Chemical Vapor Deposited Monolayer MoS\textsubscript{2} Top-Gate MOSFET with Atomic-Layer-Deposited ZrO\textsubscript{2} as Gate Dielectric

Yaoqiao Hu1, Huaxing Jiang1, Kei May Lau1,2, and Qiang Li1,2,*

1 Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong
2 Institute for Advanced Study (IAS), Hong Kong University of Science and Technology (HKUST), Hong Kong

Corresponding author: Qiang Li. Email: eeqli@ust.hk

Abstract—For the first time, ZrO\textsubscript{2} dielectric deposition on pristine monolayer MoS\textsubscript{2} by atomic layer deposition (ALD) is demonstrated and ZrO\textsubscript{2}/MoS\textsubscript{2} top-gate MOSFETs have been fabricated. ALD ZrO\textsubscript{2} overcoat, like other high-\textit{k} oxides such as HfO\textsubscript{2} and Al\textsubscript{2}O\textsubscript{3}, was shown to enhance the MoS\textsubscript{2} channel mobility. As a result, an on/off current ratio of over 107, a subthreshold slope (SS) of 276 mV/dec, and a field-effect electron mobility of 12.1 cm2·V-1·s-1 have been achieved. The maximum drain current of the MOSFET with a top-gate length of 4 μm and a source/drain spacing of 9 μm is measured to be 1.4 μA/μm at V\textsubscript{DS} = 5 V. The gate leakage current is below 10-2 A/cm2 under a gate bias of 10 V. A high dielectric breakdown field of 4.9 MV/cm is obtained. Gate hysteresis and frequency-dependent capacitance-voltage measurements were also performed to characterize the ZrO\textsubscript{2}/MoS\textsubscript{2} interface quality, which yielded an interface state density of \(\sim 3 \times 10^{12} \text{cm}^{-2}\text{eV}^{-1}\).

Keywords: Atomic layer deposition, ZrO\textsubscript{2}, MoS\textsubscript{2}, top-gate transistor
I. INTRODUCTION

With a sizable bandgap that changes from indirect to direct in single layers, semiconducting two-dimensional molybdenum disulfide (MoS\textsubscript{2}) has recently gained tremendous interest for transistors, photodetectors and electroluminescent devices [1-3]. Thanks to the enhanced electrostatic control of the gate over the channel [2-4], MoS\textsubscript{2} field effect transistors (FETs) have demonstrated outstanding device performance, such as high on/off current ratios up to 10^8 [2-3], a near-ideal subthreshold swing of 60 mV/dec [3-4], and good carrier mobilities [5]. To increase the gate capacitance and preserve a high channel mobility through the dielectric screening effect [6], integration of high-k technology with MoS\textsubscript{2} transistors is essential. However, atomic-layer deposition (ALD) of high-quality gate dielectrics on 2D materials has proven challenging [7-10] because of the lack of surface-dangling bonds.

The high-k dielectrics investigated to date include TiO\textsubscript{2}, SrTiO\textsubscript{3}, Al\textsubscript{2}O\textsubscript{3}, HfO\textsubscript{2}, ZrO\textsubscript{2}, and the associated silicates [11-15]. Among these, Al\textsubscript{2}O\textsubscript{3}, HfO\textsubscript{2}, and ZrO\textsubscript{2} have been widely studied and are believed to be the most promising candidates due to their high dielectric constant, good thermodynamic stability, and reasonable band gap [16, 17]. Although Al\textsubscript{2}O\textsubscript{3} and HfO\textsubscript{2} have been intensely used to fabricate MoS\textsubscript{2} top-gate transistor [18, 19], ZrO\textsubscript{2} is, to the best of our knowledge, only reported in back-gate transistors [20]. By transferring MoS\textsubscript{2} flakes onto a pre-deposited high-k dielectric layer, the back-gate approach bypasses the challenges associated with ALD deposition on 2D materials. However, there would remain significant interest in readily using the chemical vapor deposition (CVD) grown MoS\textsubscript{2} films to build top gate transistors which are more in line with mainstream transistor design and integration.

Previous studies on high-k/MoS\textsubscript{2} based top-gated transistors have almost exclusively been focused on mechanically exfoliated flakes. However, due to the small size of few-layer films and
possible extraneous contamination from exfoliation process, mechanical exfoliation is not a scalable or reproducible method for commercial use [21]. New synthetic routes such as CVD allow for both high-quality and large-area thin films. In fact, a variety of 2D materials including graphene [22], boron nitride [23] and MoS$_2$ [24] have reportedly been synthesized by CVD methods. However, the electrical properties of CVD MoS$_2$, especially the device performances of top-gated transistors, have not been comprehensively studied.

In this work, we report the first realization of CVD monolayer MoS$_2$ top-gate transistors with ALD ZrO$_2$ as gate dielectric. Using a low-temperature ALD process, we achieve direct deposition of ZrO$_2$ on pristine monolayer MoS$_2$. The fabricated top-gate transistors exhibit well-behaved characteristics with high on/off current ratios and low gate leakage current. The influence of ALD ZrO$_2$ on the electrical performance of MoS$_2$/SiO$_2$ back-gate transistor is discussed. The dielectric properties, as well as the MoS$_2$/ZrO$_2$ interface quality have been investigated.

II. EXPERIMENTAL DETAILS

Fig. 1(a) displays a cross-section schematic of the MoS$_2$ MOSFET with a top-gate electrode. A top-view optical microscope image of a fabricated device is shown Fig. 1(b). Monolayer MoS$_2$ reported in this work were grown by chemical vapor deposition on a heavily doped Si substrate capped with 300 nm SiO$_2$. High purity MoO$_3$ and S powder were used as precursors. The as-grown single-crystal [25] triangular shaped MoS$_2$ (with average edge length ~40 µm) was characterized by Raman scattering. As shown by the Raman spectrum in Fig. 1(c), the frequency difference between the in-plane (E_{12g}, ~385.1 cm$^{-1}$) and out-of-plane (A_{1g}, ~405.1 cm$^{-1}$) phonon modes confirms that the deposited MoS$_2$ is of monolayer thickness [26]. The device fabrication started with deposition of source/drain (S/D) electrodes (10/90 nm Ti/Au) by standard
lithographic patterning. ZrO$_2$ was then deposited directly on the MoS$_2$ films in an Oxford OpAL ALD reactor at a temperature of 200 °C. Tetrakis ethylmethylamino zirconium (TEMAZ) and water were used as precursors. After 300 ALD cycles, ~27 nm ZrO$_2$ was deposited and confirmed by ellipsometry measurement. Subsequently, source/drain contact holes were opened using a combination of dry and wet etching of the ZrO$_2$ layer. Finally, gate metal (10/90 nm Ti/Au) was defined. A dimension 3100 AFM system was used to examine the surface morphology after ALD deposition. All electrical tests were carried out using an Agilent 4156C precision semiconductor parameter analyzer at room temperature.

![Image](image.png)

FIG. 1. (a) Schematic illustration of a monolayer ZrO$_2$/MoS$_2$ top-gate field-effect transistor. The p++ Si substrate acts as global back gate (BG) while Ti/Au metal stack as top gate (TG). (b) Optical microscope image of a typical MoS$_2$ device. (c) Raman spectrum of the as-grown MoS$_2$ film on Si/SiO$_2$ substrate measured at room temperature. Laser wavelength for Raman measurement is 514 nm. The inset shows the optical image of monolayer MoS$_2$ on SiO$_2$/Si substrate. (d) AFM image of the ALD-ZrO$_2$ on MoS$_2$.

III. RESULTS AND DISCUSSION

Fig. 1(d) shows a representative AFM image of the surface of the atomic-layer-deposited ZrO$_2$ on single-layer MoS$_2$. The ZrO$_2$ is continuous but exhibits island type morphology [27]. A root
mean square (RMS) roughness of 2.95 nm was obtained across a scanning area of 2×2 µm². This surface roughness is inferior when compared with the optimized ALD deposition of Al₂O₃ on MoS₂ (0.58 nm in rms for Al₂O₃ on MoS₂ [28]) and needs to be further optimized. The roughness could undermine the mobility of MoS₂ underneath and cause gate leakage fluctuations. Nevertheless, microscope observations indicated a complete coverage of direct ALD on pristine MoS₂, which is attributed to physical absorption of precursors on the basal plane. This is also observed in previous demonstrations of ALD Al₂O₃ [10] and HfO₂ [27] on MoS₂ at the optimized temperature window.

We first discuss the influence of ALD ZrO₂ overcoat on the electrical performance of CVD monolayer MoS₂/SiO₂ back-gate transistor. Fig. 2 shows the transfer and output characteristics of a ZrO₂/SiO₂ back-gate FET before and after the deposition of ZrO₂. Previous studies have shown that high-k oxides HfO₂ and Al₂O₃ encapsulation can greatly improve the MoS₂ channel mobility through Coulomb scattering screening effect. [6] In our case, the device shows more than doubled drive current after ZrO₂ deposition, implying mobility improved by ZrO₂ overcoating which is similar to HfO₂ and Al₂O₃. The field-effect mobility is extracted from the \(I_D \) versus \(V_{bg} \) curves in the linear region by using the expression \(\mu = \frac{L}{V_{DS}C_{ox}} \times (\frac{dI_{DS}}{dV_{bg}}) \), where \(L \) and \(W \) are the channel length and width, \(V_{DS} \) is the source-drain voltage, and \(C_{ox} \) is the back-gate capacitance per unit area. At room temperature, the extracted mobility before and after ZrO₂ top dielectric are 6.9 cm²V⁻¹s⁻¹ and 11.5 cm²V⁻¹s⁻¹, respectively. We attribute the mobility enhancement to the suppressed charged impurity scattering, which is similar to the Al₂O₃/MoS₂ and HfO₂/MoS₂ top-gate transistors. [6, 18] The mobility with ZrO₂ overcoating is not as high as that of the best transistor using HfO₂ [7] as the gate dielectric, which is possibly attributed to the large Coulomb scattering from fixed charges near the ZrO₂ surface induced by the comparatively
lower ALD deposition temperature [29]. In addition, we observe that while our device was intrinsically n-doped (a negative bias voltage required to reach neutral point) for both before and after ALD growth, the threshold voltage was positively shifted after the ZrO$_2$ deposition. The reason for this shift is not clear and is still under investigation.

Fig. 2(a)–2(f) show the transfer and output characteristics of a ZrO$_2$/MoS$_2$ back-gate FET respectively. With the back-gate (heavily doped p++ Si substrate) floating, the device shows typical n-type conduction behavior and an on/off current ratio of $\sim 10^6$. At $V_{DS} = 5V$, the subthreshold slope (SS) is 276 mV per decade. The relatively large SS can be attributed to the un-optimized MoS$_2$/ZrO$_2$ interface. Furthermore, with $V_{DS} = 5V$ and back gate floating, we note clear reduction of drain current when top-gate voltage is increased. We speculate this is likely due to the injection and trapping of electrons inside the gate dielectric (Fig. 3(c)). When the top gate is biased at lower voltage, electron injection from the channel to the ZrO$_2$ dielectric is suppressed by the large tunneling barrier. With increased V_{TG}, this process would be greatly enhanced since the tunneling barrier is reduced. If a large proportion of electrons are trapped, the current is then reduced.
The ZrO$_2$/MoS$_2$ to-gate transistors in this work are gate-underlap transistors with large S/D access regions (Fig. 3(d)). Previous studies have found that the un-gated channel regions can lead to significant access resistance and contact resistance, thus obscuring the intrinsic performances of the top-gate MoS$_2$ transistors. [30] To minimize such influence and obtain the intrinsic device parameters, devices are also characterized under a large positive back-gate voltage. The positive back-gate voltage induces electron accumulation within S/D access region and thus reduce the access resistance and contact resistance. From Fig. 3(a), when a back-gate voltage of 100 V was applied, drive current was enhanced by 20 times, leading to a greater on/off current ratio of over 10^7. The current enhancement is also shown in output characteristics in Fig. 3(b), where the on-state resistance was significantly improved under a positive back-gate bias. Consequently, the maximum drive current reached ~1.4 μA/μm at $V_{DS} = 5$ V and $V_G = 3.5$ V. The extracted mobility with the back-gate biased at 100 V is 12.1 cm2·V$^{-1}$·s$^{-1}$, which is close to the value determined from back-gate transistor. Table 1 summarizes the device parameters from CVD monolayer MoS$_2$ MOSFETs using different high-k oxides as top-gate dielectrics.
Fig. 3. (a) Transfer characteristics of ZrO$_2$/MoS$_2$ top-gate transistor (L=4 μm, W=12 μm) and (b) Output characteristics of device indicated in (a). For clarity, the drain current with back-gate floating is multiplied by 10 times. (c) Schematic band diagram of Ti/ZrO$_2$/MoS$_2$ MOS structure at $V_{TG}=1$ V and $V_{TG}=8$ V. With a high top gate voltage, electron injection and trapping would occur due to the reduced tunneling barrier. (d) Schematic illustration of access resistance and contact resistance in a gate-underlap MoS$_2$ transistor. R_C: contact resistance, R_A: access resistance, R_{CH}: channel resistance, L_A: access region length.

Table 1. The comparison of some key device parameters between different CVD monolayer MoS$_2$ top-gate MOSFETs.

<table>
<thead>
<tr>
<th>Dielectrics</th>
<th>Al$_2$O$_3$</th>
<th>HfO$_2$</th>
<th>ZrO$_2$ [this work]</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/off</td>
<td>10^7 [19]</td>
<td>10^8 [35]</td>
<td>10^7</td>
</tr>
<tr>
<td>Off state leakage</td>
<td>10^{-7} μA/μm [19]</td>
<td>10^{-7} μA/μm [32]</td>
<td>10^{-7} μA/μm</td>
</tr>
<tr>
<td>Mobility</td>
<td>24 cm2V$^{-1}$s$^{-1}$ [19]</td>
<td>55 cm2V$^{-1}$s$^{-1}$ [33]</td>
<td>12 cm2V$^{-1}$s$^{-1}$</td>
</tr>
<tr>
<td>Drive current</td>
<td>1.0 μA/μm [19]</td>
<td>55 μA/μm [19]</td>
<td>1.4 μA/μm</td>
</tr>
<tr>
<td>G_m</td>
<td>-</td>
<td>38 μS/μm [19]</td>
<td>2.23 μS/μm</td>
</tr>
<tr>
<td>SS</td>
<td>140 mV/dec [31]</td>
<td>110 mV/dec [32]</td>
<td>276 mV/dec</td>
</tr>
<tr>
<td>D_{it}</td>
<td>$<10^{13}$ cm2eV$^{-1}$ [34]</td>
<td>-</td>
<td>3×10^{12} cm2eV$^{-1}$</td>
</tr>
</tbody>
</table>

To study the electrical properties of the ZrO$_2$/MoS$_2$ gate stack, gate leakage current was measured at both bias polarities in our top-gate transistor. A bias was applied to the gate terminal, with both the drain and source grounded. As shown in Fig. 4(a), the gate leakage current density J_L falls in the range 10^{-4}-10^{-2} A/cm2 under gate biases below 10 V, which is considerably lower than that of direct ALD deposited HfO$_2$(28 nm)/MoS$_2$ gate stack [35]. The inset of Fig. 4(a) plots the J_L as a function of the electric field E_F. The breakdown field (E_{BD}) for 27 nm ALD ZrO$_2$ on MoS$_2$ is calculated to be 4.9 MV/cm, comparable to the value of ZrO$_2$/Al$_2$O$_3$ bilayer reported in the literature [36]. Fig. 4(b) plots the J_L-E_F curve at positive gate
biases. With \(\ln(1/E_F) < -0.8 \) (\(V_G > 6 \) V), electron injection from MoS\(_2\) follows the Fowler-Nordheim tunneling rule, as evidenced by the linear \(J/E_F^2 \) versus \(\ln(1/E_F) \) relationship. The low leakage current and high breakdown field suggest good dielectric properties of ALD ZrO\(_2\) on MoS\(_2\).

![Leakage current characteristics of a MOSFET structure (Ti/ALD-ZrO\(_2\)/MoS\(_2\)). The inset of the figure shows the breakdown field of 27nm ALD ZrO\(_2\) on MoS\(_2\). (b) A \(J/E^2 \) vs \(\ln(1/E) \) plot for the positive biasing condition, consistent with Fowler–Nordheim tunneling behavior.](image)

Gate hysteresis and frequency-dependent capacitance-voltage (C-V) have been measured to investigate the interface quality between ZrO\(_2\) and MoS\(_2\). In Fig. 5(a), the gate is swept from negative to positive then back to negative voltage, with the back gate floating. The hysteresis becomes more pronounced when the sweep range is increased. This behavior, together with larger hysteresis gap at higher gate voltage, suggests a higher interface trap state density near the conduction band since the larger gate voltage, the closer the fermi level is to the conduction band. In Fig. 5(b), the C-V curve shows typical n-type MOS capacitor behavior, with a clear transition from depletion to accumulation when the gate voltage increases. The gate oxide capacitance \(C_{ox} \) was determined to be 790 nF/cm\(^2\) from the maximum capacitance at 100 Hz, which corresponded to an EOT of 4.4 nm. A larger frequency dispersion was observed at the accumulation region, which also indicates a high interface trap state density close to the
conduction band. We further quantitatively extracted the interface state density using the high-
low frequency method which gives the formula [37]:

\[
D_{it}(V_G) = \frac{C_{ox}}{q} \left(\frac{C_{lf} / C_{ox}}{1 - C_{lf} / C_{ox}} - \frac{C_{hf} / C_{ox}}{1 - C_{hf} / C_{ox}} \right) \quad (1)
\]

where \(V_G\), \(D_{it}\), \(q\), \(C_{lf}\), and \(C_{hf}\) represent gate voltage, interface state density, the elementary
charge, low-frequency capacitance, and high-frequency capacitance, respectively. The inset to
Fig. 5(b) plots the calculated \(D_{it}\) vs. gate voltage in the transition region of the CV curve (from
accumulation to depletion). The \(D_{it}\) is approximately \(3 \times 10^{12} \text{ cm}^{-2} \cdot \text{eV}^{-1}\). To reduce the gate
hysteresis and interface states, further studies should focus on the chemical absorption process
during the ALD growth and the improvement of high-\(k/\text{MoS}_2\) interface quality.

![Gate hysteresis behavior of the demonstrated device with two different gate sweep ranges.](Image)

Further, in view of device-to-device variation, a statistical study of the key device parameters is
performed to gain a comprehensive understanding of the electrical performances. The data are
presented in Fig. 6. A total of 20 devices are studied with different channel lengths and widths.
The average values and standard deviations are analyzed. These figures show a broad
distribution of different electrical parameters which can be connected to the nonuniformity of
synthesized \(\text{MoS}_2\) film and fabrication process. The large fluctuations of gate leakage also
suggest nonuniform thickness of ZrO$_2$ which has been discussed in the previous part.

![Statistical studies on electrical properties of (a) mobility, (b) interface state density, (c) on/off current ratio, (d) gate leakage, (e) subthreshold slope, and (f) electric breakdown field for ZrO$_2$/MoS$_2$ top-gate transistors.](image)

IV. CONCLUSION

In summary, we have experimentally demonstrated top-gate MOSFETs with monolayer MoS$_2$ channel and ALD ZrO$_2$ as gate dielectric. AFM and I-V studies show that ALD ZrO$_2$ can be directly deposited on MoS$_2$ with low leakage current and high breakdown field. ZrO$_2$ overlayer can improve the MoS$_2$ channel mobility. Gate hysteresis and C-V measurements reveal a ZrO$_2$/MoS$_2$ interface state density of about 3×10^{12} cm$^{-2}$·eV$^{-1}$. These results suggest that ALD ZrO$_2$ could be a promising candidate for gate dielectric application in MoS$_2$-based MOSFETs.
ACKNOWLEDGMENT

This work was supported by Grant (No. 16230916) from the Research Grants Council of Hong Kong and an Initiation Grant (IGN15EG01) from HKUST. The authors would like to thank the NFF and MCPF of HKUST for technical support. Helpful discussions with L.Y. Wang and B. Lai are also appreciated.

REFERENCES

[37] Schroder, K. 2006 *Semiconductor material and device characterization* (John Wiley and Sons, Hoboken), 345