
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjsm20

Journal of Simulation

ISSN: 1747-7778 (Print) 1747-7786 (Online) Journal homepage: https://www.tandfonline.com/loi/tjsm20

Ciw: An open-source discrete event simulation
library

Geraint I. Palmer, Vincent A. Knight, Paul R. Harper & Asyl L. Hawa

To cite this article: Geraint I. Palmer, Vincent A. Knight, Paul R. Harper & Asyl L. Hawa (2019)
Ciw: An open-source discrete event simulation library, Journal of Simulation, 13:1, 68-82, DOI:
10.1080/17477778.2018.1473909

To link to this article: https://doi.org/10.1080/17477778.2018.1473909

© 2018 Operational Research Society

Published online: 20 May 2018.

Submit your article to this journal

Article views: 689

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjsm20
https://www.tandfonline.com/loi/tjsm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17477778.2018.1473909
https://doi.org/10.1080/17477778.2018.1473909
https://www.tandfonline.com/action/authorSubmission?journalCode=tjsm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjsm20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2018.1473909&domain=pdf&date_stamp=2018-05-20
http://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2018.1473909&domain=pdf&date_stamp=2018-05-20

https://doi.org/10.1080/17477778.2018.1473909

ARTICLE OPEN ACCESS

Ciw: An open-source discrete event simulation library

Geraint I. Palmer, Vincent A. Knight, Paul R. Harper and Asyl L. Hawa

School of Mathematics, Cardiff University, Cardiff, UK

ABSTRACT
This paper introduces Ciw, an open-source library for conducting discrete event simulations that
has been developed in Python. The strengths of the library are illustrated in terms of best practice
and reproducibility for computational research. An analysis of Ciw’s performance and comparison
to several alternative discrete event simulation frameworks is presented.

ARTICLE HISTORY
Received 12 September
2017 Revised 18 April 2018
Accepted 30 April 2018

KEYWORDS
Reproducibility; discrete
event simulation; open
source; python

1. Introduction

The analysis of queueing systems, especially those
arranged intonetworks, is a standard approach to study-
ing a variety of real-life operational systems. Discrete
event simulation (DES) is an extremely popular and
rapidly growingmethodof analysingnetworks of queues
(Brailsford, Harper, Patel, & Pitt, 2009; Günal & Pidd,
2010; Robinson, 2005).

Reproducibility and replicability, described as “the
cornerstoneof cumulative science” (Sandve,Nekrutenko,
Taylor & Hovig, 2013), is critical in order to assert
correct results and build on the work of others (Hong,
Crick, Gent, & Kotthoff, 2015; Sandve et al., 2013). In
computational research, this can be achieved by fol-
lowing a number of best practices (Aberdour, 2007; Be-
nureau & Rougier, 2017; Crick, Hall, Ishtiaq, & Takeda,
2014; Hong et al., 2015; Jiménez et al., 2017; Prlić &
Procter, 2012; Sandve et al., 2013;Wilson et al., 2014). A
popular software paradigm for research is open-source
software which implies software source code that is
freely usable andmodifiable. In a recent review of open-
source discrete event simulation software (Dagkakis &
Heavey, 2016), 44 open-source discrete event simula-
tion solutions were found and reviewed, however not
all followed best practice: 14 were found to have no
available documentation, and over half failed to use any
version control. The paper did not consider automated
testing of these packages.

This paper introduces the open-source Python li-
brary Ciw, which aims to enable best practices within
the domain of discrete event simulation, and yield re-
producible results. Ciw is a Python library for the sim-
ulation of open queueing networks. The core features
of this library include the capability to simulate net-
works of queues (Jackson, 1957), multiple customer

CONTACT Geraint I. Palmer palmergi1@cardiff.ac.uk

classes (Kelly, 1975) and restricted networks exhibit-
ing blocking (Onvural & Perros, 1986). A number of
other features are also implemented, including prior-
ities (Cobham, 1954), baulking (Ancker & Gafarian,
1963a, 1963b), schedules (Doshi, 1986) and deadlock
detection (Palmer, Harper, & Knight, 2018).

This paper is structured as follows: Section 2 will
provide full motivation for the library’s use and devel-
opment, andSection3will outline the features currently
implemented in the package. Then, in Section 4, we will
briefly discuss the code’s object-orientated structure
and event-scheduling simulation algorithm, which will
be followed by an example of Ciw’s usage and syntax
in Section 5. In Section 6, we will list how the library
has been used in academic work to date, and finally,
Section 7 will compare Ciw with five other simulation
frameworks.

2. Motivation

Simulation options traditionally fall into discrete cate-
gories (Law, 2007; Robinson, 2014), consisting of pro-
gramming languages, simulation packages and spread-
sheet modelling. We consider simulation frameworks
on a spectrum corresponding to the user interface. Such
a spectrum is shown in Figure 1, with some suggested
positions for a selection of simulation options, includ-
ing Ciw, SimPy (Team SimPy, 2017), AnyLogic (The
AnyLogic Company, 2017), SIMUL8 (SIMUL8 Corpo-
ration, 2017), as well as building a simulation in C++
and spreadsheetmodelling.Note that spreadsheetmod-
elling, despite usually being interfaced with a graphical
user interface, is considered here a type of program-
ming language due to its generic nature and syntax.

Advantages anddisadvantages of thesemethodshave

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed,
or built upon in any way.

2019, Vol. 13, No. 1, 68–82
Journal of Simulation

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2018.1473909&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1. A suggested spectrum corresponding to user interface, with illustrative positioning for six simulation options.

been discussed extensively (Bell & O’Keefe, 1987;
Dagkakis & Heavey, 2016; Law, 2007; Robinson, 2014).
Programming from scratch is considered more flexi-
ble, is bespoke, may improve speed, and increases the
variety of performance measures collected. However, a
lack of user interface may hinder model communica-
tion. It is discussed in some literature that simulation
packages, especially those with a graphical user inter-
face (GUI), are more accessible, easily modifiable, and
easier to communicate with non-specialists. GUIs can
aid with conceptual modelling, model validation and
verification (Bell &O’Keefe, 1987; Belton&Elder, 1994;
Kirkpatrick & Bell, 1989).

However, some simulation packages come with sev-
eral disadvantages for examplehigh costs (licences, train-
ing, plug-ins and maintenance), they often lack mod-
ularity, low model reusability, and lack of access to
the source code can impede understanding, customi-
sation and flexibility. Furthermore, it is suggested (Bell
& O’Keefe, 1987) that the addition of a GUI can lead
to bad simulation practice. This includes: disregard-
ing formal methodology such as statistical analysis in
favour of watching animations; introducing bias in the
model building process by building models that rep-
resent how a system should work instead of how they
actually work and false model validation in which real-
istic graphics imply a realistic model.

Two themes arise when discussing research and soft-
ware development: reproducibility and sustainability,
andbest practice (Aberdour, 2007;Benureau&Rougier,
2017; Crick et al., 2014; Jiménez et al., 2017; Hong et al.,
2015; Prlić & Procter, 2012; Sandve et al., 2013; Wilson
et al., 2014). The Ciw library aims to enable users to
meet these standards in the domain of discrete event
simulation.

In Kilgore (2001), three properties are listed as min-
imum requirements to ensure reproducibility in simu-
lation:

• Readability
• Modularity
• Extendibility

All three properties can apply to Python (The Python
Software Foundation, 2015), the ecosystem in which
modelling with Ciw takes place. Python is an open-
source, object-orientated, high-level language. Python’s

advantages as a language for developing simulation
models are listed inDagkakis andHeavey (2016). These
include its intuitive and readable syntax, and potential
to form a community of users and developers. In ad-
dition, Python is attractive to researchers due to the
extensive collection of other scientific libraries available
to integrate work, for example combining simulation
with data analysis, machine learning and optimisation.
An example of this as a teaching exercise with Ciw is
seen in Knight, Palmer, and Glynatsi (2017). There
are a number of popular scientific Python libraries,
including:

• NumPy (Walt, Colbert, & Varoquaux, 2011) and
SciPy (Jones et al., 2001) for scientific computation

• scikit-learn (Pedregosa et al., 2011) for machine
learning and optimisation algorithms

• Pandas (McKinney, 2010) for data analysis tools
• Matplotlib (Hunter, 2007) and Seaborn (Waskom
et al., 2014) for data visualisation

• SymPy (Meurer et al., 2017) for symbolic mathe-
matics

In Wilson et al. (2014), the authors discuss the ad-
vantages of using high-level programming languages
such as Python for research software over low-level
languages like C and Fortran. Advantages include an
increase in productivity when writing in high-level lan-
guages, better readability and rapid design decisions
and prototyping. A downside however, due to the fact
that Python is an interpreted language, is that the com-
putational speed will not be as fast as compiled lan-
guages.

Another strength of Ciw is that it is completely open
source. It has one of the most flexible and permis-
sive licences, the MIT licence, and is written in an
open-source language. This offers the user immediate
advantages over commercial-off-the-shelf simulation
packages. All source code is available for inspection,
testing and modification. This enables and encourages
greater understanding of the underlying methodology,
increasesmodel confidence, and provides an extendible
framework in which discrete event simulation may be
carried out. Furthermore, the elimination of licence fees
and maintenance costs facilitate model sharing, open
science and reproducibility. This overcomes common
problems with commercial software with more strin-

JOURNAL OF SIMULATION 69

gent licences, where models may sometimes not be
shared between two computers with the same software.

This ecosystem provides an opportune way in which
reproducible scientific research can be conducted:

• Allmanual datamanipulation canbe avoided (Crick
et al., 2014; Sandve et al., 2013;Wilson et al., 2014).

• All raw data can be saved (Sandve et al., 2013).
• All models can be version controlled (Benureau &
Rougier, 2017; Sandve et al., 2013; Wilson et al.,
2014).

• All models can be scrutinised by automated test-
ing (Benureau&Rougier, 2017;Wilson et al., 2014).

• All models can be shared (Benureau & Rougier,
2017; Crick et al., 2014; Hong et al., 2015; Jiménez
et al., 2017; Sandve et al., 2013).

Ciw is also developed in a sustainable manner, and
strives to follow best practice in research software de-
velopment. This includes extensive testing (it has 100%
test coverage (Batchelder, 2017)), comprehensive doc-
umentation, readability, modularisation, transparency
and use of version control (Prlić & Procter, 2012; Wil-
son et al., 2014).

Object orientation, an important feature of Python,
lends itself well to simulation (Dagkakis & Heavey,
2016; Law, 2007). In Dagkakis and Heavey (2016), the
authors state that “DES is a traditional paradigm where
object orientation is intuitively adopted”. The argu-
ment for linking object orientation to one particular
method of discrete event simulation, the three-phase
approach, is given inPidd (1995). Breaking a simulation
down into events, activities and entities, as is required
for the three-phase approach, is a form of modulari-
sation itself. This equally applies to the similar event
scheduling approach used in Ciw. In addition, simula-
tion modellers habitually think of entities as belonging
to a class, or classes, of similar entities. It is intuitive
to build systems like this in an environment where
modularisation is key, such as in an object-orientated
programming language. Further advantages of using
object orientation are listed in Law (2007): its flexibility,
its ability to deal with complexity through modularisa-
tion, and its high reusability.

As statedpreviously, usingopen-source softwarepro-
vides distinct advantages over traditional commercial-
off-the-shelf simulationpackages. Similarly, open-source
development can provide many advantages over closed
source development. However, Dagkakis and Heavey
(2016) argues that apart from eliminating the licence
fee, simply being open source does not offer immediate
advantages for developers, but it is the ethos and culture
that comes with open source that provide the advan-
tages. It is argued in VonKrogh andVonHippel (2006)
that open-source culture provides incentives to inno-
vate, as there is noneed for a largedemandorpromise of
recoupment of financial investment for certain features
to be developed. That is, private needs create public

goods. This has been evident in Ciw, where new re-
search can be directly implemented into the software
and tested and experimented quickly (see Section 6).
New features have been implemented after discussions
with users from around the world via the online issue
tracker. Freedom of development is another crucial
aspect of open source according toVonKrogh andVon
Hippel (2006), where users can fork and develop their
own versions of software for their bespoke needs. An
argument for promoting best practice in open-source
software is given in Aberdour (2007), as it achieves bet-
ter quality software. Some of these best practices arise
naturally in an open-source environment, for example
rapid release cycles, code reviews and code modularity.
Open-source development actually encourages these
best practices due to its transparency and the opportu-
nities for developers to showcase their work (Jiménez
et al., 2017).

A review of open-source discrete event simulation
software is given inDagkakis andHeavey (2016), and as
mentioned previously, a number of frameworks failed
to followbest practice in their development.ThreePython
libraries were found, though only one was found to
meet thequality requirements of the study, SimPy (2017).
Further, Kilgore (2001) draws many parallels between
open-source development and simulation modelling,
while concluding that the “steady, long-term progress
toward libraries of easily extendible and easily reusable
simulation code” is an important direction for simula-
tion modellers.

To summarise, Ciw is an object-orientated, open-
source Python library with the following qualities:

• Open, accessible source codepromotes understand-
ing, development and modification. Online issue
tracker and open development environment fos-
ters discussion, idea generation and development.
Permissive licence allows it to be extended, mod-
ified and shaped to the users’ needs.

• Code development follows best practice guide-
lines for reproducibility, code quality and mod-
ification. Modularity allows modification and ex-
tension through inheritance.

• Python ecosystem allows it to be used flexibly
within the programming language, allowing ease
of experimentation and integrationwith other sci-
entific tools. Models can be tested and version
controlled.

• Models are readable and the package has exten-
sive bilingual documentation, to enhance model
communication.

3. Features

Ciw’s main functionality is the simulation of open re-
stricted queueing networks that exhibit blocking, and
supports multiple classes of customer:

70 G. I. PALMER ET AL.

• A queueing network is a system consisting of a
number of service centres where customers may
wait in a queue for service; connected by a transi-
tion matrix of probabilities rij, the probability of
joining node j after completing service at node i.

• A queueing network is described as open if cus-
tomers can leave the system, and new customers
can arrive fromoutside the system (Stewart, 2009).

• A queueing network is described as restricted if
nodes have limited queueing capacity, that is, only
room for a certain amount of customers to wait
at any one time. If a node’s queueing capacity is
full, then external arrivals are rejected, and Type
I blocking (Onvural & Perros, 1986) occurs for
customers transitioning from other nodes. That
is, after service they remain with their server until
space becomes available at their destination node,
while that server is unavailable to serve any other
customer.

• Multiple classes of customer refers to the possi-
bility of having more than one type of customer
using and sharing the same resources, but using
them in different ways. For example, each class of
customer may have its own distinct inter-arrival
time distributions, service time distributions and
transition matrices.

In addition to these main properties, Ciw can simulate
a number of other features:

• A choice of inter-arrival and service time distri-
butions: Including Uniform, Deterministic, Tri-
angular, Exponential, Gamma, Truncated Nor-
mal, Lognormal, Weibull and the possibility of
users defining their own Discrete, Continuous,
Empirical, Sequential and Time-Dependant dis-
tributions.

• Batch arrivals: At each external arrival, a num-
ber of customers may arrive simultaneously. Ciw
allows sampling from a discrete probability distri-
bution to obtain batch sizes.

• Priority classes: Amapping from customer classes
topriority levels. This allows customerswithhigher
priority to jump ahead of customers with lower
priority each time they enter a queue.

• Baulking customers: At each external arrival, cus-
tomershave aprobabilityb(m)of baulking (choos-
ing not to join the system), given that there arem
customers already at that node. Ciw allows users
to define their own baulking function b(m) as a
Python function.

• Server schedules: Cyclic server schedules may be
defined for eachnode, that is thenumberof servers
at a nodemay increase or decrease as servers go on
and off duty at fixed times during the simulation
run.

• Dynamic customer classes: After service at a node,
customers may re-sample their customer class ac-

cording the a class change matrix of probabilities
pij, the probability of a customer of class i be-
coming a customer of class j after service at that
node. This means that their behaviour (service
distributions, transition matrices and priorities)
will also change.

• Deadlock detection: Restricted queueing networks
with cycles can cause the phenomenon of dead-
lock (Palmer et al., 2018). Traditionally deadlocks
are difficult to detect, however Ciw has the ability
to terminate a simulation run once deadlock has
been reached, using the state digraph method.

Ciw also offers a number of termination conditions:

• Simulating until a maximum amount of time has
passed.

• Simulatinguntil amaximumnumberof customers
have arrived/been accepted/finished.

• Simulating until deadlock has been reached.

Due to the modular nature of Ciw, a number of fur-
ther features can be implemented through the use of
inheritance of Ciw’s classes, such as the ability to send
customers to the shortest queue. Ciw is also a contin-
uously developed library, and so the list of features is
growing.

4. Architecture

Ciw makes full use of Python’s object-orientated na-
ture:

• A Simulation object is a one-use object used
for one run of a simulation, which contains a
network of Node objects.

• Each Node object contains Server objects.
• Individual objects are passed around the net-
workof Nodeobjects,where theywait to be served
by Server objects.

• Each Individual object carries a number of
named tuples that record the history of a single
service.

• The ArrivalNode creates new Individual
objects to enter the simulation.

• TheExitNode collectsIndividuals that leave
the system.

• Network objects, that also consist of
ServiceCentre and CustomerClass
objects, define a queueing network in order to
create a Simulation object.

Figure 2 summarises and categorises the interconnect-
ing objects that make up the Ciw framework. Some
optional objects, state trackers and deadlock detectors,
are also used for some features.

Ciw uses the event scheduling approach (Robinson,
2014), similar to the popular three-phase approach.
This deviates significantly from the othermajor Python
alternative, SimPy, that uses theprocess-based approach.

JOURNAL OF SIMULATION 71

Figure 2. Ciw’s architecture.

In the event scheduling approach, three types of event
take place: A-Events move the clock forward, B-Events
are pre-scheduled events and C-Events are events that
arise because a B-Event has occurred.

Here A-Events correspond to moving the clock for-
ward to the next B-Event. B-Events correspond to either
an external arrival, a customer finishing service or a
server shift change. C-Events correspond to a customer
starting service, customer being released from a node
and being blocked or unblocked.

In event-scheduling, the following process occurs:

1. Initialise the simulation.
2. A-Phase: move the clock to the next scheduled

event.
3. Take a B-Event scheduled for now, carry out the

event.
4. Carry out all C-Events that arose due to the event

carried out in 3.
5. Repeat 3 - 4 until all B-Event scheduled for that

date have been carried out.
6. Repeat 2 - 5 until a terminating criteria has been

satisfied.

Each Node object, including the ArrivalNode, has
a have_event method and a next_event_date
attribute. The next_event_date attribute is up-
dated each time an event occurs, and corresponds to
the date that the next B-Event at that object is sched-
uled to happen. At the A-Phase, the simulation’s clock
is moved to the next next_event_date of all the
Node objects.

TheArrivalNode’shave_eventmethod spawns
a new Individual and sends them to their appropri-
ate Node (barring baulking or exceeding node capac-
ity). All other Nodes’have_eventmethod consist of
one of two events: an Individual finishing service
at that node, or a shift change for the Servers.

C-Events are not coded explicitly, but follow on nat-
urally as consequences of the B-Event described above.
For example when the ArrivalNode spawns a new
Individual and is successfully sent to a Node, if
there is not another individualwaiting in the queue, that
individual is attached to a Server and begins service.
Similarly when an Individual finishes service, that

individual is sent to another Node, and may join a
queue or begin service if a server is free, while a waiting
customer now begins service with the freed Server at
the current Node.

5. Illustrative use

The library is installable from the Python package in-
dex, which means it is readily available to anyone with
Python (The Python Software Foundation, 2015) (ver-
sions 2.7, 3.4 and above) and an internet connection.
The source code is available on GitHub: https://github.
com/CiwPython/Ciw, under theMIT licence. Full doc-
umentation is available (both in English and Welsh, in
pdf and html form), and hosted on Read The Docs:
http://ciw.readthedocs.io/.

In order to demonstrate usage in more detail, con-
sider the following system:

• Two classes of jobs enter a computer repair clinic:
scheduled jobs (S) and unscheduled jobs (U).

• Scheduled jobs arrive in batches of two, once per
hour.

• Unscheduled jobs arrive randomly according to a
Poisson distribution, at rate one per hour.

• Unscheduled jobs takepriority over scheduled jobs,
and thus join the queue ahead of scheduled jobs.

• The repair clinic consists of two nodes: an inspec-
tion desk with two servers where jobs arrive, and
a repair room with one server.

• There is infinite queueing capacity at the inspec-
tion desk, but no queueing capacity between the
inspection desk and the repair room, thus Type I
blocking occurs here.

• All service times follow Exponential distributions:
scheduled jobs take an average of 20minutes to be
inspected and 60 minutes to repair, unscheduled
jobs take an average of 40 minutes to be inspected
and 90 minutes to repair.

• 5% of all scheduled jobs require repair and 40% of
all unscheduled jobs require repair.

The system is shown in Figure 3. The repair clinic
runs for 24 hours a day. The example below will run
a simulation of this system using Ciw and will obtain
estimates for the values of:

72 G. I. PALMER ET AL.

https://github.com/CiwPython/Ciw
https://github.com/CiwPython/Ciw
http://ciw.readthedocs.io/

• The average waiting time of unscheduled jobs at
the inspection desk.

• The average time a job is spent blocked at the
inspection desk (regardless of job class).

The code shown in Figure 4 gives the code needed
to create the Network object that defines the system
above. The code in Figure 5 runs the simulation over
20 trials, for 7 days, with a warm-up time of 1 day.

6. Use cases

To date, Ciw has been used for various theoretical,
practical and pedagogic applications, including:

• Theoretical work investigating deadlock in open
restrictedqueueingnetworks inPalmer et al. (2018).
A graph theoretical technique to detect deadlock
during a run of a discrete event simulation was
developed, and incorporated into the Ciw frame-
work: http://ciw.readthedocs.io/en/latest/Guides/
deadlock.html. Experiments on the time to reach
deadlock were undertaken.

• Themodellingof anophthalmology clinic atCardiff
and Value University Health Board was under-
taken by Morgan, J. and Hölscher, L., in order
to investigate the best patient scheduling strat-
egy. This project was essential to the development
of Ciw, as many features were added to the li-
brary due to the requirements of the project: server
schedules, dynamic customer classes and exact
arithmetic.

• Models of cancer patient diagnoses were built by
Harper, P.R. and Palmer, G.I. for the Wales Can-
cerNetwork andCwmTafUniversityHealthBoard.
These models and what-if scenarios were used to
advise national policy on capacity increases for
diagnostic tests in Wales in order to reach poten-
tial Welsh government set cancer diagnosis time
targets.

• ANuffield researchplacement (TheNuffieldFoun-
dation, 2017) student Huang, C. undertook re-
searchwithKnight V.A. and Palmer, G.I. studying
deadlock in queueing networks, extending previ-
ous experiments to include baulking customers
and servers taking vacations.

• The library has been used as part of a 2 day
‘hackathon’ as part of the MSc in Operational Re-
search andApplied Statistics at CardiffUniversity.
The hackathon aims to increase familiarity with
object-orientated programming by working on a
Python project. In 2017, the project was to write
a genetic algorithm to best configure three queues
in series, using Ciw to obtain the cost function. An
example solution is given in Knight et al. (2017).

7. Comparison with other simulation
frameworks

Five other popular simulation frameworks from across
the spectrum corresponding to user interface (see Fig-
ure 1) were chosen for comparison. They are compared
on their appropriateness for conducting reproducible
research in the domain of discrete event simulation.
The frameworks chosen were

• C++ (version 11, compiled using g++ 4.2.1)
• Spreadsheetmodelling (implemented inMicrosoft
Excel 2013)

• SimPy (version 3.0.10, using Python 3.5.1)
• Ciw (version 1.1.3, using Python 3.5.1)
• AnyLogic (AnyLogic 8 University 8.1.0)
• SIMUL8 (SIMUL8 2014 [Exclusive
EDUCATIONAL SITE Edition])

A model of an M/M/3 queue (Stewart, 2009), with
arrival rate λ = 10, and service rate μ = 4 was built
in each framework. The models were run for 800 time
units, with a warmup time of 100 time units. The aim
was to find the average waiting time in the queue.

The C++, SimPy and Ciw models can be found in
Appendices 1, 2 and 3. For the purpose of this paper,
Microsoft Excelwas chosen as the spreadsheet software.
Screenshots of the spreadsheet, SIMUL8 and AnyLogic
models are shown in Figures 6–8, respectively. Allmod-
els are archived and can be found at Palmer, Hawa,
Knight, and Harper (2017). Some initial observations
are summarised in Table 1.

The capabilities of a spreadsheet model were not
found to align with the expectations of research best
practice. Seeds cannot be set, thus reproducibility is
impossible. The resulting model has very low inter-
pretability, unless set out as a “black box” model where
parameters are input and results are output. However,
this style of model would hinder model understanding
and communication. In fact themodel, including input,
output and mechanics, are all shown in Figure 6, and
yet the model is still very difficult to interpret. This in
turn leads to low confidence in results, a well reported
phenomenon (Ziemann, Eren, & El-Osta, 2016) with
the use of spreadsheets. In addition, most data had to
be handledmanually, further impeding reproducibility.

Building a model with a GUI, such as with SIMUL8
andAnyLogic,may ease themodel developmentprocess
although care should be taken to follow best practice.
The model may be more accessible given its visual
nature which can aid with communication, although
knowledge of the software is required to read much
of the model parameters as many of these are hidden
behind objects andmenus (for example, Figures 7 and 8
do not in themselves show basic model parameters
such as number of servers, arrival and service rates).

JOURNAL OF SIMULATION 73

http://ciw.readthedocs.io/en/latest/Guides/deadlock.html
http://ciw.readthedocs.io/en/latest/Guides/deadlock.html

Ta
bl
e
1.
Su
m
m
ar
y
of
th
e
co
m
pa
ris
on

sb
et
w
ee
n
six

sim
ul
at
io
n
fra

m
ew

or
ks
.

Ve
rs
io
n
co
nt
ro
lla
bl
e

Li
ce
nc
e

M
od

ifi
ab
le

GU
I

An
im
at
io
n

Su
pp

or
t

C+
+

GN
U
GP

L
fre

e
lic
en
ce

Be
sp
ok
e
m
od

el
s

N
/A

N
/A

N
/A

Sp
re
ad
sh
ee
tm

od
el
lin
g

D
ep
en
ds

on
so
ftw

ar
e

Li
m
ita
tio

ns
to

w
ha
tc
an

be
m
od

el
le
d

N
/A

N
/A

Si
m
Py

M
IT

Ex
te
ns
ib
le
&
m
od

ifi
ab
le
so
ur
ce

co
de

Li
m
ite
d
GU

Ia
va
ila
bl
e
fo
rr
un

ni
ng

m
od

el
s

O
nl
in
e
do

cu
m
en
ta
tio

n
Ci
w

M
IT

Ex
te
ns
ib
le
&
m
od

ifi
ab
le
so
ur
ce

co
de

O
nl
in
e
do

cu
m
en
ta
tio

n
An

yL
og

ic
W
ith

pr
of
es
sio

na
ll
ic
en
ce

on
ly

Li
m
ite
d
PL
E
ve
rs
io
n
av
ai
la
bl
e,
ot
he
rw
ise

co
m
m
er
ci
al

Ex
te
nd

w
ith

Ja
va

O
nl
in
e
do

cu
m
en
ta
tio

n
&
pa
id
tr
ai
ni
ng

SI
M
UL

8
Co

m
m
er
ci
al

Ex
te
nd

w
ith

vi
su
al
lo
gi
c

O
nl
in
e
do

cu
m
en
ta
tio

n
&
pa
id
tr
ai
ni
ng

74 G. I. PALMER ET AL.

Figure 3. Diagrammatic representation of the repair clinic example. S denotes scheduled jobs, and U denotes unscheduled jobs.

Figure 4. Ciw code required to create the Network object for the example system.

The binary files which represent the SIMUL8 models
and the restrictive commercial licences onbothSIMUL8
and AnyLogic inhibit accessibility and model sharing,
and thus reproducibility.

The bespokemodel developed inC++, given its com-
piled nature and that the model was not held back by
unused features, used the least (by far) computation
time. The model (a script) is shareable and can be put
under version control. Readability is hindered here as
all details, including internal simulation mechanisms,
are shownwhichmaymake communicationswith non-
specialists challenging.

The models developed with SimPy and Ciw are ver-
sion controllable and shareable, and thus ideal for replica-
ble results. Compared to the model developed in C++,

much of the simulation mechanics are hidden from the
user and pre-tested. This aids with model communica-
tion, validation and reduces error. The authors suggest
that the Ciw model is more readable than the SimPy
version.Much of the simulationmechanics are on show
with SimPy, which increases its flexibility but reduces
readability, whereas Ciw prioritises readability.

Runtime analysis was carried out on the software for
which it was possible: C++, SimPy, Ciw and AnyLogic.
All analyses were performed on an Apple MacBook
Air with 1.4GHz Intel Core i5 processor, OS X 10.9.5
(13F34), with 4GB1600MHzDDR3memory. SIMUL8
could not be included in the analysis; due to licensing
restrictions, the model could not be run on the same
machine as the others (for consistency). Importantly,

JOURNAL OF SIMULATION 75

Figure 5. Ciw code used to run the example system over 20 trials, and obtain the average waiting time for unscheduled jobs, and
the average time blocked for all jobs.

Figure 6. Screenshots of the spreadsheet model developed in Microsoft Excel: (a) shows parameters and results; (b) shows the
mechanics of one trial.

the version used does not include tools to record com-
putational runtime. Figure 9 shows the average run-
times from five runs, as a ratio of the fastest running
model C++, for maximum simulation times from 200
to 5000 time units. Also included in the analysis is a

bespoke Python model (an equivalent model to the
C++ model but coded in Python). The three Python
models were run through two interpreters: the standard
CPython interpreter (version 3.5.1) and PyPy (2017)
(version 5.1.1), which is an alternative implementation

76 G. I. PALMER ET AL.

Figure 7. Screenshot of the SIMUL8 model.

Figure 8. Screenshot of the AnyLogic model.

Table 2. Pros and cons of using Ciw.

Pros Cons

• Free (no licence fee, maintenance, or training costs) • Some features not available yet
• Source code open source, thus available for understanding and modification • No GUI or animation currently implemented
• Full documentation, including tutorials, available online • Execution speed compromised for readability
• Fully and openly tested, giving confidence in use
• Scripting environment offers flexibility in experimentation and results analysis
• Can be used in conjunction with other scientific Python tools
• Readable models
• Documented version control enables sustainability
• Continuous development
• Enables testable and version controlled models

of Python with a Just In Time compiler that improves
runtimes.

It is worth noting that the runtime recorded for
the AnyLogic model does not take into consideration

JOURNAL OF SIMULATION 77

Figure 9. Comparison between the runtimes of the C++ model, bespoke Python model, the SimPy model, the Ciw model and the
AnyLogic model.

experiment initialisation time, nor does it include appli-
cation launch andmodel loading. Therefore in practice,
running AnyLogicmodels would take longer thanwhat
is shown in the plot.

Figure 9 reflects what has been discussed in much of
the literature (Law, 2007; Robinson, 2014) that bespoke
models codedusingprogramming languages yield faster
running models than simulation packages. The sim-
ulation packages here, SimPy and Ciw, carry around
many unused features that may slow down the model.
Running Ciw with PyPy greatly improves performance
andwe can see that PyPy seems to bemainly affected by
the simulation initialisation time, as running the sim-
ulation for longer sees the performance approaching
that of the C++ model. Furthermore, using Python’s
inbuilt parallel processing library, it is straightforward
to parallelise trials of Ciw. Speed, however, is not a
priority of Ciw, favouring instead code readability, and
the library’s ability to enable reproducible scientific
research. Future development of Ciw may involve per-
formance improvement, as long as this does not impact
readability. In practice, the computational runtime for
Ciw models does not hinder practical use in research,
though may be disadvantageous in complex systems or
other models where speed is a priority.

8. Summary

This paper has introduced the Python library Ciw for
discrete event simulations of open queueing networks.
The library strives to allow best practices in research
software and enable reproducibility of simulationmod-
els. Ciw has a growing number of features intended to
be able tomodelmore complex systems and ensure that
models reflect reality. It offers advantages over both
commercial off the shelf solutions and programming
from scratch.

Section 2 discussed a number of properties of open-
source software that can enable reproducible simula-
tion research. Ciw not only offers these properties, but
is built with these at the forefront of its design. These
include modular and extendible components, readable
syntax and a permissive licence. Its scripted nature and
its place in the Python ecosystem allows a number of
best practices for reproducible research, including test-
ing of simulation models, version controllable models
and integration with other open scientific tools. Table 2
summarises the pros and cons of using Ciw.

In some aspects, the lack of a GUI could be consid-
ered tomakemodels less interpretable tonon-specialists;
however, Ciw’s readable model framework offers many
advantages for collaboration and reusability. Given that
Ciw is built in Python, it is malleable in that it can be
combined with other bespoke functionality with ease.
For example, a user can use inheritance to change the
behaviour of a particular aspect of the system. This im-
plies that Ciw allows for multi method simulation: for
example, it can be combined with agent-based models
(inherent to the object-orientated nature of Python) or
combined with some of the ordinary differential equa-
tion solvers in the Python ecosystem (SciPy) to allow
for a combination with system dynamics (Robinson,
2014).

Section 6 listed a number of uses of the library. In
each of these cases Ciw enabled best practices in repro-
ducibility, allowing other researchers to promptly re-
run, scrutinise and build upon the research. It is hoped
others, both academic researchers and practitioners,
will make use of Ciw to conduct reproducible simula-
tions, and also contribute to the library’s development
and help add to its growing functionality.

78 G. I. PALMER ET AL.

Acknowledgements

The authorswould like to express gratitude to the anonymous
referees whose comments have improved this work. The au-
thors would like to thank Syaribah Brice andMark Tuson for
their discussions and advice regarding the AnyLogic model.
The authors would also like to thank all contributors to the
Ciw project, those who have written code, and colleagues and
users of the library who have generated ideas and contributed
to valuable discussions on the library’s development. These
include: Geraint Palmer, Vincent Knight, Lieke Hölscher,
Sam Luen-English, Nikoleta Glynatsi, Adam Johnson, Alex
Carney, Paul Harper and Jennifer Morgan, and a number of
users who the authors have only interacted with online. A
variety of software libraries have been used in this work: (i)
The networkx library (graph theory) (Schult & Swart, 2008);
(ii) The hypothesis library (property-based testing) (MacIver,
2017); (iii) The tqdm library (progress bars) (da Costa-Luis
et al., 2017); (iv) The PyYAML library (yaml parsing) (The
PyYAML library developers, 2017); (v) The Pandas library
(data analysis) (McKinney, 2010); (vi) The matplotlib library
(data visualisation) (Hunter, 2007).

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Aberdour, M. (2007). Achieving quality in open-source
software. IEEE Software, 24(1).

Ancker, Jr., C., & Gafarian, A. (1963a). Some queueing
problemswith balking and reneging i.Operations Research,
11(1), 88–100.

Ancker, Jr., C., & Gafarian, A. (1963b). Some queueing
problems with balking and reneging ii. Operations
Research, 11(6), 928–937.

Batchelder, N. (2017). Coverage. Retrieved from https://
coverage.readthedocs.org/

Bell, P., & O’Keefe, R. (1987). Visual interactive simulation
history, recent developments, andmajor issues. Simulation,
49(3), 109–116.

Belton, V., & Elder, M. (1994). Decision support systems:
Learning from visual interactive modelling. Decision
support systems, 12(4–5), 355–364.

Benureau, F., & Rougier, N. (2017). Re-run, repeat,
reproduce, reuse, replicate: Transforming code into scientific
contributions. arXiv preprint arXiv:1708.08205.

Brailsford, S., Harper, P. R., Patel, B., & Pitt, M. (2009).
An analysis of the academic literature on simulation and
modelling in health care. Journal of Simulation, 3(3), 130–
140.

Cobham, A. (1954). Priority assignment in waiting line
problems. Operations Research, 2(1), 70–76.

Crick, T., Hall, B.A., Ishtiaq, S., & Takeda, K. (2014). Share
and enjoy: Publishing useful and usable scientific models.
In Proceedings of the 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing (pp. 957–961).
IEEE Computer Society.

da Costa-Luis, C., Stephen, l., Mary, H., noamraph, Korobov,
M., Ivanov, I., ..., Umer,A. (2017). tqdm/tqdm: tqdmv4.19.5
stable.

Dagkakis, G., & Heavey, C. (2016). A review of open source
discrete event simulation software for operations research.
Journal of Simulation, 10(3), 193–206.

Doshi, B. T. (1986).Queueing systemswith vacationsa survey.
Queueing Systems, 1(1), 29–66.

Günal, M. M., & Pidd, M. (2010). Discrete event simulation
for performance modelling in health care: A review of the
literature. Journal of Simulation, 4(1), 42–51.

Hong, N., Crick, T., Gent, I., & Kotthoff, L. (2015). Top
tips to make your research irreproducible. arXiv preprint
arXiv:1504.00062.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment.
Computing in Science & Engineering, 9(3), 90–95.

Jackson, J. (1957). Networks of waiting lines. Operations
Research, 5(4), 518–521.

Jiménez, R. C., Kuzak, M., Alhamdoosh, M., Barker, M.,
Batut, B., Borg, M., ... Watson-Haigh, N. S.(2017). Four
simple recommendations to encourage best practices in
research software. F1000Research, 6.

Jones, E., Oliphant, T., Peterson, P., & The SciPy library
developers, (2001). SciPy: Open source scientific tools for
Python. Retrieved from https://scipy.org/citing.html

Kelly, F. (1975). Networks of queues with customers of
different types. Journal of Applied Probability, 12(3), 542–
554.

Kilgore, R. A. (2001). Open source simulation modeling
language (sml). In Proceedings of the 33nd conference on
Winter simulation (pp. 607–613). IEEE Computer Society.

Kirkpatrick, P., & Bell, P. (1989). Simulation modelling:
A comparison of visual interactive and traditional
approaches. European Journal of Operational Research,
39(2), 138–149.

Knight, V. A., Palmer, G. I., & Glynatsi, N. E. (2017).
Genetic algorithm exercise for anMSc hackathon using Ciw,
doi:10.5281/zenodo.836243.

Law, A. M. (2007). Simulation modeling and analysis.
McGraw-Hill.

MacIver, D. (2017). Hypothesis. Retrieved from https://
hypothesis.readthedocs.org/

McKinney, W. (2010). Data structures for statistical
computing in python. In Proceedings of the 9th Python in
Science Conference (Vol. 445, pp. 51–56). Austin, TX: SciPy.

Meurer, A., Smith, C., Paprocki, M., Čertík, O., Kirpichev,
S., Rocklin, M., ... Scopatz, A. (2017). Sympy: Symbolic
computing in python. PeerJ Computer Science, 3, e103.

Onvural, R., & Perros, H. (1986). On equivalencies of
blocking mechanisms in queueing networks with blocking.
Operations Research Letters, 5(6), 293–297.

Palmer, G. I., Harper, P. R., &Knight, V. A. (2018).Modelling
deadlock in open restricted queueing networks. European
Journal of Operational Research, 266(2), 609–621.

Palmer, G. I., Hawa, A. L., Knight, V. A., & Harper,
P. R. (2017). M/M/3 simulation models for the paper
"Ciw: An open source discrete event simulation library".
doi:10.5281/zenodo.848644.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., ... Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.

Pidd, M. (1995). Object-orientation, discrete simulation and
the three-phase approach. The Journal of the Operational
Research Society, 46(3), 362–374.

Prlić, A., & Procter, J. (2012). Ten simple rules for the open
development of scientific software. PLoS Computational
Biology, 8(12).

Robinson, S. (2005). Discrete-event simulation: From the
pioneers to the present, what next? Journal of the
Operational Research Society, 56(6), 619–629.

Robinson, S. (2014). Simulation: The practice of model
development and use. Palgrave Macmillan.

JOURNAL OF SIMULATION 79

https://coverage.readthedocs.org/
https://coverage.readthedocs.org/
https://scipy.org/citing.html
https://doi.org/10.5281/zenodo.836243
https://hypothesis.readthedocs.org/
https://hypothesis.readthedocs.org/
https://doi.org/10.5281/zenodo.848644

Sandve, G., Nekrutenko, A., Taylor, J., & Hovig, E. (2013).
Ten simple rules for reproducible computational research.
PLoS Computational Biology, 9(10), 1–4.

Schult, D.A., & Swart, P. (2008). Exploring network structure,
dynamics, and function using networkx. In Proceedings of
the 7th Python in Science Conferences (SciPy 2008). (Vol.
2008pp. 11–16).

SIMUL8Corporation. (2017). Simul8. Retrieved fromhttps://
www.simul8.com/

Stewart, W. (2009). Probability, markov chains, queues, and
simulation. Princeton University Press.

Team SimPy. (2017). Simpy. Retrieved from https://simpy.
readthedocs.io/

The AnyLogic Company. (2017). Anylogic. Retrieved from
https://www.anylogic.com/

The Nuffield Foundation. (2017). Nuffield research place-
ments. Retrieved from http://www.nuffieldfoundation.org/
nuffield-research-placements

The PyPy developers. (2017). Pypy. Retrieved from https://
pypy.org/

The Python Software Foundation. (2015). Python 3.5.1.
Retrieved from www.python.org

The PyYAML Library Developers. (2017). Pyyaml. Retrieved
from http://pyyaml.org/

Von Krogh, G., & Von Hippel, E. (2006). The promise of
research on open source software. Management Science,
52(7), 975–983.

Walt, S., Colbert, V. D. S. C., & Varoquaux, G. (2011).
The numpy array: A structure for efficient numerical
computation. Computing in Science & Engineering, 13(2),
22–30.

Waskom, M., Botvinnik, O., Hobson, P., Cole, J.B.,
Halchenko, Y., Hoyer, S., ... Ziegler, E. (2014). Seaborn:
v0.5.0.

Wilson, G., Aruliah, D., Brown, C. T., Hong, N., Davis, M.,
Guy, R., ... Wilson, P. (2014). Best practices for scientific
computing. PLoS biology, 12(1), e1001745.

Ziemann, M., Eren, Y., & El-Osta, A. (2016). Gene name
errors are widespread in the scientific literature. Genome
Biology, 17(1), 177.

80 G. I. PALMER ET AL.

https://www.simul8.com/
https://www.simul8.com/
https://simpy.readthedocs.io/
https://simpy.readthedocs.io/
https://www.anylogic.com/
http://www.nuffieldfoundation.org/nuffield-research-placements
http://www.nuffieldfoundation.org/nuffield-research-placements
https://pypy.org/
https://pypy.org/
www.python.org
http://pyyaml.org/

Appendix 1. C++model

JOURNAL OF SIMULATION 81

Appendix 2. SimPymodel

Appendix 3. Ciwmodel

82 G. I. PALMER ET AL.

	1. Introduction
	2. Motivation
	3. Features
	4. Architecture
	5. Illustrative use
	6. Use cases
	7. Comparison with other simulation frameworks
	8. Summary
	Acknowledgements
	Disclosure statement
	References
	Appendix 1. C++ model
	Appendix 2. SimPy model
	Appendix 3. Ciw model

