
Towards Visible Light Switching of 
Peptide-DNA and Peptide-Protein 

Interactions 

Ryan David Dean 

A thesis submitted to  
Cardiff University  
for the degree of  

DOCTOR OF PHILOSOPHY 

School of Chemistry  
Cardiff University  

September 2016



Introduction 

ii

DECLARATION 

This work has not been submitted in substance for any other degree or award at this 
or any other university or place of learning, nor is being submitted concurrently in 
candidature for any degree or other award. 

Signed …………………………………… (candidate)       Date …………………………

STATEMENT 1 

This thesis is being submitted in partial fulfillment of the requirements for the degree 
of PhD 

Signed …………………………………… (candidate)       Date …………………………

STATEMENT 2 

This thesis is the result of my own independent work/investigation, except where 
otherwise stated. 
Other sources are acknowledged by explicit references.  The views expressed are 
my own. 

Signed …………………………………… (candidate)       Date …………………………

STATEMENT 3 

I hereby give consent for my thesis, if accepted, to be available online in the 
University’s Open Access repository and for inter-library loan, and for the title and 
summary to be made available to outside organisations. 

Signed …………………………………… (candidate)       Date …………………………

STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS 

I hereby give consent for my thesis, if accepted, to be available online in the 
University’s Open Access repository and for inter-library loans after expiry of a bar 
on access previously approved by the Academic Standards & Quality 
Committee.  

Signed …………………………………… (candidate)       Date …………………………



Introduction 

iii

SSuummmmaarryy

Peptides derived from DNA-binding zinc finger proteins were synthesised with pairs of 

cysteine residues with i,i+7 and i,i+11 relative spacings introduced into their sequence. 

The sidechains of these cysteine residues were then alkylated with the well-known 

water soluble photochrome 3,3’-bis(sulfo)-4,4’-bis(chloroacetamino) azobenzene 

(BSBCA). The change of shape of the azobenzene dye in these peptide-dye conjugates 

allowed photocontrol of peptide structure and thus peptide-DNA interactions. For a 

single zinc finger helix, UV irradiation yielded a peptide conjugate with a dissociation 

constant with respect to its cognate DNA sequence of 100 nM with no binding apparent 

prior to irradiation. However, the relatively short half-life of BSBCA proved a stumbling 

block, particularly in the control of larger peptides using multiple azobenzenes to 

control several -helical structural elements within large peptides. In addition to the 

short half-life of cis-BSBCA under physiological conditions, multiple BSBCA switches 

attached to the same peptide were shown not to relax independently of each other.

These results led to the design, synthesis and examination of novel photo switches 

sensitive to visible, rather than UV light, with improved light state half-lives and 

bidirectional optical switching. Initial studies on thioindigo-based switches proved that 

molecules sufficiently polar to be water soluble were inaccessible by concise synthetic 

routes. Attention was then turned to the synthesis of ortho-halogen substituted 

azobenzenes and investigation of several new conjugation strategies for linking these 

photosensitive molecules to peptides.   

Subsequent refinements to the design of the tetra-ortho-halogen substituted 

azobenzenes altered the position of UV/visible absorbance bands of the cis and trans

isomers to create a 47 nm separation in the wavelengths of the n-π* absorbances of the 

isomers to allow effective bidirectional switching. These changes also improved the 

half-life of the cis state from 24 minutes at 20 0C to 3,256 minutes at 60 0C.  

One of these new azobenzenes was reacted with apoptosis-inducing Bak peptides with 

different cysteine spacings (i,i+7 and i,i+11). Less stringent control over the binding of 

these peptides to Bcl-xL was observed than with BSBCA, perhaps due to the more 

flexible nature of the new crosslinker, but the optical properties of this class of 

molecules suggest a little further development will yield much improved 

photoswitches. 



Introduction 

iv

AAbbbbrreevviiaattiioonnss

BSBCA  3,3’-bis(sulfo)-4,4’-bis(chloroacetamino) azobenzene  

DNA  deoxyribonucleic acid 

RNA  ribonucleic acid 

mRNA  messenger ribonucleic acid 

UV   ultraviolet 

HGH  human growth hormone 

LOV  light, oxygen voltage 

AsLOV  Avena sativa

CD  circular dichroism  

ATP  adenosine triphosphate 

LOV  light oxygen voltage 

AsLOV  Avena sativa light oxygen voltage 

FMN  flavin mononucleotide 

LUMO  lowest unoccupied orbital 

HOMO highest unoccupied molecular orbital 

CAP  catabolite activator protein 

E. coli Escherichia coli

Cys  cysteine

His histidine

ZF-TFs zinc finger transcription factors

ZFN zinc finger nucleases

NHEJ  non-homologous end joining  

DSB  double strand breaks 

EMT   epithelial to mesenchymal transitions 

Fmoc  fluorenylmethyloxycarbonyl  

TFA  trifluoro acetic acid 
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MALDI-TOF  matrix-assisted laser desorption ionisation -time of flight  

SD  standard deviation  

DMSO  dimethyl sulfoxide 

EMSA  electronic mobility gel shift assays 

ITC  isothermal titration calorimetry 

nm  nano meter 

HCl  hydrochloric acid 

NBS  N-bromosuccinimide 

TBDMS tert-butyldimethylsilyl ethers 

NMR  nuclear magnetic resonance 

MS   mass spectrometry  

LC-MS  liquid chromatography mass spectrometry 

THF  tetrahydrofuran 

DMF  dimethylformamide 

HPLC  high performance liquid chromatography 

DIBAL  di-iso-butyl aluminium hydride 

IR  infra-red 
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1  Introduction 

11..11 TTaarrggeettiinngg pprrootteeiinn--pprrootteeiinn iinntteerraaccttiioonnss

Protein-protein interactions are involved in nearly all cellular processes and 

understanding how these protein-protein interactions influence cellular behaviour is 

crucial for understanding the molecular basis of life. Mapping the networks of 

interactions will allow the identification of the ideal points to specifically intervene in 

disease states. These points could then be targeted with therapeutic agents to block 

specific interactions or mimic others to correct disease states or cause affected cells to 

undergo programed cell death. Protein-proteins interactions can be difficult to mimic 

because they often occur over large areas of their surfaces; typically 750 to 1500 Å2 but 

up to 4600 Å2 in some cases.1 Despite the large contact areas much of the binding 

energy can result from a relatively small area within this larger region. For example, in 

a complex between human growth hormone (HGH) and its first bound receptor the 

side chains of thirty amino acids make contact with the receptor, but a pair of 

tryptophan residues in a central hydrophobic region are responsible for three quarters 

of the binding energy.2 Such sites are referred to as hot spots and are possible targets 

for small molecule inhibitors, which can be used to sterically and electrostatically 

mimic the amino acid sidechains at these positions.3,4 However, if no hot spots are 

present it can be difficult to engineer small molecules to mimic multiple lower-affinity 

interactions as the binding energy is more evenly distributed over the interacting 

surface. The protein surface might also be dynamic or flexible and be capable of 

multiple interactions. This can be difficult to detect by examining protein crystal 

structures as the average solution conformation may not resemble the conformation 

found in crystal structures.5

Another way to influence protein-protein interactions is to alter the concentration of 

one of the proteins or increase the concentration of another protein that competes for 

binding sites or blocks the protein protein interaction partners. A number of methods 

have been described that can be used to alter the frequency of gene transcription and 

hence translation and the concentration of a particular protein in a cell. If the sequence 

of the target gene is known, the gene may be deleted preventing it from ever being 

transcribed. This can be achieved by removal of its start codon or by replacing the DNA 

encoding the protein of interest with a drug resistance gene as a selectable marker for 
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generating knock outs.6 This technique is particularly effective when used to target 

regulatory proteins that affect the concentration of multiple downstram proteins. 

Gene editing can be used more subtly to introduce mutations into the genome of an 

organism. Comtemporary techniques allow a single site on the genome to be targeted 

to allow the effect of a single nucleotide polymorphisms like that responsible for sickle 

cell anemia to be investigated.6 These small changes can have dramatic effects; sickle 

cell anaemia results from a single point mutation of an adenosine to a thymine in the 

HBA1 gene which changes a single amino acid of -globin protein from a glutamic acid 

to valine. This does not effect the fold of the globin, but alters its propensity to 

oligomerise in red blood cells and can change the shape of the cell from a round disc 

to a sickle shape. This reduces the efficiency of oxygen transportation throughout the 

body. 

Gene editing is often achieved using homologous recombination. A vector is 

constructed  that contains a gene encoding a protein that confers resistance to a 

cytotoxic agent. This allows cells that do not take up the vector to be eliminated as only 

the cells that contain the new gene survive subsequent treatment with the cytotoxic 

agent. This gene also contains a negative selection marker and a gene encoding the 

modified protein to be inserted to replace an existing problematic gene or to introduce 

a certain characteristic into the organism. These genes are placed between two regions 

homologous to the position in the genome of interest. Cells are treated with this 

plasmid and the cytotoxic agent is applied to select cells containing the plasmid, killing 

cells without this newly inserted resistance. In a fraction of these cells, the 

complementary flanking sequences will align with chromosomal DNA so these will 

overlap with the existing DNA sequence and hybridise resulting in incorporation of the 

modified gene at the specified site on the genome. The negative selection marker is 

then used to screen out non-homologous insertions of the plasmid DNA into other 

loci.7 Gene knockouts can also be created by gene editing using designer or custom 

made endonucleases that create double-stranded breaks in DNA at precisely defined 

locations in the genome. Specificity is achieved by using a combination of modular 

DNA recognition proteins (zinc fingers or transcription activation like domains) that 

bind to specific sequences on the genome to specify the target sequence and a non-

specific catalytic domain which is only active as a dimer so two different recognition 

elements can combine to specify a non-palindromic site.8 Theses nucleases can cut the 
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DNA causing double strand breaks. Machinery in the cell then repairs these breaks 

either by homology directed repair, where a template guides the repair towards the 

correct sequence the repair is not error prone as the repair follows the sequence of the 

complimentary DNA strand or by non-homologous end joining where there is no 

strand to follow resulting in a repair which is error prone.8,9 Recently, gene editing 

systems based on proteins that interact with clustered regularly interspaced short 

palindromic repeats in the bacterial genome to form an adaptive defence against 

foreign DNA (CRISPR/CAS) have become very widely used. These make use of CAS

nuclease and short guide RNA to direct the nuclease to cut at a desired position. The 

guide RNA binds to CAS9 and to the DNA at the site of interest and guides the CAS9 

locus. Addition of a DNA template that contains a sequence complimentary to the 

short guide RNA during repair allows genes to be removed and exchanged for the 

desired sequence. 

These approaches are only feasible if the target organism can survive with the gene 

modified or turned off , as genes cannot easily be subsequently reactivated. This 

method is therefore unsuitable for the study of cell development or differentiation. 

Temporary control of the expression of some genes can be achieved by dosing cells 

with inhibitors that interfere with the action of an appropriate transcription factor by 

interrupting either its binding to DNA, or its interaction with the RNA polymerase 

complex.10 This approach can provide varying degrees of spatial and temporal control, 

but relies on cells recovering from invasive direct injection procedures or rapid 

diffusion/uptake and activity kinetics of the inhibitor. 

Protein-protein interactions can also be perturbed using peptides derived from the 

interacting portions of proteins. Although short peptides rarely adopt the same 

conformation as they do as part of a larger protein, their conformations can be fixed by 

chemical modification. For example, a peptide derived from the -helical Bcl-2 

homology region of the proapoptotic protein Bid was constrained into a more helical 

conformation by a hydrocarbon staple.11 This peptide was shown to bind to an 

interaction partner of native Bid, Bcl-xL, with an affinity greater than the non-

crosslinked peptide. Furthermore, a related Bak peptide was shown to bind to the same 

pocket at that of the wild type Bak and Bid BH3 regions when constrained by a 

photoresponsive staple,12 which can moderate the conformation and therefore binding 

affinity of the peptide in response to light. The development of a photocontrolled 
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peptide for controlling gene expression in a cell would create a powerful tool for 

investigating protein-protein interactions. Molecules introduced into cells in an inert 

form could be activated with precisely directed light after the cells have had chance to 

recover from any perturbation caused its introduction. This approach requires that the 

activity of the active and inactive forms are sufficiently different to the effects of the 

inactive species present before and after irradiation, and that the photoswitch is stable 

and functional under physiological conditions.13

11..22 MMeetthhooddss ffoorr pphhoottoo ccoonnttrrooll ooff ppeeppttiiddeess

11..22..11 PPhhoottooccaaggeess

Photocontrol can be exerted in numerous ways, whilst most reported methods have 

been designed for very specific purposes, some have more general applicability. 

Research into drugs whose activity can be controlled with light (termed 

photopharmocology13) is particularly promising because one of the major problems in 

the pharmaceutical industry is achieving sufficient specificity. Up to 87% of small 

molecule drug candidates are discarded, many due to low selectivity.14 As 

photoactivitation can potentially be used to select single cells, the concentration of an 

active species can be very precisely controlled making otherwise unselective drugs 

useful. Photocaging is ideal for this application as reduced activity of a photocaged 

prodrug allows higher concentrations of the prodrug to be used, effectively widening 

the therapeutic window.15

Figure 1. Estradiol protection and photoactivation.

Photocaging can also be used to activate gene transcription and therefore protein 

production by caging hormones such as estradiol (Figure 1).16 When estradiol binds to 

the estrogen receptor it causes a conformational change,  which then leads to gene 
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expression.17 UV light decaged 86% of the prodrug 2 in cells, resulting in increased gene 

transcription.16

Most anti-cancer drugs act by preventing cell division, but this can dramatically affect 

naturally rapidly replicating cells in the body such as those of the hair and stomach 

lining as well as those forming tumours. Activating prodrugs only at tumour sites 

avoids these issues.15 This approach is illustrated by phototaxel (3) which is activated 

by irradiation with 430 nm light, with 69% paclitaxel (5) formed after 30 minutes via

an acyl shift through intermediate 4 (Figure 2).15

Figure 2. Phototaxel and photo deprotection to paclitaxel. 

Photocages can also be attached to proteins, peptides or other bio-active molecules and 

then removed by irradiation with light. Decaging typically proceeds by a radical 

mechanism and reaction times from the initial pulse of light to the release of the 

photocage can be quite lengthy, with some taking up to 24 hours to reach completion.16

The rate of release of the active drug can be further hampered by decaging mechanisms 

that require proton transfers making reaction rates dependant on the surrounding 
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environment. Additionally, the longer the half-life of the reactive intermediate the 

greater the likelihood of unwanted side reactions.18

Figure 3. Radical photo cleavage of ortho-nitrobenzyl ether protecting groups. 

One commonly used class of photocages are based on 2-nitrobenzyl ethers (Figure 3). 

This group has been known since the 1970s and is used as a photo-labile protecting 

group in organic chemistry. Adoption has been limited by the relative expense of its 

precursors and the radical-based deprotection reaction, as the presence of any radical 

acceptors in the molecule can lead to undesirable side reactions.18,19 This approach was 

transferred to biology by Kaplan et. al.,20 using a nitrobenzyl group to photocage, then 

release ATP upon irradiation. Photocaged ATP was introduced into ghost cells, 

eosinophilic epithelial cells without a nucleolus, and was shown not to be an inhibitor 

or substrate for Na, K – ATPase. Photodecaging allowed the concentration of ATP to 

be varied by varying the intensity of the incident light.  The same nitrobenzyl group 

was used to control the binding of zinc finger transcription factors by Chou et. al.,21 a 

combination that has been commercialised and was available in over 40 different 

derivatives by 2002. However, the wide availability has shown that decaging these 

molecules can release toxic by-products and that these by-products are strongly UV 

absorbing, reducing release of the desired active agent. The final drawback of 

photocaged molecules is that they are single use, once activated they remain active and 

the concentration is then dependent on the biological half-life of the active agent.  
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11..33 RReevveerrssiibbllee pphhoottooccoonnttrrooll

11..33..11 PPhhoottoorreessppoonnssiivvee pprrootteeiinnss

Photoresponsiveness is vital to plants, controlling a variety of processes from seed 

germination to the direction of growth and flowering. There are four major classes of 

photoreceptors in plants, covering different wavelengths of light.22 Photochromes 

sense red and far red light (600-750 nm) and several classes of proteins respond to blue 

light (320-500 nm) including cytochromes, and LOV (light, oxygen voltage) 

proteins.22,23 These proteins contain cofactors that can absorb longer wavelengths of 

light than the protein itself; for example LOV domains contain a flavin chromophore.24

Figure 4. Photocycle of flavin mononucleotide (FMN) in LOV domains. 

Blue light causes a reaction with the sidechain of a cysteine residue, leading to 

conformational changes. In the case of Avena sativa LOV2 domain (AsLOV2) these 

changes cause a C-terminal -helix that is tightly bound to the  sheet of the LOV 

domain in the dark state to be released.25 Release of this Jα helix activates the adjacent 

downstream phototropin kinase domain.26
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11..33..22 SSppiirrooppyyrraannss

Spiropyrans are an example of reversible photo switches that can be used to regulate 

the conformation of peptides.  

Figure 5. Spiropyrans are photochromic molecules that change structure when exposed to different 

wavelengths of light. (R is poly-L-glutamic acid).27

The merocyanine form is more thermodynamically stable than the spiropyran form, 

but the energy barrier between the two states is very low. On exposure to daylight the 

zwiterionic merocyanine will form the spiropyran,27,28 and when conjugated to a 

peptide by, eg. pair of amides, the change can influence the conformation of the 

polyglutamate in 12 or can be extended to control the protein it is attached to (Figure 

6). 

Figure 6. Conformational change brought about in poly-L-glutamic acid by the different states of 

spiropyran (Adapted from reference 27). 
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This conformational change in 12 is clearly visible in UV spectra, showing the switch 

has changed states, and circular dichroism (CD) spectra which show a significant 

increase in -helical contribution to its structure. 

Figure 7. UV (left) and CD (right) absorbance spectra for poly-L-glutamic acid with spiropyran attached 

showing the light (1) and dark states (2) with dashed lines showing intermediate relaxation spectra.27

Control over secondary structure has also been achieved by attaching the spiropyran 
to two specific amino acid sidechains with an i,i+7 spacing.29

Figure 8. Spiropyran attached a peptide at two points to control peptide -helical conformation 

(adapted from reference 29). 
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Figure 9. CD spectra of native peptide (black) and crosslinked peptide in light (red) and dark (blue) 

states in phosphate buffer (100 mM, pH 6.6) at 25 0C.29

The change in the CD spectrum brought about by switching of the peptide is small, but 

there is some control of the conformation of the peptide. One of the major problems 

with this photochrome arises from the zwiterionic nature of its dark state, which means 

it can interact with other ions in the solution such as histidine (Figure 10).28

Figure 10. Interaction of spiropyran 14 and histidine in solution.28

11..33..33 DDiiaarryylleetthheenneess

Figure 11. Diarylethenes can cyclise to hexadienes.30

WWaavveelleennggtthh // nnmm
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Figure 12. Absorbance spectra of 15 in diarylethene (open,       ) and hexatriene (closed, -----) states and 

the photo stationary state after irradiation at 491 nm (_ . _ . _) in benzene.30

Diarylethenes contain a hexatriene motif; three consecutive alkenes. This motif can 

undergo a photo-induced cyclisation that drastically changes the shape of the molecule 

and its rigidity.31 The open and closed isomers are both thermodynamically stable and 

are readily interconverted using different wavelengths of light.30 The lifetimes and 

extents of conversion of these states are dependent upon the substitution of the 

diarylethenes, with reported half-lives ranging from minutes to molecules that are 

thermodynamically stable in the closed form.31 Diarylethenes can be attached to DNA 

as a structural constraint and have been shown to be able to control transcription in 

vitro.32

11..33..44 TThhiiooiinnddiiggoo

Figure 13. Thioindigo undergoes photoinduced cis/trans isomerisation. 

Thioindigo is a modified version of indigo, a commonly used dye in the clothing 

industry. The reduced leuco "white indigo" form of the commercial dye is very soluble 
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allowing it to be easily administered to fabrics, but as it dries it oxidises back to the 

highly insoluble parent form. Unlike, indigo whose Z-isomer cannot be detected due 

to its short lifetime caused by additional hydrogen bonding capabilities, the isomers of 

thioindigo have more evenly matched energy levels and are readily separable.33

Thioindigo is an excellent example of a reversible photo switch with many favourable 

properties; the barrier to rotation is so great that it shows almost no reversion of the 

light state (cis exited state) to the dark state (the trans ground state) and excitation 

occurs at visible wavelengths (> 450 nm). 34

Trans to cis isomerisation is promoted by irradiation at 450 nm light, yielding a 70% 

cis photo stationary state. The reverse cis to trans isomiseration is promoted by 

irradiation with 510 nm light.35 The major disadvantages of these molecules are their 

typically very poor solubility in aqueous solution, once attached to peptides they can 

result in an insoluble conjugate.36 Several attempts have been made to increase 

thioindigo solubility, as the result would be extremely useful for the dyestuff industry. 

Many early modifications aimed at increasing the polarity of thioindigo,37 following the 

example of the highly soluble indigo carmine (18) shown (Figure 14). 

Figure 14. Indigo carmine, a water soluble indigo. 

Another approach involved the addition of bulky substituents to the ring system to 

reduce the -stacking that favours self-association over dissolution. This was achieved 

by the addition of ethylenedioxyl side groups at the 7 and 7` positions (Figure 15). The 

resulting thioindigo was used as a photoreponsive chelating agent where the cis form 

can chelate metal ions and reversion to the trans form releases the trapped ions.38



Introduction 

13

Figure 15. Thioindigo molecular tweezers. 

11..44 AAzzoobbeennzzeennee

Figure 16. Azobenzene in the trans conformation (left) and the cis conformation (right). 

Azobenzene is one of the most versatile and widely used photoswitches with a wide 

range of applications reported. Azobenzene is a photochromic molecule (Figure 16) 

consisting of two phenyl rings that are connected by an azo group and is part of a large 

class of azo-derived organic dyes. The trans form of azobenzene was discovered in 1843 

by Eilhard Mitscherlich39 who described very little except that its properties deviated 

from stilbene. The crystal structure of trans azobenzene was solved by Robertson in 

1935.40 The cis form of azobenzene was first documented by Hartley in 1937,41 who 

discovered that the absorbance of a solution of azobenzene was not reproducible. This 

effect persisted even after recrystallization and eventually the two isomers were 

separated by their slightly different solubility. This is probably due to a combination of 

the increase in the dipole moment due to the nitrogen lone pairs being more exposed 

in the cis state and the reduced planarity of the cis state improving solvation and 

discouraging -stacking between azobenzene molecules. 

The newly discovered cis state could be converted back to the trans state by heating 

the azobenzene in solution. These experiments were complicated by the need to 

exclude light as it was observed that exposure to different types of light caused changes 

in the spectra brought about by the change in percentage of the cis to the trans states. 
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Spontaneous reversion from cis to trans is driven by the thermodynamic stability of the 

trans isomer. Conversion from the cis to the trans state is therefore exothermic and 

from this heat the thermodynamic energy difference for the isomers was calculated to 

be 12 kcal/mol. This energy difference is due to unfavourable steric interactions in the 

cis state and the planar trans state allowing favourable orbital overlap.  

Figure 17. Bond lengths of azobenzene from crystal structures. 

Not only are there steric and electronic differences between isomers, but bond lengths 

also change. Most notable is the change in the N-C bond length from 1.45 Å in the cis

state to 1.41 Å in the trans. The average length of a C-N bond is 1.47 Å, shorter than 

usual bond in the trans isomer is due to increased orbital overlap.42 The C-N-N bond 

angle of the trans isomer is 1210
, very close to that of a trigonal planar molecule with the 

lone pairs in plane of the bond. The cis state cannot be planar as implied above (Figure 

17), due to steric constraints one of the aromatic rings is rotated by 400 with respect to 

each other.41

Heartly et al. later discovered that substitution of the phenyl rings has a pronounced 

effect on isomerisation and could increase the speed of the thermal reversion from the 

cis to the trans isomer.43 This effect was explained by proposing the formation of 

certain intermediates in the reversion pathway which favour additional single bond 

character between the nitrogen atoms, lowering the energy barrier to rotation (Figure 

18). 
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Figure 18. Substitution of the para position effects the thermal relaxation of azobenzene. 

trans-Azobenzene has an extinction coefficient of 22,000 M−1cm−1 for the π-π* transition 

and of 440 M−1cm−1 for the n-π* transition.44 The absorbance maxima and extinction 

coefficients of these bands vary widely according to the substitution patterns of the 

azobenzene.  

11..44..11 MMeecchhaanniissmm ooff ttrraannss ttoo cciiss ccoonnvveerrssiioonn

In order for the change in conformation of azobenzene to occur, the azo bond is 

required to behave more like an N-N single bond than an N=N double bond. One of 

the ways this can be achieved is by exciting an electron in the N=N double bond from 

the π bonding orbital to π* antibonding orbital, breaking the N=N double bond and 

allowing free rotation or the direct inversion around the remaining N-N single bond. 

The same effect can also be achieved by excitation of an electron in the non-bonding 

orbital to the π* orbital. The wavelength of light used to bring about these changes is 

dependent on the energy gaps between these two orbitals. This excited state can either 

then relax back into the trans state or rotate and relax into the cis state with an 

efficiency dependant on the lifetime of the excited state and the rate of rotation. 

Relaxation from the exited state cis to the ground state trans isomer is temperature 

dependent and requires a collision with a solvent molecule which receives the excess 

energy. The relaxation of azobenzene has been extensively modelled45,47,48,49 and 

experimentally observed to be dependent both on the solvent and substitution of the 

azobenzene with the choice of solvent strongly influencing the mechanism of 

conversion.46

A range of factors affect the rate and extent of photo-conversion of azobenzene from 

the trans to cis exited state. It is not typically possible to achieve complete conversion 

to the cis isomer due to competing photo-conversion from cis to trans state. The 
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absorbance band of the cis state is usually not significantly altered by the change in 

conformation so that the π-π* or the n-π* band of the cis isomer can still be excited by 

the light used to from it from the trans isomer, causing the back conversion and a 

photostationary state with an equilibrium mixture of both isomers. Complete 

conversion is possible where absorbtion bands do not overlap; azobenzene can be 

forced to relax from the cis to trans isomer by irradiation of 450 nm light, which causes 

n-π* excitation of an electron from the cis N=N bond allowing free rotation around the 

N-N bond. It is also possible to obtain a fully trans state of azobenzene by heating an 

azobenzene in solution in the dark until it has fully relaxed.  

One of the major problems with the use of photoswitches in general is susceptibility to 

photo bleaching, where chromophores degrade after a number of conversion cycles. 

Azobenzenes show little photo bleaching under typical conversion fluxes and can be 

cycled multiple times without significant degradation of the switch. This could be due 

to the fast (picosecond) isomerisation, as the excited electronic state intermediate is 

extremely short-lived, leaving little time for side reactions to occur. 

11..44..22 SSoollvveenntt eeffffeeccttss oonn aazzoobbeennzzeennee ssppeeccttrraa

Ever since the discovery of azobenzene it has been known that solvents can affect the 

UV absorbance spectra of azobenzenes by changing the peak shape as well as their 

relative absorbance maxima.50 Solvents can also alter the rate of trans to cis 

isomerisation, cis to trans reversion and isomer ratio of the photo-stationary state. For 

example, the rate of relaxation of cis-4-diethylamino-4’-nitroazobenzene is 10,000 

times faster in dimethylsulfoxide than in cyclohexane.51 The magnitude of solvent 

effects are dependent on the substitution of the azobenzene and the interaction of the 

substituents with the solvent. Solvents can also interact differently with cis and trans

isomers due to the change in dipole moment brought about by the isomerisation.  

11..44..33 TTuunniinngg tthhee aabbssoorrbbaannccee ssppeeccttrruumm ooff aazzoobbeennzzeennee

Many properties of azobenzenes can be tuned for particular applications; for example, 

an application may require particularly efficient conversion from the trans to cis state 

or vice versa or to avoid the use of high energy UV light sources that are damaging to 

cells. A pair of azobenzene photoswitches may also be modified to have sufficiently 

different absorbance maxima to allow their simultaneous use as a pair of different 

switches. Azobenzenes may also be tuned to avoid deleterious solvent effects or to 
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enhance environmental effects such as that of pH on their absorbance spectra. The 

most commonly used azobenzene photoswitches require irradiation by UV light to 

cause the conversion from trans to cis state. This can cause a number of issues when 

used for biological applications. Exposure of cell to UVA light (315–400 nm) can lead to 

damage from the formation of reactive oxygen and nitrogen species such that high 

exposure can be cytotoxic.52,53 Although UVA is not directly absorbed by the DNA, it is 

absorbed by riboflavins, porphyrins and haem-containing proteins that can  form 

singlet oxygen and superoxides which may damage cell membranes, other proteins or 

DNA.52 However, UVA is not as damaging as the other wavelengths of UV light as UVC 

(220-280 nm) and UVB (280-315 nm) which can directly damage DNA by forming 

mono-addition and di-addition products of pyrimidine bases. Not only are these 

wavelengths of light harmful to cells and organisms, organisms have evolved 

mechanisms to protect themselves from harmful UV irradiation including production 

of melanin and other conjugated molecules that absorb UV light. Such absorbance of 

this range of light would lead to difficulty in using azobenzene in vivo. 

11..55 EEffffeeccttss ooff ssuubbssttiittuuttiioonn oonn aazzoobbeennzzeennee

11..55..11 SSuubbssttiittuuttiioonn ooff aazzoobbeennzzeenneess wwiitthh hheetteerrooaattoommss aatt tthhee oorrtthhoo ppoossiittiioonn

Figure 19. Ortho amino substitution.

Examples of substitution at the ortho position with respect to the nitrogen of the 

azobenzene illustrate the magnitude of effects on the half-life and cis to trans

relaxation rates. 
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Table 1. Table of the effects of ortho amino substitution on azobenzene.54

Photoswitch λmax-* (nm) [a] (M-1 cm-1) t1/2[a] (s) t1/2[b] (s) 

25 470 13,900 3.3 ± 0.3

26 488 13,000 0.8 ± 0.1

27 445 10,180 6.0 ± 0.2

28 513/537 0.7 ± 0.1

29 435 9,610 302 ± 4 8.1 ± 0.2

30 437 10,440 210 ± 10 27 ± 1

[a] in 70% acetonitrile/water, sodium phosphate buffer (1 mM, pH 7.0) 20 oC.  

[b] in sodium phosphate buffer (10 mM, pH 7.0) 20 oC. 54

Various ortho-amino substituents (Table 1) substantially red-shift the -* absorbance 

band into visible wavelengths and can vary half-life of the cis azobenzene by a factor of 

~100. However, these relaxation times remain relatively fast in comparison to cellular 

processes so these switches are poorly suited for in vivo control over longer lifetime cell 

functions. These fast rates are primarily caused by the presence of a nitrogen atom in 

the para position as explained in depth later (section 1.5.3). Faster switching 

azobenzenes that contain a para nitrogen atom have a variety of uses such as 

controlling nerve cell messages 55 and the control of potassium ion channels.56

Figure 20. Compound 31 N,N'-(diazene-1,2-diylbis(3-methoxy-4,1-phenylene))diacetamide and 

compound 32 N,N'-(diazene-1,2-diylbis(3,5-dimethoxy-4,1-phenylene))diacetamide.57

In marked contrast to ortho amino substituents, the addition of ortho methoxy 

substituents (Figure 20.) resulted in 31, whose cis isomer has a half-life of 2.4 days at 25 
0C in sodium phosphate buffer (25 mM, pH 7.0).57 The switches also show a shift in the 



Introduction 

19

n-π* absorbance band shift in the cis isomer relative to the trans isomer with a 

separation between the n-π* maxima of 35 nm for tetra-ortho-methoxyazobenzene 32. 

The n-π* band of trans-32 is temperature sensitive, but at 25 oC the separation between 

the n-π* bands of the isomers allows conversion of 100% trans to 70% cis by irradiation 

by 530-560 nm light. cis-32 can then be switched back to the 80% trans by irradiating 

with UV light. Lowering the polarity of the solvent greatly increases the half-life of cis-

32, probably due to it destabilising the azonium ion formed by protonation of the azo 

bond (Figure 21). 

Figure 21. 1,1'-((Diazene-1,2-diylbis(3,5-dimethoxy-4,1-phenylene))bis(piperazine-4,1-diyl))bis(2-

chloroethan-1-one) Azonium ion stabilization. 
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Protonation causes a large change in the UV/visible absorbance spectrum of 33,58

including a 5-fold change in extinction coefficient between pH 4.8 and 8.2 (Figure 22). 

Tetra-ortho-methoxyazobenzenes species are highly susceptible to glutathione 

reduction, an issue discussed in more depth later (Section 1.5.2).  

Figure 22. pH dependent UV/visible absorbance spectra of compound 33.58

To overcome this pH sensitivity and the vulnerability to glutathione reduction, the 

methoxy groups were replaced with thioethers (Figure 23).59 The sulfur atom less 

readily forms hydrogen bonds to support the formation of azonium ions, and the 

resulting azobenzene 34 is not reduced by glutathione (10 mM, 37 0C, 12 hours) and, 

unlike 33, 34 shows no sign of photo bleaching.59

Figure 23. N,N'-(diazene-1,2-diylbis(3,5-dithioether-4,1-phenylene))diacetamide.59
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11..55..22 TTeettrraa--oorrtthhoo--hhaallooaazzoobbeennzzeenneess

The observation that ethers and thioethers could produce such long-lived cis isomers 

and blue shifted absorbance maxima led to the substitution at the ortho position with 

halides to determine their effect on n-* band separation. Substitution with fluorine in 

all four ortho positions not only separated the n-* absorption bands of the cis and 

trans isomers, but also increased the quantum efficiency of conversion via absorption 

in the n-* band.60 A range of tetra-ortho-fluoroazobenzene derivatives were 

subsequently synthesised and their properties investigated (Figure 24).61

Figure 24. Tetra-ortho-fluoroazobenzene derivatives.61

Among them are the first examples of azobenzenes with a separation between the n-π*

bands of the trans and cis isomers greater than 50 nm (Figure 25).61
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Figure 25. UV/visible specta of cis-36 (solid red) and trans-36 (solid blue) photostationary states and 

calculated spectra for pure states (dashed red and blue, modified from reference 61). 

They also have extremely long lived cis isomers with cis-39 in having a half-life of 700 

days at 25 oC in dimethylsulfoxide.61

Figure 26. Tetra-ortho-halo substituted azobenzenes. 

Other tetra-ortho-haloazobenzenes 41 and 42 show a similar band separation to that of 

the tetra-ortho-fluoroazobenzene, albeit with shorter cis isomer half-lives.62 The 

addition of the para-chloroacetamide red-shifts their absorption spectra resulting in 41 

and 42 photoswitching under irradiation with 600-630 nm light.62 Calculations suggest 
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that the cis isomers of 41 and 42 are long lived due to the steric bulk of the halogens 

raising the barrier to interconversion which also makes the trans isomers non-planar, 

as previously observed with tetra-ortho-alkyl substituents.63 However, these 

calculations cannot explain the extended half-life of cis-40.61

Figure 27. Non-symmetrical difluoroazobenzene 50 and symmetric difluoroazobenzene 44.60

The difluoro symmetric and non-symmetric azobenzenes (Figure 27) show reduced 

band separations of 28 nm and 32 nm respectively. These results in a greater proportion 

of cis isomer at equilibrium for 43 than 44 due its larger band separation.60

Figure 28. 2,6-Difluoro and tetra-2,2’,6,6’-fluoroazobenzenes.

This is also observed for the non-symmetrical di-ortho-fluoro 46 which has a band 

separation of 44 nm compared to 42 nm for tetra-ortho-fluoro substituted 45 (Figure 

28), but these show widely varying proportions of their cis isomers at their 

photostationary states (90% and 61% respectively).60

Figure 29. 1,2-Bis-(2-(trifluoromethyl)phenyl)diazene. 

Exchanging the fluorine atom for trifluoromethyl groups which are solely electron 

withdrawing, with no back donation from the p orbital of the trifluoromethyl 
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(Hammett constants of σpara(CF3) = 0.54 verses σpara(F) = 0.06) resulted in 47, with a 

reduced n-* band separation of 24 nm. However, these absorption bands are also very 

broad and did not allow selective isomerisation.60 Effective band separation is therefore 

not solely dependent on the electron withdrawing nature of the ortho substituents. 

11..55..33 AAddddiittiioonnaall eeffffeeccttss ooff ppaarraa ssuubbssttiittuueennttss

Electron withdrawing substituents para to the azo group increase the separation of the 

n-* bands of 48 to more than 40 nm by blue-shifting the trans n-π* absorbance band 

and red-shifting the cis n-π* band.62 This effect lowers the energy of the LUMO of the 

cis isomer more than that of the trans form.60 Electron donating groups have the 

opposite effect on the band separation; nitrogen substituents donate elections into the 

azobenzene increasing the energy of the LUMO of the cis isomer less than that of the 

trans form.60

Figure 30. Azobenzene para substitution.64

Para-substituent maxtrans(nm) Trans-cis conversion (%) Half-life (s) 

-CH2- 339 93 2.39 x 105

-O- 360 79 1.59 x 104

-NH- 429 34 3.30 x 102

-S- 377 77 1.42 x 104

Table 2. Effect of para heteroatom substituents on the stability of the cis isomer of azobenzenes. 64

 A para nitrogen substituent (Figure 30) causes the greatest red-shift (Table 2), this is 

at the expense of a greatly reduced cis isomer half-life and reduced conversion 

efficiency at its photostationary state. Sulfur and the oxygen do not shift the 

absorbance band as far as the nitrogen, but result in 100-fold longer cis isomer half-

lives as well as roughly double the conversion efficiencies. The presence of a carbon at 

the para position blue shifts the n-π* absorbance band, but also results in a 1000-fold 

increase in half-life compared to nitrogen. 
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Figure 31. The nature of para substituents can have strong effects on the half-lives of cis isomers. 

Another example of this was described by Wooley et al. (Figure 31);65 changing the para

substituent from the acetamide of 49 to methylene group of 50 elongated the half-life 

of the cis isomer from 8 minutes to 43 hours at 25 oC  (5 mM phosphate, pH 7). This 

300-fold difference transforms a photoswitch with limited in vivo applications into one 

that can remain active over the lifetime of a cell.  

The introduction of a para thioether substituent causes a large red-shift in the 

absorbance maxima, but reduces the half-life of the cis isomer.66 The shift in 

absorbance maxima is so large that photoswitches 51 and 52 could simultaneously be 

excited with different narrow bandwidth light sources.66

Figure 32. Installation of a thioether in the para position of 51 results in 52 exhibiting very different 

optical properties.66
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Figure 33. UV/visible spectra for 52 bound to DNA in buffer (10 mM phosphate pH 7.0, 100 mM sodium 

chloride) for the trans (solid) and irradiated cis rich states (dashed).66

Table 3. Half lives of cis isomers of 52 and 51 bound to DNA (5 m in 10 mM phosphate, pH 7, 100 mM 

sodium chloride).66

Azobenzene
derivative

Trans at 
PSS

t1/2 of cis [h][c]

60 oC

52 48.3 6.4

51 50.9 25

The physical and optical properties of some azobenzenes are highly pH sensitive even 

without direct stabilisation of the azonium ions discussed in section 1.5.1. As for ortho 

amino substituents 25-30, protonation of the basic nitrogen at the para position of 53

causes a change in the electronic structure altering the absorbance; a shift of up to 

100 nm can be induced by varying the pH of the system. Not only does this alter the 

absorbance maxima of 53, it also significantly changes the half-life of the cis isomer of 

this switch. 

Figure 34. Azobenzene 53 has pH dependent UV/visible absorption spectra.67
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11..55..44 PPuusshh--ppuullll aazzoobbeennzzeenneess

Long-lived cis-isomers are ideal for controlling cell functions that take large 

proportions of the life cycle of a cell, such as transcription and some protein binding 

events, but azobenzenes with much shorter half-lives are desirable to control fast cell 

functions such as those of ion channels. Such azobenzenes are often non-symmetrical 

“push-pull” systems that have one electron deficient ring and one electron rich ring. 

This lowers the barrier to thermal revision giving short half-lives for the cis isomers.  

11..55..55 GGlluuttaatthhiioonnee rreedduuccttiioonn

Figure 35. Glutathione(64), an intracellular redox buffer, reducing compound 54.68

Cells maintain a reducing potential by the balance of oxidised and reduced glutathione 

(Figure 35), whose reduced form can react with azo bonds.68 The rate of azobenzene 

reduction is highly dependent on the nature of the substituents, especially at the ortho

positions. For example, the tetra-ortho-methoxy substituted azobenzene 38 has a half-

life of approximately one hour in the presence of reduced glutathione (10 mM)57 due to 

the methoxy groups stabilising the azonium species as shown in section 1.5.1. Tetra-

ortho-halo substituted azobenzenes show increased stability to glutathione reduction 

due to the steric bulk of the chloro and bromo  substituents blocking the approach of 

glutathione to the azo bond.62

11..66 AAzzoobbeennzzeennee ttoo ccoonnttrrooll bbiioollooggiiccaall aaccttiivviittyy

11..66..11 PPhhoottoopphhaarrmmaaccoollooggyy

Azobenzenes can also be embedded into the structure of known drugs (Figure 36).69
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Figure 36. Colchicine and photoswitchable colchicine mimic in the active and inactive state.69

The change in conformation of azobenzene in from can be used to control the binding 

of the colchicine-mimicking drug molecule 59.69 Dark state trans-59  has an EC50 of 

38 uM, which falls to 0.5 uM on formation of cis-59 by exposure to 390 nm light. This 

property of 59 has been used to control mitosis and cell death,69 and this concept of 

incorporating azobenzenes into existing drugs has also been applied to control G-

protein receptors.70

11..66..22 AAzzoobbeennzzeennee aass aa sstteerriicc sswwiittcchh

Figure 37. Photo responsive tandem zinc fingers.71

To exert control over a peptide or protein conformation, azobenzene needs to be 

covalently attached to it in such a way as to act as a conformational switch. A single 

point of attachment was used to conjugate azobenzene to the tail of a protein 
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consisting of two zinc fingers.71 Isomerisation of the azobenzene altered the binding of 

the zinc fingers to DNA by a factor of 2 in a gel mobility shift assay. Circular dichroism 

(CD) spectroscopy of the protein with the photoswitch as its cis and trans isomers 

revealed little difference in the conformation of the protein, implying a simple steric 

effect and not a structure change upon azobenzene switching. A pendant azobenzene 

installed at the end of a polypeptide has also been used to control -helical character 

of poly-L-glutamates.72 Changes in the CD spectra signals at 208 and 222 nm indicative 

of -helical character were observed, although they were strongly influenced by the pH 

of the solution. The pKa of the glutamates were found to be dependent on the 

conformation of the azobenzene; when azobenzene was present as its trans isomer they 

had a pKa of 6.8 which fell to 6.3 with the cis isomer.72 In addition, in the dark state the 

presence of the hydrophobic azobenzene caused the peptides to act as surfactant, but 

once irradiated the shape change lead to a reduction in these hydrophobic interactions 

and the formation of an -helix.  

Figure 38. Azobenzene amino acid 60 used for incorporation into the homodimer interface of BamHI 

and peptide backbones. 

An amino acid with an azobenzene sidechain (Figure 38) was incoprorated into the 

restiction enzyme BamHI in a position where its sidechain formed part of the 

homodimer interface. The negative charge of the carboxylate group reduced 

endonuclease activity by causing unfavorable interactions with the nonpolar dimer 

binding site resulting in the breaking of the homodimer. These interactions were 

alleviated by photoswitching increasing activity of the enzyme.73
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11..66..33 GGeenneettiiccaallllyy eennccooddeedd iinnccoorrppoorraattiioonn ooff aazzoobbeennzzeennee

Figure 39. Photo switching of(S)-2-amino-3-(4-(phenyldiazenyl)phenyl)propanoic acid (61).75

Azobenzene can be incorporated into proteins synthesised by E. coli using an 

orthogonal tRNA that recognises a less-used stop codon and a tRNA synthetase capable 

of priming this tRNA with an azobenzene-containing amino acid.75 This allowed the 

direct incorporation of azobenzene into catabolite activator protein 9 (CAP 9, a 

transcription factor) which showed a four-fold difference between the binding affinities 

of proteins with azobenzenes in the cis and trans states (Kb = 4.0 x 106 M to Kb  = 1.6 x 

107 M) for DNA. 

This technique of incorporating unnatural amino acids into biosynthesis was further 

developed by Hoppmann et, al. who used an  azobenzene with a vinyl group that could 

be incorporated into proteins by solid state peptide synthesis76 or by incorporation by 

E. coli.77 The vinyl group was then used to perform an intramolecular cyclisation with 

the sidechain of a cysteine residue with a i,i+4 relationship to the azobenzene amino 

acid using a thiol-ene click reaction. 
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Figure 40. Azobenzene amino acid 63 contains a pendant vinyl group for forming a second point of 

attachment to a peptide via intramolecular thiol-ene click chemistry.76

This thiol-ene reaction unexpectedly caused the oxidation of the sulfur of the cysteine 

sidechain to a sulfoxide, but nevertheless upon irradiation with 360 nm light a 

conformational change was observed by CD due to trans to cis isomerisation.76

Figure 41. Conformational control of protein structure by azobenzene.74
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Azobenzenes can also be placed directly between two proteins or peptides so that 

isomerisation causes changes in the secondary and tertiary structure (Figure 41). This 

approach was demonstrated by Trauner et al, with the cis isomer of a custom designe 

peptide having a binding EC50 of 262 nM whilst the trans had an EC50 of 994 nM to a 

GLP-1R protein.74

11..66..44 CCoonnjjuuggaattiinngg aazzoobbeennzzeenneess ttoo ppaaiirrss ooff ccyysstteeiinnee ssiiddeecchhaaiinnss

The shape of a protein can determine its binding affinity for other proteins, DNA, etc. 

so influencing the structure can control the binding affinity. In order to control this 

structure an azobenzene needs to be incorporated in an appropriate position to control 

key structural elements of the protein. An -helix is a coil of amino acids stabilised by 

the hydrogen bonding of carbonyl groups to amide groups four residues further along 

the polypeptide chain which fixes the helical register at 3.6 residues per turn. The 

hydrophobicity of the protein backbone is concentrated at the centre. The tendency of 

a peptide or protein to form -helices is dependent on its constituent amino acids. 

Amino acids such as alanine, lysine, methionine, glutamate and leucine favour helical 

structure as they support hydrogen bonding of the carbonyl to the amide nitrogen 

without disruptive steric bulk. Proline, for example, is highly disruptive as it lacks an 

amide proton to form hydrogen bonds.

Figure 42. Protein -helix showing hydrogen bonds (left) helical structure (right). 

3.6 Residues
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In order to achieve tighter control of the conformation of a -helical peptide, 

azobenzene can be bound to two points of the protein or peptide so that the -helix is 

encouraged to form or unfold with the change in shape of the azobenzene. This can be 

achieved in a number of ways, but most commonly two cysteine residues are 

incorporated into the protein or peptide of interest by site directed mutagenesis or 

solid phase peptide synthesis. The helical register causes the amino acid sidechains to 

point in the same direction every 3.6 amino acids, so the i,i+4, i,i+7 and i,i+11 residue 

pairs sidechains project along the same face of the -helix. The spacing between 

cysteine residues used to attach the photo switch is chosen depending on the desired 

outcome of the switching. Two directions of control are possible; closer i,i+4 or i,i+7

cysteine spacings are often used, typically with chloroacetamidoazobenzenes, so that 

trans azobenzene disfavours formation of an -helical conformation. Conformational 

changes upon isomerisation to cis azobenzene favour the peptide to adopting a more 

-helical conformation (Figure 43).78

Figure 43. Azobenzene attached to i,i+7 spaced residues. 

A wider i,i+11 spacing allows switching in the reverse sense, where the dark state 

azobenzene stabilises the -helix, but irradiation reduces this stabilisation (Figure 44). 
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Figure 44. Azobenzene attached to i,i+11 spaced residues.  

The residues in between the anchor points have little or no effect on the stability of the 

cis isomer, even large sidechains such as those of valine and isoleucine show no 

appreciable disadvantage over alanine for the i,i+7 spacing.79 Residues lying between 

the cysteines usually point away from the cross linker, limiting their steric impact.79

Figure 45. 4-(Bromomethyl)azobenzene reacting with thiols.80

(Bromomethyl)azobenzene 70 was used to control protein translocation by the SecYEG 

complex by SN reactions with the sidechains of cysteine residues.80 Azobenzene 68 is 

poorly soluble in water, so the protein and azobenzene were dissolved in dimethyl 

sulfoxide whereupon a rapid SN reaction took place. Using an excess of 68 with a 

protein with a single available cysteine resulted in a pendant crosslinker upon which, 

after purification to remove excess unreacted 68, could then be reacted with a second 

protein.80 Haloacetamidoazobenzenes (Figure 46) have become the most popular 
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choice for the attachment of azobenzene to proteins due to their stability to buffered 

aqueous solutions and selective reactivity with cysteine sidechains once the pH of the 

solution is raised to 8.5.65,81,82

Figure 46. An azobenzene bearing an iodoacetamide anchoring group. 

Reactions of 70 with peptides were performed in a solution of thirty percent dimethyl 

sulfoxide in water to overcome the limited solubility of the crosslinker. The half-life of 

cis-70 is relatively short, 12 minutes at 25 0C,65 and complete conversion to the cis state 

is not possible due to the overlap of UV spectra of the cis and trans isomer. However, 

once attached to a peptide containing i, i+11 spaced cysteines, changes in the -helical 

character of the peptide upon irradiation were observed by CD spectroscopy with a 

change in degree of helicity from 65% in the trans state to only 35% helicity in the cis

state.81

One of the major problems with planar cross linkers is their often poor solubility, which 

can limit the scope of the peptides that azobenzene can be attached and remain soluble 

in water. The water solubility of azobenzene can be improved by the addition of polar 

groups so that even moderately hydrophobic peptides remain soluble even after the 

cross linker has been attached. As a result 71, whose sulfonate groups render it water 

soluble (Figure 47), has become the most widely used azobenzene switch, allowing 
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simple attachment of the cross linker to a peptide under mild conditions (50 mM 

phosphate buffer, pH 8.5).4,81

Figure 47. Water soluble, cysteine reactive 3,3'-bis(sulfonato)-4,4'-bis(chloroacetamido)azobenzene.4

The sulfonate groups have a positive effect on the half-life of the cis isomer of the switch 

compared to its unsubstituted equivalent when attached to a test peptide (Fk-11, Table 

4). 

Table 4. Half-lives of the cis isomers of Fk-11-71 and Fk-11-70. 

Half-life of cis isomers (minutes)

25 oC 37 oC

Fk-11-71 35 +/- 2 12 +/- 0.5

Fk-11-70 12.3 +/- 2 25 +/- 0.2

This improvement in half-life is thought to be a result of a larger barrier to rotation, 83

a hypothesis supported by the fact that the sulfonated molecule forms an 85% cis

photostationary state after 5 minutes irradiation by 370 nm light (5 mW). The main 

two drawbacks with this switch are the UV light required to switch the azobenzene 

from the trans to the cis state and the relatively short half-life of the cis state at 

physiological temperatures. The later increases the frequency at which cells need to be 

irradiated to maintain significant proportions of the cis isomer.83 Photocontrol of -

helical peptides has also been used to target proteins that control cell apoptosis.12 Small 

16-mer peptides were modified with different spacing of i,i+7 and i,i+11. As explained in 

section 1.62, these allow the control of the degree of -helicity once conjugated with a 

suitable azobenzene crosslinker, which is reflected in their binding affinities for 

Bcl-xL.12
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Table 5. Binding affinities of Bak-7-74 and Bak-11-74 binding to Bcl-xL.  

Binding affinity (nM)
Peptide Bak-i,i+11 Bak-i,i+7

Non-crosslinked 328 134

Crosslinked (dark) 21 825

Crosslinked (irradiated) 48 42

The binding affinity of the Bak i,i+7 peptide changes by a factor of 20 even with 

incomplete switching of the cross linker at the photostationary state. Whilst 71 has now 

been found to be useful in controlling the conformation of many peptides, the sulfonate 

groups were found to be undesirable when using this switch to control interactions 

with nucleic acids as the negative charges can distort these positively charged peptides 

away from the optimum geometries for binding.84

11..77 EExxaammpplleess ooff pphhoottooccoonnttrrooll ooff ttrraannssccrriippttiioonn uussiinngg aazzoobbeennzzeenneess

Figure 48. bZIP Proteins binding to DNA.85

Leucine zipper proteins feature a pair of -helices that form a coiled coil. Such 

structures are often found at dimer interfaces, eg. associating a pair of DNA-binding 

regions so that both bind simultaneously in the major groove (Figure 48). Since the 

combined avidity of the two proteins is greater than their individual affinities, DNA 

binding can be controlled by controlling the dimer formation. Woolley et al.85,86 have 

shown that azobenzene isomerisation can control protein secondary structure and 

consequently DNA binding. 
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Controlling the binding of transcription factors is not the only way to use azobenzene 

to control gene expression; DNA itself can be modified with azobenzenes to control 

duplex formation.87,88 For example, it has been shown that DNA modified with d-

theroninol linkers (Figure 4966) transcribe normally with trans azobenzene but cis 

azobenzene can block the T7 RNA transcription site.89 When two of these azobenzene 

are placed prior to the T7 promoter region in DNA in the cis, cis state only 10 % of the 

normal level of transcription was observed compared to greater than 70% in the trans, 

trans state.89

Figure 49. D-Theroninol azobenzene derivative.66



Chapter 2
Zinc Finger Peptides
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2 Zinc finger peptides  

22..11 DDNNAA ttrraannssccrriippttiioonn
Cell function is largely controlled by protein concentrations and enzyme activities. 

Protein concentrations can be controlled by their rate of production or degradation. 

Controlling the rate of production is less metabolically wasteful and can be regulated 

by external or internal stimuli. Gene expression can be controlled by a large variety of 

proteins including the lac repressor for prokaryotes and CAP proteins (catabolite 

activator protein) for eukaryotic cells.  

Figure 50. Graphical representation of DNA transcription (modified from Ref. 90) A) DNA strands 

separate locally B) A transcription factor binds its cognate DNA sequence C) RNA polymerase binds to 

the transcriotion factor D) RNA polymerase begins to assemble an RNA strand based on the DNA 

template. 

Transcription is the process by which DNA in transcribed to pre-mRNA. This pre-

mRNA is processed to mRNA which can stimulate further transcription or be translated 

to the required protein. In eukaryotic cells transcription is initiated by the binding of a 

protein called a transcription factor (Figure 50) to a specific DNA sequence as 

A B

DC

A B

DC
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controlling expression of the well-defined subsets of a eukaryotic genome that define 

cell identity and function by prokaryote-style repressors would be very wasteful. 

However, there are some DNA sequences that are transcribed without the need for 

transcription factors as they contain a promoter site which directly induces RNA 

polymerase binding and transcription.91 These sequences typically encode for proteins 

that need to be constantly expressed for cell function, but they are often present at 

different concentrations at different stages of the cells lifetime with their expression 

level tightly controlled by repressors.  

Prokayrotes contain a single DNA-dependent RNA polymerase, a 390 kDa complex 

consisting of 5 core subunits.92 Together with the transcription factor, these six sub-

units make up the RNA polymerase holoenzyme. Unlike its eukaryotic equivalents, 

which pause when a mismatched base is added and can then reverse and remove errors, 

this complex does not contain a separate proof-reading subunit. The polymerase is 

therefore relatively error-prone, inserting the wrong base pair roughly every 105 to 106

bases. This limited fidelity is less critical for RNA than for DNA synthesis as mRNA is 

eventually broken down and the nucleotides recycled. The genome in prokaryotic cells 

is much smaller than that of the eukaryotes and as they lack a nucleus, transcription of 

DNA and translation of mRNA both occur in the cytoplasm. Genes encoding metabolic 

pathways in prokaryotes are typically found grouped together in the DNA. This allows 

expression of the entire group in a single transcript and leads to a single point of control 

over a range of proteins. 

Eukaryotes contain three RNA polymerases; RNA polymerase I binds directly to 

promoters in the gene sequence to synthesise the RNA component of ribosomes and 

polymerase III makes tRNA and some small specialized RNAs. RNA polymerase II is 

the general purpose polymerase; it is much more complex than the E. coli polymerase 

but they share some highly conserved structural features. This polymerase is not active 

in the absence of a transcription factor. 

22..11..11 PPrrookkaarryyoottiicc ttrraannssccrriippttiioonn ccoonnttrrooll

The extent of protein expression is controlled by the availability and activity of mRNA 

with transcription factors controlling the rate at which the RNA polymerase is recruited 

to particular promoter sequences to produce mRNA. Transcription is principally 

controlled by moderating the binding of the transcription factor to the promoter region 
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of the DNA or to the RNA polymerase. For example, the sigma 70 subunit (a prokaryotic 

transcription factor) of E. coli RNA polymerase binds a conserved DNA sequence at 

several positions before the start site of transcription. The spacing of these binding 

positions define the E. coli transcription start position; the first is at -10 with respect to 

the start of transcription at a 5`-TATAAT-3` sequence and the second is found at 

position -35 at a  5`-TTGACA-3` sequence. These sites are highly conserved but do show 

some variation between different strains of E. coli. Variation from the consensus 

sequence among E. coli genes can also impose transcription control, as a single site 

mutation can affect the binding of the sigma 70 subunit and vary gene expression by 

several orders of magnitude.92 Other proteins can either activate or repress 

transcription by binding to these consensus sequences. For example, when glucose 

levels are low cAMP is formed that binds to the catabolite activator protein. This 

protein can bind to promoters within the lac operon to increase the transcription of 

enzymes necessary for the digestion of lactose, but this site is blocked by the lac 

repressor protein which binds to the lac promoter site between the RNA polymerase 

binding sites preventing RNA polymerase binding. If lactose is present, it binds to the 

lac repressor protein which then dissociates from the DNA, allowing transcription to 

occur. This combination of interlocked regulatory proteins ensures that enzymes 

necessary to metabolise lactose are only produced when glucose is absent and lactose 

is present. Transcription can also be repressed by proteins binding further downstream 

blocking the RNA polymerase as it precesses along the DNA 

22..11..22 EEuukkaarryyoottiicc ttrraannssccrriippttiioonn ccoonnttrrooll

In eukaryotic cells expression is mainly controlled by the affinity of transcription 

factors for their DNA target and their affinity for, and ability to, organise complexes 

with the RNA polymerase holoenzyme. Transcription is also strongly influenced by the 

acetylation or deacetylation of the histone proteins that DNA is wound around. 

Acetylation reduces the affinity of DNA to histone proteins increasing the availability 

of sequences at these sites to RNA polymerases. Conversely, deacetylation increases 

binding of DNA to histone proteins reducing the availability of sequences to RNA 

polymerases. Transcription factors can also recruit cofactor or corepressor proteins to 

the DNA to increase or decrease mRNA production.  
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Figure 51. DNA -helix. 

In order for transcription to occur, the RNA polymerase holoenzyme needs to bind to 

the DNA and form an active complex. DNA has three major helical forms, the most 

common of which is the “B DNA helix” which features 2 grooves (Figure 51). The minor 

grove exposes the glyosidic bonds of the sugar phosphate backbone and the major 

groove exposes the edges of the bases.92 In B DNA the minor grove is 5 Å wide and 8 Å 

deep, not large enough to accommodate an -helix or other protein secondary 

structure elements, and mainly exposes functionality conserved by all DNA bases. In 

contrast, the major grove is 12 Å wide and 8 Å deep, large enough cavity to fit an -

helix, and contains base specific hydrogen bond acceptor and donor patterns that allow 

bases to be recognised without the need for significant a conformational change of the 

DNA helix. 
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2.2 Zinc finger transcription factors 

The class of transcription factors examined during this project are called zinc finger 

transcription factors. Zinc finger transcription factors (ZF-TF) are a wide-ranging class 

of proteins that variously regulate individual genes or clusters of related genes. For 

example, the Snail family of ZF-TFs are thought to play a critical role in cell 

myogenesis.93 These transcription factors contain a number of individual zinc fingers 

(Figure 52), usually between four and six.  

Figure 52. A single Cys2His2 zinc finger is shown in blue with the sidechains of two cysteine and two 

histidine  residues coordinating a zinc ion (green).

Shown in Figure 52 is a single Cis2His2 type zinc finger made up of two short peptide 

strands and an -helix in a fold known as a --helix held together by the coordination 

of the zinc ion from which the fingers derive their name. The zinc ion is coordinated 

to the sidechains of two histidine residues of the -helix and two cysteine residues, one 

from each of the short peptide strands. In the absence of a zinc ion the peptide does 

not form an -helix and shows little if any binding affinity for DNA. Each individual 

zinc finger unit coordinates to three bases in an E-box transcription factor binding site. 

These three base pairs in the DNA are not sufficiently selective on their own but when 

between four and six zinc fingers are bound together in a chain, enough bases are 

contacted to select unique sites within the genome. Although there is some overlap 

between the DNA bases contacted by adjacent fingers, this can be seen as a modular 

design and has allowed the construction of functioning artificial zinc finger proteins 

with as many as eighteen separate zinc fingers. However, since overlap effects are not 

easily predicted large libraries of these modules have had to be created in order to get 

sequence specific recognition.94
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22..22..11 DDeessiiggnneedd zziinncc ffiinnggeerr pprrootteeiinnss

Zinc fingers have other uses besides transcription factors. When coupled to an 

otherwise non-selective restriction endonuclease such as the catalytic domain of FokI 

the resulting construct was used to reduce the expression of mutant Huntingtin 

protein, one of the major factors in Huntington’s disease, in mice.95

Figure 53. Zinc finger based FokI dimer binding.96

FokI restriction nuclease monomers are inactive and weakly associating and must form 

a dimer to cut DNA strands. The zinc finger binding to the DNA allows FokI to form 

an active homodimer at sites defined by the selectivity of the fused zinc finger and 

create double strand breaks (DSB, Figure 53). These fusions of zinc finger domain and 

a non-selective endonuclease are called zinc finger nucleases (ZFN).21,97 These breaks 

can then be repaired by the error-prone non-homologous end joining (NHEJ).98 Repair 

of DSB caused by ZFN can be used to effectively introduce mutations at the site of the 

double strand breaks.99 This error-prone repair can result in frame shifts in the coding 

DNA causing destruction of a start codon, stop codon or simply generating an incorrect 

protein product. The outcome of repaired DSB can be influenced by exogenously 

introduced DNA matching the overhang at the cleavage site allowing the introduction 

of designed DNA oligonucleotides into genes.99 Using tailored zinc fingers it is 

theoretically possible to selectively cleave at unique sites on the genome, but practically 

this technique is limited to palindromic target sequences by off target effects. However, 

it is possible to use two individual monomers with oligate heterodimer FokI catalytic 

domains, eliminating the need for a palindromic sequence and diminishing off-target 

effects, although it requires the identification of at least eight synergistic zinc 
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fingers.96,98 Zinc fingers like these have been shown to be intrinsically cell penetrating, 

avoiding a common pitfall of peptide therapeutics.98

22..33 PPhhoottoo aaccttiivvaatteedd zziinncc ffiinnggeerr ttrraannssccrriippttiioonn ffaaccttoorrss..

22..33..11 SSlluugg aanndd ssnnaaiill

Initial work to determine the viability of creating photoswitchable zinc fingers was 

carried out on peptides derived from a zinc finger transcription factor called Slug 

(formally Snail2). This transcription factor was attractive because it plays a role in a 

number of functions in cell development,93 most notably in the formation of neural 

crest cells,100 but it also controls the expression levels of E-cadherin in adult cells. E-

cadherin is a calcium dependent transmembrane protein that is responsible for 

adhering cells together. The level of expression of E-cadherin is one of the main factors 

that controls the transformation a benign cancer cell to a malignant cancer cell.101,102 If 

a photo-responsive transcription factor targeting Slug promoter sequences could be 

constructed then it might be possible to trigger epithelial to mesenchymal transitions 

(EMT) and contribute to the debate over the role of EMT in metastasis.  

22..44 EExxiissttiinngg pphhoottoo aaccttiivvaatteedd zziinncc ffiinnggeerr ppeeppttiiddeess

Several photo-activated zinc finger nucleases have been reported, the most common 

being photo caged zinc finger nucleases103 using, for example, an ortho-nitrobenzyl 

group as a bulky protecting group to prevent enzyme activity.21 When subsequently 

removed with UV irradiation, the completely inert protein was converted into one with 

70% of the activity of the wild type species.4 Unfortunately, irradiation of ortho-

nitrobenzyl groups releases nitrate by-products which can be toxic to some cells.10

Combined with the harmful UV light these by-products significantly reduce cell 

viability. 
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Figure 54. Photo-decaging of a tyrosine residue. 

This process only allows for the selective activation, not deactivation of the nuclease; a 

drawback common to all decaging procedures. As a single -helix is primarily 

responsible for ZF-TF binding to DNA  it was chosen for modification to allow 

bidirectional control using an azobenzene photoswitch using an i,i+7 cystiene spacing 

for low background activity.  

22..44..11 DDeessiiggnn ooff tthhee SSlluugg ffiinnggeerr ppeeppttiiddeess

The initial aim of the project was to take the zinc finger transcription factor and excise 

only the residues from the -helix that bind in the major groove of DNA. The wild type 

Slug zinc finger protein contains four canonical Cys2His2 zinc fingers plus a fifth 

atypical zinc finger (Figure 55).  

MPRSFLVKKH FNASKKPNYS ELDTHTVIIS PYLCESYPMP VIPKPEILTS 
GAYSPITVWT SAVPFHSPLP SGLSPLTGYS SSLGRVSPLP SSDTSSKDHS 
GSESPISDEE ERLQPKLSDP HAIEAEKFQC NLCNKTYSTF SGLAKHKQLH 
CDAQARKSFS CKYCDKEYVS LGALKMHIRT HTLPCVCKIC GKAFSRPWLL
QGHIRTHTGE KPFSCPHCNR AFADRSNLRA HLQTHSDVKK YQCKNCSKTF 
SRMSLLHKHE ESGCCVAH 

Figure 55. Sequence of the product of the SNAI2 gene in Homo sapiens (UniProtKB: O43623). The 

chosen DNA-binding helices are highlighted in red and blue.
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The Slug sequence was homology modelled onto the archetypal zinc finger ZIF268 

(PDB 1AAY)  using SwissModel online tools and the fingers that aligned most closely 

to the ZIF 268 sequence were selected for initial testing (Figure 56).  

Figure 56. Cartoon of SNAI2 zinc finger residues after homology modelling their sequence onto the 

structure of ZIF268 (PDB 1AAY). Full schematic (left) -helical regions only (right). 

The sheets and loops were removed as the photoswitch will fulfill the role of zinc ion 

in adding rigidity to stabilise the helix. This leaves only the short -helix regions that 

make the primary contacts with DNA bases during binding. Lysine and histidine 

residues in each helix were replaced by cysteines to create an i,i+7 spaced pair for the 

incorporation of a photoswitch (Table 6). These residues were chosen because they face 

away from the DNA binding faces and should not significantly affect the binding of the 

peptide to DNA. An additional peptide was designed with these two helices joined by 

a short linker (Figure 57). 

Figure 57 Double slug with photoswitch. 

Sequence
Slug Finger 1 WT Ac-AWLQGHIRTHTG-NH2
Slug Finger 1 Ac-AWCQGHIRTCTG-NH2
Slug Finger 2 WT Ac-RSNLRAHLQTHSD-NH2
Slug Finger 2 Ac-RSNCRAHLQTCSD-NH2
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Double Slug Finger Ac-AWCQGHIRTCTGEGGDRSNCRAHLQTCSD-NH2

Table 6. Sequences of Slug zinc fingers (Linker in red, original residues in blue, modified in green). 

The short glycine-based linker was chosen because of its flexibility to allow the -

helices to align with the major grove of the DNA. They were called Slug Finger 1, Slug 

Finger 2 and Slug Double Finger (Table 6). 

22..44..22 SSoolliidd ssttaattee ppeeppttiiddee ssyynntthheessiiss

Figure 58. Elementary steps of solid phase peptide synthesis. 

Peptides were assembled iteratively by solid phase peptide synthesis using standard 9-

fluorenylmethyloxycarbonyl (Fmoc) protected amino acid building blocks with 

orthogonal acid-labile sidechain protecting groups. This method of forming a peptide 

bond is approximately 95-99 % efficient, with diminishing returns limiting its practical 

application to between 20 and 60 amino acids.  
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Figure 59. Cleaving of peptide from a solid support with the use of TFA (where R is the peptide). 

Once chain extension was complete, the N-terminus was deprotected with piperidine, 

then the resin washed and amine protected as an acetamide using acetic anhydride. 

The peptide was then cleaved from the resin and the amino acid sidechains 

simultaneously deprotected with trifluoroacetic acid containing tri-iso-propylsilane 

(5%), water (5%) and 3,6-dioxa-1,8-octanedithiol (5%) scavengers (Figure 59). After half 

an hour, the reaction mixture was filtered to remove the spent resin and the TFA was 

removed under a stream of nitrogen and the residue dispersed in diethyl ether and 

chilled in a freezer overnight. Filtration provided a crude peptide mixture that was 

purified by HPLC as described in the methods section. Purified peptides were then 

checked by matrix-assisted laser desorption ionisation/time of flight (MALDI-TOF) 

mass spectroscopy to ensure they gave masses corresponding to the intended products 

(Table 7). 

Table 7. Expected and observed masses for Slug peptides. 

Calculated 
mass Observed mass

Slug Finger 1 1373.60 1373.44a

Slug Finger 2 1531.72 1533.89a

Double Slug Finger 3204.56 3185.85 [M –H2O] 
a) The masses vary due to the picking of the peak from the MALDI spectra 
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22..44..33 SSyynntthheessiiss ooff ssuullffoonnaatteedd aazzoobbeennzzeennee ccrroosssslliinnkkeerr

Figure 60. 3'-Bis(sulfonato)-4,4'-bis(chloroacetamido)azobenzene (71) was chosen for its water 

solubility. 

Figure 61. Scheme showing the synthesis of BSBCA (71).104

The first step is a selective acetate protection with acetic anhydride under acidic 

conditions. Selectivity is achieved because the sulfonate group changes the pKa of the 

amine in the ortho position, making it harder to protonate. In initial experiments 

performing the reaction below 90 oC resulted in a 50:50 mix of both the singly and 

doubly acetylated protected species, but rigorously maintaining the temperature at 

94 C greatly improved the ratio for the desired monoacetate. Oxidative coupling then 

converted two molecules of an aniline containing molocule (91) to azobenzene (Figure 

62). 
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Figure 62. Mechanism for oxidative coupling of anilines to form azobenzene. 

The reaction proceeds through oxidation of the amine by hypochlorite to a 

hydroxylamine, then to a nitroso group followed by condensation with another 

molecule of amine. The acetate protecting groups were then removed using 

hydrochloric acid and the resulting solution was neutralised and lyophilised. The free 

amine was then converted into the chloroacetamide by reaction with chloroacetic 

anhydride to furnish 71 in an overall yield of 1.3 %. The UV/visible absorbance spectra 

of 71 displayed distinct extinction coefficients for the -* transitions of the trans and 

cis isomers (Figure 63). 

Figure 63. UV absorption of 71 in water in its photostationary light state (blue) and dark state (red). 
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The π–π* band is evident in the UV/visible absorbance spectrum at 360 nm and the n-

π* at 450 nm.  

Table 8. Half-lives of cis-71 in water. 

Temperature Half-life (min) ± S.D.

15 0C 31.9 ± 4.7

20 0C 24.0 ± 1.1

37 0C 6.5 ± 1.3

40 0C 5.3 ± 0.9

60 0C 2.0 ± 0.4

Figure 64. Arrhenius plot for 71 in water. 

The half-life of cis-71 varies with temperature were calculated (Table 8), with an 

Arrhenius plot indicating an activation energy of ~50 kJ mol-1. Based on the equation 

below. 
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These results also hint that this switch may be of limited use in vivo because the half-

life, even when cooled to 15 oC, is only ~30 minutes; close to the time it takes for E. coli

to replicate. However, the extinction coefficients of samples do not show any 

degradation on switching or photo bleaching after 10 cycles, suggesting pulsed or 

constant irradiation can be used to overcome the short half-life. The half-life of the cis-

71 photo switch was also measured in dimethylsulfoxide (DMSO) to compare it to other 

switches that are not water soluble. 

Table 9. cis-71 relaxation times in DMSO. 

Temperature Half-life ± S.D. (min)

20 0C 435 ± 30

40 0C 56 ± 2

60 0C 7.7 ± 0.1

The relaxation times of cis-71 are much longer in DMSO than in water. This is due to 

the water stabilizing of the resonance structures that cause a greater contribution of 

single bond character in the azo bond (Figure 65) 

Figure 65. Iminium ion resonance structure of azobenzene stabilised by interaction with water. 

The positively-charged iminium ion resonance structure can be better stabilized by 

hydrogen bonding from the water than DMSO. Hydrogen bond interactions can also 

have a great effect on the absorbance spectra of these switches as described in section 

1.5.3. Compound 49 was synthesised from commercially available 94 to determine the 
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effect of the sulfonate groups on the half-life and the UV/visible absorbance of 71

(Figure 66). 

Figure 66. Acetamidoazobenzene crosslinker 49. 

Figure 67. UV absorption of 49 in DMSO in its dark state (blue) and photostationary light state (red). 

Table 10. Azobenzene relaxation times in DMSO at varying temperature.  

Temperature Half-life ± S.D. (min)

20 0C 429 ± 22

40 0C 84.9 ± 3.3

60 0C 11.9 ± 0.2

Comparing the half-lives of cis-71 and cis-49 it is clear that the addition of the sulfonate 

group has only a small effect on the half-life. Therefore, the decrease in the half-life of 

cis-71 as compared to 27 (azobenzene shown below) must be as a result of the para-

chloroacetamide. The sulfonate shows very little shift in the UV/visible absorbance 
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spectrum or in the photostationary state brought about by the irradiation of 360 nm 

light. This shows that while the addition of the chloroacetamide group provides a 

convenient anchor point to the peptide, it greatly reduces the half-life and 

consequently the usefulness of the switch for in vivo control of transcription. This is 

emphasised by the properties of the parent azobenzene. 

Figure 68. Azobenzene. 

Figure 69. UV absorption of azobenzene in DMSO in its dark state (blue) and photostationary light state 

(red).  

Table 11. Relaxation times of cis-27 in DMSO at different temperatures. 

Temperature Half-life ± S.D. (min)

40 0C 485.5 ± 22.7

60 0C 219.8 ± 4.6
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Azobenzene compound 27 showed no appreciable relaxation at 20 oC, even after 24 

hours, so no relaxation curve could be plotted. At 40 oC or 60 oC there was a change 

but it was so small that it lead to a large standard deviations in readings taken. 

Comparing these data to cis-49, whose half-life at 60 oC is only ~12 minutes, the 

acetamido group diminished the cis isomer half-life by 20-fold. UV/visible spectra of 

27 indicate the addition of the chloroacetamide in 49 causes a 40 nm redshift in the π-

π* as shown below in Figure 70. 

Figure 70. Absorbance spectra of 27 (green), 49 (purple) and 71 (orange) in DMSO. 

22..44..44 PPuurriiffiiccaattiioonn ooff sslluugg ppeeppttiiddeess

The Slug finger peptides were cross linked with BSBCA (71) in pH 8.5 buffer as 

described in the methods section, purified by HPLC and lyophilised. Solid samples 

were dissolved in phosphate buffer and their purity was checked by analytical HPLC 

showing the formation of a product with decreased polarity compared to the native 

peptide (Figure 71). Following separation of crosslinked peptide from the starting 

peptide, MALDI-TOF mass spectra were used to confirm the identity of the isolated 

species (Table 12).  
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Figure 71 HPLC chromatograms showing absorbance at 210 nm for native peptides (green) and 

crosslinked peptides (orange). 

Table 12. Table of crosslinked Slug finger peptide masses. 

Crosslinked peptide Expected m/z Obtained m/z

Slug Finger 1-71 1826.80

1825 
1869 [M+2Na–H]+, 

1893 M+3Na.

Slug Finger 2-71 1984.92

1984 [M-H]+

2006 [M+Na]+

2023 [M+K]+

5 10 15 20 25 30 35
Retention time / min

Slug finger 1

Slug finger 2

Slug double finger
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Figure 72. UV/visible absorption spectrum of Slug Finger 1 cross-linked with 71 the dark state (blue) and 

the 360 nm photostationary (red) state. 

The absorbance maximum of the π-π* band of 71 is not shifted to any great extent upon 

binding to the peptide in this case although there is a shift in the absorbance in another 

band at 270-280 nm. 

Table 13. Relaxation times of Slug Finger 1-71. 

Temperature Half-life (min) ± S.D.

15 0C 178± 17

20 0C 90 ± 15

40 0C 20.7 ± 0.4

Slug Finger 1-71 displays a large increase in the half-life of the light state of the switch 

compared to cis-71 alone; between 4 and 5 fold. This suggests that the -helical 

conformation of the peptide adds stability to the cis state, increasing the half-life of the 

switch. 
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Figure 73. UV/visible absorption of Slug Finger 2-71 in dark (blue) and 360 nm photo stationary state 

(red). 

Table 14. Half-lives of Slug Finger-2-71.  

Temperature Half-life (min) ± S.D.

15 0C 51± 4

20 0C 32.5 ± 0.3

40 0C 9 ± 1

Similar to Slug Finger 1-71, Slug Finger 2-71 demonstrates no significant absorbance 

band shifts, but in this instance the half-life of the light state of Slug Finger 2-71 shows 

no appreciable change to that of the cis-71 in water suggesting no helical stabilisation 

is derived from the more -helical conformation of the peptide. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

200 250 300 350 400

Ab
so

rb
an

ce

Wavelength / nm



Zinc finger peptides 

61

Figure 74. UV/visible absorption spectra of the Slug Double Finger-71-71 in dark (blue) and 360 nm 

photo stationary state (red). 

The extent of switching of Slug Double Finger-71-71, as judged by the reduction in 

360 nm absorbance, is not as pronounced as that of the other cross-linked peptides. 

This can be partially explained by taking into account that the efficiency of 71 switching 

is limited; if each switch had an independent switching efficiency of 80% at best the 

total the percentage of the double switched would only be 64% .  

Table 15. Relaxation times of Slug Double Finger-71,71.

Temperature Half-life (min) ± S.D.

15 0C 39 ± 2

20 0C 227± 1

40 0C 6.4 ± 0.2

The relaxation of Slug Double Finger-71,71 is faster than that of both of the switches on 

the individual peptide sections. This indicates that the relaxation cannot be an 

independent event where each section relaxes with its own characteristic half-life. In 

fact, the relaxation curve is closer to fitting first order kinetics (Figure 75). 
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Figure 75. Relaxation curve Slug Double Finger-71,71 at 40 oC overlaid with a first order kinetics fit.  

Figure 76. Schematic representation of independent Slug Double Finger-71,71 relaxation. 
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The closeness of the fit to a first order relaxation curve is not concordant with 

independently relaxing crosslinkers with 3-fold different half-lives which would result 

in a curve with two stages. Therefore, the relaxation of the one switch must directly 

affect the relaxation of the other. 

Figure 77. Schematic representation of non-independent Slug Double finger-71,71 relaxation. 

If treated as a two body problem where both switches are in the cis in state A and states 

B and C are cis, trans and trans, cis states a combination of relaxations resolved to the 

equation:  

However, as there are no discernible features on the relaxation curve in order to 

measure any of these variables independently and no way in which to switch A without 
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switching B or vice versa it is very difficult if not impossible to determine the half-life 

for each individual switch. 
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22..55 CCiirrccuullaarr ddiicchhrrooiissmm

Circular dichroism was used in order to investigate the effect of the photoswitch on the 

conformation of the cross linked peptide. Circular dichroism measures the diffence in 

extinction coefficients of clockwise and anticlockwise anti clockwise circularly 

polarised light. Because the peptide is inherantly chiral due to the chirality of its 

constituent amino acids as well as the secondary structure of the peptide being chiral, 

right and left-handed circularly polarised light interact differently with the molecule. 

In such cases samples are said to have ellipticity polarisation.105

Figure 78. CD spectra of different protein secondary structure motifs: -helix (solid line), anti-parallel -

sheet (long dashed line), unstructured peptide (dotted line). Modified from reference 105.  

As seen in Figure 78, random coil can be distinguished from -helix by the shape of the 

spectrum and is usually estimated by measuring ellipticity at 208 and 222 nm.105

Circular dichroism is concentration, temperature and solvent dependent. Low salt 

phosphate buffer was used for these experiments because phosphate does n0t show 

strong absorbance in the region of interest whilst sodium chloride absorbs strongly in 

the 180 nm region which can lead to saturation of the detector. Circular dichroism 

values are quoted in mean residue ellipticity based on the following formula: 
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 ϴMRE = mean residue ellipticity 

 n = number of residues 

 c = concentration 

 l = path length 

 ϴ = ellipticity 

The concentrations of azobenzene crosslinked peptides were calculated from the 

absorbance of the azobenzene at 370 nm using an extinction coefficient of 29,000 cm-1 

mol-1.50 The concentrations of unconstrained Slug Double Finger and Slug Finger 1 were 

calculated from the absorbance of tryptophans and tyrosine sidechains at 280 nm using 

extinction coefficients of 5500 cm-1 mol-1 and 1490 cm-1 mol-1 respectively. This was not 

possible for Slug Finger 2 due to the lack of absorbing residues so the concentration 

was estimated by comparing absorbance at 210 with Slug Finger 1 and scaling by the 

number of residues present in the respective peptides.  

These concentrations were then used to calculate the mean residue ellipticity for each 
of the samples. 

Figure 79. CD spectra of Slug Finger 1-71 the dark state (blue) and the 360 nm photo stationary state 

(red).  

CD spectra of Slug Finger 1-71 show some change in -helical character and also some 

change in the 33o nm region due to the azobenzene being in a chiral environment. 
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Figure 80. Circular dichromism spectra of Slug Finger 2-71 in the dark state (blue) and the 360 nm photo 

stationary state (red).

The atypical finger Slug Finger 2-71 shows a slight change in structure but it is not as 

clear as that of Slug Finger 1-71.  

Figure 81. Circular dichroism Slug Double Finger-71,71 in the dark state (blue) and the 360 nm photo 

stationary (red)  

Slug Double Finger-71,71 shows no observable change between light and dark states. 

This could be due to the reduced half-life of the switches and the lower effective 

switching of the peptide due to the two azobenzenes present. 
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2.6 Fluorescence anisotropy 

Florescence anisotropy was used to determine the binding affinities for cross-linked 

Slug Finger peptides to target DNA in both light and dark states. Fluorescence 

anisotropy can be used to detect the difference in rotational rates of a chromophore 

when it is free in solution or bound to another molecule. Fluorescein was used as the 

fluorophore for these experiments. 

Figure 82. Fluorescein attached to DNA. 

Fluorescein was excited with plane polarised 495 nm light causing excitation of an 

electron, after a short delay this electron returns to the ground state releasing a slightly 

less energetic photon. If the decay of the excited state is slower than the rate of 

molecular tumbling in solution then the polarisation will be scrambled, with the extent 

of scrambling being proportional to the tumbling rate. The rate of rotation in the 

solution can be used to measure relative size of the molocule and therefore the binding 

of one molecule to another to create a larger, slower tumbling complex can be 

measured. 
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Figure 83 Diagram of fluorescent anisotropy apparatus optical set up. 

One strand of an annealed DNA duplex containing the sequence of the Slug binding 

site was labelled with fluorescein (3’ FAM-ATCCTGTCAGGTAGTTCTGC 5’) and 

irradiated at 495 nm through a polarising filter. Emission at 520 nm was recorded using 

matched and crossed polarising filters to calculate the fluorescence anisotropy: 

Anisotropy was calculated using the following formula. 

Where 

 GF is the grating factor. 

 Ivh is the intensity with the gratings vertical and horizontal. 

 Ivv is the intensity with both gratings vertical. 

The labelled DNA tumbles at a characteristic rate which is altered when Slug Finger 

peptides bind to the DNA so that titrations to saturation can be used to calculate 

association constants. In order to calculate the Kd the concentration of the DNA was 

determined by the absorbance of fluorescein:  

 A = Absorbance = 0.0774405 @ 495 nm 

 E = extinction coefficient for fluorescein = 83,000 M-1 cm-1

 l = path length of cell= 0.5 cm 

 c = concentration  
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The graphs below show the fluorescence anisotropy of binding of the peptide to 
labelled tagged DNA (5 nm) at varying concentration of Slug Finger 1-71. 

Figure 84. Fluorescence anisotropy binding data for Slug Finger 1-71 in both light (blue squares) and 

dark adapted (red squares) states. Curves represent the best fit for the data see section 6.17.  

Irradiated Slug Finger 1-71 bound to fluorescently labelled DNA with a Kd of 

approximately 100 nM, whereas in the dark adapted state it less clear interaction. Data 

for Slug Finger 2-71 and Slug Double Finger-71,71 were also not convincing, with the 

dark adapted state of Slug Finger 2-71 showing very similar behaviour to that of the 

irradiated peptide. An apparent inversion in polarity was observed for Slug Double 

Finger-71,71 (Figure 86), possibly due to distortion of the B-form DNA structure. 

Figure 85. Fluorescence anisotropy binding data for Slug Finger 2-71 in both light (blue squares) and 

dark adapted (red squares) states.  
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Figure 86. Fluorescence anisotropy binding data for Slug Double Finger-71,71 in light (blue squares) and 

dark adapted (red squares) states. 

22..77 CCoonncclluussiioonnss
The binding of the Slug Finger 1-71 crosslinked peptide is appears to be affected by the 

change of conformation brought about by isomerisation of the photoswitch although 

the binding data is not definiative proof due to the error in the data. Slug Finger 2-71

does not show the same extent of change, but this could be due to the Slug Finger 2 

helix not being responsible for strong binding to DNA, but merely providing additional 

recognition for the DNA sequence. Neither Slug Finger 2-71, nor Double Slug Finger-

71,71 show the same clear change in CD spectrum upon isomerisation as Slug Finger 1-

71. 

To further investigate the binding of Slug Finger crosslinked peptides to DNA several 

other techniques were investigated to attempt to more clearly discern if isomerisation 

had an effect, as the changes in the anisotropy brought about by the binding of the slug 

peptides to the DNA were nearing the limitation of the anisotropy values obtainable by 

the machine. Several electronic mobility shift assays (EMSA) were carried out but these 

yielded very similar result. Isothermal titration calorimetry (ITC) was also attempted, 

but required a concentration of peptide greater than was achievable in the titration 

buffer for the size of the ITC cell. 

This project might not have worked due to our minimalist design omitting additional 

DNA-binding residues found in the loop region of the ZF-TF that have been shown to 

make important water mediated interactions with DNA94. Furthermore, cis-71 has too 

short a half-life to be ideal for this application and the wavelength the switch requires 
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to change conformation is damaging to cells. In order to create a truly biologically 

relevant tool switches must have greater half-lives and require lower energy photons 

for switching between states. 



Chapter 3:

Visible Light Photoswitches 
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3 Visible light photoswitches  

33..11 IInnttrroodduuccttiioonn
An ideal photoswitch would offer bidirectional switching so that both ‘on’ and ‘off’

states are readily optically accessible. The actuation wavelengths should fall into the 

therapeutic window where light passes harmlessly through the surrounding tissue and 

not be absorbed by compounds such as flavins, melanin or haem. For most applications 

the excited state should possess a half-life in the region of hours to days, or ideally be 

stable until the application of a stimulus to reverse. The ideal photoswitch would also 

be soluble in water. Current photoswitches are variously limited by their half-lives, and 

their rate and extent of switching with very few possessing combinations of properties 

in the range that is viable for in vivo experiments. The most pressing problem, however, 

is the wavelength required for switching, with many photoswitches requiring harmful 

UV irradiation. 

33..22 TThhiiooiinnddiiggoo
One example of a photoswitch with improved optical and physical properties 

compared to 71 are thioindigos; structurally related to the indigo family as described in 

the introduction (section 1.3.4). Thioindigo switches from the trans state to the cis state 

upon irradiation with 550 nm light and can be converted back to the trans state with 

450 nm light or by heating. 

Figure 87. Thioindigo modified to act as a isomerisation dependant ligand for small cations.106

These properties were demonstrated by the adaptation of thioindigo for photo 

regulated ion binding (Figure 87). In the trans state the two methoxy ether chains on 

the 7 and 7` positions have lower affinity for alkaline metals than in the cis state. This 

property was used to transport metals from aqueous solutions then selectively release 

them upon irradiation with 450 nm light.106
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The main barrier to the use of thioindigo as a biological photoswitch is that thioindigo 

is an entirely planar molecule, resulting in extremely poor solubility in solvents that 

cannot disrupt π-stacking between thioindigo molecules.33 Thioindigo is useful for vat 

dyeing clothing precisely because of its poor solubility, leaving the dye impregnated in 

the fabric retaining the colour. The main advantages of thioindigo compared to 

azobenzenes and spiropyrans are that the cis state is more kinetically stable, so that 

once switched thermal reversion to the trans state is very slow but can be stimulated 

using shorter wavelength light. Thioindigo dyes are typically made by the same means 

as indogoid dyes (Figure 90), by oxidation of a thioindoxyl precursor that oxidises to 

thioindigo in air. 

Figure 88. Oxidation of indoxyl to indigo. 

Electron withdrawing substituents in the 5- or 7-positions are  known to red-shift the 

absorption spectra,107 once reduced to amines then acylated to amide groups they could 

be used as a handle to attach these molecules to proteins. 

Figure 89. 5,5`-Dinitro thioindigo (98). 
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Figure 90. 5,5`-Dinitrothioindigo (98) UV/visible spectra. 

5,5`Dinitrothioindigo (98) shows rapid switching at blue/green wavelengths and an 

extended lifetime of its light state compared to BSBCA (71). Unfortunately, preliminary 

work also found 98 to be extremely insoluble, and when a 7-(chloroacetamido)-

thioindoxyl was attached to two cysteines incorporated in a Bak peptide and a 

thioindigo formed on the peptide the product was insoluble.36 Therefore, following the 

example of BSBCA, a synthesis was proposed to add sulfonyl groups to thioindigo to 

improve solubility (Figure 91).4

Figure 91. Idealised thioindigo photoswitch.  

However, as sulfonate groups may interfere with the subsequent thioxazole formation, 

this route incorporated sulfonamides formed either with highly polar or non-planar 

amines (morpholine and piperidine) to help overcome the self -stacking of the 

thioindigo molecules.  
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33..22..11 RReettrroossyynntthheessiiss ooff tthhiiooiinnddiiggoo ddeerriivvaattiivveess

Figure 92. Retrosynthesis of sulfonamidothioindigo.  

The first retrosynthetic step is to break the chloroacetamide bond followed by 

oxidation of the amine to a nitro group to protecting it from undergoing reactions in 

proceeding steps. Separating the two symmetrical halves of the thioindigo to form 

thioindoxyl compound 104. Removal of the thioglycolate is then followed by the 

scission of the sulfonamide groups to give commercially available 3-chloro-4-

nitrobenzenesulfonic acid. 
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Figure 93. Chlorination of sulfate group. 

The first step was chlorination of 3-chloro-4-nitrobenzenesulfonic acid (108) to 3-

chloro-4-nitrobenzenesulfonyl chloride (109). This was achieved using a variation of 

the Vilsmeier–Haack reaction described in a patent EP1367 058 A1. Dimethylsulfoxide 

(DMF, 111) is chlorinated to form an activated species, which reacts with oxygen on the 

sulfate group which is then displaced by a chloride ion yielding the corresponding 

chlorosulfonate. This can then be converted to the corresponding sulphonamide with 

a non-nucleophilic base and any primary or secondary amine. 

Figure 94. Sulphonamide formation. 

Unexpectedly, using morpholine resulted in nucleophilic aromatic substitution and 

gave a mixture of compounds 114 and 115. Using substoichiometric morpholine (0.9 

equivalents) failed to improve the selectivity.  
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Figure 95. Formation of sulphonamide and an unexpected byproduct from morpholine. 

However, using diisopropylethylamine as the base rather than triethylamine or bulk 

morpholine resulted in selective sulphonamide formation in a 99% yield. This was 

unexpected, because the base was expected simply to react with the hydrochloric acid 

formed during the reaction rather than play an active part in either reaction.  

Figure 96. Selective sulfonamide formation with morpholine.

This compound exhibits solvatochromism; upon concentration the solution changes 

colour from an off yellow solution to a dark green oil once the solvent is removed due 

to the -stacking of the system. The next step was an aromatic substitution with 

methylthioglycolate where a thiolate conducts a nucleophilic attack on the aromatic 

ring. The hydrochloric acid by-product was initially removed by the addition of 

potassium hydroxide, but this caused hydrolysis of the sulphonamide to the sulfate. 

Using a milder reagent such as triethylamine retained the sulphonamide group. 
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Figure 97. Nucleophilic aromatic substitution with methylthioglycolate. 

Following deprotection of the methyl ester with dilute hydrochloric acid (1 M) to yield 

117, closure of the five-membered ring was attempted. Unfortunately, this reaction was 

unsuccessful due to the electron deficient ring preventing efficient cyclisation.  

Figure 98. Thioindoxyl ring formation using a Friedel-Crafts reaction. 

Table 16. Conditions used to attempt to close the thiooxazoyl ring. 

Reagent Conditions Reference

Chlorosulfonic acid, bromine (0.3 eqv)  2 hours, 20 oC 37

Chlorosulfonic acid, bromine (0.3 eqv)  overnight, 20 oC 37

Thionyl chloride overnight reflux

Thionyl chloride, then aluminium chloride, 1,2-

dichloroethanol
overnight, 20 oC

38

Thionyl chloride, then aluminium chloride, 1,2-

dichloro benzene
overnight reflux

38

The inability to detect product formation under any of the attempted conditions (Table 

16) strongly suggests that the presence of a sulfonamide group at the 5 position of the 

thioindigo simply makes the ring too electron deficient for the subsequent ring closure 
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by radical reaction or nucleophilic attack on the acyl chloride from the ring. It is not 

appropriate to reduce the nitro group to the amine at this point because it would act 

as a competing nucleophile. Convenient amino protecting groups to mask an amine at 

this stage are mainly acid labile and would be unlikely to survive the 

chlorination/cyclisation reactions intact. Therefore, synthesis was halted at this point 

and attention focussed on more tractable structures.  
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33..33 TTrriifflluuoorroommeetthhyyll ddeerriivveedd pphhoottoo sswwiittcchheess
Contemporary reports by Hecht60 and Woolley62 highlighted the use of ortho halogen 

substituents to increase the halflives of azobenzene derived photo switches.  

Figure 99. Tetra-ortho-subsituted azobenzene. 

Substitution of the ortho positions of the azobenzene not only resulted in increased 

half-lives of cis isomers but also effected the UV absorbance of the spectra, causing 

separation of the n-* bands of the cis and trans states. This band separation allows the 

use of lower energy light to switch the states, albeit at lower efficiency as the extinction 

coefficients of the n-* bands are much lower than those of the  band. A range of 

trifluoromethyl azobezenes were synthesised to investigate if these effects were due to 

steric factors or the electronegativity of the halogen substituents, (Figure 100). 

Figure 100. Trifluoromethyl-containing azobenzene photoswitches. 

These candidates were chosen due to the ready synthetic accessibility of sufficient 

molecules to compare electrostatic and steric effects on half-life of the photoswitch and 

the band separation between absorbance spectra in the cis and trans states. 

Additionally, the para halogen substituents should be useful for introducing linkers to 

attach these improved azobenzenes to peptides for photocontrol. 
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33..33..11 RReettrroossyynntthheettiicc aannaallyyssiiss aanndd ssyynntthheessiiss

Figure 101. Retrosynthetic analysis of ortho-trifluoromethyl azobenzenes. 

Removal of these proposed connecting groups (denoted by R in Figure 101) leaves a 

multiply halogenated azobenzene, which is then broken at the symmetrical azo bond. 

Appropriately substituted rings are prepared by the selective halogenation of the meta

and para positions. This can be achieved by first halogenating the para position with 

stoichiometric quantities of either chloro- or bromosuccinimide. Additional 

halosuccinimide is used to introduce the ortho substituents (Figure 102). 

Figure 102. Synthetic route to ortho-trifluoromethyl azobenzenes.  
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Selective halogenation of the para position was achieved using 1 equivalent of N-

bromosuccinimide or 0.9 equivalents N-chlorosuccinimide.61  The chloride reagent was 

less selective than the bromide reagent, leading to a reduced yield due to unwanted 

ortho-substitution even when using substoichiometric reagent (0.9 equivalents). 

Reaction with N-iodosuccinimide was attempted, but was not successful. Introducing 

a second halogen to the ortho position on the already electron deficient ring system 

required heating and extended reaction times compared to the introduction of the para

halogen.  

Figure 103. Synthetic route to ortho-trifluoromethyl azobenzenes.

Whereas the reaction to form 2,4-dibromo intermediate 133 was complete after stirring 

overnight at room temperature, 2,4-dichloro intermediate 134 required 9 days refluxing 

in chloroform with 2.2 equivalents of N-chlorosuccinimide. This is a result of the 

reduced reactivity of the mono-chlorinated aromatic ring; chlorine is the most electron 

withdrawing halogen on an aromatic ring due to its electro negativity and reduced 

electron back donation from its p-orbitals in comparison to the more electronegative 

fluorine. 

The correct substitution patterns were confirmed by the J-coupling values in NMR 

spectra. For example, selective bromination of the para-position gives a characteristic 

double doublet for position B on compound 129 (Figure 104). 
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Figure 104. 1H NMR (300 MHz, CDCl3) spectrum of 4-bromo-2-trifluoromethyl aniline (129). 

Proton B is split by proton C with JB-C = 8.5 Hz, a magnitude appropriate for an ortho

coupling, and proton A with JA-B = 2.0 Hz as expected for a meta relationship. 

Intermediate 129 can subsequently be brominated again to yield 133 whose NMR shows 

the expected two peaks between 7 and 8 ppm with a coupling constant of 2.3 Hertz, 

consistent with meta substitution (Figure 105).  

Figure 105. 1H NMR (300 MHz, CDCl3) spectrum for 1,3-dibromo-6-trifluoromethylaniline from 7.4 -7.8 

ppm (133). 

The final step for the synthesis of 132 was unsuccessful but did lead to some interesting 

properties.  
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33..33..22 SSppeeccttrraa ooff hhaalloottrriifflluuoorroommeetthhyyll aazzoobbeennzzeennee pphhoottoosswwiittcchheess

Figure 106. UV/visible spectra of halogenated trifluoromethyl azobenzenes. Compound 121 (blue), 

Compound 124 (red), Compound 122 (orange), Compound 125 (green), Compound 126 (green) and 

Compound 123 (light blue),  

The most apparent change in the UV absorbance spectra of halogenated 

trifluoromethyl azobenzenes (121-124) is a general blue-shift in the absorbance of the 

π-π* orbital from 360 nm for the di-ortho-trifluoromethyl substituted azobenzenes to 

~300 nm for the tetra-ortho substituted azobenzenes. Photoswitching properties of 

these compounds were examined by recording spectra before and after illumination. 

Where an appropriate filter set was available to selectively irradiate the n–π* transition, 

it was used; otherwise the unfiltered output of a 250 W mercury vapour discharge bulb 

was used. The conversions for the di-orth0 substituted azobenzenes were calculated 

based on the 360 nm absorbance (assuming that 360 nm is zero for cis). With the tetra-

ortho substituted azobenzene this was not possible due to both the cis and the trans

states absorbing 360 nm light.
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Table 17. Absorbance maxima, switching extents and thermal reversion half-lives for 121-126.   

Switch
π–π* 

(nm)

n–π* 

(nm)

% cis

at PSS
Filter

Half-life (min) 

DMSO  20 oC

350 450 10% > 450 nm 180 ± 3

340 440 50% > 450 nm 150 ± 14

300 480 none ~17 a

300 470 none
~69 a

300 460 none ~66 a

290 460 none ~140 a

a Complete conversion of the trans dark state to that of the cis light state was not 

possible due to both the cis and trans absorbing the wavelength of irradiation. Low 

conversions gave potentially spurious cis isomer half-lives. 
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Figure 107. UV/visible absorbance spectra of 124 (left) and 121 (right) in their trans (blue) and cis (red) 

states.

Compounds 121 and 124 reveal the remarkable influence of the para substituent with 

para-chloro 124 showing clear differences between the spectra of the cis and trans 

states whereas para-bromo 121 shows very little. However, even 124 shows no 

separation between its π-π* or n-π* absorbance bands in the trans and cis states. 

Spectra of 121 recorded at its dark and photostationary states show significant switching 

between the trans and cis states indicated by changes in the strength of the π-π* 

absorption bands with an estimated conversion of ~3o% based on 360 nm absorbance 

as shown in Figure 108. 
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Figure 108. UV/visible absorbance spectra of 121 in the dark trans state (blue) and light cis state (red).  

The tetra-ortho switches proved hard to switch due to the very similar spectra of their

trans and cis isomers and a lack of appropriate filters to irradiate at 300 nm, the 

absorbance maximum of the π-π* transition. A slight shift in the n-π* between the trans

and cis states is evident for 122, but it is not large enough to generate a significant 

proportion of cis-122 at its photostationary state. 
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Figure 109. UV/visible absorbance spectra of 122, 123, 125 and 126 in the dark trans state (blue) and light 

cis state (red).  

The position of the π-π* band is significantly changed by the presence of a second 

halogen substituent in the para position, due to the shift in electronic structure of both 

the cis and trans state of the trifluoromethyl azobenzenes. There is some band 

separation between the n-π* orbitals in the spectra of some of these species, notably 

123 and 126, but the difference is not large enough to allow significant conversion from 

the trans to cis state by irradiation using 530 nm light. The extent of switching at the 

photostationary state is increased by the reduction of steric bulk in the ortho position, 

but the rate of reversion from cis to trans isomers is only partly determined by steric 

bulk as hindered cis-126 has a shorter half-life then trans-121. Nevertheless, the 

presence of a second ortho-halo substituent in addition to the ortho-trifluromethyl still 

leads to greatly increased photoswitch half-lives compared to that of the standard 

photoswitch 74, due to its steric effects increasing the energy barrier to the rotation 

around the azo bond required for relaxation.60 Further development was clearly still 

needed to create biologically useful switches. 

33..44 FFuunnccttiioonnaalliissiinngg aazzoobbeennzzeennee ttoo aattttaacchh ttoo aa ppeeppttiiddee
Because ortho-trifluoromethyl azobenzene photoswitches could not match the 

superior band separation and half-life properties of the tetra-ortho-halo substituted 

azobenzenes reported by Woolley62 and Hecht60, it was decided to use ortho-halo 
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substituents and vary the linking structure at the para position of the aromatic ring to 

create novel structures. Azobenzene 137 was synthesised by literature procedures 

(Figure 110) to confirm its properties and as a starting point for further modification. 

Figure 110. Synthesis of tetra-ortho-fluoroazobenzene. 

The half-life of cis-137 is 420 minutes at 40 oC in dimethyl sulfoxide corresponding to 

roughly 20 E. coli  cell cycles.  

Figure 111. UV/visible absorbance spectra of trans-137 (blue) and cis-137 (red). 

Unlike the ortho-trifluoromethyl compounds 121-126, 137 does not show as great a -* 

band shift from the typical azobenzene value of 360 nm with an absorbance maximum 

at 340 nm. The other benefit of these switches is that they exhibit large shifts between 

the n-* absorbance bands of the cis and trans isomers allowing the molecule to be 

switched with light above 500 nm as described in Section 1.5.2. This lower energy is less 

harmful for biological systems and penetrates more deeply through tissue. Starting 

from 137 allows for ready functionalisation of the para position by nucleophilic 
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aromatic substitution reactions, but the use of a nitrogen was avoided due to its half-

life reducing properties as described earlier (Section 1.5.3). The groups installed must 

balance their electronic effect on the half-life of the light state of the azobenzene and 

allow functionalisation of the aromatic ring with a range of connecting groups to attach 

the switch to peptides and proteins. These connecting groups will be used to tune 

solubility, cell selectivity and the bioavailability of the molecule by providing 

attachment points for polyarginines, ethyleneglycol polymers or targeting proteins or 

sugars to encourage selective uptake by specific cell lines via endocytosis.108

A first choice of nucleophile was influenced by the work of Sawada, et al,64 who showed 

that replacing the para amino group with a sulfur atom lead to a longer lived cis state 

and a greater extent of switching. This is due to the 3sp3 orbital of the sulfur being 

larger in size and overlapping poorly with the smaller 2sp3 of the carbon. This reduces 

the influence of its electron donating resonance forms, giving more prominence to its 

electron withdrawing character which reduces the rate of cis-azobenzene relaxation by 

destabilizing the azonium ion formation. 2-Mercaptoethanol was chosen as a prototype 

sulfur nucleophile to react with 137 to yield 138 . 

Figure 112. Insertion of -mercaptoethanol at the para position of 137. 
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Figure 113. UV/visible absorbance spectra of the dark trans state (blue) and photostationary light state 

(red) of 138. 

The addition of sulfur to the para position reduced the half-life of cis-138 to 150 minutes 

at 40 oC in DMSO from 440 minutes for 137 with a bromide at the para position. The 

presence of the sulfur broadened the absorbance peaks so only a single peak is observed 

for both the n-π* and π-π* absorbance bands with a longer shoulder resulting from 

these bands absorbing between 550 and 600 nm. It proved to be difficult to obtain a 

high resolution mass spectrum, a range of ionisation techniques were used but to no 

avail.  

In order to prove this molecule was formed by reaction through the sulfur atom as 

intended, -mercaptoethanol was reacted with chlorotrimethylsilane to mask its 

alchohol. Unfortunately, the trimethlysilyl protecting group proved to be too unstable 

for chromatographic separation necessitating use of the more robust tert-

butyldimethylsilyl ether.109 This reaction selectively protected the oxygen but the 

product is very sensitive to oxidation, with the formation of disulfides reducing the 

isolated yield of the reaction. Therefore, 140 was used immediately after synthesis or 

stored frozen under argon. 
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Figure 114. Protecting 2-mercaptoethanol with chloro-tert-butyldimethylsilane. 

Figure 115. Reaction of 137 with tert-butyldimethylsilyl protected 2-mercaptoethanol. 

This protected version of 138 yielded satisfactory high resolution mass spectrometry 

data and once deprotected NMR data matched those of the product of the direct 

reaction of 137 and -mercaptoethanol.109
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Table 18. Properties of para-sulfur substituted azobenzenes.

Switch
π–π*

(nm)

n–π*

(nm)

% cis at 

PSS>530 nm

Half-life (min)

DMSO @ 40 oC

320 440 ~ 30 % 420 mins.

420 indistinct trace 148 mins

400 indistinct ND ND

33..55 AAlltteerrnnaattiivveess ttoo hhaallooaacceettaammiiddeess
Unlike amide substitution, a sulfide substituent in the para position should retain n-* 

band separation between the cis and trans isomers due to the lack of effective orbital 

overlap between the sp3 atomic orbitals of differing energy levels whilst retaining useful 

cis state half-lives.64 Despite the disappointing results from exciting the n–π* band of 

138, the π–π* band is still red-shifted compared to 74. Thioether-based linkers to attach 

azobenzenes to peptides could still provide substantial benefits. Several connecting 

groups and methodologies were investigated. One of the major factors to consider 

when developing a connecting methodology for attachment to peptides is the rigidity 

of the connecting group. It the group is too flexible it would lead to an ineffective 

switch as the shape change of the azobenzene is moderated by the flexible linker rather 

than being exerted directly on the peptide. 
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Figure 116. An dihydrothiophene sulfoxide thioether. 

The addition of -unsaturated sulfoxide such as that in 142 to an azobenzene would 

add both a highly polar sulfoxide group to increase water solubility and a conjugated 

alkene as a strong Michel acceptor to react with cysteine sidechains. This would also 

break the planar nature of the tetra-fluorinated azobenzene, further improving 

solubility.  

Figure 117. Synthesis of a model unsaturated sulfoxide linking group.

Compound 144 was synthesised from thiophenol as a prototype sulfur substituted 

aromatic ring using N-bromosuccinimide to form an intermediate containing a sulfur 

bromine bond. Addition of this intermediate to butadiene sulfoxide formed 144. 

Elimination of hydrogen bromine to yield the Michael acceptor is triggered by the 

addition of triethylamine to cause an E2 elimination resulting in compound 142 but 

triethylamine also proved able to deprotonate the proton  to the sulfur, causing the 

double bond to migrate to form the lowest energy isomer 145 (Figure 118). 
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Figure 118. Dehydrobromination of compound 144 followed by double bond migration to yield 145. 

The final product shows a very simple 1H NMR splitting pattern, consistent with the 

structure of the 145. The 13C NMR spectrum of 145 shows two peaks, identified as CH2

by DEPT experiments, within 1 ppm of each other. Although the splitting pattern of the 
1H NMR is slightly complicated by the ring fixing the orientation of the protons, 

resonances were unambiguously assigned using 2D correlation spectroscopy which 

shows the product is 145. Unfortunately, this constitutional isomer, with the double 

bond isolated from the sulfoxide results in 145 is not a Michael acepter. 

Figure 119. Debromination of 144 resulting in compound 142 with the double bond in the desired 

position. 

Using a milder base, pyridine, prevented the double bond migration and resulted in 

the desired product with only one CH2 present in 1H and 13C NMR spectra.110 However, 

this product rapidly polymerises upon contact with mildly acidic conditions including 

silica. Model linker 142 therefore proved to be too reactive for use as a Michael acceptor 

as envisaged but the precursor bromide 144 might be used directly via a SN2 reaction.
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Figure 120. Bromination of compound 145. 

In order to create a less sensitive sulfur reactive linker compound 145 was rebrominated 

with N-bromosuccinimide resulting in a mixture of 146 and 147. This gave primarily the 

desired product compound 147 so the conditions were not optimised.110 This compound 

proved to be much less acid sensitive to acids with the electron withdrawing bromine 

deactivating the alkene sufficiently to prevent polymerisation. Preliminary liquid 

chromatography-mass spectrometry (LC-MS) results intriguingly suggested reaction of 

147 with cysteine as a minimal peptide mimic occurred in Michael fashion with 

retention of the bromine, but conclusive evidence was not obtained. 

33..55..11 SSuullffuurr ssuubbssttiittuuttiioonn aatttteemmppttss

To match the sulfoxide linker model system a sulfhydryl in the para position of 

azobenzene was required. Sodium hydrosulfide in acetonitrile was used as a 

nucleophile for aromatic substitution of the bromine of 137 in the same manner as that 

of the 2-mercaptoethanol.111

Figure 121. Attempted insertion of a para sulfur with sodium hydrogen sulfide. 

Unfortunately, reduction of the azobenzene to aniline was observed. Reaction in the 

presence of triethylamine in order to ensure the thiolate was present also showed no 



Visible light photoswitches 

99

product formation and degradation of the azo bond to aniline. Several different 

solvents were tried to ensure solubility of all reagents and both anhydrous and anoxic 

conditions were tested to prevent oxidation of sulfur. When a model nucleophilic 

aromatic substitution reaction was carried out on 2,6-difluoroaniline 136, no product 

was observed even when refluxing. The starting aniline was quantitatively recovered, 

suggesting any thioaniline product must be derived from reaction of the azobenzene 

with consequent reduction. 

Figure 122. Attempted reaction of sodium sulphide with para-bromo aniline. 

Figure 123. Grignard reagent formation for sulfur insertion. 

In order to overcome this inherent inactivity of the electron deficient aromatic system, 

Grignard type reactions as described by Yi-Fan Huang et al.112 using both azobenzene 

137 and the aniline 136 were attempted, but neither yielded any recoverable para sulfide 

products. This was possibly again due to the reduction of the azo bond and the free 

amine quenching the reaction. Attempts to trap the crude product at the end of the 

reaction with chloroacetyl chloride or using acetic anhydride to trap a free thiol prior 

to work up all proved unsuccessful.  
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33..55..22 OOxxyyggeenn ssuubbssttiittuuttiioonn

Since sulfur proved so difficult to introduce, attempts were made to substitute the para

position of azobenzene with an oxygen atom. Bromination of the double bond of 

commercially available 151 in water/tetrahydrofuran formed compound 152.113 The low 

yield is due to internal reaction of the bromohydrin product 152 to an epoxide. 

Figure 124. Elimination of hydrogen bromide from 152 to form compound 153. 

This was followed by the elimination of hydrogen bromide with triethylamine. Unlike 

compound 144, triethylamine does not cause the double bond to migrate due to the 

oxygen changing the pKa of the -proton.113 When tested to ensure that it was an 

effective Michael acceptor, 153 gratifyingly reacted smoothly with a test thiol when 

stirred in sodium carbonate buffer (50 mM). 

Figure 125. Reaction of 153 with a test thiol to form compound 154.  

With 153 demonstrated to react with thiols as desired, all that remained was to attach 

it to an azobenzene. Unfortunately, deprotonation with sodium hydride to form a 

nucleophilic alkoxide caused polymerisation of the product so an Ullmann ether 

synthesis as described by Niu et al.114 was attempted (Figure 126). 
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Figure 126. Ullmann ether synthesis.  

Niu et al recommend 8-hydroxylquinolone to chelate the copper (I) and make it more 

reactive,114 but this reaction failed to yield the expected product.

Figure 127. Ullmann ether synthesis. 

Substituting the azobenzene system at a late stage having proved much more difficult 

than expected, it was decided to incorporate an additional amine group at the aniline 

stage in order to simplify the necessary chemistry in the final step in order to allow 

conjugation to peptides. In order to avoid the previously described deleterious effects 

of nitrogen substitution at the para position, a benzylamine, rather than aniline system 

was envisaged. In order to ensure that this is a viable a new crosslinking methodology 

the system was tested with benzylamine (Figure 128). 
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Figure 128. Benzylamine reaction with compound 157.  

Figure 129. Synthesis of compound 157 by dibromination and elimination. 

Butadiene sulfone was reacted with bromine to yield 160 which was recrystallized from 

acetone.115 Pyridine in acetone then effected an elimination to the vinyl sulfone. 

Figure 130. Reaction of 157 with cysteine. 

Surprisingly, cysteine reacted with the bromine of 157 in preference to the strong 

Michael acceptor. This indicated that only the bromide needs to be formed to create a 

linker that can subsequently be used to attach to the peptide. The fact that the thiol of 

cysteine reacted faster than the amine suggests this system will be usable with peptides 

with free amine sidechains if stoichiometries are carefully controlled to avoid 

unwanted side reactions.  
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Figure 131. Synthetic pathway toward compound 165. 

Installation of the methyleneamine at the para position of 165 increases the length of 

the switch and makes it more flexible. This might be advantageous to remove some of 

the strain in the i,i+4 spacing and also allow the extra extension in the i,i+11 state, but 

also risks reducing control of the conformation of bound peptides.  

The azo bond was then formed as described previously in Section 4.1. Reduction of the 

nitrile to give the desired benzyl amine was then attempted by a number of methods 

(Table 19). 

Table 19 Conditions used to attempt nitrile reduction. 

Reductant Conditions Hydrolysis reagent

LiAlH4 2 hours, 20 oC i) HCl ii) NaOH

LiAlH4 16 hours, 20 oC HCl - NaOH

LiAlH4 16 hours reflux HCl - NaOH

LiAlH4 16 hours reflux HCl

LiAlH4 16 hours reflux sodium potassium tartrate

LiBEt3H 16 hours reflux sodium potassium tartrate

Pd/C, H2, MeOH 16 hours, 20 oC n/a

These reactions appeared to proceed by TLC, but no product could be isolated. 

Attempts to trap amine from the crude reaction mixture by immediately protecting it 

with a Boc or acetyl group failed, with no amine or protected amine was isolated. It is 

possible that the lithium aluminium hydride is reducing the azo bond leading to 

unexpectedly water soluble products. 
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Figure 132. Reduction of compound 163.

A reduction was also carried out (Figure 132) on compound 163 to test the feasibility of 

the reaction without the presence of an azo bond, but no identifiable products were 

isolated.  



Chapter 4

Refining Photoswitch 

Properties
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4 Refining photoswitch properties 

44..11 TTeettrraa--oorrtthhoo--cchhlloorroo--ddii--ppaarraa--hhyyddrrooxxyymmeetthhyylleennyyllaazzoobbeennzzeennee
In order to avoid the intractable diamine 165 and its derivatives, diacid 169 was reduced 

to alcohol 170. This could them by esterified with chloroacetyl chloride to create a thiol-

reactive ester (171) reminiscent of a diester used by Mascarenas, et al.116

Figure 133. Synthesis of Compound 171 tetra-ortho-chloro benzyl alcohol. 

Consulting the literature, the benzyl ester bond was reported to be stable to hydrolysis 

in the mild conditions of the peptide cross linking reaction. The first route attempted 

is shown in Figure 133, with the azo bond formed using potassium permanganate and 

iron sulphate septahydrate. 
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Figure 134. Oxidative dimerisation through azo bond formation. 

This reaction is believed to proceed by the coordination of the amine to the iron 

sulphate surface and then the oxidation of the amine to a nitroso species. This can then 

undergo an attack by a second molecule of amine with consequent elimination of water 

resulting in the formation of the azo bond. The low yield of this reaction with bulky 

ortho substituents could be due to inefficient condensation leading to competing over-

oxidation or because the proportion of azobenzene formed in the cis isomer in some of 

the cases is quite high and this isomer is easier to further oxidise than the trans form, 

leading to loss of product through over oxidation. An over-oxidation product, the nitro 

derivative of 167, is one of the major impurities present.  

In the case of anilines with electron-withdrawing substituents in the para position, the 

reduced electron density around the nitrogen reduces efficiency further. The oxidant, 

support surface and the solvent all play important roles in determining the efficiency 

of the oxidation reaction and were extensively studied by Hecht and co-workers.118

Changes to the relative ratios of potassium permanganate to iron sulphate were found 

to cause little difference with no clear trend emerging. In contrast to earlier studies 

where changes in the solid support could yield up to 8% changes in overall yield, there 

is little or no effect of changing the support and no reagents increased the yield above 

20-35%.61,118
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Several other reagents have been reported to carry out this oxidative dimerisation 

reaction including other examples of supported metal catalysis. For example, the use 

of a gold supported catalyst (Au/meso-CeO2) and nitrobenzene starting materials with 

carbon monoxide as the sole deoxygenate was recently reported.119 This method 

obtained high yields for many examples with several over 80% and was also shown to 

be compatible with halide substituted aromatic rings. A simpler copper (I) bromide 

reagent has also been shown to give up to 94% conversion of aniline to azobenzene,120

but copper can react with the aromatic halogens by insertion of the copper into the 

carbon-halide bond and could in theory lead to a range of undesired products and so 

was not tested. Another strategy commonly employed to synthesise non-symmetric 

azobenzenes mixed preformed nitroso and aniline species to join together two similar 

or dissimilar aromatic rings. However, whilst the yield was poor the potassium 

permanganet/iron sulfate heptahydrate reaction was sufficiently early in the synthesis 

to remain viable.

Figure 135. Mechanism for base-catalysed hydrolysis of the nitrile. 

Base catalysed hydrolysis of a nitrile to a carboxylic acid proceeded smoothly upon 

refluxing overnight with either sodium or potassium hydroxide (1 M).  The resulting 

dibenzoate 169 was then precipitated by addition of hydrochloric acid to give the 

corresponding acid in excellent yields (~88 %).  
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Figure 136. Reduction of ethyl ester.121

Reduction of the dibenzoic acid to an alcohol was achieved with diisobutyl aluminium 

hydride (Figure 136).121 The azo bond is protected from reduction by the steric bulk of 

the ortho substituents preventing coordination to the azo bond. The resulting alcohol 

was then reacted with chloroacetyl chloride to give cross linker 171 (Figure 137). 

Figure 137. Esterification of 170 to chloroacetate ester 171. 

Figure 138. UV/visible absorbance spectra of cis-171 (blue) and trans-171 (red). 
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UV/visible absorbance spectra for 171 (Figure 138) were obtained using an HPLC 

equipped with a diode array UV detector. For each peak on the HPLC trace a full UV 

spectra was recorded, giving spectra for the pure cis and trans isomers. The spectra 

showed a significant difference in the π-π* absorbance band and a large n-π* band shift

of 21 nm as described by Hecht et al.60 This band shift allows the photo switching from 

the trans state to the cis state using of 530 nm light. Dark-adapted 171 in 

dimethylsulfoxide was irradiated for 15 minutes through an OG 530 filter (>530 nm) 

and absorbance at 300 nm was monitored to determine the half-life of the cis isomer. 

At 20 oC no relaxation was evident above noise of the UV/visible spectrometer after 2 

days and repeating the experiment at 40 oC for 2 days gave the same result. Carrying 

the experiment out over 2 days at 60 oC gave data that could be fit to a first order rate 

equation to give a relaxation time of 3150 minutes or 53 hours. 

Figure 139. Relaxation curve ahowing absorbance at 300 nm for compound 171  in DMSO at 60 oC.  

The half-life of cis-171 is an order of magnitude greater half-life than that of the 

trifluoromethyl photoswitches, even at an elevated temperature, and approximately 

three orders of magnitude longer than 71. Azobenzene 171 was attached (Section 4.6) 

to a fluorescently labelled peptide (FAM-Bidi,i+4) derived from a pro-apoptotic protein 

similar in nature to Bak (Sections 1.6.4). 

Sequence Mass
FAM-Bidi,i+4 FAM-DIIRNIARHLACVGDCIDRSI-NH2 3191

Table 20 Sequence of FAM-Bidi,i+4
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This peptide contains two cysteines at a relative spacing of i,i+4 for attachment of the 

peptide shown in Table 20. This spacing gives attached photoswitches a large degree of 

control over the peptide -helix structure as the extended trans isomer strongly 

disfavours helix formation.84 This spacing should be ideal for the slightly increased 

length of the 171 compared to 71, and the extra flexibility of the switch might help it 

adopt a stable helix as the cis isomer. 

Figure 140. ESI (left) and MALDI (right) mass spectra for the crude crosslinked FAM-Bidi,i+4-171 showing 

molecular ions (calculated monoisotopic mass 3191) and sodium adducts. 

The calculated monoisotopic mass of the peptide and crosslinker is 3191 as the peptide 

has four chlorine atoms this causes the isotopic distribution shown above (Figure 140) 

and explains the slightly elevated mass abserved for the peptide. 
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Figure 141. UV/visible spectra of crude FAM-Bidi,i+4-171 in the dark adapted states (red) and after 

irradiation with >530 nm light (blue). 

Figure 142. Relaxation curve of absorbance at 300 nm for crude FAM-Bidi,i+4-171 in DMSO at 60 oC.  

This crosslinked crude peptide showed reversible changes in its UV/visible spectra 

upon irradiation with >530 nm light with a half-life of 1700 or 28.5 hours for 

FAM-Bidi,i+4-cis-171.  
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Figure 143. CD spectra of crude FAM-Bidi,i+4-171 in the dark adapted states (red) and after irradiation 

with > 530 nm light (blue). 

The CD spectra show a change in structure upon irradiation, as expected for a 

photoswitch-induced change in -helical character. Given this preliminary data for 

successful peptide cross linking, the effect of the different halogen substitution 

patterns was investigated to see if azobenzenes could be further tuned to develop long-

lifetime, fast-switching azobenzenes with pronounced π-n* band separation. 
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44..22 SSyynntthheessiiss ooff tteettrraa--oorrtthhoo--hhaallooaazzoobbeennzzeenneess

Figure 144. Modified synthesis of the tetra-ortho-chloro substituted azobenzene 171. 

Slight modifications to the synthetic route improved the ease of synthesis by reducing 

the need for silica gel chromatography. Compound 171 was synthesised from 

commercially available 4-amino-3,5-dichlorobenzonitrile as shown above in Figure 144. 

Figure 145. Synthetic scheme for tetra-ortho-bromo substituted azobenzene 179. 
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The same route was used to prepare compound 179 from commercially available 4-

amino-3,5-dibromobenzonitrile 174 (Figure 145), although the key oxidation step was 

only half as effective with the bulkier bromine substituents. The synthesis of tetra-

ortho-fluoro photoswitch 185 is slightly longer, starting with commercially available 

2,6-difluoroaniline 135. This is readily brominated in the para position with N-

bromosucinimide with electronic assistance from the amine.  

Figure 146. Synthetic scheme for tetra-ortho-fluoro substituted azobenzene 186. 

To determine which properties are due to ortho-halogens the non-halogenated 

analogue was synthesised using the same methodology (Figure 147) starting from 

commercially available 4-aminobenzonitrile to eventually yield 191.  
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Figure 147. Synthetic scheme for tetra-ortho-hydroazobenzene 191.  

44..33 UUVV//vviissiibbllee ssppeeccttrraa ooff tteettrraa hhaallooggeennaatteedd aazzoobbeennzzeenneess

Figure 148. HPLC-DAD UV/visible spectra of cis-191 (blue) and trans-191 (red). 

The spectrum of reference photoswitch 191 shows an absorbance band for the π-π* 

transition of 320 nm. The half-life of cis-191 is only 2 hours at 60 oC in 

dimethylsulfoxide, an order of magnitude less than tetra-ortho-chloro cis-171. 
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Azobenzene 191 shows no difference between the maxima of the π-π* or n-π* 

absorption bands in the cis and trans isomers. 

Figure 149. HPLC-DAD UV/visible spectra of cis-179 (blue) and trans-179 (red). 

The tetra-ortho-bromo azobenzene 179 shows a slightly smaller 18 nm n-π* band 

separation compared to the chloride equivalent 171, but the spectra are otherwise very 

similar as is the half-life of cis-171 at 54 hours at 60 oC. 
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Figure 150. HPLC-DAD UV/visible spectra of cis-185 (blue) and trans-185 (red). 

In contrast, tetra-ortho-fluoro azobenzene 185 has significantly different absorbance 

properties. It has an n-π* band separation of 42 nm, double that of 179 and 171. The 

π-π* absorbance band of trans-185 is at 320 nm whereas the corresponding tetra-ortho-

chloro and tetra-ortho-bromo cis-isomers have their absorbance bands blue-shifted to 

300 nm. To investigate the origin of these different properties single crystal X-ray 

diffraction patterns were recorded and structures solved by Dr Benson Kariuki. 

Coordinates for these crystal structures can be found in Appendix 7.2. 

Figure 151. Crystal structures of 191, 185, 171 and 179 showing the dihedral angle of the azo bonds. 
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Table 21. Comparison of the properties of the tetra-ortho-haloazobenzenes. 

Dihedral 

angle

π–π* max

(nm) trans

n–π* max

(nm) trans

  max cis n–π* 

-max n–π* trans)

(nm)

Half-life +/- Std 

Dev (minutes)

Temperature

(oC)

191 (H4) 1.08 323 445 0 nm 110 +/- 10 60

185 (F4) 24.38 317 459 41 nm 1800 +/- 30 60

171 (Cl4) 52.39 299 473 21 nm 3170 +/- 40 60

179 (Br4) 50.49 297 467 18 nm 3300 +/- 90 60

Some of these properties can be explained by the dihedral angle of the azo bond; in the 

case of the tetra-ortho-fluoro the dihedral angle is much smaller allowing better 

electronic overlap between the two rings. This overlap is broken as the rings rotate to 

minimise steric clashes in the cis isomer, resulting in a larger difference in conjugation, 

and hence UV/visible spectra between the two isomers. This effect is even more clearly 

illustrated by the angles between the planes of the benzene rings. 

Figure 152. Crystal structures of 185, 171 and 179 showing the angles of the aromatic rings.  

Looking down the axis of the azo bond shows 185 has a nearly planar structure allowing 

extended conjugation between the aromatic rings, but 171 and 179 show a twist in the 

rings in the trans states to almost 90o because of relatively larger chlorine and bromine 

substituents. This extra steric bulk partly accounts for the longer relaxation from the 
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cis isomers by hindering the rotation around the N-N bond in the exited state, although 

185 appears relatively unhindered (Figure 153). 

Figure 153. Space-filling model of the compounds 185, 171, and 179 illustrating the increased steric 

demands of tetra-ortho-chloro- and tetra-ortho-bromo-substituents. 

44..44 DDii--oorrtthhoo--hhaallooaazzoobbeennzzeenneess

Since the change in planarity appears to be an important factor determining the shifts 

in n-* band shifts and hindered rotation caused by steric bulk affect the half-life of a 

series of di-ortho-halogenated azobenzenes were synthesised to determine if they 

possessed useful band shifts whilst retaining the improved half-lives of tetra-ortho-

haloazobenzenes. 
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Figure 154. Synthetic scheme for di-ortho-haloazobenzenes 207, 208, and 209. 
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The first step of the syntheses of dichloro and dibromo photoswitches are halogenation 

of one of the ortho positions of 4-aminobenzonitrile. 4-Amino-2-fluorobenzonitrile 

was purchased from Fluorochem for the difluoro switch synthesis. 

Figure 155. Monobromination of 4-aminobenzonitrile 186. 

The N-halosuccinimide acts as a source of electrophilic bromine and chlorine atoms so 

that the aromatic ring attacks to add eg. a bromine at the ortho position directed by 

the presence of the electron donating amine (Figure 155). A proton is then extracted by 

the succinimide to restore aromaticity, leaving the appropriate ortho halogen. Only one 

equivalent of halogenating agent is added and selectivity is achieved as the electron 

withdrawing effects of the first substitution make the second substitution less favoured 

than the first. These nitriles are then hydrolysed, esterified, dimerised, reduced and 

esterified as previously described. The yields of the oxidation reactions to form the azo 

bond are greatly reduced compared to those of the tetra-halo or tetra-hydro analogues. 

This is probably due to less effective screening of the azo bond from further oxidation 

than in the tetra-ortho-halo versions. A lack of protection from reduction also reduces 
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the yield of the DIBAL reductions compared to the corresponding yields of tetra-halo 

photoswitches. 

Figure 156. HPLC-DAD UV/visible spectra of cis-209 (blue) and trans-209 (red). 

Figure 157. HPLC-DAD UV/visible spectra of cis-208 (blue) and trans-208 (red).  
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Figure 158. HPLC-DAD UV/visible spectra of cis-207 (blue) and trans-207 (red). 

The UV/visible spectra of the dihalogenated switches all have similar -* absorbance 

maxima between 330 and 340 nm. Compounds  208 and 209 show large separations (42 

nm and 43 nm respectively) between n- absorbance maxima of their trans and cis

isomers which means the photostationary state upon irradiation of light > 530 nm 

favours formation of the cis isomer.  

Table 22 Optical and physical properties of the di-ortho-halo azobenzenes. 

Dihedral 

angle

π–π*       

max (nm) 

trans

n–π*             

max (nm)

trans

  max

cis n–π* -

max n–π*

trans)

(nm)

Half-life       

+/- Std Dev

(minutes)

Temperature

(oC)

207 (F2) n/d 339 450 25 nm 460 +/- 30 60

208 (Cl2) 1.10 333 468 42 nm 210 +/- 10 60

209 (Br2) n/d 340 468 43 nm 230 +/- 10 60
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Figure 159. UV/visible spectra of trans-191 (unsubstituted, grey) trans-209 (dibromo, red) and trans-179

(tetrabromo, blue). 

191 shows a typical UV/visible absorbance spectra with an π-π* transition absorbance 

at 340 nm. Di-ortho-bromo substitution in 209 caused a red shift of ~25 nm to ~375 nm 

whereas the tetra-ortho substituted compound 179 showed a blue shift to 300 nm. This 

could be due to compound 209 being planar but the additional bulk once the other two 

ortho positions are halogenated 179 mean it is no longer planar, leading to a large shift 

of the π-π* band to 300 nm.  

Figure 160. UV/visible spectra of cis-191 (unsubstituted, grey) cis-209 (dibromo, red) and cis-179

(tetrabromo, blue).  

The UV/visible spectra of the cis isomers show a large change in the position of the 

n-π* absorbance band to longer wavelengths with successive substitution.
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Table 23. Comparison between non halogenated di bromide and tetra bromide substituted azobenzenes. 

Dihedr
al angle

π–π*       
max (nm) 

trans

n–π*             
max (nm)

trans

  max

cis n–π* -
max n–π*

trans)
(nm)

Half-life       
+/- Std Dev
(minutes)

Temperature

(oC)

191 (H4) 1.08 323 445 0 nm 110 +/- 10 60

209 (Br2H2) 1.10 333 468 42 nm 210 +/- 10 60

179 (Br4) 50.49 297 467 18 nm 330 +/- 90 60

Comparing the non-halogenated 191 to di-ortho-bromo 209 and tetra-ortho-

bromoazobenzene 179 it is evident that increased steric bulk of ortho bromo 

substituents increases the stability of the cis isomer, but also that the extra bromide 

substituents in 179 compared to 209 reduced the n-* band separation lowering the 

proportion of cis-209 present in the photo stationary state and the increasing the time 

taken to reach it. 

The change in N=N dihedral angle again correlates with this increase in the band 

separation. In the sterically constrained species where the bulk of the large aromatics 

prevents a planar orientation that would allow orbital overlap the ground state energy 

is increased. These planar di-ortho-halo species have a half-life that is one tenth of that 

of the tetra-ortho-chloro compound 171 and tetra bromo compound 179, but the di-

ortho-fluoro has a longer life than the dichloro or dibromo equivalents, implying 

electronic effects must also play a role in addition to steric effects.

44..55 MMiixxeedd hhaallooggeennss
In order to keep the planar structure which causes the greatest splitting between the 

absorption maxima of the n-π* band in cis and trans isomers and obtain the increased 

half-lives characteristic of tetra-ortho-substituted azobenzenes, mixed 

dichlorodifluor0 and dibromodifluoro halogen azobenzenes were synthesised.  
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Figure 161. Synthesis of dichlorodifluoroazobenzene 215. 
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Figure 162. Synthesis of dibromodifluoroazobenzene 221. 

The syntheses of the mixed halogenated azobenzenes 215 and 221 are similar to that of 

the dihalogenated azobenzenes, albeit with lower yielding azo bond formation; this is 

due to increased ease of oxidation of either the aniline starting material or the 

azobenzene bond once formed. Despite the low yield, enough material was produced 

to test the properties of these compounds.
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Figure 163. UV/visible absorbance spectra of cis-215(blue) and trans-215 (red).

Figure 164. UV/visible absorbance spectra of cis-221 (blue) and trans-221 (red). 

The UV/visible absorbance spectra of 215 and compound 221 show the largest band 

shifts, 43 and 47 nm respectively, of any molecules in this series. This large band 

separation and less hindered azo bonds of theses hybrid switches allow much more 

efficient switching from trans-215 to the cis-215, with irradiation with >530 nm light 

producing a photostatonary state with approximately 65 % cis based on the loss of 

absorbance at 340 nm which is entirely due to trans state.
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Figure 165. Comparison of photo switching of dichloro,difluoro 215 (left) and tetrachloro 171 (right) 

photoswitches after irradiation with light through a >530 nm filter for 0 (blue), 5 (purple), 10 (red) and 15 

(green) minutes.  

Table 24. Photoswitching of 215.  

Irradiation time > 530 
nm (minutes) Abs340 nm Percentage switchinga

0 0.414 0

5 0.208 50

10 0.156 62

15 0.149 64

a Based on 340 nm absorbance.

These molecules show fast and efficient switching upon irradiation with >530 nm light 

in marked contrast with, for example, the tetra-ortho-chloro switch 171 whose 

conversion between trans and cis isomers is too small to be reliably established. 
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Table 25. Spectroscopic and half-life data for the mixed halogenated azobenzenes. 

Dihedral 

angle

π–π*       

max (nm) 

trans

n–π*             

max (nm) 

trans

  max cis n–

π* -max n–π*

trans) (nm)

Half-life +/-

Std Dev

(minutes)

Temperature

(oC)

215 (Cl2F2) 0 320 469 44 3000 +/- 220 60

221 (Br2F2) n/d 318 475 47 2300 +/-70 60

Figure 166. Crystal structure of trans-215 showing the coplanarity of the aromatic rings. 

The crystal structure of trans-215 shows the desired planer structure. Not only do these 

mixed halogen photoswitches 215 and 221 give rise to the largest n-π* band separations, 

approaching 50 nm, they also have long half-lives of approximately 48 hours even at 60 
oC which makes them viable for in vitro and in vivo experiments. Both achieve 

photostationary states where greater than 65 % of the photoswitch is in the cis state 

under > 530 nm irradiation.  
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44..66 AAttttaacchhiinngg ttoo aa ppeeppttiiddee
Unfortunately, these crosslinkers are poorly soluble in water so solvent mixtures were 

screened in order to find the best conditions for the cross linking reaction. Crosslinkers 

were reacted with two equivalents of cysteine in phosphate buffer (50 mM) at pH 8.5. 

Figure 167. Attempted crosslinking of compound 209 with cysteine. 

A range of water miscible cosolvents (dimethylsulfoxides, methanol, tetrahydrofuran 

and acetonitrile) and two temperatures (40 and 60 oC) were screened. Most conditions 

initially appeared to harbour reactions at various rates giving rise to an intermediate 

peak at 21 minutes by HPLC assumed to be the single cysteine adduct and the peak at 

16.6 minutes representing the cross linker attached to two cysteines (Figure 168). 
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Figure 168. Screening of crosslinking conditions reacting overnight at 40 oC. benzyl alcohol (blue), THF 

(yellow), methanol (grey), acetonitrile (orange), DMSO (light blue)  

Figure 169. Screening of crosslinking conditions reacting overnight at 60 oC. benzyl alcohol (blue), THF 

(yellow), methanol (grey), acetonitrile (orange), DMSO (light blue)  

Unfortunately, mass spectrometry and coinjection of reaction mixtures and the benzyl 

alcohol precursor 206 showed that the products were actually due to ester hydrolysis 

reforming 206. The reaction was then repeated in the buffer with dimethylformamide 

as a cosolvent but without cysteine and injections made to the HPLC at varying 

reaction times which also showed degradation of the photoswitch 209 to the precursor 

compound 206. 
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Figure 170. HPLC traces of the degradation of compound 206 to benzyl alcohol compound 206: Initial 

(light blue), 1 hour (orange), 2 hours (grey), overnight (yellow), and benzyl alcohol (blue). 

44..77 PPrreevveennttiinngg hhyyddrroollyyssiiss
In order to prevent hydrolysis the ester bond needed to be replaced with either an 

amide or a carbon-nitrogen bond. This was achieved in a test reaction by converting 

benzyl alcohol 223 to benzylbromide 224 (Figure 171).  

Figure 171. Bromination of benzyl alcohol. 

Both bromination reaction conditions worked well, with the phosphorous tribromide 

reaction conveniently requiring no purification. Yields are not shown in Figure 171

because the benzyl bromide is volatile and when a vacuum line was used to remove 

remaining solvent the product was also removed. Reaction conditions to introduce an 

azide group by nucleophilic substitution were then tested (Figure 172). 

Figure 172. Nucleophilic aromatic subsitution of benzyl bromide with sodium azide. 

Again, both reactions worked well giving quantitative conversion to the azide. 

However, it was more difficult to remove traces of dimethylformamide from the 

product, making the acetone reaction superior.  

Figure 173. DIBAL reduction of benzyl azide to benzylamine. 
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The reduction of benzyl azide was then attempted using diisobutylammonium hydride 

as described by Xie et al,122 but the product proved problematic to isolate or 

unequivocally detect. The work up used a tartrate solution to release the aluminium 

species from the amine and although this layer was extensively extracted with organic 

solvents and even freeze dried, no 226 was isolated.

Figure 174. Imminophosphrane formation from benzyl azide. 

Azide 225 was instead reacted with triphenyl phosphine to give a Staudinger reduction 

type imminophosphrane intermediate. 31P NMR showed the expected shifts for product 

formation, but mass spectrometry was inconclusive as rapid formation of benzylamine 

and phosphine oxide in the presence of water complicated analysis. This property was 

therefore harnessed for in situ amide formation, obviating the need to isolate the 

difficult amine intermediate and furnishing a hydrolysis-resistant linker. 

Figure 175. Chloroacetylation of compund 227.

The tetra-ortho-bromo azobenzene alcohol 178 was brominated as shown in Figure 176.  
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Figure 176. Bromination of to form hexabromide 229.123

The isolated yield reaction of this reaction was disappointing (30-40%) despite the 

reaction proceeding to completion by NMR to form the hexabromide 229. The acidic 

conditions during silica gel chromatography were found to result in hydrolysis of the 

benzylic bromide and yields near 90% were obtained using crude product without 

further purification. Since hexabromide 229 could act as a crosslinker in its own right80

a test reaction was carried out with peptide in dimethylsulfoxide but unfortunately only 

crosslinker hydrolysis products were detected. 

Figure 177. Chlorination of 178 to tetrabromodichloride 230. 

This reaction was also attempted with the benzyl chloride equivalent 230 with 

unfortunately identical results. 
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Figure 178. Formation of benzylic azide 229 from hexabromide 231.  

When the displacement reaction was carried out with five equivalents of sodium azide 

it led to a red solid that was not soluble in any organic solvent. The reaction was 

therefore carried out with only two equivalents of azide, but again an insoluble red 

solid was formed. The IR spectrum of this solid showed the characteristic presence of 

a azide peak, so the solid was heated with triphenyl phosphine in dimethylformamide 

to attempt to form an imminophosphrane, but no reaction was detected by 31P NMR. 

Figure 179. Reduction of crude azide displacement product postulated to contain 231 to 

imminophosphorane 232. 
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Figure 180. Formation of compound 233.  

In light of these results, hexabromide 229 was instead reacted with a polar amine 

nucleophile, taurine, in an attempt to create a secondary amine suitable for reaction 

with chloroacetylchloride whilst providing the water-soluble properties of the sulfonic 

acid. Unfortunately it proved difficult to find a solvent that dissolved both reactants as 

taurine is insoluble in acetonitrile and neither taurine or 229 are soluble in 

tetrahydrofuran. Attempted reaction in dimethylformamide also failed. 

Figure 181. Formation of compound 234. 

Switching taurine for ethanolamine was more productive, giving compound 234 in 

quantitative yields and requiring only filtration through a plug of silica to remove 

excess ethanolamine. This product was reacted with chloroacetyl chloride to yield 235. 

Only two equivalents of chloroacetyl chloride were used in order to prevent ester 

formation with the primary alcohol (Figure 182). 
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Figure 182. Formation of chloroacetamido azobenzene 235. 

The use of a secondary amine in this fashion gives great scope for the introduction of 

other groups that can be used to orthogonally incorporate molecules containing, e.g. 

groups for click chemistry or for the attachment of cell penetrating tags. Some 

examples of potential crosslinkers are shown below (Figure 183). 

Figure 183. Possible  azobenzene products from introducing functionalised primary amines. 
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Figure 184. UV traces of compound of trans (blue) and cis (red) 235. 

The UV/visible absorbance spectra of 235 show a reduced band splitting between the 

cis and trans n-π* bands as well as a drastically reduced half-life in comparison to the 

tetra–ortho-bromo 179. This could be caused by a number of factors, including the 

hydroxyl group stabilizing or destabilizing transition states with the formation of 

iminium ion formation although this is not directly conjugated to the aromatic ring. 

Table 26. Half-lives of cis-235 at different temperatures. 

Half-life        
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Temperature

(oC)

438.7 +/- 49.2 20
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44..88 AAttttaacchhmmeenntt ttoo ccyysstteeiinnee

Figure 185. Test of crosslinking reaction conditions in the presence of cysteine. 

Chloroacetamide 235 was reacted with cysteine in 50 mM phosphate (pH 8.5) buffer 

with 20% acetonitrile as a cosolvent as described by Sudhir et al.124 and monitored by 

HPLC (Figure 186). Complete conversion to the bis-cysteine was observed with no 

hydrolysis products observed. 

Figure 186. HPLC UV traces of crosslinked cysteine (red) in both the cis and trans states (peaks A and B) 

with a small amount of single cysteine attached (peak C) and compound 235 (blue) for comparison. 
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Both major peaks A and B were confirmed by high resolution mass spectrometry to 

contain both the cross linker and cysteine. UV/visible spectra showed peaks A and B to 

be cis-235 and trans-235 respectively. This methodology could now be applied to 

crosslink peptides. 
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5 Conclusions 

Experiments with peptides derived from zinc fingers alkylated with BBSCA (71) showed 

that the conformation and binding affinity of the a peptide derived from the key DNA-

binding -helix of the zinc finger transcription factor slug can be controlled with light. 

The binding affinity of the Slug Finger 1-71 for its target DNA sequence was affected by 

the change of conformation caused by isomerisation of the photoswitch. The success 

of Slug Finger 1-71 shows the feasibility of a minimalist design, but Slug Finger 2-71 and 

Slug Double Finger-71,71 showed that this approach has limitations. Whilst the lack of 

control of DNA-binding affinity for Slug Finger 2-71 may be a result of the peptide 

design, the incorporation of multiple switches in Slug Double Finger-71,71 highlights 

fundamental shortcomings in using 71. The half-life of cis-71 is simply too short for this 

application and combined with the requirement for damaging UV light, this motivated 

the investigation of other photosensitive molecules for the control of protein 

conformation. Initial experiments with thioindigo were aborted when the synthesis of 

a water-soluble version proved problematic. Inability to detect the formation of a 

cyclisation product under any of the conditions used suggests that the presence of a 

sulfonamide group makes the benzene ring too electron deficient for the subsequent 

ring closure by radical reaction or nucleophilic attack on the acyl chloride from the 

ring. 

The use of ortho-substitution to increase the half-lives of the azobenzene switches and 

generate separation between cis and trans absorbance bands was investigated. 

Synthesis of ortho-trifluoromethyl substituted azobenzenes allowed comparison of the 

effects of -electron withdrawing trifluoromethyl and -withdrawing but -donating 

effect of ortho halogen substituents.  The most apparent change in the UV absorbance 

spectra is a general blue-shift in the absorbance of the π-π* orbital from 360 nm for the 

di-ortho-trifluoromethyl substituted azobenzenes to ~300 nm for the tetra-ortho-

halogen substituted azobenzenes. The photoswitching properties of these compounds 

were examined by recording spectra before and after illumination. The tetra-ortho-

trifluoromethyl substituted azobenzenes were difficult to switch to the cis state and 

did not show a great improvement in relaxation time over 71.  
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The tetra-ortho-fluoro switch developed by Hecht et al. was used to investigate the 

effect of incorporation of a heteroatom substituents at the para position, but reactions 

to incorporate both sulfur and oxygen were unsuccessful. However, azobenzenes with 

the tetra-ortho-fluoro subitution pattern showed a greatly increased half-life and band 

separation between the cis and trans states. 

A tetra-ortho-chloroazobenzene photoswitch was synthesised with a para

hydroxymethyl which was reacted with chloroacetate to provide a means for 

attachment to a peptide. A series of azobenzenes with different halogen substituents 

were synthesised and crystal structures showed that the trans states occupy different 

conformations according to the steric bulk of the substituents; in particular the rings 

of the tetra-ortho-chloro and tetra-ortho-bromo substituted azobenzenes show 

markedly different twisted conformations compared to that of the planar tetra-ortho-

fluoro azobenzene. This suggests that the tetra-ortho-bromo and tetra-ortho-chloro cis

half-lives should be extended by constraints upon rotation, but in fact they are 

comparable to the tetra-ortho-fluoroazobenzene. Di-ortho-chloro and 

bromoazobenzenes also adopt a planar conformation as do mixed dichloro/difluoro 

and dibromo/difluoro species. 

All of the tetra-ortho-haloazobenzenes posessed improved properties with an 

increased band separation compared to di-ortho-trifluoromethylazobenzenes and 

orders of magnitude superior cis isomer half-lives compared to 71, along with the ability 

to switch with red light. However, under the crosslinking conditions the ester-based 

linker was shown to hydrolyse. To overcome this several modifications were attempted 

including converting the ester bond to an amide. This modification slightly decreased 

the relaxation time, but did show extended stability to hydrolysis.  

Future work should focus on the di-ortho-chloro,di-ortho-fluoroazobenzene as it is 

easier to switch than the tetra-ortho-bromoazobenzene and its planar trans isomer 

results in a wider band separation. The di-ortho-chlorodi-ortho-fluoro substitution 

should be prefered to the di-ortho-bromodi-ortho-fluoroazobenzene due to the lower 

reactivity of the ring substituents relative to reactive groups on the benzylic carbon. 
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6 Methods 

66..11 GGeenneerraall cchheemmiiccaall mmeetthhooddss

66..11..11 HHaallff--lliiffee CCaallccuullaattiioonnss

Unless otherwise stated all half-lives were determined in DMSO and calculated in 

triplicate. Spectra from a vial containing only solvent were subtracted from each 

experiment. Solutions of compounds were made up to an absorbance of approximately 

one to ensure optimal equipment performance. Samples were then equilibrated to the 

experimental temperature inside the Shimadzu UV-2600 fitted with a CPS 240 

temperature control unit. Samples were then removed and irradiated, depending on 

the wavelength required, with: a Panacol-Elosol UV point light source fitted either with 

a OG filter 530 nm or a 360 ± 5 nm band pass filter, a 400 nm Bivar UV3TZ-400-15 LED 

with a 15° diffuser, or a Luxeon Rebel Royal Blue 455 nm LED. Samples were then 

transferred back to the UV detector and full spectra recorded at fixed intervals.  

Results from a single sample were used to choose the appropriate monitoring 

wavelength and length of time for three further fresh samples which were again 

equilibrated to the experimental temperature inside the spectrophotometer. The 

samples were then moved and irradiated with the stated wavelength of light for 5 

minutes unless otherwise stated. Thermal reversion of each sample was recorded and 

these data were then plotted as shown below.  
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Figure 187. Relaxation curve example. Raw data (blue) and the calculated data based on optimised 

variables (red) 

An initial estimate was calculated based on the following equations: 

min   minimum absorbance reading 

delta  change in absorbance over experiment 

k  rate constant  

t  time in seconds 

This is then fitted to the raw data using the Solver feature of Microsoft Excel to perform 

a non-linear regression that minimises the differences between the calculated values 

and the raw data by altering the min, delta and the rate constant k of the above 

equation. Solutions were plotted to check that the data fit the correct shape (Figure 

187). The calculated rate for the reaction that is then converted to a half-life based on 

the following equation:  
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Fits were carried out independently for each sample and an average value is reported 

with the standard deviation of the half-lives calculated from each of the three 

experiments. 

66..11..22 CCrroosssslliinnkkiinngg ooff SSlluugg

Freeze dried peptide previously purified by reverse phase HPLC was dissolved in Tris 

buffer (50 mM, pH 8.3) containing TCEP (2 mM) to a concentration of 5 mg / mL. One 

equivalent of crosslinker in the same buffer was added in three aliquots over 2 hours at 

4 0C. the resulting solution was stirred at at 4 0C overnight or until all no non-

crosslinked peptide was visible by analytical HPLC. 

66..11..33 HHPPLLCC

Crosslinking reactions were monitored by HPLC using a Dionex Acclaim 120 C18 (3 m) 

150 mm x 4.6 mm column eluting with a gradient of 0 to 100% acetonitrile 

(o.1% TFA):water (o.1% TFA) over 50 minutes at 1 ml/min. This gradient was also used 

for semi-preparative HPLC for using the same same system with a flow rate of 5 ml/min 

over a Phenomenex Gemini C18 (10 m) 250 mm x 10 mm column. Fractions containing 

the desired materal were combined, freeze dried and stored at -20 0C until needed.  

Chemicals were purchased from Sigma Aldrich, Fisher Scientific, Alfa Aeser, or 

Fluorochem. Unless otherwise indicated all chemicals were used as received without 

further purification. 

When necessary, solvents were dried by standing over oven-dried 3 Å molecular sieves 

for 48 hours under argon and stored in this state until required.126 Dry solvents were 

examined by NMR for traces of water before use.  

NMR spectra were recorded at room temperature unless otherwise stated and are 

referenced to trimethylsilane as 0 ppm. Spectra were acquired on a Bruker Fourier 300 

MHz, Avance III 400 MHz or an Avance III 600 MHz with a cryogenically-cooled probe 

with preamplifiers. 

66..11..44 SSoolliidd PPhhaassee SSyynntthheessiiss

Solid phase chemistry allows easy removal of excess reagents simply by washing the 

resin with an appropriate solvent. A Rink Amide Resin solid support modified with an 

acid-labile linker was first swelled in a mixture of dimethylformamide (DMF) and 

dichloromethane (DCM). After half an hour this mixture of solvents was drained off 
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and a solution containing the first Fmoc-protected amino acid, O-(Benzotriazol-1-yl)-

N,N,N′,N′-tetramethyluronium hexafluorophosphate (HBTU) and di-iso-

propylethylamine (DIPEA) was added. In the presence of DIPEA, HBTU reacts with the 

carboxylate group of the Fmoc-protected amino acid to form an isourea which is 

subject to nucleophilic attack by either the free amine of the linker to form a peptide 

bond between the amino acid and the resin or hydroxybenzotriazole to form an active 

ester. The resin was then was then washed with DMF then DCM to remove excess 

reagents and urea byproducts. The Fmoc group was then removed with piperidine and 

the resin washed once again. Repetitions of this coupling/deprotection cycle allow the 

peptide chain extended. 

66..11..55 CCiirrccuullaarr DDiicchhrrooiissmm SSppeeccttrroossccooppyy

Spectra were recorded between 400 and 250 nm in 1 nm internals and between 250 to 

180 nm in 0.5 nm intervals at 15 oC. Samples were dissolved in potassium phosphate 

buffer (20 mM, pH 7)  in a 0.1 mm length cuvette. All concentrations were determined 

using a NanoDrop ND-1000 spectrophotometermeter using the published extinction 

coefficient of azobenzene 71. 

66..11..66 FFlluuoorreesscceennccee AAnniissoottrrooppyy

Fluorescence anisotropy experiments were performed at 15 oC for ready comparison 

with previously published results. The fluorescently labelled partner (5 nM) in buffer 

(3 mL) was titrated with the unlabelled partner to final concentrations of 10 to 3000 

nM.  For titrations involving light-state Slug peptides, the stock solutions of the 

peptides were irradiated with UV light for 60 seconds prior to additions and the cuvette 

itself was also then irradiated with UV light for a further 60 seconds. A minimum of 

ten anisotropy readings were recorded for each concentration and the results were 

averaged. Anisotropy was calculated using the following formula. 

Where GF is the grating factor, Ivh is the intensity with the gratings vertical and 

horizontal, Ivv is the intensity with the gratings vertical and vertical. 

66..11..77 BBiinnddiinngg CCaallccuullaattiioonnss

The binding of the crosslinked Slug peptides to the target DNA was calculated from 

data obtained from anisotropy titrations described above using the following formula. 
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Where:  

[A] is the concentration of the peptide 

[B] is the concentration of the labelled DNA 

[AB] is the concentration of the bound complex 

The binding of the peptide to the DNA is calculated by first taking the average of ten 

anisotropy measurements for each concentration then plotting them against the 

peptide concentration. 

Figure 188. Example binding plot from fluorescence anisotropy experiment. 
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The binding curve shown above in grey is plotted based nonlinear regression fitting 

using the equation below where n is the number of sites and C is the concentration of 

the peptide. The values for the Kd are plotted with the use of Solver to minimise the net 

root mean square difference between the observed and the theoretical data. 

66..11..88 AAzzoobbeennzzeennee ((2277))

Aniline (1.0 g, 10.7 mM, 1 eq.) and manganese dioxide (5.2 g, 60.0 mM, 5.6 eq.), were 

suspended in toluene (50 mL), and refluxed under a Dean-Stark trap for 12 hours. The 

reaction was filtered through celite, and the solvent was removed under reduced 

pressure. The resulting solid was recrystallised from ethanol to give 27 (0.32 g, 32 %).  

1H NMR (300 MHz, CDCl3) δ 7.97 (dd, J = 8.1, 1.4 Hz, 2H), 7.65-7.21 (m, 3H). 13C NMR

(75 MHz, CDCl3) δ 152.7, 131.0, 129.1, 122.9. LRMS (EI +ve) 182.08 (99%), 152.06 (27%), 

135.05 (88%), 130.99 (34%), 105.04 (75%), 92.03 (50%), 85.95 (66%), 83.95 (67%), 69.00 

(34%), 64.03 (32%), 63.03 (30%). HRMS (ESI +ve) 182.0842 (calculated 182.0844 for 

C12H10N2). 

66..11..99 BBiiss--44,,44''--cchhlloorrooaacceettaammiiddooaazzoobbeennzzeennee ((4499))

To a suspension of bis-4,4'-diaminoazobenzene (50 mg, 0.24 mM, 1 eq.) and pyridine 

(95 uL, 1.18 mM, 4.9 eq.) in dichloromethane (20 mL) was added dropwise chloroacetyl 
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chloride (145 mg, 1.18 mM, 4.9 eq.). The resulting solution was stirred for 3 days, then 

water was added. The layers were separated and the aqueous layer was extracted with 

dichloromethane. The combined organic layers were washed with sodium bicarbonate, 

dried over sodium sulfate and the solvent was removed under reduced pressure. The 

resulting residue was purified by silica gel chromatography eluting with ethyl 

acetate/hexane mixtures (50%:50%) to yield 54 as a brown solid (54.5 mg, 63 %). 

1H NMR (300 MHz, DMSO-d6) δ 11.52 (s, 1H), 8.86-8.60 (m, 4H), 5.18 (s, 2H). 13C NMR

(75 MHz, DMSO-d6) δ 166.4, 149.3, 142.5, 124.9, 120.9, 45.00. LRMS (EI + ve) 366.05 

(50%), 364.05 (77%), 196.02 (28%), 170.02 (32%), 168.02 (100%). HRMS (ESI +ve) 

364.0496 (calculated 364.0494 for C16H14N2O2Cl2). 

66..11..1100 44--CChhlloorroo--33--nniittrroobbeennzzeennee ssuullffoonnaattee ((110099))

4-Chloro-3-nitrobenzene sulfonate (1.00 g, 4.21 mM, 1 eq.) was dissolved in 1,2-

dichlorethane (10 mL) and thionyl chloride (1.00 g, 8.41 mM, 2 eq.) and 

dimethylformamide (0.16 mL, 2.01 mM, 0.48 eq.) were added. The reaction was refluxed 

for 6 hours, then cooled to room temperature and the solvent removed under reduced 

pressure. The residue was dissolved in ether and washed with sodium carbonate and 

brine then dried over magnesium sulfate, filtered and the solvent removed under 

reduced pressure to yield 110 (0.9 g, 83.5 %) as an off white solid.  

1H NMR (250 MHz CDCl3) δ 8.57 (d, 1H, J = 2.5 Hz), 8.18 (dd, 1H J=2.5Hz, 8.5 Hz), 7.88 

(d, 1H J= 8.5 Hz). 13C NMR (75 MHz CDCl3) δ 147.9, 143.2, 134.8, 133.9, 130.8, 124.5. LRMS 

(ESI +ve) 254.92 (65% M+), 219.94 (100% [M-Cl]+), 155.98 (30% [M-SO2Cl]+), 109.99 (25% 

[M-SO2Cl-NO2]+), 75.02 (40% [M-SO2Cl-NO2-Cl]+). HRMS (EI +ve) 254.9160 

(calculated 254.9160 for C6H3NO4SCl2) MP 102-104 oC.
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66..11..1111 44--CChhlloorroo--33--nniittrroobbeennzzeenneessuullffoonnaammiiddee ((111133))

4-Chloro-3-nitrobenzenesulfonyl chloride (0.25 g, 0.98 mM, 1 eq.) was dissolved in 

tetrahydrofuran (5 mL), ammonium hydroxide solution (35 % 0.35 mL, 3.49 mM, 3.5 

eq.) and triethylamine (1.07 mL, 1.36 mM, 1.4 eq.) were added and the resulting solution 

was stirred for 3 hours. The solution was then extracted with dichloromethane and the 

organic layer was washed with dilute hydrochloric acid solution (1 M), saturated 

sodium hydrogen carbonate and brine, then dried over magnesium sulfate, filtered and 

the solvent was removed under reduced pressure to yield 113 (0.10 g, 43 %) as an orange 

oil. 

1H NMR (250 MHz CDCl3) δ 8.45 (d, 1H, J = 2.0), 8.10 (dd, 1H, J = 8.5 Hz, 2.0 Hz), 8.01 

(d, 1H, J = 8.5 Hz), 3.45 (s, 2H), 13C NMR (75 MHz CDCl3) δ 123.5, 129.3, 131.1, 133.4, 144.3, 

147.6. LRMS (EI +ve) 235.97 (45% M+) 219.95 (33% [M-NH2]+) 205.95 (100%), 142.03 

(48%), 126.01 (92%), 90.03 (69%), 71.05 (38%). HRMS (EI +ve) 235.9660 (calculated 

235.9660 for C6H5N2O4SCl). 

66..11..1122 44[[((33--CChhlloorroo--44--nniittrroopphheennooll)) ssuullpphhoonnyyll]] mmoorrpphhoolliinnee ((111144 aanndd 111155))

4-Chloro-3-nitrobenzenesulfonyl chloride (108, 5.0 g, 19.5 mM 1 eq.) was dissolved in 

dichloromethane (50 mL) and the solution was cooled to 5 0C in an ice bath. 

Triethylamine (6.6 mL, 48mM 2.5 eq.) and morpholine (1.60 mL, 18.4 mM 0.9 eq.) were 

added and the reaction was stirred for 3 hours at room temperature. The solution was 
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then washed with dilute hydrochloric acid (1 M), saturated sodium hydrogen carbonate 

and brine. The organic layer was dried over magnesium sulfate, filtered and the solvent 

was removed under reduced pressure to yield an oily orange mixture of two products. 

This residue was purified over silica gel eluting with 1% methanol in dichloromethane 

to yield 114 (0.73 g, 13.7 %) as a yellow oil and 115 (1.81 g, 26 %) as a dark green oil. 

An improved procedure was developed whereby 109 (0.15 g, 0.56 mM 1 eq.) was 

dissolved in dichloromethane (50 mL) and cooled to 5 0C. Diisopropylethylamine (0.2 

mL, 1.76 mM 3 eq.) and morpholine (46 mg, 0.53 mM 0.9 eq.) were added dropwise 

over 30 minutes and the reaction was stirred for 1.5 hours at 5 0C. The reaction was then 

quenched with saturated sodium hydrogen carbonate and the organic fraction was 

washed with brine, dried over magnesium sulfate, filtered and the solvent was removed 

under reduced pressure to yield 114 (180 mg, 99 %) as an orange solid. 

1H NMR (250 MHz CDCl3) δ 8.45 (d, 1H, J = 2.0), 7.82 (dd, 1H, J = 8.0 Hz, 2.0 Hz), 7.69 

(d, 1H, J = 8.0 Hz), 7.10 (t, 4H, J = 5.0 Hz), 2.98 (t, 4H, J = 5.0 Hz). 13C NMR (75 MHz 

CDCl3) δ 147.8, 135.0, 133.2, 132.2, 130.3, 124.8, 65.2, 45.7. LRMS (EI +ve) 306.01 (40% 

[M]+), 262.99 (53% M+2 –NO2), 219.95 (28% [M-(NC4H8O)]+), 155.99 (20%), 109.99 

(26%), 86.04 (100%), 75.02 (30%). HRMS (EI +ve) 306.0076 (calculated 306.0077 for 

C10H11N2O5SCl).MP 148-150 oC.
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1H NMR (300 MHz, CDCl3) δ 8.16 (d, J = 2.3 Hz, 1H), 7.78 (dd, J = 8.8, 2.3 Hz, 1H), 7.16 

(d, J = 8.8 Hz, 1H), 3.93-3.82 (m, 4H), 3.82-3.72 (m, 4H), 3.27-3.15 (m, 4H), 3.10-2.96 (m, 

4H). 13C NMR (63 MHz, CDCl3) δ 207.0, 148.4, 136.5, 132.6, 127.0, 120.0, 66.3, 66.0, 50.9, 

46.0. LRMS (APCI +ve) 518.09 (30%), 482.33 (29%), 441.31 (25%), 358.11 (M+,100%), 

242.29 (35%), 219.18 (40%), 117.09 (32%). HRMS (EI +ve) 357.0998 (calculated 357.0995 

for C14H19N3O6S). 

66..11..1133 MMeetthhyyll 22--((((55--((mmoorrpphhoolliinnoossuullffoonnyyll))--22--nniittrroopphheennyyll))tthhiioo))aacceettaattee ((111166))

4-[(3-Chloro-4-nitrophenol)sulfonyl]morpholene (1.0 g, 3.26 mM, 1 eq.) was dissolved 

in acetonitrile (100 mL) and methyl thioglycolate (0.185 mL, 2.93 mM, 0.9 eq.) was 

added. The mixture was refluxed for 5 hours then cooled to room temperature. The 

solution was washed with saturated sodium bicarbonate solution, then dried over 

magnesium sulfate and filtered. The solvent was removed under reduced pressure to 

give 116 (0.95 g, 77 %).  

1H NMR (300.MHz CDCl3) δ 8.58 (d, 1H, J = 3.0 Hz), 7.89 (dd, 1H, J = 9.0 Hz, 3.0 Hz ), 

7.68 (d, 1H, J = 9.0 Hz), 3.83 (s, 2H), 3.79 (s, 3H), 3.76 (t, 4H, J = 6.0 Hz), 3.04 (t, 4H, J =

6.0 Hz). 13C NMR (75 MHz CDCl3) 168.9, 145.0,  143.0, 132.6, 131.9, 127.2, 125.7, 66.0, 53.3, 

45.9, 34.7. LRMS (EI +ve) 376.05 (64% M+), 342.03 (20%), 289.98 (20%), 201.97 (20%), 



Methods 

157

137.00 (24%), 83.95 (100%). HRMS (EI +ve) 376.0391 (calculated 376.0399 for 

C13H16N2O7S2). MP 140-141 oC.

66..11..1144 MMeetthhyyll 22--((((55--((mmoorrpphhoolliinnoossuullffoonnyyll))--22--nniittrroopphheennyyll))tthhiioo))aacceettiicc aacciidd ((111177))

Methyl 2-((5-(morpholinosulfonyl)-2-nitrophenyl)thio)acetate (0.25 g, 0.66 mM, 1 eq.) 

was dissolved in tetrahydrofuran (15 mL) to which was added dilute hydrochloric acid 

(2 M, 15 mL) and the reaction was stirred for 16 hours at 55 0C. The solution was then 

cooled and neutralised with saturated sodium bicarbonate solution. The 

tetrahydrofuran solvent was removed under reduced pressure and the resulting 

aqueous phase was extracted with ethyl acetate. The organic layer was dried over 

magnesium sulfate, filtered and the solvent removed under reduced pressure to yield 

117 (0.15 g, 63 %). 

1H NMR (300.MHz CDCl3) δ 8.51 (d, 1H, J = 4.5 Hz), 7.92 (dd, J = 9.0 Hz, 4.5 Hz, 1H), 

7.50 (d, J = 9.0 Hz, 1H), 3.76-3.88 (m, 6H), 3.04 (t, J = 4.5 Hz, 4H). LRMS (ESI –ve) 363.02 

(17%), 362.02 (22%), 361.01 (100% M-), 317.03 (19%), 287.02 (23%). HRMS (EI +ve) 

361.0173 (calculated 361.0164 for C12H13N2O7S2). 

66..11..1155 22,,44--DDiibbrroommoo--66--ttrriifflluuoorroommeetthhyyllaanniilliinnee ((113333))

To a solution of 2-trifluoromethyl aniline (1.00 g, 6.21 mM, 1 eq.) in acetonitrile (30 mL) 

was added N-bromosuccinimide (4.86 g, 27.3 mM, 4.4 eq.) and the mixture was stirred 

overnight. The solvent was then removed under reduced pressure and the solid residue 
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was partitioned between hexane and water. The organic fraction was dried over 

magnesium sulfate, filtered and the solvent removed under reduced pressure to yield 

133 (1.80 g, 90%) as a purple solid. 

1H NMR (300 MHz, CDCl3) δ 7.72 (d, J = 2.1 Hz, 1H), 7.54 (d, J = 2.1 Hz, 1H), 4.72 (s, 2). 
13C NMR (75 MHz, CDCl3) δ 141.2, 138.1, 128.8, (d, J = 1.0 Hz), 125.2, 115.5 (d, J = 1.0 Hz) , 

111.5, 108.2. 19F NMR (282.24 MHz, CDCl3) δ -63.50. LRMS (ESI –ve) 321.86 (5%), 318.96 

(16%), 317.86 (6%), 276.90 (28%), 274.90 (100%), 272.90 (98%), 254.89 (100%), 252.89 

(98%), 227.90 (23%), 217.94 (56%). HRMS (APCI +ve) 317.8735 (calculated 317.8735 for 

C7H5NBr2F3). 

66..11..1166 TTeettrraa--22,,22'',,44,,44''--bbrroommoo--66,,66''--ddii((ttrriifflluuoorroommeetthhyyll))--aazzoobbeennzzeennee ((112255))

To a suspension of freshly ground potassium permanganate (2.00 g) and iron (II) 

sulfate hetpahydrate (2.00 g) in dichloromethane (25 mL) was added 2,4-dibromo-6-

trifluoromethylaniline (1.00 g, 3.14 mM, 1 eq.). The resulting suspension was refluxed 

for 18 hours, then cooled and filtered through celite. The solvent was removed under 

reduced pressure and the residue purified over silica gel eluting with 10% ethyl acetate 

in hexane to yield 125 (0.20 g, 20%) as a dark red oil. 

1H NMR (250 MHz, CDCl3) δ 8.09 (d, J = 2.0 Hz, 1H), 7.92 (d, J = 2.0 Hz, 1H), 13C NMR

(101 MHz, CDCl3) δ 147.1, 140.7, 129.5, (d, J = 1.0 Hz)  , 127.5 (d, J =3 Hz) , 123.44 (d, J =2.0 

Hz), 120.49, 114.57. 19F NMR (376 MHz, CDCl3) δ -58.13. LRMS (APCI +ve) 638.70 (18%), 

636.70 (64%), 634.70 (100%), 632.71 (66%), 630.71 (19%). HRMS (APCI +ve) 630.7077 

(calculated 630.7085 for C14H5N2Br4F6). 
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66..11..1177 44--BBrroommoo--22--ttrriifflluuoorroommeetthhyyllaanniilliinnee ((112299))

To a solution of 2-trifluoromethylaniline (5.00 g, 31 mM, 1 eq.) in acetonitrile (30 mL) 

was added N-bromosuccinimide (5.50 g, 31 mM, 0.98 eq.) portion wise and the solution 

was stirred overnight. The solvent was removed under reduced pressure and the 

residue partitioned between hexane and water. The organic fraction was dried over 

magnesium sulfate, filtered and the solvent removed under reduced pressure to yield 

129 (7.08 g, 99%) as a red oil. 

1H NMR (300 MHz, CDCl3) δ 7.45 (d, J = 2.3 Hz, 1H), 7.28 (dd, J = 8.7, 2.3, Hz 2H), 6.54 

(d, J = 8.7 Hz, 2H), 4.05 (s, 2H). 13C NMR (75 MHz, CDCl3) δ 143.5, 135.6, 129.3, (q, J = 1.0 

Hz), 125.8, 120.1 (d, j = 1.7 Hz), 115.4 (q, J = 1.0 Hz) , 108.9. 19F NMR (282.24 MHz, CDCl3) 

δ -77.00. LRMS (ESI +ve) 492.87 (20%), 490.87 (35%), 477.88 (52%), 475.88 (100%), 

473.88 (51%), 412.95 (82%), 410.95 (82%), 325.17 (24%), 311.16 (23%), 141.92 (20%). HRMS

(APCI +ve) 239.9630 (calculated 239.9630 for C7H5NBrF3). 

66..11..1188 DDii--44,,44''--bbrroommoo--22,,22''--ddii((ttrriifflluuoorroommeetthhyyll))--aazzoobbeennzzeennee ((112211))

To a suspension of freshly ground potassium permanganate (1.00 g) and iron (II) sulfate 

hetpahydrate (2.00 g) in dichloromethane (30 mL) was added 4-bromo-2-

(trifluoromethyl)aniline (0.50 g, 2.08 mM, 1 eq.). This suspension was refluxed for 2 

days, then filtered through celite and the solvents removed under reduced pressure. 

The residue was purified over silica gel eluting with 5% ethyl acetate in hexane to yield 

121 (181 mg, 36.5%) as dark red crystals. 
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1H NMR (250 MHz, CDCl3) δ 8.00 (d, J = 1.9 Hz, 1H), 7.70-7.90 (m, 2H). 13C NMR (75 

MHz, CDCl3) δ 196.2, 147.7, 136.1, 130.1, 126.2, 123.9, 118.2. 19F NMR (282.24 MHz, CDCl3) 

δ -67.50. LRMS (APCI +ve) 478.88 (33%), 476.88 (65%), 474.89 (34%), 398.97 (98%), 

396.98 (100%). HRMS (APCI +ve) 474.8870 (calculated 474.8875 for C14H6N2Br2F6). 

66..11..1199 44--BBrroommoo--22--cchhlloorroo--66--ttrriifflluuoorroommeetthhyyllaanniilliinnee ((113300))

To a solution of 4-bromo-2-trifluoromethylaniline (2.00 g, 8.33 mM, 1 eq.) in 

acetonitrile (30 mL) was added N-chlorosuccinimide (1.34 g, 10.08 mM, 1.2 eq.) and the 

mixture was refluxed overnight. The solvent was removed under reduced pressure and 

the residue was partitioned between hexane and water. The organic fraction was dried 

over magnesium sulphate, filtered and the solvent removed under reduced pressure to 

yield 130 (2.09 g, 91%) as a red oil. 

1H NMR (300 MHz, CDCl3) δ 7.57 (d, J = 2.2 Hz, 1H), 7.47 (d, J =2.2 Hz, 1H), 4.67 (s, 2H). 
13C NMR (75 MHz, CDCl3) δ 140.2, 135.1, 128.1 (d, J = 1 Hz), 125.3, 121.6 (d, J = 2 Hz), 115.7 

(d, J = 3 Hz), 107.8. 19F NMR (282 MHz, CDCl3) δ -65.00. LRMS (APCI +ve) 277.92 (25%), 

275.92 (100%), 273.92 (100%), 231.97 (33%), 229.97 (51%). HRMS (APCI +ve) 273.9241 

(calculated 273.9239 for C7H5NBrClF3). 

66..11..2200 44,,44''--DDiibbrroommoo--22,,22’’--ddiicchhlloorroo--66,,66''--ddii((ttrriifflluuoorroommeetthhyyll))--aazzoobbeennzzeennee ((112266))

To a suspension of freshly ground potassium permanganate (2.00 g) and iron (II) 

sulfate hetpahydrate (2.00 g) in dichloromethane (30 mL) was added 4-bromo-2-

chloro-6-trifluromethylaniline (1.0 g, 3.67 mM, 1 eq.) and this mixture was refluxed for 
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18 hours. The suspension was then filtered through celite and the solvent removed 

under reduced pressure. The residue was purified over silica gel eluting with 5% ethyl 

acetate in hexane to yield 126 (0.36 g, 18%) as a dark red oil as a mixture of isomers.  

1H NMR (300 MHz, CDCl3) δ 7.99-7.83 (m, 2H), 7.78 (dd, J = m, 2H). 13C NMR (75 MHz, 

CDCl3) 140.8, 135.5, 126.0 (d, J = 1.0 Hz), 125.36, 121.9, (d, J = 1.0 Hz), 115.3, 111.2, 19F NMR (376 

MHz, CDCl3) δ -58.31. LRMS (APCI +ve) 548.80 (27%), 546.80 (88%), 544.81 (100%), 

542.81 (36%), 500.86 (22%), 492.86 (51%), 490.87 (80%), 488.87 (47%), 471.13 (22%).

HRMS (APCI +ve) 542.8086 (calculated 542.8095 for C14H5N2Br2Cl2F6). 

66..11..2211 22--CChhlloorroo--66--ttrriifflluuoorroommeetthhyyllaanniilliinnee ((112288))

To a solution of 2-trifluoromethylaniline (2.00 g, 12.41 mM, 1 eq.) in acetonitrile (30 mL) 

was added N-chlorosuccinimide (1.66 g, 12.41 mM, 1 eq.) and the mixture was stirred at 

room temperature for 4 days. The solvent was removed under reduced pressure and 

the residue was partitioned between hexane and water. The organic fraction was dried 

over magnesium sulfate, filtered and the solvent removed under reduced pressure to 

yield 128 (1.69 g, 56%). 

1H NMR (300 MHz, CDCl3) δ 7.42-7.40 (m, 1H), 7.29-7.19 (m, 1H), 6.68 (d, J = 8.7 Hz, 

1H). 13C NMR (75 MHz, CDCl3) δ 143.0, 132.8, 126.3, 122.4, 118.5. 19F NMR (282 MHz, 

CDCl3) δ -63.03. LRMS (APCI +ve) 198.01 (35%), 196.01 (100%), 176.00 (11%). HRMS

(APCI +ve) 196.0135 (calculated 196.0135 for C7H6NClF3). 

66..11..2222 44,,44''--DDiicchhlloorroo--22,,22''--ddii((ttrriifflluuoorroommeetthhyyll))--aazzoobbeennzzeennee ((112244))
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To a suspension of freshly ground potassium permanganate (0.7 g) and iron (II) sulfate 

hetpahydrate (0.7 g) in dichloromethane (30 mL) was added 4-chloro-2-

(trifluoromethyl)aniline (0.35 g, 1.79 mM, 1 eq.). The resulting suspension was refluxed 

for 16 hours then filtered through celite and the solvent removed under reduced 

pressure. The residue was purified over silica gel eluting with 10% ethyl acetate in 

hexane to yield 124 (30.5 mg, 9 %) as dark red crystals. 

1H NMR (300 MHz, CDCl3) δ 7.82-7.72 (m, 2H), 7.57 (dd, J = 8.7, 2.1 Hz, 1H). 13C NMR

(75 MHz, CDCl3) δ 147.4, 139.0, 133.0, 131.0 (d, J = 1 Hz), 130.5 (d, J = 2 Hz), 127.0, 118.0. 
19F NMR (376 MHz, CDCl3) δ -57.72. LRMS (APCI +ve) 390.98 (10%), 388.99 (6%), 

387.99 (13%) 386.99 (100%), 355.02 (14%), 353.03 (40%). HRMS (APCI +ve) 386.9885 

(calculated 386.9885 for C14H6N3Cl4F6). 

66..11..2233 22,,44--DDiicchhlloorroo--66--ttrriifflluuoorroommeetthhyyllaanniilliinnee ((113344))

To a solution of 2-trifluoromethylaniline (2.00 g, 12.41 mM, 1.0 eq.) in acetonitrile (30 

mL) was added N-chlorosuccinimide (3.65 g, 27.44 mM, 2.2 eq.) and the resulting 

solution was refluxed for 9 days. The solvent was removed under reduced pressure and 

the residue was then partitioned between hexane and water. The organic fraction was 

dried over magnesium sulfate, filtered and the solvent removed under reduced pressure 

to yield 134 (2.42 g, 84%) as a red oil.  

1H NMR (300 MHz, CDCl3) δ 7.43 (d, J = 2.4 Hz, 1H), 7.36 (d, J = 2.4 Hz, 1H), 4.65 (s, 

2H). 13C NMR (75 MHz, CDCl3) δ 139.8, 132.44, 125.3, 125.2, 121.5 (d, J = 2Hz), 115.5, 115.1. 
19F NMR (282 MHz, CDCl3) δ -64.00. LRMS (APCI +ve) 233.97 (12%), 231.97 (67%), 

229.97 (100%). HRMS (APCI +ve) 229.9746 (calculated 229.9746 for C7H5NBrCl2F3). 
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66..11..2244 22--BBrroommoo--44--cchhlloorroo--66--ttrriifflluuoorroommeetthhyyllaanniilliinnee ((113311))

To a solution of 4-chloro-2-(trifluoromethyl)aniline (1.00 g, 5.13 mM, 1 eq.) in 

acetonitrile (20 mL) was added N-bromosuccinimide (0.92 g, 5.13 mM, 1 eq.) and the 

resulting solution was stirred at room temperature for 3 days. The solvent was then 

removed under reduced pressure and the resulting solid partitioned between water and 

hexane. The organic layer was dried over magnesium sulfate, filtered and the solvent 

removed under reduced pressure to yield 131 (1.10 g, 79%) as red crystals. 

1H NMR (300 MHz, CDCl3) δ 7.36 (d, J = 2.3 Hz, 1H), 7.29 (d, J = 2.3 Hz, 1H), 4.57 (s, 2H). 
13C NMR (75 MHz, CDCl3) δ 140.8, 135.5, 126.0 (d, J = 1 Hz), 125.4, 121.9 (d, J = 1 Hz), 115.3, 

111.2. 19F NMR (376 MHz, CDCl3) δ -58.31. LRMS (APCI +ve) 277.92 (26%), 275.92 

(100%), 273.92 (77%), 229.974 (5%). HRMS (APCI +ve) 273.9241 (calculated 273.9241 for 

C7H5NBrClF3). 

66..11..2255 22,,22''--DDiibbrroommoo--44,,44’’--ddiicchhlloorroo--66,,66''--ddii((ttrriifflluuoorroommeetthhyyll))--aazzoobbeennzzeennee ((112233))

To a suspension of freshly ground potassium permanganate (1 g) and iron (II) sulfate 

heptahydrate (1 g) in dichloromethane (30 mL) was added 2-bromo-4-chloro-6-

trifluromethylaniline (0.53 g, 1.94 mM, 1 eq.). The resulting suspension was refluxed for 

18 hours then filtered through celite. The solvent was removed under reduced pressure 

and the residue was purified with silica flash chromotography eluting with 19:1 

hexane:ethyl acetate to yield 123 80 mg 15% as a dark red oil as a mixture of isomers. 
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1H NMR (300 MHz, CDCl3) δ 7.91-7.75 (m, 1H), 7.70 (m, 1H).13C NMR (75 MHz, CDCl3) 

δ 146.0, 135.4, 134.7, 127.6 (d, J = 4 Hz), 125.8, 123.9, 120.2. 19F NMR (376 MHz, CDCl3) δ -

58.19, 58.23. LRMS (APCI +ve) 548.80 (31%), 546.80 (80%), 544.81 (100%), 542.81 (38%), 

445.74 (46%). HRMS (APCI +ve) 542.8095 (calculated 542.8086 for C14H4N2Br2Cl2F6). 

66..11..2266 22,,22'',,44,,44''--TTeettrraacchhlloorroo--66,,66''--ddii((ttrriifflluuoorroommeetthhyyll))--aazzoobbeennzzeennee ((112222))

To a suspension of freshly ground potassium permanganate (2.00 g) and iron (II) 

sulfate hetpahydrate (2.00 g) in dichloromethane (30 mL) was added 2,4-dichloro-6-

trifluromethylaniline (1.00 g, 3.67 mM, 1 eq.) and the mixture was refluxed for 14 hours. 

The suspension was then filtered through celite and the solvent removed under 

reduced pressure. The residue was purified over silica gel eluting with hexane to yield 

122 (159 mg, 16%) as a dark red oil.  

1H NMR (300 MHz, CDCl3) δ 8.00-7.54 (m, 4H). 13C NMR (63 MHz, CDCl3) δ 146.5, 

137.6, 128.8, 127.5, 125.8, 123.0, 119.7. 19F NMR (376 MHz, CDCl3) δ -58.22, -58.30. LRMS

(APCI +ve) 548.80 (33%), 546.80 (88%), 544.81 (100%), 542.81 (39%), 502.85 (60%), 

500.86 (93%), 498.86 (47%), 456.91 (20%). HRMS (APCI +ve) 454.9101 (calculated 

454.9106 for C14H4N2Cl4F6). 

66..11..2277 44--BBrroommoo--22,,66--ddiifflluuoorrooaanniilliinnee ((113366))

2,6-Difluoroaniline (5.00 g, 38.7 mM, 1 eq.) was added to a solution of N-

bromosuccinimide (6.90 g 38.9 mM, 1 eq.) in acetonitrile (100 mL) and stirred 

overnight. Water (30 mL) was added and the mixture extracted with hexane. The 
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organic fraction was dried over magnesium sulfate, filtered and the solvent removed 

under reduced pressure to yield 136 (8.00 g, 99%) as a pale pink solid.  

1H NMR (300 MHz, CDCl3) δ 7.15-6.92 (m, 2H).13C NMR (75 MHz, CDCl3) δ 151.7 (dd, J 

= 8, 8 Hz), 123.5, 114.8 (dt, J = 13, 3Hz), 107.2 (d, J = 11 Hz). 19F NMR (282 MHz, CDCl3) δ 

-118, -119. LRMS (ESI -ve) 208.95 (26%), 207.94 (93%), 205.94 (100%, [M-1]-), 165.05 

(70%), 118.90 (18%), 116.92 (24%). HRMS (ESI -ve) 205.9426 (calculated 205.9417 for 

C6H4BrF2N). MP 136-138 oC. 

66..11..2288 11,,22--BBiiss((44--bbrroommoo--22,,66--ddiifflluuoorroopphheennyyll))ddiiaazzeennee ((113377))

Potassium permanganate (8.00 g) and iron (II) sulfate heptahydrate (8.00 g) were 

ground together and suspended in dichloromethane (100 mL) to which was added 4-

bromo-2,6-difluoroaniline (3.84 g, 18.5 mM, 1eq.). The suspension was refluxed for 16 

hours then filtered through celite and the solvent removed under reduced pressure. 

The residue was purified over silica gel eluting with 10% ethyl acetate in hexane to yield 

137 (0.6 g, 15.7 %) as a red solid as a mixture of isomers. 

1H NMR (300 MHz DMSO-d6) δ 7.80 (d, J = 3.0 Hz, 2H), 8.00 (d, J = 3.0 Hz, 2H) 13C 

NMR (75 MHz CDCl3) δ 161.4, 160.1, 154.3, 154.3, 153.6, 152.1, 150.4, 130.4, 130.3, 130.3,  

125.4, 123.3, 122.48, 120.1, 118.0, 117.9, 117.7, 117.6, 117.3, 117.2, 117.1, 117.0 (observed signals 

form complex multiplets from 19F and a mixture of isomers). 19F NMR (376 MHz, 

CDCl3) δ -118.61. LRMS (ES -ve) 411.97 (58%, M+), 410.97 (30%), 412.97 (30%), 218.99 

(100%), 220.99 (90%), 190.97 (90%), 192.97 (89%), 126.05 (45%), 112.04 (90%), 69.01 

(48%). HRMS (ESI +ve) 410.8750 (calculated 410.8756 for C12H5Br2F4N2). MP 164-165 oC. 
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66..11..2299 ((EE))--22,,22''--((((ddiiaazzeennee--11,,22--ddiiyyllbbiiss((33,,55--ddiifflluuoorroo--44,,11--pphheennyylleennee))))bbiiss((ssuullffaanneeddiiyyll))))bbiiss((eetthhaann--11--
ooll)) ((113388))

4,4’-Dibromo-2,2’,6,6’-tetrafluoroazobenzene (100 mg, 0.24 mM, 1 eq.) was dissolved in 

acetonitrile (10 mL) to which was added 2-mecaptoethanol (0.2 mL, 2.8 mM, 12 eq.) and 

triethylamine (0.1 mL, 0.7 mM, 3 eq.) and the resulting solution was stirred overnight. 

The solvent was then removed under reduced pressure and the residue partitioned 

between water and ethyl acetate. The organic layer was washed with brine, dried over 

magnesium sulfate and filtered. The solvent was removed under reduced pressure and 

the residue was recrystallised from hot 20% methanol in ethyl acetate to yield 138 (58 

mg, 59%)as a mixture of isomers. 

1H NMR (300 MHz CDCl3) δ, 7.62-7.54 (m, 2H), 7.44-7.42 (m, 2H), 5.07-4.97 (m, 2H), 

2.57-2.66 (m, 4H), 3.00-3.20 (m, 4H). 13C NMR (75 MHz, CDCl3) δ 157.9, 157.3, 156.2, 

155.5, 145.3, 145.2, 139.5, 137.2, 136.7, 135.2, 124.5, 124.3, 124.1, 124.1, 226.3, 116.2, 60.0, 59.8, 

59.7, 59.6, 59.5, 49.1, 36.1, 35.6, 35.5, 35.4, 35.2, 35.1 (observed signals form complex 

multiplets). 19F NMR (376 MHz, DMSO) δ -118.88, -119.78. LRMS No ions. MP 164-165
oC. 
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66..11..3300 22--((((TTeerrtt--bbuuttyyllddiimmeetthhyyllssiillyyll))ooxxyy))eetthhaannee--11--tthhiiooll ((114400))

Imidizole (0.58 g, 8.5 mM, 1.25 eq.) was dissolved in dimethylformamide (2 mL, dried 

over molecular sieves) under argon to which was added 2-mercaptoethanol (0.56 g, 7.1 

mM, 1.05 eq.). The solution was cooled to 0 oC then chloro-tert-butyldimethylsilyl (1.03 

g, 6.8 mM, 1 eq.) was added in further dimethylformamide (2 mL). This solution was 

then warmed to room temperature, stirred overnight then diluted with water and 

hexane. The organic layer was washed with sodium hydrogen carbonate, dried over 

magnesium sulfate then passed though a bed of silica gel and the solvent removed 

under reduced pressure to yield 140 (214 mg, 16 %) as a colourless oil.  

1H NMR (300 MHz, CDCl3) δ 3.85 (t, J = 6.8 Hz, 2H), 2.81 (t, J = 6.8 Hz, 2H), 0.96 (s, 

9H), 0.15 (s, 6H). 13C NMR (75 MHz, CDCl3) δ, 61.9, 41.4, 25.9, 18.4, -2.3. LRMS (ESI +ve) 

193.05 (13%), 191.13 (28%), 189.12 (30%), 183.03 (62%), 165.05 (30%), 163.05 (31%), 153.01 

(56%), 149.08 (31%), 147.07 (100%). HRMS (EI +ve) 192.0923 (calculated 192.1004 for 

C8H20OSiS). 
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66..11..3311 ((11,,22--BBiiss((44--((((22--((((tteerrtt--bbuuttyyllddiimmeetthhyyllssiillyyll))ooxxyy))eetthhyyll))tthhiioo))--22,,66--ddiifflluuoorroopphheennyyll))ddiiaazzeennee
((114411))

4,4’-Dibromo-2,2’,6,6’-tetrafluoroazobenzene (50 mg 0.12 mM, 1 eq.) was dissolved in 

acetonitrile (10 mL) to which was added 2-((tert-butyldimethylsilyl)oxy)ethane-1-thiol 

and (50 mg, 0.24 mM, 2 eq.) sodium hydride (60% suspension in mineral oil, 50 mg, 

1.25 mM, 10 eq.). The resulting solution was stirred overnight, then the solvent was 

removed under reduced pressure and the residue partitioned between water and ethyl 

acetate. The organic layer was washed with brine, dried over magnesium sulfate and 

filtered. The solvent was removed under reduced pressure and the residue was purified 

over silica gel eluting with 5% ethyl acetate in hexane to yield 141 (27 mg, 35.1 %) as a 

red oil. 

1H NMR (300 MHz, CDCl3) δ 7.46-7.14 (m, 4H), 3.82-3.78 (m, 4H), 3.24-3.04 (m, 3H), 

2.75 (t, J = 6.8 Hz, 1H), 0.82 (s, 18H), 0.0 (s, 12H). 13C NMR (75 MHz, CDCl3) δ 137.5, 

124.26,115.87 (d, J = 12.0 Hz)  116.03, 115.71, 61.52, 41.40, 35.60, 25.90, 18.36, -5.32. 19F NMR

(376 MHz, CDCl3) δ -117.56. LRMS (ESI +ve) 635.19 (14%), 634.19 (17%), 633.18 (38%), 

559.16 (20%), 455.32 (22%), 454.31 (100%). HRMS (EI +ve) 633.2203 (calculated 633.2203 

for C28H41F4N2O2S2Si2). 
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66..11..3322 33--BBrroommoo--44--((pphheennyylltthhiioo))tteettrraahhyyddrrootthhiioopphheennee 11,,11--ddiiooxxiiddee ((114444))

Thiophenol (1.00 g, 9.07 mM, 1 eq.) was added dropwise to a stirred solution of N-

bromosuccinimide (1.65 g, 9.28 mM, 1.2 eq.) in dichloromethane (10 mL) and the 

reaction was stirred for 30 minutes. Butadiene sulfone (1.1 g, 9.07 mM, 1 eq.) was added 

and the resulting mixture was stirred for 16 hours at room temperature. The solvent 

was then removed under reduced pressure and the residue was purified over silica gel 

eluting with dichloromethane to yield 144 (1.98 g, 71%) as a white crystalline solid.  

1H NMR (300 MHz, CDCl3) δ 7.61-7.35 ( m, 5H), 4.35 (q, J = 6.9 Hz, 1H), 3.98 (dd, J =

14.2, 7.1 Hz, 1H), 4.07 (dd, J = 14.2, 7.1 Hz, 1H) 3.73 (dd, J = 13.8, 7.3 Hz, 1H), 3.52 (dd, J =

14.0, 6.6 Hz, 1H), 3.17 (dd, J = 13.8, 7.2 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 134.4, 129.9, 

129.8, 129.7, 59.4, 55.9, 51.6, 43.5. LRMS (EI +ve) 307.94 (16%), 305.94 (15%), 263.99 

(13%), 163.06 (20%), 129.06 (5%), 109.01 (14%), 85.95 (64%), 84.95 (100%), 68.99 (25%). 

HRMS (EI +ve) 305.9384 (calculated 305.9384 for C10H11O2S2Br).  

66..11..3333 33--((PPhheennyylltthhiioo))--22,,55--ddiihhyyddrrootthhiioopphheennee 11,,11--ddiiooxxiiddee ((114455))

To a solution of 3-bromo-4-(phenylthio)tetrahydrothiophene-1,1-dioxide (1.00 g, 3.25 

mM, 1 eq.) in dichloromethane (50 mL) was added triethylamine (2.00 mL, 14.35 mM, 

4.4 eq.). The resulting solution was stirred overnight. The solution was then washed 

with water and the organic fraction dried over magnesium sulfate, filtered and the 

solvent removed under reduced pressure to yield 145 (0.79 g, 96%) as a white solid.  
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1H NMR (300 MHz, CDCl3) δ 7.44-7.26 (m, 5H), 5.70 (m, 1H), 3.80 (m, 2H), 3.66 (m, 

2H). 13C NMR (101 MHz, CDCl3) δ 133.8, 133.1, 130.2, 129.8, 129.6, 120.0, 58.3, 58.0. LRMS

(EI +ve) 226.01 (21%), 162.05 (78%), 161.04 (49%), 147.03 (56%), 134.02 (23%), 129.06 

(86%), 128.06 (24%), 110.02 (38%), 109.02 (24%), 91.05 (35%), 70.99 (21%), 68.99 (100%).

HRMS (EI +ve) 226.0127 (calculated 226.0122 for C10H11O2S2).  

66..11..3344 44--BBrroommoo--33--((pphheennyylltthhiioo))--22,,33--ddiihhyyddrrootthhiioopphheennee 11,,11--ddiiooxxiiddee ((114466)) aanndd 33--bbrroommoo--44--
((pphheennyylltthhiioo))--22,,55--ddiihhyyddrrootthhiioopphheennee 11,,11--ddiiooxxiiddee ((114477))

To a solution of 3-(phenylthio)-2,5-dihydrothiophene-1,1-dioxide (500 mg, 2.21 mM, 1.0 

eq.) in acetonitrile (10 mL) was added N-bromosuccinimide (450 mg, 2.54 mM, 1.15 eq.). 

The resulting solution was stirred for 12 hours at 40 oC. The solvent was then removed 

under reduced pressure, the residue was redissolved in chloroform, filtered and the 

solvent again removed under reduced pressure. The residue was purified over silica gel 

eluting with 20% ethyl acetate in hexane to yield compound 146 (116 mg, 17%) as a 

colourless oil and compound 147 (510 mg, 76%) as white crystals. 

66..11..3355 44--BBrroommoo--33--((pphheennyylltthhiioo))--22,,33--ddiihhyyddrrootthhiioopphheennee 11,,11--ddiiooxxiiddee ((114477))

1H NMR (300 MHz, CDCl3) δ 7.61-7.19 (m, 5H), 5.78 (s, 1H), 5.10-5.00 ( m, 1H), 3.91 (dd, 

J = 14.4, 7.6 Hz, 1H), 3.66 (dd, J = 14.4, 3.2 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 157.5, 

135.2, 131.0, 130.5, 127.7, 122.7, 59.8, 39.3. LRMS (EI +ve) 305.9 (68%), 303.9 (51%), 192.0 

(20%), 160.0 (100%), 159.1 (42%), 159.0 (40%), 147.0 (40%). HRMS (EI +ve) 305.9384 

(calculated 305.9384 for C10H11O2S2Br). 
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66..11..3366 33--BBrroommoo--44--((pphheennyylltthhiioo))--22,,55--ddiihhyyddrrootthhiioopphheennee 11,,11--ddiiooxxiiddee ((114466))

1H NMR (300 MHz, CDCl3) δ 7.35-7.51 (m, 5H), 6.82-6.59 (CH, m, 2H), 4.48 (CH, dd, J 

= 4.9, 2.9 Hz, 1H), 3.65 (CHaHb, dd, J = 14.0, 8.1 Hz, 1H), 3.24 (CHaHb, dd, J = 14.0, 4.7 Hz, 

1H). 13C NMR (75 MHz, CDCl3) δ 139.8, 134.1, 132.9, 130.5, 129.7, 129.4, 54.30, 44.9. LRMS

(EI +ve), 226.01 (39%), 186.05 (23%), 185.05 (21%), 162.03 (100%), 161.03 (90%), 147.02 

(88%), 129.06 (91%), 128.06 (54%), 110.01 (70%), 109.01 (53%) 85.01 (47%). HRMS (EI 

+ve) 303.9224 (calculated 303.9224 for C10H9O2S2Br).  

66..11..3377 33--((PPhheennyylltthhiioo))--22,,33--ddiihhyyddrrootthhiioopphheennee 11,,11--ddiiooxxiiddee ((114422))

To a solution of 3-bromo-4-(phenylthio)tetrahydrothiophene-1,1-dioxide (500 mg, 1.63 

mM, 1 eq.) in dichloromethane (50 mL) was added pyridine (0.33 mL, 4.07 mM, 2.5 eq.) 

and the solution was refluxed for three days. The solution was then washed with water 

and the organic fraction dried over magnesium sulfate, filtered and the solvent 

removed under reduced pressure to yield 142 (278 mg, 65%) as a white solid. 

1H NMR (300 MHz, CDCl3) δ 7.33-7.47 (m, 5H), 6.80-6.56 (m, 2H), 4.45 (dd, J = 4.9, 2.9 

Hz, 1H), 3.63 (dd, J = 14.0, 8.1 Hz, 1H), 3.21 (dd, J = 14.0, 4.9 Hz, 1H). 13C NMR (75 MHz, 

CDCl3) δ 139.8, 134.1, 132.9, 130.5, 129.7, 129.4, 54.3, 44.9. LRMS (EI +ve) 226.01 (17%), 

162.05 (100%), 161.04 (50%), 147.03 (52%), 129.07 (58%), 128.06 (27%), 110.02 (47%), 

109.01 (20%), 79.99 (47%), 68.99 (31%), 63.96 (28%). HRMS (EI +ve) 226.0128 

(calculated 226.0122 for C10H10O2S2).  



Methods 

172

66..11..3388 33--BBrroommoo--44--hhyyddrrooxxyytteettrraahhyyddrrootthhiioopphheennee 11,,11--ddiiooxxiiddee ((115522))

Butadiene sulfone (5.00 g, 42.3 mM, 1 eq.) was dissolved in water (100 mL) and N-

bromosuccinimide (7.55 g, 42.3 mM, 1 eq.) added. The resulting solution was stirred for 

3 days at room temperature. The solid was then filtered off and washed with cold 

sodium carbonate then dried under filtration to yield 152 (5.10 g, 56%) as a white solid. 

1H NMR (300 MHz, CD3COCD3) δ 4.86-4.71 (m, 1H), 4.64 (dd, J = 11.6, 6.0 Hz, 1H), 3.90 

(dd, J = 14.2, 6.7 Hz, 1H), 3.63 (dd, J = 13.7, 6.1 Hz, 1H), 3.44 (dd, J = 14.2, 5.5 Hz, 1H), 3.14 

(dd, J = 13.7, 4.4 Hz, 1H). 13C NMR (75 MHz, CD3COCD3) δ, 74.2, 58.1, 56.9, 47.1. HRMS

(ESI +ve) 212.9228 (calculated 212.9221 for C4H6O3SBr). 

66..11..3399 33--HHyyddrrooxxyy--22,,33--ddiihhyyddrrootthhiioopphheennee 11,,11--ddiiooxxiiddee ((115533))

To a solution of 3-bromo-4-hydroxytetrahydrothiophene-1,1-dioxide (0.34 g, 1.50 mM, 1 

eq.) in tetrahydrofuran was added triethylamine (0.44 mL, 3.2 mM, 2.1 eq.). The 

resulting solution was stirred for 3 hours then filtered through a thin pad of silica gel 

and the solvent removed under reduced pressure to yield 153 (0.22 g, 99%) as an orange 

oil. 

1H NMR (300 MHz, CD3OD) δ 6.85 (m, 2H), 5.09 (dddd, J = 7.5, 3.9, 2.4, 1.3 Hz, 1H), 

3.67 (dd, J = 13.8, 7.5 Hz, 1H), 3.04 (dd, J = 13.8, 3.9 Hz, 1H). 13C NMR (101 MHz, CDCl3) 

δ, 140.3, 132.2, 67.2, 55.7. LRMS (ESI +ve) 115.99 (13%), 99.02 (100%), 90.98 (38%), 86.99 

(27%), 71.01 (33%), 70.03 (99%), 69.03(54%), 68.02 (49%), 64.96 (26%), 63.96 (38%), 

62.99(24%), 55.01 (94%). HRMS (ESI +ve) 115.9936 (calculated 115.9932 for C4H4O3S). 



Methods 

173

66..11..4400 33,,44--DDiibbrroommootteettrraahhyyddrrootthhiioopphheennee 11,,11--ddiiooxxiiddee ((116600))

Butadiene sulfone (5.00 g, 42 mM, 1 eq.) was dissolved in dry chloroform (8 mL), stirred 

under argon and heated to reflux. Bromine (6.76 g, 42 mM, 1 eq.) in further dry 

chloroform (6 mL) was added dropwise and the reaction was stirred for 2 hours. The 

reaction was then cooled and the solvent removed under reduced pressure. The residue 

was washed repeatedly with chloroform until the product was colourless. The residue 

was recrystallised from dichloromethane to give 160 (10.41 g, 95 %) as a white crystalline 

solid. 

1H NMR (300 MHz, CDCl3) δ 4.88-4.73 (m, 2H), 4.16-3.93 (m, 2H), 3.62-3.49 (m, 2H). 
13C NMR (75 MHz, CDCl3) δ, 58.3, 45.6. LRMS (EI +ve) 279.83 (12%), 277.84 (52%), 

275.84 (13%), 214.87 (10%), 212.87 (72%), 210.87 (16%), 134.93 (100%), 120.93 (100%), 

105.93 (100%), 104.93 (100%), 89.01 (22%), 83.95 (44%), 81.92 (52%), 80.92 (67%), 78.92 

(42%), 54.04 (78%), 53.03 (100%), 51.02 (44%). IR (solid) 700.2, 817.9, 833.3, 871.9, 904.7, 

954.8, 1097.5, 1113.0, 1140.0, 1174.7, 1205.6, 1234.5, 1261.5, 1286.6, 1311.7, 1404.2, 2935.8, 

2955.1, 2984.0, 3020.7. HRMS (EI +ve) 275.8462 (calculated 275.8455 for C4H6O2SBr2). 

66..11..4411 33--BBrroommoo--22,,33--ddiihhyyddrrootthhiioopphheennee 11,,11--ddiiooxxiiddee ((115577))

3,4-Dibromotetrahydrothiophene-1,1-dioxide (2.00 g, 7.20 mM, 1 eq.) was dissolved in 

acetone (14 mL) to which was added pyridine (1.14 g, 14.4 mM, 2 eq.). The reaction was 

then stirred for 14 hours at room temperature. The solvent was then removed under 

reduced pressure the any oil was triturated with ether (30 mL). The oil was then 
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triturated with hot toluene (3 x 50 mL) the combined extracts were dried over 

magnesium sulfate filtered and dried to give 157 (1.17 g, 83%) as a light orange oil. 

1H NMR (300 MHz, CDCl3) δ 6.81 (ddd, J = 7.9, 6.6, 2.2 Hz, 2H), 5.15 (dtd, J = 7.8, 3.2, 1.3 

Hz, 1H), 3.84 (dd, J = 14.6, 7.7 Hz, 1H), 3.64-3.51 (m, 1H). 13C NMR (75 MHz, CDCl3) δ 

139.5, 133.0, 56.8, 37.5. LRMS 197.92 (9%), 195.92 (8%), 133.96 (49%), 131.96 (49%), 103.9 

(22%), 89.00 (24%), 78.04 (45%), 68.02 (73%), 63.96 (58%), 53.03 (38%). HRMS (EI +ve) 

195.9193 (calculated 195.9194 for C4H5O2SBr). 

66..11..4422 33--((BBeennzzyyllaammiinnoo))--22,,33--ddiihhyyddrrootthhiioopphheennee 11,,11--ddiiooxxiiddee ((115599))

3-Bromo-2,3-dihydrothiophene-1,1-dioxide (0.100 g, 0.50 mM, 1 eq.) and benzylamine 

(0.054 g, 0.50 mM, 1 eq.) were dissolved in a solution of sodium carbonate in deuterated 

water (50 mM, 1.80 mL) and tetrahydrofuran (0.20 mL). The reaction was stirred at 50 
oC for 2 hours then extracted with dichloromethane. The organic fraction was dried 

over magnesium sulfate, filtered and the solvent removed under reduced pressure to 

yield 159 (0.119 g, 77%) as a white crystalline solid. 

1H NMR (300 MHz, CDCl3) δ 7.36-7.32 (m, 5H), 6.74 (dd, J = 6.7, 2.8 Hz, 1H), 6.66 (dd, 

J = 6.7, 1.8 Hz, 1H), 4.24 (ddd, J = 5.8, 4.3, 2.7 Hz, 1H), 3.86 (d, J = 7.8 Hz, 2H), 3.47 (dt, J 

= 13.2, 6.6 Hz, 1H), 3.11 (dd, J = 13.6, 4.0 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 141.4, 138.7, 

132.7, 128.8, 128.7, 128.2, 127.7, 127.4, 56.3, 54.7, 51.4. LRMS (AP EI +ve) 224.07 (22%), 

132.08 (100%), 124.00 (25%), 122.03 (64%). HRMS (ES -ve) 224.0742 (calculated 224.0745 

for C11H14NO2S).  
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66..11..4433 ((EE))--44,,44''--((DDiiaazzeennee--11,,22--ddiiyyll))bbiiss((33,,55--ddiibbrroommoobbeennzzoonniittrriillee)) ((116644))

Potassium permanganate (4.00 g) and iron (II) sulfate hetpahydrate (4.00 g) were 

ground together to a fine power, then suspended in dichloromethane (50 mL) and 

dibromo-2,6-ethyl-(4-aminobenzoates (2.0g, 7.25 mM, 1 eq added. The suspension was 

refluxed overnight then cooled, filtered through celite and the solvent removed under 

reduced pressure. The resulting solid was recrystallised from ethyl acetate to yield 164

(0.38 g, 19%) as a dark red solid. 

1H NMR (300 MHz, CDCl3) δ 8.00 (s, 4H). 13C NMR (75 MHz, CDCl3) δ 151.6, 136.5, 116.4, 

115.0. LRMS (ESI –ve) 549.70 (20%), 547.71 (32%), 545.71 (21%), 250.15 (38%), 220.18 

(27%), 219.16 (100%), 80.91 (28%), 79.91 (27%). HRMS (APCI +ve) 544.7226 (calculated 

544.77242 for C14H5N4). IR (solid) cm-1 3063, 2230, 1530, 1422, 1371, 1364, 1209, 1196, 880, 

758, 611.

66..11..4444 ((EE))--44,,44''--((DDiiaazzeennee--11,,22--ddiiyyll))bbiiss((33,,55--ddiicchhlloorroobbeennzzoonniittrriillee)) ((116688))

To a suspension of freshly ground potassium permanganate (4.0 g) and iron (II) sulfate 

hetpahydrate (4.0 g) in dichloromethane (25 mL) was added 2,6-dichloro-4-nitrile 

aniline (2.0 g, 10.07 mM, 1 eq.) and the resulting suspension was then refluxed for 18 

hours. The reaction was cooled, filtered through celite and the solvent removed under 

reduced pressure. The residue was recrystallised from ethyl acetate to yield 168 (256 

mg, 14%) as a red solid. 
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1H NMR (250 MHz, CDCl3) δ 7.72 (s, 4H), 13C NMR (75 MHz, CDCl3) δ 132.8, 132.6, 128.3, 

126.9, 114.3. LRMS (ES –ve) 371.91 (15%), 369.92 (37%), 367.92 (33%), 188.96 (12%), 186.96 

(72%), 184.97 (100%), 148.99 (22%). 96.96 (42%). HRMS (APCI +ve) 630.7077 

(calculated 630.7085 for C14H5N2Br4F6). IR (solid) cm-1 3950, 3376, 3057, 2234, 1616, 1541, 

1381, 1204, 1198, 828, 814, 797, 745, 621. 

66..11..4455 ((EE))--44,,44''--((DDiiaazzeennee--11,,22--ddiiyyll))bbiiss((33,,55--ddiicchhlloorroobbeennzzooiicc aacciidd)) ((116699))

(E)-4,4'-(Diazene-1,2-diyl)-bis(-3,5-dichlorobenzonitrile) (55 mg, 0.15 mM, 1 eq.) was 

suspended in sodium hydroxide solution (1 M, 10 mL) and refluxed for 16 hours. After 

cooling to room temperature the solution was acidified with hydrochloric acid (1 M) 

and the precipitate was filtered off. This residue was dissolved in ethyl acetate and this 

solution was dried over magnesium sulfate, filtered and the solvent removed under 

reduced pressure to give 169 (53 mg, 88%) as a white solid. 

1H NMR (300 MHz, D2O) δ 7.83 (s, 4H), 13C NMR (75 MHz, D2O) δ 171.5, 162.5, 157.6, 

147.7, 138.9, 129.8, 126.2. LRMS (ESI +ve) 408.89 (54%), 406.90 (100%), 404.90 (82%), 

325.18 (27%), 293.19 (27%), 311.17 (27%), 293.18 (23%), 190.95 (26%), 188.95 (38%), 112.98 

(28%), 98.94 (31%), 96.95 (27%). HRMS (EI -ve) 404.8995 (calculated 404.9003 for 

C14H5Cl4N2O4). IR (solid) cm-1 1690, 1624, 1589, 1582, 1553, 1537, 1441, 1431, 1385, 1292, 1287, 

1273, 818, 768, 789. 

66..11..4466 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33,,55--ddiicchhlloorroo--44,,11--pphheennyylleennee))))ddiimmeetthhaannooll ((117700))
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To a solution of (E)-4,4'-(diazene-1,2-diyl)-bis-(3,5-dichlorobenzoic acid) (53 mg, 0.13 

mM, 1 eq.) in tetrahydrofuran (5 mL) was added diisobutylaluminium hydride solution 

(0.100 mL, 1.00 mM, 7.7 eq.) and the reaction stirred overnight. Saturated sodium 

potassium tartrate solution was added, the phases were separated and the organic layer 

was dried over sodium sulfate, filtered and the solvent removed under reduced 

pressure. The residue was recrystallised from methanol to give 170 (41 mg, 82%) as a 

white solid.  

1H NMR (600 MHz, CD3OD) δ 7.56 (d, J = 0.6 Hz, 4H), 4.68 (s, 4H). 13C NMR (151 MHz, 

CD3OD) δ 145.9, 145.2, 127.0, 126.9, 62.0. LRMS (EI -ve) 380.94 (67%), 378.94 (100%), 

376.94 (86% [M]-).  350.94 (29%), 349.94 (56%), 347.94 (46%). HRMS (EI -ve) 376.9413 

(calculated 376.9418 for C14H9Cl4N2O2). 

66..11..4477 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33,,55--ddiicchhlloorroo--44,,11--pphheennyylleennee))))bbiiss((mmeetthhyylleennee)) bbiiss((22--
cchhlloorrooaacceettaattee)) ((117711))

(E)-(Diazene-1,2-diylbis(3,5-dichloro-4,1-phenylene) (30 mg, 0.054 mM, 1 eq.) was 

dissolved in tetrahydrofuran and the flask flushed with argon. Chloroacetyl chloride 

(100 mL, excess), was added dropwise and the reaction was stirred for 20 minutes at 

room temperature. Pyridine (100 uL, excess) was added dropwise over 20 minutes and 

the solution stirred overnight. The solvent was removed under reduced pressure and 

the residue was partitioned between dichloromethane and sodium hydrogen 

carbonate. The organic layer was dried over sodium sulfate and filtered, then the 

solvent was removed under reduced pressure and the resulting solid was recrystallised 

from methanol to yield 171 (39 mg, 93%) as deep red crystals. 

1H NMR (300 MHz, CDCl3) δ 7.71 (s, 4H), 5.21 (s, 4H), 4.16 (s, 4H). 13C NMR (75 MHz, 

CDCl3) δ 167.0, 148.7, 137.9, 133.0, 116.2, 65.5, 40.7. HRMS (EI +ve) 529.8932 (calculated 
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529.8928 for C18H12N2O4Cl6). IR (solid) cm-1 3069, 2955, 2922, 2853, 1749, 1591, 1557, 1441, 

1402, 1369650, 1310, 1258, 1198, 1186, 1159, 1020, 982, 928, 897, 885, 854, 800, 789, 777, 723, 

685, 586, 557, 523, 444, 424, 419. 

66..11..4488 44--AAmmiinnoo--33,,55--ddiicchhlloorroobbeennzzooiicc aacciidd ((116688))

4-Amino-3,5-dichlorobenzoic acid (1.0 g, 5.40 mM, 1 eq.) was suspended in sodium 

hydroxide (1 M, 30 mL) and refluxed until thin layer chromatography showed an 

absence of starting material. The solution was cooled to room temperature and 

acidified with hydrochloric acid solution (1 M), causing precipitation of the product. 

The precipitate was filtered off, dissolved in ethyl acetate, dried over anhydrous 

magnesium sulfate, filtered and the solvent removed under reduced pressure to yield 

168 (1.00 g, 91 %) as a white solid. 

1H NMR (300 MHz, DMSO-d6) δ 7.71 (s, 2H), 6.35 (s, 2H), 13C NMR (75 MHz, DMSO-

d6) δ 166.0, 145.6, 129.7, 118.9, 117.6. LRMS (EI +ve) 206.98 (92%), 204.00 (100% [M]+), 

189.98 (91%), 187.97 (99%), 161.98 (20%), 159.99 (32%), 124.01 (28%), 119.01 (26%), 100.00 

(27%). HRMS (EI +ve) 204.9695 (calculated 204.9697 for C7H5Cl2NO2). IR (solid) cm-1

3497, 3376, 1680, 1584, 1555, 1532, 1501, 1418, 1331, 1250, 1223, 1208, 1194, 1180, 1130, 1113, 910, 

897, 785, 764, 723, 677, 652, 646. 

66..11..4499 EEtthhyyll--((44--aammiinnoo--33,,55--cchhlloorroo))--bbeennzzooaattee ((117733))

4-Amino-3,5-dichlorobenzoic acid (900 mg, 3.86 mM, 1 eq.) was dissolved in ethanol 

(10 mL) and sulfuric acid (2 mL) was added. This solution was refluxed for 14 hours then 
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cooled and neutralized with saturated sodium hydrogen carbonate solution and 

extracted twice with dichloromethane. The combined organic fractions were dried over 

magnesium sulfate, filtered, and then concentrated under reduced pressure to yield 173

(800 mg, 80%) as a low melting pale brown solid. 

1H NMR (300 MHz, CDCl3) δ 7.87 (s, 2H), 4.87 (s, 2H), 4.32 (q, J = 7.1 Hz, 2H), 1.37 (t, J 

= 7.1 Hz, 3H). 13C NMR (75 MHz, DMSO-d6) δ 164.9, 143.9, 129.7, 120.2, 118.5, 61.1, 14.4. 

LRMS (EI -ve) 434.00 (23%), 432.00 (62%), 430.01 (68%), 283.27 (29%), 270.94 (36%), 

265.94 (98%), 266.94 (100% [M+Cl]-), 255.24 (24%), 233.99 (53% [M]-), 232.00 (80% [M-

H]-), 204.01 (37%), 112.98 (27%), 96.96 (27%), 80.91 (23%). HRMS (EI -ve) 233.0009 

(calculated 233.0010 for C9H9Cl2NO2). IR (solid) cm-1  3480, 3374, 2988, 1699, 1611, 1553, 

1495, 1474, 1410, 1395, 1368, 1323, 1252, 1227, 1146, 1140, 1113, 1020, 924, 905, 895, 781, 756, 

694. 

66..11..5500 DDiieetthhyyll--44,,44''--((ddiiaazzeennee--11,,22--ddiiyyll))--((EE))--bbiiss((33,,55--ddiicchhlloorroobbeennzzooaattee)) ((117722))

Potassium permanganate (2.00 g) and iron (II) sulfate heptahydrate (2.00 g) were 

ground together to a fine power, then suspended in dichloromethane (25 mL) and 

ethyl(4-amino-3,5-dichloro)benzoate (0.70 g, 2.99 mM, 1 eq.) added. The suspension 

was refluxed overnight then cooled, filtered through celite and the solvent removed 

under reduced pressure. The resulting solid was recrystallised from ethyl acetate to 

yield 172 (86 mg, 13%) as a grey solid. 

1H NMR (300 MHz, CDCl3) δ 8.10 (s, 4H), 4.41 (q, J = 7.1 Hz, 4H), 1.41 (t, J = 7.1 Hz, 6H). 
13C NMR (75 MHz, CDCl3) δ 163.7, 150.3, 131.9, 130.5, 127.2, 62.1, 14.3. LRMS (EI -ve) 

465.97 (50%), 463.97 (100%), 461.97 (75% [M]-), 313.08 (28%), 278.98 (58%), 276.98 

(86%), 239.06 (38%), 172.83 (25%), 112.99 (23%), 96.96 (28%). HRMS (ES -ve) 461.9710 

(calculated 461.9708 for C18H14Cl4N2O4). IR (solid) cm-1 1720, 1552, 1477, 1383, 1363, 1267, 

1145, 1014, 929, 895, 864, 819, 814, 759.
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66..11..5511 ((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33,,55--ddiicchhlloorroo--44,,11--pphheennyylleennee))))ddiimmeetthhaannooll ((117700))

Diethyl-4,4'-[(diazene-1,2-diyl)bis(3,5-dichloro)]benzoate (140 mg, 0.302 mM, 1 eq.) 

was dissolved in dry tetrahydrofuran (30 mL) and the flask flushed with argon. 

Diisobutylaluminium hydride solution (1 M in toluene, 6 eq.) was slowly added and the 

reaction was stirred overnight. Saturated potassium sodium tartrate (20 mL) was added 

and the suspension was stirred vigorously for 1 hour. The organic layer was separated, 

dried over sodium sulfate, filtered and evaporated under reduced pressure. The solid 

residues were purified over silica gel eluting with 20-50% ethyl acetate/hexane to yield 

170 (74 mg, 66%) as a pale orange solid. 

1H NMR (600 MHz, CD3OD) δ 7.56 (d, J = 0.6 Hz, 4H), 4.68 (s, 4H). 13C NMR (151 MHz, 

CD3OD) δ 145.9, 145.2, 127.0, 126.9, 62.0. LRMS (EI -ve) 380.94 (67%), 378.94 (100%), 

376.94 (86% [M]-), 350.94 (29%), 349.94 (56%), 347.94 (46%). HRMS (EI -ve) 376.9413 

(calculated 376.9418 for C14H9Cl4N2O2). 

66..11..5522 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33,,55--ddiicchhlloorroo--44,,11--pphheennyylleennee))))--bbiiss--((mmeetthhyylleennee))--bbiiss--((22--
cchhlloorrooaacceettaattee)) ((117711))

(Diazene-1,2-diylbis(3,5-dichloro-4,1-phenylene))dimethanol (30 mg, 0.054 mM, 1 eq.) 

was dissolved in tetrahydrofuran and the flask flushed with argon. Chloroacetyl 

chloride (100 uL, excess) was added dropwise and the reaction was stirred for 20 
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minutes at room temperature. Pyridine (100 uL, excess) was then added dropwise over 

20 minutes and the solution stirred overnight. The solvent was removed under reduced 

pressure and the residue was partitioned between dichloromethane and sodium 

hydrogen carbonate. The organic layer was dried over sodium sulfate and filtered, then 

the solvent was removed under reduced pressure and the resulting solid was 

recrystallised from methanol to yield 171 (39 mg, 93%) as deep red crystals. 

1H NMR (300 MHz, CDCl3) δ 7.71 (s, 4H), 5.21 (s, 4H), 4.16 (s, 4H). 13C NMR (75 MHz, 

CDCl3) δ 167.0, 148.7, 137.9, 133.0, 116.2, 65.5, 40.7. LRMS (EI +ve) 501.98 (30%), 413.99 

(27%), 264.00 (64%), 130.99 (100%). HRMS (EI +ve) 529.8932 (calculated 529.8928 for 

C18H12N2O4Cl6). IR (solid, cm-1) 3069, 2955, 2922, 2853, 1749, 1591, 1557, 1441, 1402, 1369, 

1310, 1258, 1198, 1186, 1159, 1020, 982, 928, 897, 885, 854, 800, 789, 777, 723, 685, 650, 586, 

557, 523, 444, 424, 419. 

66..11..5533 44--AAmmiinnoo--33,,55--ddiibbrroommoobbeennzzooiicc aacciidd ((117755))

4-Amino-3,5-dibromobenzonitrile (3.00 g, 10.8 mM, 1 eq.) was suspended in sodium 

hydroxide (1 M, 60 mL) and refluxed until thin layer chromatography showed an 

absence of starting material. The solution was cooled to room temperature and 

acidified with hydrochloric acid solution (1 M), causing precipitation of the product. 

The precipitate was filtered off, dissolved in ethyl acetate, dried over anhydrous 

magnesium sulfate, filtered and the solvent removed under reduced pressure to yield 

175 (3.20 g, 99%) as a white solid. 

1H NMR (300 MHz, DMSO-d6) δ 12.82 (s, 1H), 7.91 (s, 2H), 6.12 (s, 2H). 13C NMR (75 

MHz, DMSO-d6) δ 165.7, 147.2, 133.6, 120.5, 106.8. LRMS (EI +ve) 296.89 (48%), 294.89 

(100%), 292.89 (50%), 277.89 (18%), 277.89 (57%), 275.90 (30%), 219.0 (60%), 131.00 

(37%). HRMS (EI +ve) 292.8687 (calculated 292.8687 for C7H5Br2NO2) IR (solid) cm-1

3485, 3381, 2641, 2575, 2509, 1792, 1676, 1595, 1574, 1533, 1491, 1414, 1331, 1271, 1138, 1061, 

1038, 928, 901, 766, 727, 677, 586, 546, 511.  
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66..11..5544 EEtthhyyll 44--aammiinnoo--33,,55--ddiibbrroommoobbeennzzooaattee ((117766))

4-Amino-3,5-dibromobenzoic acid (3.00 g, 9.31 mM, 1 eq.) was dissolved in ethanol (10 

mL) and sulfuric acid (2 mL) this was refluxed for 14 hours. The solution was then 

neutralized with saturated sodium hydrogen carbonate solution and extracted twice 

with dichloromethane. The combined organic fractions were dried over magnesium 

sulfate, filtered, and then concentrated under reduced pressure to yield 176 (2.80 g, 

85%) as a pale brown solid.  

1H NMR (300 MHz, CDCl3) δ 8.07 (d, J = 3.2 Hz, 2H), 4.98 (s, 2H), 4.32 (q, J = 7.1 Hz, 

2H), 1.37 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 164.6, 145.7, 133.4, 121.3, 107.4, 

61.1, 14.4. LRMS (EI +ve) 324.93 (10%), 322.93 (19%), 320.93 (10%), 294.90 (36%), 284.31 

(79%), 277.89  (50%, [M]+), 275.89 (24%), 256.27 (87%), 241.24 (25%), 219.01 (37%), 213.21 

(42%), 207.06 (65%), 185.17 (31%), 171.16 (25%), 157.14 (20%), 129.10 (57%), 112.10 (22%), 

111.11 (29%), 98.08 (100%), 87.11 (29%), 85.11 (29%), 73.04 (63%), 69.08 (52%), 57.08 

(42%). HRMS (EI +ve) 320.8994 (calculated 320.9000 for C9H9Br2NO2). IR (solid) cm-1

3431, 3321, 2990, 2920, 1796, 1713, 1605, 1543, 1481, 1466, 1449, 1391, 1364, 1298, 1254, 1138, 

1113, 1059, 1018, 901, 862, 758, 729, 714, 671, 586, 554, 490, 467, 415. 

66..11..5555 DDiieetthhyyll 44,,44''--((ddiiaazzeennee--11,,22--ddiiyyll))bbiiss((33,,55--ddiibbrroommoo))bbeennzzooaattee ((117777))

Potassium permanganate (10 g) and iron (II) sulfate hetpahydrate (10 g) were ground 

together to a fine power, then suspended in dichloromethane (250 mL) and ethyl 4-

amino-3,5-dibromobenzoate (2.5 g, 7.74 mM, 1 eq.) added. The suspension was refluxed 

overnight then cooled, filtered through celite and the solvent removed under reduced 
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pressure. The residue was recrystallised from ethyl acetate to yield 177 (86 mg, 13%) as 

a grey solid.  

1H NMR (300 MHz, CDCl3) δ 8.27 (s, 4H), 4.35 (q, J = 7.1 Hz, 4H), 1.42-1.25 (m, 6H). 13C 

NMR (75 MHz, CDCl3) δ 163.5, 151.6, 134.4, 132.4, 115.6, 62.1, 14.3. LRMS (EI +ve) 644.77 

(65%), 642.77 (100%), 640.77 (69%), 581.76 (28%), 579.76 (45%), 577.76 (29%), 504.86 

(36%), 502.86 (40%), 487.84 (76%), 485.84 (80%), 483.84 (84%). HRMS (EI +ve) 

638.7756 (calculated 638.7760 for C18H14Br4O4H). IR (solid) cm-1 3321, 3090, 2990, 1715, 

1605, 1545, 1470, 1433, 1368, 1248, 1130, 1111, 1013, 899, 862, 762, 739, 654, 469, 417.

66..11..5566 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33,,55--ddiibbrroommoo--44,,11--pphheennyylleennee))))ddiimmeetthhaannooll ((117788))

Diethyl-4,4'-(diazene-1,2-diyl)bis(3,5-dibromobenzoate) (177) (120 mg, 0.187 mM, 1 eq.), 

was dissolved in dry tetrahydrofuran (6 mL) and the flask flushed with argon. 

Diisobutylaluminium hydride solution (1 M in toluene, 6 eq.) was slowly added and the 

reaction was stirred overnight. Saturated potassium sodium tartrate (12 mL) was added 

and the suspension was stirred vigorously for 1 hour. The organic layer was separated, 

dried over sodium sulfate, filtered and the solvent removed under reduced pressure. 

The residue was purified over silica gel eluting with 20-50% ethyl acetate in hexane to 

yield 178 (104 mg, 63%) as a pale orange solid. 

1H NMR (300 MHz, CD3OD) δ 7.77 (s, 4H), 4.67 (s, 4H). 13C NMR (75 MHz, CD3OD) δ

147.3, 145.6, 131.0, 115.5, 61.8. LRMS (EI +ve) 559.80 (23%), 557.81 (38%), 55.80 (33%), 

294.91 (41%), 292.90 (100%), 290.91 (55%), 277.90 (36%), 264.90 (40%), 246.88 (67%), 

219.01(29%), 155.97 (24%), 77.05 (21%), 69.00 (32%)HRMS (EI +ve) 532.7498 (calculated 

533.7476 for C14H10Br4N2O2). IR (solid) cm-1 2916, 2851, 2490, 2236, 2070, 1746, 1585, 1541, 

1435, 1391, 1258, 1194, 1111, 1026, 976, 922, 899, 847, 799, 733, 492. 
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66..11..5577 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33,,55--ddiibbrroommoo--44,,11--pphheennyylleennee))))bbiiss((mmeetthhyylleennee)) bbiiss((22--
cchhlloorrooaacceettaattee ((117799))

(E)-(diazene-1,2-diylbis(3,5-dibromo-4,1-phenylene))dimethanol (30 mg, 0.054 mM, 1 

eq.) was dissolved in tetrahydrofuran and the flask flushed with argon. Chloroacetyl 

chloride (100 uL, excess), was added dropwise and the reaction was stirred for 20 

minutes at room temperature. Pyridine (100 uL, excess) was then added dropwise over 

20 minutes and the solution stirred overnight. The solvent was then removed under 

reduced pressure and the residue was partitioned between dichloromethane and 

sodium hydrogen carbonate. The organic layer was dried over sodium sulfate and 

filtered, then the solvent was removed under reduced pressure and the resulting solid 

was recrystallised from methanol to yield 179 (38 mg, 99%) as deep red crystals. 

1H NMR (300 MHz, CDCl3) δ 7.71 (s, 2H), 5.21 (s, 2H), 4.16 (s, 2H). 13C NMR (75 MHz, 

CDCl3) δ 167.0, 148.7, 137.9, 133.0, 116.2, 65.5, 40.7. HRMS (NSI +ve) 706.6980 (calculated 

706.6978 for C18H12N2O4Br4Cl2). IR (solid) cm-1 3065, 2920, 2851, 1765, 1749, 1593, 1547, 

1445, 1402, 1371, 1356, 1304, 1175, 1018, 970, 949, 924, 910, 864, 795, 770, 743, 723, 689, 567, 

511, 500, 420, 413, 403. 

66..11..5588 44--BBrroommoo--22,,66--ddiifflluuoorrooaanniilliinnee ((113366))

4-Bromo-2,6-difluoroaniline was synthesised according to a published procedure.61 2,6-

Difluoroaniline (5.0 g, 38.7 mM, 1 eq.) was added to a solution of N-bromosuccinimide 

(6.9 g, 38.9 mM, 1 eq.) in acetonitrile (100 mL) and the resulting solution was stirred 

for 24 hours. Water (30 mL) was added and the mixture was extracted with hexane (3 
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x 30 mL). The organic layers were combined, dried over magnesium sulfate and filtered 

before the solvent was removed under reduced pressure to yield 136 (8.0 g, 100%) as a 

pink solid. 

1H NMR (300 MHz, CDCl3) δ 7.15-6.92 (m, 2H). 13C NMR (75 MHz, CDCl3) δ 151.8 (Dd, 

J = 9 Hz, J = 9 Hz), 123.5, 114.8 (dt, J = 13, 3 Hz), 107.2 (d, J = 12 Hz). 19F NMR (282.24 

MHz, CDCl3) δ -118, -119. LRMS (ESI -ve) 207.94 [M]- (93%), 205.94 [M]- (100%), 165.05 

(70%), 118.9 (18%), 116.92 (24%). HRMS (ESI -ve) 205.9426 (Calculated 205.9417 for 

C6H4BrF2N). IR (solid) cm-1 3422, 3331, 1643, 1605, 1580, 1499, 1427, 1298, 1152, 966, 866, 

839, 762, 716, 563, 509. MP 136-138 oC.

66..11..5599 44--AAmmiinnoo--33,,55--ddiifflluuoorroobbeennzzoonniittrriillee ((118800XX))

4-Bromo-2,6-difluoroaniline (2.00 g, 9.62 mM, 1 eq.) and copper cyanide (2.69 g, 28.8 

mM, 3 eq.) were dissolved in dimethylformamide (20 mL) and refluxed for 14 hours 

following a published procedure.61 The solution was cooled to room temperature and 

ammonia solution (12%, 100 mL) was added. This mixture was extracted with 

ethylacetate (5 x 100 mL) and the organic layers were combined, dried over magnesium 

sulfate filtered and the solvent removed under reduced pressure. The residue was 

purified over silica gel eluting with 33% hexane in dichloromethane to give 180 (0.50 g, 

34%) as a pale yellow solid. 

1H NMR (300 MHz, CDCl3) δ 7.06 (s, 2H), 4.28 (s, 2H). 13C NMR (75 MHz, CDCl3) δ 

150.5 (dd, J = 9 Hz, J = 9 Hz), 129.8 (t, J = 16 Hz), 118.0 (t, J = 3 Hz), 115.9-115.1 (m), 98.0 

(t, J = 11 Hz). 19F NMR (376 MHz, CDCl3) δ -130.66. LRMS (EI -ve), m/z 153.02 (100% 

[M]-), 133.01 (83%), 113 (66%). HRMS (EI -ve) 154.0345 (Calculated 154.0343 for 

C7H4F2N2). IR (solid) cm-1 3484, 3484, 3358, 3351, 2228, 1638, 1574, 1530, 1445, 1348, 1335, 

1277, 1146, 955, 866. 
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66..11..6600 44--AAmmiinnoo--33,,55--ddiifflluuoorroobbeennzzooiicc aacciidd ((118811))

4-Amino-3,5-difluorobenzonitrile (256 mg, 1.66 mM, 1 eq.) was suspended in sodium 

hydroxide solution (1 M, 10 mL) and refluxed until thin layer chromatography showed 

an absence of starting material. The solution was cooled to room temperature and 

acidified with hydrochloric acid solution (1 M), causing precipitation of the product. 

The precipitate was filtered off and dissolved in ethyl acetate, dried over anhydrous 

magnesium sulfate, filtered and the solvent removed under reduced pressure to yield 

181 (268 mg, 93%) as an off-white solid. 

1H NMR (300 MHz, CD3OD) δ 7.33 (dd, J = 7.2, 2.4 Hz, 2H), 5.32 (s, 2H). 13C NMR (75 

MHz, CD3OD) δ 167.5 (t, J = 3 Hz), 150.4 (d, J = 8 Hz, J = 8 Hz), 130.4 (t, J = 16 Hz), 116.6 

(t, J = 8 Hz), 112.8-111.8 (m). 19F NMR (376 MHz, DMSO) δ -131.61. LRMS (EI +ve) 173.03 

(100% [M]+), 156.03 (95%), 128.03 (37%). HRMS (EI +ve) 173.0287 (calculated 173.0288 

for C7H5F2NO2). IR (solid) cm-1 1680, 1636, 1580, 1499, 1423, 1333, 1298, 1238, 1148, 959, 

864, 833, 758, 719, 563.  

66..11..6611 EEtthhyyll((44--aammiinnoo--33,,55--fflluuoorroo))bbeennzzooaattee ((118822))

4-Amino-3,5-difluorobenzoic acid (516 mg, 9.31 mM) was dissolved in ethanol (100 mL) 

with sulfuric acid (2 mL) and the solution was refluxed for 14 hours. The solution was 

then neutralized with saturated sodium hydrogen carbonate solution and extracted 

twice with dichloromethane. The combined organic fractions were dried over 

magnesium sulfate, filtered, and then concentrated under reduced pressure to yield 182

(451 mg, 75 %) as a dark brown solid.  
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1H NMR (300 MHz, CDCl3) δ 7.54 (dd, J = 7.2, 2.1 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 3.95 

(s, 2H), 1.38 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 165.2, 151.2 (d, J = 1 Hz, J = 1 

Hz), 128.8 (t, J = 2 Hz), 118.5 (t, J = 2 Hz), 112.6 (m), 61.1, 14.3. 19F NMR (376 MHz, CDCl3) 

δ -132.93. LRMS (EI +ve) 201.06 (87%), 173.03 (62%), 156.01 (100%), 149.03 (25%), 128.03 

(48%). HRMS (EI +ve) 201.0596 (Calculated 201.0601 for C9H9F2NO2). IR (solid) cm -1

3372, 1697, 1630, 1585, 1528, 1477, 1443, 1396, 1371, 1333, 1269, 1223, 1128, 1092, 1024, 939, 

881, 758, 745, 719, 544, 519, 419.  

66..11..6622 DDiieetthhyyll 44,,44''--((ddiiaazzeennee--11,,22--ddiiyyll))bbiiss((33,,55--ddiifflluuoorroobbeennzzooaattee)) ((118833))

Potassium permanganate (2.00 g) and iron (II) sulfate hetpahydrate (2.00 g) were 

ground together to a fine power, then suspended in dichloromethane (100 mL) and 4-

amino-3,5-difluorobenzoate (400 mg, 1.99 mM, 1 eq.). The suspension was refluxed 

overnight then cooled, filtered through celite and the solvent removed under reduced 

pressure. The residue was recrystallised from ethyl acetate to yield 183 (55 mg, 14%) as 

a pale pink solid. 

1H NMR (300 MHz, CDCl3) δ 7.76 (dd, J = 10.5, 1.5 Hz, 4H), 4.44 (q, J = 7.1 Hz, 4H), 1.44 

(t, J = 7.1 Hz, 6H). 13C NMR (75 MHz, CDCl3) δ 163.7, 156.7, 153.3, (d, J = 128 Hz),133 (m), 

114.0 (d, J = 2 Hz) 113.0 (d, J = 2 Hz), 62.2, 14.2. 19F NMR (376 MHz, CDCl3) δ -119.49. LRMS

(EI +ve) 398.09 (90% [M]+), 382.1 (25%), 353.06 (23%), 213.03 (100%), 201.06 (41%), 

185.04 (37%), 173.03 (29%), 156.02 (94%), 128.03 (24%), 101.02 (47%). HRMS (EI +ve) 

398.0895 (calculated 398.0890 for C18H14F4N2O4). IR (solid) cm-1 3372, 3250, 3090, 2961, 

2936, 1767, 1722, 1678, 1626, 1576, 1528, 1470, 1433, 1398, 1371, 1331, 1231, 1194, 1088, 1049, 

1018, 885, 862, 797, 770, 748, 544, 511, 500. 
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66..11..6633 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33,,55--ddiifflluuoorroo--44,,11--pphheennyylleennee))))ddiimmeetthhaannooll ((118833))

Diethyl 4,4'-(diazene-1,2-diyl)-bis-(3,5-difluorobenzoate) (50 mg, 0.126 mM, 1 eq.) was 

dissolved in dry tetrahydrofuran (5 mL) and the flask flushed with argon. 

Diisobutylaluminium hydride solution (0.76 mL, 1 M in toluene, 6 eq.) was slowly 

added and the reaction was stirred overnight. Saturated potassium sodium tartrate (10 

mL) was added and the suspension was stirred vigorously for 1 hour. The organic layer 

was separated, dried over sodium sulfate, filtered and evaporated under reduced 

pressure. The residues was purified over silica gel eluting with 20-50% ethyl acetate in 

hexane to yield 184 (35 mg, 89%) as a pale solid. 

1H NMR (300 MHz, CD3OD) δ 7.06 (d, J = 10.2 Hz, 3H E-isomer), 6.86 (d, J = 8.8 Hz, 1H 

Z-isomer), 4.56 (d, J = 6.3 Hz, 1H E-isomer), 4.45 (s, 1H Z-isomer), 13C NMR (75 MHz, 

CD3OD) δ  157.1 (d, J = 1 Hz), 153.8, (d, J = 1 Hz), 148.2 (m), 147.9, 129.9, 109.8 (d, J = 1 Hz) 

109.5 (d, J = 1 Hz), 62.3 (mixtures of isomers). 19F NMR (376 MHz, MeOD) δ -122.99. 

LRMS (EI +ve) 315.07 (45% [M]+), 314.07 (70% [M-H]+), 213.05 (57%), 201.6 (37%), 173.04 

(33%), 172.05 (57%), 171.03 (96%), 157.03 (39%), 156.03 (78%), 143.049 (37%), 142.04 

(23%), 125.02 (100%). HRMS (EI +ve) 315.0744 (calculated 315.0757 for C14H10F4N2O2). 

IR (solid) cm-1 2860, 2610, 2475, 1701, 1609, 1580, 1551, 1499, 1423, 1422, 1317, 1306, 1244, 

1211, 1180, 1109, 1078, 1016, 806, 739, 679, 629, 606, 527, 474.  

66..11..6644 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33,,55--ddiifflluuoorroo--44,,11--pphheennyylleennee))))bbiiss((mmeetthhyylleennee))--bbiiss--((22--
cchhlloorrooaacceettaattee)) ((118855))
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(E)-(Diazene-1,2-diylbis-(3,5-difluoro-4,1-phenylene))dimethanol (23 mg, 0.073 mM, 1 

eq.) was dissolved in tetrahydrofuran and the flask flushed with argon. Chloroacetyl 

chloride (100 uL, excess), was added dropwise and the reaction was stirred for 20 

minutes at room temperature. Pyridine (100 uL, excess) was then added dropwise over 

20 minutes and the solution stirred overnight. The solvent was then removed under 

reduced pressure and the residue was partitioned between dichloromethane and 

sodium hydrogen carbonate. The organic layer was dried over sodium sulfate and 

filtered, then the solvent was removed under reduced pressure and the resulting solid 

was recrystallised from methanol to yield 185 (30 mg, 87%) as deep red crystals. 

1H NMR (600 MHz, CDCl3) δ, 7.08 (d, J = 9.1 Hz, 3H E-isomer), 6.89 (d, J = 7.7 Hz, 1H 

Z-isomer), 5.23 (s, 3H), 5.14 (s, 1H), 4.16 (s, 3H), 4.12 (s, 1H). 13C NMR (75 MHz, CDCl3) 

δ 166.9, 157.3, 153.8, 139.8, 139.67, 112.1, 111.7, 65.9, 65.6 (mixture of isomers). 19F NMR

(565 MHz, CDCl3) δ -118.11, -118.12, -119.55, -119.57 (possible multiplets of isomers). LRMS 

(EI +ve) 468.01 (23%), 466.01 (48% [M]+), 249.01 (21%), 247.01 (100%), 125.02 (78%). 

HRMS (EI +ve) 466.0113 (calculated 466.0110 for C18H12N2O4Cl2F4) IR (solid) cm-1 2961, 

2920, 2849, 1759, 1630, 1580, 1441, 1410, 1373, 1314, 1186, 1171, 1076, 1053, 1020, 980, 943, 

928, 864, 851, 799, 785, 750, 737, 712, 602, 586, 567, 529, 446.

66..11..6655 44--AAmmiinnoo--33--bbeennzzooiicc aacciidd ((118877))

4-Amino-3-benzonitrile (3.00 g, 25.0 mM, 1 eq.) was suspended in sodium hydroxide (1 

M, 150 mL) and refluxed until thin layer chromatography showed an absence of starting 

material. The solution was cooled to room temperature and acidified with hydrochloric 

acid solution (1 M), causing precipitation of the product. The precipitate was filtered 

off and dissolved in ethyl acetate, dried over anhydrous magnesium sulfate, filtered and 

the solvent removed under reduced pressure to yield 187 (1.89 g, 55%) as an off-white 

solid.  
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1H NMR (300 MHz, DMSO-d6) δ 10.10 (s, 1H), 7.91 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 8.3 Hz, 

2H). 13C NMR (75 MHz, DMSO-d6) δ 167.3, 142.0, 131.4, 126.3 120.5. LRMS (EI +ve) 137.04 

(100% [M]+), 120 (100%). HRMS (EI +ve) 214.9584 (Calculated 214.9582 for C7H6BrNO2). 

IR (solid) cm-1 3426, 3325, 3090, 2980, 1715, 1670, 1605, 1541, 1481, 1470, 1431, 1391, 1364, 

1300, 1250, 1155, 1130, 1109, 1057, 1018, 899, 864, 824, 758, 731, 681, 631, 559, 532, 503, 490, 

473, 451.  

66..11..6666 EEtthhyyll ((44--aammiinnoo--bbeennzzooaattee)) ((118888))

4-Aminobenzoic acid (1.00 g, 6.06 mM, 1 eq.) was dissolved in ethanol (60 mL) and 

sulfuric acid (2 mL) and refluxed for 14 hours. The solution was then neutralized with 

saturated sodium hydrogen carbonate solution and extracted twice with 

dichloromethane. Combined organic fractions were dried over magnesium sulfate, 

filtered, and then concentrated under reduced pressure to yield 188 (1.20 g, 100%) as a 

pale purple solid. 

1H NMR (300 MHz, CDCl3) δ 7.88 (dd, J = 6.8, 1.9 Hz, 2H), 6.66 (dd, J = 6.8, 1.9 Hz, 2H), 

4.34 (q, J = 7.1 Hz, 2H), 4.07 (s, 2H), 1.38 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 

166.7, 150.7, 131.6, 120.1, 113.8, 60.4, 14.5. LRMS (EI +ve) 165.07 (100% M+), 137.04 (75%), 

121.05 (21%), 120.03 (100%), 92.05 (82%), 84.94 (90%), 82.94 (100%), 65.04 (49%). 

HRMS (EI -ve) 165.0794 (calculated 165.0790 for C9H7NO2). IR (solid) cm -1 3375, 3310, 

2980, 2926, 2851, 1956, 1711, 1603, 1520, 1464, 1449, 1406, 1385, 1366, 1261, 1213, 1171, 1094, 

1009, 868, 858, 766, 696, 542.  

66..11..6677 DDiieetthhyyll--44,,44''--((ddiiaazzeennee--11,,22--ddiiyyllbbeennzzooaattee)) ((118899))
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Potassium permanganate (4.00 g) and iron (II) sulfate heptahydrate (4.00 g) were 

ground together to a fine power and suspended in dichloromethane (250 mL). 4-

Aminobenzoate (800 mg, 4.84 mM, 1 eq.) was added and the suspension was refluxed 

overnight. The reaction was then cooled, filtered through celite and the solvent 

removed under reduced pressure. The resulting solid was recrystallised from ethyl 

acetate to yield 189 (172 mg, 22%) as a pale orange solid. 

1H NMR (300 MHz, CDCl3) δ 8.36-8.12 (m, 4H), 8.12-7.89 (m, 4H), 4.67-3.65 (m, 4H), 

1.45 (dd, J = 9.3, 4.6 Hz, 6H). 13C NMR (75 MHz, CDCl3) δ 166.0, 154.9, 132.76, 130.7, 122.9, 

61.4, 14.4. LRMS (EI +ve) 326.13 (93% M+), 281.09 (20%), 177.07 (20%), 149.06 (100%). 

HRMS (EI +ve) 326.1272 (calculated 326.1267 for C18H18N2O4). IR (solid) cm-1 3375, 3310, 

2980, 2926, 2851, 1956, 1711, 1603, 1520, 1464, 1449, 1406, 1385, 1366, 1261, 1213, 1171, 1094, 

1009, 868, 858, 766, 696, 542. 

66..11..6688 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((44,,11--pphheennyylleennee))))ddiimmeetthhaannooll ((119900))

Diethyl-4,4'-(diazene-1,2-diylbenzoate) (189) (172 mg, 0.527 mM, 1 eq.) was dissolved in 

dry tetrahydrofuran (30 mL) and the flask flushed with argon. Diisobutylaluminium 

hydride solution (1 M in toluene, 6 eq.) was slowly added and the reaction was stirred 

overnight. Saturated potassium sodium tartrate (30 mL) was added and the suspension 

was stirred vigorously for 1 hour. The organic layer was separated, dried over sodium 

sulfate, filtered and evaporated under reduced pressure. The solid residues were 

purified over silica gel eluting with 20-50% ethyl acetate/hexane to yield 190 (78 mg, 

61%) as a pale solid. 

1H NMR (600 MHz, CD3OD) δ 7.91 (d, J = 8.3 Hz, 4H), 7.56 (d, J = 8.3 Hz, 4H), 4.60 (s, 

4H). 13C NMR (151 MHz, CD3OD) δ 151.9, 144.9, 127.1, 126.9, 122.4, 120.2, 63.3, LRMS (EI 

+ve) 242.10 (100% [M]+), 135.05 (33%), 107.05 (67%), 89.04 (36%). HRMS (EI +ve) 

242.1050 (calculated 242.1055 for C14H14N2O2). IR (solid) cm-1 3275, 3175, 2916, 2851, 1931, 

1601, 1495, 1456, 1414, 1375, 1342, 1304, 1288, 1202, 1153, 1105, 1020, 1007, 851, 829, 719, 696, 

637, 569, 519. 
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66..11..6699 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((44,,11--pphheennyylleennee))))bbiiss((mmeetthhyylleennee))--bbiiss((22--cchhlloorrooaacceettaattee)) ((119911))

(E)-(Diazene-1,2-diylbis(4,1-phenylene))dimethanol (50 mg, 0.207 mM, 1 eq.) was 

dissolved in tetrahydrofuran and the flask flushed with argon. Chloroacetyl chloride 

(100 uL, excess), was added dropwise and the reaction was stirred for 20 minutes at 

room temperature then pyridine (100 uL, excess) was then added dropwise over a 

further 20 minutes and the solution stirred overnight. The solvent was then removed 

under reduced pressure and the residue was partitioned between dichloromethane and 

sodium hydrogen carbonate. The organic layer was dried over sodium sulfate, filtered, 

and the solvent was removed under reduced pressure. The resulting solid was 

recrystallised from methanol to yield 191 (70 mg, 86%) as deep red crystals. 

1H NMR (600 MHz, CDCl3) δ, 7.95 (d, J = 8.4 Hz, 4H), 7.55 (d, J = 8.5 Hz, 4H), 5.32 (s, 

4H), 4.16 (s, 4H). 13C NMR (75 MHz, CDCl3) δ 167.2 152.5, 137.9, 129.1, 123.2, 67.3, 40.9. 

LRMS (EI +ve) 396.05 (37%), 394.05 (59% [M]+), 211.03 (43%), 90.05 (26%), 89.04 (60%), 

83.09 (29%). HRMS (EI +ve) 242.1050 (calculated 242.1055 for C14H14N2O2). IR (solid)

cm-1 2949, 2922, 1744, 1603, 1499, 1449, 1412, 1373, 1315, 1256, 1209, 1200, 1190, 1159, 1107, 

999, 980, 966, 955, 928, 885, 876, 856, 835, 777, 718, 677, 640, 590, 559, 529, 513. 

66..11..7700 22--BBrroommoo--44--aammiinnoobbeennzzoonniittrriillee ((119944))

4-Aminobenzonitrile (1.00 g, 8.46 mM, 1 eq.) was dissolved in acetonitrile (30 mL), 

N-bromosuccinimide (1.51 g, 8.46 mM, 1 eq.) was added and the resulting solution was 
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stirred overnight. The solvent was removed under reduced pressure and the residue 

was dissolved in dichloromethane and washed with potassium hydroxide. The organic 

layer was dried over magnesium sulfate, filtered and the solvent removed under 

reduced pressure to give 194 (1.65 g, 99%) as an off-white solid. 

1H NMR (300 MHz, CDCl3) δ 7.67 (d, J = 1.3 Hz, 1H), 7.43-7.25 (m, 1H), 6.76 (d, J = 8.4 

Hz, 1H), 4.72 (s, 2H). 13C NMR (75 MHz, CDCl3) δ 148.3, 136.4, 132.5, 118.8, 114.8, 107.8, 

100.9. LRMS (ES -ve) 196.94 (71% [M]-), 194.94 (72% [M]-), 115.02 (100%), 80.91 (43%), 

78.91 (44%). HRMS (EI +ve) 194.9559 (calculated 194.9958 for C7H4N2Br). IR (solid)

cm-1 3451, 3333, 2228, 1761, 1703, 1609, 1528, 1481, 1402, 1304, 1202, 1165, 1053, 891, 872, 814, 

739, 716, 640, 590, 474, 449, 426, 409, 403. 

66..11..7711 44--AAmmiinnoo--33--cchhlloorroobbeennzzoonniittrriillee ((119933))

4-Aminobenzonitrile (3.00 g, 25.0 mM, 1 eq.) was dissolved in acetonitrile (30 mL), 

N-chlorosuccinimide (3.39 g, 25.0 mM, 1 eq.) was added and the solution was stirred 

overnight. The solvent was removed under reduced pressure and the residue dissolved 

in dichloromethane and washed with potassium hydroxide. The organic layer was dried 

over magnesium sulfate filted and concentrated. The solid residue was purified by silica 

gel eluting with 30% ethyl acetate in hexane to yield 193 (2.84 g, 74%) as an off-white 

solid. 

1H NMR (300 MHz, CDCl3) δ 7.52 (d, J = 1.8 Hz, 1H), 7.33 (dd, J = 8.4, 1.8 Hz, 1H), 6.75 

(d, J = 8.4 Hz), 4.61 (s, 2H). 13C NMR (75 MHz, CDCl3) δ 147.0, 133.3, 132.0, 118.9, 118.5, 

115.1, 100.8. LRMS (EI +ve) 154.01 (47%), 152.01 (100% [M]+), 142.16 (24%), 125.00 (18%). 

HRMS (EI +ve) 152.0138 (calculated 152.0141 for C7H5N2Cl). IR (solid) cm-1 3474, 3350, 

3208, 2220, 1902, 1769, 1630, 1597, 1506, 1416, 1335, 1317, 1200, 1161, 1078, 1043, 881, 812, 712, 

675, 583, 523, 517, 430.  
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66..22 GGeenneerraall mmeetthhoodd ffoorr tthhee ssyynntthheessiiss ooff 44--aammiinnoo--33--hhaalloobbeennzzooiicc aacciiddss

Variously halogenated substituted 4-aminobenzonitriles were suspended in sodium 

hydroxide (1 M, 3-6 mL/mM) and refluxed until thin layer chromatography showed an 

absence of starting material. The solution was cooled to room temperature and 

acidified with hydrochloric acid solution (1 M), causing precipitation of the product. 

The precipitate was filtered off then dissolved in ethyl acetate, dried over anhydrous 

magnesium sulfate, filtered and the solvent removed under reduced pressure. 

4-Amino-3-bromobenzonitrile (197)

Reacting 194 (1.30 g, 6.60 mM, 1 eq.) yielded 197 (1.32 g, 93%) as an off-white solid. 

1H NMR (300 MHz, DMSO-d6) δ 12.41 (s, 1H), 7.94-7.75 (m, 1H), 7.63 (dd, J = 8.5, 1.2 Hz, 

1H), 6.79 (d, J = 8.5 Hz, 1H), 6.13 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 166.8, 150.4, 

134.4, 130.5, 119.2, 114.5, 106.3. LRMS (ESI -ve) 428.86 (20%), 426.86 (37%), 424.86 (20%), 

215.94 (31%), 213.94 (29%), 96.95 (32%), 80.91 (100%). HRMS (EI -ve) 214.9584 

(calculated 214.9582 for C7H6BrNO2). IR (solid) cm-1 3426, 3325, 3090, 2980, 1715, 1670, 

1605, 1541, 1481, 1470, 1431, 1391, 1364, 1300, 1250, 1155, 1130, 1109, 1057, 1018, 899, 864, 824, 

758, 731, 681, 631, 559, 532, 503, 490, 473, 451. 

4-Amino-3-chlorobenzoic acid (196) 

Reacting 193 (2.5 g, 16.40 mM, 1 eq.) yielded 196 (2.32 g, 83 %) as a white solid. 

1H NMR (300 MHz, DMSO-d6) δ 12.41 (s, 1H), 7.71 (d, J = 1.9 Hz, 1H), 7.59 (dd, J = 8.5, 

1.9 Hz, 1H), 6.79 (d, J = 8.5 Hz, 1H), 6.18 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 167.0, 

149.4, 131.1, 130.0, 118.7, 116.4, 114.6. LRMS (EI +ve) 173.00 (23%), 171.01 (97% [M]+), 156.00 

(36%), 154.01 (100%). HRMS (EI +ve) 171.0093 (calculated 171.0087 for C7H6NO2Cl). IR 

(solid) cm-1 3499, 3399, 1665, 1614, 1557, 1558, 1512, 1435, 1406 1331, 1283, 1256, 1157, 1067, 

1040, 918, 880, 829, 822, 766, 704, 631, 559, 540. 
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4-Amino-3-fluorobenzoic acid (195) 

Reacting 192 (2.0 g, 14.7 mM, 1 eq.) yielded 195 (2.20 g, 96 %) as a white solid. 

1H NMR (300 MHz, DMSO-d6) δ 12.37 (s, 1H), 7.56-7.41 (m, 2H), 6.77 (t, J = 8.6 Hz, 1H), 

5.99 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 167.3 (d, J = 1 Hz), 149.7, (d, J = 116 Hz), 

141.9, (d, J = 2 Hz) 127.4, (d, J = 1 Hz), 117.8, (d, J = 7.5 Hz) 116.3 (d, J = 22.5 Hz) 115.2 (d, J 

= 7.5 Hz). 

19F NMR (376 MHz, DMSO-d6) δ -135.81. LRMS (EI +ve) 155.04 (100% [M]+), 137.04 (97%), 

110.04 (30%), 88.05 (27%). HRMS (EI +ve) 155.0383 (calculated 155.0383 for C7H6NO2F). 

IR (solid) cm-1 3514, 3414, 1672, 1634, 1574, 1530, 1456, 1412, 1298, 1254, 1198, 1152, 1088, 

1043, 930, 887, 827, 760, 635, 559, 548, 434, 430. 

66..33 GGeenneerraall mmeetthhoodd ffoorr tthhee ssyynntthheessiiss ooff eetthhyyll((44--aammiinnoo--33 hhaalloobbeennzzooaatteess))

Variously substituted 4-aminobenzoic acids (1 eq.) were dissolved in ethanol (10 

mL/mM) with sulfuric acid (2 mL) and refluxed for 14 hours. The solution was then 

neutralized with saturated sodium hydrogen carbonate solution and extracted twice 

with dichloromethane. Combined organic fractions were dried over magnesium 

sulfate, filtered, and the solvent removed under reduced pressure. 

66..33..11 ((44--AAmmiinnoo--33--bbrroommoo))bbeennzzooaattee ((220000))

Reacting 197 (1.00 g,) yielded 200 (1.07 g, 95%) as a pale brown solid.  

1H NMR (300 MHz, CDCl3) δ 8.13 (d, J = 1.9 Hz, 1H), 7.81 (dd, J = 8.4, 1.9 Hz, 1H), 6.75 

(d, J = 8.4 Hz, 1H), 4.54 (s, 2H), 4.34 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H). 13C NMR

(75 MHz, CDCl3) δ 165.6, 148.1, 134.5, 130.3, 121.1, 114.3, 107.9, 60.7, 14.4. LRMS (EI +ve) 

244.98 (76%), 242.9831 (77%), 218.99 (23%), 216.96 (54%), 214.96 (56%), 199.94 (100%), 

197.94 (98%), 171.96 (26%), 169.96 (26%), 90.03 (26%). HRMS (EI +ve) 242.9892 

(calculated 242.9895 for C9H10BrNO2). IR (solid) cm-1 3470, 3360, 2976, 2905, 1688, 1626, 
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1593, 1510, 1481, 1416, 1364, 1337, 1275, 1231, 1153, 1123, 1103, 1018, 893, 822, 797, 758, 702, 

679, 629, 552, 527, 434, 415.  

66..33..22 ((44--AAmmiinnoo--33--cchhlloorroo))bbeennzzooaattee ((119999))

Reacting 196 (1.00 g) reacted to yield 199 (1.06 g, 91%) as a pale brown solid.  

1H NMR (300 MHz, CDCl3) δ 7.98 (d, J = 1.9 Hz, 1H), 7.79 (dd, J = 8.4, 1.9 Hz, 1H), 6.76 

(d, J = 8.4 Hz, 1H), 4.79-4.35 (m, 2H), 4.32 (d, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). 13C 

NMR (75 MHz, CDCl3) δ 165.8, 147.0, 131.2, 129.6, 120.8, 118.2, 114.4, 60.7, 14.4. LRMS (EI 

+ve) 201.04 (26%), 199.04 (87% [M]+), 171.01 (77%), 156.00 (70%), 153.99 (100%). HRMS 

(EI +ve) 199.0400 (calculated 199.0401 for C9H10NO2Cl1). IR (solid) cm-1 3487, 3356, 3208, 

2980, 2901, 1688, 1624, 1593, 1508, 1474, 1423, 1391, 1366, 1329, 1281, 1242, 1159, 1134, 1113, 

1040, 1022, 899, 870, 833, 760, 706, 629, 552, 534, 440, 419.  

66..33..33 EEtthhyyll((44--aammiinnoo--33,,55--fflluuoorroo))bbeennzzooaattee ((119988))

Reacting 195 (2.00 g, 13 mM, 1 eq.) yielded 198 (2.17 g, 92 %) as a dark brown solid. 

1H NMR (300 MHz, CDCl3) δ 7.64 (m, 2H), 6.74 (m, 1H), 4.31 (q, J = 7.2 Hz, 2H), 4.18 (s, 

2H), 1.35 (t, J = 7.2 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ, 166.0, 151.9, 139.4 (d, J = 1 Hz), 

126.8, 120.3, (d, J = 1 Hz), 116.5 (d, J = 3 Hz), 115.3 (d, J = 1 Hz), 60.7, 14.4. 19F NMR (376 

MHz, CDCl3) δ -136.10. LRMS (EI +ve) 183.07 (76% [M]+), 155.04 (37%), 138.02 (100%), 

110.04 (28%). HRMS (EI +ve) 183.0694 (calculated 183.0696 for C9H10NO2F). IR (solid) 

cm-1 3402, 3331, 3215, 2988, 1688, 1634, 1611, 1585, 1520, 1445, 1364, 1315, 1285, 1246, 1200, 

1155, 1115, 1094, 1076, 1024, 941, 887, 826, 760, 667, 631, 575, 563, 536, 480, 469.  

66..44 GGeenneerraall mmeetthhoodd ffoorr tthhee ssyynntthheessiiss ooff hhaallooaazzoobbeennzzeennee eetthhyyll eesstteerrss

Potassium permanganate (1.2 g/mM) and iron (II) sulfate hetpahydrate (1.2 g/mM) 

were ground together to a fine power, then suspended in dichloromethane and various 

halo-substituted ethyl(4-aminobenzoates) were added. The suspension was refluxed 
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overnight then cooled, filtered through celite and the solvent removed under reduced 

pressure. The resulting solid was recrystallised from ethyl acetate.  

66..44..11 DDiieetthhyyll 44,,44''--((ddiiaazzeennee--11,,22--ddiiyyll))((EE))--bbiiss((33--bbrroommoobbeennzzooaattee)) ((220033))

Reacting 200 yielded 103 (81 mg, 10%) as a pale orange solid. 

1H NMR (300 MHz, CDCl3) δ 8.47 (s, 1H), 8.10 (d, J = 8.3 Hz, 1H), 7.80 (d, J = 8.3 Hz, 

1H), 4.45 (d, J = 7.1 Hz, 2H), 1.58 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 164.7, 

151.9, 135.2, 134.2, 129.4, 126.1, 118.3, 61.8, 14.3. LRMS (EI +ve) 485.95 (33%), 483.95 (72%), 

481.95 (38%), 256.98 (61%), 254.98 (62%), 228.97 (93%), 226.97 (100%), 200.94 (56%), 

198.94 (59%), 182.93 (24%), 149.06 (42%), 143.95 (25%), 142.95 (27%), 103.02 (27%). 

HRMS (EI +ve) 481.9486 (calculated 481.9477 for C18H16N2O4Br22). IR (solid, cm-1) 3416, 

3335, 3225, 2990, 2951, 2930, 2891, 1913, 1676, 1628, 1595, 1570, 1512, 1476, 1441, 1385, 1364, 

1308, 1273, 1169, 1126, 1111, 1076, 1020, 880, 847, 766, 696, 638, 500. 

66..44..22 DDiieetthhyyll 44,,44''--((ddiiaazzeennee--11,,22--ddiiyyll))((EE))--bbiiss((33--cchhlloorroobbeennzzooaattee)) ((220022))

Reacting 199 yielded 202 (122 mg, 7%) of as a pale orange solid. 

1H NMR (300 MHz, CDCl3) δ 8.26 (d, J = 1.6 Hz, 1H), 8.02 (dd, J = 8.4, 1.6 Hz, 1H), 7.79 

(d, J = 8.4 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, 

CDCl3) δ 164.8, 151.04, 136.0, 134.1, 132.1, 128.6, 118.0, 61.8, 14.3. LRMS (EI +ve) 396.04 

(25%), 394.05 (394.05 [M]+), 211.02 (35%), 183.02 (37%), 175.99 (44%), 168.99 (52%), 

149.99 (51%), 145.00 (23%), 114.00 (100%). HRMS (EI +ve) 394.0467 (calculated 394.0487 

for C18H16N2O4Cl2). IR (solid) cm-1 3487, 3358, 2974, 1817, 1722, 1628, 1595, 1562, 1510, 1477, 

1450, 1389, 1314, 1267, 1240, 1219, 1138, 1109, 1057, 1022, 905, 866, 847, 770, 721, 708, 633, 

596, 503, 478. 

66..44..33 DDiieetthhyyll 44,,44''--((ddiiaazzeennee--11,,22--ddiiyyll))((EE))--bbiiss((33--fflluuoorroobbeennzzooaattee)))) ((220011))

Reacting 198 yielded 201 (191 mg, 9.7 %) of as a pale orange solid as a misture of 

rotamers and isomers. 

1H NMR (300 MHz, CDCl3) δ 9.12 (d, J = 1.3 Hz, 0.18H), 9.01 (d, J = 1.3 Hz, 0.30H), 8.85 

(t, J = 1.4 Hz, 0.50H), 8.53-8.38 (m, 0.5H), 8.32 (dd, J = 9.1, 3.0 Hz, 0.5H), 8.10 (dd, J =

10.3, 1.6 Hz, 0.18H), 8.01-7.76 (m, 0.39H), 7.26 (s, 0.39H), 4.46 (dq, J = 25.3, 7.1 Hz, 4H), 

1.54-1.25 (m, 6H). 13C NMR (75 MHz, CDCl3) δ 164.9, 161.7, 158.3, 143.1, 135.1, 135.0, 133.0, 

130.2, 125.7, 118.7, 118.4, 117.8, 61.8, 14.3. 19F NMR (376 MHz, CDCl3) δ -121.76, -122.49. 

LRMS (EI +ve) 362.11 (90%), 342.10 (27%), 324.11 (23%), 297.07 (26%), 195.05 (100%), 
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167.05 (97%), 139.02 (25%), 122.02 (20%), 94.02 (24%), 83.03 (28%). HRMS (EI +ve) 

362.1076 (calculated 362.1078 for C18H16N2O4F2).  

66..55 GGeenneerraall mmeetthhoodd ffoorr tthhee rreedduuccttiioonn ooff hhaallooaazzoobbeennzzeennee ddiieetthhyyll eesstteerrss ttoo

ddiioollss

Azobenzene ethyl esters were dissolved in dry tetrahydrofuran (30 mL/mM) and the 

flask flushed with argon. Diisobutylaluminium hydride solution (1 M in toluene, 6 eq.) 

was slowly added and the reaction was stirred overnight. Saturated potassium sodium 

tartrate (60 mL/mM) was added and the suspension was stirred vigorously for 1 hour. 

The organic layer was separated, dried over sodium sulfate, filtered and evaporated 

under reduced pressure. The solid residue was purified over silica gel eluting with 20-

50% ethyl acetate in hexane. 

66..55..11 ((EE))--((ddiiaazzeennee--11,,22--ddiiyyllbbiiss((33--bbrroommoo--44,,11--pphheennyylleennee))))ddiimmeetthhaannooll ((220066))

Reacting 203 yielded 206 (62.7 mg, 94%) as a pale white solid. 

1H NMR (300 MHz, DMSO-d6) δ 7.88-7.80 (m, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.49 (dd, J 

= 8.3, 1.7 Hz, 2H), 4.61 (d, J = 5.5 Hz, 4H) (rotamers or isomers). 13C NMR (151 MHz, 

DMSO-d6) δ 150.6, 149.3, 148.0, 145.0, 131.6, 131.1, 126.9, 126.7, 125.9, 118.1, 117.7, 116.4, 62.2, 

62. (isomers or rotamers). LRMS (EI +ve) 401.92 (24%), 399.92 (69%), 397.92 (37% M+), 

263.99 (34%), 218.99 (72%), 214.96 (88%), 212.96 (100%), 186.96 (41%), 168.95 (45%), 

166.95 (81%), 130.99 (48%), 78.05 (32%). HRMS (EI +ve) 397.9270 (calculated 397.9265 

for C14H12N2O2Br2). IR (solid) cm-1 2916, 2841, 2415, 2330, 1593, 1558, 1443, 1402, 1379, 1350, 

1306, 1294, 1223, 1130, 1096, 1038, 935, 889, 880, 814, 721, 667, 588, 554, 469, 459, 432, 411. 

66..55..22 ((EE))--((ddiiaazzeennee--11,,22--ddiiyyllbbiiss((33--cchhlloorroo--44,,11--pphheennyylleennee))))ddiimmeetthhaannooll ((220055))

Reacting 202 yielded 205 (50 mg, 18%) as a pale white solid. 
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1H NMR (600 MHz, DMSO-d6) δ 7.72-7.64 (m, 4H), 7.51-7.42 (m, 3H), 7.14 (d, J = 8.1 Hz, 

1H), 6.47 (d, J = 8.1 Hz, 1H), 5.52 (t, J = 5.8 Hz, 2H), 5.35 (t, J = 5.8 Hz, 1H), 4.61 (d, J = 5.7 

Hz, 4H), 4.44 (d, J = 5.7 Hz, 2H) (rotamers or isomers). 13C NMR (151 MHz, DMSO-d6) 

δ 149.4, 149.3, 147.1, 145.0, 135.0, 128.5, 128.1, 126.2, 126.0, 125.9, 118.4, 117.9, 62.3, 62.0

(isomers or rotamers). LRMS (EI +ve) 310.03 (5% [M]+), 263.99 (100%), 118.99 (29%), 

99.99 (34%), HRMS (EI +ve) 310.0277 (calculated 310.0276 for C14H12N2O2Cl2).

66..55..33 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33--fflluuoorroo--44,,11--pphheennyylleennee))))ddiimmeetthhaannooll ((220044))

Reacting 201 yielded 204 (47 mg, 30%) as a pale white solid  

1H NMR (300 MHz, CD3OD) δ 7.73 (t, J = 8.0 Hz, 1H), 7.29 (ddd, J = 10.0, 8.0, 1.2 Hz, 

2H), 4.68 (s, 2H). 13C NMR (75 MHz, CD3OD) δ 160.3 (d, J = 127 Hz), 148.5 (d, J = 7.5 

Hz), 139.4, 122.1, (d, J = 7.5 Hz), 117.2,114.3 (d, J = 22 Hz), 62.7. 19F NMR (376 MHz, CDCl3) 

δ -123.66. LRMS (ESI +ve) (378.09 (22%), 316.08 (21%), 315.07 (100%) [M+H]+. HRMS 

(EI +ve) 279.0947 (calculated 279.0945 for C14H13N2O2F2).

66..66 GGeenneerraall mmeetthhoodd ffoorr tthhee cchhlloorrooaacceettyyllaattiioonn ooff aazzoobbeennzzeennee ddiioollss

Azobenzene diols 204-206 were dissolved in tetrahydrofuran and the flask flushed with 

argon. Chloroacetyl chloride (100 uL, excess), was added dropwise and the reaction was 

stirred for 20 minutes at room temperature then pyridine (100 uL, excess) was then 

added dropwise over a further 20 minutes and the solution stirred overnight. The 

solvent was then removed under reduced pressure and the residue was partitioned 

between dichloromethane and sodium hydrogen carbonate. The organic layer was 

dried over sodium sulfate and filtered, then the solvent was removed under reduced 

pressure and the resulting solid was recrystallised from methanol. 
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66..66..11 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33--bbrroommoo--44,,11--pphheennyylleennee))))bbiiss((mmeetthhyylleennee))--bbiiss--((22--cchhlloorrooaacceettaattee))
((220099))

Reacting 206 yielded 209 (70 mg, 99%) as deep red crystals as a mixture of isomers 

and rotamers. 

1H NMR (600 MHz, CDCl3) δ 7.77 (dd, J = 9.8, 5.0 Hz, 12H), 7.62 (d, J = 1.5 Hz, 2H), 7.40 

(dd, J = 8.3, 1.8 Hz, 6H), 7.08 (dd, J = 8.1, 1.7 Hz, 2H), 6.35 (d, J = 8.1 Hz, 2H), 5.26 (s, 

12H), 5.11 (s, 4H), 4.14 (d, J = 10.8 Hz, 12H), 4.09 (s, 4H) (rotamers or isomers). 13C NMR

(151 MHz, CDCl3) δ 167.0, 152.2, 149.4, 139.8, 136.1, 133.3, 132.7, 127.8, 126.6, 118.6, 117.8, 

117.0, 66.3, 66.3, 66.3, 66.0, 40.7, 29.7 (rotamers or isomers). LRMS (EI +ve) 555.86 

(18%), 553.86 (52%), 551 (57%), 549.87 (23% [M]+), 292.93 (21%), 290.94 (88%), 288.94 

(70%), 262.93 (44%), 260.93 (34%), 169.95 (21%), 168.95 (100%), 188.95 (95%), 89.04 

(24%), 84.94 (37%), 82.95 (53%). HRMS (EI +ve) 549.8671 (calculated 549.8697 for 

C18H14N2O4Br2Cl2). IR (solid) cm-1 2961, 2918, 2851, 1738, 1597, 1562, 1547, 1477, 1460, 1412, 

1377, 1314, 1258, 1229, 1192, 1167, 1130, 1043, 964, 922, 887, 839, 779, 745, 733, 692, 667, 613, 

575, 517.

66..66..22 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33--cchhlloorroo--44,,11--pphheennyylleennee))))bbiiss((mmeetthhyylleennee))--bbiiss--((22--cchhlloorrooaacceettaattee))
((220088))

Reacting 205 yielded 208 (51 mg, 66%) as deep red crystals. 

1H NMR (600 MHz, CDCl3) δ 7.78 (d, J = 8.2 Hz, 2H), 7.59 (s, 2H), 7.35 (d, J = 8.2 Hz, 

2H), 5.26 (s, 4H), 4.15 (s, 4H). 13C NMR (151 MHz, CDCl3) δ 167.0, 148.6, 139.6, 136.2, 

130.3, 127.1, 118.4, 66.4, 40.7. LRMS (EI +ve) 465.96 (24%), 463.97 (48%), 461.97 (37% 

[M]+), 246.98 (50%), 244.99 (76%), 216.98 (31%), 125.00 (40%), 123.00 (100%), 89.04 

(39%). HRMS (EI +ve) 461.9714 (calculated 461.708 for C18H14N2O4Cl4). IR (solid) cm-1 

3013, 2963, 1744, 1651, 1601, 1562, 1531, 1481, 1462, 1412, 1400, 1312, 1258, 1180, 1130, 1057, 989, 

966, 928, 899, 881, 837, 793, 779, 739, 704, 677, 619, 584, 569, 521, 484, 440, 405.

66..66..33 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33--fflluuoorroo--44,,11--pphheennyylleennee))))bbiiss((mmeetthhyylleennee)) bbiiss((22--fflluuoorrooaacceettaattee))
((220077))

Reacting 204 yielded 207 (30 mg, 65%) as deep red crystals. 

1H NMR (300 MHz, CDCl3) δ 7.86-7.74 (m, 2H), 7.36-7.17 (m, 4H), 5.27 (s, 4H), 4.15 (d, 

J = 3.3 Hz, 4H). 13C NMR (151 MHz, CDCl3) δ 167.0, 161.1, 159.4, 140.6, 123.8, 121.8, 118.3, 

116.7, 66.4,  40.7. 19F NMR (376 MHz, CDCl3) δ -123.66. δ LRMS (ES+ve) 445.13 (30%), 
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433.04 (64%), 393.04 (42%), 383.02 (45%), 371.11 (37%), 337.06 (60%). HRMS (EI +ve) 

431.0398 (calculated 431.0377 for C18H15N2O4F2Cl2).

66..66..44 44--AAmmiinnoo--33--bbrroommoo--55--fflluuoorroobbeennzzoonniittrriillee ((221166))

4-Amino-3-fluorobenzonitrile (5.00 g 36.7 mM, 1 eq.), was dissolved in acetonitrile (100 

mL), N-bromosuccinimide (9.81 g, 55.1 mM, 1.5 eq.) was added and the solution was 

stirred overnight. The solvent was removed under reduced pressure and the residue 

dissolved in dichloromethane and washed with potassium hydroxide. The organic layer 

was dried over magnesium sulfate, filtered and the solvent removed under reduced 

pressure to yield 216 (7.84 g, 99%) an off-white solid. 

1H NMR (600 MHz, CDCl3) δ 7.55 (t, J = 1.4 Hz, 1H), 7.30-7.23 (m, 1H), 4.71 (s, 2H). 13C 

NMR (151 MHz, CDCl3) δ 150.2, 148.6, 138.5 (d, J = 1 Hz),  132.2 (d, J = 1 Hz), 117.7, (d, J =

1 Hz),  108.4 (d, J = 1 Hz), 100.3 (d, J = 1 Hz). 19F NMR (376 MHz, CDCl3) δ -129.08. LRMS 

(EI +ve) 215.95 (98%), 213.95 (100% [M]+). HRMS (ESI -ve) 213.9547 (Calculated 213.9542 

for C7H4N2FBr). IR (solid) cm-1 3464, 3339, 2228, 1628, 1557, 1504, 1429, 1317, 1248, 1126, 

1076, 961, 868, 762, 719, 604, 536, 459, 420, 407.

66..66..55 44--AAmmiinnoo--33--bbrroommoo--55--fflluuoorroobbeennzzooiicc aacciidd ((221177))

4-Amino-3-bromo-5-fluorobenzonitrile (7.00 g, 33 mM, 1 eq.) was suspended in sodium 

hydroxide (1 M, 80 mL) and refluxed until thin layer chromatography showed an 

absence of starting material. The solution was cooled to room temperature and 

acidified with hydrochloric acid solution (1 M), causing precipitation of the product. 
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The precipitate was filtered off then dissolved in ethyl acetate, dried over anhydrous 

magnesium sulfate, filtered and the solvent removed under reduced pressure to yield 

217 (6.73 g, 88%) as a white solid. 

1H NMR (250 MHz, DMSO-d6) δ 7.80-7.71 (m, 1H), 7.52 (dd, J = 11.6, 1.8 Hz, 1H), 6.21 (s, 

2H). 13C NMR (63 MHz, DMSO-d6) δ 165.6, 148.95 (d, J = 145 Hz), 139.4 (d, J = 2 Hz), 

129.6, (d) 117.9 (d, J = 1 Hz), 115.0, (d, J = 2 Hz), 106.4 (d, J = 1 Hz). 19F NMR (376 MHz, 

DMSO) δ -129.14. LRMS (EI +ve) 234.95 (98%), 232.95 (100% [M]+), 217.94 (71%), 215.95 

(72%), 213.99 (30%), 187.95 (23%), 168.99 (26%). HRMS (ESI -ve) 232.9489 (Calculated 

232.9488 for C7H5NO2FBr). IR (solid) cm-1 3503, 3395, 1686, 1603, 1560, 1514, 1439, 1416, 

1348, 1323, 1267, 1211, 1094, 949, 893, 835, 764, 683, 606, 550, 461, 455, 428, 420, 411, 403.

66..66..66 EEtthhyyll 44--aammiinnoo--33--bbrroommoo--55--fflluuoorroobbeennzzooaattee ((221188))

4-Amino-3-bromo-5-fluorobenzoic acid (6.5 g 27.9 mM, 1 eq.) was dissolved in ethanol 

(100 mL) and sulfuric acid (5 mL) and the resulting solution was refluxed for 14 hours. 

The solution was then neutralized with saturated sodium hydrogen carbonate solution 

and extracted twice with dichloromethane. The combined organic fractions were dried 

over magnesium sulfate, filtered, and then concentrated under reduced pressure to 

yield 218 (6.29 g, 86%) as an off white solid. 

1H NMR (300 MHz, CDCl3) δ 7.96 (t, J = 1.6 Hz, 1H), 7.65 (dd, J = 11.2, 1.6 Hz, 1H), 4.77-

4.35 (m, 2H), 4.32 (d, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3) 

δ  164.8 (d, J = 1 Hz), 149.3, (d, J = 310 Hz), 140.1 (d, J = 12 Hz), 129.8,  117.3, (d, J = 1 Hz) 

115.3 (d, J = 2 Hz), 107.4 (d, J = 75 Hz), 61.1, 14.4. 19F NMR (376 MHz, CDCl3) δ -130.92. 

LRMS (ESI -ve) 261.96 (100%),259.96(95), 233.95 (43%), 231.95 (34%),126.98 (30%), 

124.96(40%). HRMS (EI +ve) 260.9799 (Calculated 260.9801 for C9H9NO2FBr). 
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66..66..77 DDiieetthhyyll 44,,44''--((ddiiaazzeennee--11,,22--ddiiyyll))((EE))--bbiiss((33--bbrroommoo--55--fflluuoorroobbeennzzooaattee)) ((221199))

Potassium permanganate (12.0 g) and iron (II) sulfate hetpahydrate (12.0 g) were 

ground together to a fine power, suspended in dichloromethane (250 mL) and ethyl 4-

amino-3-bromo-5-fluorobenzoate (6.00 g, 23 mM, 1 eq.) was added. The suspension was 

refluxed overnight then cooled, filtered through celite and the solvent removed under 

reduced pressure. The resulting solid was recrystallised from ethyl acetate to yield 219

(0.40 g, 6.7%) as a pale orange solid. 

1H NMR (400 MHz, CDCl3) δ 8.23 (t, J = 1.6 Hz, 1H), 7.86 (dd, J = 10.6, 1.6 Hz, 1H), 4.43 

(q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ  163.7 (d, J = 2 Hz).  

151.4, (d, J = 260 Hz),  142.5, (d, J = 38 Hz), 133.3, 130.3 (d, J = 1 Hz), 121.3 (d), 117.9 (d, J =

2 Hz), 62.2, 14.3. 19F NMR (376 MHz, CDCl3) δ -122.06, -130.93. LRMS (EI +ve) 522.07 

(17%), 520.07 (33%), 518.07 (20% [M]+), 281.13 (46%), 273.04 (48%), 216.99 (27%), 207.09 

(100%). HRMS (ESI -ve) 518.9370 (Calculated 518.9367 for C18H15N2O2F2Br2). IR (solid) 

cm-1 3067, 2986, 1711, 1566, 1481, 1449, 1412, 1393, 1368, 1292, 1225, 1175, 1119, 1096, 1020, 

974, 910, 895, 876, 856, 806, 766, 748, 691, 544, 529, 424.

66..66..88 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33--bbrroommoo--55--fflluuoorroo--44,,11--pphheennyylleennee))))ddiimmeetthhaannooll ((222200))
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Diethyl 4,4'-(diazene-1,2-diyl)-(E)-bis(3-bromo-5-fluorobenzoate) (300 mg, 0.577 mM, 

1 eq.) was dissolved in dry tetrahydrofuran (30 mL) and the flask flushed with argon. 

Diisobutylaluminium hydride solution (1 M in toluene, 3.34 mL, 3.46 mM, 6 eq.) was 

slowly added and the reaction was stirred overnight. Saturated potassium sodium 

tartrate (30 mL) was added and the suspension was stirred vigorously for 1 hour. The 

organic layer was separated, dried over sodium sulfate, filtered and evaporated under 

reduced pressure. The solid residue was purified over silica gel eluting with 20-50% 

ethyl acetate in hexane to yield 220 (170 mg, 68%) as a off white solid. 

1H NMR (300 MHz, CD3OD) δ 7.66 (s, 2H), 7.32 (d, J = 10.9 Hz, 2H), 4.70 (s, 4H). 13C 

NMR (151 MHz, CD3OD) δ 147.9, 144.9, 143.8, 137.7, 131.2 (d, J = 15 Hz), 116.2, 63.2, (d, J =

15 Hz). 19F NMR (376 MHz, MeOD) δ -125.08. LRMS (ESI -ve) 437.90 (33%), 435.91 

(57%), 433.91 [M]+ (33%), 363.97 (20%), 232.96 (90%), 230.96 (100%), 217.95 (58%), 

216.96 (50%), 215.95 (58%), 202.94 (27%), 186.94 (86%), 184.96 (79%), 96.04 (39%), 

93.00 (43%). HRMS (ESI -ve) 433.9075 (Calculated 433.9077 for C14H10N2O2Br2F2).

66..66..99 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33--bbrroommoo--55--fflluuoorroo--44,,11--pphheennyylleennee))))bbiiss((mmeetthhyylleennee))--bbiiss--((22--
cchhlloorrooaacceettaattee)) ((222211))

(E)-(Diazene-1,2-diylbis(3-bromo-5-fluoro-4,1-phenylene))dimethanol (17 mg, 0.039 

mM, 1 eq.) was dissolved in tetrahydrofuran and the flask flushed with argon. 

Chloroacetyl chloride (100 uL, excess), was added dropwise and the reaction was stirred 

for 20 minutes at room temperature. Pyridine (100 uL, excess) was then added dropwise 

over 20 minutes and the solution stirred overnight. The solvent was then removed 
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under reduced pressure and the residue was partitioned between dichloromethane and 

sodium hydrogen carbonate. The organic layer was dried over sodium sulfate and 

filtered, then the solvent was removed under reduced pressure and the resulting solid 

was recrystallised from methanol to yield 221 (9.2 mg, 40%) as deep red crystals. 

1H NMR (300 MHz, CDCl3) δ 7.59 (s, 2H), 7.31-7.18 (m, 2H), 5.25 (s, 4H), 4.17 (s, 4H). 13C 

NMR (151 MHz, CDCl3) δ 167.0, 152.7, 151.0, 139.0, 128.5, 122.4, 116.2 (d, J = 1 Hz), 68.0, 

65.7, 40.7. 19F NMR (376 MHz, CDCl3) δ -115.22, -121.82. LRMS (EI +ve) 612.84 (31%), 

610.84 (33%), 590.86 (26%), 588.86 (30%, [M]+), 454.29 (40%), 414.28 (27%), 413.27 

(100%). HRMS (ESI -ve) 586.8604 (Calculated 586.8587 for C18H13N2O4Br2F2Cl2).

66..66..1100 44--AAmmiinnoo--33--cchhlloorroo--55--fflluuoorroobbeennzzoonniittrriillee ((221100))

4-Amino-3-flurobenonitrile (5.00 g 36.7 mM, 1 eq.) was dissolved in acetonitrile (100 

mL) and N-chlorosuccinimide (7.35 g, 55.1 mM, 1.5 eq.) was added. The solution was 

stirred overnight. The solvent was removed under reduced pressure and the residue 

dissolved in dichloromethane and washed with potassium hydroxide. The organic layer 

was dried over magnesium sulfate, filtered and concentrated to yield 210 (5.58 g, 89%) 

as an off-white solid. 

1H NMR (300 MHz, CDCl3) δ 7.40 (t, J = 1.6 Hz, 1H), 7.23 (dd, J = 10.2, 1.6 Hz, 1H), 4.65 

(s, 2H). 13C NMR (75 MHz, CDCl3) δ 151.4, 148.2, 137.3 (d, J = 15 Hz), 129.3 (d, J = 1 Hz), 

119.6 (d, J = 1 Hz),  117.5,  (d, J = 22 Hz), 99.5 (d, J = 2 Hz). 19F NMR (376 MHz, CDCl3) δ 

-129.99. LRMS (ESI -ve) 172.00 (30%), 170.00 (100% [M]+). HRMS (EI +ve) 170.0049 

(Calculated 170.0047 for C7H4N2FCl). IR (solid) cm-1 3476, 3339, 3208, 3084, 2232, 1630, 

1557, 1510, 1433, 1323, 1250, 1227, 1177, 1126, 1086, 962, 883, 866, 766, 721, 683, 631, 604, 

548, 538, 511, 469, 444, 428, 411, 403. 
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66..66..1111 44--AAmmiinnoo--33--cchhlloorroo--55--fflluuoorroobbeennzzooiicc aacciidd ((221111))

4-Amino-3-bromo-5-fluorobenzonitrile (5.00 g, 29 mM, 1 eq.) was suspended in sodium 

hydroxide (1 M, 80 mL) and refluxed until thin layer chromatography showed no 

starting material remained. The solution was cooled to room temperature and acidified 

with hydrochloric acid solution (1 M), causing precipitation of the product. The 

precipitate was filtered off then dissolved in ethyl acetate, dried over anhydrous 

magnesium sulfate, filtered and the solvent removed under reduced pressure to yield 

211(4.01 g, 72%) as a white solid. 

1H NMR (300 MHz, DMSO-d6) δ 12.79 (s, 1H), 7.65-7.57 (m, 1H), 7.48 (dd, J = 11.5, 1.8 

Hz, 1H), 6.28 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 166.3,  151.3, 148.1, 138.9 (d, J = 2 

Hz), 127.0, 117.5, (d, J = 7.5 Hz), 114.9 (d, J = 22 Hz). 19F NMR (376 MHz, DMSO) δ -130.19. 

LRMS (EI +ve) 190.99 (20%), 189.00 (80%), 175.99 (22%), 173.99 (32%), 172.00 (100%), 

144.00 (45%), 108.03 (28%). HRMS (ESI -ve) 188.9993 (Calculated 188.9993 for 

C7H5NO2FCl). IR (solid) cm-1 3509, 3399, 1686, 1605, 1570, 1518, 1441, 1414, 1354, 1327, 1269, 

1213, 1096, 951, 916, 893, 862, 764, 725, 696, 611, 550, 473, 467, 457, 438, 420, 413, 409, 401.

66..66..1122 EEtthhyyll 44--aammiinnoo--33--cchhlloorroo--55--fflluuoorroobbeennzzooaattee ((221122))

4-Amino-3-chloro-5-fluorobenzoic acid (2.5 g, 13 mM, 1 eq.) was dissolved in ethanol 

(100 mL) and sulfuric acid (5 mL) and the resulting solution was refluxed for 14 hours. 

The solution was then neutralized with saturated sodium hydrogen carbonate solution 

and extracted twice with dichloromethane. Combined organic fractions were dried 
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over magnesium sulfate, filtered, and then concentrated under reduced pressure to 

yield 212 2.37 g (83%) as an off white solid. 

1H NMR (300 MHz, DMSO-d6) δ 7.66-7.59 (m, 1H), 7.50 (dd, J = 11.5, 1.8 Hz, 1H), 6.36 

(s, 2H), 4.24 (q, J = 7.1 Hz, 2H), 1.29 (dd, J = 8.3, 5.9 Hz, 3H). 13C NMR (75 MHz, DMSO-

d6) δ 164.7 (d, J = 1 Hz), 148.1, 139.0 (d, J = 2 Hz), 126.8, 117.6 (d, J = 2 Hz), 116.5 (d, J = 1 

Hz) 114.9 (d, J = 2 Hz), 114.6, 61.0, 14.6. 19F NMR (376 MHz, CDCl3) δ -122.84. LRMS (ESI 

-ve) 217.03 (50% [M]+), 188.99 (38%), 173.99 (36%), 171.99 (100%), 144.00 (22%), 130.99 

(30%), 108.02 (20%). HRMS (EI +ve) 217.0304 (Calculated 217.0306 for C9H9NO2FCl). 

IR (solid cm-1) 3493, 3374, 2980, 1697, 1616, 1595, 1570, 1514, 1477, 1431, 1396, 1369, 1346, 

1323, 1261, 1206, 1117, 1096, 1067, 1028, 959, 932, 883, 853, 762, 712, 617, 594, 561, 534, 494, 

467, 459, 451, 446, 420, 411.

66..66..1133 DDiieetthhyyll 44,,44''--((ddiiaazzeennee--11,,22--ddiiyyll))((EE))--bbiiss((33--cchhlloorroo--55--fflluuoorroobbeennzzooaattee)) ((221133))

Potassium permanganate (4 g) and iron (II) sulfate hetpahydrate (4 g) were ground 

together to a fine power, then suspended in dichloromethane (250 mL) and ethyl 4-

amino-3-chloro-5-fluorobenzoate (2.00 g, 9.2 mM, 1 eq.) was added. The suspension 

was refluxed overnight then cooled, filtered through celite and the solvent removed 

under reduced pressure. The resulting solid was recrystallised from ethyl acetate to 

yield 213 (99 mg, 5%) as a fine red crystals. 

1H NMR (300 MHz, CDCl3) δ 8.05 (t, J = 1.5 Hz, 2H), 7.82 (dd, J = 10.5, 1.5 Hz, 2H), 4.43 

(q, J = 7.1 Hz, 4H), 1.43 (t, J = 7.1 Hz, 6H). 13C NMR (151 MHz, CDCl3) δ 163.8, , 151.9, (d, 

J = 127 Hz), 142.1, (d, J = 7.5 Hz), 133.0, (d, J = 7.5 Hz),131.8, 127.4 (d, J = 15 Hz), 117.0 (d, J 

= 15 Hz) 62.1, 14.2. 19F NMR (376 MHz, CDCl3) δ -130.58, -131.96. LRMS (EI +ve) 432.02 

(34%), 430.03 (50% [M]+), 231.02 (36%), 229.02 (100%), 201.01 (23%), 172.98 (48%), 116.99 

(26%). HRMS (ES +ve) 431.0383 (Calculated 431.0377 for C18H18N2O4F2Cl2).
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66..66..1144 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33--cchhlloorroo--55--fflluuoorroo--44,,11--pphheennyylleennee))))ddiimmeetthhaannooll ((221144))

Diethyl 4,4'-(diazene-1,2-diyl)-(E)-bis(3-chloro-5-fluorobenzoate) (39 mg 0.07 mM) 

was dissolved in dry tetrahydrofuran (30 mL) and the flask flushed with argon. 

Diisobutylaluminium hydride solution (0.7 mL, 0.7 mM 1 M in toluene) was slowly 

added and the reaction was stirred overnight. Potassium sodium tartrate (5 mL) was 

added and the suspension was stirred vigorously for 1 hour. The organic layer was 

separated, dried over sodium sulfate, filtered and evaporated under reduced pressure. 

The solid residue was purified over silica gel eluting with 20-50% ethyl acatate/hexane 

to yield 214 (21 mg, 68%) as a pale solid.

1H NMR (600 MHz, MeOD) δ 7.71 (d, J = 5.6 Hz, 3H), 7.50 (s, 1H), trans 4.75 (s, 1H), cis 

4.68 (s, 1H). 13C NMR (151 MHz, MeOD) δ 147.08, 126.57 (t, J = 1 Hz), 121.15, 113.97, 113.95, 

113.83, 113.82 (t, J = 1 Hz), 62.07. 19F NMR (376 MHz, MeOD) δ -117.22, -124.29. LRMS (EI 

+ve) 348.00 (38%), 346.01 (58% [M]+), 189.00 (34%), 187.01 (100%), 142.99 (26%), 140.99 

(77%), 95.03 (20%). HRMS (EI +ve) 346.0077 (calculated 346.0087 C14H10Cl2F2N2O2).
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66..66..1155 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((44,,11--pphheennyylleennee))))bbiiss((mmeetthhyylleennee)) bbiiss((22--cchhlloorrooaacceettaattee)) ((221155))

(E)-(Diazene-1,2-diylbis(3-chloro-5-fluoro-4,1-phenylene))dimethanol (38 mg 0.11 mM, 

1 eq.) was dissolved in tetrahydrofuran and the flask flushed with argon. Chloroacetyl 

chloride (100 uL, excess), was added dropwise and the reaction was stirred for 20 

minutes at room temperature. Pyridine (100 uL, excess) was then added dropwise over 

20 minutes and the solution stirred overnight. The solvent was then removed under 

reduced pressure and the residue was partitioned between dichloromethane and 

sodium hydrogen carbonate. The organic layer was dried over sodium sulfate and 

filtered, then the solvent was removed under reduced pressure and the resulting solid 

was recrystallised from methanol to yielded 215 (42 mg, 77%) as deep red crystals. 

1H NMR (300 MHz, CDCl3) δ 7.32 (s, 2H), 7.11 (dd, J = 10.8, 1.6 Hz, 2H), 5.16 (s, 4H), 4.10 

(s, 4H). 13C NMR (151 MHz, CDCl3) δ 167.1, 138.5, 132.7, 125.4, 115.8, 115.1, 110.5, 65.8, 40.4. 
19F NMR (376 MHz, CDCl3) δ -116.50, -122.27. LRMS (EI +ve) 501.97 (100%), 499.94 

(28%), 497.95 (25%), 264.98 (54%), 262.98 (69%), 142.99 (20%), 140.99 (64%). HRMS

(EI +ve) 497.9516 (calculated 497.9519 for C18H12Cl4F2N2O4). 

66..66..1166 BBeennzzyyll bbrroommiiddee ((222244))

Benzyl alcohol (0.50 g, 4.62 mM, 1 eq.) was dissolved in diethyl ether (20 mL) to which 

was added phosphorus tribromide (0.625 g, 2.31 mM, 0.5 eq.) and the resulting solution 

was stirred for 3 hours at room temperature. The reaction mixture was washed with 
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brine, dried over magnesium sulfate, filtered and the solvent removed under reduced 

pressure. The residue was purified over silica gel eluting with dichloromethane to yield 

224 (070 g, 89%) as a pale yellow oil. 

1H NMR (300 MHz, CDCl3) δ 7.46-7.23 (m, 5H), 4.51 (s, 2H). 13C NMR (75 MHz, CDCl3) 

δ 137.8, 129.1, 128.8, 128.4, 33.6. LRMS (EI +ve) 171.97 (16%), 169.97 (15%), 92.06 (21%), 

91.05 (100%), 89.04 (13%), 65.04 (20%), 63.02 (12%). HRMS (EI +ve) 169.9729 

(calculated Cal 169.9731 C7H7Br).  

66..66..1177 BBeennzzyyll aazziiddee ((222255))

Sodium azide (0.862 g, 13.3 mM, 1 eq.) was dissolved in acetone (20 mL) to which benzyl 

bromide (0.96 g, 5.65 mM) was added dropwise over 20 minutes at 0 oC. The reaction 

was then warmed to room temperature and stirred overnight to which was added water 

(20 mL). The solvent was removed under reduced pressure extracted into 

dichloromethane to yield 225 0.64 g (85%)  

1H NMR (300 MHz, CDCl3) δ 7.48-7.23 (m, 5H), 4.35 (s, 2H). 13C NMR (75 MHz, CDCl3) 

δ 135.4, 128.9, 128.3, 128.3, 54.8. LRMS (EI +ve) 133.06 (28%), 105.04 (42%), 104.5 (92%), 

91.05 (100%), 85,95 (29%), 83.95 (43%), 78.04 (33%), 77.04 (81%), 51.02 (37%). HRMS

(EI +ve) 133.0635 (calculated Cal 133.0640 C7H7N3). 

66..66..1188 BBeennzzyyll aazziiddee ((222255))

To a solution of sodium azide (1.44 g, 22 mM) in dimethylformamide (60 mL) was 

added benzyl bromide (0.96 g, 5.65 mM) and the resulting suspension was stirred 

under argon at 80 oC overnight. The reaction was diluted with ether and washed with 

water. The organic fraction was dried over magnesium sulfate, filtered and the solvent 
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removed under reduced pressure to yield to give the 225 (0.73 g, 99%) as a colourless 

oil. 

1H NMR (300 MHz, CDCl3) δ 7.48-7.23 (m, 5H), 4.35 (s, 2H). 13C NMR (75 MHz, CDCl3) 

δ 135.4, 128.9, 128.3, 128.3, 54.8. LRMS (EI +ve) 133.06 (28%), 105.04 (42%), 104.5 (92%), 

91.05 (100%), 85,95 (29%), 83.95 (43%), 78.04 (33%), 77.04 (81%), 51.02 (37%). HRMS

(EI +ve) 133.0635 (calculated 133.0640 for C7H7N3). 

66..66..1199 NN--BBeennzzyyll--11,,11,,11--ttrriipphheennyyll--ll55--pphhoosspphhaanniimmiinnee ((222277))

To a solution of triphenyl phosphine (200 mg, 1.5 mM) in dichloromethane (10 mL) was 

added a solution of benzyl azide (394 mg, 1.5 mL) in further dichloromethane (10 mL) 

and the resulting mixture was stirred overnight. The solvent was then removed under 

reduced pressure and the residue purified over silica gel to yield 227 (430 mg, 78%). 

1H NMR (300 MHz, CDCl3) δ 7.77-7.05 (m, 20H), 4.46-4.24 (m, 2H). 13C NMR (75 MHz, 

CDCl3) δ 133.2, 132.2, 132.1, 128.6, 128.5. 31P NMR (202 MHz, CDCl3) δ 29.20. 

66..66..2200 NN--BBeennzzyyll cchhlloorrooaacceettaammiiddee ((222288))

To a solution of N-benzyl-1,1,1-triphenyl-l5-phosphanimine (100 mg, 0.27 mM) in 

toluene (10 mL) a solution of chloroacetyl chloride (30 uL 0.22 mM) in toluene (5 mL) 

was added dropwise and the resulting solution was refluxed for 3 hours. Water (2 mL) 

was added and the reaction was refluxed for a further 3 hours, then cooled to room 

temperature added to a solution of sodium hydroxide (10 mL, 1N). The mixture was 

extracted with ethyl acetate and the organic fraction was dried over sodium sulfate, 
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filtered and the solvent was removed under reduced pressure. The residue was purified 

over silica gel eluting with diethyl ether to yield 228 (40 mg, 80%),

1H NMR (300 MHz, CDCl3) δ 7.38-7.17 (m, 5H), 6.81 (s, 1H), 4.43 (d, J = 5.8 Hz, 2H), 4.05 

(d, J = 5.1 Hz, 2H). 13C NMR (75 MHz, CDCl3) δ 165.8, 137.3, 128.9, 127.9, 127.8, 43.9, 42.7. 

LRMS (EI +ve) 183.06 (50%), 185.04 (15%) 148.07 (100%), 149.08(10%), 107.05 (42%), 

105.07 (23%), 91.05 (50%). HRMS (EI +ve) 183.0455 (Calculated 183.0451 for C7H4N2FBr). 

66..66..2211 ((EE))--11,,22--bbiiss((22,,66--DDiibbrroommoo--44--((bbrroommoommeetthhyyll))pphheennyyll))ddiiaazzeennee ((222299))

To a suspension of (E)-(diazene-1,2-diylbis(3,5-dibromo-4,1-phenylene))dimethanol 

(100 mg, 0.18 mM, 1 eq.) in chloroform (30 mL) was added phosphorus tribromide (24.3 

mg, 0.09 mM, 0.5 eq.) the resulting mixture was stirred overnight at 50 oC. The solvent 

is removed under reduced pressure and immediately purified by flash silica 

chromatography (5% methanol: dichloromethane) to yield 229 82 mg (67%).

1HNMR (300 MHz, CDCl3) δ 7.25-7.17 (m, 4H), 5.28-5.20 (m, 4H). 13C NMR (151 MHz, 

CDCl3) δ 133.8, 131.4, 123.2, 116.5, 63.5. LRMS (EI +ve) 685.58 (33%), 683.58 (46%), 681.58 

(38%), 606.66 (25%), 604.66 (50%), 602.66 (54%), 600.66 (28%), 358.79 (35%), 356.79 

(95%), 354.79 (100%), 330.78 (23%), 328.78 (66%), 326.97 (62%), 324.79 (27%), 249.86 

(32%), 247.87 (61%), 245.87 (34%), 168.95 (77%), 166.95 (64%), 88.03 (32%). HRMS (EI 

+ve) 677.5794 (Calculated 677.5788 for C14H8N2Br6). IR (solid) cm-1 2926, 2856, 2104, 

1506, 1377, 1344, 989, 964, 868, 827, 744, 522, 436, 420.
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66..66..2222 ((EE))--22,,22''--((((((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33,,55--ddiibbrroommoo--44,,11--pphheennyylleennee)))) bbiiss((mmeetthhyylleennee))))
bbiiss((aazzaanneeddiiyyll)))) bbiiss((eetthhaann--11--ooll)) ((223344))

To a solution of (E)-2,2'-(((diazene-1,2-diyl-bis-(3,5-dibromo-4,1-phenylene)) 

bis(methylene))-bis(azanediyl))bis(ethan-1-ol) (20 mg, 0.0298 mM, 1 eq.) in 

acetonitrile (50 mL), was added ethanolamine (18 mg, 85 mM, excess.) and the resulting 

solution was stirred overnight. The solvent was then removed under reduced pressure 

and the oily residue was partitioned between water and hexane. The organic layer was 

washed with water, dried over magnesium sulfate, filtered and the solvent was removed 

under reduced pressure to yield 234 (14 mg, 74%) as a red solid. 

1H NMR (600 MHz, CD3OD) δ 7.82 (s, 4H), 3.87 (s, 4H), 3.71 (t, J = 5.5 Hz, 4H), 2.76 (t, 

J = 5.5 Hz, 4H). 13C NMR (151 MHz, CD3OD) δ 147.34, 143.5, 133.0, 115.5, 60.3, 51.3, 50.2. 

LRMS (EI +ve) 646.84 (54%), 644.64 (89%), 642.84 (63%), 342.17 (28%), 280.19 (66%), 

115.09 (82%), 105.05 (100%). HRMS (EI +ve) 639.8322 (calculated 639.8320 for 

C18H20N4O2Br4).  



Methods 

214

66..66..2233 ((EE))--NN,,NN''--((((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33,,55--ddiibbrroommoo--44,,11--pphheennyylleennee)))) bbiiss((mmeetthhyylleennee)))) bbiiss((22--
cchhlloorroo--NN--((22--hhyyddrrooxxyyeetthhyyll))aacceettaammiiddee)) ((223355))

 To a solution of (E)-2,2'-(((diazene-1,2-diylbis (3,5-dibromo-4,1-phenylene)) 

bis(methylene))-bis(azanediyl))bis(ethan-1-ol) (24 mg, 0.037 mM, 1 eq.) in 

dichloromethane (10 mL) was added chloroacetic acid (10.1 mg, 0.1 mM, 2.7 eq.) and the 

resulting solution was stirred for 15 minutes. Triethylamine (15 mg, 0.14 mM, 4 eq.) was 

added and the reaction was stirred for a further 3 hours. The solution was then washed 

with sodium bicarbonate and the organic fraction was dried over sodium sulfate, 

filtered and the solvent removed under reduced pressure. The residue was purified over 

silica gel eluting with 10 % methanol in ethyl acetate to yield 235 (29 mg, 97%) as a dark 

red oil. 

1H NMR (300 MHz, CD3OD) δ 7.73 (s, 4H), 4.87 (s, 4H), 4.73 (s, 4H), 4.50 (dd, J = 5.2, 

5.1 Hz, 4H), 3.76 (t, J = 5.2 Hz, 4H), 3.60 (t, J = 5.1 Hz, 2H). 13C NMR (151 MHz, CD3OD) 

δ 169.1, 147.6, 141.1, 132.2, 131.6, 115.6, 58.9, 50.0, 41.1, LRMS (ESI –ve) 834.74 (54%), 832.73

(80%), 830.73 (100%), 828.7492 (55%), 826.74 (12%), 454.24 (12%), 453.24 (53%). HRMS 

(ESI –ve) 826.7479 (calculated 826.7440 for C22H21Br4Cl2N4O4).
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7 Appendix 

77..11 SSlluugg ppeeppttiiddee mmaasssseess

m/z
500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

%

0

100
Slug 2 9 (0.299) Cm (9:13) TOF LD+ 

2.28e31490.1456

567.8051

1029.0475
648.9656

955.0672

1333.0190
1636.0734
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Slug Finger 1-71

m/z
600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

%

0

100
AcSlug2L2 5 (0.166) Cm (5:9) TOF LD+ 

1.27e41533.8890

1071.6464

766.4351

668.6699
881.3887

1375.7527

1677.0396
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m/z
600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

%

0

100
slug 1xl 7 (0.233) Cm (4:9) TOF LD+ 

6.95e3633.7667

844.8229

1869.3815

1033.8217

934.5988

m/z
1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920

%

0

100
slug 1xl 7 (0.233) Cm (4:9) TOF LD+ 

3.87e31869.3815

1847.4141

1825.3702

1842.60301831.6083

1864.4819

1885.4095

1907.3297
1899.2455

1923.3074
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m/z
500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300

%

0

100
Slug 2 XL 16 (0.533) Cm (12:18) TOF LD+ 

1.43e4671.7545

567.8710

876.7592

1065.7205
1964.0475

m/z
1880 1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100 2120 2140

%

0

100
Slug 2 XL 16 (0.533) Cm (12:18) TOF LD+ 

6521964.0475

1943.0223

1926.1139

1896.2810

1986.0485

2000.8665

2024.0059
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77..22 CCrryyssttaall ssttrruuccttuurree ddaattaa

77..22..11 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33,,55--ddiicchhlloorroo--44,,11--pphheennyylleennee))))bbiiss((mmeetthhyylleennee)) bbiiss((22--
cchhlloorrooaacceettaattee)) ((117711))

Table 1.  Crystal data and structure refinement for exp_750. 

Identification code  shelx 

Empirical formula  C18 H12 Cl6 N2 O4 

Formula weight  533.00 

Temperature  150(2) K 

Wavelength  1.54184 Å 

Crystal system  Monoclinic 

Space group  C 2/c 

m/z
1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2110 2120 2130

%

0

100
Slug 2L XL 1 (0.030) Cm (1:3) TOF LD+ 

1.16e32006.1587

1984.2000

1967.4501

1957.7095

1998.3929

2023.1348

2045.1515

2066.0615

2084.0784

m/z
600 800 1000 1200 1400 1600 1800 2000 2200 2400

%

0

100
Slug 2L XL 1 (0.030) Cm (1:3) TOF LD+ 

2.32e3567.8380

2006.1587

671.7188

876.6979
1489.1317
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Unit cell dimensions a = 26.8197(6) Å = 90°. 

 b = 5.44040(10) Å = 102.554(2)°. 

 c = 14.4892(3) Å  = 90°. 

Volume 2063.57(8) Å3

Z 4 

Density (calculated) 1.716 Mg/m3

Absorption coefficient 7.875 mm-1

F(000) 1072 

Crystal size 0.256 x 0.160 x 0.034 mm3

Theta range for data collection 3.377 to 74.226°. 

Index ranges -31<=h<=32, -6<=k<=6, -17<=l<=17 

Reflections collected 8426 

Independent reflections 2074 [R(int) = 0.0242] 

Completeness to theta = 67.684° 99.9 %  

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2074 / 0 / 136 

Goodness-of-fit on F2 1.058 

Final R indices [I>2sigma(I)] R1 = 0.0246, wR2 = 0.0636 

R indices (all data) R1 = 0.0266, wR2 = 0.0655 

Extinction coefficient n/a 

Largest diff. peak and hole 0.300 and -0.262 e.Å-3
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for exp_750.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

C(1) 7642(1) 3350(3) 6476(1) 29(1) 

C(2) 7072(1) 3173(3) 6392(1) 22(1) 

C(3) 6347(1) 5615(3) 6415(1) 23(1) 

C(4) 6058(1) 5574(3) 5399(1) 19(1) 

C(5) 6167(1) 7338(3) 4774(1) 19(1) 

C(6) 5894(1) 7329(3) 3849(1) 18(1) 

C(7) 5493(1) 5676(2) 3531(1) 17(1) 

C(8) 5395(1) 3915(3) 4168(1) 18(1) 

C(9) 5678(1) 3828(3) 5090(1) 19(1) 

N(1) 5238(1) 5788(2) 2556(1) 18(1) 

O(1) 6821(1) 1343(2) 6296(1) 34(1) 

O(2) 6893(1) 5435(2) 6471(1) 21(1) 

Cl(1) 7900(1) 622(1) 6115(1) 43(1) 

Cl(2) 6043(1) 9487(1) 3071(1) 23(1) 

Cl(3) 4940(1) 1649(1) 3808(1) 21(1) 

Table 3.   Bond lengths [Å] and angles [°] for exp_750. 

_____________________________________________________ 

C(1)-C(2)  1.508(2) 

C(1)-Cl(1)  1.7655(16) 

C(1)-H(1A)  0.9900 

C(1)-H(1B)  0.9900 

C(2)-O(1)  1.1931(19) 

C(2)-O(2)  1.3344(18) 

C(3)-O(2)  1.4544(17) 

C(3)-C(4)  1.5070(18) 

C(3)-H(3A)  0.9900 

C(3)-H(3B)  0.9900 

C(4)-C(5)  1.393(2) 

C(4)-C(9)  1.3941(19) 

C(5)-C(6)  1.3807(18) 

C(5)-H(5)  0.9500 

C(6)-C(7)  1.4007(19) 



Appendix 

223

C(6)-Cl(2)  1.7324(14) 

C(7)-C(8)  1.3945(19) 

C(7)-N(1)  1.4323(17) 

C(8)-C(9)  1.3867(19) 

C(8)-Cl(3)  1.7336(14) 

C(9)-H(9)  0.9500 

N(1)-N(1)#1  1.249(2) 

C(2)-C(1)-Cl(1) 112.28(11) 

C(2)-C(1)-H(1A) 109.1 

Cl(1)-C(1)-H(1A) 109.1 

C(2)-C(1)-H(1B) 109.1 

Cl(1)-C(1)-H(1B) 109.1 

H(1A)-C(1)-H(1B) 107.9 

O(1)-C(2)-O(2) 125.09(14) 

O(1)-C(2)-C(1) 126.76(14) 

O(2)-C(2)-C(1) 108.13(12) 

O(2)-C(3)-C(4) 110.49(11) 

O(2)-C(3)-H(3A) 109.6 

C(4)-C(3)-H(3A) 109.6 

O(2)-C(3)-H(3B) 109.6 

C(4)-C(3)-H(3B) 109.6 

H(3A)-C(3)-H(3B) 108.1 

C(5)-C(4)-C(9) 120.14(12) 

C(5)-C(4)-C(3) 119.30(12) 

C(9)-C(4)-C(3) 120.54(13) 

C(6)-C(5)-C(4) 119.16(12) 

C(6)-C(5)-H(5) 120.4 

C(4)-C(5)-H(5) 120.4 

C(5)-C(6)-C(7) 121.88(13) 

C(5)-C(6)-Cl(2) 118.76(11) 

C(7)-C(6)-Cl(2) 119.33(10) 

C(8)-C(7)-C(6) 117.79(12) 

C(8)-C(7)-N(1) 124.27(12) 

C(6)-C(7)-N(1) 117.77(12) 

C(9)-C(8)-C(7) 121.18(13) 

C(9)-C(8)-Cl(3) 117.93(11) 

C(7)-C(8)-Cl(3) 120.78(10) 
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C(8)-C(9)-C(4) 119.72(13) 

C(8)-C(9)-H(9) 120.1 

C(4)-C(9)-H(9) 120.1 

N(1)#1-N(1)-C(7) 112.57(14) 

C(2)-O(2)-C(3) 115.76(11) 

_____________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+1,y,-z+1/2  

Table 4.   Anisotropic displacement parameters (Å2x 103)for exp_750.  The anisotropic 

displacement factor exponent takes the form: -22[ h2a*2U11 + ... + 2 h k a* b* U12 ]

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12

______________________________________________________________________________ 

C(1) 24(1)  28(1) 33(1)  -3(1) -1(1)  5(1) 

C(2) 26(1)  20(1) 17(1)  -1(1) -1(1)  2(1) 

C(3) 20(1)  30(1) 19(1)  -3(1) 1(1)  3(1) 

C(4) 16(1)  21(1) 18(1)  -3(1) 2(1)  4(1) 

C(5) 15(1)  19(1) 21(1)  -4(1) 2(1)  0(1) 

C(6) 16(1)  16(1) 21(1)  1(1) 4(1)  2(1) 

C(7) 15(1)  17(1) 18(1)  -2(1) 2(1)  3(1) 

C(8) 15(1)  17(1) 21(1)  -2(1) 3(1)  0(1) 

C(9) 19(1)  19(1) 20(1)  2(1) 4(1)  2(1) 

N(1) 18(1)  16(1) 18(1)  0(1) 1(1)  -1(1) 

O(1) 34(1)  22(1) 43(1)  -3(1) 2(1)  -4(1) 

O(2) 19(1)  20(1) 23(1)  -1(1) -2(1)  1(1) 

Cl(1) 40(1)  45(1) 42(1)  -9(1) 4(1)  20(1) 

Cl(2) 23(1)  23(1) 24(1)  4(1) 4(1)  -5(1) 

Cl(3) 20(1)  19(1) 25(1)  0(1) 2(1)  -4(1) 

______________________________________________________________________________
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Table 5.   Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103)

for exp_750. 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

H(1A) 7809 3704 7142 35 

H(1B) 7716 4734 6083 35 

H(3A) 6271 7161 6719 28 

H(3B) 6234 4224 6761 28 

H(5) 6426 8531 4982 22 

H(9) 5614 2585 5509 23 

7.2.2 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33,,55--ddiibbrroommoo--44,,11--pphheennyylleennee))))bbiiss((mmeetthhyylleennee)) bbiiss((22--
cchhlloorrooaacceettaattee ((117799))

Table 1.  Crystal data and structure refinement for rka1402b. 

Identification code  shelx 

Empirical formula  C9 H6 Br2 Cl N O2 

Formula weight  355.42 

Temperature  296(2) K 

Wavelength  1.54184 Å 

Crystal system  Monoclinic 

Space group  C 2/c 

Unit cell dimensions a = 27.4395(11) Å = 90°. 

 b = 5.6145(2) Å = 105.207(4)°. 

 c = 15.1895(5) Å  = 90°. 

Volume 2258.14(15) Å3

Z 8 

Density (calculated) 2.091 Mg/m3

Absorption coefficient 11.136 mm-1

F(000) 1360 

Crystal size 0.256 x 0.160 x 0.034 mm3

Theta range for data collection 3.338 to 73.959°. 

Index ranges -33<=h<=25, -5<=k<=6, -17<=l<=18 

Reflections collected 3920 

Independent reflections 2210 [R(int) = 0.0210] 
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Completeness to theta = 67.684° 99.5 %  

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2210 / 0 / 136 

Goodness-of-fit on F2 1.012 

Final R indices [I>2sigma(I)] R1 = 0.0324, wR2 = 0.0844 

R indices (all data) R1 = 0.0401, wR2 = 0.0894 

Extinction coefficient n/a 

Largest diff. peak and hole 0.753 and -0.594 e.Å-3

Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for rka1402b.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

C(1) 7597(2) 2967(11) 11485(4) 71(1) 

C(2) 7038(2) 2929(8) 11379(3) 48(1) 

C(3) 6347(1) 5492(8) 11350(2) 47(1) 

C(4) 6058(1) 5494(7) 10362(2) 38(1) 

C(5) 5669(1) 3884(7) 10036(2) 37(1) 

C(6) 5383(1) 3995(6) 9133(2) 35(1) 

C(7) 5489(1) 5672(6) 8528(2) 32(1) 

C(8) 5902(1) 7172(6) 8866(2) 34(1) 

C(9) 6175(1) 7143(7) 9765(2) 38(1) 

N(1) 5235(1) 5801(5) 7577(2) 35(1) 

O(1) 6771(2) 1230(7) 11278(3) 77(1) 

O(2) 6883(1) 5163(5) 11438(2) 46(1) 

Cl(1) 7827(1) 311(4) 11172(2) 108(1) 

Br(1) 4887(1) 1611(1) 8736(1) 44(1) 

Br(2) 6089(1) 9413(1) 8084(1) 49(1) 

________________________________________________________________________________
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Table 3.   Bond lengths [Å] and angles [°] for rka1402b. 

_____________________________________________________ 

C(1)-C(2)  1.498(6) 

C(1)-Cl(1)  1.733(6) 

C(1)-H(1A)  0.9700 

C(1)-H(1B)  0.9700 

C(2)-O(1)  1.188(6) 

C(2)-O(2)  1.336(5) 

C(3)-O(2)  1.452(5) 

C(3)-C(4)  1.503(4) 

C(3)-H(3A)  0.9700 

C(3)-H(3B)  0.9700 

C(4)-C(5)  1.388(5) 

C(4)-C(9)  1.391(5) 

C(5)-C(6)  1.391(5) 

C(5)-H(5)  0.9300 

C(6)-C(7)  1.398(5) 

C(6)-Br(1)  1.892(3) 

C(7)-C(8)  1.398(5) 

C(7)-N(1)  1.431(4) 

C(8)-C(9)  1.374(5) 

C(8)-Br(2)  1.893(3) 

C(9)-H(9)  0.9300 

N(1)-N(1)#1  1.251(6) 

C(2)-C(1)-Cl(1) 113.2(4) 

C(2)-C(1)-H(1A) 108.9 

Cl(1)-C(1)-H(1A) 108.9 

C(2)-C(1)-H(1B) 108.9 

Cl(1)-C(1)-H(1B) 108.9 

H(1A)-C(1)-H(1B) 107.8 

O(1)-C(2)-O(2) 124.4(4) 

O(1)-C(2)-C(1) 127.2(5) 

O(2)-C(2)-C(1) 108.4(4) 

O(2)-C(3)-C(4) 110.4(3) 

O(2)-C(3)-H(3A) 109.6 

C(4)-C(3)-H(3A) 109.6 

O(2)-C(3)-H(3B) 109.6 
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C(4)-C(3)-H(3B) 109.6 

H(3A)-C(3)-H(3B) 108.1 

C(5)-C(4)-C(9) 119.3(3) 

C(5)-C(4)-C(3) 120.7(3) 

C(9)-C(4)-C(3) 120.0(3) 

C(4)-C(5)-C(6) 120.2(3) 

C(4)-C(5)-H(5) 119.9 

C(6)-C(5)-H(5) 119.9 

C(5)-C(6)-C(7) 121.3(3) 

C(5)-C(6)-Br(1) 117.1(3) 

C(7)-C(6)-Br(1) 121.5(2) 

C(8)-C(7)-C(6) 116.9(3) 

C(8)-C(7)-N(1) 118.2(3) 

C(6)-C(7)-N(1) 124.6(3) 

C(9)-C(8)-C(7) 122.4(3) 

C(9)-C(8)-Br(2) 117.7(3) 

C(7)-C(8)-Br(2) 119.8(2) 

C(8)-C(9)-C(4) 119.8(3) 

C(8)-C(9)-H(9) 120.1 

C(4)-C(9)-H(9) 120.1 

N(1)#1-N(1)-C(7) 113.2(3) 

C(2)-O(2)-C(3) 116.5(3) 

_____________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+1,y,-z+3/2  

Table 4.   Anisotropic displacement parameters (Å2x 103)for rka1402b.  The anisotropic 

displacement factor exponent takes the form: -22[ h2a*2U11 + ... + 2 h k a* b* U12 ]

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12

______________________________________________________________________________ 

C(1) 50(3)  75(4) 78(3)  2(3) 3(2)  12(2) 

C(2) 47(2)  49(2) 41(2)  0(2) -1(2)  0(2) 

C(3) 41(2)  65(3) 31(2)  -3(2) 0(1)  4(2) 

C(4) 36(2)  46(2) 29(1)  -1(1) 2(1)  5(2) 

C(5) 39(2)  40(2) 30(1)  3(1) 5(1)  1(2) 

C(6) 31(2)  36(2) 34(2)  -2(1) 4(1)  1(1) 

C(7) 28(1)  36(2) 29(1)  -3(1) 3(1)  3(1) 
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C(8) 29(2)  36(2) 34(1)  4(1) 5(1)  4(1) 

C(9) 30(2)  42(2) 38(2)  -7(1) 1(1)  -3(1) 

N(1) 31(1)  37(2) 32(1)  0(1) 0(1)  0(1) 

O(1) 72(2)  53(2) 100(3)  -13(2) 14(2)  -11(2) 

O(2) 40(1)  46(2) 44(1)  1(1) -5(1)  -2(1) 

Cl(1) 101(1)  105(1) 118(1)  -7(1) 30(1)  47(1) 

Br(1) 41(1)  44(1) 44(1)  -1(1) 6(1)  -10(1) 

Br(2) 43(1)  53(1) 47(1)  12(1) 6(1)  -7(1) 

Table 5.   Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103)

for rka1402b. 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

H(1A) 7767 3308 12117 85 

H(1B) 7675 4244 11114 85 

H(3A) 6294 6990 11629 57 

H(3B) 6225 4218 11667 57 

H(5) 5598 2726 10423 44 

H(9) 6437 8222 9973 46 

77..22..33 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33,,55--ddiifflluuoorroo--44,,11--pphheennyylleennee))))bbiiss((mmeetthhyylleennee))--bbiiss--((22--
cchhlloorrooaacceettaattee)) ((118855))

Table 1.  Crystal data and structure refinement for rka1403. 

Identification code  shelx 

Empirical formula  C18 H12 Cl2 F4 N2 O4 

Formula weight  467.20 

Temperature  293(2) K 

Wavelength  1.54184 Å 

Crystal system  Monoclinic 

Space group  C 2/c 

Unit cell dimensions a = 19.4466(7) Å = 90°. 

 b = 4.7184(2) Å = 103.003(4)°. 

 c = 21.6117(10) Å  = 90°. 

Volume 1932.17(14) Å3
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Z 4 

Density (calculated) 1.606 Mg/m3

Absorption coefficient 3.656 mm-1

F(000) 944 

Crystal size 0.340 x 0.086 x 0.032 mm3

Theta range for data collection 4.199 to 74.056°. 

Index ranges -24<=h<=23, -5<=k<=5, -21<=l<=26 

Reflections collected 6584 

Independent reflections 1922 [R(int) = 0.0164] 

Completeness to theta = 67.684° 99.9 %  

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 1922 / 0 / 136 

Goodness-of-fit on F2 1.036 

Final R indices [I>2sigma(I)] R1 = 0.0317, wR2 = 0.0871 

R indices (all data) R1 = 0.0372, wR2 = 0.0929 

Extinction coefficient n/a 

Largest diff. peak and hole 0.181 and -0.266 e.Å-3 

Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for rka1403.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

N(1) 329(1) 4992(3) 5086(1) 56(1) 

C(1) 3707(1) 1560(4) 3329(1) 61(1) 

C(2) 3028(1) -55(3) 3216(1) 49(1) 

C(3) 1900(1) 13(4) 3420(1) 57(1) 

C(4) 1499(1) 1359(3) 3861(1) 49(1) 

C(5) 800(1) 539(4) 3799(1) 57(1) 

C(6) 410(1) 1697(4) 4187(1) 55(1) 

C(7) 678(1) 3718(3) 4649(1) 49(1) 

C(8) 1383(1) 4448(3) 4699(1) 51(1) 

C(9) 1794(1) 3330(3) 4318(1) 51(1) 

O(1) 2889(1) -2192(3) 2919(1) 69(1) 

O(2) 2589(1) 1253(2) 3517(1) 53(1) 

F(1) -257(1) 783(3) 4129(1) 78(1) 

F(2) 1669(1) 6387(3) 5138(1) 72(1) 

Cl(1) 4263(1) 350(1) 2840(1) 81(1) 
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Table 3.   Bond lengths [Å] and angles [°] for rka1403. 

_____________________________________________________ 

N(1)-N(1)#1  1.248(3) 

N(1)-C(7)  1.415(2) 

C(1)-C(2)  1.497(2) 

C(1)-Cl(1)  1.7658(16) 

C(1)-H(1A)  0.9700 

C(1)-H(1B)  0.9700 

C(2)-O(1)  1.193(2) 

C(2)-O(2)  1.3345(18) 

C(3)-O(2)  1.4340(19) 

C(3)-C(4)  1.501(2) 

C(3)-H(3A)  0.9700 

C(3)-H(3B)  0.9700 

C(4)-C(9)  1.384(2) 

C(4)-C(5)  1.391(2) 

C(5)-C(6)  1.364(2) 

C(5)-H(5)  0.9300 

C(6)-F(1)  1.3457(18) 

C(6)-C(7)  1.394(2) 

C(7)-C(8)  1.394(2) 

C(8)-F(2)  1.3448(18) 

C(8)-C(9)  1.376(2) 

C(9)-H(9)  0.9300 

N(1)#1-N(1)-C(7) 114.58(17) 

C(2)-C(1)-Cl(1) 111.99(12) 

C(2)-C(1)-H(1A) 109.2 

Cl(1)-C(1)-H(1A) 109.2 

C(2)-C(1)-H(1B) 109.2 

Cl(1)-C(1)-H(1B) 109.2 

H(1A)-C(1)-H(1B) 107.9 

O(1)-C(2)-O(2) 124.17(15) 

O(1)-C(2)-C(1) 126.99(14) 

O(2)-C(2)-C(1) 108.82(13) 

O(2)-C(3)-C(4) 109.72(13) 

O(2)-C(3)-H(3A) 109.7 
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C(4)-C(3)-H(3A) 109.7 

O(2)-C(3)-H(3B) 109.7 

C(4)-C(3)-H(3B) 109.7 

H(3A)-C(3)-H(3B) 108.2 

C(9)-C(4)-C(5) 119.64(14) 

C(9)-C(4)-C(3) 123.09(14) 

C(5)-C(4)-C(3) 117.27(15) 

C(6)-C(5)-C(4) 119.73(16) 

C(6)-C(5)-H(5) 120.1 

C(4)-C(5)-H(5) 120.1 

F(1)-C(6)-C(5) 118.11(15) 

F(1)-C(6)-C(7) 118.83(14) 

C(5)-C(6)-C(7) 123.03(14) 

C(6)-C(7)-C(8) 115.21(14) 

C(6)-C(7)-N(1) 127.68(14) 

C(8)-C(7)-N(1) 117.03(14) 

F(2)-C(8)-C(9) 118.63(14) 

F(2)-C(8)-C(7) 117.77(14) 

C(9)-C(8)-C(7) 123.59(15) 

C(8)-C(9)-C(4) 118.78(14) 

C(8)-C(9)-H(9) 120.6 

C(4)-C(9)-H(9) 120.6 

C(2)-O(2)-C(3) 114.78(12) 

_____________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  

#1 -x,-y+1,-z+1  

Table 4.   Anisotropic displacement parameters (Å2x 103)for rka1403.  The anisotropic 

displacement factor exponent takes the form: -22[ h2a*2U11 + ... + 2 h k a* b* U12 ]

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12

______________________________________________________________________________ 

N(1) 46(1)  68(1) 55(1)  -1(1) 17(1)  2(1) 

C(1) 49(1)  70(1) 66(1)  -9(1) 20(1)  2(1) 

C(2) 51(1)  49(1) 49(1)  2(1) 15(1)  8(1) 

C(3) 55(1)  58(1) 63(1)  -6(1) 26(1)  -9(1) 

C(4) 49(1)  51(1) 50(1)  5(1) 18(1)  1(1) 

C(5) 54(1)  58(1) 64(1)  -7(1) 20(1)  -9(1) 
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C(6) 44(1)  58(1) 65(1)  0(1) 19(1)  -6(1) 

C(7) 44(1)  57(1) 49(1)  4(1) 16(1)  2(1) 

C(8) 46(1)  60(1) 46(1)  -2(1) 10(1)  -2(1) 

C(9) 42(1)  62(1) 51(1)  3(1) 14(1)  -2(1) 

O(1) 70(1)  58(1) 85(1)  -17(1) 29(1)  1(1) 

O(2) 50(1)  56(1) 57(1)  -7(1) 23(1)  -2(1) 

F(1) 52(1)  85(1) 105(1)  -28(1) 34(1)  -23(1) 

F(2) 54(1)  96(1) 67(1)  -28(1) 16(1)  -11(1) 

Cl(1) 59(1)  103(1) 90(1)  -5(1) 36(1)  11(1) 

Table 5.   Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103)

for rka1403. 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

H(1A) 3950 1365 3770 73 

H(1B) 3606 3554 3246 73 

H(3A) 1942 -2009 3500 68 

H(3B) 1648 296 2984 68 

H(5) 599 -794 3495 69 

H(9) 2262 3889 4367 61 

77..22..44 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((44,,11--pphheennyylleennee))))--bbiiss--((mmeetthhyylleennee))--bbiiss((22--cchhlloorrooaacceettaattee)) ((119911))

Table 1.  Crystal data and structure refinement for rka1406b. 

Identification code  shelx 

Empirical formula  C18 H16.20 Cl1.79 N2 O4.20 

Formula weight  391.45 

Temperature  296(2) K 

Wavelength  1.54184 Å 

Crystal system  Triclinic 

Space group  P -1 

Unit cell dimensions a = 5.6216(3) Å = 62.487(7)°. 

 b = 12.9368(9) Å = 82.950(5)°. 

 c = 13.7836(10) Å  = 86.880(5)°. 

Volume 882.33(11) Å3
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Z 2 

Density (calculated) 1.473 Mg/m3

Absorption coefficient 3.276 mm-1

F(000) 405 

Crystal size 0.300 x 0.205 x 0.051 mm3

Theta range for data collection 3.638 to 73.921°. 

Index ranges -6<=h<=7, -15<=k<=12, -16<=l<=12 

Reflections collected 5586 

Independent reflections 3405 [R(int) = 0.0196] 

Completeness to theta = 67.684° 99.0 %  

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3405 / 38 / 255 

Goodness-of-fit on F2 1.088 

Final R indices [I>2sigma(I)] R1 = 0.0744, wR2 = 0.2161 

R indices (all data) R1 = 0.0778, wR2 = 0.2199 

Extinction coefficient n/a 

Largest diff. peak and hole 1.081 and -0.419 e.Å-3 

Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for rka1406b.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

C(1) 3301(6) 591(3) -4196(2) 40(1) 

C(2) 1028(6) 379(3) -3621(3) 49(1) 

C(3) 200(6) 1007(3) -3063(3) 45(1) 

C(4) 1649(6) 1849(3) -3066(2) 40(1) 

C(5) 3916(6) 2063(3) -3658(3) 44(1) 

C(6) 4751(5) 1445(3) -4223(2) 42(1) 

C(7) 751(6) 2501(3) -2429(3) 46(1) 

C(8) 2899(5) 1750(3) -863(2) 43(1) 

C(9) 2535(7) 994(3) 366(3) 53(1) 

C(10) 18387(5) 5539(3) -4135(2) 39(1) 

C(11) 16153(6) 5310(3) -3530(3) 50(1) 

C(12) 15354(6) 5932(3) -2963(3) 49(1) 

C(13) 16802(5) 6773(3) -2977(2) 39(1) 

C(14) 19056(6) 6988(3) -3576(3) 45(1) 

C(15) 19847(5) 6385(3) -4158(2) 41(1) 
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C(16) 15917(6) 7475(3) -2388(3) 47(1) 

C(17) 12737(5) 6826(3) -916(3) 43(1) 

C(18) 12349(7) 6094(3) 308(3) 55(1) 

N(1) 3979(5) -100(2) -4746(2) 45(1) 

N(2) 19020(5) 4868(2) -4708(2) 43(1) 

O(1) 803(4) 1760(2) -1260(2) 47(1) 

O(2) 4676(5) 2280(2) -1403(2) 58(1) 

O(3) 15060(4) 6713(2) -1251(2) 49(1) 

O(4) 11297(5) 7441(2) -1494(2) 63(1) 

Cl(1) 5223(3) 749(1) 979(1) 55(1) 

Cl(2) 9283(3) 5856(1) 810(1) 63(1) 

O(5) 4550(30) 850(20) 883(19) 25(4) 

O(6) 10180(20) 5779(17) 974(13) 16(4) 

Table 3.   Bond lengths [Å] and angles [°] for rka1406b.

_____________________________________________________ 

C(1)-C(2)  1.387(5) 

C(1)-C(6)  1.392(4) 

C(1)-N(1)  1.429(4) 

C(2)-C(3)  1.385(5) 

C(2)-H(2)  0.9300 

C(3)-C(4)  1.394(4) 

C(3)-H(3)  0.9300 

C(4)-C(5)  1.394(4) 

C(4)-C(7)  1.505(4) 

C(5)-C(6)  1.381(4) 

C(5)-H(5)  0.9300 

C(6)-H(6)  0.9300 

C(7)-O(1)  1.449(4) 

C(7)-H(7A)  0.9700 

C(7)-H(7B)  0.9700 

C(8)-O(2)  1.201(4) 

C(8)-O(1)  1.355(4) 

C(8)-C(9)  1.508(4) 

C(9)-O(5)  1.368(10) 

C(9)-Cl(1)  1.764(4) 

C(9)-H(9A)  0.9700 

C(9)-H(9B)  0.9700 
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C(10)-C(11)  1.384(4) 

C(10)-C(15)  1.390(4) 

C(10)-N(2)  1.427(4) 

C(11)-C(12)  1.384(5) 

C(11)-H(11)  0.9300 

C(12)-C(13)  1.385(5) 

C(12)-H(12)  0.9300 

C(13)-C(14)  1.390(4) 

C(13)-C(16)  1.505(4) 

C(14)-C(15)  1.379(4) 

C(14)-H(14)  0.9300 

C(15)-H(15)  0.9300 

C(16)-O(3)  1.449(4) 

C(16)-H(16A)  0.9700 

C(16)-H(16B)  0.9700 

C(17)-O(4)  1.194(4) 

C(17)-O(3)  1.354(4) 

C(17)-C(18)  1.499(4) 

C(18)-O(6)  1.387(10) 

C(18)-Cl(2)  1.764(4) 

C(18)-H(18A)  0.9700 

C(18)-H(18B)  0.9700 

N(1)-N(1)#1  1.241(6) 

N(2)-N(2)#2  1.244(5) 

C(2)-C(1)-C(6) 120.1(3) 

C(2)-C(1)-N(1) 115.7(3) 

C(6)-C(1)-N(1) 124.1(3) 

C(3)-C(2)-C(1) 120.2(3) 

C(3)-C(2)-H(2) 119.9 

C(1)-C(2)-H(2) 119.9 

C(2)-C(3)-C(4) 120.3(3) 

C(2)-C(3)-H(3) 119.8 

C(4)-C(3)-H(3) 119.8 

C(3)-C(4)-C(5) 118.9(3) 

C(3)-C(4)-C(7) 119.7(3) 

C(5)-C(4)-C(7) 121.4(3) 

C(6)-C(5)-C(4) 121.2(3) 
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C(6)-C(5)-H(5) 119.4 

C(4)-C(5)-H(5) 119.4 

C(5)-C(6)-C(1) 119.3(3) 

C(5)-C(6)-H(6) 120.3 

C(1)-C(6)-H(6) 120.3 

O(1)-C(7)-C(4) 110.5(2) 

O(1)-C(7)-H(7A) 109.6 

C(4)-C(7)-H(7A) 109.6 

O(1)-C(7)-H(7B) 109.6 

C(4)-C(7)-H(7B) 109.6 

H(7A)-C(7)-H(7B) 108.1 

O(2)-C(8)-O(1) 125.3(3) 

O(2)-C(8)-C(9) 127.3(3) 

O(1)-C(8)-C(9) 107.4(3) 

O(5)-C(9)-C(8) 114.3(11) 

O(5)-C(9)-Cl(1) 4.3(11) 

C(8)-C(9)-Cl(1) 112.5(2) 

O(5)-C(9)-H(9A) 108.7 

C(8)-C(9)-H(9A) 108.7 

Cl(1)-C(9)-H(9A) 113.0 

O(5)-C(9)-H(9B) 108.7 

C(8)-C(9)-H(9B) 108.7 

Cl(1)-C(9)-H(9B) 106.2 

H(9A)-C(9)-H(9B) 107.6 

C(11)-C(10)-C(15) 119.7(3) 

C(11)-C(10)-N(2) 115.9(3) 

C(15)-C(10)-N(2) 124.4(3) 

C(12)-C(11)-C(10) 120.3(3) 

C(12)-C(11)-H(11) 119.9 

C(10)-C(11)-H(11) 119.9 

C(11)-C(12)-C(13) 120.3(3) 

C(11)-C(12)-H(12) 119.8 

C(13)-C(12)-H(12) 119.8 

C(12)-C(13)-C(14) 119.0(3) 

C(12)-C(13)-C(16) 120.5(3) 

C(14)-C(13)-C(16) 120.4(3) 

C(15)-C(14)-C(13) 120.9(3) 

C(15)-C(14)-H(14) 119.5 
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C(13)-C(14)-H(14) 119.5 

C(14)-C(15)-C(10) 119.7(3) 

C(14)-C(15)-H(15) 120.2 

C(10)-C(15)-H(15) 120.2 

O(3)-C(16)-C(13) 110.5(2) 

O(3)-C(16)-H(16A) 109.6 

C(13)-C(16)-H(16A) 109.6 

O(3)-C(16)-H(16B) 109.6 

C(13)-C(16)-H(16B) 109.6 

H(16A)-C(16)-H(16B) 108.1 

O(4)-C(17)-O(3) 125.6(3) 

O(4)-C(17)-C(18) 126.6(3) 

O(3)-C(17)-C(18) 107.8(3) 

O(6)-C(18)-C(17) 127.7(8) 

O(6)-C(18)-Cl(2) 15.4(8) 

C(17)-C(18)-Cl(2) 112.4(3) 

O(6)-C(18)-H(18A) 105.4 

C(17)-C(18)-H(18A) 105.4 

Cl(2)-C(18)-H(18A) 111.2 

O(6)-C(18)-H(18B) 105.4 

C(17)-C(18)-H(18B) 105.4 

Cl(2)-C(18)-H(18B) 115.7 

H(18A)-C(18)-H(18B) 106.0 

N(1)#1-N(1)-C(1) 114.8(3) 

N(2)#2-N(2)-C(10) 114.7(3) 

C(8)-O(1)-C(7) 115.7(2) 

C(17)-O(3)-C(16) 117.0(2) 

_____________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+1,-y,-z-1    #2 -x+4,-y+1,-z-1  

Table 4.   Anisotropic displacement parameters (Å2x 103)for rka1406b.  The anisotropic

displacement factor exponent takes the form: -22[ h2a*2U11 + ... + 2 h k a* b* U12 ]

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12

______________________________________________________________________________ 

C(1) 44(2)  41(2) 33(1)  -14(1) -5(1)  0(1) 

C(2) 48(2)  49(2) 47(2)  -22(1) 2(1)  -12(1) 
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C(3) 36(2)  52(2) 39(2)  -16(1) 4(1)  -3(1) 

C(4) 43(2)  42(2) 31(1)  -13(1) -7(1)  6(1) 

C(5) 42(2)  48(2) 45(2)  -23(1) -1(1)  -6(1) 

C(6) 37(2)  49(2) 41(2)  -21(1) -1(1)  -3(1) 

C(7) 43(2)  51(2) 40(2)  -18(1) -4(1)  8(1) 

C(8) 38(2)  47(2) 46(2)  -25(1) -2(1)  2(1) 

C(9) 52(2)  60(2) 47(2)  -25(2) -4(1)  2(2) 

C(10) 40(2)  41(1) 33(1)  -16(1) -1(1)  1(1) 

C(11) 46(2)  53(2) 53(2)  -28(2) 11(1)  -14(1) 

C(12) 44(2)  55(2) 45(2)  -23(1) 12(1)  -8(1) 

C(13) 42(2)  39(1) 30(1)  -13(1) -2(1)  4(1) 

C(14) 41(2)  49(2) 47(2)  -26(1) 2(1)  -7(1) 

C(15) 34(1)  50(2) 42(2)  -24(1) 4(1)  -4(1) 

C(16) 52(2)  43(2) 40(2)  -16(1) 6(1)  1(1) 

C(17) 42(2)  44(2) 48(2)  -26(1) -7(1)  5(1) 

C(18) 56(2)  59(2) 47(2)  -23(2) 4(2)  2(2) 

N(1) 45(1)  48(1) 43(1)  -22(1) -2(1)  -2(1) 

N(2) 44(1)  47(1) 42(1)  -24(1) 3(1)  -3(1) 

O(1) 46(1)  54(1) 39(1)  -21(1) 0(1)  -2(1) 

O(2) 47(1)  68(2) 56(1)  -26(1) 4(1)  -7(1) 

O(3) 55(1)  50(1) 35(1)  -17(1) 1(1)  13(1) 

O(4) 48(1)  75(2) 59(2)  -23(1) -12(1)  11(1) 

Cl(1) 61(1)  53(1) 57(1)  -29(1) -20(1)  8(1) 

Cl(2) 60(1)  58(1) 72(1)  -35(1) 26(1)  -13(1) 

O(5) 25(5)  24(4) 24(4)  -12(2) 2(2)  1(2) 

O(6) 17(4)  18(4) 14(4)  -8(2) -2(2)  0(2) 

Table 5.   Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103)

for rka1406b. 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

H(2) 58 -187 -3612 58 

H(3) -1331 866 -2684 54 

H(5) 4885 2632 -3674 53 

H(6) 6265 1598 -4617 50 

H(7A) 1746 3182 -2665 55 
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H(7B) -877 2762 -2577 55 

H(9A) 1290 1337 679 64 

H(9B) 1973 234 515 64 

H(11) 15185 4735 -3503 60 

H(12) 13837 5785 -2571 59 

H(14) 20043 7547 -3585 53 

H(15) 21350 6544 -4563 50 

H(16A) 17208 7960 -2416 56 

H(16B) 14628 7983 -2753 56 

H(18A) 13171 5366 454 66 

H(18B) 13251 6477 608 66 

7.2.5 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33--bbrroommoo--44,,11--pphheennyylleennee))))--bbiiss--((mmeetthhyylleennee))--bbiiss--((22--
cchhlloorrooaacceettaattee)) ((220099))

Table 1.  Crystal data and structure refinement for rka1405a. 

Identification code  shelx 

Empirical formula  C18 H14 Br2 Cl2 N2 O4 

Formula weight  553.03 

Temperature  296(2) K 

Wavelength  1.54184 Å 

Crystal system  Monoclinic 

Space group  P 21/c 

Unit cell dimensions a = 4.5764(2) Å = 90°. 

 b = 29.1072(12) Å = 103.781(4)°. 

 c = 7.8523(3) Å  = 90°. 

Volume 1015.86(7) Å3

Z 2 

Density (calculated) 1.808 Mg/m3

Absorption coefficient 7.731 mm-1

F(000) 544 

Crystal size 0.380 x 0.084 x 0.050 mm3

Theta range for data collection 5.998 to 74.080°. 

Index ranges -3<=h<=5, -35<=k<=34, -9<=l<=5 

Reflections collected 3428 

Independent reflections 1941 [R(int) = 0.0193] 

Completeness to theta = 67.684° 97.5 %  

Refinement method Full-matrix least-squares on F2
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Data / restraints / parameters 1941 / 0 / 127 

Goodness-of-fit on F2 1.229 

Final R indices [I>2sigma(I)] R1 = 0.0420, wR2 = 0.1101 

R indices (all data) R1 = 0.0465, wR2 = 0.1140 

Extinction coefficient n/a 

Largest diff. peak and hole 0.488 and -0.394 e.Å-3 

Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for rka1405a.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

C(1) 6860(9) 1147(1) 5611(6) 37(1) 

C(2) 5601(10) 1026(1) 3893(6) 39(1) 

C(3) 3477(10) 676(1) 3529(6) 36(1) 

C(4) 2576(10) 443(1) 4862(6) 34(1) 

C(5) 3879(10) 563(2) 6582(6) 39(1) 

C(6) 6017(10) 911(2) 6959(6) 40(1) 

C(7) 9171(10) 1523(2) 6014(7) 44(1) 

C(8) 9139(10) 2332(2) 6238(6) 40(1) 

C(9) 7239(11) 2751(2) 5719(7) 50(1) 

N(1) 361(8) 94(1) 4372(5) 37(1) 

O(1) 7582(7) 1960(1) 5607(5) 49(1) 

O(2) 11634(9) 2325(1) 7109(6) 68(1) 

Cl(1) 9414(3) 3258(1) 6012(2) 62(1) 

Br(1) 1833(1) 518(1) 1150(1) 57(1) 

________________________________________________________________________________
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Table 3.   Bond lengths [Å] and angles [°] for rka1405a. 

_____________________________________________________ 

C(1)-C(2)  1.381(7) 

C(1)-C(6)  1.391(7) 

C(1)-C(7)  1.503(6) 

C(2)-C(3)  1.391(6) 

C(3)-C(4)  1.389(6) 

C(3)-Br(1)  1.896(4) 

C(4)-C(5)  1.385(6) 

C(4)-N(1)  1.423(5) 

C(5)-C(6)  1.390(6) 

C(7)-O(1)  1.463(5) 

C(8)-O(2)  1.183(6) 

C(8)-O(1)  1.325(5) 

C(8)-C(9)  1.499(6) 

C(9)-Cl(1)  1.763(5) 

N(1)-N(1)#1  1.239(7) 

C(2)-C(1)-C(6) 119.4(4) 

C(2)-C(1)-C(7) 120.0(4) 

C(6)-C(1)-C(7) 120.5(4) 

C(1)-C(2)-C(3) 119.8(4) 

C(4)-C(3)-C(2) 121.4(4) 

C(4)-C(3)-Br(1) 120.3(3) 

C(2)-C(3)-Br(1) 118.3(3) 

C(5)-C(4)-C(3) 118.5(4) 

C(5)-C(4)-N(1) 123.9(4) 

C(3)-C(4)-N(1) 117.7(4) 

C(4)-C(5)-C(6) 120.6(4) 

C(5)-C(6)-C(1) 120.4(4) 

O(1)-C(7)-C(1) 107.4(3) 

O(2)-C(8)-O(1) 124.3(4) 

O(2)-C(8)-C(9) 126.0(4) 

O(1)-C(8)-C(9) 109.7(4) 

C(8)-C(9)-Cl(1) 111.9(3) 

N(1)#1-N(1)-C(4) 114.1(5) 

C(8)-O(1)-C(7) 115.7(3) 

_____________________________________________________________ 
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Symmetry transformations used to generate equivalent atoms:  

#1 -x,-y,-z+1  

Table 4.   Anisotropic displacement parameters (Å2x 103)for rka1405a.  The anisotropic 

displacement factor exponent takes the form: -22[ h2a*2U11 + ... + 2 h k a* b* U12 ]

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12

______________________________________________________________________________ 

C(1) 26(2)  30(2) 56(3)  -3(2) 8(2)  2(2) 

C(2) 40(2)  28(2) 50(3)  2(2) 14(2)  0(2) 

C(3) 41(2)  30(2) 35(2)  -1(2) 5(2)  4(2) 

C(4) 35(2)  23(2) 42(2)  -1(2) 7(2)  1(2) 

C(5) 40(2)  35(2) 44(2)  3(2) 11(2)  1(2) 

C(6) 38(2)  37(2) 42(2)  -3(2) 2(2)  0(2) 

C(7) 31(2)  32(2) 65(3)  0(2) 3(2)  -1(2) 

C(8) 37(2)  35(2) 44(3)  0(2) 6(2)  -5(2) 

C(9) 46(3)  35(2) 64(3)  -2(2) 5(2)  -5(2) 

N(1) 36(2)  32(2) 44(2)  -1(2) 11(2)  -6(2) 

O(1) 37(2)  30(2) 70(2)  -7(2) -4(2)  -2(1) 

O(2) 50(2)  44(2) 93(3)  8(2) -19(2)  -11(2) 

Cl(1) 71(1)  33(1) 87(1)  -6(1) 29(1)  -8(1) 

Br(1) 76(1)  53(1) 38(1)  -2(1) 6(1)  -13(1) 

Table 5.   Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103)

for rka1405a. 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

H(2) 6171 1178 2982 47 

H(5) 3319 409 7493 47 

H(6) 6889 986 8119 48 

H(7A) 10222 1513 7242 53 

H(7B) 10632 1486 5310 53 

H(9A) 5757 2770 6418 59 

H(9B) 6170 2726 4498 59 



Appendix 

244

77..22..66 ((EE))--((DDiiaazzeennee--11,,22--ddiiyyllbbiiss((33--bbrroommoo--55--fflluuoorroo--44,,11--pphheennyylleennee))))--bbiiss--((mmeetthhyylleennee))--bbiiss--((22--
cchhlloorrooaacceettaattee)) ((222211))

Table 1.  Crystal data and structure refinement for rka1505. 

Identification code  rka1505 

Empirical formula  C9 H6 Br Cl F N O2 

Formula weight  294.51 

Temperature  298(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21/n 

Unit cell dimensions a = 4.5876(4) Å = 90°. 

 b = 29.039(3) Å = 97.380(9)°. 

 c = 7.7651(7) Å  = 90°. 

Volume 1025.90(16) Å3

Z 4 

Density (calculated) 1.907 Mg/m3

Absorption coefficient 4.258 mm-1

F(000) 576 

Crystal size 0.307 x 0.072 x 0.030 mm3

Theta range for data collection 3.381 to 29.992°. 

Index ranges -6<=h<=5, -39<=k<=36, -10<=l<=5 

Reflections collected 5191 

Independent reflections 2451 [R(int) = 0.0315] 

Completeness to theta = 25.242° 99.6 %  

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2451 / 0 / 136 

Goodness-of-fit on F2 0.999 

Final R indices [I>2sigma(I)] R1 = 0.0468, wR2 = 0.0986 

R indices (all data) R1 = 0.0749, wR2 = 0.1126 

Extinction coefficient n/a 

Largest diff. peak and hole 0.573 and -0.560 e.Å-3 

Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for rka1505.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
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________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

C(1) 10402(11) 2379(2) -380(8) 75(2) 

C(2) 12132(9) 1943(1) -320(5) 46(1) 

C(3) 12521(8) 1217(1) 1040(6) 43(1) 

C(4) 10712(8) 933(1) 2127(5) 38(1) 

C(5) 10202(8) 1091(1) 3738(5) 38(1) 

C(6) 8428(8) 834(1) 4699(5) 37(1) 

C(7) 7228(8) 417(1) 4120(5) 37(1) 

C(8) 7841(9) 268(1) 2504(5) 43(1) 

C(9) 9510(9) 522(1) 1508(5) 44(1) 

N(1) 5473(9) 177(1) 5215(5) 60(1) 

O(1) 14179(7) 1857(1) -1056(4) 64(1) 

O(2) 11007(6) 1648(1) 734(4) 49(1) 

F(1) 6726(7) -132(1) 1849(4) 76(1) 

Cl(1) 11912(3) 2814(1) -1532(2) 82(1) 

Br(1) 7509(1) 1084(1) 6810(1) 61(1) 

Table 3.   Bond lengths [Å] and angles [°] for rka1505. 

_____________________________________________________ 

C(1)-C(2)  1.494(6) 

C(1)-Cl(1)  1.741(5) 

C(1)-H(1A)  0.9700 

C(1)-H(1B)  0.9700 

C(2)-O(1)  1.187(5) 

C(2)-O(2)  1.333(4) 

C(3)-O(2)  1.435(4) 

C(3)-C(4)  1.505(5) 

C(3)-H(3A)  0.9700 

C(3)-H(3B)  0.9700 

C(4)-C(9)  1.377(5) 

C(4)-C(5)  1.380(5) 

C(5)-C(6)  1.389(5) 

C(5)-H(5)  0.9300 

C(6)-C(7)  1.383(5) 

C(6)-Br(1)  1.889(4) 

C(7)-C(8)  1.390(5) 
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C(7)-N(1)  1.425(5) 

C(8)-F(1)  1.343(4) 

C(8)-C(9)  1.371(5) 

C(9)-H(9)  0.9300 

N(1)-N(1)#1  1.150(7) 

C(2)-C(1)-Cl(1) 112.7(3) 

C(2)-C(1)-H(1A) 109.0 

Cl(1)-C(1)-H(1A) 109.0 

C(2)-C(1)-H(1B) 109.0 

Cl(1)-C(1)-H(1B) 109.0 

H(1A)-C(1)-H(1B) 107.8 

O(1)-C(2)-O(2) 123.7(4) 

O(1)-C(2)-C(1) 127.7(4) 

O(2)-C(2)-C(1) 108.6(3) 

O(2)-C(3)-C(4) 106.3(3) 

O(2)-C(3)-H(3A) 110.5 

C(4)-C(3)-H(3A) 110.5 

O(2)-C(3)-H(3B) 110.5 

C(4)-C(3)-H(3B) 110.5 

H(3A)-C(3)-H(3B) 108.7 

C(9)-C(4)-C(5) 119.9(3) 

C(9)-C(4)-C(3) 120.4(4) 

C(5)-C(4)-C(3) 119.7(4) 

C(4)-C(5)-C(6) 119.2(3) 

C(4)-C(5)-H(5) 120.4 

C(6)-C(5)-H(5) 120.4 

C(7)-C(6)-C(5) 122.2(3) 

C(7)-C(6)-Br(1) 119.7(3) 

C(5)-C(6)-Br(1) 118.1(3) 

C(6)-C(7)-C(8) 116.6(3) 

C(6)-C(7)-N(1) 117.8(3) 

C(8)-C(7)-N(1) 125.7(3) 

F(1)-C(8)-C(9) 117.7(3) 

F(1)-C(8)-C(7) 119.9(3) 

C(9)-C(8)-C(7) 122.4(4) 

C(8)-C(9)-C(4) 119.8(4) 

C(8)-C(9)-H(9) 120.1 
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C(4)-C(9)-H(9) 120.1 

N(1)#1-N(1)-C(7) 119.0(5) 

C(2)-O(2)-C(3) 116.3(3) 

_____________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+1,-y,-z+1  

Table 4.   Anisotropic displacement parameters (Å2x 103)for rka1505.  The anisotropic 

displacement factor exponent takes the form: -22[ h2a*2U11 + ... + 2 h k a* b* U12 ]

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12

______________________________________________________________________________ 

C(1) 67(3)  61(3) 103(4)  37(3) 35(3)  10(3) 

C(2) 45(2)  48(2) 46(2)  9(2) 12(2)  -9(2) 

C(3) 41(2)  42(2) 49(2)  7(2) 16(2)  4(2) 

C(4) 36(2)  37(2) 42(2)  4(2) 9(2)  4(2) 

C(5) 38(2)  35(2) 42(2)  1(2) 7(2)  -4(2) 

C(6) 41(2)  39(2) 32(2)  -3(2) 7(2)  2(2) 

C(7) 45(2)  34(2) 33(2)  1(2) 12(2)  -1(2) 

C(8) 60(2)  31(2) 41(2)  -3(2) 16(2)  -2(2) 

C(9) 59(2)  39(2) 37(2)  -1(2) 22(2)  1(2) 

N(1) 91(3)  47(2) 50(2)  -8(2) 39(2)  -24(2) 

O(1) 71(2)  57(2) 72(2)  3(2) 40(2)  -8(2) 

O(2) 47(2)  44(2) 60(2)  18(1) 24(1)  6(1) 

F(1) 126(2)  48(2) 64(2)  -22(1) 55(2)  -34(2) 

Cl(1) 93(1)  57(1) 102(1)  30(1) 33(1)  -5(1) 

Br(1) 83(1)  64(1) 39(1)  -16(1) 21(1)  -18(1) 

______________________________________________________________________________
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Table 5.   Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103)

for rka1505. 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

H(1A) 10303 2484 797 90 

H(1B) 8411 2319 -916 90 

H(3A) 14477 1267 1650 52 

H(3B) 12695 1063 -51 52 

H(5) 11035 1366 4176 46 

H(9) 9829 416 417 52 

________________________________________________________________________________
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