ‘functional’ T2* image by 

exploiting local in-homogeneities in the magnetic field due to change in relative 

concentrations of Oxy and Deoxy Hb. Both BOLD and ASL use endogenous tracers; 

BOLD has higher SNR, is more suited for event related designs, especially where 

absolute quantification is not required. 

 

2.6.2.1  Advantages of ASL  

ASL has certain advantages making it more suitable in certain conditions/ experiments.  

• Spatial localization: BOLD signal is a complex result of the interplay between 

CBF, cerebral blood volume (CBV) and oxygen consumption (with signal 

resulting from capillaries, but also from veins. ASL signal is all related to 

intravascular component, making it more specific. 

• Signal quantification: Baseline values before and after activation are possible 

with ASL and therefore absolute quantification (in physiologically meaningful 

units) is possible. 

• Power spectrum: BOLD has a noise spectrum 1/f ; i.e. higher amplitudes at 

lower frequency making it unsuitable to study events with frequency less than 

0.1 Hz. ASL requires pair wise subtraction and so is frequency independent. 

• Susceptibility effects: BOLD is susceptibility dependent, using Gradient Echo-

Echoplanar imaging resulting in artefacts at tissue-bone or tissue-air boundaries. 

ASL can use Spin-Echo sequences, or other imaging readouts, to reduce such 

artifacts.  
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2.7  Magnetic Resonance Spectroscopy 

Magnetic resonance spectroscopy is a technique, which allows detection and 

quantification of metabolites, in-vivo, using the magnetic properties of its molecules. 

 

 Signal generation 2.7 .1

In a magnetic field, nuclei orient themselves in a specific pattern and release energy as 

they revert back to a low energy state. The electron cloud surrounding these nuclei, 

shield them from the magnetic field and therefore may affect their behaviour in that 

magnetic field. The precession frequency of these nuclei, which depends on the 

magnetic field and their specific gyromagnetic ratio is altered by the electron cloud, as it 

reduces their precession frequency. This change in frequency is known as ‘chemical 

shift’. This is quantified as the ratio of the frequency of the molecule to that of the 

frequency of a reference molecule multiplied by a constant factor (dependent on the 

scanner and acquisition characteristics). This chemical shift is reported in International 

units (in parts per million (ppm)) and therefore, regardless of scanner strength, always 

has the same position on the chemical-shift axis. However, since the frequency of the 

reference molecules may vary between scanners, the concentration is reported in ppm in 

institutional units. The usual reference molecules are inert compounds, such as water or 

N-acetyl aspartate (NAA) or creatine. In this thesis, as is standard practice in CUBRIC, 

water was used as the reference molecule. Metabolite (GABA) concentrations were, 

therefore, referenced to water within the same voxel (internal referencing). This is 

considered an appropriate technique as the participants were healthy volunteers and the 

study was of a crossover design. When considering patient populations or comparing 

different groups, ‘external referencing’ with a standard reference metabolite (such as 

quantities of metabolite in a phantom) may be more appropriate. 

 

A typical MR spectral plot displays the chemical shift (in ppm) on the x-axis with the 

peaks of the signal amplitude, with the area under the peak representing the 

concentration of the metabolite. The quality of the spectra is determined by the line 

width (spectral resolution) and by the SNR that determines the peak of the height of 

metabolite peaks in comparison to noise. This SNR may be increased by increasing 
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field strength, voxel size or longer acquisitions. Spectral quality is affected by the 

variations in magnetic field induced by magnet imperfections or proximity to regions of 

high magnetic susceptibility such as bone, water, CSF or haemorrhages.  

 

Dispersion of the metabolite signal in relation to chemical shift axis is limited and so 

signals from different metabolites may overlap and those metabolites with larger 

(greater concentration) signals tend to obscure those with smaller signals. GABA being 

one of the less abundant molecules tends to get obscured. GABA molecules appear as 

multiplets, which are overlapped by higher concentration molecules, such as Creatine at 

3ppm, NAA at 2 ppm and Glutamine and Glutamate at 2.3 ppm. 

 

 
Figure 2-11: MR spectra of GABA.  
a) Shows peaks corresponding to the various molecules, including N-Acetylaspartate, 
Creatine and GABA. b) shows simulated MR spectrum at 3T. Coloured bars represent 
the same molecular groups in a and b. Adapted from Puts and Edden (2012). 

 

Most of the MRS signal (like MRI) is derived from the hydrogen atoms as they are not 

only abundant but also form part of different functional groups with specific resonant 

frequencies. The coupling relationship between different hydrogen ions and atoms (for 

example the number of bonds between them) help determine the position of these on the 
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chemical shift axis. Sub-peaks can be identified within a molecule especially if they 

have more than one hydrogen atom depending on their direction of spins. So, if both 

spins are ‘up’ the resulting frequency may be higher than that of the overall molecule 

while if both spins are ‘down’ it may result in a lower frequency. With more than two 

hydrogen atoms, multiple sub peaks are produced (multiplet). This spin-spin coupling or 

‘J-coupling’ can result in flatter and broader peaks making it more difficult to identify 

and measure metabolites.  

 

 Signal acquisition: GABA edited spectroscopy 2.7 .2

In typical MRS experiments a single voxel or volume is excited  (single voxel MRS) 

using a combination of selective pulses in different directions. While this is the 

commonest technique, other techniques such as a hybrid technique involving 

simultaneous MRS imaging (Magnetic resonance spectroscopic imaging or chemical 

shift imaging) may also be used.  Single voxel spectra are usually acquired using either 

Point –RESolved Spectroscopy (PRESS) or Stimulated Echo Acquisition Mode 

(STEAM). In this thesis PRESS was used for single voxel spectroscopy.  

 

GABA peaks occur at 1.9 ppm and 3 ppm. The GABA molecules at 3 ppm are coupled 

with the molecules at 1.9 ppm. An ‘editing’ pulse applied at 1.9 ppm affects the spectra 

of GABA at 3 ppm. The difference in the spectra with the pulse ‘on’ (with coupling 

altering the spectra) and pulse ‘off’ (no change) gives a measure of the concentration of 

GABA (at 3 ppm), combined Glx (glutamine, glutamate peaks at 3.75 ppm) along with 

other J-coupled macro-molecule peaks (Puts and Edden, 2012). Water is the most 

abundant molecule; so suppressing the water molecules is required and is done through 

applying an even number of 180-degree re-phasing pulses at the frequency of the water 

molecule, de-phasing its signal. This is the commonly termed MEGA-PRESS 

(MEscher-GArwood – PRESS) sequence and has been used in the experiments of this 

thesis (Mullins et al., 2014). One major limitation of this method is that insufficiently 

selective editing pulses results in co-editing of macromolecular (MM) signal at 3 ppm 

(due to a coupling to a signal at 1.7 ppm that is partially inverted by the editing pulses) 

as well as other metabolite species such as homocarnosine; the edited GABA signal is 

therefore widely referred to as GABA+ (Harris et al., 2014). 
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2.8  Magnetoencephalography 

Magnetoencephalography (MEG) is a neuroimaging technique where the changes in the 

magnetic field induced by the electrical activity in the brain is recorded. Although MEG 

activity is closely related to EEG activity, in contrast to neuroelectric activity (as 

measured by EEG), the neuromagnetic activity is much weaker. It has required decades 

of development of sophisticated tools to be able to detect and record such activity. 

David Cohen, first recorded the human alpha oscillations in 1968 and went on to 

develop the superconducting technology for MEG measurements in 1972 (Singh, 2006).  

 

 Signal generation 2.8 .1

Neuronal activity from an individual neuron is far too weak to be measured outside the 

brain and therefore synchronous activity of a large enough group of neurons is required 

to generate a measurable electrical or magnetic signal. It is estimated that nearly 25mm2   

of cortical sheet has a high enough number of neurons to be able to produce such a 

signal.  

 

This neuroelectric activity generated, generally, is a combination of action potentials 

and the slower synaptic potentials in the dendrites. However, due to the short duration 

and erratic activity of actions potentials, it is unlikely that they contribute much to the 

synchronised neural activity as measured by MEG. The post-synaptic potentials (PSPs) 

generated in the dendritic cells need to be oriented appropriately such that the net 

current flows do not cancel themselves out (as would happen in randomly, uniformly 

distributed dendrites). This requirement makes the apical dendrites of pyramidal cells as 

the most likely sources of such MEG measurable neural activity (Figure 2-12).  

 

 EEG vs MEG 2.8 .2

As the neuro-magnetic signals picked up by MEG are somewhat different form those 

detected by EEG, the two techniques present their own distinct advantages and potential 

disadvantages. MEG sources are mainly PSPs, while EEG detects conductor currents 
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(as the brain tissue, skull and scalp will generate secondary currents) as well as the 

PSPs. The magnetic fields generated by the secondary currents tend to nullify 

themselves and therefore MEG is considered better at identifying primary currents. As 

shown in Figure 2-12, current sources in radial direction are not observable in MEG, 

although it has been suggested that this represents only a small fraction of the overall 

neural activity (Hillebrand and Barnes, 2002). The main advantage of MEG is that it is 

unaffected by the conductivity through skull and scalp tissue and the size or shape of the 

skull which could create confounds between subjects in experiments using EEG. The 

main disadvantage of MEG is that since the magnetic field drops exponentially with 

distance, it is most sensitive to superficial cortical structure but its abilities to detect 

from deeper structures is poorer, although researchers have been able to successfully 

study deeper structures with MEG.   

 

 MEG systems 2.8 .3

As MEG measures very tiny magnetic field changes it may be influenced very easily by 

magnetic noise generating sources. The core element of a MEG system is a highly 

sensitive magnetic field detector- superconducting quantum interference device 

(SQUID). Such SQUIDS are placed close to each other to cover the entire skull (usually 

275-300) and are linked to pickup coils. All these are housed in a single liquid dewar 

reservoir, which maintains their superconducting properties at 4.2o K. The design of the 

pickup coils also plays a role in the quality and type of data generated. The commonly 

used design of pickup coils includes magnetometers, planar gradiometer and axial 

gradiometers. A magnetometer consists of a single loop of wire connected to a SQUID 

and for a dipole current source it produces a map with maximum and minimum on 

either side of the dipole. A first order gradiometer is formed when two magnetometer 

loops of opposite orientation are combined. They detect changes in magnetic fields 

across the two loops. Radial gradiometer have the two loops oriented parallel to the 

dipole source and produce similar field patterns as a magnetometer. Planar gradiometers 

have the pickup loops oriented perpendicular to the dipole source and produce field 

maps with peaks directly over the source. The gradiometers have an advantage over 

magnetometers in that they are less sensitive to environmental noise as they measure the 
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difference between the coils. Also, planar gradiometer field maps are easier to 

comprehend as they represent a single maxima below the sensor.  

 

 

 

 
 

Figure 2-12 : Schematic of generation of neuromagnetic fields depending upon 
source 
Top panel showing how the neuromagnetic fields are generated from a population of 
dendritic cells firing synchronously. Bottom panel showing how tangential sources may 
be captured but radial sources are not. Adapted from Singh (2006). 

 

 

 Acquiring MEG data 2.8 .4

Since there may be variable relationship between the skull/ scalp anatomy and the brain, 

well-defined surface anatomical locations are identified to help localise the head 

position in relationship to the MEG helmet. This is achieved by placing fiducial markers 
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on the prominent landmarks such as the nasion and the tragus of the ears, bilaterally. To 

perform localisation analysis, further anatomical MRI scans are collected where these 

landmarks are identified to help co-register the brain anatomy with the MEG data.  

 

 MEG data analysis 2.8 .5

In a typical MEG experiment, the MEG equipment collects data from about 275 

channels, simultaneously, over a period of several minutes. During this time 

experimental manipulations are done. This continuously collected data is then divided 

into temporal ‘epochs’ based on similar stimulation paradigms. In simple MEG 

experiments this data is averaged in the time domain resulting in retention of the neural 

activity occurring at the same time point in every epoch, in relation to the stimulus 

(phase-locked) while the irregular ones get averaged out.  These averaged peaks are 

then used for further analysis.  

 

Steady state evoked response occurs when stimulus is presented with a fixed frequency 

resulting in oscillatory response at the stimulation frequency  (as in Chapter 3) or its 

harmonic response. Although some of the most commonly used techniques in MEG/ 

EEG literature, the limitation of evoked responses is that it reveals only that neural 

activity which is time and phase locked but loses activity with a ‘jitter’ i.e. varying time 

lag. Studies of primary cortical activity are therefore well suited for such activities, 

while cognitive activities that may have inter and intra- individual variation do not 

produce such useful results. If this epoched data is averaged in the Fourier domain 

(averaging the time frequency content of each trial) it can reveal increases or decrease in 

power in the frequency bands, referred to as ‘induced effects’ (as in Chapter 3), which is 

usually not phase locked but time locked to the stimulus. 

 

MEG signals are recorded in sensor space and then converted to source space for further 

analysis. Converting to source space poses the ‘inverse problem’. Inverse problem 

refers to predicting the neuronal sources of electrical/ magnetic activity as detected on 

the skull surface. Due to the numerous confounding factors and infinite possible 

combinations of sources possible, a ‘unique’ solution is difficult to establish without 

having further information about the spatial and temporal content of the acquired data.  
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The ‘forward problem’, as opposed to the inverse problem, refers to predicting the 

magnetic field generated form a source from a known location, magnitude and 

orientation.  

 

2.8.5.1  Source localisations (inverse problem solutions) 

A simple ‘inverse problem’ solution used with evoked responses (few peak latencies) is 

the modelling of single equivalent current dipole  (ECD), assuming that a single small 

patch generates the MEG detected current. This ECD appears as a dipole (in axial 

gradiometer assembly) and is located at the midpoint of these two maxima. More 

complex arrangements of such models are possible to study fit of MEG data over a 

range of latencies. 

 

Further solutions of the ‘inverse problem’ involve dipole fitting, where dipoles are 

simulated at a given source location to result in a magnetic field which matches closest 

with the data. Further dipoles are added if a close enough match is not generated.  A 

minimum norm estimate (MNE) technique aims to provide the best solution with 

minimum overall power while a minimum current estimate (MCE) technique aims to 

solve the problem with the minimum number of sources. Unlike the MCE and MNE 

techniques, which attempt to estimate the amplitude of all modelled source locations 

simultaneously, with beamformer based techniques the source activity is estimated, at 

arbitrarily defined voxel levels, by multiplying spatial filters with measured data.  

 

Synthetic aperture magnetometry (SAM) is one such beamforming technique. SAM 

involves producing beamformers (or weighting vectors) to estimate the contributions 

from the different brain regions to the data captured as magnetic fields outside the skull. 

For example raw MEG data consists of time series of magnetic fields (number of 

gradiometers x many data points). The signal source will have a magnetic field 

recordable by MEG sensors, with different sensors having different sensitivities 

depending on their location (proximity to source) and orientation (lead field). The 

magnetic fields recorded at any particular sensor are a mixture of all the lead fields. 

SAM tries to estimate the source activity in a particular location assuming that it is 

some weighted linear mixture of recorded signals (weighting vectors or beamformers). 
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The whole brain is divided into 3D volume of points. At each voxel a time series could 

be plotted depending on the weighing vectors. In SAM, the weighting vectors for voxels 

are generated independently of each other. These weighing vectors are generated using 

the covariance matrix, which represents the degree of correlation in each channel of the 

recording. The SAM algorithm uses the data covariance and the lead fields to generate 

beamformers while trying to minimise power variance of the virtual sensor.   

 

For SAM used in these experiments, a single global covariance matrix is estimated from 

the entire dataset and a single set of weights calculated from this. Virtual sensors are 

then constructed at each source location and then band-pass filtered to the frequency 

band of interest, time windows applied and then differential power images calculated. 

 

 

2.9  Choice of neuroimaging techniques and synopsis of methods used 

The sections above have explained the basics of the neuroimaging techniques used in 

this thesis. Previous studies have employed one of these neuroimaging techniques. A 

multimodal neuroimaging technique has been employed in this research to exploit the 

unique advantages of each individual modality, such as excellent temporal resolution of 

MEG along with the excellent spatial resolution of fMRI. This would help integrate the 

findings from these multimodal techniques and provide complementary information in 

studying the electrophysiological, haemodynamic and neurochemical changes with 

propofol sedation, in the same population. This would also allow inter-relationships 

between different techniques, instead of being restricted to one, as in previous studies.  

 

In Chapter 3 the relationship between GABA concentration changes, gamma 

oscillations, and BOLD-fMRI changes to a visual stimuli has been tested (hypotheses 1-

3). This necessitated the use of GABA-MR spectroscopy, MEG and BOLD-fMRI 

sessions. In Chapter 4, cortical responses to multisensory stimulation were evaluated in 

the electrophysiological and haemodynamic domains (hypothesis 4) and necessitated 

the use of MEG and fMRI sessions. In Chapter 5, changes in resting state brain activity 

was evaluated in the electrophysiological and haemodynamic domains (hypothesis 5) 

and necessitated the use of BOLD-fMRI and MEG. In Chapter 6, cerebral perfusion 
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during sedation was assessed (hypothesis 6). This necessitated the use of ASL 

technique. The specific hypotheses are as follows: 

 

Hypothesis 1: Propofol sedation increases the GABA concentration in key cortical and 

subcortical brain regions, measurable by MRS (tested in Chapter 3) 

 

Hypothesis 2: Propofol sedation results in a change in visual gamma band activity, 

measurable by MEG, which is correlated to the changes in GABA concentration (tested 

in Chapter 3) 

 

Hypothesis 3: Propofol sedation results in a change in visual cortical BOLD response, 

measured using MRI and is correlated with changes in visual gamma band responses 

and GABA levels (tested in Chapter 3) 

 

Hypothesis 4: Mild propofol sedation reduces the neural activity of the primary sensory 

cortices (visual, auditory and sensorimotor).  This will be evident as reduced BOLD 

activations on fMRI in those regions and reduced evoked fields on MEG in the 

respective sensory domains. 

 

Hypothesis 5: Mild propofol sedation reduces the functional connectivity in the Default 

Mode networks and the thalamo-cortical networks without affecting the functional 

connectivity of the sensori-motor networks using fMRI.  

 

Hypothesis 6: Mild propofol sedation will be associated with a reduction in CBF in the 

frontal cortex, precuneus, posterior cingulate cortex and the thalamus.  

 

 

2.10  Sample size calculation 

A formal power calculation was not performed, due to the exploratory nature of the 

work. Fifteen participants were recruited with the aim of obtaining complete scan 

datasets on 12 of them. This estimation was done, based on previous literature involving 
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pharmacological fMRI and MRS studies studying alterations in consciousness and MRS 

studies, as follows: 

 

• The aim is to estimate the BOLD fMRI signal response (percent signal change) 

both voxel-wise and in regions of anatomical interest e.g. auditory cortex, in 

response to stimulation and the modulation of this by sedation. This is expected 

to be of the order of 0.5% (+/- 0.3%SD) for auditory stimulation based on pilot 

data previously acquired. To detect a reduction in the auditory activity of the 

order of 50% of this response would require at least 9 subjects (1-tailed test, 

P<0.05, 80% power). A target of 12 subjects was therefore chosen, in this 

exploratory study, to provide a little extra power. Other sedation and anaesthesia 

studies involving fMRI have used similar sample sizes (Stamatakis et al., 2010, 

Boveroux et al., 2010, Mhuircheartaigh et al., 2010). 

 

• Coefficient of variance of GABA values was shown to be 9% (within subject,) 

in the visual cortex using the MEGA-PRESS technique, in a repeatability study 

(Evans et al., 2010). Using this information, a sample size of 7 subjects, is likely 

to provide adequate power to detect a difference of 10% within subjects. 

 

• In a study correlating GABA concentration, visual gamma responses and BOLD 

response, (Muthukumaraswamy et al., 2009) which provided one of the key 

hypotheses, 12 subjects provided an adequate sample to identify and correlate 

the three modalities.  
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 : Effects of mild propofol sedation on cortical and Chapter 3

subcortical GABA levels, neural oscillations and BOLD 

signal 

3.1  Abstract 

Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the 

humans. Propofol, like most anaesthetics, is known to cause anaesthesia and sedation 

through its GABA-ergic actions. There is evidence of relationship between brain GABA 

levels with visual induced gamma band frequency and BOLD response to visual 

stimulation. In a series of experiments, using multimodal neuroimaging techniques, the 

effect of mild propofol sedation was explored on cortical and subcortical GABA levels, 

neural oscillations (especially induced and evoked visual gamma oscillations) and the 

BOLD signal in response to a visual stimulus. Furthermore, the relationship between 

these metabolic, neural and haemodynamic markers was explored in the context of 

propofol sedation.  

 

The results revealed the following findings during mild propofol sedation 

• GABA+ (GABA plus co-edited macromolecules), as detected by magnetic 

resonance spectroscopy, did not change in the cortical (occipital) or subcortical 

(thalamic) regions during mild propofol sedation. 

• An increase in visually-induced gamma band responses, increased alpha 

amplitude suppression, and a concurrent reduction in the visually evoked response, was 

seen with magnetoencephalography. A significant negative correlation between the peak 

spike gamma frequency with occipital GABA+ concentration was seen during the 

Sedated state but not with the sustained gamma band frequencies.  

• A reduced BOLD signal was seen at the peak voxel, in visual cortex  on visual 

stimulation, during propofol sedation. While there was a trend towards an inverse 

relationship between GABA+ concentration and BOLD signal change (during visual 

activation), no clear cut relationship existed during sedation, nor was there a well-

defined relationship between the BOLD response and gamma band response. 
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3.2  Background and Rationale 

 GABA and its physiology 3.2 .1

Gamma-aminobutyric acid (GABA) is the most widely distributed inhibitory 

neurotransmitter in the human brain. GABA is produced from glutamate by glutamic 

acid decarboxylase (GAD) and is metabolised to succinic acid semialdehyde by GABA 

transaminase (GABA-T) and further broken down to succinate. GABA is synthesised in 

the presynaptic neurons and stored, locally, in vesicles. On activation, these GABA 

molecules are released in the synaptic space where they act on GABA receptors, on the 

postynaptic membranes, or diffuse out into the extracellular space to act on 

extrasynaptic GABA receptors. GABA production, in the presynaptic neurons, is 

facilitated by the enzyme L- glutamic acid decarboxylase. Once released in the synaptic 

cleft, GABA is removed by GABA transporters. The metabolism and activity of GABA 

is regulated by a feedback balance between its production, release and re-uptake (Nutt, 

2006).  

 

There are two main types of GABA receptors; fast acting ionotropic GABA-A and 

GABA-C receptors and slower acting metabotropic GABA-B receptors. GABA-A 

receptors are the predominant types within the brain and present on about 20-50% of all 

central synapses (Chu et al., 1990). GABA acts on GABA-A receptors to increase 

chloride ion (Cl-) conductance which produces hyperpolarisation of the neurones and 

thus promotes inhibition (Concas et al., 1991). 

 

 Proton Magnetic resonance spectroscopy (MRS) and its ability to 3.2 .2

study GABA changes 

MRS is the only technique that allows non-invasive study of endogenous GABA, in 

vivo. While this developing field of proton MRS in vivo is still reliant on 

methodological constraints, it has proven to be a reliable, robust and repeatable 

technique (Evans et al., 2010).  MRS detectable GABA-ergic inhibitory processes have 

been shown to influence the BOLD- haemodynamic response function (HRF) responses 

that form the basis of fMRI studies (Muthukumaraswamy et al., 2012). MRS-GABA 
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concentration, as the macroscopic surrogate of cellular level neurotransmitter function, 

has been shown to influence various physiological and psychological functions (Puts et 

al., 2011, Sumner et al., 2010). MRS has been useful in demonstrating altered GABA 

concentration in clinical conditions such as epilepsy, panic disorder, manic-depression 

(Goddard et al., 2004b, Petroff et al., 1996, Sanacora et al., 1999) and also the 

modulation of GABA concentrations by pharmacological compounds known to work on 

the GABA system such as vigabatrin, gabapentin, topiramate and levitaracetam (Petroff 

et al., 1999a, Petroff et al., 1999b, Petroff and Rothman, 1998, Puts and Edden, 2012) . 

 

 Most anaesthetic drugs (with the exception of certain drugs such as ketamine and 

dexmedetomidine) produce their central inhibitory action through GABA-ergic / GABA 

facilitatory mechanisms; but their entire range of molecular actions is not clearly 

understood. While some drugs such as benzodiazepines and barbiturates act only on 

GABA receptors, inhalational anaesthetic agents act on other receptors including 

acetylcholine (Ach), histamine, serotonin, AMPA and glycine receptors (Rudolph and 

Antkowiak, 2004). Propofol (2,6-diisopropylphenol) is one of the most commonly used 

anaesthetic and sedative drugs in current clinical practice and functions primarily on 

GABA receptors. While propofol exerts a small amount of activity on nAch, AMPA 

and NMDA receptors as well as sodium channels its principal mechanism of action is 

thought to be via potentiation of GABA-A receptors (Trapani et al., 2000). In vitro, it 

potentiates GABA evoked hyperpolarizing Cl- currents and at higher concentrations 

may directly activate Cl- currents at GABA receptors. Its site of action is distinct from 

that of the benzodiazepine and has recently been shown to be within the beta subunit 

and consists of both the beta 3 homopentamers and alpha 1 beta 3 heteropentamers (Yip 

et al., 2013). It increases GABA binding and slows its rate of dissociation from the 

GABA receptors. It also has presynaptic and postsynaptic mechanisms where it has 

been shown to increase both spontaneous and K+ stimulated release from synaptosomes 

and it inhibited GABA uptake in a dose dependent and reversible manner (Orser et al., 

1994, Rudolph and Antkowiak, 2004, Sanna et al., 1995, Whittington et al., 1996, 

Collins, 1988). .It also has a significant effect of potentiating the extrasynaptic tonic 

inhibitory currents (Bai et al., 2001). Some of these mechanisms of propofol action (for 

example, inhibition of GABA reuptake) are expected to, transiently, increase local 
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concentrations of GABA. Measurement of this change in local GABA concentration 

may provide a useful surrogate measure of propofol’s local activity. 

 

 Propofol and MRS-GABA 3.2 .3

Little evidence exists on the use of MRS in exploring GABA-ergic effects of propofol 

on the human brain. GABA concentration was shown to be increased following 

propofol induced unconsciousness (average plasma concentration of propofol 3 mcg/ 

ml) in most brain areas (Zhang et al., 2009). While the greatest increase occurred in the 

hippocampus (57.6%), motor cortex showed an increase of about 36%, while the 

thalamus showed a 22% increase. There was a concomitant decrease in glutamate and 

choline measures in all brain regions at anaesthetic doses. At sedative doses, however, 

there were no significant increases in GABA concentration.  Ramani et al (Ramani et 

al., 2011) have also reported an increase in thalamic GABA concentration with propofol 

doses (2 mcg/ ml concentration) producing unconsciousness. 

 

Following the hypothesis that the change in GABA concentration is indeed related to 

propofol’s activity on reducing synaptic GABA reuptake, GABA concentration would 

be expected to increase linearly with the propofol dose. Zhang et al (Zhang et al., 2009) 

used small voxel sizes (1.5 cm3), low magnet strength (1.5T) and smaller number of 

acquisitions and therefore it is possible that they were unable to detect a change in 

GABA concentration at sedative levels of propofol due to their technique (with low 

sensitivity) and small sample size (type 2 error). The sensitivity of MRS can be 

increased by increasing magnet strength, increasing voxel volume, acquisition time or a 

combination of these, as all of these tend to increase the signal to noise ratio (Puts and 

Edden, 2012). Using a more sensitive GABA detection methodology, changes in GABA 

concentration during propofol related sedation might be studied more robustly and 

reliably. 
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 Link between visual cortical GABA concentration and visual 3.2 .4

gamma band oscillations 

Muthukumaraswamy et al demonstrated that MRS measured- GABA levels in the visual 

cortex were directly proportional to the peak gamma frequency (measured using 

Magnetoencephalography (MEG)) localised to the visual cortex and was inversely 

related to the blood oxygen level dependent (BOLD) signal (on MRI) in response to a 

visual stimuli (Muthukumaraswamy et al., 2009). It was suggested that GABA levels 

represented inhibitory potential and a higher inhibitory activity (i.e. high GABA level) 

reduced the excitation/ inhibition balance resulting in the filtering of the dominant high 

frequency oscillations, as proposed by Brunel and Wang (Brunel and Wang, 2003). This 

interesting and novel finding forms the basis of this set of experiments. Further 

background to the modulatory role of propofol in task induced neural oscillatory 

activity is discussed in the introduction to Experiment 2, in this chapter. 

 

3.3    Hypotheses 

1. Propofol sedation increases the GABA concentration in key cortical and 

subcortical brain regions, measurable by MRS (tested in Experiment 1). 

 

2. Propofol sedation results in a change in visual gamma band activity, measurable 

by MEG which is correlated to the changes in GABA concentration (tested in 

Experiment 2). 

 

3. Propofol sedation results in a change in visual cortical BOLD response, 

measured using MRI and is correlated with changes in visual gamma band 

responses and GABA levels (tested in Experiment 3). 
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3.4  Experiment 1: Changes in occipital and thalamic GABA 

concentration with mild propofol sedation 

  Introduction 3.4 .1

Both cortical and subcortical (especially thalamic) activities are modulated during 

sedation and anaesthesia (Alkire et al., 1997, Alkire et al., 1999).  While it is still 

disputed whether cortical suppression precedes thalamic suppression or vice versa, 

propofol has clearly been shown to act on the cortical regions and thalamus (Fiset et al., 

1999). Occipital cortex (as the cortical area) and thalamus were chosen to study GABA 

level changes as likely sites of propofol action.  

 

Occipital lobe is a common choice of brain region in MRS – GABA studies. This 

possibly represents a technical limitation as measurements that use a surface receive-

coil are most conveniently carried out in this location, especially due to good magnetic 

field homogeneity. Similarly those that use a volume coil often have best SNR in this 

location due to proximity to the coil elements, providing a stable measurement and a 

better chance of finding an effect (Puts and Edden, 2012). Occipital (visual) cortex has 

high GABA receptor density and is therefore likely to be sensitive to GABA 

modulation. Also, this choice was, specifically, based on previous work by 

Muthukumaraswamy et al (Muthukumaraswamy et al., 2009), to explore the 

relationship between MRS GABA concentration, gamma band response and BOLD-

HRF during visual stimulation (Experiments 2 and 3).  

 

Thalamus, as a brain region has been less extensively studied for MRS-GABA changes 

due to technical and signal-to-noise (SNR) limitations. Zhang et al (Zhang et al., 2009), 

however, were able to demonstrate a reduction in thalamic GABA levels with propofol 

anaesthesia. 
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 Aims  3.4 .2

The aims of Experiment 1 were to evaluate MRS measurable changes in GABA levels 

in the cortical (occipital) and subcortical (thalamus) regions and their alterations with 

mild propofol sedation.  

 

 Methods 3.4 .3

3.4.3.1  Participants 

Fifteen right-handed, healthy, male volunteers (mean age 26 years; range 20–41 years) 

participated in this study after giving informed consent. They were recruited following a 

detailed screening procedure. Medical screening was performed to ensure that all 

subjects were in good physical and mental health and not on any medications (American 

Society of Anesthesiologists grade 1). Any volunteer with complaints of regular 

heartburn or hiatus hernia, known or suspected allergies to propofol (or its constituents), 

regular smoker, or who snored frequently or excessively, or who had a potential 

difficultly in managing airways was excluded. Volunteers were instructed to follow 

standard pre-anaesthetic fasting guidelines. They avoided food for 6 hours and any 

fluids for 2 hours before the experiments. Following the experiments they were 

monitored until they recovered from the effects of sedation and were discharged with 

safety advice after they fulfilled all day-case anaesthesia discharge criteria (Verma et 

al., 2011). All participants underwent two MRI scans within the same session, the first 

before and the second during intravenous propofol administration while they remained 

at rest. No behavioural task was presented apart from asking volunteers to remain still 

with their eyes closed and to try not to fall asleep.  

 

GABA concentration has been shown to vary according to the menstrual phase in 

women with GABA being less during the luteal phase than the follicular phase, in non 

smoking women and also postpartum women (Epperson et al., 2006, Epperson et al., 

2002, Epperson et al., 2005). These factors would have been difficult to control and 

could potentially have confounded the findings. It was therefore decided to include only 

male participants in this study. All participants were compensated for their participation. 
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3.4.3.2  Monitoring, drug administration and sedation assessment 

Propofol (Propofol-Lipuro 1%, Braun Ltd.) was administered using an Asena-PK 

infusion pump (Alaris Medical, CareFusion Ltd.) using a target-controlled infusion 

based on the Marsh pharmacokinetic model (Marsh et al., 1991). Infusion was started 

targeting an effect-site concentration of 0.6 mcg/ml. Once the target was reached, 2 min 

were given for further equilibration. Drug infusion was increased in 0.2 mcg/ml 

increments until the desired level of sedation was achieved. Sedation level was assessed 

by an anaesthetist, blinded to the level of propofol being administered, using the 

modified Observer’s assessment of alertness/sedation (OAA/S) (Chernik et al., 1990). 

The sedation endpoint was an OAA/S level of 4 (slurred speech with lethargic response 

to verbal commands). The average targeted propofol plasma concentration, required to 

achieve the desired level of sedation was 1.2 +/- 0.2 mcg/ml. All subjects were 

monitored throughout the experiments by two qualified anaesthetists (Table 3-1). Heart 

rate, noninvasive blood pressure, oxygen saturation, and concentrations of expired (end-

tidal) carbon dioxide were monitored using Veris MR Vital Signs monitoring system 

(MEDRAD Radiology). 

  

Visual and auditory reaction times were also recorded as an additional, objective 

measure to differentiate between the Awake   and Sedated states.  Participants were 

instructed to press a button as soon as they saw a ‘cross’ appear on the screen (visual 

reaction time) and as soon as they heard a beep (auditory reaction time). The reaction 

times were tested at the beginning of the overall scanning session, at the end of the 

session and an additional set halfway through the scanning during the second (Sedated 

state) session.  

 

3.4.3.3  MRS acquisition 

All MR scanning was done at CUBRIC. The MR scanner was a GE Signal HDx 3 Tesla 

(General Electric Healthcare, Chalfont St. Giles, UK), and used an 8- element head coil 

for receive and the body coil for transmit. Prior to MRS acquisition, a 1mm3 isotropic-

resolution T1-weighted anatomical scan (FSPGR) was acquired to determine voxel 

placement. GABA-edited MR spectra were acquired using the MEGA-PRESS sequence 
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(Edden and Barker, 2007, Mescher et al., 1998) in two (3 cm3) volumes in the midline 

occipital regions and midline thalamus regions as shown in Figure 3-1 and Figure 3-2 

respectively (positioning detailed below). The parameters used were; repetition time 

(TR) = 1.8 s, echo time (TE)= 68 ms, 332 transients of 4096 data points; receiver 

bandwidth = +/- 2KHz; a 16 ms editing pulse was placed alternately at 1.9 ppm and 7.5 

ppm during on and off transients. Eight unsuppressed acquisitions were collected at the 

end of MEGA-PRESS scan to serve as internal concentration (and phase) reference and 

automatic first order shimming was done for all scans (Evans et al., 2013). The 

acquisition time was approximately 10 min for each scan. 

 

Voxels of 3x3x3cm were positioned in occipital cortex (Figure 3-1) across the two 

hemispheres, with the lower edge aligned with the bottom of the occipital lobe, the 

anterior edge aligned with the parieto-occipital sulcus and the posterior edge as much 

within the cortex as possible.  Axial, sagittal and coronal extent was carefully viewed to 

avoid inclusion of cerebrospinal fluids (CSF) within the lateral cerebral ventricle and 

the trough into the volume of interest (VOI), as much as possible. 

 

The thalamus was identified from the 3D T1-weighted structural scan (FSPGR). The 

horizontal plane of the thalamus voxel was defined to be in line with the anterior 

cingulate- posterior cingulate plane, with the centre of the voxel set to the midline of the 

brain (left-right) and the apparent midpoint of the thalamus in the anterior-posterior and 

superior-inferior directions (Figure 3-2). 

 

Since the participants were moved out of the MR scanner between Awake and Sedated 

scans (to administer and assess sedation) a structural (FSPGR) scan and the voxel 

placement were repeated during each session. 
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Figure 3-1: Anatomical localisation of the occipital voxel 
 

 
 

Figure 3-2: Anatomical localisation of the thalamus voxel 
 

3.4.3.4  MRS data analysis 

All analyses were performed using the GABA Analysis Toolkit (Gannet) 

(http://gabamrs.blogspot.co.uk/) in Matlab. Each dataset was zero-filled 8 times, line 

broadened with a 4Hz exponential function and automatically phased, with minor 

manual adjustments where necessary (mean manual phase correction = 3.0 degrees). 

The difference spectra were analysed by fitting a Gaussian function to the edited 

spectrum over the range 2.75 ppm to 3.55 ppm using a nonlinear least squares fit. The 

integral of the Gaussian peak was designated GABA+, as it represents both GABA and 
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co-edited macromolecular signal (Henry et al., 2001). GABA+ values were calculated 

using both creatine and water as internal concentration references. Those with reference 

to water are reported here. For the water reference, the water integral is determined 

using similar procedure with a Voigt lineshape. The ratio of GABA+ integral to water 

integral was then converted to institutional units using a constant correction factor to 

account for the effective visibility of water (Kreis et al., 1993), differences in T1 and T2 

(Edden et al., 2012), and editing efficiency and is reported here.  

 

The estimated fit error, is calculated from the standard deviation of the fit residuals 

(expressed as a percentage of peak height) of the GABA+ fit and water fit and is also 

reported. 

 

3.4.3.4.1  Voxel segmentation and grey matter fraction 

The high-resolution T1-weighted images were segmented into grey matter (GM), white 

matter (WM), and cerebral spinal fluid (CSF) compartments using the segmentation tool 

in the commercial software package FSL 4.1 (FMRIB Software Library). Subsequently, 

the volumetric tissue contribution for each oblique voxel was determined and the 

relative contributions of GM and WM were calculated using in-house software. The 

GABA+ values from this grey matter component are reported here. 

 

3.4.3.4.2  Statistics 

Paired t-tests (in Microsoft Excel) were used to compare the changes in the 

haemodynamic and respiratory parameters, occipital GABA+ and thalamic GABA+ 

levels during ‘Awake’ and ‘Sedated’ states. Relationships between variables were 

explored further using correlation analyses. 
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Figure 3-3: Segmented voxel masks (Blue- grey matter; green- white matter, 
yellow- CSF) 
 
 

 
 

Figure 3-4 : Spectra from all participants from the occipital voxel (Awake)  
(GABA signal appears as a Gaussian shaped peak at 3 ppm)
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Figure 3-5: Spectra from all participants from the occipital voxel (Sedated)  
(GABA peak at 3 ppm) 
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Figure 3-6:  Spectra from all participants from the thalamic voxel (Awake )  
(GABA peak at 3 ppm) 

 
 
 
 

 
 
Figure 3-7 Spectra from all participants from the thalamic voxel (Sedated)  
(GABA peak at 3 ppm) 
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 Results 3.4 .4

There were no significant effects of propofol sedation on haemodynamic or respiratory 

parameters (Table 3-1). There was a significant slowing of the reaction times (both 

visual and auditory) following sedation (Table 3-2). The mean (SD) propofol target 

concentration was 1.2 (0.2) mcg/ml. 

 

Table 3-1: Physiological Data  

Mean (SD) across subjects of physiological recordings measured before and during 
sedation. Paired t-test revealed no significant differences between Awake and Sedated 
states. HR, Heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; 
MAP, mean arterial pressure; SpO2, oxygen saturation.  

 

 Awake  Sedated 

HR (bpm) 56 (7)  55 (7) 

SBP (mmHg) 123 (10) 119 (9) 

DBP (mmHg) 71 (8) 70 (8) 

MAP (mmHg) % 95 (8) 92 (7) 

SpO2    % 98 (1) 98 (1) 

 

Table 3-2: Reaction times  

[Paired t-test (2 tailed) revealed significant differences between Awake  and Sedated 
states]. Both visual and auditory reaction times decreased (slowed) with sedation) 

 Awake  Sedated P value 

Visual reaction time 

(seconds) 

0.4192  (0.1009) 0.5563 (0.2973) 0.039 

Auditory reaction 

time (seconds) 

0.3306 (0.0779) 0.4271 (0.1845) 0.022 
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3.4.4.1  GABA values  

One participant’s data (both occipital and thalamic, during Sedated state) were lost 

during collection while another participant’s thalamic data during sedation session were 

lost due to excessive head movement. 

 

The occipital GABA+ did not show any change (paired t-test) during Sedated as 

compared to the Awake state [Mean (SD); Awake   = 1.8314  ( 0.2926) to Sedated 

=1.8343 (0.2148)] 

 

The thalamic GABA+ also did not show any change during Sedated as compared to the 

Awake state [Mean (SD); Awake   = 2.1392  (0.1910) to Sedated =2.1301 (0.3882)] 

 

 
Figure 3-8 GABA+ values of the occipital and thalamic regions (Mean with SD)  

 

3.4.4.2  Tissue fraction  

There was no significant difference between the grey matter tissue fraction of the 

occipital or thalamus voxels between the Awake and Sedated states.  
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Figure 3-9: Relative tissue composition of the MRS voxels 

 

3.4.4.3  Reliability 

The between subjects coefficient of variance (CV: SD/ mean) for the occipital voxel-

Awake was 15.9% while that for occipital voxel-Sedated (N=14) was 11.7%. CV for 

thalamus voxel-Awake was 8.9% while that for thalamus voxel-Sedated (N=13) was 

18.2%. 

 

3.4.4.4  GABA spectra fit error  

The overall fit error (%; mean (SD)) for the occipital voxels was 6.5 (1.5)% and for the 

thalamic voxel was 8.7 (1.2)% and there was no statistical difference between the fit 

errors between Awake and Sedated sessions. 

 

3.4.4.5  Dependence of reaction times on GABA+ levels 

While there was a trend of dependence of the baseline visual reaction times on the 

Awake   occipital GABA+ concentration (R= 0.488; P= 0.076) and the change in visual 
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reaction times on Awake thalamic GABA+ levels (R= -0.49; P=0.08); neither of them 

was statistically significant. No other correlations with the visual or auditory reaction 

times with Awake and Sedated GABA+ levels were suggestive of a potential 

relationship.  

 

Since there were no changes in occipital or thalamic GABA+ levels following sedation, 

no further correlations with difference in regional GABA+ levels were attempted. 

 

 Discussion 3.4 .5

This experiment, using a more sensitive MRS – GABA detection technique (c.f. (Zhang 

et al., 2009)) was unable to demonstrate a significant change in GABA+ concentration 

in either the cortical (occipital) or the subcortical (thalamus) brain regions during mild 

propofol sedation.  

 

While it is difficult to prove a null result; taken together with other work (Zhang et al., 

2009, Ramani et al., 2011) it appears that MRS detectable GABA concentration does 

not change with propofol-induced sedation but increases only when propofol induces 

anaesthesia/ unconsciousness. If this is indeed true, this is an interesting finding, 

suggesting that the GABA concentration does not change in a linear response to the 

propofol dose but rather changes as a measurable step once consciousness is lost (and 

therefore may be a potential biomarker of consciousness).  

 

However, the alternative, i.e. the inability of the current experimental design to detect a 

change in GABA concentration or an actual unlikelihood of change in GABA 

concentration associated with mild propofol sedation also needs to be considered. The 

hypothesis of an increase in GABA concentration was generated based on the, very 

limited, literature available (Ramani et al., 2011, Zhang et al., 2009).  There is some 

evidence of propofol potentially affecting GABA levels by increasing presynaptic and 

postsynaptic GABA, both in spontaneous and K+ stimulated release from synaptosomes 

and inhibiting GABA uptake in a dose dependent and reversible manner (Orser et al., 

1994, Rudolph and Antkowiak, 2004, Sanna et al., 1995, Whittington et al., 1996, 

Collins, 1988). However, the main action, in humans, appears to be on the GABA 
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receptors by increasing the activity of GABA on those receptors. Indeed, if the main 

action, at clinically relevant doses, is prolongation of GABA activity without an actual 

change in concentration, such a negative result, as observed in this experiment would 

not be surprising.  

 

However, the MRS findings of GABA levels and known actions of GABA-ergic drugs 

are not always straightforward. If the GABA-ergic actions of benzodiazepines are 

considered, they too facilitate GABA receptor’s inhibitory function, albeit at different 

binding sites than propofol. Interestingly, acute administration of clonazepam (Goddard 

et al., 2004a) in healthy volunteers resulted in a decrease in GABA levels in the 

occipital cortex while zolpidem (an atypical benzodiazepine) (Licata et al., 2009) 

produced a reduction in thalamic GABA levels. These findings suggested additional 

activity of benzodiazepines on decreasing GABA production and availability. However, 

tiagabine, an antiepileptic drug known to inhibit GAT-1 enzyme and therefore reduce 

synaptic breakdown of GABA, did not show any change in GABA concentration on 

MRS. These, somewhat conflicting reports, highlight the limitations of the current 

understanding of the cellular level significance of the macroscopic MRS detectable 

measures of GABA. While the MRS detects overall macroscopic level GABA 

concentration, in a unit voxel, it is still unable to differentiate between the synaptic and 

cytoplasmic pools of GABA, especially if some of these pools are more tightly bound to 

other ‘macromolecules’ making them less likely to be detected within the spectrum 

(Stagg et al., 2011). This variation is further confounded by the tonic GABA activity at 

extracellular sites. So, although, studies successfully demonstrating a link between 

cortical MRS – identifiable GABA and physiologic, pharmacologic and psychological 

effects are reassuring, the current technique might be limited in identifying changes in 

GABA concentration where the overall GABA pool size remains relatively constant. 

This could have been a reason for failure to detect a change in GABA concentration in 

our experiment if there was only a ‘reshuffling’ of the GABA molecules at the synaptic 

and cytoplasmic level.  It is also possible that at sedative doses of propofol there is a 

facilitation of the tonic GABA currents (Bai et al., 2001) without a significant change in 

MRS measurable GABA levels, which, preferentially, tends to measure the cytoplasmic 

pool (Maddock and Buonocore, 2012). 
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The sensitivity of a technique such as MRS would always be questioned, if it produces 

negative findings. In this study 256 acquisitions were collected in 27 ml voxels each, at 

3T as compared to 128 acquisitions in 3.375 ml voxels at 1.5 T by Zhang et al (2009). 

This would result in a substantially increased signal –to-noise ratio, improving the 

sensitivity of detection. If the 22% increase in thalamic GABA at propofol 

concentrations of 3mcg/ ml (Zhang et al., 2009) was indeed a linear dose related 

increase; in this experiment (mean propofol concentration of propofol being 1.2 mcg/ 

ml) there should have been about a 10% increase from baseline in the GABA 

concentration. A post-hoc power calculation suggests that the current experimental 

design would have been able to detect a 7% change (CV  8.9% of thalamic GABA+ ) or 

more with a sample size of 13 subjects. The CV and spectra fit errors in this experiment 

are also within reasonably acceptable limits (Bogner et al., 2010, Evans et al., 2010). 

All these factors point towards the absence of a false negative result.  
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3.5  Experiment 2 ;  Visual evoked and induced gamma oscillations: 

changes with mild propofol sedation 

 Background and rationale 3.5 .1

3.5.1.1  Significance of gamma band oscillations and relationship with 

GABA 

Gamma oscillations in the 30-80 Hz range have been implicated in a wide number of 

functions including, memory (Jensen et al., 2007), attention (Tallon-Baudry and 

Bertrand, 1999) and consciousness (Singer, 2001), and are thought to be disturbed in 

schizophrenia (Uhlhaas and Singer, 2010). Both neurophysiological data and modelling 

studies provide convergent evidence that the most plausible mechanism for the 

generation of temporally-organised gamma activity is in reciprocally connected 

neuronal networks containing an interconnected mixture of pyramidal cells, stellate 

cells and GABA-ergic inhibitory interneurons (Bartos et al., 2007, Traub et al., 1996). 

Consistent with this, gamma oscillations recorded from primary visual cortex slices in 

vitro have been shown to be modulated by drugs that target GABA-A receptors as well 

as drugs that target glutamatergic AMPA and NMDA receptors (Oke et al., 2010) and 

acetylcholine receptors (Rodriguez et al., 2004). Muthukumaraswamy et al (2009) have 

demonstrated a relationship between the resting GABA concentration in the human 

visual cortex and the peak gamma frequency originating in the visual cortex. Gamma 

oscillations have thalamo-cortical and cortico-cortical origins and the differences in 

evoked and induced visual gamma oscillations can therefore provide a probe to 

investigate the thalamic and cortical actions of anaesthetic drugs.  (Ribary et al., 1991, 

Castelo-Branco et al., 1998)  

 

3.5.1.2  Gamma band activity and propofol 

Most of the information about propofol’s in vivo modulation of gamma oscillatory 

activity is based on investigating spontaneous EEG activity after loss of consciousness. 

Loss of spatiotemporal organisation of gamma oscillations and information integration 

capacity has been shown at anaesthetic doses of propofol (Lee et al., 2009b). However, 
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Murphy et al (2011b) showed a persistently increased gamma activity with increased 

connectivity between the regions of the default-mode network (DMN) during propofol 

anaesthesia challenging the role of gamma oscillations in predicting consciousness. The 

relationship between spontaneous gamma activity, stimulus-induced activity and 

potential muscle artefacts in the spontaneous EEG also remains unclear (Whitham et al., 

2008, Whitham et al., 2007). The effect of sedation on visual gamma oscillations has 

not been tested previously, nor has the modifiability of visual gamma, in vivo, been 

demonstrated. 

 

3.5.1.3  Other oscillatory bands  

Alpha band activity is closely related to the gamma band activity, especially in the 

occipital cortex (Osipova et al., 2008, Jensen et al., 2014). While alpha activity is 

associated with an inhibitory function, in response to a task, it is suppressed to allow 

high frequency oscillations to transmit information. This reduced alpha band power in 

response to stimuli (event related desynchronisation- ERD) has been well studied 

(Pfurtscheller and Lopes da Silva, 1999, Dujardin et al., 1993, Boiten et al., 1992). 

Alpha band ERD has also been shown proportional to the attention involved in the task, 

emphasising its role in cognitive processing (Suffczynski et al., 2001).  

 

Thalamo-cortical neurons may be responsible for the generation and maintenance of the 

alpha band oscillations (Suffczynski et al., 2001). Modelling studies have suggested the 

action of propofol, on these neurones, at unconsciousness producing doses, causes a 

suppression of posterior alpha and emergence of frontal alpha rhythms (Vijayan et al., 

2013b, Hindriks et al., 2011).   

 

 Introduction 3.5 .2

In this experiment, knowing the GABA-ergic mechanisms involved in generation of 

gamma oscillations; the GABA-ergic activity of propofol sedation is explored by 

studying its actions on visual-task induced gamma oscillations. ERD of alpha 

oscillations are also studied to evaluate reciprocal change (in relation to gamma 

oscillations) and its importance in anaesthesia related unconsciousness, as a marker of 



 
     
 

 
 
 

98 

anaesthetic thalamo-cortical actions. These changes in gamma oscillations may also be 

able to help discriminate the temporal sequence of thalamo-cortical actions and site-

specificity (if any) of propofol’s actions. 

 

 Hypothesis 3.5 .3

Propofol sedation results in an increase in gamma band activity, reduction in alpha band 

activity, measurable by MEG, which is related to the changes in GABA concentration. 

 

 Aims 3.5 .4

In this experiment we investigated a) the modifiability of stimulus-induced gamma 

activity, during mild propofol sedation and b) its relationship with GABA concentration 

(from Experiment 1) 

 

 Methods 3.5 .5

3.5.5.1  Participants 

The same fifteen male volunteers (mean age 26 years; range 20-41 years) who 

participated in Experiment 1, also took part in this experiment. This MEG session 

(Experiment 2) was conducted preceding Experiment 1 as part of the overall 

experimental design. The time interval between the 2 experiments was at least 1 week to 

ensure total clearance of the drug and return of normal physiological functioning of the 

participant. All these participants had provided informed consent for this experiment, 

met the inclusion criteria and had no contra-indications to the drug (as described in 

Experiment 1- Methods 3.4.3) or MEG environment. 

 

3.5.5.2  Monitoring, drug administration and sedation assessment 

Drug administration, monitoring and sedation assessment were essentially similar to 

that in Experiment 1 with only slight differences due to the MEG environment.  
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Throughout the experiments, all participants were monitored in accordance with 

guidelines from the Association of Anaesthetists of Great Britain and by two medically 

qualified anaesthetists. HR, BP, SpO2 and EtCO2 were monitored using Veris MR Vital 

Signs monitoring system (MEDRAD Radiology) and recorded every 5 minutes. The 

monitoring system was located outside the magnetically shielded room. The connecting 

cables passed through waveguides into the magnetically shield room. This monitoring 

setup was tested and found to add no noise to the MEG signals. The monitoring 

anaesthetist observed the participants through a video monitor and maintained verbal 

contact, as required, through an intercom system. 

 

Volunteers were instructed to follow standard pre-anaesthetic fasting guidelines. They 

avoided food for six hours and any fluids for two hours before the experiments. Of the 

two anaesthetists supervising the sessions, one was solely responsible for participant 

monitoring and was not actively involved in the experiment. Intravenous access (20 

gauge) was obtained on the dorsum of the right hand and physiological monitoring (HR, 

BP, SpO2 and EtCO2) was instituted. Nasal cannulae were used for sampling of expired 

and inspired gases and the administration of oxygen, as required. Propofol (Propofol-

Lipuro 1%, Braun Ltd., Germany) was administered using an Asena ®- PK infusion 

pump (Alaris Medical, UK) using a target controlled infusion based on the Marsh-

pharmacokinetic model (Marsh et al., 1991). While participants lay supine in the 

magnetically shielded room, infusion was started targeting an effect-site concentration 

of 0.6 mcg/ml.  Once the target was reached 2 minutes were allowed to ensure reliable 

equilibration. Drug infusion was then increased in 0.2 mcg/ ml increments until the 

desired level of sedation was achieved.  Sedation level was assessed by an anaesthetist, 

blinded to the level of propofol being administered, using the modified Observer’s 

assessment of alertness/ sedation (OAA/S)(Chernik et al., 1990). Sedation endpoint was 

an OAA/S level of 4 (slurred speech with lethargic response to verbal commands). The 

same anaesthetist assessed this endpoint on every occasion to ensure consistency of the 

depth of sedation achieved. Reaction times in response to auditory and visual stimuli 

were also recorded during the Awake and Sedated states both before and after 

completion of the stimulation paradigm. 
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3.5.5.3  Stimulation paradigm 

Once steady state sedation was achieved, participants were presented with a visual 

stimulus consisting of a vertical, stationary, maximum contrast, three cycles per degree, 

square-wave grating presented on a mean luminance background. The stimulus was 

presented in the lower left visual field and subtended 4° both horizontally and vertically. 

A small red fixation square was located at the top right hand edge of the stimulus, which 

remained on for the entire stimulation protocol (Muthukumaraswamy, 2010, 

Swettenham et al., 2009). The stimulus was presented on a projection screen controlled 

by Presentation®. The duration of each stimulus was 1.5-2 s followed by 2 s of fixation 

only. Participants were instructed to fixate for the entire experiment and in order to 

maintain attention were instructed to press a response key at the termination of each 

stimulation period. Responses slower than 750 ms triggered a brief visual warning for 

participants. 100 stimuli were presented in a recording session and participants 

responded with their right hand. Each recording session took approximately 10 min and 

was carried out before sedation (Awake state) and then repeated during sedation 

(Sedated state). The Awake state recordings were always carried out before the Sedated 

session on the same day.  

 

3.5.5.4  MEG acquisition and analysis 

Whole head MEG recordings were made using a CTF 275-channel radial gradiometer 

system sampled at 1200 Hz (0–300 Hz bandpass). An additional 29 reference channels 

were recorded for noise cancellation purposes and the primary sensors were analysed as 

synthetic third-order gradiometers (Vrba and Robinson, 2001). Three of the 275 

channels were turned off due to excessive sensor noise. At the onset of each stimulus 

presentation a TTL pulse was sent to the MEG system. Participants were fitted with 

three electromagnetic head coils (nasion and pre-auriculars), which were localised 

relative to the MEG system immediately before and after the recording session. Each 

participant had a 1mm isotropic T1 weighted MRI scan available for source localisation 

analysis. To achieve MRI/MEG co-registration, the fiduciary markers were placed at 

fixed distances from anatomical landmarks identifiable in participants' anatomical MRIs 
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(tragus, eye centre). Fiduciary locations were verified afterwards using digital 

photographs.  

 

Offline, data were first epoched from -1.5 to 1.5 s around stimulus onset and each trial 

visually inspected for data quality. Data with gross artefacts, such as head movements 

and muscle clenching were excluded from further analysis. Two source localisations 

were performed on each dataset using synthetic aperture magnetometry, one for induced 

responses (SAM), and one for evoked responses (SAMerf). Correspondingly, two 

global covariance matrices were calculated for each dataset, one for SAM (40 – 80 Hz) 

and one for SAMerf (0 – 100 Hz).  Based on these covariance matrices, using the 

beamformer algorithm (Robinson and Vrba, 1999), two sets of beamformer weights 

were computed for the entire brain at 4mm isotropic voxel resolution. A multiple local-

spheres (Huang et al., 1999) volume conductor model was derived by fitting spheres to 

the brain surface extracted by FSL's Brain Extraction Tool (Smith, 2002). 

 

For gamma-band SAM imaging virtual sensors were constructed for each beamformer 

voxel and student t images of source power changes computed using a baseline period 

of -1.5 to 0 s and an active period of 0 to 1.5 s. Within these images, the voxel with the 

strongest power increase (in the contralateral occipital lobe) was located. To reveal the 

time–frequency response at this peak location, the virtual sensor was repeatedly band-

passed filtered between 1 and 150 Hz at 0.5 Hz frequency step intervals using an 8 Hz 

bandpass, 3rd order Butterworth filter (Le Van Quyen et al., 2001, Muthukumaraswamy 

et al., 2010). The Hilbert transform was used to obtain the amplitude envelope and 

spectra were computed as a percentage change from the mean pre-stimulus amplitude (-

1.5 to 0 s) for each frequency band. This relative-change baseline provides a control for 

between-recording and between-participant effects (for example, different head 

positions in the MEG), as well as correcting for the 1/f nature of unbaselined MEG 

source estimates (Gross et al., 2012). From these spectra, the time courses of alpha (8-

15 Hz) and gamma (40–80 Hz) were extracted and submitted to non-parametric 

permutation tests using 5000 permutations (Maris and Oostenveld, 2007, Nichols and 

Holmes, 2002). Permuted t statistics were corrected for multiple comparisons using 

cluster-based techniques with an initial cluster forming threshold of t = 2.3. This 

approach allowed the examination of the temporal profile of oscillatory spectral 
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modulations as well as controlling for potential contamination of early-evoked response 

components into the alpha band.   To examine pre-stimulus amplitudes the time-

frequency spectra were recomputed with no baseline correction and the average 

amplitudes of alpha (8–15Hz), beta (15–40 Hz) and gamma (40–80 Hz) in the pre-

stimulus period (-1.5 to 0 s) were calculated. 

 

For SAMerf, the computed evoked response was passed through the 0-100 Hz 

beamformer weights and SAMerf images (Robinson, 2004) generated at 0.01 s intervals 

from 0.05 to 0.015s. The image (usually 0.08 to 0.09 s or 0.09 to 0.1 s) with the 

maximal response in visual cortex was identified and the maximal voxel selected as the 

peak location for virtual sensor analysis. For time-domain analysis, the evoked field was 

computed for this virtual sensor (-0.2 to 0 s baseline, 40 Hz lowpass filter) and the peak 

amplitude and latency of the M100 and M150 responses quantified. A spectral analysis 

of the evoked field using the same time-frequency techniques as above was also 

performed. The evoked frequency response in the 0-0.2 s period was obtained for each 

condition and analysed using same statistical methodology. 

 

 Results 3.5 .6

There were no differences in the haemodynamic and ventilator parameters between the 

Awake and Sedated groups. The mean (SD) propofol target concentration was 1.07 

(0.19) mcg/ml. 

 

3.5.6.1  Key press- reaction times  

Participants showed significantly (p = 0.001) slower key presses to stimulus offset  

during propofol sedation (Mean (SD): 355 (42) ms) compared to the Awake state (Mean 

(SD): 277 (33) ms). They also missed significantly more (p = .002)  key presses during 

sedation (Mean (SD): 6.1 (4.7)) compared to the Awake state (Mean (SD): 1.3 (1.0)).  
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3.5.6.2  Correlation between resting GABA and gamma band  

The relationship between resting occipital GABA+ values (from Experiment 1) and 

gamma band frequency (spike and sustained) were explored. The Sedated occipital 

GABA+ levels were inversely correlated with the peak spike gamma frequency during 

the Sedated state (r = -0.55; P<0.05) while there was a trend towards significance of the 

correlation between Awake occipital GABA+ and peak spike gamma frequency during 

the Awake state (r= -0.51126, P = 0.061) (Figure 3-10). 

 

There was no relationship between peak ‘sustained’ gamma frequency with occipital or 

thalamic GABA+ levels (Awake or Sedated). 

 

 

 
Figure 3-10: Scatter plots between peak spike gamma frequency and Occipital 
GABA+ levels during Awake and Sedated states 
 

3.5.6.3  Evoked and Induced activity 

 Figure 3-11a shows grand-averaged source reconstructions for gamma band (40–80 

Hz) responses to presentation of the grating stimulus during Awake and Sedated states 

respectively. As expected, both reconstructions locate the sources in the medial visual 

cortex in the quadrant opposite to the side of visual stimulation. The grand-averaged 

peak locations of the responses were located in adjacent source reconstruction voxels (4 

mm voxel size). From the peak locations identified in individual source localisation 

images, source level activity was reconstructed and time-frequency spectra computed. 

The grand-average of these time-frequency spectra are displayed in Figure 3-11b. These 

show the typical morphology following this type of visual stimulus: there is an initial 
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transient broadband (50 to 100 ms) amplitude increase in the gamma frequency (40 Hz) 

range, followed by a longer lasting elevation of gamma frequency amplitude in a 

narrower frequency range. In the lower frequencies, there exists a sustained alpha 

amplitude decrease that commences around 200 ms, and a low frequency onset 

response, which is indicative of the evoked response. In Figure 3-11c the extracted 

gamma (40–80 Hz) and alpha (8–15 Hz) amplitude time-courses are plotted. During 

propofol sedation there was significantly elevated (p = 0.01, corrected) gamma band 

activity between 0.15 to 0.61 s corresponding to a 59.8% increase in amplitude. 

Similarly, during propofol sedation there was significantly (p < 0.01, corrected) more 

alpha amplitude decrease between 0.230 to 1.25 s corresponding to a 94.0% increase in 

stimulus- induced alpha suppression.  

 

3.5.6.4  Evoked activity 

In Figure 3-12a, the time-frequency response of the source-level evoked response is 

presented for both Awake and Sedated states and in Figure 3-12b the frequency spectra 

of these are presented for 0 to 0.2 s time window (i.e. where Figure 3-12a indicates that 

bulk of evoked activity occurred). Figure 3-12b indicates significantly less evoked 

power in the Sedated state. Figure 3-12c presents the time- averaged evoked responses 

and demonstrates significant reductions in both the amplitude of the M100 (46%) and 

M150 (94%) components during propofol sedation. We also noted significant (t = 3.16, 

p = 0.007) slowing of the M100 component. The M150 component was reduced to such 

a level during propofol sedation that we were unable to adequately quantify latency for 

a number of participants. Figure 3-13 demonstrates that there was no shift in peak 

gamma frequency, while peak alpha frequencies could not be reliably estimated across 

participants.  
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Figure 3-11: Summary of total (evoked plus induced) amplitude differences in the 
experiment.  
a) Grand-averaged source localisation of gamma oscillations (40–80 Hz) for Awake and 
Sedated states respectively. Units are t statistics. The peak source location for the 
gamma band was at MNI (mm) co-ordinate [15 -95 7] for Awake and [17 -97 1] for 
Sedated (adjacent SAM voxels). b) Grand-averaged time-frequency spectrograms 
showing source-level oscillatory amplitude (evoked + induced) changes following 
visual stimulation. Spectrograms are displayed as percentage change from the pre-
stimulus baseline. c) Envelopes of oscillatory amplitude for the gamma (40–80 Hz) and 
alpha (8–15 Hz) bands respectively. Time-periods with significant differences between 
the Awake and Sedated states are indicated with a black bar (*p <005, **p <0.01, ***p 
<0.001, shaded areas represent SEM). 

 

 

were computed as a percentage change from the mean pre-
stimulus amplitude (21.5 to 0 s) for each frequency band. This
relative-change baseline provides a control for between-recording
and between-participant effects (for example, different head
positions in the MEG), as well as correcting for the 1/f nature
of non-baseline corrected MEG source estimates [24]. From these
spectra, the time courses of alpha (8–15 Hz) and gamma (40–
80 Hz) were extracted and submitted to non-parametric permu-
tation tests using 5000 permutations [25,26]. Permuted t statistics
were corrected for multiple comparisons using cluster-based
techniques with an initial cluster forming threshold of t=2.3.
This approach allowed us to examine the temporal profile of

oscillatory spectral modulations as well as controlling for potential
contamination of early-evoked response components into the
alpha band. To examine pre-stimulus amplitudes the time-
frequency spectra were recomputed with no baseline correction
and the average amplitudes of alpha (8–15 Hz), beta (15–40 Hz)
and gamma (40–80 Hz) in the pre-stimulus period (21.5 to 0 s)
were calculated.
For SAMerf, the computed evoked response was passed through

the 0–100 Hz beamformer weights and SAMerf images [27] were
generated at 0.01 s intervals from 0.05 to 0.015 s. The image
(usually 0.08 to 0.09 s or 0.09 to 0.1 s) with the maximal response
in visual cortex was identified and the maximal voxel selected as

Figure 1. Summary of total (evoked plus induced) amplitude differences in the experiment. a) Grand-averaged source localisation of
gamma oscillations (40–80 Hz) for awake and sedated states respectively. Units are t statistics. The peak source location for the gamma band was at
MNI co-ordinate [15–95 7] for awake and [17 97 1] for sedated (adjacent SAM voxels). b) Grand-averaged time-frequency spectrograms showing
source-level oscillatory amplitude (evoked+induced) changes following visual stimulation with a grating patch (stimulus onset at time= 0) during
awaked and sedated states. Spectrograms are displayed as percentage change from the pre-stimulus baseline and were computed for frequencies
from 5 up to 150 Hz but truncated here to 100 Hz for visualisation purposes. c) Envelopes of oscillatory amplitude for the gamma (40–80 Hz) and
alpha (8–15 Hz) bands respectively. Time-periods with significant differences between the awake and sedated states are indicated with a black bar
(*p,.05, **p,.01, ***p,.001, shaded areas represent SEM).
doi:10.1371/journal.pone.0057685.g001
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Figure 3-12: Summary of evoked amplitude differences in the experiment.  
a) Grand-averaged time-frequency spectrograms showing source- level oscillatory 
amplitude changes for the evoked response. b) Evoked amplitude spectra for the 0–0.2 s 
time period. c) Source-level time-averaged evoked responses for Awake and Sedated 
states. Significant differences were seen in the amplitude of the M100 and M150 
responses (*p <0.05, **p <0.01, ***p <0.001, shaded areas represent SEM).  

 

3.5.6.5  Changes in baseline activity 

Changes in the baseline power spectrum were examined for their possible role in 

driving the alpha and gamma activity changes. To do this, the absolute amplitudes of 

the virtual sensor amplitude spectra in the baseline period were computed. No changes 

were seen in baseline gamma or alpha amplitude but an increase in resting beta 

amplitude (p = 0.05) (Figure 3-13c-e) was seen.  

the peak location for virtual sensor analysis. For time-domain
analysis, the evoked field was computed for this virtual sensor
(20.2 to 0 s baseline, 40 Hz low-pass filter) and the peak
amplitude and latency of the M100 and M150 responses were
quantified. We also performed a spectral analysis of the evoked
field using the same time-frequency techniques as above. The
evoked frequency response in the 0 to 0.2 s period was obtained
for each condition and analysed using the same statistical
methodology.

Results

Participants showed significantly (t=6.15, p= .001) slower key
presses to stimulus offset during propofol sedation (mean 355 (s.d.
42) ms) compared to the awake state (mean 277 (33) ms). They also
missed significantly more (t=3.86, p= .002) key presses during
sedation (6.1 (4.7)) compared to the awake state (1.3 (1.0)).
Figure 1A shows grand-averaged source reconstructions for
gamma band (40–80 Hz) responses to presentation of the grating
stimulus during awake and sedated states respectively. As
expected, both reconstructions locate the sources in the medial
visual cortex in the quadrant opposite to the side of visual
stimulation. The grand-averaged peak locations of the responses
were located in adjacent source reconstruction voxels (4 mm voxel

size). From the peak locations identified in individual source
localisation images, source level activity was reconstructed and
time-frequency spectra computed. The grand-average of these
time-frequency spectra are displayed in Figure 1B. These show the
typical morphology following this type of visual stimulus: there is
an initial transient broadband (50 to 100 ms) amplitude increase in
the gamma frequency (.40 Hz) range, followed by a longer-
lasting elevation of gamma frequency amplitude in a narrower
frequency range [13,28]. In the lower frequencies, there exists
a sustained alpha amplitude decrease that commences around
200 ms, and a low frequency onset response, which is indicative of
the evoked response [29]. Co-localisation of alpha and gamma
responses has been previously demonstrated [30]. In Figure 1C the
extracted gamma (40–80 Hz) and alpha (8–15 Hz) amplitude
time-courses are plotted. During propofol sedation there was
significantly elevated (p= .01, corrected) gamma band activity
between 0.15 to 0.61 s corresponding to a 59.8% increase in
amplitude. Similarly, during propofol sedation there was signifi-
cantly (p,.01, corrected) more alpha amplitude decrease between
0.230 to 1.25 s corresponding to a 94.0% increase in stimulus-
induced alpha suppression.
In Figure 2A, the time-frequency response of the source-level

evoked response is presented for both awake and sedated states
and in Figure 2B the frequency spectra of these are presented for

Figure 2. Summary of evoked amplitude differences in the experiment. a) Grand-averaged time-frequency spectrograms showing source-
level oscillatory amplitude changes for the evoked response. b) Evoked amplitude spectra for the 0–0.2 s time period. c) Source-level time-averaged
evoked responses for awake and sedated states. Significant differences were seen in the amplitude of the M100 and M150 responses (*p,.05,
**p,.01, ***p,.001, shaded areas represent SEM).
doi:10.1371/journal.pone.0057685.g002
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Figure 3-13: Bar charts showing peak (a) gamma frequency, (b) M100 Latency, 
and baseline, (c) gamma, (d) beta and (e) alpha amplitudes.  
(*p,.05, **p,.01, ***p,.001, bars represent SEM). 

  

3.5.6.6  Exploratory correlation analysis 

Further exploratory correlational analyses were done between each of the parameters 

found to be significantly modulated by propofol (differences in, reaction time, gamma 

amplitude, alpha amplitude, M100 latency, M150 latency, and beta baseline amplitude). 

The only correlation that emerged was between M100 latency differences and alpha 

amplitude differences (r = 0.57, p<0.003).  

 

 

0 to 0.2 s time window (i.e. where Figure 2A indicates that bulk of
evoked activity occurred). Figure 2B indicates significantly less
evoked power in the sedated state. Figure 2C presents the time-
averaged evoked responses and demonstrates significant reduc-
tions in both the amplitude of the M100 (46%) and M150 (94%)
components during propofol sedation. We also noted significant
(t=3.16, p= .007) slowing of the M100 component (Figure 3B).
The M150 component was reduced to such a level during propofol
sedation that we were unable to adequately quantify latency for
a number of participants. Figure 3A demonstrates that there was
no shift in peak gamma frequency, while peak alpha frequencies
could not be reliably estimated across participants. We then tested
whether the changes in alpha and gamma activity could be driven
by changes in the baseline power spectrum. To do this, we
computed the absolute amplitudes of the virtual sensor amplitude
spectra in the baseline period. No changes were seen in baseline
gamma or alpha amplitude but an increase in resting beta
amplitude (p= .05) (Figure 3C–E) was seen.
We conducted exploratory correlational analyses between each

of the parameters we had found to be significantly modulated by
propofol (differences in, reaction time, gamma amplitude, alpha
amplitude, M100 latency, M150 latency, and beta baseline
amplitude). The only correlation that emerged was between
M100 latency differences and alpha amplitude differences (r= .57,
p,.003) and will require subsequent confirmation.

Discussion

In this experiment, we demonstrate that during mild propofol
sedation there is an increase in visually-induced gamma band
responses, increased alpha amplitude suppression, and a concur-
rent reduction in the visually evoked response compared to the
awake state. Thus, there is an overall amplification of the

oscillatory response seen with visual stimulation under propofol
sedation but a decrease in evoked activity. This provides an in vivo
demonstration in humans, that stimulus-induced gamma oscilla-
tions in visual cortex can be modified pharmacologically. The
increase in induced gamma and alpha stimulus reactivity occurred
concurrently with a reduction in the evoked response, that is, the
evoked and induced responses showed a pharmacologically-in-
duced dissociation. One particularly striking feature of this
dissociation is that this occurred in the same MEG data. This
suggests that these two MEG responses may reflect the activity of
different generator populations in primary visual cortex or that
these generators are differentially pharmacologically sensitive.
Indeed, in primary visual cortex gamma band responses are
primarily generated in layers II, III and IV [31], whereas early
evoked responses are mostly generated in layer IV [32]. The
present dissociation appears comparable to the dissociation
between ERP and the gamma responses recorded during an
adaptation (double pulse paradigm) task, using subdural record-
ings. While there was a reduction in the ERP the gamma-band
response remained constant [33]. An important aspect of this
dissociation is that it argues against other, more prosaic,
interpretations of the data. For example, one might argue that
the reduction in the M100 amplitude evoked response is due to
reduced task vigilance, attention [34] as participants’ state of
consciousness changed. However, these effects would also decrease
the amplitude of oscillatory responses [18,34]. The concurrent
increase in oscillatory signals is therefore inconsistent with such
arguments. Another possibility is that the decreased evoked
responses we observed might be due to altered fixation control
during propofol sedation. However, loss of fixation control would
be expected to decrease the amplitude of both the evoked response
[35] and the gamma-band response [36,18] whereas these
components change in opposite directions in our data. Neverthe-

Figure 3. Bar charts showing peak gamma frequency (a), M100 Latency (b), and baseline gamma (c), beta (d) and alpha amplitudes
(e). (*p,.05, **p,.01, ***p,.001, bars represent SEM).
doi:10.1371/journal.pone.0057685.g003
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 Discussion 3.5 .7

This experiment has two key findings 

• During mild propofol sedation there is an increase in visually-induced gamma 

band responses, increased alpha amplitude suppression, and a concurrent 

reduction in the visually evoked response compared to the Awake state.  

• A significant negative correlation between the peak spike gamma frequency with 

occipital GABA+ concentration during the Sedated state (and a trend towards 

significance between the occipital GABA+ and peak spike gamma frequency 

during the Awake state) but no relationship of GABA+ with the sustained 

gamma frequencies 

 

The increase in visually-induced gamma band responses, increased alpha amplitude 

suppression, and a concurrent reduction in the visually evoked response during  

propofol sedation is a novel finding. This provides an in vivo demonstration in humans, 

that stimulus-induced gamma oscillations in visual cortex can be modified 

pharmacologically. The increase in induced gamma and alpha stimulus reactivity 

occurred concurrently with a reduction in the evoked response, that is, the evoked and 

induced responses showed a pharmacologically-induced dissociation.  One particularly 

striking feature of this dissociation is that this occurred in the same MEG data. This 

suggests that these two MEG responses may reflect the activity of different generator 

populations in primary visual cortex or that these generators are differentially 

pharmacologically sensitive. Indeed, in primary visual cortex gamma band responses 

are primarily generated in layers II, III and IV (Xing et al., 2012), whereas early evoked 

responses are mostly generated in layer IV (Kraut et al., 1985). The present dissociation 

appears comparable to the dissociation between ERP and the gamma responses recorded 

during an adaptation (double pulse paradigm) task, using subdural recordings. While 

there was a reduction in the ERP the gamma-band response remained constant (Privman 

et al., 2011). An important aspect of this dissociation is that it argues against other, 

more prosaic, interpretations of the data. For example, it may be argued that the 

reduction in the M100 amplitude evoked response is due to reduced task vigilance, 

attention (Kahlbrock et al., 2012) as participants’ state of consciousness changed. 

However, these effects would also decrease the amplitude of oscillatory responses 
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(Kahlbrock et al., 2012, Swettenham et al., 2009). The concurrent increase in oscillatory 

signals is therefore inconsistent with such arguments. Another possibility is that the 

decreased evoked responses observed here might be due to altered fixation control 

during propofol sedation. However, loss of fixation control would be expected to 

decrease the amplitude of both the evoked response (Di Russo et al., 2002)  and the 

gamma-band response (Perry et al., 2013, Swettenham et al., 2009) whereas these 

components change in opposite directions in this data.  

 

EEG studies of the resting spectra during mild propofol sedation demonstrate decreased 

posterior alpha and increased central beta power (Gugino et al., 2001). Increased 

sedation levels are marked by increased delta and theta power and frontal alpha with 

increased peak frequency (Feshchenko et al., 2004). Neural modelling of the changes in 

the resting EEG spectra during propofol anaesthesia suggest that these are caused  by 

increased inhibition within local interneuron circuits (Ching et al., 2010b, Hindriks and 

van Putten, 2012). While the scalp EEG is a mixture of many generators, the advantage 

of the MEG beamformer approach used here is that it allows activity from a spatially 

confined region of interest to be analysed (Vrba and Robinson, 2001). The baseline 

spectra in the primary visual cortex virtual sensors demonstrated only a relatively minor 

increase in beta power and no changes in resting gamma or alpha activity. As such, the 

event-related amplitude changes demonstrated here do not appear to be related to 

baseline spectral changes with the drug. The other advantage of the well-validated MEG 

beamfomer (Brookes et al., 2005, Hoogenboom et al., 2006, Muthukumaraswamy et al., 

2010) approach used here is that one can be very confident that the gamma-band 

activity here does not reflect the influence of muscle activity, be it from microsaccades 

(Fries et al., 2008, Yuval-Greenberg et al., 2008), or neck/head muscles (Whitham et al., 

2008). 

 

While a broadband frequency range was used to identify the virtual sensor the changes 

in evoked resposnes; the induced response virtual sensor was identified using frequency 

in the gamma band range. The induced resposnes were therefore ‘optimised’ for gamma 

band changes. This was done as these were the changes of primary focus in the 

experiment. This gamma band ‘optimised’ virtual electrode was then used to 

characterise alpha/ beta band activity. It is possible that using a specific frequency range 
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to identify peak activity voxel as virtual electrode  for further evaluating the alpha band 

would have been localised to a different voxel and may have been more informative, for 

that frequency band.  

 

Based on the results of Muthukumaraswamy et al (2009), it was hypothesized that peak 

sustained gamma frequency would increase with propofol but instead the gamma 

amplitude increased. There was no change in GABA+ also seen in the sequential MR 

experiment (Experiment 1). The questions about the sensitivity of MRS have been 

discussed previously (Section 3.4.5). Based on the same reasoning it is possible that the 

original relationship observed by Muthukumaraswamy et al (2009) could have been 

influenced by a number of anatomical, biochemical or even genetic variables. In 

particular, recently Schwarzkopf et al. (Schwarzkopf et al., 2012) found across 

individuals, that gamma frequency correlates with the surface area of V1 defined by 

retinotopic mapping with fMRI, suggesting anatomical factors may have driven our 

previous results. However, another recent study using structural estimates of V1 area 

did not find such a relationship (Perry et al., 2013). Since MEG and MR experiments 

were done on different days, albeit on the same participants, the stability of GABA 

measures, within subject, may also influence the results. MRS detectable GABA has 

been shown to be stable throughout a day and did not shown any diurnal variation 

(Evans et al., 2010). Similarly, GABA measurements have been shown to be stable over 

longer periods as long as 7 months (Near et al., 2014). It is therefore unlikely that any of 

the relationships between MEG measures and GABA may be accounted for by 

variations in GABA measurements over time. 

 

Although gamma amplitude and frequency are not correlated across individuals 

(Muthukumaraswamy et al., 2010) across experimental manipulations they often change 

together and perhaps they should not be viewed as isolated parameters. For example, in 

both animals (Gray et al., 1990) and humans (Swettenham et al., 2009) it has been 

shown that moving stimuli lead to gamma oscillations of both higher frequency and 

amplitude. Similarly, when the contrast of stimuli changes, induced gamma oscillations 

(dynamically) change in both amplitude (Hall et al., 2005a) and frequency (Ray and 

Maunsell, 2010). In addition, stimuli of different spatial frequency elicit not only 

different gamma amplitudes (Adjamian et al., 2004) but also alter the spectral shape of 
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the gamma response (Hadjipapas et al., 2007). Finally, recent computational modelling 

studies suggest that individual variability in both areal integration across V1 columns 

and synaptic excitation/inhibition (Chambers et al., 2012, Pinotsis et al., 2013) can drive 

variability in induced visual gamma frequency, suggesting a possible dependence on 

multiple parameters. 

 

Propofol’s mechanism of action is primarily through GABA-ergic activity by enhancing 

its inhibitors actions, among other roles, as discussed in Section 3.2.3.  Computational 

modelling (Wang and Buzsaki, 1996) suggests that gamma activity can be generated by 

networks of gap junction connected interneurones (Galarreta and Hestrin, 1999) 

providing large synchronised IPSPs to excitatory cells (Hasenstaub et al., 2005). Indeed, 

in barrel cortex, driving fast-spiking interneuron activity, but not pyramidal cell activity, 

selectively amplifies gamma activity (Cardin et al., 2009). Given all of these previous 

results, the amplified gamma response observed here seems most likely to be caused by 

the potentiation of GABA-A activity by propofol. Gamma amplitude changes could 

result from the enhancement of either phasic or tonic GABA currents, as propofol 

amplifies both (Feng and Macdonald, 2004, Houston et al., 2011, Jeong et al., 2011) and 

both can modify gamma activity (Cardin et al., 2009, Mann and Mody, 2011).   

 

Another interesting observation in this experiment was the negative prediction of the 

resting GABA+ concentration on the peak spike gamma frequency during both the 

Awake and Sedated states. While the spike (transient) and sustained gamma activity 

appear to be generated from different sources, they are strongly related to each other in 

terms of frequency and amplitude (Gaetz et al., 2012). While Muthukumaraswamy et al 

(2009) demonstrated a positive correlation between resting GABA concentration and 

peak of sustained gamma frequency they did not find a similar relationship with the 

spike frequency. However, considering the expected relationship between spike and 

sustained gamma frequency an inverse relationship of spike frequency with GABA+ 

concentration, as discovered in this experiment, is counter-intuitive.  This does, 

however, suggest a relationship with GABA-ergic activity in the visual cortex and the 

evoked response. Due to its temporal characteristics, the gamma spike is considered to 

represent the early visual pathway while the sustained gamma represents a cortico-

cortical synchronous response to the visual stimulation (Castelo-Branco et al., 1998), 
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but the exact significance of these two components is unclear. Since the GABA+ 

concentration did not change with propofol sedation, in these experiments, it would 

only be speculative to predict how spike gamma frequency would have changed with it, 

if at all. 

 

 



 
     
 

 
 
 

113 

3.6  Experiment 3: Changes in visual BOLD signal with mild propofol 

sedation 

 Rationale and background 3.6 .1

3.6.1.1  Vision and effect of sedation on vision 

Vision (visual perception and awareness) is one of the key senses and an important 

component of ‘consciousness’. The visual pathway is organised in a hierarchical fashion 

with the visual signals passing onward from the retina to the primary visual cortex and 

then onto the higher areas in the dorsal and ventral visual pathways. Different brain 

structures within this pathway have different functional sensitivities and specificities. 

Moving forward within this pathway, the receptive fields become larger and their 

specificity for stimuli changes, with higher areas becoming more responsive to complex 

stimuli (Baars and Gage, 2010). 

 

Vision appears to be one of the most sensitive sensations and earliest to be affected, 

pharmacologically, within the spectrum of altered consciousness related to sedation and 

anaesthesia, as evident by the visual reaction times being slowed before the auditory 

reactivity (Kim et al., 2004). Sedation, depending upon the depth, is characterised by 

the loss of visual perception, awareness and recall. Clinically this manifests as blurred 

vision, sluggish eye movements, slowed visual reaction times and eventually, inability 

to keep the eyes open (motor effect). The neuroimaging correlates of these behavioural 

changes are measurable using neuroimaging techniques. Cortical activity of primary 

sensory cortices is preserved, albeit reduced, even during deeper stages of anaesthesia 

while activity of the higher association cortical areas is suppressed early (Heinke and 

Schwarzbauer, 2002). Alkire et al (Alkire et al., 1995b) demonstrated reduced cerebral 

metabolism in the occipital cortex (greater than global metabolic suppression) at 

anaesthetic doses of propofol. At sedative doses of propofol, Sun et al (Sun et al., 2008) 

found a 15% reduction in occipital lobe metabolism. Ramani et al (Ramani et al., 2011) 

used arterial spin labelling (ASL) to demonstrate a reduced visual cortical activation 

following sub-anaesthetic doses of sevoflurane. Other GABA-ergic drugs such as 

alcohol (Levin et al., 1998), pentobarbital (another anaesthetic drug) (Martin et al., 
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2000) and zolpidem have also been shown to diminish the BOLD response to a visual 

stimulation. This suppression of vascular response seems to correlate with suppression 

in neuronal activity as measured by EEG/ MEG, as demonstrated by an increase in 

latency and reduced amplitude to visual (and other sensory stimuli) (Ghita et al., 2013, 

Iohom et al., 2001). Of the evoked responses, visual evoked potentials have been least 

studied for depth of anaesthesia/sedation as compared to other sensory modalities. 

 

3.6.1.2  Functional relationship of BOLD signal, GABA concentration 

and gamma band oscillations 

BOLD- functional MRI (fMRI) signal forms the basis of most fMRI studies, yet, the 

precise nature, source and mechanism of this haemodynamic response is still a topic of 

research.  The BOLD signal correlates with the local field potential (weighted average 

of synchronised dendro-somatic components of the input signals) of a neuronal 

population (Kayser et al., 2004, Logothetis et al., 2001) with possibly some 

contributions from the spiking activity of such neuronal populations (Zaehle et al., 

2009). This field potential may well be influenced by numerous chemical factors that 

further confound the vascular response to this neural activity. To provide convergent 

and coherent understanding of the human in-vivo neurophysiology through macroscopic 

neuroimaging tools, this relationship between neuronal activity and its resulting 

vascular response needs to be established. 

 

It has been suggested that the inhibitory inter-neuronal population may have a major 

role to play in the generation of this BOLD response in relation to high frequency 

oscillations in the gamma band (Niessing et al., 2005). Tightly synchronised discharges 

in the gamma frequency range result in periodic inhibition of the pyramidal cells, which 

synchronises their discharge to the depolarising membrane potential oscillations. So, 

when gamma frequency oscillations are generated, the interneuronal discharges are 

phase locked to the oscillations and their activity increases with the oscillatory 

frequency.  In humans, BOLD signal and gamma band response (GBR) have been 

shown to be similarly spatially located following a visual task suggesting similar 

sources/ origin (Muthukumaraswamy and Singh, 2008).  A similar contrast tuning 
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relationship exists between BOLD and gamma band amplitude (Hall et al., 2005b) but 

this relationship is not universally linear or predictable (Muthukumaraswamy and 

Singh, 2009, Muthukumaraswamy and Singh, 2008). Muthukumaraswamy et al (2009) 

demonstrated an inverse relationship between the peak gamma sustained response 

frequency and the BOLD response, which appeared to be mediated by the resting 

GABA concentration. 

 

GABA, as an inhibitory neurotransmitter  (along with Glutamate, an excitatory 

neurotransmitter) plays a significant role in the BOLD responsiveness, although the 

exact mechanism is still unclear. GABA interneurons may act as local integrators of 

neurovascular coupling by transmuting incoming neuronal afferents into vascular 

responses (Cauli et al., 2004, Vaucher et al., 2000). In rats, increased GABA 

concentrations (by GABA transaminase inhibitor, vigabatrin) is associated with a 

reduced BOLD response (Chen et al., 2005). In humans, GABA concentration as 

measured by MRS, has been shown to be inversely correlated to the BOLD signal 

(Donahue et al., 2010, Hu et al., 2013). 

 

Based on this information, BOLD- fMRI response to a visual task was studied and 

compared during the awake state and during propofol sedation.  

 

 Hypothesis 3.6 .2

Propofol sedation results in a reduction in BOLD response, measured using fMRI and 

this reduced BOLD signal correlates with changes in visual gamma band responses and 

GABA concentration. 

  

 Aims 3.6 .3

The aims of Experiment 3 were to evaluate changes in BOLD response to a visual task 

during mild propofol sedation and its relationship with the GABA concentration (Awake 

and Sedated; from Experiment1) and peak gamma band frequency and amplitude 

(Awake and Sedated; from Experiment 2). 
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 Methods 3.6 .4

This experiment was performed during the same session as Experiment 1 (Session MRI) 

and so the participant characteristics, drug administration and sedation assessment are 

the same as reported in Section 3.4.3. 

 

3.6.4.1  Visual stimulus 

A visual stimulation task comparable to the experiment 2 (4.4.3.2) was implemented. 

Visual stimuli consisting of vertical, stationary, maximum-contrast, 3 cycles per degree, 

square-wave gratings were presented on a mean luminance background. These stimuli 

were presented in the lower left visual field and subtended 4° both horizontally and 

vertically, with the upper right corner of the stimulus located 0.5° horizontally and 

vertically from a small red fixation point. Participants were instructed to maintain 

fixation for the entire experiment and, to maintain attention, were instructed to press a 

response key as fast as possible at the termination of each stimulation period. The 

duration of each stimulus was 1.5–2 s followed by 10 s of fixation cross only, with 42 

events presented in the session. The stimuli were controlled by a Visage and presented 

via a Canon Xeed SX60 (1024 x 768 pixel resolution, 60 Hz refresh) projector. 

 

 MRI acquisition and analysis 3.6 .5

Magnetic resonance (MR) data were acquired on a 3T GE scanner with an 8-channel 

receive-only head RF coil. For each participant a 3D FSPGR scan with 1 mm isotropic 

voxel resolution was obtained. fMRI data were acquired using a gradient echo EPI 

sequence taking 30 axial slices at 3 mm isotropic voxel resolution centred over the 

visual cortex using a 64 x 64 matrix size, TE of 35 ms, 90° flip angle, and TR of 2 s.  

 

fMRI data processing was carried out using FEAT (Expert Analysis Tool) Version 5.98, 

part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The following pre-

statistics processing was applied; motion correction using MCFLIRT (Jenkinson et al., 

2002), non-brain removal using BET (Smith, 2002), spatial smoothing using a Gaussian 

kernel of FWHM 5mm; grand-mean intensity normalisation of the entire 4D dataset by 
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a single multiplicative factor; highpass temporal filtering (Gaussian-weighted least-

squares straight line fitting, with sigma=50.0s). The GLM was used to model a 2/10 s 

boxcar for each stimulus, after convolution with a standard haemodynamic response 

function (gamma function) to account for haemodynamic effects. Time-series statistical 

analysis was carried out using FILM with local autocorrelation correction (Woolrich et 

al., 2001). Z (Gaussianised T/F) statistic images were thresholded using clusters 

determined by Z>2.3 and a (corrected) cluster significance threshold of P=0.05 

(Worsley, 2001). Registration to high resolution structural and standard space images 

was carried out using FLIRT (Jenkinson et al., 2002, Jenkinson and Smith, 2001). 

Registration from high resolution structural to standard space was then further refined 

using FNIRT nonlinear registration (Andersson et al., 2007a, Andersson et al., 2007b). 

 

Higher level analysis was carried out using FLAME (FMRIB's Local Analysis of Mixed 

Effects) stage 1(Beckmann et al., 2003, Woolrich, 2008, Woolrich et al., 2004). Z 

(Gaussianised T/F) statistic images were thresholded using clusters determined by 

Z>2.3 and a (corrected) cluster significance threshold of P=0.05 (Worsley, 2001). 

 

FSL was used to view the statistical parametric maps and the areas of BOLD signal 

differences were identified by using the Harvard-Oxford cortical and subcortical atlases.  

Group-level peak activation voxel was identified as the area of maximal activation with 

the two datasets combined (Awake and Sedated). This group –level peak location was 

transformed back to individual subject’s space and the percentage BOLD signal change 

was calculated. This BOLD amplitude change was compared between the 2 groups used 

paired t-test in MS Excel. 

 

 Results 3.6 .6

One subject’s data had to be discarded due to excessive movement, resulting in a total 

of 14 paired datasets for analysis.  

 

Head movement was compared between the two sessions using paired t-test. This 

revealed no significant difference between the two groups (p= 0.39, 2-tailed). 
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The location of the peak voxel, on combined dataset group level, was identified in the 

right occipital pole (MNI_152 voxel coordinates 29, 16, 39). The BOLD signal at this 

voxel reduced significantly from the Awake to the Sedated state [Mean (SD): 2.18 

(1.13)% to 1.40 (1.23)%, p < 0.005, 2 tailed). However, further whole brain level, 

paired, voxelwise comparison at a statistical level of P < 0.05 (FWE corrected) was 

unable to detect any difference between the Awake and Sedated states.  

 

The mean thresholded activation maps displayed on a template MNI brain are shown in 

Figure 3-14 (Awake state) and Figure 3-15 (Sedated state). As expected activation 

patterns are seen in the right occipital cortex in both groups. Activation is also seen in 

the left sensorimotor cortex representing the right finger motor movement (button press) 

as part of the task. Activation is also seen in the left occipital cortex in the Sedated 

group which probably represents a loss of attention/ focus as a result of sedation 

resulting in bilateral activation. However this activation also did not reach significance 

at the whole brain level. 
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Figure 3-14: Group mean map showing activation of regions following a visual 
grating stimulus (Awake state) 
Z (Gaussianised T/F) statistic images were thresholded using clusters determined by Z > 
2.3 and a corrected (cluster) significance threshold of P= 0.05 
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Figure 3-15: Group mean map showing activation of regions following a visual 
grating stimulus (Sedated state) 
Z (Gaussianised T/F) statistic images were thresholded using clusters determined by Z > 
2.3 and a corrected (cluster) significance threshold of P= 0.05 
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Table 3-3: Locations of peak activations, with their Z values (Awake and Sedated 

states) 

On MNI atlas 

Awake state   MNI_152 

voxel coordinates 

  Z stat x y z 

Occipital pole (R) 6.19 29 16 39 

Postcentral and precentral 

gyrus (L) 6.17 61 48 65 

Sedated state   

     Z stat x y z 

Occipital pole (R) 5.53 36 16 32 

Postcentral and precentral 

gyrus (L) 5.29 62 48 64 

Lateral occipital cortex (L) 4.85 60 19 38 

 

 

There was a moderate, but not statistically significant, correlation across the group 

between the BOLD signal in the group (Awake + Sedated)-defined peak occipital voxel 

in the Awake state with the Awake occipital GABA+ concentration  (experiment 1) (R= 

-0.374; p = 0.09) but not during the Sedated state GABA+ and BOLD signal change. 

 

 
Figure 3-16: Scatter plots between and BOLD signal change (%) and Occipital 
GABA+ levels during Awake and Sedated states  
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There was no evidence of a relationship between the BOLD signal change and the 

gamma band parameters including spike and sustained frequency and power.  

 

 
Figure 3-17: Scatter plots between and BOLD signal change (%) and visual 
gamma band characteristics (spike and sustained power and frequency) during 
Awake and Sedated states 
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 Discussion 3.6 .7

There was a significant reduction in the percentage change in the BOLD signal within 

the peak voxel in the occipital cortex following mild propofol sedation. This was an 

expected finding based on previously published experiments and other findings in this 

series of experiment including a reduction in visual reaction times and reduced visual 

evoked potentials.  

 

A subsequent whole brain analysis was performed; however, this difference within the 

peak voxel, did not survive statistical correction for multiple comparisons at the whole 

brain level. The difference between the ‘peak voxel’ comparison and the ‘whole brain’ 

analysis could be explained by a number of factors. Statistical inference in 

neuroimaging studies can vary depending on the question asked and the willingness to 

accept type 1 or type 2 errors.  Due to the high number of voxels involved and the lack 

of true independence of each voxel from the other family –wise error correction 

techniques have been applied for fMRI studies. The choice of region of interest (ROI) 

can influence the outcome, as might have been the case in this analysis (a single voxel 

instead of the whole brain). Arguably, a further, selective ROI analysis, limited to the 

primary visual cortex may have provided further insight into strength of change, but 

was not attempted to limit further ‘multiple testing’.  

 

The experimental design in the series of visual experiments was similar to that of 

Muthukumaraswamy et al (2009). The visual grating stimulus was chosen as it reliably 

produces visual gamma band oscillations and also produces a reasonable change in task 

induced BOLD signal (and was therefore required to relate the BOLD data with MEG 

data). Arguably, a ‘stationary grating’ visual pattern is not the strongest stimuli to study 

visual cortical activation (Fox and Raichle, 1984, Iidaka et al., 2004, Thomas and 

Menon, 1998) and most published visual experiments, to study drug-induced changes, 

have employed a flashing/reversing checkerboard (Licata et al., 2011, Martin et al., 

2000). This choice of a ‘weak’ activator could have resulted in a ‘floor’ effect. While 

such a ‘floor effect’ if present, did not manifest itself on a single voxel level analysis, 

but could have been compounded by multiple testing at the whole brain level resulting 

in loss of significance. Another possible reason, for not finding a significant change at 
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the whole brain level, could be that following sedation, the resulting longer reaction 

times may have altered the haemodynamic response function resulting in a larger 

amplitude as in response to a stronger, compensatory effort in task performance 

(Yarkoni et al., 2009).  

 

3.6.7.1  BOLD signal and GBR 

There was no relationship identified between the BOLD signal changes and the gamma 

band parameters in the Awake state. Further comparison with the BOLD signal change 

during Sedated state and gamma band parameters was therefore not performed. The 

relationship between gamma band and BOLD signal is not straightforward. The GBR 

and BOLD have been shown to have similar spatial source location for the visual 

stimuli (Muthukumaraswamy and Singh, 2008) but seem to respond differently to 

stimulus characteristics including spatial frequency, temporal frequency, luminance and 

colour contrasts (Muthukumaraswamy and Singh, 2009, Swettenham et al., 2009). The 

relationship is further complicated by the various parameters of the GBR, (induced or 

evoked; frequency or amplitude) which may or may not predict BOLD signal changes 

(Singh, 2012). Yet, failure to replicate the findings of Muthukumrasawamy et al (2009), 

in the Awake state, with a similar experimental paradigm, was surprising. 

 

With a reduced visual evoked field activity (as found in experiment 2, section 3.5.6.4) a 

reduced BOLD signal would have been predicted. This was found at the peak voxel 

level in the visual cortex. This relationship may be explained by a similar observation 

where it was shown that the haemodynamic response to an electrophysiological activity 

was limited to a smaller area than the larger cluster of change observed (Arthurs and 

Boniface, 2003).  

 

Alternatively, the lack of BOLD change at the whole-brain level may be explained by 

the metabolic changes associated with the GBR response. Since the GBR following 

sedation resulted in dissociation between the evoked and induced responses, i.e. a 

reduction in evoked activity with an increase in induced gamma amplitude (suggesting 

local synchronicity), it is possible that an increase local neuronal activity countered this 

reduction (in evoked activity) and resulted in no change or a limited net change in local 
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neuronal metabolic activity. The proposed mechanisms linking the LFP changes in 

neuronal assemblies in the generation of BOLD signal (Niessing et al., 2005, Kayser et 

al., 2004, Logothetis et al., 2001) suggests that maintenance of this local excitation/ 

inhibition balance at the visual cortical level may indeed be the cause of a maintained 

BOLD signal, following sedation. 

 

The peak voxels estimated by SAM for GBR analyses were different to the peak voxel 

identified for BOLD analysis. They were separated by about 20mm.  The choice of peak 

voxel for BOLD analysis was chosen at the group level by averaging data between 

Awake and Sedated states. This was different for the GBR, which was estimated at 

subject level. This difference in analytic processing may have accounted for some of the 

results. 

 

3.6.7.2  BOLD signal and GABA concentration 

There was a moderately strong inverse correlation between the Awake occipital GABA+ 

levels and the BOLD signal change. Although not as strong as that reported by 

Muthukumaraswamy et al (2009), yet, reassuring.  Some of the possible reasons for the 

absence of a stronger relation could be related to sensitivity of GABA measurements as 

discussed in section 3.4.5. The relationship between bulk MRS GABA measures and 

BOLD signal is also unlikely to be simply linear. As Donahue et al (Donahue et al., 

2010) have demonstrated, the CBF weighted ASL tends to be positively correlated to 

GABA levels unlike the BOLD signal which is strongly inversely correlated. This 

suggests a complex interplay of excitation/ inhibition balance manifesting as a BOLD 

signal change depending on the basal GABA-ergic inhibitory tone. Since propofol 

induced mild sedation did not result in any measurable change in occipital GABA 

concentration it would be speculative to predict its precise role in the reduced/ 

maintained BOLD signal during the Sedated state.  The correlation between the 

GABA+ concentration and BOLD signal in the Awake state was lost during the Sedated 

state (Figure 3-16) further suggesting the role of other, unidentified mediators between 

the two parameters. 
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3.7  Limitations  

This ambitious experimental design attempted to bring together the functionality of 

diverse but inter-related neuroimaging techniques to relate the complex neurovascular 

and metabolic interplay induced by pharmacological sedation. While all neuroimaging 

techniques have their own limitations, which may have been compounded by relating 

together the results from different modalities, this series of experiments may be 

improved upon further, by some of the modifications, as below 

• Increasing sample size: The absence of GABA+ concentration change, as 

discussed previously, is unlikely to be due to a sample size effect. However, 

with a larger sample size the expected variance of GABA measurements would 

have been lower and so the confidence in the results could have been higher.  

 

• Eye tracking in MEG experiment: As discussed in section 3.5.7, loss of attention 

could be a confound in the visual task experiment. Although it is unlikely to be a 

source of the results found, eye tracking during such experiments would provide 

more robust and reliable data of eye fixation. 

 

• Order effect: All Sedated sessions followed Awake sessions and so an ‘order 

effect’ cannot be ruled out. Since recovery from sedation / anaesthesia may have 

significant neurophysiological differences from a pre-sedation awake state, there 

was no valid option of avoiding this. It would, however, have been interesting 

and useful to study the recovery characteristics of the measures collected in 

these experiments. While this would have made these sessions prohibitively 

lengthy, simpler or more focussed questions may be better posed in 

experimental designs including the entire range of sedation and recovery.  

 

• Different levels of sedation: While this series of experiments focussed on mild 

sedation, some of the positive findings and negative findings (for e.g. GABA 

changes) could have been further explored if different levels of sedation were 

studied, providing a dose-response relationship.  

 

 



 
     
 

 
 
 

127 

3.8  Conclusions 

 

This series of experiments has attempted to study the complex relationship between 

neurochemistry (GABA concentration), electrophysiology (GBR) haemodynamic 

activity (BOLD signal) and their modulation with mild propofol sedation. This has 

produced the following key findings. 

• MRS detectable GABA+ concentration does not change in the cortical 

(occipital) or subcortical (thalamic) regions during mild propofol sedation. 

• During mild propofol sedation there is an increase in visually-induced gamma 

band responses, increased alpha amplitude suppression, and a concurrent 

reduction in the visually evoked response compared to the Awake state.  

• A significant negative correlation between the peak spike gamma frequency with 

occipital GABA+ concentration during the Sedated state (and a trend towards 

significance between the occipital GABA+ and peak spike gamma frequency 

during the Awake state) but no relationship was found between the GABA +  

concentration and the sustained gamma band frequencies.  

• BOLD signal is reduced at the peak voxel, in visual cortex  on visual 

stimulation, during propofol sedation.  

• While there was a trend towards an inverse relationship between GABA+ 

concentration and BOLD signal change (during visual activation), no clear cut 

relationship existed during sedation, nor was there a well-defined relationship 

between the BOLD resposne and GBR. 
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 : Cortical responses to multisensory stimulation Chapter 4

and effect of propofol sedation 

 

4.1  Abstract 

Mild sedation, as the first step towards anaesthetic-induced unconsciousness, involves a 

gradual suppression of sensory perception and cognition.  Mild sedation is characterised 

by a slurred speech and reduced visual and auditory responsiveness.  

 

In a series of experiments, using multimodal neuroimaging techniques, the effect of 

mild propofol sedation was explored on electrophysiological responses to multisensory 

stimulation, using MEG, and haemodynamic changes in cortical reactivity, using 

BOLD-fMRI. 

 

The results revealed a reduction in visual evoked fields but no change in auditory or 

somatosensory evoked fields. BOLD-fMRI revealed a reduction in cortical responses in 

the sensorimotor cortex but not in auditory or visual cortices, in response to respective 

stimuli.  
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4.2  Background and rationale 

Sedation is characterized by increasing loss of visual, auditory and sensory perception, 

memory and speech. As sedation deepens, anaesthetic unconsciousness encompasses 

functional, reversible loss of all sensory and most motor modalities. The 

neurophysiological correlates of sedation can therefore be studied by studying the 

changes in some of these sensory modalities during pharmacological sedation. 

 

Traditionally, EEG, due to its millisecond temporal sensitivity, has been used to study 

cortical responses to anaesthetic effects. MEG provides a similar window into brain 

function while avoiding some of the limitations of EEG; such as lower spatial resolution 

and possible interference from the skull (see Section 2.8.2). Also, due to its spatial 

accuracy, BOLD-fMRI is increasingly being used to investigate neurophysiologic 

correlates of altered consciousness and anaesthetic effects. Most studies have focused 

on unconsciousness or deeper levels of sedation. Very few studies have investigated the 

earliest stages of pharmacological sedation and no previous work has used MEG to 

interrogate the cortical responses to sensory stimulation during sedation.  

 

This experiment was therefore undertaken to use the complementary information 

provided by BOLD-fMRI and MEG to investigate changes in primary cortical activity, 

involved in basic sensory processing and the effect of mild propofol sedation. This 

study was conducted as a two-part, sequential fMRI/ MEG study (as described 

previously in Section 2.4). 

 

4.3  Hypotheses 

Mild propofol sedation reduces the neural activity of the primary sensory cortices 

(visual, auditory and sensorimotor).  This will be evident as reduced BOLD activations 

on fMRI in those regions and reduced evoked fields on MEG in the respective sensory 

domains. 
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4.4  Experiment 1 

 Introduction 4.4 .1

Evoked potentials are changes in electrical potential, recorded in the nervous system, in 

vivo, in response to a stimulus. The change in these potentials during the time course of 

a stimulus response represent the neural processing occurring at different stages of the 

neuronal pathway and represents the functional integrity of these anatomical pathways. 

More specifically, ‘event related potentials’ (ERP) (or their MEG equivalent- ‘event 

related fields’ (ERF)) are evoked potentials to a specific stimulus. When ERPs/ERFs are 

used for experimental or clinical reasons, responses to visual, auditory or somatosensory 

stimuli are commonly measured. 

 

4.4.1.1  Visual evoked potentials/ fields 

Recorded visual evoked potentials (VEPs), in response to visual stimulation, consist of 

positive-negative deflections designated by capital letters followed by a number 

indicating the average latency. The two most frequent waves are designated N70 

(negative wave occurring at about 70 msec) and P100 (positive wave occurring at 

around 100 msec). Often, a positive wave around 50 msec, named P50, precedes N70. 

MEG recordings demonstrate a similar pattern (Teyler et al., 1975). The source 

modelling of N70/ P100 suggests that the N70 originates from the primary visual cortex 

while the P100 originates from the extrastriate visual areas (Slotnick et al., 1999, Di 

Russo et al., 2002). 

 

Visual evoked potentials are the least well studied evoked potentials in the anaesthetic 

literature. Most anaesthetic agents including halothane, isoflurane and nitrous oxide 

have been shown to alter VEPs by increasing their latencies and reducing amplitudes 

(Sebel et al., 1984, Sebel et al., 1986), however diazepam and fentanyl on their own do 

not (Loughnan et al., 1987). This suggests both drug specific and dose dependent effects 

on VEPs. 
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4.4.1.2  Auditory evoked potentials/ fields 

Figure 4-1 represents the anatomical origins of the different components of the auditory 

evoked responses (AER). Those of importance to study cortical responses are the 

middle- latency and late / delayed latency evoked responses.  

 

 
Figure 4-1: Auditory evoked response.  
This diagram represents the nomenclature used to denote the phases of the AER and the 
anatomical components of the pathway associated with those. Adapted from Thornton 
and Sharpe (1998). 

 

Similar middle- and long-latency auditory evoked fields (AEF) are generated in the 

auditory cortex with MEG. The waves are depicted with letters (for eg, Nam, Pam, Nbm, 

Pam respectively) or with their usual peak latencies (N19m, P30m, N40m, P50m), with 

the long-latency AEF being P50m, N100m and P200m. The P19m and P30m have been 

shown to originate from the medial Heschl’s gyrus while the P50m is generated more 

Neeraj Saxena
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lateral from the Heschl’s gyrus (Scherg et al., 1989, Yvert et al., 2001, Hashimoto et al., 

1995, Pelizzone et al., 1987). 

 

AER have been widely studied as a marker of anaesthetic depth.  A dose dependent 

reduction in AER has been shown, with both Na and N100 potentials being sensitive to 

changes in doses of propofol (Ypparila et al., 2004, Tooley et al., 1996, Savoia et al., 

1988). Midazolam (another GABA-ergic, sedative drug) has also been shown to 

produce changes in AER at sedative concentrations (Brunner et al., 2002, Brunner et al., 

1999). 

 

4.4.1.3  Somatosensory evoked potentials/ fields 

Figure 4-2 represents the anatomical origins of the different components of the 

somatosensory evoked responses (SSER). Early SSER peaks also referred to as “short 

latency” SSERs are considered to be the most useful for the study of neurological 

activity as they are the least variable among participants with intact nervous systems, 

free from pathology and considered to represent the normal population. Short latency 

refers to the peaks and troughs present within the first 40 ms following a single 

stimulation to the upper limb, and less than 50 ms for the lower limb. 

 

In human MEG studies, the earliest SI response to median nerve stimulation peaks at 

20ms and may continue for 100-180 ms. Activation of SII usually peaks at 70- 100ms 

and may continue up to 200ms (Lin and Forss, 2002). Early electrophysiological 

components of SI, such as N20 or P27 (or its magnetic counterpart of M20 or M35), 

refer to the fundamental somatosensory neural response to changes in afferent inputs. It 

has been shown that the M20 is generated in the Brodmann’s area 3b of the SI (Inui et 

al., 2004), however, the generator for M35 is unclear. It has been suggested that the 

M35 may originate from the overlapping activities of Broadmann’s areas 3b, 4 and 1 

(Inui et al., 2004), or area 4 of the primary motor area (Kawamura et al., 1996).  
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Figure 4-2: Somatosensory evoked response.  
The diagram shows waveforms obtained on median nerve stimulation at the wrist. 
Recording electrodes placed at A) the somatosensory cortex and B) the seventh 
vertebra. Adapted from Thornton and Sharpe (1998). 

 

GABA-ergic drugs such as thiopental reduce amplitude of latencies of SSERs (Koht et 

al., 1988). Inhalational agents appear to affect the SSEP more than propofol; with 

propofol having minimal effect on latencies or amplitudes of N29, P40 and N50 

(Boisseau et al., 2002) while nitrous oxide appeared to reduce the SSER greater than 

isoflurane (Thornton et al., 1992), suggesting some degree of drug specificity in SSERs. 

 

 Aims 4.4 .2

The aims of experiment 1 were to  

• Study the changes in cortical evoked activity in response to visual, auditory and 

sensorimotor stimulation, following propofol sedation, using MEG. 

 

Neeraj Saxena


Neeraj Saxena
Image protected by copyright. Permission has not been obtained to print it digitally
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 Methods 4.4 .3

4.4.3.1  MEG data collection 

This experiment was performed as a part of the data collection for experiments 

described previously (Chapter 3) and therefore the methods for participant inclusions, 

monitoring, drug administration and sedation assessment were the same as stated in part 

(Section 3.4.3.2).  

 

The participants were fifteen, male, healthy volunteers (mean age 26 years; range 20-41 

years). This MEG session was conducted preceding MRI session (Experiment 2 in this 

chapter) as part of the overall experimental design. The time interval between the 2 

experiments was at least 1 week to ensure total clearance of the drug and return of 

normal physiological functioning of the participant. All these participants had provided 

informed consent for this experiment, met the inclusion criteria and had no contra-

indications to the drug or MEG/MRI environments (as described in Section 2.3). All 

participants were instructed to lie still with their eyes open and attend to the tasks. The 

sequence of data acquisition was always Awake state followed by Sedated state. 

 

4.4.3.2  Stimulation paradigm 

During the Awake state and following steady-state sedation (Sedated state), the 

following stimuli were presented in a sequential, block design. This sequence was 

maintained for all participants in both sessions. 

 

Sensorimotor: For somatosensory stimulation, the median nerve was stimulated, 

transcutaneously, at the left wrist (duration 0.1 ms, inter-stimulus interval 0.4 ms) using 

a constant-current generator (DigitimerTM).  The stimulus intensity exceeded the motor 

threshold producing a clear twitch of the thumb, although without being painful. The 

stimulation intensity was individually defined and was kept constant through both the 

sessions. Each recording took 5 minutes. 
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Visual: A checkerboard, reversing at 4Hz was presented on a projection screen 

controlled by Presentation®. Participants were instructed to fixate on a small red cross at 

the middle of the screen for the entire experiment. Each recording session took about 5 

minutes (n=800). 

 

Auditory: Brief auditory tones were presented, binaurally (1 kHz sine tone pulses, n = 

200, duration 150ms, rising/decay time 5ms, ISI 210 ms, NHL 90dB) and transmitted 

via pneumatic headphones (tube diameter 5mm, length 3m). This recording session 

lasted about 5 minutes. 

 

4.4.3.3  MEG acquisition and analysis 

Whole head MEG recordings were made using a CTF 275-channel radial gradiometer 

system sampled at 1200 Hz (0–300 Hz bandpass). An additional 29 reference channels 

were recorded for noise cancellation purposes and the primary sensors were analysed as 

synthetic third-order gradiometers (Vrba and Robinson, 2001). Three of the 275 

channels were turned off due to excessive sensor noise. At the onset of each stimulus 

presentation a TTL pulse was sent to the MEG system. Participants were fitted with 

three electromagnetic head coils (nasion and pre-auriculars), which were localised 

relative to the MEG system immediately before and after the recording session.  

 

Offline, data were first epoched around stimulus onset (VEF: -0.05 to 0.25s, AEF: -0.1s 

to 0.4s, SSEF: -0.05s to 0.25s) and each trial visually inspected for data quality. Data 

with gross artefacts, such as head movements and muscle clenching were excluded from 

further analysis. This data was then averaged across participants and plotted 

topographically (Figure 4-5, Figure 4-6, Figure 4-7). 

 

Global field power (GFP) was used to explore the changes further. GFP provides a 

global and spatially unbiased measure of the field strength at the scalp and avoids the 

problems of varying latencies and amplitudes at different sensor level or that of variable 

reference electrodes (Murray et al., 2008, Pourtois et al., 2008). Global field power was 

calculated with this averaged data and paired t-tests were done at each time point for 

differences between the two states, using in-house Matlab scripts.    
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 Results 4.4 .4

One participant’s data had to be excluded from AEF and SSEF analysis, while two 

participants’ data had to be excluded from the VEF analysis, due to missing data. 

Therefore the final number of subjects was 14 for AEF and SSEF and 13 for VEF. 

  

There were no differences in the haemodynamic and ventilatory parameters between the 

Awake and Sedated groups. The mean (SD) propofol target concentration was 1.07 

(0.19) mcg/ml. There was a significant reduction in reaction times during the Sedated 

state (Section 3.5.6.1). 

 

Evoked response peaks were identified in all domains, especially in the Awake state, 

comparable to that expected, based on the EEG literature (Table 5-1). The responses 

were more variable in the Sedated state, especially in the AEF domain. This made it 

difficult to identify and label response peaks in the Sedated state, and precluded any 

quantitative analysis of changes in latencies of these responses between the Awake and 

Sedated states.  

 

There was a significant reduction in the global field power of the VEF during the 

Sedated state as compared to the Awake state (Figure 4-4). This significant difference 

persisted between 0.08- 0.12 ms following the stimulus. AEFs showed a brief (non-

significant) reduction in global field power, around the M100 peak (Figure 4-6). There 

were no significant differences in the SSEF global field power at any time point (Figure 

4-8). 
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Table 4-1: Evoked responses: identifiable peaks and differences between Awake 
and Sedated states 
 
 Awake 

Peaks 
identified at 
time point 
(s) 

Possible 
EEG / MEG 
equivalent 

Sedated 

Peaks 
identified at 
time point (s) 

Qualitative differences 

VEF 70 N70/M70 72 Delayed second peak 

 90 P100/ M90 150 

 120 
(maximum) 

M120 

AEF 40 N40/M40  No change in latencies 

 65 P50/M65 67 

 100 
(maximum) 

N100/M100  

SSEF 22 N20/M20 22 No change in latencies 

 90  47 

  100 
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Figure 4-3: Summary of Visual evoked 
fields  
(a) Topographical display of group-
averaged evoked responses in sensor 
space, in both Awake (black) and Sedated 
(red) states. (b) Topographical plot of 
group-average amplitude at 0.12 s 
(maximum amplitude peak) in the Awake 
state. The topographic distribution is 
consistent with a single dipolar source in 
the occipital cortex. (c) Group-averaged 
evoked responses in the Awake state, 
showing peaks M70, M90 and M120. The 
vertical marker shows the latency of the 
response plotted in (b).
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Figure 4-4: Summary of global field power differences in the Visual evoked fields.  
(Top) Global field power of the visual evoked field in Awake and Sedated states. 
(Bottom) t-stat image showing difference between Awake and Sedated states. t value of  
≥1.8 corresponds to a significant difference between conditions (p < 0.05, one- tailed, 
paired t-test). There was a significant decrease in power between 0.08-0.12 s during the 
Sedated state relative to the Awake state.
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Figure 4-5: Summary of Auditory 
evoked fields  
(a) Topographical display of group-
averaged evoked responses in sensor 
space, in both Awake (black) and 
Sedated (red) states. (b) Topographical 
plot of group-average amplitude at 0.1 s  
(maximum amplitude peak) in the Awake 
state. The topographic distribution is 
consistent with bilateral dipolar sources 
in the temporal cortices. (c) Group-
averages evoked responses in the Awake 
state, showing peaks M40, M65 and 
M100. The vertical marker shows the 
latency of the response plotted in (b).
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Figure 4-6: Summary of global field power differences in the Auditory evoked 
fields.  
(Top) Global field power of the visual evoked field in Awake and Sedated states. 
(Bottom) t-stat image showing difference between Awake and Sedated states. t value of  
≥1.8 corresponds to a significant difference between conditions (p < 0.05, one- tailed, 
paired t-test). There was a decrease in power around the latency of the M100 during the 
Sedated state relative to the Awake state but it was not statistically significant. 
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Figure 4-7: Summary of Somatosensory 
evoked fields  
(a) Topographical display of group-averaged 
evoked responses in sensor space, in both 
Awake (black) and Sedated (red) states. (b) 
Topographical plot of group-average 
amplitude at 0.02 s (maximum amplitude 
peak) in the Awake state. The topographic 
distribution is consistent with a single dipolar 
source in the right sensorimotor cortex. (c) 
Group-average evoked responses in the 
Awake state. Note that the response present 
around stimulus onset is an artefact produced 
by the tactile stimulator. 
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Figure 4-8: Summary of global field power differences in the Somatosensory 
evoked fields.  
(Top) Global field power of the visual evoked field in Awake and Sedated states. 
(Bottom) t-stat image showing difference between Awake and Sedated states. t value of  
≥1.8 corresponds to a significant difference between conditions (p < 0.05, one- tailed, 
paired t-test). There were no significant differences between the two conditions. 
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  Discussion 4.4 .5

This is the first ever report of the use of MEG to investigate alterations in evoked fields 

during propofol sedation. The findings of this experiment are comparable to those 

reported in the EEG literature with visual evoked responses showing a marked 

reduction, auditory responses undergoing a small change and somatosensory evoked 

responses remaining unchanged, during mild propofol sedation. 

 

Studying visual evoked potentials, in relation to anaesthetic effects may be difficult, due 

to participants’ inability to maintain an eye-open state (if required for the task). At 

levels of sedation used in this experiment, ability to keep eyes open remains grossly 

unaffected. All participants were therefore able to complete the tasks. As predicted, 

there was a significant and persistent decrease in VEF power in the time periods where 

the common peaks of M70 and M100 would be found. While statistical analysis of 

latencies was not possible, the second peak in the Sedated state appeared much delayed 

than during the Awake state, as predicted.  

 

Auditory sensations are considered the most resistant to anaesthetic effects and some 

cortical reactivity persists even during deeper stages of anaesthesia. AERs have been 

used to monitor depth of anaesthesia/ sedation. Tooley et al (1996) found that mid-

latency AERs such as Nb latency predicted propofol dose responsiveness better than 

Na. Ypparila et al (2004) showed that N100 could be used to discriminate between 

moderate and deep levels of sedation. However, mild propofol sedation (at the doses 

used in this experiment) have not been studied previously. In this experiment, peaks 

could be identified at 40, 65 and 100ms during the Awake state but they were less 

discernible during the Sedated state. This could represent noisy data or more widespread 

suppression. Significant global suppression of auditory activity at the doses used would 

be unlikely as auditory responses persist during deeper stages of sedation. The 

maximum difference between the Awake and Sedated state occurred around 100ms 

post-stimulus (M100), suggesting some reduction following propofol sedation, however 

this did not reach statistical significance. 
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No effect on the SSEF was found in this experiment. A reduction in tactile sensation is 

perceived during deeper levels of sedation, but is less likely during light sedation. 

Specifically, no behavioural tests were employed in the experiment to monitor tactile 

sensations or changes in those sensations. It is therefore difficult to establish if 

participants experienced a reduced sensation. Propofol has been shown to affect the 

SSEF less than other anaesthetics and it is therefore likely that at the levels of propofol 

infusion used in this experiment, lack of changes in SSEF mirrored a lack of change in 

perceived tactile sensation. 

 

Since electrical stimulation was individually defined, there was a greater variance 

observed at the group level as compared to that during visual or auditory stimulation 

(Figure 4-4Figure 4-6Figure 4-8). VEFs showed the lowest variance and significant 

differences were seen between the Awake and Sedated states. It is possible that due to 

greater variability in individual responses, especially during SSEFs, potential group 

differences were missed.  
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4.5  Experiment 2 

 Introduction 4.5 .1

Functional MRI based techniques allow studying of cortical reactivity to sedatives by 

studying changes in BOLD contrast in response to functional sensory tasks and changes 

occurring during sedation.  

 

Mild to moderately sedative doses of isoflurane resulted in a reduction of cortical 

response to a vibrotactile stimulus (Antognini et al., 1997). Similarly, increasing doses 

of propofol reduces cortical blood flow increase in response to such tactile stimuli 

(Bonhomme et al., 2001). Reduced intensity and extent to noxious stimuli has also been 

reported with propofol (Hofbauer et al., 2004, Mhuircheartaigh et al., 2010). Reduction 

in visual responses have also been described with increasing doses of other anaesthetic 

drugs such as pentobarbital (Martin et al., 2000), isoflurane (Heinke and Schwarzbauer, 

2001) and sevoflurane (Ramani et al., 2007), to tasks assessing simple and higher-order 

processing. Similarly, auditory perception and comprehension tasks have revealed loss 

of higher cortical areas activity at relatively lower doses of propofol and sevoflurane 

(Davis et al., 2007, Dueck et al., 2005, Heinke et al., 2004, Kerssens et al., 2005, 

Plourde et al., 2006, Veselis et al., 2005). The theme emerging from neuroimaging 

studies investigating cognitive processing of sensory stimuli suggest that higher order 

processing is lost relatively early on the path to unconsciousness, but the lower order 

processing may persist even at deeper stages of anaesthesia. While this suggests a dose 

dependent decline of sensory awareness with increasing anaesthetic doses; very few 

studies have specifically looked at the earliest stages of sedation to identify neural 

correlates of mild sedation. 

 

Mild sedation is characterised by a state where participants are still responsive and 

communicative, but sluggish / lethargic in their response, have slurred speech and may 

also have amnesia. Most sensory abilities, although sluggish, are maintained. This 

experiment investigates the cortical reactivity in such sensory domains, in relation to 

mild propofol sedation.  
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 Aims 4.5 .2

The aims of experiment 2 were to  

• Study the changes in cortical activity in response to visual, auditory and 

sensorimotor stimulation, following propofol sedation. 

 

 Methods 4.5 .3

This experiment was performed as a part of the data collection for experiments 

described previously (Chapter 3) and therefore the methods for participant inclusions 

(same as Section 3.4.3.1) monitoring, drug administration and sedation assessment 

(Section 3.4.3.2) were the same. 

 

4.5.3.1  MRI data collection 

Functional MRI data were collected using gradient-echo echo- planar imaging at 3T 

(GE Healthcare HDx) using a blood oxygen level- dependent (BOLD) (T2*)-weighted 

imaging sequence (TR= 3 s, TE = 35 ms, matrix = 64 x︎  64, FOV/slice = 20.5 cm/3.2 

mm, flip angle = 90°, 50 slices, 160 volumes). An eight-channel receive-only head coil 

was used. A T1-weighted whole-brain structural scan was also acquired (1 x1 x 1 mm 

voxels). For the purposes of accounting for physiological variance in the time-series 

data, end-tidal carbon dioxide, and end-tidal oxygen traces were recorded throughout 

the experiment using a nasal cannula attached to a capnograph (AEI Technologies). 

Cardiac and respiratory cycles were recorded using the scanner’s built-in 

photoplethysmograph and a pneumatic chest belt, respectively.  

 

All participants were instructed to keep their eyes open and follow the (passive) tasks. 

 

4.5.3.2  Stimulation paradigm 

During the Awake state and following steady-state sedation (Sedated state), the 

paradigm consisted of six alternating blocks of resting and task conditions. Each task 

block was composed of a pseudorandom sequence of three stimulations: Auditory, 
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Visual and Somatosensory, as below. Both resting and stimulation periods lasted for 

five volumes. 

 

Somatosensory: For somatosensory stimulation, the median nerve was stimulated, 

transcutaneously, at the left wrist (duration 0.1 ms, inter-stimulus interval 0.4 ms) using 

a constant-current generator (Digitimer TM).  The stimulus intensity exceeded the motor 

threshold producing a clear twitch of the thumb, although without being painful. 

 

Visual: A checkerboard, reversing at 4Hz, was presented on a projection screen 

controlled by Presentation®. Participants were instructed to fixate on a small red cross 

at the middle of the screen for the entire experiment.  

 

Auditory: Brief auditory tones were presented, binaurally (1 kHz sine tone pulses, n = 

200, duration 150ms, rising/decay time 5ms, ISI 210 ms, NHL 90dB) and transmitted 

via acoustically shielded headphones.  

 

4.5.3.3  MRI data analysis  

Preprocessing 

Same preprocessed data as used in Section 3.6.5 were used. Several sources of 

physiological variance were removed from each individual subject’s time-series fMRI 

data. For each subject, physiological noise correction consisted of removal of time-

locked cardiac and respiratory artefacts (two cardiac harmonics and two respiratory 

harmonics plus four interaction terms), using linear regression (Glover et al., 2000), and 

of low-frequency respiratory and heart rate effects (Birn et al., 2006; Shmueli et al., 

2007; Chang and Glover, 2009). In addition, regressors formed from end-tidal CO2 and 

O2 traces were also removed (Murphy et al., 2011).  

 

Analysis 

fMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) 

Version 5.98, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The 

following pre-statistics processing was applied; motion correction using MCFLIRT 
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(Jenkinson et al., 2002), non brain removal using BET(Smith, 2002), spatial smoothing 

using a Gaussian kernel of FWHM 5mm; grand-mean intensity normalisation of the 

entire 4D dataset by a single multiplicative factor; high pass temporal filtering 

(Gaussian-weighted least-squares straight line fitting, with sigma=50.0s).  

 

FMRIB’s improved Linear Model (FILM) was used for first level analysis, where the 

haemodynamic response to each stimulus type, in relation to the physiological 

variations was explored for each subject, using the Resting-Auditory-Visual-

Somatosensory design matrix (Figure 4-9).  

 

 
Figure 4-9: Design matrix as generated in FSL using general linear modelling.  
The three explanatory variables are visual, sensory and auditory. The relevant contrasts 
use the 3 variables in two combinations; Awake > Sedated and Seated > Awake 
 

 

Higher level analysis was carried out using FLAME (FMRIB's Local Analysis of Mixed 

Effects) stage 1 (Beckmann et al., 2003, Woolrich, 2008, Woolrich et al., 2004). Paired 

comparisons were performed to identify areas where responses to each stimulus type 

varied significantly with the sedation state. Z (Gaussianised T/F) statistic images were 

thresholded using clusters determined by Z>2.3 and a (corrected) cluster significance 

threshold of P=0.05 (Worsley, 2001). 
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FSLview was used to view the statistical parametric maps and the areas of BOLD signal 

differences were identified by using the Harvard-Oxford cortical and subcortical atlases. 

  

 Results 4.5 .4

One participants’ data could not be used due to excessive head motion and so the 

analysis was performed on 14 subjects’ data. All participants were sedated to the 

desired level (OAA/S level of 4; mild sedation) during the Sedated state scanning. 

There was a significant slowing of the visual and auditory reaction times, as described 

previously in Section 3.4.4 (Table 3-2: Reaction times). There was no change in HR, 

BP, oxygen saturation or expired CO2 as described previously in Section 3.4.4 (Table 

3-1: Physiological Data). The mean (SD) propofol target concentration was 1.2 (0.2) 

mcg/ml. All the tasks were able to elicit the expected BOLD responses mainly in the 

respective primary sensory cortices (Figure 4-10, Figure 4-12, Figure 4-14).  

 

Cortical responses to visual stimulation showed reduced activity in the superior frontal 

gyrus, paracingulate and cingulate gyri, left superior parietal lobule, left angular gyrus, 

left lateral occipital cortex and left supramarginal gyrus, following sedation. There was 

an increased activity in the cuneus, precuneus, supracalcarine and intracalcarine gyri, 

following sedation (Figure 5-1).  

 

During the auditory stimulation task, decreased activity was seen in the superior and 

middle frontal gyri, paracingulate gyrus, right sensorimotor cortex and right anterior and 

posterior cingulate regions, following sedation. There was in increase in activity in left 

caudate, insula, anterior cingulate, right posterior cingulate, right lingual gyrus, and 

precuneus (Figure 4-13), following sedation.  

 

During the somatosensory task, propofol sedation resulted in a reduction in BOLD 

signal intensity in the contralateral somatosensory cortex, while an increase activity was 

seen in the left middle temporal gyrus, lateral occipital cortex, supracalcarine and 

intracalcarine cortex, posterior cingulate and precuneus regions (Figure 4-15).  
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Figure 4-10: Group mean map showing activation of regions following a visual 
stimulus (Awake state)  
Image only for diagrammatic representation, therefore, statistical colour bar not shown 

	

 

Figure 4-11: Group mean t-contrast maps showing differences in activation of 
regions following a visual stimulus.  
a) Awake> Sedated: b) Sedated >Awake state. Z (Gaussianised T/F) statistic images 
were thresholded using clusters determined by Z > 2.3 and a corrected (cluster) 
significance threshold of P= 0.05. Colour bar shown above the figure. 
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Figure 4-12: Group mean map showing activation of regions following an auditory 
stimulus (Awake state)  
Image only for diagrammatic representation, therefore, statistical colour bar not shown. 

	

	
	
Figure 4-13: Group mean t-contrast maps showing differences in activation of 
regions following an auditory stimulus.  
a) Awake> Sedated: b) Sedated >Awake state. Z (Gaussianised T/F) statistic images 
were thresholded using clusters determined by Z > 2.3 and a corrected (cluster) 
significance threshold of P= 0.05. Colour bar shown above the figure. 
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Figure 4-14: Group mean map showing activation of regions following median 
nerve stimulation (Awake state)  
Image only for diagrammatic representation, therefore, statistical colour bar not shown 

	
	
Figure 4-15: Group mean t-contrast maps showing differences in activation of 
regions following median nerve stimulation.  
a) Awake> Sedated: b) Sedated >Awake state. Z (Gaussianised T/F) statistic images 
were thresholded using clusters determined by Z > 2.3 and a corrected (cluster) 
significance threshold of P= 0.05. Colour bar shown above the figure. 
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 Discussion 4.5 .5

As predicted, fMRI demonstrated a reduction in the activity of the primary sensorimotor 

cortex following propofol sedation. While significant reductions in activities of the 

primary visual or auditory cortices, were not seen, other areas of differences became 

apparent between the two states of consciousness. 

 

Median nerve stimulation results in activation of the contralateral primary sensorimotor 

cortices and occasionally bilateral secondary sensorimotor cortices (Arthurs et al., 

2000). Similar activations were seen in the Awake state in this experiment. Following 

mild propofol sedation primary somatosensory cortex showed a significant reduction in 

activity.   This finding was predicted and supports the mechanism involved in a reduced 

sensation as a component of early stages of sedation. Similar, suppression of activity in 

the primary somatosensory cortex was reported with increasing levels of propofol 

sedation, studied using PET (Bonhomme et al., 2001). While Bonhomme et al (2001) 

did not report any increase in activity with sedation, the current experiment showed 

increased activity in PCC, precuneus, middle temporal gyrus and lateral occipital cortex. 

There is a relative paucity in literature of experiments studying earliest stages of 

sedation, as done in this experiment and therefore these findings are more difficult to 

explain. One explanation of an increased activity in these regions; precuneus (an 

important hub of the default mode network), middle temporal gyrus (key in auditory 

function) and lateral occipital cortex (key in visual function) may be a reflection of 

participants’ attempts at compensation to mitigate some of the effects of sedation.  

Although, the tasks involved were passive, it is not uncommon in normal healthy 

volunteers, entering the light stages of sedation (where they can still follow commands 

and verbalize) to try and stay ‘awake’ and resist ‘falling asleep’, using alternative 

sensory modalities. While at deeper levels of sedation or anaesthetic levels this sub-

conscious effort is impossible, at mild sedation, it is still possible.  It is therefore 

possible that participants were using secondary modalities to compensate for the 

diminished perception of the primary (electrical) stimuli. 

 

The auditory stimulation showed a reduced BOLD response in the superior and middle 

frontal gyrus, anterior cingulate and posterior cingulate cortices and the right 
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sensorimotor cortex, with propofol sedation. There was no reduction seen in the primary 

auditory cortical regions. During the Sedated state increased BOLD activity was seen in 

the cingulate cortex, insular cortex, left caudate, precuneus and occipital gyrus. The lack 

of change in BOLD activity in the auditory cortices was unexpected, but not completely 

surprising. Auditory activity is considered to be the most resistant of all sensations, to 

anaesthetics. Mhuircheartaigh et al (2010) demonstrated a reduction in BOLD activity 

in the auditory cortices, at similar levels of propofol sedation as used in this experiment. 

They had, however, used words instead of simple auditory tones.  Veselis et al (2005) 

showed a 15% reduction in global CBF but no change in responsiveness to auditory 

stimuli during propofol sedation. In speech processing tasks, a dose-dependent 

reduction in activity in the auditory cortices has been shown (Davis et al., 2007, Dueck 

et al., 2005), however, some activity persists even in deeper stages of sedation / 

anaesthesia (Heinke et al., 2004, Plourde et al., 2006). This suggests that the step 

change in measurable auditory response, from awake to mild level of sedation is small 

and may depend on the dose studied and task involved. It is, therefore, possible that in 

this experiment the small degree of change in the activity, if any, for simple passive 

task, was not significant to appear in the analysis done. A small volume correction, 

focusing around the temporal cortices, may have been able to explore this further, but 

was not attempted.  

 

A reduction in activity in frontal regions was also a surprising finding as the stimulus 

used in this experiment was a simple auditory tone task with no specific cognitive 

activity. Dueck et al (2005) studying auditory speech processing during propofol 

sedation found frontal activation, which was lost at 0.05mcg/ ml plasma level of 

propofol. Similarly, Davis et al (2007) also showed suppression of frontal and other 

areas involved in comprehension and recall. In the current experiment, suppression of 

frontal activity, possibly suggests a degree of unintended cognitive processing which 

the participants may have been engaging in during the Awake state, which was 

subsequently lost during the Sedated state. Diminished activity in the cingulate cortical 

regions and sensorimotor cortices, therefore, may reflect compensatory responses with 

those regions being engaged more in the Awake state. Similarly, increase in cortical and 

sub-cortical activity during the Sedated state, especially of the regions considered to be 

a part of the DMN (cingulate cortices and precuneus) is interesting. Functional 
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connectivity in the DMN regions is suppressed when performing a task. The possible 

explanation, for these findings, therefore would be that these DMN areas are 

successfully suppressed during the Awake state. However, during the Sedated state the 

ability to suppress these regions’ connectivity is decreased leading to the emergence of 

a relative increase in BOLD activity in these regions. 

 

Visual stimulation using a reversing checkerboard produces good, reliable activation of 

the primary and secondary visual cortices, as was found in the Awake state. There was a 

greater activation of the superior frontal gyrus, paracingulate gyrus and lateral occipital 

cortex in the Awake as compared to the Sedated state, while there was an increased 

BOLD response in the cuneus, precuneus and the supracalcarine and intraclacarine 

cortex. Lateral occipital cortex is involved in vision, especially in objection recognition 

(Grill-Spector et al., 2001, Nagy et al., 2012), while angular gyrus plays a role in 

semantic processing, cognition, attention and memory (Seghier, 2013). Similarly, 

paracingulate gyrus and superior frontal gyrus play an important part in cognition and 

attention as parts of key resting state networks. A decreased activity in these regions 

was unexpected but suggests some degree of attention and cognitive processing, during 

the Awake state, which was reduced during the Sedated state.  

 

An increased activation of the cuneus and precuneus were seen during sedation. These 

regions are known to be an important part of the DMN and so an increase, possibly 

suggests (similar to the auditory stimulus) an emergence of activity in the DMN due to 

loss of inhibition, during the Sedated state. An increase in the supracalcarine and 

intraclacarine sulcus was more surprising. These regions are part of the secondary visual 

cortex and involved in higher level processing of visual stimuli. It has been shown that 

non-stimulated areas may be suppressed to facilitate precision activity of the stimulated 

areas (Bressler et al., 2007). This suppression of activity, in these regions may manifest 

as a negative BOLD response on fMRI (Pasley et al., 2007). While the mechanism of 

this remains poorly understood, it is one of the likely explanations of the findings in this 

experiment. It is possible that cortical areas around the primary visual cortex were 

suppressed during the visual checkerboard task and this suppression was lost at early 

stages of sedation, resulting in an increased BOLD response. 
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 Comparing cortical responses from MEG and FMRI: potential 4.5 .6

limitations 

This set of experiments was the first of its kind; studying neuromagnetic changes in 

brain’s activity in response to simple sensory tasks and the changes associated with mild 

propofol sedation. Similarly, it is one of the few studies using BOLD-fMRI to 

investigate changes in cortical reactivity with mild propofol sedation and certainly, a 

novel attempt to compare the findings of the MEG experiment with BOLD-fMRI in a 

sequential experimental design. 

 

Mild sedation is associated with changes in responsiveness and alertness, but there were 

no behavioural anchors used along with these passive tasks. However, the reaction 

times to visual and auditory stimuli, recorded separately (Chapter 3, section 3.4.4) 

between the scans can provide an objective measure of alterations in visual and auditory 

processing with sedation. Therefore changes in visual and auditory pathways were 

predicted using MEG and fMRI. The findings, however, were partly as predicted, but 

also somewhat conflicting when taking both the modalities into consideration. Visual 

stimulation resulted in reduced VEFs but no concomitant reduction in BOLD activity in 

the primary visual cortices. On the other hand, while there was no change in SSEFs, 

there was a reduction in BOLD activity in the primary somatosensory cortex. Auditory 

stimulation did not result in a significant change in either the AEF or the BOLD 

response. Experiment 2 (fMRI) also produced an interesting set of results, which are 

worthy of further research. 

 

The differences between the results of MEG and fMRI may be attributable to the innate 

differences between the two modalities. The electromagnetic activity (as captured by 

MEG) of the brain and the haemodynamic activity (as captured by BOLD-fMRI) are 

best seen as complementary, originating from similar, but not limited to the same, 

sources.  BOLD signal is linked to the local field potentials rather than multiunit activity 

or even neuronal spiking (Logothetis et al., 2001). Neurovascular coupling, manifesting 

as the  BOLD response also depends on a number of variables, some of which continue 

to be poorly understood. In rats, regional heterogeneity of the neurovascular coupling 

has been shown (Sloan et al., 2010). Similar dependence of BOLD response to different 
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oscillatory bands and brain regions studied, has been demonstrated in humans (Conner 

et al., 2011, Ojemann et al., 2013).   

 

Evoked responses and their haemodynamic responses (as in BOLD-fMRI) following 

repeated stimulations, habituate to different degrees. This is a reflection of the still 

incompletely understood mechanism of the BOLD response and its use as a surrogate of 

neural activity (more directly measurable as evoked responses). While habituation of 

BOLD response has been widely reported following repeated visual, auditory and 

sensory stimulations, it is not that common with evoked electrophysiological responses 

(Dirnberger et al., 2004, Fischer et al., 2000, Pfleiderer et al., 2002, Janz et al., 2001, Ai 

et al., 2013). Also, attention modulation of tasks may affect the BOLD response more 

variably than the evoked responses (Arthurs et al., 2004). The MR environment is 

substantially different from the MEG suite environment. The scanner noise itself can 

affect auditory tasks directly (more likely in complex auditory tasks than simple tasks) 

or even non-auditory tasks may engage other attentional modalities producing variable 

confounds (Peelle, 2014, Kobald et al., 2016). While these effects were expected to be 

less likely in these experiments involving lower order passive tasks, they cannot be 

completely ruled out. 

 

The delivery of the stimulus paradigms was different in the two experiments. In MEG 

the three types of stimuli were presented in sequence, in a block design of 5 minutes 

each. In the MRI session, however, considering participant comfort (time spent 

undergoing MR scanning) and design efficiency; stimulus paradigm involved mixing 

the stimuli for the fMRI experiment (the total duration being about 8 minutes). It is 

possible that the pseudorandom sequence of the stimuli, their shorter duration and 

mixed design, produced some of the results as observed. However, no literature was 

found to identify a mechanism behind, differences in experimental designs, producing 

such differences. 

 

Other factors, which may have contributed to the differences, could be the 

methodological factors such as the order effect (MRI sessions always followed the 

MEG session and the Awake session always preceded the Sedated session). The 

assessment of sedation was verbal and although done by a blinded anaesthetist, there 
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may have been subtle differences in assessing sedation (within the same objective level) 

resulting in some differences in the level of sedation between the two groups.  
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 Conclusions 4.5 .7

This is a novel attempt at combining different neuroimaging techniques to study 

neurophysiologic and haemodynamic changes associated with propofol sedation. The 

results of this sequential MEG/ fMRI can be summarized as follows 

 

• There was a significant reduction in VEFs but no change in AEFs and SSEFs 

following mild propofol sedation. 

 

• There was a reduction in activity of the primary somatosensory cortex in 

response to median nerve stimulation, but no change in primary cortical activity 

following visual or auditory tasks, following mild propofol sedation.  
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 : Effect of propofol sedation on resting state brain Chapter 5

activity  

5.1  Abstract 

Neuroimaging of the resting brain has helped identify a number of networks indicating 

brain regions communicating with each other and have been shown to play an important 

role in regulating brain function. 

 

In a series of experiments, using multimodal neuroimaging techniques, functional 

connectivity analyses were performed to study changes in resting state network (RSN) 

activity in response to mild propofol sedation. 

 

Functional MRI revealed that functional connectivity of higher order networks changes 

with mild sedation. Posterior cingulate cortex (as a key hub of the default mode 

network- DMN) becomes less connected with the frontal pole while the thalamus 

becomes less connected with regions of the DMN, anterior cingulate cortex and motor 

cortex. Thalamus appears more connected with sensory cortices and superior temporal 

gyrus. Primary sensory and motor cortices show reduced connectivity with the occipital 

cortex but become more connected with the thalamus.  

 

MEG analyses revealed that there was increased functional connectivity in bilateral 

frontal RSNs in the alpha, theta and delta frequency bands; increased functional 

connectivity in the bilateral parieto-occipital network (in the alpha band), and bilateral 

occipital network in the delta band. Bilateral motor networks were also identified, 

however, there was no change in those in the beta and gamma frequency bands.   
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5.2  Background and rationale 

Task based fMRI has helped explore specific functions of the human brain, however, 

the discovery of task-unrelated activities of the brain (resting state) has opened up a 

whole new window into understanding of brain function. Raichle and Mintun (Raichle 

and Mintun, 2006), used positron emission tomography (PET) to demonstrate that in the 

resting (no task) state the human brain consumed a high amount of energy (20-25% of 

the body’s basal oxygen/ glucose consumption), proving the brain to be fairly active 

even when not involved in any ‘task’.  Biswal et al (1995) had earlier demonstrated that 

during such a resting -state, the BOLD activity of the somatosensory cortex of one side 

was highly correlated with the activity of the other side. This ‘resting state’ activity was 

subsequently corroborated by other research groups and has led to the identification of 

numerous such ‘resting state networks’ (RSNs). These RSNs typically comprise of 

anatomically disparate regions, which appear to be active, synchronously (temporally 

related), i.e. functionally ‘connected’ in their activities. This co-activation of separate 

brain regions therefore suggests communication between regions as a marker of 

information integration/ processing between those regions. The presence and activity of 

these RSNs have been shown in animals such as rats and monkeys indicating their 

presence and relevance through various species (Vincent et al., 2007, Lu et al., 2012). 

 

One of the most extensively investigated (and possibly the most fundamental) network 

is the Default Mode Network (DMN). This network has been shown to consist of brain 

regions including medial prefrontal, parietal, and posterior cingulate cortices and is 

active while the brain is not engaged in any active task (Greicius et al., 2003). Activity 

of the DMN tends to be suppressed during an active task. An ‘Executive control 

network’ (ECN: dorsolateral fronto-parietal network) has been identified as the network 

opposite to the DMN; this tends to be inactive at rest but becomes active during a task 

(and is usually anti-correlated to the DMN).  Traditionally, DMN has been suggested to 

support a self-referential and internal mentation role. More recent literature, however, 

has shown that it may actually play an active role in higher order cognitive processing 

(Vatansever et al., 2018). Other networks commonly identifiable include the somato-

motor, visual, somatosensory, auditory, language, dorsal and ventral attention networks. 

It has been suggested that about 10 consistent RSNs cover nearly 80% of the human 
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cortex, highlighting their potential importance in characterising brain function (Heine et 

al., 2012, Smith et al., 2009). 

 

Studying brain’s activity at rest provides an opportunity to interrogate physiological 

conditions and diseases where subject participation (to perform tasks) is not possible; 

such as unconsciousness, epilepsy and those in the paediatric age group (Lee et al., 

2013a). Functional connectivity (fc) in the DMN has been shown to be inversely 

correlated to the level of consciousness impairment and also as a marker of recovery of 

consciousness in patients with “locked-in syndrome’’ and vegetative states (Roquet et 

al., 2016). Similarly, pattern classification of RSN has been applied to distinguish 

patients with psychiatric disorders such as schizophrenia and depression. RSNs may 

also hold promise for future clinical applications in being able to identify patients with 

autism and attention deficit / hyperactivity disorder (Lee et al., 2013a). 

 

 

 Using multimodal imaging to study brain connectivity 5.2 .1

Although, typically described using haemodynamic modalities, e.g. functional MRI 

(fMRI)/ PET, RSN fc has also been well described with electrophysiological modalities, 

including EEG and more recently MEG (Brookes et al., 2011b, Sockeel et al., 2016, 

Laufs, 2008).  

 

As fMRI has temporal resolution in seconds, ‘slow’ temporal fluctuations have been 

studied in such temporal windows and network activity identified. However, the 

neurophysiological basis of resting-state dynamics occurring at faster time-scales and 

the nature of the coupling that binds cortical regions together cannot be accurately 

assessed using this technique. On the other hand, electrophysiological tools, with their 

excellent temporal sensitivity is much better at tracking dynamic changes in cognitive 

functions. If BOLD fluctuations are indeed a reliable, robust surrogate of neuronal 

function, it is expected that the electrophysiological signals will exhibit low-frequency 

spontaneous fluctuations with large-scale correlation patterns similar to those observed 

with resting-state fMRI.  
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Investigating the electrophysiological basis of these BOLD changes, it has been shown 

that the BOLD signal corresponds to the local neuronal field potential (Logothetis et al., 

2001). Laufs et al, explored EEG changes and found that beta band correlated with 

BOLD activity of the DMN while alpha band activity was inversely correlated with the 

activity in the dorsal-attentional network (Laufs et al., 2003). Brookes et al used seed 

based connectivity correlations to identify sensorimotor networks and subsequently 

Independent Component Analysis (ICA) based techniques to investigate correlates of 

the envelopes of band-limited oscillations and demonstrated RSN with similar spatial 

localizations as those of fMRI (Brookes et al., 2011a, Brookes et al., 2011b). They also 

showed that most of the networks were best explained by beta band oscillations. 

However other authors have found different frequency bands related to different RSNs 

in different settings. Mantini et al found default-mode and lateral fronto-parietal 

networks and alpha and beta bands related to them in different directions (Mantini et al., 

2007). Similarly they found auditory and visual networks to be related to most 

frequency bands, although somato-motor was still mainly related to the beta band. More 

recently comparing structural and functional connectivity with fMRI and MEG showed 

alpha and beta bands as the dominant bands in DMN and motor networks (Garces et al., 

2016). These studies provide evidence of an electrophysiological basis of the commonly 

identifiable fMRI based RSN and therefore it appears useful combining the two 

modalities to investigate the modulation of these networks under propofol sedation. 

This combined technique is therefore likely to provide a better mechanistic 

understanding of the changes in the fMRI RSNs and their electrophysiological basis.  

 

This experiment was performed as a two-part, sequential fMRI/ MEG study (as 

described previously in Section 2.4). 

 

5.3  Hypotheses 

Mild propofol sedation reduces the functional connectivity in the Default Mode 

networks and the thalamo-cortical networks without affecting the functional 

connectivity of the sensori-motor networks using fMRI.  
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5.4  Experiment 1 

 Introduction 5.4 .1

While propofol’s mechanism of action has been widely investigated using 

neuroimaging modalities, its resting-state fMRI or fc studies, investigating anaesthetic 

mechanisms have focused on loss of consciousness (i.e., ‘anaesthetic’ doses) and very 

few studies have looked at mild sedation and its impact on RSNs (see Appendix 1). 

Both higher order processing networks (those involved in cognition and higher order 

processing, for e.g. DMN, Executive control and salience networks) and basic/ lower 

order networks (visual, auditory, sensory and motor) have been well identified and 

studied.  

 

In states of altered consciousness (including pharmacological, physiological e.g. sleep 

and disease conditions e.g. vegetative states) generally, the lower order- RSNs are more 

resistant to disruption than higher order RSN, and changes in their connectivities are 

related to the degree of change in consciousness. Anaesthetic / sedative studies also 

have shown similar changes but the results are not always consistent, either in 

magnitude of changes in connectivity or even its direction of change (increase or 

decrease). Functional connectivity of sensory, motor and other networks were 

maintained in isoflurane anaesthetised monkeys (Vincent et al., 2007). Similarly, in 

humans, at sedative concentrations of propofol (Boveroux et al., 2010) and sevoflurane, 

(Martuzzi et al., 2010), functional connectivity was maintained in sensory cortices. 

Functional connectivity of the key hubs of the DMN was decreased by propofol induced 

deep sedation (Martuzzi et al., 2010) and sevoflurane sedation (Martuzzi et al., 2010), 

while it was maintained, although slightly altered with midazolam (Greicius et al., 

2008)  or even increased with propofol sedation (Stamatakis et al., 2010). This may, 

however, reflect the differences between the choice of anaesthetic agent, analytic 

methods or differences in levels of sedation. Role of the thalamus and thalamo-cortical 

connectivity has been the focus of interest in many neuroimaging experiments. The 

thalamus has been proposed to act as a ‘switch’, (Alkire et al., 2000) which switches off 

consciousness by breaking down its connections with the cortex. Some groups argue 

that failure of thalamo-cortical connectivity is a cause of anaesthetic unconsciousness 
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while others argue that it is the cortico-cortical connectivity, failure of which results in 

unconsciousness (Boly et al., 2012, Boveroux et al., 2010, White and Alkire, 2003, 

Mashour and Alkire, 2013). While thalamo-cortical connectivity is certainly associated 

with anaesthesia; its precise role and sequence of impact, in relation to alterations in 

cortico-cortical connectivity, in causing sedation, is unclear.  

 

 Aims 5.4 .2

The aims of experiment 1 were to  

• Study the changes in functional connectivity in BOLD-signal based spatio-

temporal, higher order (DMN) RSNs, lower order (sensory and motor) RSNs 

and thalmo-cortical networks, with mild propofol sedation.  

• Identify other RSNs and evaluate changes in them, if any, with mild propofol 

sedation 

 

 Methods 5.4 .3

This experiment was performed as a part of the data collection for experiments 

described previously (Chapter 3) and therefore the methods for participant inclusions 

(same as Section 3.4.3.1) monitoring, drug administration and sedation assessment 

(Section 3.4.3.2) were the same. The mean (SD) propofol target concentration was 0.95 

(0.14) mcg/ml. 

 

5.4.3.1  MRI data collection 

Functional MRI data were collected using gradient-echo echo- planar imaging at 3T 

(GE Healthcare HDx) using a blood oxygen level- dependent (BOLD) (T2*)-weighted 

imaging sequence (TR =3 s, TE = 35 ms, matrix = 64 x ︎ 64, FOV/slice = 20.5 cm/3.2 

mm, flip angle = 90°, 50 slices, 160 volumes). An eight-channel receive-only head coil 

was used. A T1-weighted whole-brain structural scan was also acquired (1 x1 x 1 mm 

voxels). For the purposes of accounting for physiological variance in the time-series 

data, end-tidal carbon dioxide, and end-tidal oxygen traces were recorded throughout 
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the experiment using a nasal cannula attached to a capnograph (AEI Technologies). 

Cardiac and respiratory cycles were recorded using the scanner’s built-in 

photoplethysmograph and a pneumatic chest belt, respectively.  

 

All participants were instructed to keep their eyes closed and try not to fall asleep and 

think of nothing in particular. 

 

5.4.3.2  MRI data analysis  

Preprocessing 

Several sources of physiological variance were removed from each individual subject’s 

time-series fMRI data. For each subject, physiological noise correction consisted of 

removal of time-locked cardiac and respiratory artefacts (two cardiac harmonics and 

two respiratory harmonics plus four interaction terms), using linear regression (Glover 

et al., 2000), and of low-frequency respiratory and heart rate effects (Birn et al., 2006; 

Shmueli et al., 2007; Chang and Glover, 2009). In addition, regressors formed from 

end-tidal CO2 and O2 traces were also removed (Murphy et al., 2011).  

 

Following this part of preprocessing (physiological noise correction), this data was 

further analysed using three different and independent analytical approaches. 

 

Low frequency BOLD correlations between different brain regions were investigated 

using 

1. Seed based functional connectivity analyses 

2. Independent components based– functional connectivity analysis 

 

5.4.3.2.1  Seed based functional connectivity analysis 

For group analysis, a two-step registration process was performed. fMRI data were 

registered  first from functional space to individual subjects’ structural space and then to 

a standard space (Montreal Neurological Institute MNI152 standard map) using FLIRT 

(FMRIB’s Linear Registration Tool). Finally, data were spatially smoothed (5 x 5 x 5 
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mm full-width half-maximum Gaussian kernel). Connectivity analysis was done in 

standard space. 

 

Bilateral motor cortex and bilateral sensory cortex seeds were derived from the 

Harvard-Oxford cortical probabilistic atlas. Similar region of interest (ROI) masks were 

generated for the following using the Harvard-Oxford subcortical probabilistic atlas. 

- Posterior cingulate cortex (PCC) 

- Thalamus 

Voxel-wise correlation maps from the timeseries of each ROI with whole brain grey 

matter was generated using a Matlab based script, using NIFTY tools This correlation 

map was converted to a Z map by a Fisher's transformation.  

 

These maps were then used for second level analysis in SPM 8, implemented in Matlab, 

and paired t-tests (between Awake and Sedated conditions) were performed. Results 

reported are of clusters that survived a random field cluster threshold of p<0.05 (family-

wise error (FWE) corrected) for the entire brain (or cluster threshold of p<0.001, 

uncorrected, where stated). These results are reported using the height threshold P value 

less than 0.001 (uncorrected) at the voxel level and extent threshold P value less than 

0.05 (FWE corrected) at the cluster level.  

 

5.4.3.2.2  Independent Component (model free) functional 

connectivity analysis 

Multivariate Exploratory Linear Optimized Decomposition into Independent 

Components (MELODIC) ICA (Independent Component Analysis) data exploration 

option was used in FSL. Multi-session temporal concatenation option was used and 

automatic dimensionality was used to identify possible components. No limit was set to 

the number of components to be identified. This was done due to the exploratory nature 

of this analysis. This decomposed the data into a set of 44 time courses and associated 

spatial maps that jointly describe the temporal and spatial characteristics of underlying 

hidden signals (components) using probabilistic independent component analysis. These 
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components were visually inspected and matched with previously reported RSNs and 6 

probable networks identified, for further analysis. 

 

In diseased brains (such as following stroke) the shape of the haemodynamic response 

may be altered (Carusone et al., 2002, Rossini et al., 2004). This may produce a reduced 

or even negative BOLD response. Similarly pharmacological conditions, which may 

reduce cerebrovascular reactivity or cerebral blood flow, may alter the BOLD response. 

These conditions may affect ICA based techniques where multi subject comparisons are 

being made. Forward estimation in multi subject group ICA employs various 

assumptions such as spatial and/ or temporal consistency at the group level. These 

assumptions may not be valid in diseased brains or those where networks are likely to 

be degraded. Single subject ICA followed by group analysis and then attempt to 

combine the output into a group post hoc by spatial correlation, or similar techniques, 

may be required in such scenarios (Calhoun and Adali, 2012). MELODIC, as used 

above, using temporal concatenation assumes spatial consistency, which is a valid 

assumption considering the healthy brains being studied, lack of effect of mild propofol 

sedation on haemodynamics and a within-subject comparison.  

 

The set of spatial maps from the group-average analysis was used to generate subject-

specific versions of the spatial maps, and associated timeseries, using dual regression 

(Filippini et al., 2009, Beckmann et al., 2009). First, for each subject, the group-average 

set of spatial maps is regressed (as spatial regressors in a multiple regression) into the 

subject's 4D space-time dataset. This results in a set of subject-specific timeseries, one 

per group-level spatial map. Next, those timeseries are regressed (as temporal 

regressors, again in a multiple regression) into the same 4D dataset, resulting in a set of 

subject-specific spatial maps, one per group-level spatial map. Voxel-wise analyses of 

the group differences between the Awake and the Sedated states (paired t-test) was 

carried out using FSL randomised nonparametric permutation-testing (Winkler et al., 

2014) with 10000 permutations for each independent component of interest. Threshold-

free cluster enhancement was used to control for multiple comparisons and the 

significance threshold was set to P < 0.05 corrected for family-wise error. The results 

characterised the probabilistic statistical maps, representing the group differences in 

functional connectivity for all RSNs of interest. The statistical maps were then 
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upsampled to a standard MNI 1-mm brain Montreal atlas to better localise the areas of 

RSN alterations. The Harvard–Oxford cortical and subcortical atlases (Harvard Centre 

for Morphometric Analysis), which are provided with the FSL software, were used to 

identify the anatomical representation of the clusters of the resulting probabilistic 

independent component analysis maps that showed significant differences between the 

two groups. 

 

 Results 5.4 .4

All 15 participants were sedated to the desired level (OAA/S level of 4; mild sedation) 

during the Sedated state scanning. There was a significant slowing of the visual and 

auditory reaction times, as described previously in Section 3.4.4 (Table 3-2: Reaction 

times). There was no change in HR, BP, oxygen saturation or expired CO2 as described 

previously in Section 3.4.4 (Table 3-1: Physiological Data). The mean (SD) propofol 

target concentration was 0.95 (0.14) mcg/ml. 

 

 

5.4.4.1  ROI seed based functional connectivity 

Seeds based in bilateral motor cortices showed a reduced connectivity with the right 

lateral occipital cortex but an increased connectivity with the right thalamus during 

sedation (Figure 5-1, Table 5-1). Sensory cortices showed a reduced connectivity with 

the lateral occipital cortices bilaterally, and middle temporal gyrus (right) while it 

showed an increased connectivity with the thalamus (Figure 5-2 , Table 5-2 ). 

 

The seed based in the bilateral thalami showed a decreased connectivity with the left 

sided posterior cingulate and anterior cingulate cortices, paracingulate gyrus and 

superior frontal gyrus. There was an increase in connectivity with the superior temporal 

gyrus, planum temporale and postcentral gyrus (Figure 5-3, Table 5-3). The seed based 

in PCC (representing the key node of DMN) showed a reduced functional connectivity 

with the frontal pole and there was no increase in functional connectivity with sedation 

(Figure 5-4, Table 5-4).  
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Figure 5-1: Significant Motor cortex connectivity for Awake > Sedated and Sedated 

> Awake) 

Results shown superimposed on a standard T1 weighted structural image. Cluster level 
(extent threshold 10 voxels), FWE p≤0.05. Colour bar indicates strength of connectivity 
(t score). 
 

 
Table 5-1: Significant connectivity peaks for the Motor network 
 Co-ordinates are reported, in MNI space (mm). L, Left; R, Right 
 
Motor network 
 Brain 

regions 
P value  
(FWE 
corrected :  
cluster 
level) 

T 
values 

MNI 
coordinates 
(mm) 

Awake > Sedated 
(i.e. functional connectivity 
reduces with sedation) 

Lateral 
occipital 
cortex (R) 
 

0.033  46 -76 8 

Sedated > Awake 
(i.e. functional connectivity 
increases with sedation) 

Thalamus 
(R) 

0.001  4 -26 0 

 

Awake > Sedated Sedated > Awake 
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Figure 5-2: Significant Sensory cortex connectivity for Awake > Sedated and 

Sedated > Awake) 

Results shown superimposed on a standard T1 weighted structural image. Cluster level 
(extent threshold 10 voxels), FWE p≤0.05. Colour bar indicates strength of connectivity 
(t score).	
 

Table 5-2: Significant connectivity peaks for the Sensory network 
 Co-ordinates are reported, in MNI space (mm). L, Left; R, Right 
 
Sensory network 
 Brain regions P value 

(FWE 
< 0.05 ) 
(cluster 
level) 

T 
values 

MNI 
coordinates 

Awake > Sedated 
(i.e. functional connectivity 
reduces with sedation) 

Lateral occipital 
cortex (L) 
 

0.007  -52 -68 -4 

 Lateral occipital 
cortex, middle 
temporal gyrus 
(R) 
 

0.012  48 -70 -18 

Sedated > Awake 
(i.e. functional connectivity 
increases with sedation) 

Thalamus (R) 0.004  0 2 -18 

 Thalamus (L)   0 -14 10 
 

 

Awake > Sedated 
Sedated > Awake 
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Figure 5-3: Significant Thalamus connectivity for Awake > Sedated and Sedated > 

Awake)  

Results shown superimposed on a standard T1 weighted structural image. Cluster level 
(extent threshold 10 voxels), FWE p≤0.05. Colour bar indicates strength of connectivity 
(t score). 
 

 

Table 5-3: Significant connectivity peaks for the Thalamus 
 Co-ordinates are reported, in MNI space (mm). L, Left; R, Right 
 
Thalamus 

 Brain regions P value 
(FWE 
< 0.05 ) 
(cluster 
level) 

T 
values 

MNI 
coordinates 

Awake > Sedated PCC, ACC (L) 0.001 5.29 -4 18 32 
 ACC, Paracingulate 

gyrus (L) 0.001 4.96 -2 30 24 
 paracingulate, superior 

frontal gyrus (L) 0.001 4.71 -10 36 30 
       
 PCC, precentral gyrus, 

ACC 0.000 6.8 -4 -22 46 
 Precentral gyrus, PCC, 

SMA 0.000 6.6 6 -20 50 
 precentral gyrus, SMA, 0.000 5.89 -6 -20 72 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Awake > Sedated Sedated > Awake 
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Sedated > Awake 
 

anterior/ posterior 
superior temporal gyrus, 
planum temporale 

0.043 5.28 66 -4 -4 

 temporal pole,  0.043 4.83 60 10 -6 
 central opercular cortex, 

postcentral gyrus, 
planum temporale 0.043 4.23 66 -10 10 

 

 

 
Figure 5-4: Significant PCC connectivity for Awake > Sedated and Sedated > 

Awake) 

Results shown superimposed on a standard T1 weighted structural image. Cluster level 
(extent threshold 10 voxels), FWE p≤0.05. Colour bar indicates strength of connectivity 
(t score). 
 

Table 5-4: Significant connectivity peaks for the PCC 
 Co-ordinates are reported, in MNI space (mm). L, Left; R, Right 
 
Posterior Cingulate Cortex 
 Brain regions P value (FWE < 

0.05 ) 
(cluster level) 

T 
values 

MNI 
coordinates 

Awake > Sedated Frontal pole  0.008 5.97 4 66 16 
 

Awake > Sedated Sedated > Awake 
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5.4.4.2  ICA based RSN changes 

Among the potential RSNs identified, Right fronto-parietal network (Figure 5-5) 

demonstrated a significant change (Figure 5-6) between the Awake and Sedated states.  
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Figure 5-5: Right fronto-parietal network: IC map 

Resting state network identified which was used for dual regression analysis. Results 
shown superimposed on a standard T1 weighted structural image. Colour bar indicates 
strength of connectivity (t score) 

 
Figure 5-6: Changes in Right fronto-parietal network Fc: Sedated > Awake 
Output of Randomise analysis. Shows the areas more connected with right fronto-
parietal network. Results shown superimposed on a standard T1 weighted structural 
image. TFCE, FWE corrected at p<0.05.  
 

Insular Cortex

Right Putamen

Right amygdala

Paracingulate and cingulate gyrus

Intracalcarine sulcus, 
lingual gyrus, , precuneus

Right thalamus
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 Discussion 5.4 .5

5.4.5.1  ROI seed based functional connectivity 

The hypothesis driven (seed based) functional connectivity analysis revealed significant 

changes in the connectivity of the DMN and the thalamo-cortical connectivity. 

Functional connectivity of PCC (key region of the DMN) was reduced with the frontal 

pole with sedation while the thalamus was less functionally connected to the regions of 

the DMN, ACC, and the motor cortex. There was also increased thalamic connectivity 

with the superior temporal gyrus and sensory cortices. The primary sensory and motor 

cortices showed a reduced functional connectivity with the occipital cortex while it 

increased with the thalamus.  

 

5.4.5.1.1  Lower order RSNs 

Primary cortical regions are involved in the initial processing of their respective stimuli. 

However, further processing involves adjacent regions and further cross-regional 

interactions result in the overall perception. Haptic perception occurs through 

integration of different sensations, such as vision and touch. Lateral occipital cortex 

links with somatosensory cortices to facilitate this cross-modal integration (Lacey and 

Sathian, 2015, Negyessy et al., 2006). Sedation is commonly associated with loss of 

attention and perception (though not explicitly tested in this experiment). It is therefore 

not surprising to find a reduction in connectivity between the sensory cortex and the 

lateral occipital cortex. Similar cross-modal visuo-motor interaction allows for activities 

such as hand-eye coordination which are usually disrupted in states of altered 

consciousness (Sanders et al., 1991).  

 

Previous work on propofol sedation has been lacking in this area, however 

neuroimaging studies with other sedative agents have shown similar results (Liang et 

al., 2015, Martuzzi et al., 2010). Sub-anaesthetic doses of sevoflurane, resulted in a 

decreased connectivity between the somatosensory cortex and the extra-striate visual 

areas while its connectivity with thalamus was increased (Martuzzi et al., 2010).  

Midazolam sedation resulted in an increased within network functional connectivity of 
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somato-motor and other primary networks (visual and auditory) (Liang et al., 2015, 

Greicius et al., 2003, Kiviniemi et al., 2005). Visual and auditory networks were shown 

to be maintained during varying doses of propofol sedation (Boveroux et al., 2010). 

Interestingly, Jordan et al (2013a) demonstrated an increased functional connectivity in 

the visual and auditory networks at higher (anaesthetic) doses of propofol. While the 

results from other research cannot be generalized to this experiment’s results, due to 

differences in drugs, doses, methodology or analytic techniques, they generally point 

towards a maintained network connectivity of the primary RSNs.  

 

5.4.5.1.2  Default mode network  

PCC was used as a seed region (key hub of DMN) to assess changes in DMN functional 

connectivity with mild sedation. Once again, previous literature is variable in this 

respect.  While Boveroux et al (2010) and Liu et al (2015) found a disruption in DMN 

functional connectivity, with propofol sedation, Guldenmund et al (2013) did not. A 

reduction in functional connectivity of the PCC with the frontal pole was observed in 

this experiment.  Stamatakis et al (2010) also found a reduced connectivity of PCC with 

medial frontal areas, at mild sedation, however at deeper levels, surprisingly, they found 

increased connectivity of PCC with non-DMN areas, including motor/ sensory cortices, 

anterior thalamic nuclei and the reticular activating system. Co-activation patterns of 

PCC when studied with propofol demonstrated reduced frontal activations during 

sedative and anaesthetic doses, in a dose dependent manner (Amico et al., 2014). The 

authors also reported reduced co-activations with other cortical regions such as auditory, 

visual and motor cortices and thalamus. Increased connectivity of precuneus (another 

component of DMN) has also shown during propofol sedation, albeit during a non-

resting state (auditory task) (Liu et al., 2014).  

 

Other sedative drugs have also revealed similar results, midazolam (GABA-ergic drug, 

similar to propofol) sedation showing reduced functional connectivity in the DMN 

(Greicius et al., 2003) while there was no change with sevoflurane (Martuzzi et al., 

2010). This suggests a dose or drug related effect on DMN’s connectivity and the 

findings of this experiment are generally supported by previous literature. 
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5.4.5.1.3  Thalamo-cortical functional connectivity 

In this experiment, functional connectivity of thalamus was reduced with the PCC (key 

hub of the DMN) and the ACC while it was increased with the superior temporal gyrus 

and the primary somatosensory cortex. This is in concordance with the results of 

Boveroux et al (Boveroux et al., 2010), who found preserved thalamo-cortical 

connectivity with primary RSNs, but reduced with the DMN. Their findings were more 

prominent at deeper stages of propofol sedation (although, not significant at mild 

sedation) but point in a similar direction of differential, thalamo-cortical dissociation 

associated with sedation. An increase in thalamic connectivity was found with auditory, 

insular, primary sensory, primary motor and SMA, during mild propofol sedation 

(Guldenmund et al., 2013), similar to the findings of this experiment, suggesting a dis-

inhibitory influence of propofol in the thalamic relationship with these primary cortical 

regions. During an auditory and noxious stimulation, thalamo-cortical connectivity was 

found preserved, while putamen’s connectivity was reduced (Mhuircheartaigh et al., 

2010). Using graph- theoretical analyses and support vector machine classification, 

Monti et al (Monti et al., 2013) demonstrated an increased thalamo-cortical connectivity 

during sedation which was followed by a breakdown, during unconsciousness. While 

this study did not investigate the selectivity of thalamo-cortical connections, it 

suggested altering thalamo-cortical activity as sedation progressed. Breakdown of 

thalamo-cortical connectivity has been demonstrated in other studies too, although at 

higher doses of propofol (Schroter et al., 2012, White and Alkire, 2003). 

 

These changes in thalamo-cortical connectivity with sedation may appear somewhat 

contradictory. While some of these variations can be accounted for by differences in 

experimental and analytic methodology, part of the problem may stem from treating the 

thalamus as a single entity and not discriminating between its different nuclei (specific 

and non-specific nuclei) which have different relationships with different cortical 

regions and therefore different roles. The specific thalamic nuclei are related to the 

visual, sensory and auditory pathways while the non-specific are more related to 

arousal, sleep-wake cycles. Liu et al (2013) studied the functional connectivity of the 

groups of thalamic nuclei specific (medial dorsal, ventral lateral, ventral posterior, and 

other) and nonspecific (centromedian and parafascicular) thalamic nuclei, under 
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propofol sedation. They found that specific thalamic nuclei had connectivity mainly 

with medial and bilateral frontal and temporal cortex while the non-specific nuclei had 

connectivity with the medial frontal and medial parietal cortex. Deep sedation was 

associated with greater changes in the functional connectivity of the non-specific nuclei 

than specific, suggesting a differential effect of propofol on these nuclei.  

 

5.4.5.2  ICA based functional connectivity 

Further exploratory analysis was done to detect changes, if any, in other networks, using 

independent components analysis. 

 

5.4.5.2.1  Right lateral fronto-parietal network 

ICA revealed a lateralized (right) fronto-parietal network, which showed an increased 

functional connectivity following sedation. This increase in connectivity occurred with 

regions within the network and also those outside the network (Figure 5-5, Figure 5-6). 

 

Dorsolateral fronto-parietal networks are also known as executive control networks, 

which show increased connectivity as attention increases or a task is initiated. During 

deeper stages of sedation and unconsciousness, loss of attention correlates with this loss 

of fronto-parietal connectivity (Jordan et al., 2013b, Monti et al., 2013, Schrouff et al., 

2011). Once again, there is paucity of literature specific to mild sedation. Boveroux et al 

(2010) found a decreased connectivity in lateralized fronto-parietal networks, 

correlating with the depth of propofol sedation. Similarly, a reduced fronto-parietal 

connectivity was shown with mild midazolam sedation (Liang et al., 2015).  

 

The findings of this experiment are therefore surprising, but interesting. Boveroux et al 

(2010) used a ROI based analysis to study changes in RSNs. Their findings with fronto-

parietal RSNs were more significant during the deeper stages of sedation but not during 

mild sedation. They had similar results with ICA based analysis where there was a trend 

towards significance, but not strong enough to survive multiple corrections. It is 

therefore likely that these changes in fronto-parietal networks are a dose (or sedation 

level) related effect but that these changes might not have been observable at mildly 
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sedative levels.  If fronto-parietal functional connectivity is seen as a correlate of 

attention, it is possible that in this experiment, the volunteers, although mildly sedated, 

were ‘trying to stay awake’ and thus trying to be attentive, and potentially confounding 

the results. It is also possible that this may be a natural, compensatory mechanism of the 

brain to try and avoid loss of attention, before the ‘breakdown’ occurs. Alternatively, a 

dis-inhibitory effect on other influences on the fronto-parietal regions, as a precursor to 

deepening levels of sedation may be responsible for this emerging hyper-synchronicity 

in these regions, prior to a disruption in connectivity.  

 

 Potential limitations of the experiment 5.4 .6

There are certain limitations of this experiment. Some of these, including the possibility 

of an order effect, lack of a range of doses etc. have been discussed previously (Section 

3.6) and apply to this experiment too. Comparability of results with previous literature 

is limited by potential difference in drugs used, doses of propofol (when propofol was 

the drug) used and the methods of assessing sedation. The basis of BOLD signal 

depends on an assumption of neurovascular coupling. This may be altered in 

pharmacological studies. However, at mildly sedative doses of propofol, there were no 

significant change in haemodynamics or respiratory parameters and neurovascular 

coupling is likely to have been maintained.  

 

Low frequency oscillations, arising from cardiac and respiratory fluctuations 

(physiological noise) may result in false connectivity results. In this experiment, 

physiological noise correction was performed to reduce such confounds. While 

physiological noise correction increases the robustness and validity of connectivity 

results, certain correction techniques can itself induce false correlations and may reduce 

inter and intra-subject variability (Birn et al., 2014, Khalili-Mahani et al., 2013).   

 

The seed regions in the seed-based functional connectivity analyses, were chosen using 

standard atlas tools to delineate the regions of interest.  Seed regions may be chosen 

based on anatomical knowledge or functional (determined following a functional task) 

and can range from a few voxels to well-defined anatomical regions.  Different methods 

of choosing regions of interest can influence the connectivity results (Cole et al., 2010) 
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and can limit the comparability of results. ICA results reduce this element of 

‘subjectivity’ by using a model free analysis. In this experiment, however, ICA did not 

produce similar results as the SCA did. The only significant change detected was also 

not corrected for the number of networks identified, due to the exploratory (no ‘a priori’ 

hypothesis) nature of the analysis. It is possible that this ICA result would not have 

survived such a correction. 
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5.5  Experiment 2 

 Introduction 5.5 .1

MEG has been used to study neuro-pharmacological effects (Carhart-Harris et al., 2013) 

including that of benzodiazepines (Hall et al., 2010), however  no previous study has 

targeted specific alterations in consciousness including sedation or anaesthesia. 

However, EEG changes induced with propofol sedation have been well studied. EEG 

changes during propofol sedation include a reduction in posterior alpha band power, an 

increase in frontal alpha and an increase in beta power. With increasing doses of 

sedation resulting in anaesthesia, alpha and beta bands disappear and an increase in 

delta and theta power occurs (Veselis, 1996).   

 

Traditional EEG equipment is less likely to be able to provide enough spatial 

information to perform coherence analyses to identify RSNs. More recently, high 

density EEG equipment has allowed researchers to interrogate spatial coherence 

patterns successfully. MEG due to its large number of channels provides better spatial 

resolution and avoids potential artefacts due to conduction issues and possible muscle 

activity. This has allowed studies of functional connectivity. As discussed previously, 

RSNs similar to those found on BOLD-fMRI have been demonstrated using ICA based 

techniques (Brookes et al., 2011b).  

 

Based on the fMRI literature (Section 5.2) it was expected to find reduction in 

functional connectivity of the higher order networks, such as the DMN. This experiment 

was an exploratory attempt to test if RSNs can be identified in different oscillatory 

bands, with MEG and whether their changes with sedation reflect those from the fMRI 

literature. 

 

 Aims 5.5 .2

The aims of experiment 2 were to identify the MEG signal based spatio-temporal RSNs 

in the different frequency bands and evaluate the changes in those networks, with mild 

propofol sedation. 
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 Methods 5.5 .3

This experiment was performed as a part of the data collection for experiments 

described previously (Chapter 3) and therefore the methods for participant inclusions, 

monitoring, drug administration and sedation assessment were the same as stated in part 

(Section 3.4.3.2).  

 

5.5.3.1  MEG acquisition and analysis 

Whole head MEG recordings were made using a CTF 275-channel radial gradiometer 

system sampled at 1200 Hz (0–300 Hz bandpass). An additional 29 reference channels 

were recorded for noise cancellation purposes and the primary sensors were analysed as 

synthetic third-order gradiometers (Vrba and Robinson, 2001). Three of the 275 

channels were turned off due to excessive sensor noise. At the onset of each stimulus 

presentation a TTL pulse was sent to the MEG system. Participants were fitted with 

three electromagnetic head coils (nasion and pre-auriculars), which were localised 

relative to the MEG system immediately before and after the recording session.  

 

5.5.3.1.1  Pre-processing of resting state data.  

Five minutes of resting state data was obtained during the Awake and Sedated sessions. 

Volunteers were instructed to keep their eyes closed and try not to think of anything in 

particular. This recording was high-pass filtered at 1Hz and segmented into epochs of 2s 

in length. There were therefore 150 epochs in each dataset for analysis. Each epoch was 

visually inspected, and those with gross artefacts (e.g., head movements, jaw clenches) 

were removed from the analysis. All subsequent analyses were performed on these 

cleaned datasets. 

 

5.5.3.1.2  Frequency analysis: sensor space 

Using the FieldTrip toolbox (Oostenveld et al., 2011) MEG data was converted to 

planar gradient configuration, and then a frequency analysis of the individual vector 

directions was conducted. Frequency analysis was conducted using Hanning windowed 
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fast Fourier transforms between 1 and 100 Hz at 0.5 Hz frequency intervals and then the 

planar directions combined to give local maxima under the sensors. Analysis of sensor-

level MEG data in a planar gradient (spatial-derivative) configuration has the advantage 

of easy interpretability, because field maps can be interpreted as having a source 

directly underneath field maxima (Bastiaansen and Knosche, 2000). For statistical 

analysis, individual spectra were divided into the following frequency bands: delta (1–4 

Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), low gamma (30–49 Hz), and 

high gamma (51–99 Hz). The differences between Sedated and Awake states were tested 

using permutation testing of t statistics at each time point (Maris and Oostenveld, 2007, 

Nichols and Holmes, 2002). The Type 1 error rate was controlled using cluster 

randomization analysis with an initial cluster-forming threshold of p = 0.05 repeated 

>5000 permutations.  

 

5.5.3.1.3  Independent component network analysis of functional 

connectivity 

For analysis of oscillatory networks, methodology similar to that described in Brookes 

et al. (Brookes et al., 2011b) was utilised. For each participant and frequency band, 

beamformer weights were computed on an 8 mm grid based on the preprocessed 

dataset. Beamformer time courses were then generated at every voxel and normalized 

by an estimate of the projected noise amplitude at that voxel. The Hilbert transform was 

applied to each voxel time course, and the absolute value was computed to generate an 

amplitude envelope of the oscillatory signals in each frequency band. The data at each 

voxel was down-sampled to an effective sampling rate of 1 Hz, transformed to standard 

(MNI) space using FLIRT in FSL, and data from all subjects were concatenated in the 

time dimension across subjects. Temporal independent component analysis (ICA) was 

applied to the concatenated datasets (separately for all six frequency bands) using the 

fast ICA (research.ics.tkk.fi/ica/fastica) algorithm.  

 

Prewhitening was applied to reduce the dimensionality of the source space Hilbert 

envelope signals to 20 principal components before ICA (Brookes et al., 2011b, Hall et 

al., 2013, Hyvarinen and Oja, 2000). Fifteen independent components were derived for 
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each frequency band. The spatial signature of each tIC (i.e., the maps shown in Fig. 1) was measured by Pearson correlation 

between the tIC and the time course of each voxel in the concatenated dataset. From these components we 

identified those that matched previous reports (Brookes et al., 2011b, 

Muthukumaraswamy et al., 2013). Five possible networks were identified. For these 

components, we computed the SD of the component time course for each subject and 

condition. Differences in the SD of the independent component time course between 

Awake and Sedated states were assessed using paired t-tests. Results are presented for 

those networks demonstrating statistical significance for change (p <0.01, uncorrected 

for multiple comparisons). Other networks identified, without significant changes, have 

also been displayed for information purposes. 

 

 Results 5.5 .4

There were no differences in the haemodynamic and ventilator parameters between the 

Awake and Sedated groups. The mean (SD) propofol target concentration was 1.07 

(0.19) mcg/ml. There was a significant reduction in reaction times during the Sedated 

state (Section 3.5.6.1). 

 

5.5.4.1  Sensor level changes 

There was a significant reduction in the theta power in the frontoparietal regions and the 

alpha band power in the posterior (occipital) regions. There was a global increase in 

beta power, low gamma power and central increases in high gamma power, during 

sedation (Error! Reference source not found.). 
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Figure 5-7: Sensor level oscillatory power changes (Awake vs Sedated) 

Topographical maps of the planar gradiometer configured MEG data: Changes (paired 
t-tests between Awake and Sedated states): Delta= 1-4 Hz, Theta= 4-8 Hz, Alpha= 8-13 
Hz, Beta= 13-30 Hz, Low gamma =30-50Hz, High gamma = 50-100 Hz. The colour 
bars represent the change in power, from baseline (warm colours represent an increase 
while cooler colours represent a decrease). Units are t statistics. Significant sensor 
clusters are marked with crosses, p<0.05.
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5.5.4.2  Resting state networks 

The ICA methodology revealed a number of functional brain networks. These spatial 

maps represent temporally independent time signals extracted from MEG Hilbert  

envelope data via temporal ICA. Networks in different frequency bands (identified, on 

visual matching with known networks (Brookes et al., 2011b, Muthukumaraswamy et 

al., 2013)) are displayed below (Figure 5-8, Figure 5-9, Figure 5-10, Figure 5-11) and 

their changes, listed in Table 5-5.These networks have been displayed as correlation 

maps between the temporal independent component and the time course of each voxel 

of the concatenated dataset, thresholded at 0.3 or 0.4 (for visualisation purposes). 

 

 
Figure 5-8: Localization of MEG resting-state networks altered by propofol 
sedation, for the delta band (1-4 Hz) 
These consisted of bilateral frontal (a) and bilateral occipital (b) networks. Images show 
absolute ICA weights (in a.u.) thresholded at a correlation coefficient value of 0.3. 
Increased functional connectivity was seen in both networks: Sedated > Awake 
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Figure 5-9: Localization of MEG resting-state networks altered by propofol 
sedation, for the theta band (4-8 Hz) 
These consisted of bilateral frontal networks. Images show absolute ICA weights (in 
a.u.) thresholded at a correlation coefficient value of 0.4. Increased functional 
connectivity was seen: Sedated > Awake 
 

 
Figure 5-10: Localization of MEG resting-state networks altered by propofol 
sedation, for the alpha band (8-13 Hz) 
These consisted of bilateral frontal (a) and bilateral parieto-occipital (b) networks. 
Images show absolute ICA weights (in a.u.) thresholded at a correlation coefficient 
value of 0.4. Increased functional connectivity was seen: Sedated > Awake 
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Figure 5-11: Localization of MEG resting-state networks altered by propofol 
sedation, for the  beta band (13-30Hz) and gamma band (30-50 Hz) 
These consisted of bilateral sensorimotor networks. Images show absolute ICA weights 
(in a.u.) thresholded at a correlation coefficient value of 0.3. No change in functional 
connectivity was seen. 
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Table 5-5: Summary of sensor space oscillatory power changes and independent 

component networks’ functional connectivity changes: Sedated vs Awake 

Sig= significant change. P values as stated, not corrected for multiple comparisons 

  1-4 Hz 4-8 Hz 8-13 Hz 13-30 Hz 30-50 Hz 

Sensor power Increase 
fronto-
parietal 
(sig) 

Increase 
frontal 
(sig) 

Increase 
frontal 
(sig) 

Increase 
fronto-
parietal 
and 
central 
(sig) 

Increase 
frontal 
and 
central 
(sig) 

Networks 

B/l frontal Increase  
P = 
0.0253 

Increase  
P = 
0.0064 

Increase  
P = 
0.0041 

  

B/l occipital Increase  
P = 
0.0268 

No 
change 
 

   

B/l parietal  No 
change 
 

   

B/l occipito- 
parietal 

  Increase  
P = 
0.0082 

  

B/l sensori-motor    No 
change 
 

No 
change  
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 Discussion 5.5 .5

5.5.5.1  Spectral analysis of spontaneous activity  

In this experiment mild propofol sedation resulted in a decrease in posterior alpha 

power while the anterior alpha power increases (‘anteriorization’ of alpha). There was 

also a global increase in beta power, decrease in fronto-parietal delta power while the 

frontoparietal theta activity increased. 

 

While there are no MEG based studies in the literature, the findings here are broadly 

similar to those reported from EEG literature in relation to propofol sedation and effects 

of other GABA-ergic drugs. Propofol sedation has been associated with a decrease 

(Greene et al., 2007, Hashemi et al., 2015, Kishimoto et al., 1995, Doenicke et al., 

2007), complete disappearance (Veselis, 1996) or no change (Sneyd et al., 1994) in the 

alpha band activity. The commonly reported decrease in typical (occipital) alpha is also 

associated with an increased frontal (anterior) alpha activity and this ‘anteriorization’ of 

the alpha band is similar to that found in this experiment. The neuronal mechanisms of 

these alpha rhythms have been well investigated. Both thalamo-cortical models (Ching 

and Brown, 2014, Ching et al., 2010b, Hashemi et al., 2015, Vijayan et al., 2013b) and 

cortical (Hutt, 2013, Spiegler et al., 2011) have been suggested to explain the generation 

and modulation of these rhythms. It has been suggested that the posterior (occipital) 

alpha and anterior (frontal) alpha rhythms are produced by two distinct mechanisms 

(Ching and Brown, 2014, Vijayan et al., 2013b). It has been suggested that increased 

GABA-A conductance and decreased lag time, by propofol, induces this alpha activity. 

Increased GABA-A conductance further involves the thalamus resulting in cortical 

synchrony (in the alpha range) and that the cells in the reticular nucleus synchronise 

disparate relay nuclei enabling synchrony over larger cortical areas. This is then further 

enhanced by reciprocal thalamo-cortical feedback loops (Ching et al., 2010b). 

Regarding the posterior alpha rhythm, it has been suggested that propofol attenuates the 

h-currents which alters the dynamics of the high threshold thalamo-cortical neurons 

which generate the posterior alpha, without affecting the frontal projecting neurons 

(Ching and Brown, 2014, Vijayan et al., 2013b). This differential response represents a 

distinct effect of propofol on the different thalamic nuclei resulting in different effects, 
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possibly similar to those reported in BOLD FMRI based studies (Liu et al., 2013). On 

similar lines, Hashemi et al (2015) proposed that alpha anteriorisation occurs due to 

fronto-occipital differences in non-linear gain function in cortico-thalamic relay circuits 

suggesting a role of propofol on those circuits. 

 

Increased frontal beta band power was also demonstrated in this experiment as has 

previously been described by others (Feshchenko et al., 1996, Greene et al., 2007, 

Kishimoto et al., 1995, Sneyd et al., 1994, Veselis, 1996, Veselis and Reinsel, 1992). It 

has been suggested that an increase beta activity at sedative doses of propofol may be a 

result of the interactions between pyramidal cells with two types of interneurons (Ching 

and Brown, 2014, McCarthy et al., 2008, Jensen et al., 2005). As propofol increases the 

conductance and time constant of the GABA-A synaptic current, this then interacts with 

the M-current (a slow potassium current) in low threshold spiking interneurons. This 

causes a transition from synchrony to anti-synchrony at the inter-neuronal network 

level, which then shifts the frequency of oscillation of the pyramidal neurons, in to the 

beta band level at the population level.    

 

Lower frequency oscillations usually become prominent at deeper stages of sedation/ 

anaesthesia (Gugino et al., 2001). At mildly sedative doses, the results are more 

variable. A decrease in theta band activity has been shown with GABA-ergic compunds 

such as diazepam (Hall et al., 2010) and alcohol (Rosen et al., 2014). A decrease in 

theta band activity, with propofol, has been reported by some authors (Wang et al., 

1997), while no change has been reported by others (Breshears et al., 2010, Greene et 

al., 2007, Kishimoto et al., 1995). Doenicke et al (2007) reported an increase in theta 

band at light hypnosis, which was then replaced, by an increased delta band at moderate 

sedation. A similar increase in frontal theta band was found in this experiment. Theta 

oscillations are closely linked to hippocampal activity (Buzsaki, 2002, Canolty et al., 

2006) and play an important role in memory formation, especially linking with high 

frequency oscillations (Canolty et al., 2006, Klimesch, 1996). While the generation of 

theta oscillations is not completely clear, during computational modelling to predict 

alpha and delta oscillations (originating from thalamo-cortical neuronal activity) it has 

been suggested that theta oscillations may originate from spectral leakage from alpha 

and delta bands (Hindriks and van Putten, 2012). Theta band oscillations are also 



 
     
 

 
 
 

194 

suggested to be the mediator of fronto-parietal connectivity (Hillebrand et al., 2016) and 

so effects on theta band may offer a mechanism of altered cortico-cortical connectivity 

with sedation.  

 

Increase in delta band activity with propofol sedation has been widely reported 

(Hashemi et al., 2015, Kishimoto et al., 1995, Veselis and Reinsel, 1992). In this 

experiment also delta band power increased in the frontal regions. A thalamic role has 

been implicated in the generation of the delta bands too. Alkire et al (2000) proposed 

that effect of anaesthetics on the thalamus resulted in hyperpolarization of the thalamo-

cortical neurons resulting in their changing from a burst to a tonic pattern of firing. 

Further modelling work (Hashemi et al., 2015) has supported the role of thalamo-

cortical generation of the delta rhythm and its increase being a reflection of the cortico-

reticular-relay-cortical feedback loop due to a prominent enforced thalamic-reticular-

relay interaction. These findings, therefore, further support the role of propofol sedation 

on thalamic neuronal activity.  

 

5.5.5.2   Resting state networks 

Functional connectivity analyses revealed a number of typical RSNs. There were 

significant changes (increased functional connectivity) found in bilateral frontal RSNs 

in the alpha, theta and delta frequency bands; increased functional connectivity in the 

bilateral parieto-occipital network (in the alpha band), and bilateral occipital network in 

the delta band. Bilateral sensori-motor networks were also identified. However, there 

was no change in those in the beta and gamma frequency bands.   

 

Maintained functional connectivity in the motor RSN is similar to that expected from 

fMRI-based studies investigating sedative and anaesthetic effects of propofol, wherein 

primary RSNs retain their connectivity within the networks and with other regions 

(Boveroux et al., 2010, Schroter et al., 2012). 

 

Increased functional connectivity in the frontal networks in the alpha, theta and delta 

bands was perhaps, more surprising as fMRI based studies would have predicted a 

reduced/ maintained connectivity in these networks. Despite the obvious prediction, 
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fMRI studies are somewhat contradictory in this respect (see Appendix 1). Yet again, 

very few experiments have focused only on the early stages of sedation. Interestingly, 

increased regional connectivity has been reported in most EEG based connectivity 

studies investigating both propofol induced sedation and anaesthesia. Supp et al (2011) 

described an increased synchronicity in the alpha band, in the frontal areas, with 

increasing doses of propofol resulting in loss of consciousness. This was a result of both 

an increase in alpha power and also phase coherence. Cimenser et al (2011) have 

reported a similar increase in alpha band coherence in the frontal regions along with 

increased frontal alpha and delta bands, again, similar to the findings of this experiment. 

Effective / directional connectivity analyses go a step further in trying to establish a 

causal role of brain regions in synchronizing their activities with other brain regions. 

Using Granger Causality based analysis, to explore directional connectivity between 

ACC and PCC during propofol induced loss of consciousness an increased coherence in 

these areas, especially in the beta (Barrett et al., 2012) and gamma bands (Murphy et al., 

2011b) was shown. While these studies focused on loss of consciousness, it is likely 

that sedative concentrations may have similar, albeit less prominent, changes. On those 

lines, Boly et al (2012), using dynamic causal modelling (DCM) to explore directed 

effective connectivity between brain regions, showed that sedation was related to 

thalamic excitability, but not changes in cortico-cortical connectivity. Cortico-cortico 

connectivity was however reduced with further doses of propofol, as consciousness was 

lost. Using a different measure of directional connectivity (renormalized partial directed 

coherence), Makismow et al (2014) found a reduced occipital to frontal coherence (in 8-

16 Hz band) and an increased frontal to occipital coherence (in 10-20 Hz band) during 

propofol sedation. These findings did not change with further increase in propofol 

doses. It is likely that similar mechanisms resulted in an increase in connectivity in 

bilateral occipital and parieto-occipital networks in alpha and delta bands respectively in 

this experiment. 

 

Even within the same experimental conditions different analytic methods may produce 

discordant results. In a recent MEG study (Muthukumaraswamy et al., 2015), 

investigating the effects of ketamine, DCM based effective connectivity was reduced in 

fronto-parietal networks, however the functional connectivity based on band pass power 

correlates (similar to that used in this experiment) did not change. This reflects the 
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different sensitivities of these methods to different signal elements. Since, computation 

of band pass power envelopes involves discarding all phase information and further 

down-sampling, which is not the case with DCM based measures, it can confound some 

estimates of functional connectivity such as phase locking factors.  Lee et al (2011) used 

graph theory to reduce the potential confound induced by increase band power, 

appearing as an increased strength of connection during anaesthesia. They found that 

parietal networks are most affected while frontal networks are least affected, with 

propofol-induced unconsciousness. While they did not study mild sedation, it is likely 

that frontal networks show similar resistance to disintegration during lower doses of 

propofol and explaining some of the findings of this experiment.  

 

 Potential limitations of this experiment 5.5 .6

The spontaneous temporal fluctuations in neuronal oscillatory power present as spatial 

networks that are similar to the RSNs as observed with BOLD-fMRI. Recent 

experiments have confirmed the presence of these networks in various frequency bands, 

thus providing a sense of electrophysiological basis of the haemodynamic RSNs.  

 

However, there are certain limitations of studying RSN functional connectivity with 

MEG. Apart from the common factors, as with fMRI (see section 5.4.6), such as 

influence of order of experiment and head motion, recently, it has been shown that 

physiological changes also can affect neuronal power (Driver et al., 2016). Therefore 

experimental designs affecting haemodynamics and ventilation may affect the results. In 

this experiment the physiological changes between the two states was not significant 

and therefore unlikely to have any influence on the results. Co-registration of the MEG 

data to an anatomical brain scan itself can induce significant variations, even with slight 

errors.  

 

Another emerging factor in this type of MEG/EEG analysis is the choice of technique 

correlating neuronal activity. While most experiments use covariance of envelopes of 

oscillations or in some cases, phase synchrony of these oscillations. BOLD, however, is 

a much more complex phenomenon and so expecting the haemodynamic fluctuations to 
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be related to a single frequency band would be over-simplistic. Indeed, it has been 

shown that cross-frequency communication may be responsible for some of these 

BOLD changes. Tewarie et al  (2016), have recently investigated linear and non-linear 

cross frequency interactions in an attempt to predict haemodynamic networks. Their 

modelling showed that cross frequency interactions and connectivity profiles of 

adjacent regions also influenced regional connectivity beyond the electrophysiological 

activity of those regions. It is likely that the changes in choice of frequency range or use 

of cross frequency interactions may produce different results and offer a better insight 

into drug-induced changes in functional connectivity.  

 

 Combining RSN functional connectivity results of the MRI and 5.5 .7

MEG; limitations and future directions 

As discussed earlier, while there are numerous fMRI studies investigating functional 

connectivity changes with propofol induced LOC, relatively few have studied functional 

connectivity changes with mild sedation. An even smaller number have attempted to 

combine electrophysiological studies along with fMRI data (combined EEG/fMRI 

studies). There have been no previous studies using MEG with fMRI to study mild 

propofol sedation. 

 

The results of these experiments were broadly in line with the (limited) published 

literature available. While the BOLD based connectivity analyses revealed changes 

(both increases and decreases) in the networks studied, as predicted; the results of the 

MEG RSN functional connectivity analyses were different and revealed increases in 

connectivity in some of the identified networks. Some of the MEG RSN findings 

mirrored, increased BOLD-based frontoparietal network connectivity found using ICA 

technique.  In the motor networks, functional connectivity was maintained with both 

MEG (in the beta and gamma bands) and fMRI, as predicted.  

 

It can be considered ambitious trying to combine the two modalities to study changes in 

resting state functional networks, with sedation. The possible reasons for the apparent 

differences in the results between the two techniques are multifactorial. While MEG 
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data have shown RSNs similar in spatial location to those found with BOLD fMRI, very 

few studies have tried to compare the results of the two techniques, and when done, 

have shown similar but not completely consistent results (Demuru et al., 2014). Also, no 

previous study has tried to track and compare the changes in these RSNs using these 

two distinct modalities following a modifying intervention. This lack of difference in 

modifiability of the RSNs identified through these two sources may represent some key 

underlying differences between the two techniques. It is possible that the fMRI RSN 

changes are a result of cross-frequency changes due to sedation/ drug effects, which 

may not present itself in the broadband frequency change (in MEG RSN) to the same 

extent or even in the same direction.  

 

The MEG and MRI session had to be done in a sequential manner rather than 

simultaneously and therefore despite the best efforts there may be differences in 

experimental conduct. In this case an ‘order effect’ (MEG session always preceded the 

MRI session) cannot be ruled out. Also, although all subjects were sedated to the same 

level (OAA/S), the assessment is subjective, so other factors (including order effects 

due to participants having experienced sedation previously) could have contributed to 

differences in the level of sedation achieved.  While this may continue to be an issue 

with other MEG/ fMRI studies, simultaneous EEG-fMRI can obviate some of these 

concerns. 

 

Identification of anatomical sites in MEG data depends on the registration process and 

despite best efforts errors may be induced during the co-registration process. While this 

can magnify the usual limitation of MEG i.e. relatively limited spatial resolution; this 

can result in even more significant differences in resting state connectivity analyses. 

 

As discussed previously, the analysis of electrophysiological data in a band limited 

format might not fully explain the BOLD related haemodynamic changes. Also the 

analysis method used in Experiment 2 uses temporal down-sampling of the oscillatory 

envelopes of the frequency bands and while fairly robust and valid for identifying RSN, 

does not take into account phase synchrony and therefore may lose out on valuable 

information which may be partly responsible for drug induced modulations of RSNs. It 

is therefore plausible that while the neuronal synchrony increases in a particular band, 
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the changes in other neuronal bands result in a de-synchronous response in the 

haemodynamics, presenting as a decreased BOLD related functional connectivity. Also, 

as the understanding of the electrophysiological basis of BOLD haemodynamic changes 

is still incomplete, there may be yet other confounding factors that may contribute to 

this divergence of responses. It is likely that analysis methods, in future will take into 

account the other dimensions of oscillatory changes to relate them to BOLD changes. 

 

 Conclusions 5.5 .8

This is a novel attempt at combining different neuroimaging techniques to study 

neurophysiologic and haemodynamic changes associated with propofol sedation. The 

results of this sequential MEG/ fMRI can be summarized as follows 

 

• Functional connectivity of higher order networks changes with mild sedation. 

PCC (as a key hub of DMN) becomes less connected with the frontal pole while 

the thalamus becomes less connected with regions of the DMN, ACC and motor 

cortex. Thalamus appears more connected with sensory cortices and superior 

temporal gyrus. Primary sensory and motor cortices show reduced connectivity 

with the occipital cortex but become more connected with the thalamus. 

 

• There was increased functional connectivity found in bilateral frontal RSN in the 

alpha, theta and delta frequency bands; increased functional connectivity in the 

bilateral parieto-occipital network (in the alpha band), and bilateral occipital 

network in the delta band. Bilateral motor networks were also identified 

however there was no change in those in the beta and gamma frequency bands.  
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 : Changes in cerebral perfusion with mild Chapter 6

sedation observed using Arterial Spin Labelling fMRI 

 

6.1  Abstract 

 

Arterial spin labelling involves using endogenous water (in circulating blood) as a 

magnetically modifiable contrast, to study perfusion changes in the brain. This can then 

be used to calculate cerebral blood flow (providing information comparable to the gold 

standard, i.e. positron emission tomography). ASL based changes in cerebral blood flow 

can also be used to study changes in neuronal functions and may have certain 

advantages over BOLD based fMRI. 

 

In this experiment relative changes in cerebral perfusion were studied, using ASL- 

fMRI, during mild propofol sedation. 

 

Mild propofol sedation resulted in a decreased global cerebral perfusion by about 9%. 

Regional cerebral perfusion decreases by about 24%, mainly in the key frontal regions, 

with 9- 14% reduction in the precuneus, posterior cingulate cortex and the thalamus. 

This was predicted, based on existing literature and the known functions of these 

regions in pharmacological modulation of consciousness.   
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6.2  Background and rationale 

The strengths of various neuroimaging techniques and their combinations have been 

exploited over the years to explore anaesthetic related changes in consciousness and 

arousal. The excellent sensitivity and specificity of positron emission tomography 

(PET) is limited by the potential hazards associated with radioactivity and the 

associated difficulties with repetition. With the development of blood oxygen level 

dependent (BOLD) contrast based functional MRI (fMRI) some of the challenges of 

PET were overcome at the cost of some loss of specificity and information.  BOLD-

fMRI still relies on an incompletely understood mechanism of neurovascular coupling 

and although quite robust for most applications, still has some limitations in situations 

in which underlying cerebrovascular physiology may be altered (Iannetti and Wise, 

2007). Arterial spin labelling (ASL) cerebral blood flow measurement uses an 

endogenous tracer (water in the blood) thus avoiding the risks associated with 

exogenous radioactive tracers. ASL uses magnetically labelled water in arterial blood to 

measure cerebral perfusion. ASL has certain distinct advantages over the BOLD- 

contrast. While the spatial localisation during BOLD-fMRI results from a complex 

interplay between the blood flow, blood volume and neuronal oxygen consumption, 

ASL is more specific to local (perfusion) changes.  ASL can also provide absolute 

quantification of perfusion values and since it involves pair-wise subtraction of control 

and tagged images, it is less affected by baseline drift and may be less susceptible to 

motion artefacts, making it more suitable for long term repetitive studies or those with 

low frequency changes (Detre and Wang, 2002).  

 

ASL based techniques are especially suited for physiological and pharmacological 

fMRI studies on neuronal activity where there may be an independent, physiological 

condition/ drug action related confounding effect on perfusion that would make use of 

BOLD difficult or in studies in which cerebral perfusion is the primary functional 

parameter of interest.  
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 ASL application in studying central drug effects 6.2 .1

ASL is increasingly being used to bridge the gap between the information derived from 

BOLD-fMRI and PET in relation to pharmacological neuroimaging studies. Notably, it 

has been used to study centrally acting drugs, which may have confounding effect on 

systemic vasculature and have provided confirmatory evidence (similar to BOLD –

fMRI/ PET) or additional, new, information about drug effects. Pulsed ASL (PASL) 

when used in chronic heroin users to study the effects of acute heroin administration 

showed reduced perfusion in the left and right insula, left ACC and left medial 

prefrontal cortex (mPFC) suggesting a role of these regions in the self and emotional 

regulation of these patients in the heroin maintenance program (Denier et al., 2013). 

Carhart-Harris et al (2012) studied the effects of psilocybin (a psychedelic drug causing 

altered consciousness) and reported decreased CBF in the higher level association areas 

and important connector hubs (such as ACC, PCC, mPFC and thalamus) related to their 

behavioural effects. These findings challenged the previously reported PET results that 

had showed an increase in metabolism with psilocybin rather than a reduction. 

Similarly, another consciousness altering drug, 3,4-methylenedioxymethamphetamine 

(MDMA), was shown to reduce the CBF in the amygdala, hippocampus and medial 

temporal lobe (areas with known high density of 5-HT-1A receptors) and this correlated 

with the intensity of the drug effects (Carhart-Harris et al., 2014).  

 

ASL has also been applied to study the effects of anaesthetic drugs and has contributed 

to existing knowledge about anaesthetic actions.  Remifentanil, an ultra-short acting 

opioid, which produces analgesia and sedation was shown to increase global CBF in a 

dose related manner (Kofke et al., 2007). This was similar to the findings of increased 

CBF, during reminfentanil infusions, as studied with PET (Lorenz et al., 2000). There 

was a relative CBF (regional CBF change/global CBF change) increase in the cingulate 

cortices while CBF decreased in the amygdala and hippocampus. Macintosh et al 

(2008), similarly, using GRASE (Gradient and Spin Echo) ASL technique demonstrated 

a global increase in CBF with remifentanil infusion with a relative increase in the 

anterior cingulate, insula and the thalamus. While these results may have been 

confounded by increased CO2 secondary to respiratory depression induced by 

remifentanil, the technique of ASL was demonstrably sensitive to regional changes.  
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 Studies with sevoflurane, a commonly used inhalational anaesthetic, failed to show any 

regional CBF changes at sedative doses (0.25 MAC) (during rest), but, reduced CBF 

during visual and motor tasks, was seen in primary cortical areas and its unimodal 

association areas, sensorimotor area, along with thalamus and hippocampus (Ramani et 

al., 2007). This suggested a sensitivity effect of PASL, which increased during tasks to 

be able to discriminate between regional effects during sedation and un-sedated states. It 

may also suggest that the areas such as thalamus are not normally inhibited at sedative 

doses in the resting state and this may be an activity-state related suppression. 

Midazolam, a selective GABA agonist sedative drug, was studied at sedative 

concentrations using ASL and showed reduced CBF in the left middle frontal gyrus, left 

cingulate gyrus, left PCC and left precuneus (Liang et al., 2012). Of these, the changes 

in the left middle frontal gyrus correlated with memory test performance, demonstrating 

its role in midazolam-induced amnesia. 

 

 CBF and anaesthesia 6.2 .2

Cerebral blood flow changes may occur during sedation and anaesthesia through 

different mechanisms. Anaesthetic drugs, usually cause a depression in blood pressure, 

which could result in a reduction in global CBF. Also, respiratory depression induced 

by anaesthesia would result in hypercarbia (unless ventilation is controlled) that might 

itself result in changes in CBF. However, the autoregulatory mechanisms maintain 

cerebral perfusion within a normal range, within quite wide ranges of systemic blood 

pressure and CO2 changes (Cipolla, 2009). Changes in these systemic variables are 

usually dependent on anaesthetic dose and therefore CBF changes are even less likely to 

occur at sedative doses. 

 

Another mechanism of CBF alteration, of most interest to neuroimaging researchers, 

relies on neurovascular coupling such that a suppression of neuronal/ regional activity 

by anaesthetic drugs would result in a concomitant reduction in regional CBF (Section 

1.6.1). While the exact mechanism of this neurovascular coupling is unclear, it is 

unlikely that this coupling is altered at sedative doses of propofol (Veselis et al., 2005). 

If haemodynamic and ventilatory parameters do not change (with mild levels of 
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sedation) the CBF changes can therefore be considered representative of changes in 

neuronal activity.  

 

At low doses, anaesthetic agents preferentially affect the cortical areas; especially 

higher association areas and the primary cortical areas are affected subsequently, as the 

dose increases (Heinke and Schwarzbauer, 2002). Thalamus (Alkire et al., 2000) and 

more recently the precuneus (Cavanna, 2007) have been suggested as the 

‘consciousness’ switch due to their roles in modulating arousal and consciousness. 

However, at sedative doses, the effect on these structures is less clear. Brain regions of 

the resting state networks including the default mode network (DMN: medial prefrontal 

cortex, precuneus, posterior cingulate cortex) (Greicius et al., 2003) and frontoparietal 

networks are likely to be affected as alterations in the synchrony of these networks is 

commonly associated with sedation. A suppression of neuronal activity in these brain 

regions is therefore likely to be associated with a reduction in regional cerebral 

perfusion. 

 

6.3   Hypothesis 

Mild propofol sedation will be associated with a reduction in CBF in the frontal cortex, 

precuneus, posterior cingulate cortex and the thalamus.  

 

6.4  Aims 

To use ASL based perfusion MRI to study CBF changes during mild propofol sedation.  

 

6.5  Methods 

This experiment was performed as a part of the data collection for fMRI experimental 

session (Section 2.4.2) and therefore the methods for participant inclusions, monitoring, 

drug administration and sedation assessment are the same as stated in part 3.4.3. All 

participants were instructed to lie still with their eyes closed and to try and stay awake. 

The sequence of data acquisition was always Awake state followed by Sedated state. 
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 MRI – ASL acquisition 6.5 .1

MRI data were collected at 3 T (HDx, General Electric) using an eight-channel receive-

only head coil. CBF was estimated using single-shot, proximal inversion with a control 

for off-resonance effects – quantitative imaging of perfusion using single subtraction II 

(PICORE-QUIPSS II) (Wong et al., 1998). Imaging parameters were: TR/TE/ = 2200 

ms/19.8 ms; TI = 1500 ms; field of view, 24 cm x 24 cm; twelve slices, 7 mm thick, 

with a 1-mm gap between slices; matrix, 64 x 64. Each scan included 130 repetitions. 

With the same slice prescription, calibration scans were acquired to provide an estimate 

of M0 (fully relaxed blood water magnetization) (Liau et al., 2008). T1-weighted 

whole-brain structural scan was also acquired (1 x 1 x 1 mm voxels).  

 

 ASL-MRI analysis 6.5 .2

General linear modelling was used to evaluate the drug-induced modulation of the 

perfusion signal. In the first-level analysis, the difference between tag and control 

images was explicitly modelled as one regressor representing the voxel-wise signal 

proportional to the mean perfusion. Given the global scaling in FEAT of each dataset to 

the same value, the parameter estimates were assumed to represent relative perfusion at 

each voxel, permitting a paired (within-subject) comparison of sedation related to 

relative perfusion changes.  

 

fMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) 

Version 5.98, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The 

following pre-statistics processing was applied; motion correction using MCFLIRT 

(Jenkinson et al., 2002), nonbrain removal using BET (Smith, 2002), spatial smoothing 

using a Gaussian kernel of FWHM 5mm; grand-mean intensity normalisation of the 

entire 4D dataset by a single multiplicative factor; highpass temporal filtering 

(Gaussian-weighted least-squares straight line fitting, with sigma=7.5s). Time-series 

statistical analysis was carried out using FILM with local autocorrelation correction 

(Woolrich et al., 2001). Z (Gaussianised T/F) statistic images were thresholded using 

clusters determined by Z>2.3 and a (corrected) cluster significance threshold of P=0.05 

(Worsley, 2001). Registration to high resolution structural and standard space images 
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was carried out using FLIRT (Jenkinson et al., 2002, Jenkinson and Smith, 2001). 

Registration from high resolution structural to standard space was then further refined 

using FNIRT nonlinear registration (Andersson et al., 2007a, Andersson et al., 2007b). 

The results of fitting this model at the first level were combined in a higher-level 

within-subjects analysis to compare modulation of perfusion during propofol sedation. 

Higher level analysis was carried out using FLAME (FMRIB's Local Analysis of Mixed 

Effects) stage 1 (Beckmann et al., 2003, Woolrich, 2008, Woolrich et al., 2004). Z 

(Gaussianised T/F) statistic images were thresholded using clusters determined by 

Z>2.3 and a (corrected) cluster significance threshold of P=0.05 (Worsley, 2001). To 

assist with this process, perfusion data underwent unwarping for B0 field distortions and 

were registered to the T1-weighted high-resolution (1 × 1 × 1 mm) structural scan 

which was itself registered to a 1-mm resolution Montreal Neurological Institute (MNI) 

standard brain, using nonlinear registration. 

 

6.6  Results 

All 15 participants were sedated to the desired level (OAA/S level of 4; mild sedation) 

during the Sedated state scanning. All 15 participants’ data was available and used for 

analysis. There was a significant slowing of the visual and auditory reaction times, as 

described previously in Section 3.4.4 (Table 3-2: Reaction times). There was no change 

in HR, BP, oxygen saturation or expired CO2, as described previously in Section 3.4.4 

(Table 3-1: Physiological Data). The mean (SD) propofol target concentration was 1.2 

(0.2) mcg/ml. 

 

The group level results revealed significant CBF decreases, during sedation, in the 

frontal lobe, inferior frontal gyrus, precuneus, posterior cingulate gyrus and the 

thalamus, with most changes being bilateral. As hypothesized, these decreases were 

localized to the higher association areas (e.g. the PCC, inf. frontal gyrus, frontal pole) 

and important connector hubs (e.g. the precuneus, PCC and thalamus).  
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Figure 6-1: Perfusion maps (Sedated- Awake)  
Analysis carried out using FEAT version 5.98, part of FSL. Z (Gaussianised T/F) 
statistic images were thresholded using clusters determined by Z > 2.3 and a corrected 
(cluster) significance threshold of P= 0.05. 
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Table 6-1: Peak voxel coordinates showing change in perfusion during mild 
sedation.  
Co-ordinates are reported, in MNI space. L, Left; R, Right 

  Voxel Coordinates  

Brain region Voxel (z) x y z 

Frontal pole (L) 5.32 52 84 51 

Frontal pole (L) 5.16 68 85 37 

Frontal pole (L) 5.12 61 92 34 

Frontal pole (L) 5.04 66 86 39 

Inferior frontal gyrus (L) 5.04 70 80 37 

Frontal pole (L) 5.01 62 92 38 

Precuneus cortex (L) 3.84 40 31 54 

Precuneus cortex  3.72 45 27 55 

Posterior cingulate gyrus (L) 3.54 46 38 43 

Posterior cingulate gyrus (R) 3.51 41 48 53 

Precuneus cortex (L) 3.5 48 29 55 

Posterior cingulate gyrus 3.49 45 41 47 

Thalamus (L) 4.38 46 52 37 

Thalamus (L) 4.18 49 50 42 

Thalamus (R) 4.14 42 56 39 

Thalamus (R) 4.08 44 57 37 

Thalamus (R) 4.07 43 54 37 

Thalamus (L) 3.98 48 60 37 

 



 
     
 

 
 
 

209 

 Functional region of interest (ROI) CBF changes 6.6 .1

In order to quantify the level of significant perfusion changes observed, a functional 

ROI mask was derived from the contrast of parameter estimates (COPE) image (derived 

from the voxel clusters passing the Z > 2.3 threshold) and the fractional change in 

perfusion was estimated, (Fig. 6-2; suprathreshold regions). This change was about 

23.7%. 

 

The whole brain (global) perfusion decreased by 9% during sedation. 

 

 Anatomical ROI CBF changes 6.6 .2

CBF changes in the thalamus, PCC and precuneus were estimated using ROI masks 

derived from the Harvard Cortical atlas. The relative decreases in the CBF in the 

thalamus, the PCC and the precuneus, from Awake to Sedated state were 9.6%, 10.6% 

and 13.4% respectively. 

 

 

 
Figure 6-2: Changes in CBF (arbitrary units)  
Comparisons done in functional ROI (based on statistical thresholded z map) and 
anatomical ROIs (thalamus, PCC and precuneus). Error bars represent SD of values. 
*denotes significant change (p<0.05, paired t-test, one tailed) 
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6.7  Discussion 

In this experiment, ASL has been used to map the changes in CBF associated with 

propofol-induced sedation. It was found that mild propofol sedation is associated with a 

reduction in CBF in some of the key frontal cortical areas, regions of the DMN and the 

thalamus. 

 

 Anaesthetic effects on global cerebral perfusion 6.7 .1

Previous quantitative studies of CBF changes have used PET imaging and most of the 

research has been focused on anaesthetic induced unconsciousness, with only a few 

studying mild sedation. Global reductions in CBF follow global suppression of 

metabolic activity at anaesthetic doses producing unconsciousness. Propofol anaesthesia 

has been shown to suppress global activity ranging from 20% (Fiset et al., 1999), up to 

70% (Kaisti et al., 2002). This is similar to the reduction in global brain metabolism of 

around 55% during propofol anaesthesia (Alkire et al., 1995b). Sedation with propofol 

decreased the global CBF by about 17% (Veselis et al., 2004b) paralleling an expected, 

dose related, reduction in metabolic/ neuronal activity. In this experiment, mild propofol 

sedation reduced the global CBF by about 9%. 

 

 Regional perfusion 6.7 .2

In this experiment, a reduction in regional CBF was predicted on the basis of previous 

CBF literature (PET/ ASL based studies) and those of BOLD based fMRI, 

demonstrating key cortical and subcortical regions involved in sedation. Specifically, 

frontal cortex, regions involved in the DMN and the thalamus were investigated and 

found to have reduced CBF during sedation.  

 

Frontal cortical regions (including prefrontal cortex) have been shown to be involved in 

sedation (Byas-Smith et al., 2002, Sun et al., 2008, Veselis et al., 2004b). Intuitively, 

this would be expected, as the prefrontal cortex is well known to be involved in 

attention, cognition and working memory; alterations of all of which characterise mild 

sedation. Mild sedation, as objectively defined using the OAA/S grading, is 
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behaviourally characterized by a slurred speech, sluggish response to verbal commands 

and sluggish visual and auditory reaction times (Chernik et al., 1990). Veselis et al 

(Veselis et al., 2004a) showed a reduction in CBF in the right sided anterior brain 

(inferior frontal gyrus, insula and superior temporal gyrus) with propofol dosing similar 

to those in this study. Sun et al (Sun et al., 2008) reported a reduction in frontal lobe 

metabolism by about 10+/- 3% and temporal lobe metabolism by 13.1 +/- 2% during 

light propofol sedation but, simultaneously, a greater reduction in activity of the 

occipital lobe, a change which was not found in this study.  While the occipital lobe has 

quite a high density of GABA receptors (similar to the frontal lobe) (Alkire and Haier, 

2001), its deactivation with sedation has not been universally reported. In this 

experiment, the subjects were instructed to keep their eyes closed, which may have 

contributed to a reduced baseline activation of the occipital lobe to limit further 

significant changes. Byas-Smith (Byas-Smith et al., 2002) also showed a reduction in 

CBF of the middle and inferior frontal gyrus with propofol-sedation. As prefrontal 

cortex plays an important role in attention and working memory, propofol sedation 

related amnesia has been shown to be associated with suppression of prefrontal cortical 

activity (Veselis et al., 2002).  

 

As further evidence of their involvement in maintaining consciousness, dorsolateral 

prefrontal cortex is also functionally connected to parietal cortical regions forming the 

lateral frontoparietal attentional functional network, also called executive control 

network (ECN), which becomes activated during executive tasks.  Loss of feedback 

frontoparietal connectivity is associated with anaesthetic induced unconsciousness (Lee 

et al., 2009a).  

 

Similar to the frontal cortex, PCC and precuneus, which are highly connected and 

metabolically active cortical structures, also play a significant role in maintaining 

consciousness. PCC is involved in cognition and attention by participating in the DMN 

(Fransson and Marrelec, 2008) and interacting with the ECN (Leech and Sharp, 2014). 

DMN may have a role in internally attentive tasks but is suppressed during external, 

attention demanding tasks. PCC’s metabolism and connectedness is also related to the 

unconsciousness during vegetative states and return of normal function (Laureys et al., 

2000). Its connectivity with prefrontal cortex also reduces with deepening stages of 
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sleep (Horovitz et al., 2009). Precuneus plays an important role in visuo-spatial 

imagery, episodic memory retrieval and self-processing operations (Cavanna and 

Trimble, 2006) and forms an integral node of the DMN. Thalamus is the gateway of 

most incoming sensory stimuli to be processed in the cortex and its reciprocal thalamo-

cortical connections makes it a key area in arousal and consciousness (Mashour and 

Alkire, 2013). Indeed, these brain networks have been shown to have high resting 

metabolism and therefore increased CBF. Networks with longer range connectivity such 

as DMN and ECC are associated with higher CBF changes than networks with shorter 

range changes (Liang 2013). Although CBF and its relationship with functional 

connectivity was not studied in this experiment it corroborates the importance of these 

connector hubs in maintaining consciousness, which is then altered by sedation.  

 

PET and BOLD-fMRI studies, investigating propofol effects, have shown that at 

sedative concentrations of propofol a dose related reduction in CBF occurs in the PCC, 

precuneus and the thalamus (Fiset et al., 1999, Byas-Smith et al., 2002). Bonhomme et 

al (2001) also showed a dose related reduction in BOLD response activity of these 

structures to a sensory stimulus with increasing doses of sedation. Reduced thalamic 

metabolism (glucose consumption) has been shown at sedative (Sun et al., 2008)  and 

anaesthetic concentrations (Alkire et al., 1995b). These CBF changes, in this 

experiment, ranged from 9.6- 13.4 % from the baseline.  

 

While there are alternative mechanisms of reduced CBF such as systemic hypotension 

or effects of hypercarbia; in this experiment the systemic blood pressure and ventilatory 

parameters remained unaltered during sedation (Table 3-1: Physiological Data). 

Propofol is also unlikely to alter neurovascular coupling (Veselis et al., 2005) therefore 

the changes in CBF mirror the expected changes in neuronal responses to propofol.  

 

6.8  Conclusions 

Since there is no previous published report on the use of ASL perfusion technique to 

study CBF during mild propofol sedation, this experiment provides novel information. 

Pulsed ASL was used, in this experiment, to map the changes in CBF during propofol 

sedation. Mild propofol sedation resulted in a decreased global CBF by about 9%. 
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Regional CBF decreases by about 24% mainly in the key frontal regions and also in the 

precuneus, PCC and the thalamus by about 9-14%. These findings corroborate similar 

findings with other, well established techniques including PET (including quantifying 

CBF) and BOLD-fMRI (in identifying brain regions and networks involved in sedation) 

and, therefore, provide confirmatory evidence of the potential of ASL based perfusion 

and fMRI studies in investigating central pharmacological actions. 
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 : Discussion, conclusions and future Chapter 7

recommendations 

 

Pharmacological sedation is commonly used in clinical practice both by anaesthetists 

and non-anaesthetists. While anaesthetic-induced unconsciousness has been an area of 

wide interest, early stages of sedation have received less attention.  Understanding 

neural mechanisms of early stages of sedation is expected to improve understanding of 

consciousness and early stages of altered consciousness, in both physiological and 

pathological conditions. A greater knowledge of these neural mechanisms is likely to 

avoid complications of sedation and anaesthesia (such as ICU-delirium), help develop 

better and safer drugs and potentially develop monitoring systems to track brain 

function independent of the choice of anaesthetic drugs. This was the motivation behind 

this thesis.  

 

Gamma-aminobutyric acid (GABA), being the most prevalent inhibitory 

neurotransmitter in the brain is the key modulator of inhibition. Most common 

anaesthetic drugs facilitate this inhibitory activity. The focus of this thesis was therefore 

to understand better the neural correlates of GABA-ergic pharmacological sedation. 

Propofol was chosen as the GABA-ergic compound being one of the commonest 

clinically used drug for this purpose. Advanced neuroimaging techniques were used to 

study the haemodynamic, neurophysiologic and spectroscopic neural changes associated 

with mild levels of propofol sedation and the relationships between those findings were 

explored.  

 

7.1  Main findings 

In Chapter 3, in a series of experiments, GABA MR Spectroscopy, 

magnetoencephalography (MEG) and blood oxygen level dependent –fMRI (BOLD-

fMRI) were used to explore the complex relationship between neurochemistry (GABA 

concentration), electrophysiology (gamma band response (GBR)) and haemodynamic 

activity (BOLD signal) and their modulation with mild propofol sedation.  
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Mild propofol sedation did not result in any significant changes in MRS detectable 

GABA+ (GABA plus co-edited macromolecules) concentration in either the cortical 

(occipital) or subcortical (thalamic) regions. There was also a reduced BOLD signal, in 

the peak voxel of the visual cortex, during a high intensity visual stimulation, during 

sedation. At similar levels of mild propofol sedation, MEG revealed an increase in 

visually-induced gamma band (30- 50 Hz) responses, increased alpha amplitude 

suppression, and a concurrent reduction in the visually evoked response compared to the 

Awake state. While there was a trend towards an inverse relationship between GABA+ 

concentration and BOLD signal change (during visual activation), in the Awake state, 

no clear relationship existed during sedation, nor was there a well-defined relationship 

between the BOLD response and GBR. A significant negative correlation between the 

peak spike gamma frequency with occipital GABA+ concentration during the Sedated 

state (and a trend towards significance between the occipital GABA+ and peak spike 

gamma frequency during the Awake state) but no relationship was found between the 

GABA +  concentration and the sustained gamma band frequencies.  

 

In Chapter 4 cortical responses to multisensory stimulation were investigated using 

MEG and BOLD fMRI, during propofol sedation.  Evoked oscillatory activity in 

response to visual stimulation was decreased but not in response to auditory or 

somatosensory stimulation. The haemodynamic response (BOLD-fMRI) showed a 

reduction in activity of the primary somatosensory cortex in response to median nerve 

stimulation but no changes in primary cortical responses to visual or auditory 

stimulation.  

 

In Chapter 5 functional connectivity was explored in the higher-order and lower-order 

known resting state networks (RSNs) using BOLD-fMRI. Using seed based 

connectivity measures; posterior cingulate cortex (as a key hub of the Default mode 

network - DMN) became less connected with the frontal pole while the thalamus 

became less connected with the regions of the DMN, anterior cingulate cortex and the 

motor cortex. Thalamus, however, showed an increased connectivity with sensory 

cortices and superior temporal gyrus. Primary sensory and motor cortices showed 

reduced connectivity with the occipital cortex but became more connected with the 

thalamus.   
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Oscillatory activity was explored to identify RSNs within frequency bands and 

connectivity changes in those networks explored, using MEG. There was increased 

functional connectivity found in bilateral frontal RSNs in the alpha, theta and delta 

frequency bands; increased functional connectivity in the bilateral parieto-occipital 

network (in the alpha band), and bilateral occipital network in the delta band. Bilateral 

motor networks were also identified however there was no change in those in the beta 

and gamma frequency bands.   

 

In chapter 6, pulsed arterial spin labelling (ASL) was used to map the changes in CBF 

during propofol sedation. Mild propofol sedation resulted in a decreased global CBF by 

about 9%. Regional CBF decreases by about 24%, mainly in the frontal regions, and in 

other key regions precuneus, PCC and the thalamus by around 9- 14%. 

 

7.2  Neural correlates of mild propofol sedation 

The focus of these experiments was to identify the neural correlates of mild sedation 

induced by the GABA-ergic drug, propofol. Mild propofol sedation, as the earliest 

(objectively) measurable, change in consciousness is characterised by an increasing loss 

of attentiveness, slurred speech and reduced responsiveness. This stage may also be 

associated with amnesia. Participants undergoing sedation respond with a lethargic 

response to verbal commands but are able to carry out most tasks as commanded. While 

sedation was assessed using the Objective assessment of alertness/ sedation (OAA/S) 

scoring system, reaction times were also measured. Sedated state was associated with 

slower auditory and visual reaction times as compared to the Awake state. 

 

 Attentional modulation 7.2 .1

One of the key findings of this thesis was the effect of propofol on visual-gamma 

oscillations. Task induced gamma oscillations have been implicated in ‘binding’ of 

percepts and cognition resulting in higher order functioning and may play a critical role 

in maintaining consciousness. On examining visual task induced gamma oscillations it 

was shown that propofol resulted in a dissociation of evoked and induced responses, 
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whereby evoked gamma power was reduced while the induced gamma power increased. 

This suggests that the two MEG responses may reflect the activity of different generator 

populations in primary visual cortex or that these generators are differentially 

pharmacologically sensitive. Indeed, in primary visual cortex gamma band responses 

are primarily generated in layers II, III and IV (Xing et al., 2012), whereas early evoked 

responses are mostly generated in layer IV (Kraut et al., 1985). Due to its temporal 

characteristics, the gamma spike (evoked) is considered to represent the early visual 

pathway while the sustained (induced) gamma represents a cortico-cortical synchronous 

response to the visual stimulation (Castelo-Branco et al., 1998). The dissociation 

between evoked and induced found in this experiment is similar to the difference 

Privman et al found with implanted subdural electrodes where evoked responses 

decreased while the gamma band responses were maintained under anaesthesia 

(Privman et al., 2011).  

 

 Primary cortical functions 7.2 .2

The primary sensory cortices, including the occipital (visual) cortex, temporal (auditory) 

and somatosensory cortices are involved in sensory processing. They provide lower-

order processing following transmission of impulses through the primary and secondary 

order neurons gated through the thalamus. They then lead the impulses up to higher 

association areas resulting in the overall sensory experience. These functions were 

studied in Chapters 3, 4 and 5.  

 

The fMRI response to the visual attention task (Chapter 3) resulted in activation of the 

visual cortex. The BOLD response in the peak voxel of the visual cortex showed a 

reduction in the BOLD response suggestive of a reduction in neuronal activity during 

sedation. A suppression of primary cortical function is expected during pharmacological 

sedation and anaesthesia, usually in a dose-dependent manner, although complete 

suppression of the activity in primary cortex does not occur even at high doses.  

 

The findings from the MEG and fMRI experiment (Chapter 4) were, however, mixed. 

In this experiment simple passive tasks were presented to stimulate the primary sensory 

cortices. Visual function is considered most sensitive to anaesthetics while auditory 
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functions are most resistant. This was apparent in the MEG results where visual evoked 

fields showed a reduction with sedation while the auditory evoked fields persisted. 

There was no effect on somatosensory evoked fields.  

  

While BOLD response to somatosensory stimulation was reduced in the contralateral 

somatosensory cortex, during sedation, visual and auditory stimulation did not show any 

changes in their primary cortical BOLD responses. Visual stimulation showed reduced 

activity in the superior frontal gyrus, paracingulate and cingulate gyri, left superior 

parietal lobule, left angular gyrus, left lateral occipital cortex and left supramarginal 

gyrus, while there was an increased activity in the cuneus, precuneus, supracalcarine 

and intracalcarine gyri, following sedation. During the auditory stimulation task, 

decreased activity was seen in the superior and middle frontal gyri, paracingulate gyrus, 

right sensorimotor cortex and right anterior and posterior cingulate regions while there 

was in increase in activity in left caudate, insula, anterior cingulate, right posterior 

cingulate, right lingual gyrus, and precuneus, following sedation. While some of these 

findings can be explained by the existing literature on the role of other brain regions 

such as the frontal lobe, precuneus and PCC in the form of emergence of activity in 

related regions due to a compensatory mechanism, some may have been due to a 

compensatory engagement of other regions to maintain wakefulness during sedation. 

These findings would need further exploration in future studies.  

 

Propofol sedation also modulates the way in which primary cortices are connected with 

other brain regions. In Chapter 5, functional connectivity of primary cortical areas 

(sensory and motor cortex) was shown to be reduced with the occipital cortex while it 

increased with thalamus. Similar results have been shown by other groups with other 

anaesthetic drugs at sedative levels (Liang et al., 2015, Martuzzi et al., 2010, Greicius et 

al., 2003, Kiviniemi et al., 2005). 

 

MEG data revealed bilateral sensori-motor networks but there was no change in their 

functional connectivity in the beta and gamma frequency band networks. Beta and 

gamma band oscillations are most relevant to the BOLD RSNs and therefore these 

findings reflect the reported findings from the fMRI literature. 
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 Actions on precueus and PCC 7.2 .3

Precuneus and PCC are adjoining regions of the posteromedial parietal cortex and play 

a crucial role in maintaining consciousness related functions (Roquet et al., 2016) 

 

Chapter 6 showed a reduced perfusion in the precuneus and PCC. PCC forms an 

integral part of perhaps the most basic RSN (Greicius et al., 2003). Chapter 5 showed a 

decrease in functional connectivity of the PCC with the frontal pole as a correlate of 

mild propofol sedation as has been reported by previous reports investigating DMN 

connectivity with sedation (Boveroux et al., 2010, Liu et al., 2015, Stamatakis et al., 

2010, Greicius et al., 2003). Interestingly functional connectivity of the right PCC 

increased with pons, as pons appeared to become more relevant during mild sedation 

(Gili et al., 2013).  

 

 Actions on thalamus 7.2 .4

Thalamus has been known to play a crucial role as the sensory gateway. Most 

neuroimaging studies have focused on thalamus as a potential consciousness switch. 

Indeed thalamus and its cortical connections appeared as a key neural correlate of mild 

propofol sedation.   

 

Perfusion fMRI using pulsed ASL (Chapter 6) revealed nearly a 10% reduction in 

thalamic blood flow showing an effect of propofol sedation on thalamus. Seed based 

connectivity from those thalamic regions showed a reduced connectivity with multiple 

cortical and sub-cortical structures while there were no regions with increased 

connectivity (Gili et al., 2013).  

 

 Action on frontal cortical regions 7.2 .5

The frontal cortical regions including the prefrontal cortex play a key role in higher 

order processing of sensory function and cognition. They are also closely linked to RSN 

especially the DMN and executive control network (ECN).  
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It was therefore not a surprise that the frontal brain regions showed a decrease in 

perfusion (Chapter 6) with mild propofol sedation. Studying functional connectivity of 

the higher-order networks in Chapter 5 also revealed interesting results. Previous 

literature has shown a decrease in frontoparietal functional connectivity with deeper 

stages of sedation (Jordan et al., 2013b, Monti et al., 2013, Schrouff et al., 2011, 

Boveroux et al., 2010, Liang et al., 2015). Mild sedation, as used in this thesis, has not 

been studied as extensively. Using independent component analysis an increase in 

functional connectivity of the right frontoparietal network was seen, although it was not 

corrected for multiple networks. Therefore the changes in frontal network connectivity 

is unclear from this thesis, although there may be a trend for an increased connectivity.  

 

MEG based measures, however, clearly showed an increased functional connectivity in 

the frontal networks in the alpha, theta and delta frequency bands. The functional 

connectivity in oscillatory frequency bands, it appears, do not follow the same change 

pattern as the BOLD-fMRI based measures. This reflects the gap in understanding of 

the interplay between different neuronal frequency bands resulting in the observed 

BOLD response. Increased regional connectivity, especially in the frontal areas, has 

been reported in most EEG based connectivity studies investigating both propofol 

induced sedation and anaesthesia (Supp et al., 2011, Cimenser et al., 2011), 

demonstrating a similar increase in alpha band coherence in the frontal regions along 

with increased frontal alpha and delta bands, again, similar to the findings of this 

experiment. 

 

 Alterations in GABA levels  7.2 .6

The GABA-ergic activity of propofol was expected to alter MRS detectable GABA 

concentration during propofol administration. This hypothesis was based on the known 

mechanisms of propofol increasing both phasic and tonic activity, through GABA 

receptors. While, unlike drugs which reduce the breakdown of GABA (and thus 

increasing its amount available in synaptic areas); propofol induced GABA activity may 

be considered more akin to a relative redistribution of GABA in the synaptic context. 

The only previously published study using GABA-MR Spectroscopy showed an 

increase in MRS detectable GABA at anaesthetic doses of propofol but not at sedative 



 
     
 

 
 
 

221 

doses (Zhang et al., 2009). It was expected that using a more sensitive technique as used 

in Chapter 3 would be more likely to identify changes in GABA+ concentration at 

sedative doses of propofol.  

 

The absence of a significant detectable change in GABA+ concentration suggested 

either a lack of change or a lack of sensitivity of the current MRS analyses pipelines. 

Placing these findings in the context of Zhang et al’s study (Zhang et al., 2009) it is 

possible that the change in MRS detectable concentration occurs only at anaesthetic 

doses of propofol. This would warrant further investigation with studies of larger 

samples at different doses of propofol.  

 

The relationship between GABA, the BOLD signal and the gamma band revealed 

interesting trends but no conclusive findings, partly due to absence of change in GABA 

measures. These relationships would need further investigation.   

 

 Perfusion effects of propofol sedation 7.2 .7

Perfusion fMRI (using ASL) is emerging as a robust and reliable non-invasive 

neuroimaging modality to study cerebral perfusion. Although limited by a smaller 

signal than BOLD-fMRI it has the advantages of providing absolute perfusion values. 

This makes this technique uniquely useful in studying conditions that can have an 

independent effect on cerebral blood flow thus confounding BOLD signal responses. 

ASL has been used to study perfusion changes with other drugs including anaesthetic 

drugs (sevoflurane and midazolam) (Ramani et al., 2007, Liang et al., 2012).  This 

thesis provides the first report of the use of pulsed ASL, during propofol sedation. There 

was a decrease in global CBF by about 9%. There were also regional decreases in 

perfusion, especially in the frontal regions, the thalamus (9.6%), the PCC (10.6%) and 

the precuneus (13.4%) regions. The magnitude of the changes found using pulsed ASL 

were similar to those reported previously in neuroimaging literature and therefore 

validates the use of pharmacological study of perfusion fMRI. 

 

As propofol does not affect neurovascular coupling and, at the doses studied in this 

experiment, there were no significant haemodynamic and ventilatory changes and 
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therefore the perfusion changes can be considered to be a reflection of neuronal effects 

of propofol. Indeed the key areas, which showed decreased perfusion, included the 

frontal lobe, PCC, precuneus and thalamus. These areas are the key components of the  

networks involved in higher-order functioning, such as the DMN and the frontal 

regions. 
 

 

7.3  Limitations of the experiments  

The experiments conducted as part of this thesis involved a range of advanced 

multimodal neuroimaging techniques in a sequential study design. This design included 

healthy volunteers undergoing a MEG session followed a few days later, by an MRI 

session. Each session involved collecting data during the awake state followed by 

propofol sedation. The findings of these experiments were then interrogated to identify 

similarities, differences and to inform each others’ results to provide a picture of the 

GABA-ergic mechanisms of sedation. 

 

Combining the findings of different neuroimaging tools with their unique advantages is 

one of the key strength of this thesis. However, this also presented a few challenges.  

 

Chapters 3, 4 and 5 have tried to bring together the results obtained from MEG and 

fMRI following similar tasks or during a resting state. The relationship between 

electrophysiological activity and its haemodynamic response in not completely 

understood. BOLD signal is linked to the local field potentials rather than multiunit 

activity or even neuronal spiking (Logothetis et al., 2001). Neurovascular coupling, 

manifesting as the BOLD response also depends on a number of variables, some of 

which continue to be poorly understood. In rats, regional heterogeneity of the 

neurovascular coupling has been shown (Sloan et al., 2010). Similar dependence of 

BOLD response to different oscillatory bands and brain regions studied has been 

demonstrated in humans (Conner et al., 2011, Ojemann et al., 2013).  Similarly, in the 

context of MEG, the sources of oscillatory activity and the interactions between 

different frequency bands is not completely clear. Therefore the findings of the two 

modalities cannot simply be extrapolated to each other and are best seen as 



 
     
 

 
 
 

223 

complementary. Future studies would benefit from improvements in the understanding 

of this neurovascular coupling.  

 

There was a fixed order of the experiments: MRI always followed the MEG session and 

Sedated always followed the Awake session. The sequence of the MEG and MRI scans 

was chosen due to safety reasons, where the MEG scan due to easier access, would have 

made it easier for the monitoring anaesthetist to manage complications if any. Similarly 

the Awake and Sedated sessions could not have been counterbalanced due to the study 

design. This meant that there was always a potential for an ‘order effect’ in terms of 

participants’ responsiveness. Following the safe conduct of this set of experiments 

(these were the first sedation experiments of this nature in CUBRIC), future 

experimenters will have more confidence in counterbalancing MEG and MRI sessions. 

Similarly a placebo-controlled, crossover design (placebo and drug administered on 

different occasions) could limit the order effect of sedation. While this was considered 

for this experiment, it was not considered appropriate given the complexity of set up 

and limits of time and potential inconvenience to participants.  

 

The delivery of the stimulus paradigms was somewhat different in the two experiments. 

This was due to the considerations of participant comfort (time spent undergoing MR 

scanning), design efficiency and the additional experiments (MRS and perfusion 

components) during the MR scanning.  

 

Only one level of sedation was assessed in this study. While this was intentional, it is 

possible that adding a level of deeper sedation and / or studying recovery from these 

levels of sedation would have added more useful information. The MRS based 

experiment (Chapter 3) did not reveal any measurable change in GABA concentration. 

At deeper levels of sedation there may have been more pronounced changes making 

them detectable. While this remains speculative, the task based and resting state changes 

are likely to have been more pronounced at deeper levels of sedation. Recovery from 

anaesthesia follows a different trajectory to anaesthesia induction and can provide 

further valuable information about mechanisms of anaesthesia and consciousness 

(MacDonald et al., 2015, Tarnal et al., 2016). Studying recovery from sedation may 

have offered further similar insights. All these options were discussed at the planning 
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stages but considering the complexities of the design it was decided to limit to a single 

level of sedation.  

 

These experiments focused on studying mild sedation, which was assessed objectively 

using the OAA/S scale. This involved calling out participants’ names and assessing 

their responsiveness. Despite the blinding of the anaesthetist the scale has subjective 

variability, which could have resulted in different levels of sedation between the two 

sessions. Also, environmental factors can play a part in participant’s experience of 

sedation. With the MRI scan environment being different to that of MEG this could 

have contributed to differences in sedation. Other researchers have targeted a pre-

defined plasma concentration and not limited themselves to clinical assessment. The 

priority for us, however, was a similar behavioural endpoint and so a clinical assessment 

scale was chosen.  

 

The order effect imposed by the sequential design and the potential differences in 

methodology and sedation assessments can be limited by a concurrent design. While 

combined MEG/ fMRI scanning is still in its infancy, combined EEG/ fMRI may offer 

solutions. Simultaneous EEG was collected with the fMRI experiments. However the 

data obtained was of a poor quality and therefore further analysis was not considered 

possible. As the main hypotheses involved MEG based parameters, it was unlikely that 

the MEG sessions could have been avoided without significantly compromising on the 

results.   

 

7.4  Future directions 

 Visual gamma as a potential biomarker to investigate sedative 7.4 .1

drug effects  

One of the main findings in these series of experiments was the discovery of 

modifiability of human visual gamma in response to sedation. Propofol sedation 

resulted in an increase in the power of induced gamma while the evoked gamma was 

reduced in power. This observation has shed light on the potential sources of visual 
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gamma generation in humans and the differential effects of propofol on those potential 

generators.  

 

Gamma band observations are difficult with EEG due to the potential interference with 

EMG artefacts. Visual attention tasks also require participants to keep eyes open and 

therefore cannot be used to test deeper stages of unconsciousness. Therefore, this 

finding is unlikely to be easily directly translated into clinical practice (for e.g. depth of 

sedation monitoring systems). However, this may be a valuable tool in understanding 

mechanisms of different sedative drugs and then using them as a biomarker to monitor 

molecular activity of pharmacological agents in a non-invasive way.  

 

The next obvious step would be to compare a non-GABA-ergic drug with propofol and 

establish the differences in the visual gamma responses between those. In fact, our 

group has recently performed this experiment and compared sedation with propofol and 

dexmedetomidine (which is non-GABA-ergic sedative) and shown that enhancement of 

induced gamma power is a feature of propofol while dexmedetomidine does not do so 

(Figure 7-1). Dexmedetomidine at mildly sedative doses resulted in a decreased evoked 

and induced power of visual gamma.  

 
Figure 7-1: Time frequency spectrograms of visual gamma band responses. 
Placebo controlled crossover design. Three groups; PLA = placebo, PRO= propofol, 
DEX= dexmedetomidine. Time on x –axis, power on y axis. 0 sec is onset of stimulus 
(unpublished results)  

This experiment confirmed the findings of Experiment 2 (in Chapter 3) and hold 

promise for the future application of these findings. The next step would be to repeat 

this experiment with other GABA-ergic and non-GABA-ergic sedative drugs.  
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 Application of perfusion fMRI 7.4 .2

Application of pulsed ASL to measure perfusion changes has been successfully applied 

in this thesis. Recent developments in brainstem perfusion is expected to provide 

another avenue of interrogating brainstem function in sedation/ anaesthesia. Since pons 

appeared as an important brainstem structure, it would be interesting to explore 

perfusion changes in pons during sedation. Anaesthetic actions of other drugs, such as 

dexmedetomidine which have subcortical functions, would be better informed using 

such techniques. We are currently planning such a study.  

 

 Magnetic resonance spectroscopy for GABA concentration 7.4 .3

The results of MRS experiment did not reveal any significant change in GABA related 

measurable activity. Interestingly there have been no other reports of the use of GABA 

MRS in investigating anaesthesia, during the period of this thesis. This perhaps reflects 

the intrinsic limitations of the existing MRS techniques. With further progress in MRS 

techniques it would be desirable to employ larger sample sizes to study different stages 

of sedation and anaesthesia to further explore the role of MR measures of GABA and its 

role in anaesthesia.  
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Appendices 

Appendix 1: Spatial connectivity studies with propofol sedation and 

anaesthesia 

(Stamataki
s et al., 
2010) Propofol 

light/ deep 
sedation 

PCC fc increases/ changes with 
sedation 

(Boveroux 
et al., 
2010) Propofol sedation 

Diminished fc in DMN and FP, not 
sensory networks 

(Mhuirche
artaigh et 
al., 2010) propofol sedation 

Thalam-cortical fc preserved, loss of 
putamen fc 

(Schrouff 
et al., 
2011) Propofol deep sedation 

Reduced/ preserved fc, decrease in 
fronto-parietal is the key change 

(Schroter 
et al., 
2012) propofol anaesthesia 

Loss of thalamo-cortical fc, fc of 
sensory cortices maintained 

(Jordan et 
al., 2013a) propofol anaesthesia 

Decreased Fc in DMN, increased in 
sensory networks under anaesthesia; 
Directional connectivity reduced in 
Fronto-parietal networks 

(Liu et al., 
2013) propofol 

light/ deep 
sedation 

Nonspecific and specific thalamic 
nuclei have different fc; NS relevant 
for consciousness 

(Monti et 
al., 2013) propofol 

anaesthesia/s
edation 

Increased cortico-cortico and 
thalam-cortical fc during sedation, 
Cortico-cortico fc responsible for 
unconsciousness 

(Guldenm
und et al., 
2013) propofol anaesthesia 

Decreased fc of DMN and salience 
networks. Thalamus, disconnected 
but increased fc with sensori-motor, 
auditory and insular. Brainstem 
disconnected 

(Amico et 
propofol 

anaesthesia/s
Reduced PCC fc with frontal areas 
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al., 2014) edation 

(Huang et 
al., 2014) 

propofol
/ 
sevoflur
ane anaesthesia 

Decreased fc in DMN, TC,; reduced 
with midline structures but increased 
with lateral structures 

(Barttfeld 
et al., 
2015) propofol 

light and 
deep sedation 

Reduced FP connectivity with 
sedation and loss of TC fc with 
unconsciousness, but increase TC fc 
with occipital and temporal regions 

(Liu et al., 
2015) propofol 

light and 
deep sedation 

DMN fc reduced by light and deep 
sedation  
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