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ABSTRACT	

	

The	key	component	of	a	microstructural	diffusion	MRI	‘super-scanner’	is	a	dedicated	high-strength	gradient	

system	that	enables	stronger	diffusion	weightings	per	unit	time	compared	to	conventional	gradient	

designs.	This	can,	in	turn,	drastically	shorten	the	time	needed	for	diffusion	encoding,	increase	the	signal-to-

noise	ratio,	and	facilitate	measurements	at	shorter	diffusion	times.	This	review,	written	from	the	

perspective	of	the	National	Facility	for	In	Vivo	MR	Imaging	of	Human	Tissue	Microstructure,	an	initiative	to	

establish	a	shared	300	mT/m-gradient	facility	amongst	the	microstructural	imaging	community,	describes	

ten	advantages	of	ultra-strong	gradients	for	microstructural	imaging.	Specifically,	we	will	discuss	how	the	

increase	of	the	accessible	measurement	space	compared	to	a	lower-gradient	systems	(in	terms	of	∆,	b-

value,	and	TE)	can	accelerate	developments	in	the	areas	of	1)	axon	diameter	distribution	mapping;	2)	

microstructural	parameter	estimation;	3)	mapping	micro-	vs	macroscopic	anisotropy	features	with	gradient	

waveforms	beyond	a	single	pair	of	pulsed-gradients;	4)	multi-contrast	experiments,	e.g.	diffusion-

relaxometry;	5)	tractography	and	high-resolution	imaging	in	vivo	and	6)	post	mortem;	7)	diffusion-weighted	

spectroscopy	of	metabolites	other	than	water;	8)	tumour	characterisation;	9)	functional	diffusion	MRI;	and	

10)	quality	enhancement	of	images	acquired	on	lower-gradient	systems.	We	finally	discuss	practical	

barriers	in	the	use	of	ultra-strong	gradients,	and	provide	an	outlook	on	the	next	generation	of	‘super-

scanners’.	

	

INTRODUCTION	

	

This	article	reviews	the	benefits	of	incorporating	an	ultra-strong	gradient	system	(Setsompop	et	al.	2013),	

optimised	for	diffusion	magnetic	resonance	imaging	(dMRI),	into	an	MRI	scanner	for	imaging	the	human	

brain.	It	is	written	from	the	perspective	of	the	National	Facility	for	In	Vivo	MR	Imaging	of	Human	Tissue	

Microstructure,	an	initiative	in	the	United	Kingdom	to	establish	an	MRI	system	with	ultra-strong	(300	

mT/m)	gradients	as	a	shared	facility	amongst	the	microstructural	imaging	community.		We	have	selected	

ten	key	areas	where	we	believe	ultra-strong	gradients	can	advance	the	field	of	microstructural	imaging,	

beginning	each	section	with	motivation	for	advancing	the	field	in	each	area,	reviewing	what	has	been	

achieved	to	date	with	more	commonly-available	gradient	amplitudes,	and	then	discussing	the	potential	

benefits	and	opportunities	afforded	by	having	access	to	ultra-strong	gradients.		In	some	cases,	this	is	in	

providing	marked	improvements	to	measurements	that	are	already	attainable	at	lower	gradient	amplitude,	

and	in	others,	it	facilitates	new	measurements	that	are	simply	impractical	at	lower	gradient	amplitude.		We	
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then	discuss	practical	challenges	in	making	use	of	such	as	system,	including	issues	of	safety	and	engineering	

aspects,	attempt	to	highlight	which	limits	are	fundamental,	and	which	just	require	engineering.	

	

The	main	advantage	is,	of	course,	in	providing	a	higher	q-value/shorter	echo	time	(TE)	for	a	given	b-value,	

and	a	higher	signal-to-noise	ratio	(SNR)	per	unit	b-value	(see	Figure	1a).	Shorter	diffusion	time	acquisitions	

also	become	more	practical	as	higher	b-values	can	be	achieved,	and	a	wider	range	of	b-values	can	be	

maintained	across	all	diffusion	times	(∆)	(Figure	1b).	

	
FIGURE	1:	Increase	of	the	accessible	parameter	space	with	ultra-strong	gradients.	(a)	b-value	vs	minimum	

achievable	echo	time	(TE)	for	different	maximum	gradient	amplitudes	of	40	mT/m,	80	mT/m	and	300	mT/m	(see	

also	Setsompop	et	al.,	2013).	For	each	point,	the	colour	coding	gives	the	achieved	∆ − 𝜹/𝟑	[ms]	(colour	coding	

according	to	∆	results	in	a	similar	figure	with	the	colourbar	ranging	from	19	ms	–	97	ms).	These	curves	were	

obtained	by	simulation	on	the	system	with	a	Stejskal-Tanner	EPI	sequence,	Voxel	size	=	[2.5	2.5	2.5]	mm,	no	partial	

Fourier,	GRAPPA	=	2,	Multiband	=	1.			(b)	PGSE	b-value	(colours)	plotted	as	a	function	of	G	and	∆	for	Gmax	=	80	

mT/m	(left	two	panels)	and	300	mT/m	(right	panel).	Differences	in	rise	times	for	Gmax	=	80	and	300	mT/m	(0.4	ms	
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and	3.6	ms,	respectively)	mean	that	lower	∂	values	are	achievable	with	Gmax	=	80	mT/m	(e.g.	∂	=	5	ms	as	shown	in	

the	left-most	panel),	resulting	in	shorter	and	longer	achievable	∆,	although	b-values	are	low	(note	the	difference	in	

colour	scale	between	the	∂	=	5	ms	panel	and	the	others).	For	Gmax	=	80	mT/m	and	∂	=	11	ms,	the	range	of	∆	values	

matches	the	range	available	with	the	shortest	∂	possible	at	300	mT/m	(∂	=	8	ms,	to	the	nearest	integer).	All	

calculations	assume	TE	=	100	ms.	

	

	Making	measurements	on	such	kit	allows	us	to	develop	a	truly	translational	pipeline,	i.e.,	enabling	

measurements	in	humans	that	we	could	only	previously	make,	in	vivo,	in	animals	on	preclinical	systems.		

Here,	we	firstly	explore	how	stronger	gradients	provide	improvements	in	characterising	axon	diameter,	and	

microstructural	parameters	in	general.	Next	we	discuss	the	benefits	for	getting	higher	resolution	

characterisation	of	brain	structure	both	in	vivo	and	post	mortem.		We	then	discuss	how,	by	looking	at	

metabolites	other	than	water,	diffusion-weighted	spectroscopy	can	provide	deeper	insights	into	tissue	

microstructure,	and	how	ultra-strong	gradients	can	accelerate	developments	in	this	area.		While	

microstructural	imaging	offers	huge	potential	benefits	in	a	range	of	diseases,	we	select	as	an	exemplar	

application	the	characterisation	of	tumours,	and	explore	how	stronger	gradients	may	improve	

characterisation	of	tumour	cellularity	and	other	microstructural	features.		In	addition	to	characterisation	of	

structure,	dMRI	has	been	used	to	characterise	brain	function,	with	the	study	of	rapid	temporal	changes	in	

the	microstructural	milieu	being	an	interesting	application.		Given	the	disparity	of	results	in	the	literature	

on	this	topic,	here	we	consider	how	ultra-strong	gradients	may	help	to	cast	further	light	on	the	relationship	

between	neural	activity	and	diffusion.				

	

Despite	the	many	potential	advantages	of	ultra-strong	gradients,	we	recognise	that	access	to	ultra-strong	

gradient	systems	is	not	likely	to	be	wide-spread	in	the	immediate	future,	and	so	we	consider	how	having	a	

small	number	of	such	systems,	together	with	machine	learning	approaches,	might	still	facilitate	deeper	

insight	into	tissue	microstructure	beyond	the	immediate	environs	of	the	scanners	themselves.		

We	then	discuss	practical	barriers	to	making	full	use	of	such	as	system,	considering	the	interplay	of	

hardware	and	physiological	safety	limits	on	deployment	of	such	gradient	magnitudes,	and	consider	how	

some	of	these	issues	may	be	addressed	in	future	generations	of	‘super-scanners’.		
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1.	MEASURING	AXON	DIAMETER	

	

THE	CHALLENGE	AND	ITS	IMPORTANCE	

One	of	the	key	features	of	the	diffusion-weighted	MR	signal	is	its	sensitivity	to	the	size	of	pores	with	walls	

that	are	either	fully	restricting,	or	semi-permeable.	The	longer	the	characteristic	length	scale	of	the	pores,	

the	greater	the	mean	displacement,	and	the	lower	the	diffusion-weighted	signal	will	be.	In	the	brain,	this	

capability	underpins	the	tantalising	prospect	of	estimating	and	mapping	the	distribution	of	axon	diameters	

in	each	image	voxel,	since	at	least	in	white	matter	the	axonal	walls	are	the	primary	geometric	structures	

affecting	diffusion	in	the	tissue.	The	axon	diameter	distribution	is	one	of	the	key	structural	features	of	

tissue	related	to	function,	as	axon	diameter	relates	directly	to	transmission	speed:	larger	axons	transmit	

signals	more	quickly	(Hursh	1939;	Ritchie,	1995;	Richardson,	McIntyre,	&	Grill,	2000).	Differences	in	axon	

diameter	offer	a	potential	early	disease	indicator	in	conjunction	with	loss	of	axon	density,	which	can	arise	

in	a	much	wider	range	of	conditions.	Finally,	measurements	of	axon	diameter	have	potential	utility	in	brain	

connectivity	mapping	as	a	distinguishing	feature	of	particular	fascicles	with	which	to	resolve	ambiguities,	

such	as	crossing	versus	kissing	configurations	(Girard	et	al.,	2017;	Sherbondy,	Rowe,	&	Alexander,	2010),	

and	can	be	combined	into	the	estimation	of	fibre	trajectories,	where	uniformity	of	microstructural	

parameters	can	be	assumed,	to	provide	more	robust	estimates	of	connections	in	approaches	such	as	

COMMIT	(Daducci,	Dal	Palù,	Lemkaddem,	&	Thiran,	2015b).	

		

BACKGROUND		

Several	groups	of	researchers	have	made	attempts	to	estimate	and	map	the	axon	diameter	distribution	in	

nervous	tissue.	Stanisz	et	al.	(Stanisz,	Szafer,	Wright,	&	Henkelman,	1997)	designed	a	mathematical	model	

of	the	signal	from	nerve	tissue	comprising	separate	signals	from	axonal	water,	glial	water,	and	extra-cellular	

water,	and	assumed	that	there	is	restricted	diffusion	in	an	ellipsoidal	geometry	in	the	axonal	compartment.	

They	acquired	a	rich	spectroscopic	data	set	from	fixed	nerve-tissue	samples	with	a	wide	range	of	b-values	

and	diffusion	times.	The	parameters	of	this	model	that	best	fit	the	data	provide	estimates	of	the	volume	

fractions	and	dimensions	of	the	various	tissue	components	–	in	particular,	fitting	the	model	to	the	data	

identifies	dimensions	of	the	ellipsoidal	geometry,	the	minor	axis	of	which	is	an	estimate	of	the	axon	

diameter.	Assaf	et	al.	(Assaf,	Blumenfeld-Katzir,	Yovel,	&	Basser,	2008)	later	presented	the	AxCaliber	

technique,	which	uses	a	similar	model	to	Stanisz,	but	assumes	cylindrical	axonal	geometry	with	a	gamma	

distribution	of	diameters;	these	authors	also	simplify	the	model	by	assuming	no	glial	cell	contribution	and	

no	exchange	among	compartments.	They	show	a	similar	spectroscopic	experiment	to	Stanisz	using	two	

nerve	samples	(sciatic,	which	has	relatively	large	axons,	and	optic,	with	smaller	diameters)	and	show	a	good	

match	between	the	estimated	axon	diameter	distribution	(parameters	of	the	fitted	gamma	distribution)	

and	the	histogram	of	diameters	measured	on	histology	of	the	same	samples.	Later	work	by	the	same	group	
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(Barazany,	Basser,	&	Assaf,	2009)	combined	AxCaliber	with	imaging	to	map	the	axon	diameter	distribution	

over	the	corpus	callosum	of	a	live	rat	and	again	show	good	agreement	with	histological	analysis	of	the	axon	

diameter	distribution	in	sagittal	sections	of	the	mid-line	(see	Figure	2a).	

A	key	assumption	in	the	techniques	above	is	that	the	fibre	orientation	is	fixed,	and	perpendicular	to	the	

direction	of	the	applied	diffusion	encoding	gradient.	While	this	condition	can	be	satisfied	for	limited	

portions	of	white	matter,	extending	the	approach	to	the	whole	brain	clearly	requires	a	generalisation	of	the	

method,	to	account	for:	

(i)		different	orientations	of	a	single	bundle;	

(ii)	multiple	distinct	fibre	bundles	passing	through	the	same	voxel;	and	

(iii)	intra-voxel	orientational	dispersion	of	a	given	fibre	bundle.	

ActiveAx	(Alexander	et	al.,	2010)	addressed	issue	(i),	by	combining	high	angular	resolution	diffusion	imaging	

(HARDI)	with	a	simplified	model	designed	to	minimise	complexity.	In	this	way,	they	provide	an	

orientationally	invariant	estimate	of	a	single	axon	diameter	index	(approximately	a	volume-weighted	mean	

(Alexander	et	al.,	2010;	Benjamini,	Komlosh,	Holtzclaw,	Nevo,	&	Basser,	2016);	but	also	see	(Burcaw,	

Fieremans,	&	Novikov,	2015)	for	a	detailed	discussion).	Experiments	with	fixed	monkey	brains	recover	the	

low-high-low	trend	in	axon	diameter	across	the	mid-sagittal	corpus	callosum	(known	from	histology	to	

persist	across	mammalian	species	(Aboitiz	and	Montiel,	2003;	Olivares	et	al.	2001)	with	high	

reproducibility,	and	preliminary	results	from	human	volunteers	show	similar	trends	albeit	more	weakly	(see	

Figure	2b).	AxCaliber3D	(Barazany,	Jones	and	Assaf,	2011)	addressed	issues	(i)	and	(ii)	above	(i.e.,	

recovering	distinct	axon	diameter	distributions	for	multiple	fibres	within	the	same	voxel),	by	acquiring	

CHARMED	(Assaf	&	Basser,	2005)	data	sets	at	multiple	diffusion	times.	Once	the	CHARMED	model	is	fitted,	

it	is	possible	to	simulate	the	diffusion-time	dependence	of	the	signal	at	arbitrary	orientations	and	therefore	

perpendicular	to	any	fibre	component	within	the	voxel.	These	data	are	inputted	into	the	AxCaliber	

framework	to	recover	an	apparent	axon	diameter	distribution	for	that	fibre	population.		Refinements	to	

ActiveAx	address	issues	(ii)	and	(iii):	within-voxel	fibre	crossings	(Zhang,	Dyrby,	&	Alexander,	2011a),	as	well	

as	within-voxel	fibre-orientation	dispersion	(Zhang,	Hubbard,	Parker,	&	Alexander,	2011b).		These	advances	

in	modeling	extend	the	portion	of	white	matter	over	which	we	can	obtain	sensible	axon-diameter	indices.	

More	recent	advances	in	model-based	techniques	use	refined	models,	which	e.g.	capture	the	time-

dependence	of	extra-cellular	diffusion	(De	Santis,	Jones,	&	Roebroeck,	2016;	Sepehrband,	Alexander,	

Kurniawan,	Reutens,	&	Yang,	2016)	and	non-standard	pulse	sequences,	such	as	oscillating	gradients	(Kakkar	

et	al.,	2017;	Siow,	Drobnjak,	Chatterjee,	Lythgoe,	&	Alexander,	2012;	Xu	et	al.,	2014;	2016),	double	

diffusion	encoding	(Benjamini	et	al.,	2016)	and	generalized	waveforms	(Drobnjak,	Siow,	&	Alexander,	2010;	

Drobnjak,	Zhang,	Hall,	&	Alexander,	2011).	Alternative	estimation	approaches	include	a	q-space	

formulation	(Ong	et	al.,	2008;	Ong	&	Wehrli,	2010),	convex	optimization	(Daducci,	Dal	Palù,	Lemkaddem,	&	

Thiran,	2015b),	integration	with	fibre-tracking		(Sherbondy,	Rowe	&	Alexander,	2010;	Daducci,	Dal	Palù,	

Lemkaddem,	&	Thiran,	2015b;	Girard	et	al.,	2017)	and	dictionary	matching	(Sepehrband	et	al.,	2016).	



	 7	

		

THE	PROMISE		

One	of	the	fundamental	limits	to	axon-diameter	estimation	is	the	so-called	“resolution	limit”	of	the	

diffusion	experiment.	The	diffusion-weighted	MR	signal	is	sensitive	only	to	a	window	of	restriction	lengths	

and	the	bounds	of	that	window	depend	strongly	on	the	available	gradient	strength.	Moreover,	most	axon	

diameters	lie	below	the	lower	bound	of	the	window	(the	resolution	limit)	given	the	available	gradient	

strength	in	most	currently	available	MRI	scanners.	Dyrby	et	al.	(Dyrby,	Søgaard,	Hall,	Ptito,	&	Alexander,	

2012;	Dyrby	et	al.,	2012)	demonstrate	empirically	the	advantages	of	increasing	gradient	strength	in	axon	

diameter	mapping	using	simulations	and	ex	vivo	measurements	on	a	monkey	corpus	callosum	using	a	

small-bore	scanner	with	400mT/m	gradients	(see	Figure	2c).	Drobnjak	et	al.	(Drobnjak,	Zhang,	Ianuş,	Kaden,	

&	Alexander,	2016)	identified	the	resolution	limit	numerically	for	combinations	of	pulsed	gradient	spin	echo	

(PGSE)	and	oscillating	gradient	spin	echo	(OGSE)	measurements,	and	showed	that	in	the	idealised	

experiment	where	the	gradients	are	perpendicular	to	straight,	parallel,	impermeable	cylinders,	the	

standard	PGSE	experiment	gives	the	greatest	sensitivity	and	that	the	resolution	limit	on	axon	diameter	is	in	

the	range	4.5-7um	(depending	on	available	SNR)	with	60mT/m,	but	reduces	to	2-3um	with	300mT/m.	In	the	

more	realistic	situation	for	brain	tissue,	where	the	magnetic	field	gradient	is	not	quite	perpendicular	to	the	

fibres	and/or	the	fibres	have	dispersed	orientations,	the	resolution	limit	increases,	although	using	OGSE	

instead	of	PGSE	mitigates	this	increase	to	some	extent.	For	example,	with	the	gradient	10	degrees	from	

perpendicular,	or	with	moderate	orientational	dispersion	(characterised	by	a	Watson	distribution	with	a	

dispersion	parameter	of	16),	using	OGSE,	the	resolution	limit	increases	by	about	1um	(see	Figure	2d).	
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FIGURE	2–	Various	results	estimating	axon	diameter	distribution	from	the	literature	(see	text).	

(a)	results	from	Barazany	et	al.	(2009)	comparing	electron	microscopy	data	and	in	vivo	estimates	of	axon	diameter	

distribution	in	the	rat	brain;		(b)	Axon	diameter	index	maps	in	fixed	monkey	brains	showing	a	characteristic	low-

high-low	trend	in	axon	diameter	across	the	mid-sagittal	corpus	callosum	from	Alexander	et	al	2010;	(c)	Comparison	

of	axon	diameter	index	maps	at	increasing	(top	to	bottom)	maximum	gradient	strength	using	ex	vivo	

measurements	on	a	monkey	corpus	callosum	from	a	small-bore	scanner	with	400mT/m	gradients	from	Dyrby	et	al.	

(2012);		(d)	demonstration	of	benefit	of	higher	SNR	and	gradient	amplitude	for	minimum	resolvable	diameter	(y-

axis)	(from	Nilsson	et	al.	2017)	both	with	no	fibre	orientation	dispersion	(left)	and	with	fibre	orientation	dispersion	

(right).	

	

Nilsson	et	al.	(Nilsson,	Lasič,	Drobnjak,	Topgaard,	&	Westin,	2017)	confirmed	these	findings	analytically.	

They	showed,	for	perfectly	straight	parallel	cylinders	and	with	the	gradient	perfectly	perpendicular	to	them,	

(i.e.,	with	very	little	attenuation	in	the	intra-axonal	water	signal),	that	for	a	PGSE	sequence:	𝑑!"# =

1 𝐺!"# 1 𝛿
!
! 𝜎𝐷!

!
! 768 7𝛾!

!
!,	where	D0	is	the	free	diffusivity	of	the	intra-axonal	water,	Gmax	is	

the	maximum	gradient	amplitude,	δ	is	their	pulsed	duration,	equal	to	the	diffusion	time,	Δ,	and	𝜎	is	the	

(a)

(b)
(c)

(d)
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minimal	detectable	percentage	change	in	the	signal	when	the	gradients	are	applied	(i.e.,	the	equation	holds	

at	a	particular	SNR	that	is	assumed	unaffected	by,	e.g.,	the	choice	of	δ).			Critically,	the	resolution	limit	

depends	on	Gmax
-1/2	as	well	as	D0

1/4,	for	any	shape	of	gradient	waveform.	In	addition	to	strong	gradients,	this	

also	calls	for	a	high	signal	to	noise	ratio,	which	may	be	obtained	by	more	efficient	readout	schemes	(such	as	

spiral	read-out	to	shorten	the	echo	time),	more	sensitive	receiver	coils,	or	indeed	by	increasing	the	static	

(B0)	field	strength.	

		

The	resolution	limit	raises	the	question	of	whether	diffusion	MRI	can	provide	any	useful	features	of	the	

axon	diameter	distribution	at	all,	since	histological	measurements	of	most	axons	are	1	um	or	less	–	at	least	

a	factor	of	2	below	our	best-case	resolution	limit.	However,	a	few	further	considerations	may	renew	hope,	

particularly	with	the	benefits	of	300	mT/m	gradient	systems.	First,	histological	preparation	typically	causes	

tissue	shrinkage	and	in-situ	and	in	vivo	axons	may	be	somewhat	larger	in	diameter	than	histological	

measurements	suggest.	The	degree	of	shrinkage	is	hard	to	establish,	but	estimates	range	between	0-65%	

(Alexander,	Dyrby,	Nilsson,	&	Zhang,	2017a).	Second,	although	large	axons	are	a	tiny	minority	in	terms	of	

number	of	axons,	they	are	much	more	significant	in	terms	of	the	MRI	signal	they	contribute,	because	of	the	

relative	volume	of	water	they	contain.	This	means	that	variation	in	the	large-diameter	tail	of	the	axon	

diameter	distribution	has	a	disproportionate	influence	on	the	MR	signal	contrast.	Figure	3	highlights	the	

practical	importance	of	this	observation	–	although	less	than	10%	of	the	axons	in	this	example	have	

diameter	over	3um,	those	axons	provide	50%	of	the	intra-axonal	signal.	Moreover,	as	the	resolution	limit	

decreases	(due	to	gradient	amplitude	increasing	from	60mT/m	to	300mT/m),	the	proportion	of	axons	

above	the	resolution	limit	changes	slowly	from	about	5%	to	about	20%.	However,	the	proportion	of	the	

signal	that	comes	from	these	axons	increases	much	more	–	from	about	35%	to	over	70%	for	the	same	

increase	in	gradient	strength.	This	suggests	that	diffusion	MR	experiments	may	hold	strong	sensitivity	at	

least	to	variability	in	the	existence	and	size	of	large	axons.	It	further	highlights	that	300mT/m	gradients	

offer	a	major	benefit	in	recovering	information	from	the	axon	diameter	distribution;	early	results	in	the	

brain	(with	and	without	multiple	sclerosis	pathology)	(Huang	et	al.,	2015;	Huang	et	al.,	2016)	and	in	the	

spinal	cord	(Duval	et	al.,	2017)	show	promise	in	exploiting	these	advantages.	Given	the	fact	that	there	is	a	

differential	sensitivity	of	axons,	according	their	diameter,	in	diseases	such	as	multiple	sclerosis	(DeLuca	et	

al.,	2004),	the	potential	gains	from	being	able	to	map	apparent	axon	diameter	indices	are	clear.	
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Figure	3.	Illustration	of	the	benefit	of	gradient	strength	on	recovering	features	of	the	axon	diameter	distribution.	

Panel	(a)	shows	a	histogram	of	axon	diameters	from	the	corpus	callosum	of	a	post-mortem	human	brain,	compiled	

from	the	data	in	(Aboitiz,	Scheibel,	Fisher,	&	Zaidel,	1992),	scaled	by	the	inverse	of	a	typical	shrinkage	factor	of	1.5.	

The	red	curve	is	the	cumulative	distribution.	Panel	(b)	shows	the	same	histogram	as	in	(a)	but	now	weighted	by	

axonal	volume	-	the	histogram	of	space	occupied	by	axons	of	each	diameter,	which	corresponds	to	the	proportion	of	

signal	contributed	by	axons	in	each	size	bin;	again	the	red	line	is	the	cumulative	distribution.	In	panel	(c),	the	graph	

shows	the	proportion	of	axons	(in	blue)	that	are	above	the	resolution	limit,	as	a	function	of	available	gradient	

strength,	as	well	as	the	proportion	of	intra-axonal	signal	(in	red)	that	comes	from	such	axons.	Error	bars	show	how	

that	proportion	varies	for	histological	shrinkage	factors	over	the	range:	[1,	2].	The	simulation	accounts	for	the	

limitations	on	rise	time	imposed	by	physiological	safety	constraints	(see	Section	11).		

		

		

(a)

(b)

(c)
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The	resolution	limit	is	not	the	only	challenge	for	axon	diameter	mapping.	Major	challenges	remain	in	

identifying	models	that	link	the	MR	signal	to	underlying	tissue	parameters	sufficiently	well	to	isolate	

contrast	specifically	arising	from	the	axon	diameter	distribution.	A	range	of	other	effects	can	confound	the	

estimation.	For	example,	although	the	original	work	on	ActiveAx	(Alexander	et	al.,	2010)	showed	trends	in	

axon	diameter	consistent	with	expectations	from	histology	(Aboitiz	et	al.,	1992),	there	was	nevertheless	a	

substantial	overestimation	of	the	axon	diameter	index	in	both	in	vivo	and	ex	vivo	experiments.	The	authors	

suggest	orientation	dispersion	as	one	possible	explanation.	However,	even	when	accounting	for	

orientational	dispersion	(Zhang	et	al.,	2011b)	there	is	still	substantial,	albeit	reduced,	overestimation.	This	

could,	in	part,	be	attributable	to	the	definition	of	‘orientational	dispersion’:	Zhang	et	al.	(Zhang	et	al.,	

2011b)	primarily	consider	only	macroscopic	dispersion,	i.e.,	variation	in	orientation	among	axons,	each	of	

which	is	assumed	to	be	straight.	However,	microscopic	orientation	dispersion,	where	individual	axons	vary	

in	orientation	over	the	extent	of	an	image	voxel	(e.g.,	axonal	undulation),	can	have	a	similar	confounding	

effect	leading	to	the	characteristic	length	scale	being	driven	by	the	amplitude	of	the	undulation	as	well	as	

axon	diameter	(Nilsson,	Lätt,	Ståhlberg,	van	Westen,	&	Hagslätt,	2012).	Exchange	between	the	intra-axonal	

and	extracellular	space	due	to	non-zero	cell	membrane	permeability	can	also	potentially	lead	to	

overestimation.	While	such	exchange	can	be	incorporated	into	the	modeling	process	as	a	parameter	of	

interest	in	its	own	right,	see	e.g.	(Nedjati-Gilani	et	al	2017),	strong	gradients	resulting	in	shorter	echo	times	

can	alternatively	help	to	reduce	the	influence	of	exchange.	Other	effects	such	as	complexity	of	the	extra-

cellular	diffusion	process	(Burcaw	et	al.,	2015)	and	differences	in	the	relaxation	parameters	of	different	

water	pool	,	(see	Section	4),	can	also	affect	the	signal	significantly,	but	are	often	ignored	in	models	used	for	

axon	diameter	estimation;	a	study	by	De	Santis	et	al.	(De	Santis	et	al.,	2016c)	reports	a	reduction	of	

estimation	bias	in	axon	diameter	estimates	when	modeling	time-dependence	of	the	extra-axonal	

diffusivity.	

		

Despite	this	bias	in	estimates	of	features	of	the	axon	diameter,	Horowitz	et	al.	(Horowitz	et	al.,	2014)	

showed	correlation	between	estimates	of	apparent	axon	diameter	distribution	and	inter-hemispheric	

apparent	conduction	velocity,	inferred	from	electrophysiological	measurements,	suggesting	that	these	

measurements	might	explain	individual	differences	in	brain	function.	This	result	suggests	that	even	with	a	

lack	of	accuracy	in	characterising	the	absolute	axonal	distribution	it	may	be	possible	to	define	useful	

imaging	biomarkers	that	characterise	disease	and	relate	strongly	to	axon	diameter.	Criticism	of	the	work	

(Innocenti,	Caminiti,	&	Aboitiz,	2015)	focuses	on	the	resolution	limit	and	potential	bias	in	estimates	of	the	

axon	diameter	distribution	from	diffusion	MRI.	Of	course,	if	the	bias	(e.g.,	over-estimation)	in	axon	

diameter	estimate	is	approximately	uniform,	or	even	monotonic,	sufficient	correlation	may	remain	to	infer	

apparent	conduction	velocity	from	axon	diameter	distribution	estimates.	Whether	we	can	predict	actual	

conduction	velocity	from	microstructural	measurements	in	vivo	is	an	altogether	different	question.	
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In	summary,	although	it	is	a	compelling	application	of	diffusion	MRI,	major	challenges	remain	in	obtaining	

trusted	measurements	and	maps	of	the	axon	diameter	distribution	from	MRI.	However,	even	having	access	

to	apparent	axon	diameter	distributions	might	give	enhanced	sensitivity	to	white	matter	disease,	earlier	

response	to	intervention,	and	increased	prognostic	value,	when	compared	to	other	techniques	that	ignore	

differences	in	axon	diameter,	or	treat	them	as	invariant.	The	range	of	confounding	effects	mean	that	we	

are	yet	to	be	certain	about	the	exact	sensitivity	to	axon	diameter	distributions,	or	the	range	of	effects	to	

include	in	models	that	enables	us	to	isolate	that	sensitivity.		Nevertheless,	in	the	words	of	Nilsson	et	al	

(Nilsson	et	al.,	2017):	“…	the	diffraction	limit	in	optical	microscopy,	introduced	in	1873,	was	recently	broken.	

It	took	135	years.	Perhaps	breaking	the	resolution	limit	in	diffusion	MRI	can	be	done	a	little	faster?”	

	
	

	

2.	PARAMETER	ESTIMATION	

	

THE	CHALLENGE	AND	ITS	IMPORTANCE	

To	describe	the	complex	diffusion	process	in	tissue,	a	variety	of	approaches	have	been	proposed	that	relate	

the	signal	to	diffusion	features	or	tissue	microstructure,	of	which	some	have	been	described	in	the	previous	

section	(see:	Panagiotaki	et	al.,	2012;	Assemlal	et	al.,	2011;	Tournier	et	al.,	2011;	and	Novikov	et	al.	2018)	

for	further	discussion).	The	subsequent	step	of	‘fitting’	such	models	or	representations	to	the	dMRI	data	

brings	up	additional	challenges.	In	this	process,	one	tries	to	find	the	values	of	the	model	parameters	that	

could	have	generated	the	observed	diffusion	weighted	signals.	Solving	this	‘inverse	problem’	generally	

involves	the	estimation	of	more	than	one	free	parameter.	It	is	the	considerable	number	of	parameters	

associated	with	most	dMRI	models,	together	with	the	typically	low	SNR	in	diffusion	MRI,	that	make	robust	

microstructural	parameter	estimation	quite	challenging.	Moreover,	the	non-Gaussian	distribution	of	the	RF	

noise	in	the	dMRI	signal	(Aja-Fernandez	2016),	as	well	as	measurement	errors	from	further	signal	

perturbations	such	as	motion	and	distortion	(Le	Bihan	et	al.	2006;	Pierpaoli	2010;	Tax	et	al.	2016),	further	

complicate	the	recovery	of	accurate	and	precise	microstructural	estimates	from	models	of	tissue	

microstructure.	Even	in	the	context	of	diffusion	tensor	MRI	(DT-MRI)	(Basser	&	Jones,	2002),	with	its	

relatively	‘conventional’	b-value	(e.g.,	b	~	1000	s/mm2)	acquisition,	parameter	estimation	is	not	

straightforward:	there	is	a	vast	body	of	literature	focusing	on	DT-MRI	estimation	procedures	such	as	least-

squares		(Koay,	Carew,	Alexander,	Basser,	&	Meyerand,	2006;Veraart	et	al.,	2012;Veraart,	Sijbers,	Sunaert,	

Leemans,	&	Jeurissen,	2013)		(linear,	weighted	linear,	nonlinear)	and	maximum	likelihood	(Fillard,	Pennec,	

Arsigny,	&	Ayache,	2007;	Landman,	Bazin,	&	Prince,	2007;	Liu,	Gasbarra,	&	Railavo,	2016);	as	well	as	on	the	

incorporation	of	different	constraints,	regularizations,	re-parameterizations,	and	outlier	rejection	
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strategies(Chang	et	al.	2005;	Chang	et	al.	2012;	Parker	et	al.	2013;		Collier	et	al.	2015;	Tax	et	al.	2015;	

Parker	and	Jones	2017)		

	

For	the	parameter	estimation	of	multi-compartment	biophysical	models,	non-linear	estimation	procedures	

are	commonly	employed.	Nonlinear	fitting	methods	try	to	find	an	optimum	by	gradually	moving	around	in	

a	‘nonlinear	parameter	landscape’,	which	is	time-consuming	and	prone	to	getting	stuck	in	local	optima.	

	

BACKGROUND		

To	address	some	of	the	issues	in	nonlinear	fitting	on	currently	available	data,	the	parameter	search	space	

can	be	reduced	by	decoupling	the	estimation	of	the	number	and	orientation	of	fascicles,	from	the	

microstructural	parameters	of	each	fascicle.	Daducci	et	al.	(Daducci,	Canales-Rodríguez,	Zhang,	Dyrby,	

Alexander,	et	al.,	2015a)	proposed	the	AMICO	framework	that	linearizes	the	problem	and	drastically	speeds	

up	the	fitting.		

	

Alternatively,	the	fitting	of	multi-compartment	parameters	can	be	facilitated	by	first	obtaining	some	main	

characteristics	of	the	signal.	For	example,	a	rotationally	invariant	representation	of	the	signal	can	be	

derived	prior	to	fitting,	e.g.	the	powder	average	(also	called	the	orientational	average,	spherical	mean,	

directional	mean,	isotropic	mean)	(Topgaard	and	Söderman	2002;	Kaden,	Kruggel,	&	Alexander,	2016;	

Jespersen,	Lundell,	Sønderby,	&	Dyrby,	2013;	Lasič,	Szczepankiewicz,	Eriksson,	Nilsson,	&	Topgaard,	2014),	

possibly	accompanied	by	higher	order	invariants	(Mirzaalian	et	al.	2015;	Novikov,	Veraart,	Jelescu	&	

Fieremans,	2018).	From	this	rotationally-invariant	signal,	the	voxel-averaged	microscopic	properties	can	

subsequently	be	derived.			

	

Fieremans	et	al.	(Fieremans,	Jensen,	&	Helpern,	2011)	first	fit	the	DKI	representation	and	derive	

microstructural	parameters	through	analytical	relationships	with	kurtosis	parameters.	Fick	et	al.	(Fick,	

Wassermann,	Caruyer,	&	Deriche,	2016)	first	fit	a	regularized	version	of	the	mean	apparent	propagator	

(MAP)	method		(Özarslan	et	al.	2013)	and	then	extrapolate	the	signal	as	a	pre-processing	step	for	multi-

compartment	model	fitting.	The	advantage	is	that	the	multi-compartment	estimation	can	benefit	from	

advanced	estimation	methods	that	have	already	been	developed	for	these	other	techniques,	in	addition	to	

the	inherent	regularisation	they	provide.		Different	configurations	of	multi-compartment	models	have	been	

evaluated	in	preclinical	acquisitions	(Panagiotaki	et	al.,	2012)	and	in	in	vivo	human	studies	(Bourne	et	al.,	

2014;Ferizi	et	al.,	2014).	In	group	studies,	multi-compartment	models	have	revealed	microstructural	

changes	in	a	range	of	neurological	and	psychiatric	disorders,	e.g.	(De	Santis	et	al.,	2017;	Kamagata	et	al.,	

2017;	Schneider	et	al.,	2014;	Slattery	et	al.,	2017);	

Despite	recent	efforts	in	parameter	estimation,	it	has	become	increasingly	apparent	that	the	ultimate	aim	

of	being	unambiguously	specific	to	the	relevant	microstructural	characteristics	can	hardly	be	achieved	with	
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the	gradient	hardware	currently	available	on	clinical	MRI	systems.	Fixing	certain	microstructural	model	

parameters	to	a	priori	values	that	are	assumed	to	be	accurate	for	the	living	human	brain	is	a	common	

approach	to	alleviating	the	problems	with	non-linear	fitting.	However,	fixing	parameters	can	generate	bias	

in	the	other	estimated	parameters,	calling	into	question	their	‘true	specificity’	to	the	biological	reality	

(Jelescu,	Veraart,	Fieremans,	&	Novikov,	2016).		

	

The	parameter	landscape	and	fitting	has	been	extensively	studied	for	an	often	used	multicompartment	

dMRI	model	-	sometimes	referred	to	as	the	‘standard	model’	-	in	which	each	compartment	can	be	

described	by	an	anisotropic	Gaussian	function	(i.e.	a	tensor)	(Kroenke	et	al.,	2004;	Jespersen	et	al,	

2007,2010),	an	extension	of	the	model	developed	by	Stanisz	et	al	(Stanisz	et	al.,	1997)	and	refined	by	Assaf	

et	al.	(Assaf	&	Basser,	2005).	In	this	model,	the	measurement	is	assumed	to	be	beyond	the	resolution	limit	

described	in	Section	1	and	as	such	the	intra-neurite	space	is	represented	as	sticks	(tensors	with	zero	

perpendicular	diffusivity).	The	compartment	configuration	where	the	intra-neurite	space	has	perpendicular	

diffusivity	equal	to	zero,	has	been	used	in	various	approaches	such	as	NODDI	(Zhang,	Schneider,	Wheeler-

Kingshott,	&	Alexander,	2012)	and	the	ball	and	stick	model	(Behrens	et	al.,	2003).	The	extra-neurite	space	is	

described	by	a	prolate	tensor	with	nonzero	parallel-	and	perpendicular	diffusivities.	For	reliable	fitting	of	

this	model,	it	is	often	assumed	that	parameters	in	the	model	exhibit	the	same	value	(e.g.,	the	parallel	intra-	

and	extra-neurite	diffusivities	are	the	same),	or	are	fixed	to	some	known	value.		In	the	work	of	Jelescu	et	al.	

(Jelescu	et	al.,	2016)	all	parameters	were	allowed	to	be	independent	of	each	other.	It	was	found	empirically	

(Jelescu	et	al.,	2016),	and	analytically	(Novikov,	Veraart,	Jelescu	&	Fieremans,	2017),	that	the	optimization	

landscape	is	very	flat,	and	that	the	fitting	is	intrinsically	degenerate	with	two	solution	‘branches’	that	are	

equally	biologically	plausible:	parallel	intra-neurite	diffusivity	is	larger	than	parallel	extra-neurite	diffusivity,	

or	vice	versa.	For	acquisitions	up	to	typical	‘clinical’	b-values	(~2500	s/mm2),	it	was	shown	that	it	impossible	

to	determine	which	branch	is	correct,	even	in	the	simplest	case	of	straight	parallel	fibres.	Experiments	

without	fixed	parameters	(Lampinen	et	al.	2017)	indicate	that	the	assumption	of	equal	parallel	diffusivities	

does	not	seem	to	hold	in	WM;	neither	does	the	widely	employed	tortuosity	assumption	.	

	

THE	PROMISE		

For	the	‘standard’	model	described	above,	high	b-value	measurements	with	sufficient	SNR	hold	the	

potential	to	determine	which	is	the	correct	solution	branch	to	adopt,	allowing	estimation	of	all	the	

parameters	unambiguously,	without	having	to	fix	them	a	priori	(Jelescu	et	al.,	2016).		Preliminary	results	

with	b-values	up	to	10,000	s/mm2	from	an	80	mT/m	gradient	system	conjecture	that	the	parallel	intra-

neurite	diffusivity	is	larger	in	WM,	but	noise	still	challenges	the	estimation	and	branch	selection	remains	an	

open	question..		Compared	to	standard	hardware,	ultra-strong	gradients	allow	an	increased	SNR	per	unit	

time	can	be	obtained	for	high	b-values,	so	that	the	high	b-value	parameter	space	can	be	studied	into	more	

detail	and	the	findings	at	lower	gradient	strengths	can	be	validated.		
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In	the	case	of	ambiguities	/	degeneracies,	i.e.,	where	different	microstructural	configurations	lead	to	the	

same	diffusion-weighted	signal	(such	as	the	solution		‘branches	‘	discussed	above),	‘orthogonal’	measures	

that	bring	new	information	to	the	problem	are	crucial	(Novikov	et	al.	2016;	Lampinen	et	al.	2017).	The	

potential	widespred	benefit	of	the	super-scanner,	therefore,	is	to	provide	measurements	that	are	not	

normally	available,	but	which	can	inform	on	parameters	in	the	measurements	that	we	can	normally	obtain.		

This	provides	a	more	informed	strategy	for	choosing	fixed	values	or	priors	to	stabilize	models	we	fit	to	

routinely-acquired	data.	

	

3.	MACROSTRUCTURAL	vs	MICROSTRUCTURAL	ANISOTROPY	

	

THE	CHALLENGE	AND	ITS	IMPORTANCE	

The	majority	of	approaches	developed	to	extract	diffusion-	or	microstructural	features	from	dMRI	data,	are	

built	on	the	Stejskal-Tanner	sequence	(Stejskal	&	Tanner,	1965)	(or	‘single	diffusion	encoding’,	SDE).		

Diffusion	tensor	MRI	(Basser,	Mattiello,	&	LeBihan,	1994),	still	being	the	most	commonly	applied	SDE-based	

method	to	showcase	sensitivity	of	dMRI	to	pathology,	merely	provides	information	on	the	average	

diffusion	process	within	a	voxel.	Macroscopic	DTI	features	such	as	fractional	anisotropy	(FA)	and	mean	

diffusivity	(MD)	concomitantly	give	an	indication	of	the	average	orientation,	shape,	and	size	of	the	diffusion	

process	on	the	voxel-scale.	In	reality,	however,	tissue	is	more	accurately	described	as	being	composed	of	

different	compartments	with	distinct	characteristics:	a	distribution	of	microenvironments	(represented	by	a	

sum	of	tensors	under	certain	assumptions	(Szczepankiewicz	et	al.,	2015)).	See	Figure	4a	
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Figure	4.		

a.	The	difference	between	microscopic	and	macroscopic	anisotropy,	and	impact	of	size	variance	and	orientation	

coherence	on	macroscopic	anisotropy.	VI=isotropic	volume	fraction;	VA	=	anisotropic	volume	fraction;	FA	=	

(macroscopic)	fractional	anisotropy;			μFA	=	microscopic	fractional	anisotropy.		Despite	having	the	same	μFA,	the	

different	substrates	in	the	right	hand	column	(for	example)	have	difference	macroscopic	FA	values,	purely	due	to	

orientational	dispersion.		(Taken	from	the	Ph.D.	thesis	of	Filip	Szczepankiewicz,	Lund	University,	with	permission)		

b.	Comparison	of	μFA		and	FA	in	the	same	healthy	(age	=	45	years)	participant.	Note	the	areas	of	low	FA	(dark)	

where	different	pathways	cross	/	merge,	while	the	μFA	is	relatively	uniform	in	white	matter.		

	

	

Consequently,	the	macroscopic	FA	cannot	provide	an	interpretable	marker	other	than	a	vague	concept	of	

‘tissue	integrity’	(Jones,	Knösche,	&	Turner,	2013);	the	voxel-scale	diffusion	tensor	entangles	the	

information	about	the	orientation,	shape,	and	size	of	the	microenvironments.	It	can	therefore	not	

distinguish	between	different	configurations	of	orientation	incoherence,	microscopic	anisotropy,	and	

isotropic	heterogeneity.	

	

Many	alternative	strategies,	based	on	SDE,	have	been	proposed	that	aim	to	resolve	the	limitations	of	DTI	

and	to	distinguish	between	different	configurations.	Orientation	incoherence	can	for	example	be	accounted	

for	by	explicitly	modeling	crossing	or	dispersing	microenvironments	as	for	example	in	spherical	

deconvolution-based	frameworks	(e.g.Tournier	et	al.	2004,	2007;	Jeurissen	et	al.	2014),	Lätt	et	al.	2003)	or	

in	NODDI	(Zhang	et	al.	2012),	or	by	factoring	out	the	orientational	dependency	(Basser	&	Pierpaoli,	1998;	

Edén,	2003;	Kaden	et	al.,	2016a,	2016b).	However,	a	common	underlying	assumption	is	that	the	kernel	(or	

response	function,	or	single-fiber	profile	(Tax,	Jeurissen,	Vos,	Viergever,	&	Leemans,	2014))	is	the	same	

along	every	orientation.	Obtaining	such	information	on	the	average	shapes	and	sizes	of	the	

microenvironments	that	constitute	the	kernel	has	already	turned	out	to	be	challenging	based	on	SDE	

measurements	alone	(e.g.,	an	intra-	and	extra-neurite	compartment)	–	as	discussed	in	Section	2.	In	

addition,	the	assumption	of	a	single	kernel	per	voxel	may	not	always	hold,	e.g.	in	the	case	of	pathology	

affecting	one	of	multiple	crossing	fascicles.		
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SDE-based	approaches	that	aim	at	quantifying	the	heterogeneity	of	diffusivities	include	statistical	

approaches	(Yablonskiy	&	Sukstanskii,	2010),	q-space	approaches	(King	et	al.	1994;	Assaf	and	Cohen	2000;	

Cohen	and	Assaf	2002;	Assaf	et	al.	2002;	Lätt	et	al.	2008),	and	diffusion	kurtosis	imaging	(Jensen,	2015;	

Szczepankiewicz	et	al.,	2015).	Statistical	approaches,	for	example,	describe	the	signal	as	a	sum	of	signals	

from	spin	packets	that	originate	from	different	positions	within	a	voxel	(Scherrer	et	al.,	2016;	Yablonskiy	&	

Sukstanskii,	2010).	These	spin	packets	interfere	with	different	microenvironments	and	their	contribution	to	

the	total	signal	can	be	described	as	a	distribution	of	apparent	diffusivities.	However,	if	a	voxel	with	a	low	

macroscopic	fractional	anisotropy	has	a	broad	distribution	of	apparent	diffusivities,	it	is	impossible	to	tell	if	

this	is	due	to	multiple	isotropic	compartments	with	variable	diffusivity	(isotropic	heterogeneity),	or	due	to	

multiple	anisotropic	compartments	with	variable	orientation	(microscopic	anisotropy	and	orientation	

incoherence),	or	both.	

	

Taken	together,	while	many	strategies	have	been	proposed	to	overcome	the	shortcomings	of	DTI,	SDE-

based	techniques	are	inherently	limited	in	that	they	cannot	disentangle	variations	in	size,	shape,	and	

orientation	without	prior	knowledge	or	assumptions	about	the	compartmentalisation,	that	have	to	be	

explicitly	incorporated	as	constraints	in	signal	modeling.	Alternative	acquisition	strategies	beyond	SDE	are	

essential	to	get	a	more	complete	picture	of	the	distribution	of	microenvironments	in	the	tissue.	

	

BACKGROUND		

Instead	of	using	a	single	pair	of	diffusion	pulses	to	encode	the	signal	as	in	SDE,	multiple	periods	of	diffusion	

encoding	can	be	employed	to	establish	displacement	correlations	of	spins.	Double	diffusion	encoding	(DDE,	

(Mitra,	1995;	Cory,	Garroway,	Miller,	1990;	Shemesh	and	Cohen	2008)	and	multiple	diffusion	encoding	

(MDE)	sequences	have	two	or	more	diffusion	encoding	periods	possibly	at	an	angle	(‘angular	DDE’),	and	can	

distinguish	the	scenarios	of	spherical	compartments	from	incoherently	oriented	anisotropic	compartments	

while	relaxing	modeling	constraints	(Lawrenz	&	Finsterbusch,	2013).	As	such,	it	becomes	possible	to	derive	

microscopic	anisotropy	measures	like	the	micro-FA	that,	in	analogy	to	FA	(or	macro-FA)	is	related	to	the	

variance	of	the	eigenvalues	of	the	microenvironment	diffusion	tensors.	In	the	absence	of	orientation	

incoherence,	the	micro-FA	and	macro-FA	are	the	same.	DDE	and	MDE	measurements	are	ideally	designed	

to	be	rotationally	invariant	(Jespersen	et	al.,	2013),	so	that	the	measured	micro-FA	does	not	depend	on	the	

orientational	configuration	of	the	tissue	under	investigation.	

	

In	addition	to	pulsed	field	gradients,	more	arbitrary	time	varying	gradient	waveforms	have	been	proposed	

(Drobnjak	&	Alexander,	2011;	Lasič	et	al.,	2014;	Lundell	et	al.	2015;		Westin	et	al.,	2016)	that	can	have	a	

higher	encoding	efficiency	than	DDE	to	facilitate	imaging	in	a	clinical	setting.	The	general	time-varying	

waveforms	describe	a	trajectory	in	q-space,	referred	to	as	Q-space	trajectory	encoding	(QTE)	(Westin	et	al.,	
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2016).	In	this	framework,	the	q-space	trajectory	can	be	characterised	by	its	B-tensor	(or	second-order	

moment).	The	B-tensor	is	a	natural	extension	of	the	b-value	(with	the	b-value	being	its	trace)	and	has	

previously	been	adopted	to	take	into	account	cross-terms	related	to	the	imaging	gradients	(Karlicek	&	

Lowe,	1980;	Mattiello,	Basser,	&	Le	Bihan,	1997;	Mattiello,	Basser,	&	LeBihan,	1994).	SDE	and	angular	DDE	

acquisitions	can	in	this	framework	be	described	by	‘linear’	B-tensors	of	rank	1	and	‘planar’	B-tensors	of	rank	

2,	respectively.	‘Spherical’	B-tensors	(or	‘isotropic	encodings’)	have	been	used	to	obtain	fast	trace-weighted	

images	(Mori	&	van	Zijl,	1995;	Eriksson,	Lasič,	&	Topgaard,	2013;	Wong,	Cox,	&	Song,	1995).	

	

Microscopic	diffusion	anisotropy	has	been	measured	with	clinical-gradient	systems	using	DDE	(Hui	&	

Jensen,	2015;	Lawrenz,	Brassen,	&	Finsterbusch,	2016)	and	QTE		(Lasič	et	al.,	2014).	Several	analysis	

frameworks	have	been	developed	that	aim	to	extract	additional	features	from	measurements	beyond	SDE	

(Hui	&	Jensen,	2015;	Jespersen	et	al.,	2013;	Westin	et	al.,	2016)	on	clinical	systems.	If	it	is	assumed	that	the	

tissue	can	be	represented	by	a	distribution	of	diffusion	tensors,	then,	by	exploiting	the	cumulant	expansion	

of	the	QTE	signal	(Westin	et	al.,	2016),	information	on	the	covariance	of	the	microenvironment	tensors	can	

be	obtained.	Significant	differences	in	such	features	were	found	between	a	small	population	of	healthy	

controls	and	schizophrenia	patients.	Alternatively,	the	DIVIDE	framework	(Szczepankiewicz	et	al.,	2015)	

uses	a	parameterisation	of	the	distribution	(e.g.	a	Gamma	distribution)	and	relates	this	to	the	powder-

averaged	signal	obtained	from	varying	B-tensor	shapes.	In	this	way,	isotropic	heterogeneity	and	

microscopic	anisotropy	could	be	disentangled	and	the	isotropic	variance	component	could	be	studied	in	

vivo.	This	approach	has	been	used	to	study	the	heterogeneity	in	meningiomas	and	gliomas,	and	it	was	

shown	that	the	dominant	type	of	variance	(isotropic	or	anisotropic)	was	different	in	both	tumours,	and	that	

this	correlated	with	microscopy	findings	(Szczepankiewicz	et	al.	2016).	

	

Measurements	beyond	SDE	have	also	been	used	in	conjunction	with	biophysical	tissue	models	that	had	

originally	been	developed	and	evaluated	based	on	SDE	measurements.	DDE	and	QTE	measurements	

provide	invaluable	additional	information	to	validate	commonly	adopted	constraints	(Lampinen	et	al,	2017)	

and	to	substantiate	which	compartments	to	include	(Benjamini	&	Basser,	2016).	Spherical	tensor	

encoding	has	been	used	to	investigate	whether	a	still	water	compartment	(or	‘dot’	compartment),	which	

could	represent	relatively	immobile	water	in	small	spherical	structures	such	as	cells,	indeed	explains	the	

better	fit	in	WM	previously	observed	with	SDE	data.	

	

	

THE	PROMISE		

Methods	that	extract	features	of	the	distribution	of	tensors	(assuming	to	represent	the	distribution	of	

microenvironments)	in	the	in	vivo	human	brain	commonly	make	some	assumptions	about	the	shape	of	the	

distribution.	In	physical	chemistry,	unconstrained	inversion	is	a	method	that	is	commonly	employed	to	find	
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solutions	for	the	distribution	of	microenvironments	in	a	variety	of	samples	(Kim,	Doyle,	Wisnowski,	Kim,	&	

Haldar,	2017;	Veraart,	Novikov,	&	Fieremans,	2017),	e.g.	liquid	crystals	or	rock	samples.	However,	these	

methods	are	generally	ill-conditioned	and	very	sensitive	to	noise,	and	require	the	signal	to	be	sampled	over	

a	wide	range	of	b-values	with	sufficient	SNR.	On	clinical	systems	with	40	mT/m	gradients,	performing	an	

unconstrained	inversion	to	obtain	solutions	for	the	full	tensor	distribution	is	therefore	likely	less	stable.		

	

Using	ultra-strong	gradients,	it	becomes	feasible	to	access	a	larger	part	of	the	b-value	space.	Preliminary	

results	(Tax	et	al.,	ISMRM	2018)	show	that	unconstrained	inversion	yields	results	in	agreement	with	known	

anatomy.	Even	though	non-standard	encoding	with	strong	gradients	raises	challenges	(e.g.	gradient	

nonlinearities,	Section	11),	it	is	without	question	that	with	ongoing	developments	to	better	understand	and	

reduce	the	influence	of	such	confounds,	the	fidelity	of	the	inversion	will	be	improved	by	the	increased	SNR	

and	larger	b-value	range	that	strong	gradients	provide.	Arbitrary	waveforms	can	be	combined	with	hybrid	

experiments	(Section	4)	to	obtain	a	comprehensive	description	of	the	chemical	composition,	density,	size,	

shape,	and	orientation	of	in	vivo	human	brain	tissue.	The	unconstrained	inversion	can	be	used	to	explore	

healthy	and	pathological	tissues	in	which	it	is	unclear	which	constituents	are	present	and	to	find	suitable	

constraints.	

	

DDE	and	arbitrary	waveforms	often	require	a	relatively	long	TE.	Ultra-strong	gradients	in	combination	with	

optimised	waveforms	(Drobnjak	et	al.	2010;	Drobnjak	et	al.	2011;	Sjolund	et	al.	2015)	can	significantly	

reduce	the	TE	in	such	experiments.	For	example,	the	signal	fraction	of	a	still	water	compartment	could	be	

underestimated	at	the	long	TE	obtainable	on	clinical	systems	if	its	T2	is	shorter	than	that	of	other	

compartments	(Veraart	et	al.,	2017;	Wilm	et	al.,	2017).	Sampling	the	signal	at	shorter	TE	allows	to	

investigate	this	possible	confound.	Moreover,	the	shorter	TE	afforded	by	the	stronger	gradients	results	in	

an	improvement	in	SNR	of	approximately	50%	compared	to	that	achievable	on	a	system	with	80	mT/m	

gradients.		

	

	

4.	MULTI-CONTRAST	EXPERIMENTS	

	

THE	CHALLENGE	AND	ITS	IMPORTANCE	

A	variety	of	MRI	contrasts	have	been	used	to	characterize	tissue	beyond	dMRI,	such	as	relaxometry,	

susceptibility,	and	magnetization	transfer.	Multi-compartment	models	have	become	particularly	popular	in	

the	attempt	to	provide	a	suitable	description	for	each	of	these	contrasts.	Most	commonly,	such	multi-

compartment	models	are	fitted	to	the	signal	from	each	MRI	modality	separately,	and	the	joint	and	

complementary	information	between	contrasts	therefore	remains	unexploited.	In	addition,	important	
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challenges	in	the	multi-compartment	modeling	of	each	of	the	contrasts	hampers	an	unequivocal	

characterization	of	the	tissue	microstructure.	

	

There	are	challenges	that	are	inherent	to	the	mathematical	formulation	of	these	models,	however:	in	dMRI	

and	relaxometry,	for	example,	the	signal	attenuation	arising	from	the	putative	compartments	is	commonly	

described	by	a	sum	of	exponentials.	In	Section	2,	fitting	challenges	in	dMRI	were	already	highlighted	for	the	

case	of	a	commonly	used	model	with	Gaussian	compartments.	The	mathematical	challenge	of	

decomposing	the	multi-exponential	decay	into	its	constituents	in	the	presence	of	noise	is	a	fundamental	

problem	that	has	persistently	attracted	attention	in	the	past	two	centuries.	Its	ill-posed	nature	(Istratov	&	

Vyvenko,	1999)	means	that	there	exist	an	infinite	number	of	probability	distributions	of	exponential	

components	that	could	result	in	the	same	measured	signal	decay.	To	select	a	single	solution	from	all	the	

possible	ones	it	is	necessary	to	introduce	appropriate	prior	information	(i.e.,	regularisation)	into	the	

inversion,	such	as	positivity,	smoothness,	or	a	predetermined	form	of	the	solution.	One	example	is	

restricting	the	number	of	compartments	but	this	does	not	always	give	an	unambiguous	answer	(e.g.	the	

discussion	about	fitting	two	compartments	in	Section	2).	

	

A	challenge	specific	to	dMRI	in	the	brain	is	that	while	it	has	marked	sensitivity	to	differences	in	axon	

morphology	(see	Section	1),	it	has	lower	sensitivity	to	myelin	(Beaulieu	&	Allen,	1994)	(Beaulieu,	2002).	For	

example,	the	fractional	anisotropy	in	the	corpus	callosum	of	the	Shiverer	mouse	(with	no	myelination)	is	

only	10%	lower	than	in	wild	type	mice	(Nair	et	al.,	2005).		Diffusing	species	within	the	myelin	itself	will	be	

largely	invisible	at	the	TEs	typical	of	a	diffusion-weighted	experiment,	since	the	macromolecules	have	ultra-

short	T2	(Fischer,	Rinck,	Van	Haverbeke,	&	Muller,	1990;	Fischer,	Van	Haverbeke,	Schmitz-Feuerhake,	&	

Muller,	1989),	while	water	trapped	within	myelin	has	T2s	lower	than	~40ms	(MacKay	et	al.,	1994).		Overall,	

the	complexity	of	the	white	matter	is	such	that	one	MRI	contrast	is	unlikely	to	be	sufficient	to	provide	a	

complete	characterisation	of	its	microstructure.	One	might	argue	that	understanding	the	precise	origin	of	

the	signal	change	is	not	important,	as	long	as	we	have	access	to	tools	that	are	sensitive	to	such	a	change.	

However,	disentangling	the	contributions	from	myelin,	axons	and	glial	cells	is	essential	to	understand	the	

pathophysiology	of	neurological	disorders	and	therefore	to	develop	treatments.	In	addition	to	disease	

(Bodini	&	Ciccarelli,	2014;	Lim	&	Helpern,	2002;	White	&	Lim,	2010)				(Lim	&	Helpern,	2002),	measuring	

white	matter	changes	is	also	relevant	for	understanding	the	mechanisms	underpinning	plastic	changes	

occurring	to	the	brain	as	a	consequence	of	maturation	(Hüppi,	2010;	Minati,	Grisoli,	&	Bruzzone,	2007;	

Sullivan	&	Pfefferbaum,	2010)	and	training	(Johansen-Berg,	2017)		and	lifestyle	(Marks,	Katz,	Styner,	&	

Smith,	2011;	Ritchie	et	al.,	2017).		

	

The	lack	of	sensitivity	to	myelin	of	dMRI	can	be	compensated	by	combining	it	with	other	techniques,	such	

as	multi-component	relaxometry	(MacKay	et	al.,	1994),	magnetization	transfer	(Henkelman,	Stanisz,	&	
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Graham,	2001;	Sled	et	al.,	2004;	Wolff	&	Balaban,	1989)	and	susceptibility	imaging	(Duyn,	2013;	2017;	Duyn	

&	Schenck,	2017;	Shmueli	et	al.,	2009).		While,	in	principle,	the	modalities	of	interest	can	be	acquired	

independently	and	combined	at	the	processing	stage,	the	idea	of	manipulating	more	than	one	source	of	

contrast	within	the	same	experiments	is	attractive.	This	type	of	“hybrid”	experiment	could	be	more	time	

efficient,	and	minimise	any	source	of	bias,	such	as	geometrical	differences	between	acquisitions,	and	mis-

registration	between	voxels	in	the	image	(which	might	compromise	the	identification	of	sub-voxel	

compartments).	This	approach	is	also	conceptually	more	straightforward	from	a	processing	perspective,	

because	it	enables	the	fitting	of	a	single	equation	to	the	data.		

	

The	ideal	hybrid	experiment	aims	at	reconstructing	an	N-dimensional	spectrum,	where	the	N	dimensions	

represent	any	combination	of	MR	parameters	of	interest	such	as	(T1,	T2),	(T2,	Diffusion),	(T1,	Diffusion)	in	

the	case	of	N=2(Callaghan,	Godefroy,	&	Ryland,	2003),	and	potentially	other	combinations	(e.g.	diffusion	

and	quantitative	susceptibility	mapping	(Kaden	et	al.	2018).	The	complementarity	of	these	MRI	modalities	

implies	that	the	separation	of	distinct	environments	can	be	improved	by	exploring	their	multidimensional	

correlation,	compared	with	any	of	the	1D	spectra	(Celik,	Bouhrara,	Reiter,	Fishbein,	&	Spencer,	2013).	

While	several	multimodal	experiments	can	be	conceived	to	characterize	the	brain	microstructure,	here	we	

will	focus	on	those	combining	diffusion	and	relaxometry.	This	is	partly	justified	by	the	abundance	of	

examples	in	the	literature,	but	also	by	the	fact	that	this	type	of	experiment	is	likely	to	benefit	substantially	

from	the	use	of	ultra-high	gradients.	The	popularity	of	the	diffusion-relaxometry	framework	can	be	

explained	by	the	complementary	nature	of	the	information	available	with	these	techniques.	

	

BACKGROUND	

The	first	examples	of	“hybrid	experiments”	in	biological	tissue	date	back	to	the	late	90s,	when	attempts	

were	made	to	establish	the	relationship	between	T2-species	and	diffusion	behaviour	(Peled,	Cory,	

Raymond,	Kirschner,	&	Jolesz,	1999;	Stanisz	et	al.,	1997).	The	interest	was	prompted	by	the	observation	of	

multi-exponential	behaviour	for	T2	and	the	TE	dependency	of	some	diffusion	parameters,	suggesting	the	

presence	of	several	compartments.	Those	experiments	were	mostly	performed	ex	vivo,	using	some	variant	

of	the	diffusion-weighted	(DW)	Carr-Purcell-Meiboom-Gill	(CPMG)	sequence,	to	assess	whether	

compartments	with	shorter	T2	(potentially	associated	with	myelin)	had	diffusion	properties	consistent	with	

this	hypothesis.	This	acquisition	consists	of	a	standard	pulsed-gradient	spin-echo	(PGSE)	preparation	(van	

Dusschoten,	Moonen,	de	Jager,	&	Van	As,	1996)	followed	by	a	CPMG	train	of	180o	pulses.	The	T2-decay	can	

thus	be	measured	under	variable	diffusion-weighting	conditions,	enabling	the	apparent	diffusion	

coefficient	(ADC)	of	the	water	compartments	corresponding	to	each	T2	peak	to	be	studied.	Alternatively,	

the	TE	dependence	could	point	to	exchange	with	myelin	water,	which	would	make	the	TE	dependence	a	

potential	marker	for	the	degree	of	myelination	(Lin	et	al.,	ISMRM	2017).		
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T1	spectra	in	single	fibre	populations	have	been	reported	as	multi-exponential	less	consistently	than	T2,	

which	has	often	thought	to	be	caused	by	inter-compartmental	mixing	of	water	during	the	typically	long	

measurement	times.	Nevertheless,	multi-exponential	T1	decay	has	been	described	e.g.	(Does,	Beaulieu,	

Allen,	&	Snyder,	1998).	Hybrid	correlation	experiments	have	shown	to	increase	the	potential	of	

disentangling	unique	T1	values	per	compartment	(e.g.,	T1-T2	relaxometry)	(Deoni,	Rutt,	Arun,	Pierpaoli,	&	

Jones,	2008).	T1	compartmentalisation	was	also	studied	in	combination	with	diffusion	by	adding	inversion	

recovery	(IR)	to	the	DW-CPMG	experiment	(Andrews,	Osborne,	&	Does,	2006).	Recent	work	by	Benjamini	et	

al.	(Benjamini	&	Basser,	2017)	enabled	the	identification	of	7	separate	peaks	by	looking	at	the	T2-Diffusion	

and	T1-Diffusion	space	from	ferret’s	spinal	cord,	each	associated	with	a	separate	type	of	tissue	ranging	

from	glial	to	axonal,	neuronal	and	myelin	water.	The	difficulty	of	implementation	(hampered	by	the	long	

scan	times	and	the	SAR	constraints)	limited	the	pursuit	of	this	type	of	experiment	until	recently,	when	the	

availability	of	better	hardware	and	faster	sequences,	as	well	as	of	methods	for	optimising	data	sampling	

(Benjamini	&	Basser,	2016)	have	made	hybrid	experiments	feasible	in	vivo.		De	Santis	et	al.,	(De	Santis,	

Assaf,	Jeurissen,	Jones,	&	Roebroeck,	2016a;	De	Santis,	Barazany,	Jones,	&	Assaf,	2016b)	combine	inversion	

recovery	(IR)	with	dMRI	for	the	purpose	of	mapping	T1	(exploiting	the	IR	preparation)	along	specific	white	

matter	tracts	crossing	within	a	single	voxel	(exploiting	dMRI),	assuming	a	mono-exponential	T1	behaviour	

per	fibre	population.	The	feasibility	of	this	approach	in	vivo	was	demonstrated	by	varying	the	inversion	time	

(TI)	for	a	moderate	b-value	of	1000	s/mm2	

	

THE	PROMISE		

One	major	limiting	factor	in	current	in	vivo	acquisitions	is	the	low	SNR.	The	SNR	fundamentally	limits	the	

resolution	of	distinguishing	exponentials	with	different	decay	rates	(Bertero,	Brianzi,	&	Pike,	1999),	and	the	

resolution	limit	can	therefore	be	expected	to	be	worse	for	in	vivo	data	having	typically	lower	SNR	than	NMR	

data.	Fortunately,	there	are	several	numerical	procedures	available	that	have	shown	to	be	able	to	reach	the	

fundamental	limit	of	distinguishing	different	exponentials	(Istratov	&	Vyvenko,	1999).	

	

The	lower	SNR	of	in	vivo	data	further	challenges	the	exponential	analysis	as	the	stability	of	numerical	

methods	and	their	sensitivity	to	noise	becomes	an	increasingly	important	issue.	While	averaging	of	signals	

improves	the	SNR,	this	is	obviously	at	the	cost	of	an	increased	acquisition	time.	Regularisation	is	commonly	

employed	in	NMR	correlation	experiments	to	make	the	inversion	less	ill-conditioned,	with	Tikhonov	

regularization	being	a	popular	method	(Venkataramanan,	Yi-Qiao	Song,	&	Hurlimann,	2002)).	Recent	efforts	

to	further	optimise	and	regularise	the	estimation	procedure	include	the	use	of	compressed	sensing	(Bai,	

Cloninger,	Czaja,	&	Basser,	2015)	(Cloninger,	Czaja,	Bai,	&	Basser,	2014),	marginal	distributions	(Benjamini	

&	Basser,	2016)	or	spatial	smoothness	and	constrained	dictionary-based	optimisation	(Kim	et	al.,	2017).		
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For	in	vivo	human	brain	experiments,	choosing	a	predefined	form	by	explicitly	modeling	the	contributions	

of	different	compartments	is	commonly	performed	to	regularise	the	fit	in	diffusion	microstructural	imaging,	

and	an	extension	of	this	to	hybrid	experiments	is	promising	for	the	disentanglements	of	these	

compartments	in	terms	of	their	diffusion	and	transverse	relaxation	properties	(Veraart	et	al.,	2017).	

However,	recent	findings	show	a	correlation	between	parameters	when	the	‘standard’	model	for	diffusion	

without	constraints	(Section	2)	was	extended	and	applied	in	D-T2	hybrid	experiments	with	limited	b-values	

(up	to	4000	s/mm2)	(Veraart	et	al.,	2017).	This	raises	concerns	about	the	number	of	independent	

parameters	that	can	be	extracted	from	the	available	data	(Reisert,	Kellner,	Dhital,	Hennig,	&	Kiselev,	2017;	

Lampinen	et	al.	2017).	When	performing	such	D-T2	experiments	on	clinical	systems,	higher	b-values	can	

only	be	achieved	at	the	expense	of	long	TEs,	thereby	significantly	limiting	the	shortest	TE	and	therefore	SNR	

that	can	be	achieved.	

	

Depending	on	the	specific	MR	contrasts	one	aims	to	exploit,	ultra-high	magnetic	field	gradients	have	the	

ability	to	provide	a	better	SNR.	In	T2-D	experiments,	it	is	possible	to	maintain	a	relatively	short	TE	for	a	

given	diffusion	sensitisation,	improving	the	SNR.	In	IR-PGSE	sequences	for	T1-D	correlations	a	similar	

reasoning	applies.	At	the	same	time,	ultra-strong	gradients	provide	the	unique	opportunity	to	sample	a	

much	larger	part	of	the	multidimensional	experimental	parameter	space	than	has	previously	been	possible	

in	vivo.	For	T2-diffusion	experiments,	ultra-high	magnetic	field	gradients	can	be	used	to	sample	higher	b-

values	at	shorter	TEs	(Figures	1	and	5).	(Tax	et	al.,	2017;	Fan	et	al.,	2017).	Higher	b-values	could	resolve	the	

correlations	between	parameters	(Veraart	et	al.,	2017).	Preliminary	results	show	that	high	b-values	are	

beneficial	when	trying	to	disentangle	compartments	(Tax	et	al.,	2017)	without	fixing	parameters	to	a	priori	

values.		

	

Reaching	short	TE	is	particularly	important	when	attempting	to	capture	myelin	water	contributions	with	

very	short	T2	(MacKay	et	al.,	1994)	to	the	signal.	Ultra-strong	gradients	combined	with	fast	readout	

techniques,	such	as	those	mentioned	in	the	Section	5	on	high	resolution,	provide	a	promising	outlook	for	

characterising	myelin	water,	thereby	aiming	at	a	more	complete	picture	than	has	previously	been	possible	

with	diffusion	experiments.	The	wider	TE	range	that	can	be	sampled,	however,	requires	a	revisit	of	the	

signal	modeling:	if	myelin	is	significantly	contributing	to	the	signal	it	should	be	included	as	an	extra	

compartment	in	the	model,	and	the	role	of	exchange	has	to	be	re-examined.	In	addition,	higher	b-values	

with	sufficient	SNR	in	IR-PGSE	experiments	for	D-T1,	or	even	D-T1-T2	experiments	enables	a	more	detailed	

investigation	of	multi-component	T1	relaxation	per	fibre	population	in	vivo.	

	

Future	work	will	be	directed	towards	carefully	analysing	the	added	information	content	in	this	previously	

inaccessible	space,	with	the	ultimate	aim	of	developing	joint	tissue	models.	However,	such	an	extensive	

sampling	of	the	parameter	space	goes	hand	in	hand	with	longer	acquisition	times,	which	makes	it	currently	
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impractical	for	clinical	translation.	Compressive	sensing	(Bilgic	et	al.,	2012;	Doneva	et	al.,	2010;	Lustig,	

Donoho,	Santos,	&	Pauly,	2008;	Lustig,	Donoho,	&	Pauly,	2007;	Ning	et	al.,	2015),	“MR	Fingerprinting”	(Ma	

et	al.,	2013;	Ma,	Wright,	Seiberlich,	Gulani,	&	Griswold,	2014)	and	other	techniques	have	the	potential	to	

capture	the	essential	information	while	further	reducing	acquisition	times.	

	
FIGURE	5:	b-value	vs	echo	time	(TE)	experiment	for	maximum	gradient	amplitudes	of	300	mT/m,	allowing	for	high	
b-values	(up	to	7000	s/mm^2)	and	low	TE	(down	to	47	ms).	As	a	comparison,	for	the	maximum	b-value	of	7000	
s/mm^2	used	here,	the	minimum	TE	would	be	75	ms	on	a	80	mT/m	system	and	105	ms	on	a	40	mT/m	system,	as	can	
be	derived	from	Figure	1.	(a)	shows	the	raw	signal	and	(b)	the	logarithm	of	the	signal,	to	illustrate	that	there	is	still	
signal	at	the	highest	b-value	and	TE.	
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5.	HIGH	RESOLUTION	DIFFUSION	IMAGING	AND	TRACTOGRAPHY		

	

THE	CHALLENGE	AND	ITS	IMPORTANCE	

Until	 now,	 diffusion	 imaging	 methods,	 applied	 to	 the	 study	 of	 the	 living	 human	 brain,	 have	 been	

significantly	limited	by	their	own	low	spatial	resolution.	However,	there	are	several	important	applications	

that	could	benefit	from	high	resolution	acquisitions.	E.g.	it	has	been	shown	that	important	cortical	changes	

at	 the	macro-scale	 level	 can	occur	 in	numerous	psychiatric,	 neurodevelopmental	 and	neurodegenerative	

disorders,	(Goldman	et	al.	2009;	Zielinski	et	al	2014,	D.	S.	Andrews	et	al.,	2017;	D’Anna	et	al.	2016;	Ecker	et	

al.,	 2016),	 but	 it	 has	 never	 been	 possible	 to	 show	 the	 corresponding	 micro-structural	 attributes,	 and	

especially	in	which	specific	laminae	any	changes	occur.		Enabling	ultra-high	resolution	dMRI	in	this	manner	

could	yield	new	 insights	 into	 the	pathophysiology	of	a	wide	 range	of	disorders.	At	 the	same	time,	better	

spatial	resolution	not	only	can	benefit	the	quantification	of	microstructure	diffusion	properties,	but	could	

also	significantly	improve	the	accuracy	of	tractography	reconstructions.	By	increasing	the	spatial	resolution,	

different	fibre	pathways	can	be	better	disentangled	and	new	minor	white	matter	connections	will	emerge	

besides	the	major	white	matter	fasciculi	(Heidemann,	Anwander,	Feiweier,	Knösche,	&	Turner,	2012).	Intra-

lobar	 connections	 and	 u-shaped	 fibres	 (Catani	 et	 al.,	 2012;	 Catani	 et	 al.	 2017)	 are	 essential	 short	 range	

connections	 that	play	an	 important	 role	 in	distributing	 information	across	whole	brain	networks,	but	are	

currently	significantly	underestimated	by	most	tractography	and	connectomics	approaches.	

		

BACKGROUND	

Two	of	the	main	reasons	for	the	low	resolution	of	diffusion	data	are	the	intrinsic	low	SNR	of	MR	diffusion	

data	and	the	prevalence	of	single-shot	acquisitions,	selected	due	to	the	need	to	constrain	total	acquisition	

time,	and	to	minimise	motion	artefacts	(Turner,	1998;	Turner	et	al.,	1990).	Although	new	post	processing	

methods	like	super-resolution	(e.g.,	Van	Steenkiste	et	al.,	2016),	data	interpolation	(e.g.,Dyrby	et	al.,	2014)	

and	image	quality	transfer	techniques	(see	Section	10)	are	today	emerging	as	alternative	ways	to	mitigate	

the	 lack	 of	 spatial	 resolution,	 improving	 data	 quality	 during	 acquisition	 remains	 of	 critical	 importance.	

Recent	 attempts	 have	 tried	 to	 overcome	 these	 limitations	 by	 combining	 the	 benefits	 of	 higher	 spatial	

resolution	and	SNR	of	7T	data	with	stronger	diffusion	weightings	 from	3T	data	(Sotiropoulos	et	al.,	2016;	

Sotiropoulos	 et	 al.,	 2017).	 The	 use	 of	 ultra-strong	 gradients	 could	 potentially	 allow	 the	 same	 high-

resolution	high-bvalue	data	to	be	collected,	but	using	only	one	scanner.	

	

THE	PROMISE	

	Indeed,	with	the	use	of	powerful	gradient	systems	it	is	now	possible	to	achieve	a	significant	reduction	of	TE	

per	unit	b-value	(Setsompop	et	al.,	2013)	and,	if	combined	with	field	cameras	(Wilm	et	al.,	2017;	2015)	and	
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more	echo-time	efficient	acquisition	strategies	(e.g.	spiral	readout),	SNR	can	be	further	maximised	and	

geometrical	distortion	significantly	reduced.	Compared	to	the	use	of	weaker	gradients	at	higher	field	(e.g.,	

70	mT/m	at	7	Tesla),	stronger	gradients	at	lower	field	(e.g.,	300	mT/m	at	3	Tesla)	allow	the	advantages	of	

the	longer	T2,	less	T2*	blurring	and	lower	susceptibility	distortion	to	be	exploited.		This	in	turn	allows	for	

higher	spatial	resolution	and	more	anatomically	accurate	imaging	and	tractography	reconstructions.		Fan	et	

al.	(2017)	recently	proposed	an	interesting	approach,	dubbed		‘HIBRID’	(HIgh	b-value	and	high	Resolution	

Integrated	Diffusion),	that	combines	high	resolution	and	high	b-value	data	(collected	with	Connectom	

gradients),	that	allowed	characterization	of	diffusion	in	the	cortex	without	compromising	white	matter	

fiber	information.		

	

The	adoption	of	new	head	RF-coils	equipped	with	a	high	number	of	transmit	and	receiver	channels	can	

enable	the	use	of	high	acceleration	factors	or	the	combination	of	multiple,	advanced	imaging	techniques	

like	multi-band	(e.g.,	Larkman	et	al.,	2001),	parallel	imaging	methods	(e.g.	Larkman	and	Nunes,	2007),	

segmented-EPI	(e.g.	Frost	et	al.,	2014);	super-resolution	(Van	Steenkiste	et	al.,	2016)	and	zoomed	imaging	

e.g.	Heidemann	et	al.	2012).	One	example	of	this	new	generation	of	imaging	strategies	is	the	Generalised	

Slice	Dither	Enhanced	Resolution	with	Simultaneous	Multislice	(‘gSlider-SMS’)	acquisition	method	

(Setsompop,	Ning	&	Rathi,	2016;	Setsompop	et	al.,	2017).	This	technique	combines	multi-band	acceleration	

with	slice-dithering	acceleration,	as	well	as	parallel	and	zoomed	imaging,	which	has	allowed	the	acquisition	

of	full	brain	in	vivo	diffusion	datasets	at	isotropic	resolution	of	750um	within	50	minutes	with	a	b=1500	

s/mm2	and	128	directions.	At	this	resolution,	cortical	regions	that	are	normally	heavily	affected	by	partial	

voluming	with	CSF	or	subcortical	white	matter	are	better	resolved	and	the	whole	human	cortex	can	be	

characterised	with	a	thickness	of	several	voxels.	This	can	allow	practical	and	more	meaningful	

quantification	of	the	cortical	diffusion	properties	compared	to	previous	studies	where	diffusion	measures	

were	inevitably	limited	by	cortical	regions	of	only	one	or	two	voxels	width.		If	in	the	near	future	this	

technique	will	be	also	combined	with	microstructure	imaging	this	will	potentially	enable	the	analysis	in	the	

living	human	brain	of	individual	cortical	layers	with	a	more	direct	interpretation	of	neurological	and	

psychiatric	disorders.		

An	example	is	shown	in	Figure	6,	with	isotropic	resolution	data	of	780	um,	showing	both	the	direction	

encoded	fibre	orientation	(Pajevic	and	Pierpaoli,	1999)	and	the	‘anisotropic	power’	obtained	by	taking	the	

sum	of	the	angular	power	spectrum	of	each	spherical	harmonic	of	even	order	l	≥	2	(Dell’Acqua	et	al.	2014)	
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Figure	6:	Data	obtained	with	the	g-SLIDER	technique		(Setsompop	et	al.,	2016;	Setsompop	et	al.,	2017)	at	780	um.	
The	left	panel	shows	the	direction-encoded	colour	map	using	standard	convention	(Pavevic	and	Pierpaoli	1999),	
with	the	lower	row	showing	zoomed-in	versions	of	the	areas	highlighted	in	yellow.	The	right	hand	panel	shows	the	
anisotropic	power,	processed	according	to	Dell’Acqua	et	al.	(Proc	ISMRM	2014;	Anisotropic	Power	Maps:	A	diffusion	
contrast	to	reveal	low	anisotropy	tissues	from	HARDI	data.	p.6396),	obtained	from	the	sum	of	the	angular	power	
spectrum	of	each	spherical	harmonic	of	even	order	l	≥	2,	resulting	from	spherical	deconvolution	of	the	HARDI	signal	
	

Furthermore,	hybrid	acquisitions	can	also	help	the	integration	of	high	resolution	tractography	data	with	

microstructure	modeling,	potentially	improving	both	tractography	reconstructions	by	reducing	confounding	

factor	and	allowing	more	refined	“tractometry”	(Bells	et	al.		2011)	measurements	based	on-tract	specific	

(Dell'Acqua,	Simmons,	Williams,	&	Catani,	2013b;	Raffelt	et	al.,	2012)	and	other	microstructure	indices.	

	

	Together	with	high-resolution	acquisitions,	low	anatomical	distortions	can	also	make	anatomical	regions	

normally	precluded	by	susceptibility	distortion	(e.g.	orbital-frontal	and	temporal	regions)	accessible,	and	

therefore	offer	more	accurate	tractography	reconstructions.		

	

We	caution	that	strong	gradients	per	se	are	not	a	panacea	for	all	the	problems	of	tractography.		While	

tractography	today	is	a	very	powerful	tool	to	segment	the	major	white	matter	pathways	there	are	still	

important	limitations	that	prevent	a	reliable	characterisation	of	their	cortical	connectivity.	For	example,	

Reveley	et	al.	(2015)	have	pointed	out	with	high	resolution	dMRI	as	much	as	"50%	of	the	cortical	surface	

was	effectively	inaccessible	for	long-range	diffusion	tracking	because	of	dense	white	matter	zones	just	

beneath	the	infragranular	layers	of	the	cortex".	Stronger	gradients	neither	do	they	directly	solve	the	issue	

raised	by	Maier-Hein	et	al	(2017),	that	"the	geometry	of	many	junctions	in	the	simulated	data	set	is	too	

complex	to	be	resolved	by	current	tractography	algorithms,	even	when	given	a	perfect	ground	truth	field	of	

orientations".	
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Nevertheless,	stronger	gradients	can	indeed	simplify	the	tractography	problem.	By	pushing	the	spatial	

resolution	of	in	vivo	diffusion	imaging	below	1-mm	voxel	resolution	and	boosting	SNR	per	unit	time,	this	

will	doubtless	lead	to	improvements	in	the	fidelity	of	tractography	reconstructions.	Finally,	high	resolution	

in-vivo	diffusion	Imaging	performed	with	a	ultra	gradient	system	has	the	potential	to	generate	data	that	

can	be	directly	compared	with	equivalent	high	b-value	experiments	performed,	until	now,	only	on	animal	

models	or	ex-vivo	tissues	in	preclinical	systems.	E.g.	the	characterisation	of	the	laminar	organization	of	the	

cortex	or	deep	gray	matter	done	on	ex-vivo	samples	(Dell’Acqua	et	al.	2013b,	Leuze	et	al.	2014,	Bastiani	et	

al.	2016)	could	be	translated	to	map	the	cortical,	subcortical	and	cerebellar	organisation	of	the	living	

human	brain	and	provide	a	bridge	to	help	the	interpretation	of	clinical	and	research	results	obtained	on	

conventional	clinical	scanner	at	much	lower	resolutions.		

	

6.	POST-MORTEM	DIFFUSION	IMAGING		

	

THE	CHALLENGE	AND	ITS	IMPORTANCE	

Post	mortem	MRI,	and	in	particular	diffusion	imaging	of	whole	brain	specimens,	has	attracted	interest	in	

recent	years	for	several	reasons.	Diffusion	MRI	has	tremendous	potential	to	contribute	to	our	knowledge	of	

neuroanatomy,	including	macroscopic	connectivity,	local	fibre	architecture,	and	patterns	of	microstructural	

features	across	the	brain.	However,	in	vivo	anatomical	investigations	with	dMRI	are	limited	by	achievable	

spatial	resolution	and	diffusion	contrast,	with	improvements	in	both	domains	incurring	reduced	SNR.	Post-

mortem	MRI	has	potential	to	overcome	this	SNR	challenge	by	enabling	very	long	scan	times	(e.g.	overnight	

or	even	several	days).	Indeed,	dMRI	with	spatial	resolution	as	high	as	0.5x0.5x0.5mm3	has	been	

demonstrated	in	whole,	post	mortem	human	brains	(Foxley	et	al.	2016).		A	second	motivation	for	scanning	

post	mortem	brains	is	the	ability	to	directly	compare	dMRI	data	to	microscopy	in	the	same	tissue.	Diffusion	

modeling	generally	assumes	a	relationship	between	underlying	fibre	architecture	and	diffusion	signal,	but	

all	too	often	these	assumptions	are	not	validated	(Dell'Acqua,	Bodi,	Slater,	Catani,	&	Modo,	2013a).	

Microscopy	can	be	used	to	map	these	relationships	explicitly,	including	the	contribution	of	specific	tissue	

compartments	(Budde	and	Frank	2012;	Schilling	et	al.,	2016;	Mollink	et	al.,	2017).	Post-mortem	dMRI	has	

been	used	in	neurosurgical	applications,	both	to	validate	tractography	against	histological	stains	(Mollink	et	

al.,	2016)	and	to	support	contraindications	for	surgical	procedures	(McNab	et	al.,	2009).	A	more	unusual,	

but	no	less	important,	motivation	for	post	mortem	imaging	is	the	ability	to	study	unusual	specimens.	

Neuroanatomical	studies	are	generally	limited	to	a	very	narrow	range	of	species	(certain	rodents	and	a	few	

primates).	Nevertheless,	post	mortem	brain	collections	host	a	plethora	of	species	that	could	not	

conceivably	be	studied	in	a	laboratory	environment,	many	of	which	are	too	rare	to	dissect.	Post	mortem	

MRI	enables	non-invasive	study	of	these	specimens	not	only	in	terms	of	gross	anatomy,	but	also	in	terms	of	

connectivity,	which	is	increasingly	of	interest	in	comparative	anatomy	(Mars	et	al.,	2014).	For	example,	a	
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recent	study	demonstrated	the	ability	to	reconstruct	major	white	matter	pathways	from	100-year-old	

brains	of	an	extinct	species,	the	Tasmanian	tiger	(Berns	&	Ashwell,	2017),	and	another	presented	novel	

evidence	for	the	pathways	underpinning	echolocation	in	dolphins	(Berns	et	al.,	2015).	

	

In	order	to	realize	these	goals,	however,	a	number	of	challenges	need	to	be	overcome.	As	with	other	

sections	of	this	article,	the	primary	challenge	in	realizing	high	spatial	resolution	is	achieving	high	SNR.	

Although	one	can	perform	much	longer	scans	than	are	possible	in	vivo,	this	in	itself	is	insufficient	to	achieve	

major	gains	in	spatial	resolution.	As	with	all	MRI,	improvements	in	spatial	resolution	come	at	an	SNR	cost	

that	scales	with	the	cube	of	voxel	dimensions,	while	SNR	scales	with	the	square	root	of	scan	time.	For	

example,	if	we	aim	to	achieve	0.5x0.5x0.5mm3	resolution	without	loss	in	SNR	relative	to	a	protocol	

achieving	1x1x1mm3	spatial	resolution	in	1	hour,	we	would	have	to	scan	for	64	hours	(nearly	3	days).		

	

There	are	additional	challenges	presented	by	post	mortem	tissue.	MR-relevant	properties	change	in	

unfavourable	ways	in	post-mortem	tissue	due	to	death	and	fixation,	with	T1,	T2	and	diffusion	coefficients	

all	being	significantly	reduced	(Shepherd,	Thelwall,	Stanisz,	&	Blackband,	2009).	T2	is	reduced	to	50-76%	of	

in	vivo	values	(Pfefferbaum	et	al,	2004;	Miller	et	al.,	2011;	Foxley	et	al.,	2014),	with	the	loss	of	T2	generally	

increasing	with	field	strength	from	1.5	to	7T.	Reduced	T2	is	particularly	problematic	for	conventional	

diffusion-weighted	spin-echo	(DW-SE)	measurements,	which	require	long	TEs	in	order	to	achieve	

substantial	contrast	(b-value)	(Miller	et	al.,	2011).	In	addition,	the	diffusion	coefficient	is	reduced	to	20-50%	

of	in	vivo	values	in	perfusion-fixed	animal	tissue	(Sun	et	al,	2005;	D’Arceuil	et	al.,	2007),	although	

measurements	down	to	~10%	of	in	vivo	values	have	been	reported	in	human	brains	with	long	post-mortem	

intervals	(Miller	et	al.,	2011).	These	reductions	in	ADC	dictate	that	a	higher	b-value	is	needed	to	obtain	

contrast	equivalent	to	current	in	vivo	protocols,	requiring	even	longer	TEs	and	reducing	signal	even	more.	

T1	values	are	less	impacted	(40-60%	of	in	vivo	values)	and	in	fact	can	improve	image	quality	by	enabling	

reduced	repetition	times.	In	general,	these	effects	are	heavily	dependent	on	tissue	preparation	(Shepherd	

et	al,	2009)	and	compounded	by	the	long	post-mortem	interval	between	death	and	fixation	in	human	brain	

specimens	(Shepherd	et	al,	2009;	D’Arceuil	2007b).	These	effects	result	in	a	net	loss	of	SNR	in	post-mortem	

compared	to	in-vivo	tissue	(Fig,	7,	left).	

	

BACKGROUND	

There	are	a	number	of	different	approaches	that	have	been	taken	to	address	these	challenges.	Small	brains	

and	tissue	samples	can	be	accommodated	in	small-bore	scanners	that	are	designed	for	imaging	rodents	

(D'Arceuil,	Westmoreland,	&	de	Crespigny,	2007;	Dyrby	et	al.,	2011).	These	systems	benefit	from	stronger	

gradients	than	conventional	clinical	scanners,	enabling	short	TEs	to	combat	reduced	T2.	Moreover,	small	

tissue	samples	can	be	soaked	in	buffer	solution	to	wash	out	fixative,	which	is	very	effective	in	raising	T2	

values	(which	is	predominantly	caused	by	the	short	T2	of	fixative	itself)	(Shepherd	et	al.,	2009).	Additional	
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benefit	can	be	made	by	doping	the	buffer	to	also	alter	T1	values	(D'Arceuil	et	al.,	2007).	Unfortunately,	fluid	

takes	weeks	to	months	to	fully	permeate	human	brains,	and	incomplete	penetration	of	buffer	leads	to	

problematic	hydration	boundaries	that	obscure	the	intended	contrast	(Miller	et	al.,	2011).	In	general,	these	

approaches	are	only	feasible	for	whole	brains	up	to	the	size	of	a	macaque	(D'Arceuil	et	al.,	2007)	or	pig	

(Dyrby	et	al.,	2011).	Early	proof-of-concept	for	diffusion	imaging	of	whole	post-mortem	human	brains	

highlighted	the	potential	to	provide	a	direct	validation	against	histopathology	in	disease,	but	generally	

suffered	from	modest	image	quality	(Larsson	et	al	2004;	Englund	et	al	2004;	Pfefferbaum	et	al	2004).	

	

	

It	has	been	demonstrated	that	diffusion	imaging	of	whole	human	brains	can	be	achieved	with	minor	

modifications	to	a	DW-SE	sequence	(in	particular,	using	a	3D	segmented	readout)	(Miller	et	al.,	2011).	

However,	it	has	also	been	demonstrated	that	significant	gains	in	SNR	and	contrast	can	be	obtained	by	

moving	away	from	conventional	DW-SE	sequences.	One	approach	that	has	been	explored	in	depth	is	a	

variant	of	steady-state	free	precession	(SSFP),	which	has	been	demonstrated	to	provide	substantial	

improvements	in	quality	of	tractography	(Miller,	McNab,	Jbabdi,	&	Douaud,	2012).	In	theory,	DW-SSFP	

achieves	greater	efficiency	than	any	other	technique	by	re-using	the	signal	created	in	one	excitation	over	

several	acquisition	blocks,	decoupling	contrast	from	TE.	Unfortunately,	DW-SSFP	is	also	extremely	gradient	

intensive,	leading	to	heating	constraints.	Moreover,	the	signal	has	a	complicated	dependence	on	T1,	T2,	

diffusion	coefficient	and	acquisition	parameters,	and	does	not	have	a	well-defined	diffusion	time	(McNab	&	

Miller,	2010).		Another	alternative	that	has	recently	been	revisited	for	post	mortem	imaging	is	diffusion-

weighted	stimulated	echoes	with	EPI	readout	(DW-STE)	(Rane,	Nair	and	Duong,	2010;	Lundell,	Alexander,	&	

Dyrby,	2014;	Merboldt,	Hänicke,	&	Frahm,	1991).	This	sequence	has	many	of	the	benefits	of	DW-SSFP,	

including	decoupling	of	the	b-value	from	the	TE,	while	retaining	a	well-defined	diffusion	time	and	simple	

signal	dependence.	The	main	disadvantage	of	DW-STE	is	loss	of	50%	of	the	signal	in	the	formation	of	the	

echo.	Finally,	ultra-high	field	strength	(7	Tesla	and	above)	has	been	demonstrated	to	provide	further	

improvements	for	both	DW-SSFP	(Foxley	et	al.,	2014)	and	DW-STE	(Fritz	2017),	although	RF	transmit	

inhomogeneity	presents	a	further	challenge	at	these	field	strengths.	

	

THE	PROMISE		

As	outlined	above,	the	primary	need	for	alternate	acquisition	approaches	in	post	mortem	brain	imaging	

relates	to	the	limitations	of	current	clinical	scanners,	most	specifically	the	relatively	low	maximum	gradient	

strength.	In	pre-clinical	(rodent)	scanners,	the	high	available	gradient	strength	(typically	300-1000	mT/m)	

enables	the	use	of	DW-SE	with	high	SNR.	This	enables	the	acquisition	of	data	that	are	maximally	compatible	

with	in	vivo	approaches,	avoids	the	50%	signal	loss	of	DW-STE	and	has	a	simple	signal	dependence	with	

well-defined	diffusion	time.	The	availability	of	similar	gradient	strength	in	a	scanner	large	enough	to	

accommodate	whole,	human	brains	could	enable	anatomical	investigations	of	unprecedented	quality,	
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providing	high	spatial	resolution	across	the	entire	brain	and	in	larger	cohorts	than	can	be	studied	with	

other	methods.	Figure	7	shows	predicted	improvements	in	SNR	for	post-mortem	dMRI	using	spin-echo	

acquisition	with	300	mT/m	compared	to	80	mT/m.	

Figure	7.		Predicted	improvements	for	post-mortem	dMRI	using	spin-echo	acquisition	with	300	mT/m	compared	to	
80	mT/m.		The	horizontal	axis	plots	signal	contrast	in	terms	of	bD,	matching	in-vivo	and	post-mortem	conditions	for	
differences	in	diffusion	coefficients	(assuming	D=1	μm2/ms	and	0.3	μm2/ms	for	in-vivo	and	post-mortem	tissue,	
respectively).		Left:	SNR	efficiency	predictions	at	3T	for	post-mortem	and	in-vivo	tissue	for	optimized	protocols	with	
different	gradient	maxima.		The	overall	lower	SNR	efficiency	for	post-mortem	tissue	is	driven	by	reduced	T2	and	the	
need	for	longer	TE	to	achieve	equivalent	contrast	(assuming	T2=80	and	45	ms	for	in-vivo	and	post-mortem	tissue,	
respectively).		Right:	To	match	SNR	efficiency	in	post-mortem	tissue,	one	can	take	advantage	of	the	ability	to	scan	
for	longer	periods	than	in	living	subjects.		For	80	mT/m	gradients,	the	fractional	increase	ranges	from	a	factor	of	5-
11	over	this	range,	while	300	mT/m	gradients	can	achieve	the	same	with	more	modest	increases	in	scan	time	of	only	
2-3.		Many	post-mortem	protocols	scan	for	12-24	hours,	where	a	typical	in-vivo	protocol	might	scan	for~30	minutes,	
thus	far	exceeding	these	fractional	increases.	
	

	

	By	overcoming	the	primary	challenges	associated	with	SNR,	these	scanners	should	also	enable	

investigation	of	more	subtle	diffusion-based	contrast	in	post-mortem	brains,	such	as	the	microstructural	

features.	This	enables	validation	of	these	features	against	direct	measurements	based	on	microscopy	

(Mollink	et	al.,	2017),	comparison	between	different	microstructural	models	with	a	gold	standard	for	truth	

(Schilling	et	al.,	2018),	and	critical	assessment	of	the	current	shortcomings	in	dMRI	modeling	(Reveley	et	al.	

2015).	Finally,	the	very	nature	of	such	datasets	with	unusually	high	quality	in	multiple	dimensions	(spatial	

resolution,	contrast	and	linkage	to	microscopy)	has	promise	to	provide	novel	findings.	In	recent	years,	post-

mortem	dMRI	has	enabled	new	insights	into	neurology	(McNab	et	al.,	2009;	Kolasinski	et	al.,	2013;	Modo	et	

al.,	2016);	demonstrated	the	ability	to	visualize	and	segment	structures	in	human	brain	that	are	currently	

inaccessible	in	vivo	(Augustinack	et	al.,	2010;	Aggarwal	et	al.,	2013;	Augustinack	et	al.,	2014);	provided	the	
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ability	to	detect	gray	matter	microarchitecture	features	(Leuze	et	al.	2012;	Kleinnijenhuis	et	al.,	2012;	

Aggarwal	et	al.,	2015;	Kleinnijenhuis	et	al.,	2015);	and	established	a	unique	toolkit	for	comparative	

anatomy	of	a	broad	range	of	species	(Jbabdi	et	al.,	2013;	Mars	et	al.,	2014;	Berns	et	al.,	2015;	Berns	&	

Ashwell,	2017).	With	improvements	in	both	hardware	and	the	approaches	outlined	above,	post-mortem	

MRI	could	provide	unique	and	rich	insight	into	neuroanatomy.	

	

	

7.	DIFFUSION-WEIGHTED	MRS		

	

	
THE	CHALLENGE	AND	ITS	IMPORTANCE	

While	dMRI	has	predominantly	focused	on	the	diffusion	of	water	molecules	in	tissue,	the	problem	is	that	

water	is	ubiquitous	in	tissue	and	exists	in	all	compartments	(e.g,	intra-cellular	and	extra-cellular).	It	is	this	

fundamental	fact	that	makes	it	difficult	to	disentangle	different	tissue	subcompartments	(see	Sections	1	

and	2).		Diffusion-weighted	Magnetic	Resonance	Spectroscopy	(DW-MRS)	uniquely	enables	specific	

characterization	of	tissues	such	as	the	brain	in	vivo	by	quantifying	the	diffusion	properties	of	MR-

observable	metabolites.	Many	brain	metabolites	are	predominantly	intracellular,	and	some	of	them	are	

preferentially	localized	in	specific	brain	cell	populations	(e.g.,	neurons	and	glia).	Since	many	developmental	

processes,	for	instance	plasticity	and	aging,	or	pathological	processes,	such	as	neurological	diseases,	are	

characterized	by	modulations	of	specific	cellular	types	and	their	microstructures,	and	since	water	signals	

are	not	necessarily	representative	of	any	specific	compartment,	metabolite	signals	can	serve	as	biomarkers	

with	enhanced	specificity	(Palombo,	Shemesh,	Ronen,	&	Valette,	2017b).	However,	DW-MRS	

measurements	are	extremely	challenging,	from	the	acquisition	to	the	analysis	and	quantification	stages.	In	

vivo	DW-MRS	pulse	sequences	must	achieve	several	goals	simultaneously:	(1)	adequate	diffusion	

weighting;	(2)	efficient	and	accurate	signal	localization	to	the	volume	of	interest	(i.e.,	MRS	voxel,	Figure	8-

a);	and	(3)	robust	acquisition	of	a	free	induction	decay	(FID)	to	obtain	the	chemical	shift	spectral	dimension.		

	

Here,	we	briefly	discuss	the	importance	of	addressing	point	(1)	by	developing	ultra-high	gradient	systems,	

and	therefore	the	applications	that	would	be	made	possible	in	humans	in	vivo.	Since	metabolite	apparent	

diffusion	coefficient,	or	ADC,	is	about	5-10	times	smaller	than	water	(0.15-0.25	μm2/ms	versus	0.7-1.5	

μm2/ms	for	water	in	tissue	(Ellegood,	Hanstock,	&	Beaulieu,	2011)),	larger	b-values	are	required	for	

metabolite	signals	in	order	to	attenuate	the	signal	(~exp[-	b	ADC])	to	the	same	extent.	For	a	conventional	

experiment,	like	the	measurement	of	the	ADCs	of	metabolites,	which	requires	‘moderate’	b	values,	it	is	

necessary	to	have	a	gradient	strength	at	least	2-3	times	stronger	than	that	typically	used	for	water	(i.e.	at	

b~1000	s/mm2).	Moreover,	recent	preclinical	studies	(Assaf	&	Cohen,	1999;	Cohen	&	Assaf,	2002;	Ellegood,	

McKay,	Hanstock,	&	Beaulieu,	2007;	Kroenke,	Ackerman,	&	Yablonskiy,	2004;	Ligneul,	Palombo,	&	Valette,	
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2017;	Palombo,	Ligneul,	Hernandez-Garzon,	&	Valette,	2017a;	Yablonskiy	&	Sukstanskii,	2010)	have	shown	

that	when	the	ultra-high	b-value	domain	(i.e.,	b	>	5,000	s/mm2)	or	ultra-short	diffusion	time	domain	(i.e.	<	

5	ms)	are	accessible,	DW-MRS	techniques	offer	huge	potential	for	the	non-invasive	estimation	of	brain	cell-

specific	microstructural	properties	(e.g.,	microscopic	anisotropy,	size	and	surface-to-volume	ratio	of	

neuronal	and	glial	cell	projections)	that	are	out	of	reach	of	existing	MRI	techniques	that	are	based	solely	on	

water	diffusion.		

	

BACKGROUND	

In	the	early	days	of	DW-MRS,	due	to	the	relatively	low	maximal	gradient	strength	available	on	MRI	

scanners,	the	stimulated	echo-based	DW-STEAM	pulse	sequence	(called	for	simplicity	PGSTE)		(Moonen,	

van	Zijl,	Le	Bihan,	&	DesPres,	1990;	Posse,	Cuenod,	&	Le	Bihan,	1993)	(Figure	8-b)	was	the	most	convenient	

way	to	reach	sufficiently	high	b-values	in	vivo	(Ellegood	et	al.,	2011)	without	excessive	signal	loss	due	to	

transverse	relaxation,	since	during	the	mixing	time,	magnetization	relaxes	according	to	T1	(	typically	1–1.5	s	

for	metabolites	at	3	T	(Mlynárik,	Gruber,	&	Moser,	2001)	).	While	this	approach	is	advantageous	for	many	

reasons	(Cao	&	Wu,	2017;	Nicolay,	Braun,	Graaf,	Dijkhuizen,	&	Kruiskamp,	2001;	Palombo,	Shemesh,	

Ronen,	&	Valette,	2017b;	Ronen	&	Valette,	2007),	the	most	significant	drawback	at	the	moderate	magnetic	

field	strength	of	clinical	scanners	(typically	3	T)	is	the	loss	of	half	the	magnetization	(see	also	Section	6).	

Therefore,	a	spin	echo	sequence	might	be	preferred,	as	sensitivity	is	one	of	the	major	issues	of	MRS	in	

general,	and	of	DW-MRS	in	particular.	Nevertheless,	in	the	spin	echo	sequence,	diffusion	time	and	TE	are	

coupled.	This,	together	with	signal	loss	due	to	T2	relaxation	(typically	150-300	ms	for	metabolites	at	3	T	

(Mlynárik	et	al.,	2001))	occurring	during	the	TE,	imposes	an	upper	limit	on	the	longest	diffusion	time	

achievable.	Hence,	in	order	to	translate	advanced	DW-MRS	techniques	to	in	vivo	measurements	in	humans	

using	clinical	3	T	scanners,	and	to	achieve	good	sensitivity	and	very	high	b-values,	it	is	necessary	to	have	

access	to	a	gradient	strength	that	is	5-10	times	stronger	than	that	typically	used	for	water.		

	

The	first	spin	echo	DW-MRS	sequences	were	based	on	PRESS	(point-resolved	spectroscopy),	and	were	

performed	on	preclinical	systems	with	gradient	strengths	sufficient	to	reach	sufficiently	high	b-values	

(Dijkhuizen,	de	Graaf,	Tulleken,	&	Nicolay,	1999;	van	der	Toorn,	Dijkhuizen,	Tulleken,	&	Nicolay,	1996).		The	

sequence	was	subsequently	modified	for	clinical	implementation	at	1.5	T	by	applying	a	bipolar	gradient	

scheme	(Kroenke	et	al.,	2004),	thus	taking	advantage	of	the	twice-refocused	spin	echo	sequence	to	

increase	maximal	achievable	diffusion-weighting.	As	with	DT-MRI,	it	is	also	possible	to	assess	the	

macroscopic	anisotropy	of	metabolite	diffusion	in	the	brain	tissue	by	using	a	minimum	of	six	diffusion	

gradient	directions.	This	technique	is	called	diffusion	tensor	spectroscopy	(DT-MRS,	also	known	as	DTS),	

and	permits	the	estimation	of	the	elements	of	the	macroscopic	diffusion	tensor	of	typical	MRS-visible	

metabolites,	such	as	NAA	(N-acetyl-aspartate),	tCr	(total	Creatine)	and	tCho	(total	Choline).	A	DW-PRESS	

sequence	with	a	specific	gradient	scheme	has	also	been	proposed	to	provide	single-shot	isotropic	diffusion-
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weighting	(i.e.,	weighting	by	the	trace	of	diffusion	tensor)	(de	Graaf,	Braun,	&	Nicolay,	2001).	

	

Several	metabolite	ADCs	have	been	measured	in	the	healthy	human	brain	(Ellegood	et	al.,	2011;	Ellegood,	

Hanstock,	&	Beaulieu,	2006;	Posse	et	al.,	1993)	with	ADC	values	for	NAA,	tCr	and	tCho	being	around	0.15-

0.20		μ	m	2/ms.	DT-MRS	has	also	been	used	to	assess	the	anisotropy	of	metabolite	diffusion	in	human	brain	

(Ellegood	et	al.,	2006;	Upadhyay,	Hallock,	Ducros,	Kim,	&	Ronen,	2008).	FA	values	of	0.48–0.72	were	

reported	for	NAA	(Ellegood	et	al.,	2006;	Upadhyay	et	al.,	2008),	0.56–0.73	for	tCr	(Ellegood	et	al.,	2006)	and	

0.59–0.74	for	tCho	(Ellegood	et	al.,	2006)	in	white	matter	regions	such	as	the	corpus	callosum,	corticospinal	

tract	and	arcuate	fasciculus.	A	first	examination	of	cortical	gray	matter	(GM)	yielded	an	unexpectedly	high	

degree	of	anisotropy	(FA=0.53–0.79)	for	all	three	metabolites,	similar	to	those	seen	in	white	matter	

(Ellegood	et	al.,	2006).		However,	a	later	study	by	Ellegood	et	al.	(Ellegood	et	al.,	2011),	showed	that	the	

high	FA	measured	in	GM	was	an	artefact	caused	by	the	poor	two-point	slope	estimation	of	the	signal	

intensity	versus	b-value	when	using	sub	optimal	b-values.	Using	a	maximum	b-value	of	∼5	ms/	μ	m2,	

instead	of	the	much	lower	1.8	ms/	μ	m2	used	in	(Ellegood	et	al.,	2006),	lower	FA	values	of	0.25,	0.30	and	

0.28	for	NAA,	tCr	and	tCho,	respectively,	were	indeed	estimated	in	human	occipital	GM.		

	

Numerous	valuable	studies	have	been	recently	using	DW-MRS	on	clinical	scanners	(mostly	at	3	T	and	7	T,	

and	maximum	gradient	strength	of	20-60	mT/m)	to	measure	metabolites	ADC	and	DT,	and	to	provide	

complementary	information	to	various	MRI	metrics	(DTI	metrics,	T1,	T2,	MTR)	for	an	improved	diagnosis	and	

prognosis	of	different	brain	pathologies,	(for	a	more	comprehensive	review,	we	refer	the	reader	to	(Cao	&	

Wu,	2017;	Nicolay	et	al.,	2001;	Palombo,	Shemesh,	Ronen,	&	Valette,	2017b;	Ronen	&	Valette,	2007)).	So	

far,	DW-MRS	has	been	applied	to	study	brain	activity	(Branzoli,	Techawiboonwong,	Kan,	Webb,	&	Ronen,	

2013),	cerebral	ischemia	(Harada	et	al.,	2002;	Zheng,	Liu,	Fang,	Wang,	&	Zhang,	2012),	cerebral	tumors	

(Zheng	et	al.,	2012),	normal	aging	(Zheng	et	al.,	2012)	(Branzoli	et	al.,	2013),	schizophrenia	(Du	et	al.,	2013)	

and	multiple	sclerosis	(Wood	et	al.,	2017;	2012)	in	human.	For	example,	metabolite	DT-MRS	was	used	

together	with	water-based	DT-MRI	to	investigate	axonal	damage	and	to	distinguish	axonopathy	from	other	

processes	such	as	inflammation,	edema,	demyelination	and	gliosis	in	multiple	sclerosis	(Du	et	al.,	2013).	

Glial	and	axonal	changes	in	neuropsychiatric	systemic	lupus	erythematosus	were	assessed	using	metabolite	

DW-MRS,	showing	that	intracellular	alterations,	and	in	particular	changes	in	glia,	as	evidenced	by	an	

increase	in	the	ADC	of	tCho	and	tCr,	correlate	with	systemic	lupus	erythematosus	activity	(Ercan	et	al.,	

2016).	

	

THE	PROMISE		

The	possibility	of	employing	stronger	gradient	systems	on	human	scanners	(McNab	et	al.,	2013;	Setsompop	

et	al.	2013),	would	help	to	improve	DW-MRS	measurements	and	enable	the	translation	to	humans	of	

cutting-edge	techniques	that,	at	the	moment,	are	limited	to	preclinical	applications	due	to	the	weaker	
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gradients	available	on	clinical	systems.		It	has	been	shown	that	metabolites	ADC	and	DT	metrics	can	already	

be	estimated	in	vivo	in	human	brain	using	clinical	scanners	with	weaker	gradients	(~40-60	mT/m).	However,	

in	order	to	have	robust	and	reliable	estimates,	reduced	artefacts	and	good	sensitivity	at	moderate	

magnetic	fields	(~3	T),	it	may	be	extremely	advantageous	to	have	strong	gradient	systems	to	reach	high	b	

values	(>	3000	s/mm2),	while	keeping	the	TE	and	the	gradient	duration	as	short	as	possible	(Ellegood	et	al.,	

2011;	Wood	et	al.,	2015).	Moreover,	stronger	gradient	systems	enable	shorter	diffusion	times,	which	in	

turn	reduces	the	variability	of	the	measurement	due	to	fluctuations	in	the	signal	due	to	the	heartbeat	(i.e.,	

blood	flow	peaks	during	the	diffusion	time),	which	can	become	significant	for	b	>	3000	s/mm2.	While	

cardiac	gating	could,	in	principle,	be	used,	it	becomes	ineffective	for	very	long	diffusion	times	(more	than	

hundreds	of	ms).	

	

While	ADC	and	DT	derived	metrics	from	non-water	metabolites	can	be	very	useful	in	some	clinical	

applications,	they	are	only	indirect	reporters	of	the	underpinning	tissue	microstructure	(see	Section	3	for	

discussion	on	the	lack	of	specificity).	Earlier	strategies	for	more	directly	quantifying	tissue	microstructure	

from	metabolite	DW-MRS	have	involved	q-space	MRS	(Assaf	&	Cohen,	1998;	Cohen	&	Assaf,	2002),	the	

quantification	of	the	average	propagator	and	some	of	its	time-dependent	properties.	Recent	work	has	

described	a	first	attempt	to	model	metabolites	diffusion	at	high	q/b	values,	taking	into	account	the	cellular	

structure,	and	to	estimate	the	microscopic	anisotropy	and	diameter	of	cellular	projections	(Kroenke	et	al.,	

2004;	Palombo,	Ligneul,	&	Valette,	2016a;	Yablonskiy	&	Sukstanskii,	2010).	These	preliminary	studies	

involved	ultra-high	diffusion	weightings,	obtained	by	employing	ultra-strong	diffusion	gradient	systems,	

and	so	to	date	have	only	been	performed	in	vivo	in	preclinical	applications.	Nevertheless,	these	pioneering	

studies	at	ultra-high	q/b	values	have	paved	the	way	for	some	exciting	possibilities	enabled	by	implementing	

DW-MRS	with	ultra-strong	diffusion	gradients.	Recent	in	vivo	studies	in	mouse	brain		(Lignuel	et	al.	2016;	

Ligneul	et	al.	2017)	and	numerical	simulations	(Palombo,	Ligneul,	Hernandez-Garzon,	&	Valette,	2017a)	

showed	that	measurements	of	metabolites’	diffusion-weighted	signal	involving	high	gradient	strength	(i.e.,	

PGSTE	at	b>5,000	s/mm2	and	oscillating-gradients	spin	echo,	OGSE,	at	high	frequencies	and	high	b	values:	f	

>100Hz	and	b>1500.	s/mm2)	help	to	address	some	of	the	limitations	of	water-based	DW-MRI	techniques	

(Figure	8c).	These	limitations	include	the	lack	of	cell-specificity,	and	poor	sensitivity	to	fine	cellular	

microstructure,	such	as	the	density	of	small	cell	fibres	(diameter	<3	μm)	or	neuronal	spines.	DW-MRS	at	

high	gradient	strength	would	be	a	first	necessary	step	towards	the	definition	of	new	cell-specific	

biomarkers	of	the	alteration	of	tissue	microstructure	due	to	neurodegeneration.	Preliminary	in	vivo	work	

using	the	APP/PS1/tauP301L	mouse	model	of	Alzheimer’s	disease		(Ligneul	et	al.	2016),	and	the	ciliary	

neurotrophic	factor	induced	mouse	model	(Ligneul	et	al.	2017)	showed	that	it	is	possible	to	use	DW-MRS	at	

ultra-high	b-values	to	measure	changes	in	the	size	of	neuropils	due	to	the	induced	neurodegenerative	

process	in	a	cell-specific	fashion,	distinguishing	between	glial	and	neuronal	cell	alterations.	Combining	high	

b	values	PGSTE	and	high	frequency	OGSE	measurements,	it	would	also	be	possible	to	measure	changes	in	
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cellular	projections’	surface-to-volume	ratio	and	dendritic	spine	density	(Palombo,	Ligneul,	Hernandez-

Garzon,	&	Valette,	2017a),	which	may	be	extremely	useful	in	the	diagnosis	and	prognosis	of	pathologies	

such	as	autism	(Hutsler	&	Zhang,	2010)	and	essential	tremor	(Louis	et	al.,	2014).	As	shown	in	Figure	8c,	the	

Connectom	scanner’s	ultra-strong	gradient	hardware	would	help	filling	the	gap	between	preclinical	and	

clinical	scanners,	opening	a	unique	possibility	to	start	investigating,	in	vivo	in	humans,	a	region	at	high	b	

values	and	high	frequencies	(green	areas	in	Figure	8	

c),	currently	inaccessible	using	clinical	scanner	and	similar	PGSTE	or	OGSE	protocols.			

	

	

Figure	8		

Example	of	advanced	DW-MRS	experiments	currently	achievable	on	preclinical	scanners	only,	due	to	a	necessary	

maximum	gradient	strength,	Gmax,	>	100	mT/m.	(a)	Typical	size	of	the	MRS	voxel	(6	x	2.5	x	5	mm3)	required	to	reach	

adequate	signal-to-noise	ratio	of	the	diffusion-weighted	signal	of	the	relevant	brain	metabolites,	like	NAA	and	Myo-

inositol.	(b)	Advanced	DW-MRS	experiments	require	optimized	PGSTE	and	OGSE	sequences	and	ultra-strong	

gradient	hardware	in	order	to	reach	high	b	values	(>	5,000	s/mm2)	and	high	frequencies	(w	>	100	Hz).	Adapted	from	

Reynaud	(2017).	(c)	Examples	of	DW-MRS	signal	decays	as	a	function	of	b	and	ADC	as	a	function	of	w-1/2	for	two	

different	metabolites:	NAA	(mostly	compartmentalized	in	neurons)	and	Myo-inositol	(mostly	compartmentalized	in	

glia),	obtained	by	using	PGSTE	and	OGSE	sequences	with	Gmax~800	mT/m	and	respectively	TE/bmax=32	ms	/	60,000	

s/mm2	and	TE/bmax=60	ms	/	1,200	s/mm2	(adapted	from[Palombo	et	al.	(2017a)).	Coloured	areas	represent	the	

regions	accessible	by	current	clinical	scanners	with	Gmax=80	mT/m	(red	areas);	the	Connectom	scanner	with	

Gmax=300	mT/m	(green	areas)	and	a	preclinical	scanner	with	Gmax=800	mT/m	(blue	areas),	using	the	same	TE/bmax	

values	reported	in	(b).	

	

	

Although	much	of	the	development	of	DW-MRS	has	been	done	on	preclinical	systems,	it	is	clear	that	the	
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technique	may	become	a	very	powerful	and	useful	clinical	diagnostic	tool.	Systems	operating	at	moderate	

static	magnetic	field	(e.g.	3	T),	equipped	with	strong	gradient	units	(>100	mT/m)	are	ideal	for	investigating	

short-range	features	of	brain	tissue	microstructure	using	DW-MRS	at	intermediate	diffusion	times	(<200	

ms)	and	high	b	values	(>5,000	s/mm2),	or	ultra-short	diffusion	times	(<5	ms)	and	moderate	b	values	

(b>1500	s/mm2)	(Figure	8-c).	As	previously	discussed,	this	would	provide	enough	sensitivity	to	quantify	

changes	in	cellular	features,	like	the	diameter	and	surface-to-volume	ratio	of	cellular	projections,	and	

improve	the	early	diagnosis	of	neurodegenerative	disease		(Valette	et	al.	2018).	On	the	other	hand,	an	

important	constraint	arising	from	the	low	concentration	of	metabolites,	compared	to	water	(~104	times	

less),	is	that	the	spatial	resolution	i.e.,	the	voxel	sizes,	and	acquisition	time	are	generally	much	larger	than	

those	of	DW-MRI	(Figure	8-a),	representing	a	major	hurdle	to	the	clinical	applicability	of	DW-MRS.	Higher	

static	magnetic	fields	(e.g.,	7	T)	provide	improved	spatial	resolution	and	reduced	acquisition	time,	

facilitating	the	characterisation	of	long-range	features	of	brain	tissue	microstructure	using	DW-MRS	at	long	

diffusion	times	(>200	ms)	and	moderate	b	values	(<5000	s/mm2)(Najac,	Branzoli,	Ronen,	&	Valette,	2016;	

Palombo	et	al.,	2016b).	However,	the	weaker	gradients	available	on	these	systems	(<100	mT/m),	and	the	

challenges	of	achieving	a	well-shimmed	homogenous	field,	remain	an	obstacle	to	performing	high	b-value	

investigations	to	measure	changes	in	the	cellular	short-range	morphology.		

	

Hence,	there	is	still	much	to	be	done	in	terms	of	acquisition	methodology.	The	critical	steps	towards	the	full	

realisation	of	the	potential	of	DW-MRS	in	the	clinic	are	the	development	of:	1)	better	and	stronger	gradient	

systems;	2)	more	sensitive	RF	coils;	3)	higher	static	magnetic	fields.		

	

	

	

	

	

8.	CANCER	IMAGING	/	TUMOUR	CHARACTERIZATION	

	

THE	CHALLENGE	AND	ITS	IMPORTANCE	

The	dMRI	signal	is	potentially	sensitive	to	a	number	of	features	of	the	tumour	microenvironment	that	are	

relevant	to	diagnosis	and	assessment	of	treatment	response.	The	promise	of	specific	measurements	of	

such	properties	is	that	they	provide	direct	insight	into	key	aspects	of	pathology	that	are	only	indirectly	and,	

therefore	potentially	ambiguously,	reflected	using	heuristic	parameterisations	such	as	ADC	or	kurtosis	(e.g.,	

Bourne,	2015;	K.	M.	O'Connor,	Barest,	Moritani,	Sakai,	&	Mian,	2013).		Getting	access	to	such	information	

over	the	whole	organ	of	interest,	(rather	than	measurements	available	from	a	needle	biopsy,	for	example),	

would	pay	huge	dividends	for	diagnosis,	longitudinal	monitoring	and	evaluation	of	treatment	response.		
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BACKGROUND	

As	illustrated	in	Figure	9,	different	models	and	acquisitions	have	been	used	to	estimate	or	evaluate	the	

sensitivity	to:	cell	size	and	intracellular	volume	fraction	(Panagiotaki	et	al.,	2014,	2015;	Reynaud	et	al.,	

2016;	Jiang	et	al.,	2017),	nuclear-to-cell	volume	ratio	(Xu	et	al.,	2009),	water	exchange	(Lampinen	et	al.,	

2017b),	and	vascular	volume	fraction	(Panagiotaki	et	al,	2014,	2015).	Intra-	and	extra-cellular	diffusion	

coefficients	have	been	either	estimated	(Reynaud	et	al.,	2016;	Jiang	et	al.,	2017)	or	fixed	(Panagiotaki	et	al,	

2014,	2015),	and	the	pseudo-diffusion	coefficient	associated	with	blood	flow	has	been	estimated	

(Panagiotaki	et	al,	2014).		

Figure	9.	Literature	examples	of	microstructural	imaging	in	cancer.	(a)	VERDICT	yields	estimates	of	compartment	

volume	fractions,	cell	size,	and	the	pseudo-diffusion	coefficient	in	preclinical	colorectal	xenografts,	demonstrating	

sensitivity	to	treatment-induced	changes	(Panagiotaki	et	al.,	2014).	(b)	IMPULSED	combines	PGSE	and	OGSE	

measurements	to	estimate	cell	size,	and	compartment	volume	fractions	and	diffusivities	in	preclinical	colorectal	

xenografts,	with	dMRI-derived	cellularities	correlating	with	histology	(Jiang	et	al.,	2017).	(c)	POMACE	models	the	

time-dependent	diffusivity	from	PGSE	and	OGSE	data	to	estimate	microstructural	properties	in	preclinical	gliomas,	

with	cell	sizes	consistent	with	independent	measurements	(Reynaud	et	al.,	2017.).	(d)	FEXI	shows	differences	in	the	

apparent	exchange	rate	between	meningiomas	and	astrocytomas	(Lampinen	et	al.,	2017b).	

	

40%, compared with the previously presented protocol
(21), corresponding to a reduction of more than 60% in
Taq. Further reduction of variance and/or Taq can be
achieved by technological improvements. The most
important limiting hardware factor in the optimization
was the maximal gradient amplitude (g), which attained
its upper limit (80 mT/m) despite accounting for a
duty-cycle limitation by increasing TR linearly with g.
Minimizing TE by using stronger gradients thus
increases the SNR more effectively than minimizing TR
to obtain more samples, at least for an assumed T2 of
50 ms. Systems with stronger gradients are available at
some sites, eg, 300 mT/m at the human connectome
scanner (46).

For performing FEXI on systems with different hard-
ware configurations, we recommend using the protocol
in Table 1 with small modifications. A change in the
SNR, eg, from using a coil with more channels (which
was eight in this study), should not affect the optimal
protocol, provided that the noise distribution remains
approximately Gaussian (SNR>2). A change in the
available sampling time, such as an increased Taq or a
reduced nslice, can be accommodated by adding extra
samples while preserving the ratios #bmin/#bmax and
#tmin

m /tmax!
m . A change in g, however, would affect TEf and

TE, and possibly the optima for bf and bmax. We make
two points concerning this matter. First, we do not rec-
ommend breaking the upper b-value limit (1300 s/mm2)

FIG. 6. Overview of the FEXI parameter maps in the six meningioma and five astrocytoma patients, together with coregistered T1W and
FLAIR images, all gamma-corrected with g ¼ 0.7. The AXR values of the meningiomas were homogenously low (mean 6 standard devia-
tion, 0.6 6 0.1 s# 1), excluding the meningioma outlier case (f) in which AXR ¼ 1.7 s# 1. The astrocytomas exhibited significantly higher
AXR values (1.0 6 0.3 s# 1) and ADC values (1.2 6 0.2 versus 0.8 6 0.1mm2/ms). The outlier exhibited similar ADC and s to the other
meningiomas, although parts of it, and parts of cases (a) and (c), exhibited a darker FLAIR contrast, which could be caused by a more
fibrous content.

Table 3
FEXI Parameter Values In Meningiomas and Astrocytomasa

Group n ADC (mm2/ms) s AXR (s# 1) CVAXR (%)

meningioma 6 0.8 6 0.1b 0.2 6 0.1 0.8 6 0.4 58
meningioma* 5 0.8 6 0.1c 0.2 6 0.1 0.6 6 0.1d 20
astrocytoma 5 1.2 6 0.2b,c 0.2 6 0.1 1.0 6 0.3d 26

aFEXI parameter values are presented, with group means and standard deviation, for the meningioma group (six patients, grade I) and
the astrocytoma group (five patients, grade II–IV). The meningioma* group is the meningioma group with one outlier excluded.
bastrocytoma versus meningioma, P<0.05, CI95% [0.3 0.6].
castrocytoma versus meningioma*, P<0.05, CI95% [0.2 0.7].
dastrocytoma versus meningioma*, P<0.05, CI95% [0.2 0.6].

Optimal Experimental Design for Filter Exchange Imaging 1111

Figure 6. Literature examples of microstructural imaging in cancer. (a) VERDICT yields estimates of compartment volume fractions, cell size, and the pseudo-diffusion coefficient in preclinical colorectal xenografts, demonstrating sensitivity to treatment-induced changes (Panagiotaki et al., 2014). (b) 
IMPULSED combines PGSE and OGSE measurements to estimate cell size, and compartment volume fractions and diffusivities in preclinical colorectal xenografts, with dMRI-derived cellularities correlating with histology (Jiang et al., 2017; © 2016 International Society for Magnetic Resonance in 
Medicine). (c) FEXI shows differences in the apparent exchange rate between meningiomas and astrocytomas (Lampinen et al., 2017). (d) POMACE models the time-dependent diffusivity from PGSE and OGSE data to estimate microstructural properties in preclinical gliomas, with cell sizes consistent 
with independent measurements (Reynaud et al., 2016; Copyright © 2016 John Wiley & Sons, Ltd.).

(a)

(d)

Conventionally, these parameters are measured from
invasive biopsies, which suffer from major limitations.
In this study, it is demonstrated that the IMPULSED
method allows an accurate in vivo quantification of cell
size. The IMPULSED-derived cell sizes are slightly larger
than the histology-derived area weighted cell sizes. This
discrepancy can be explained by a combination of tissue
shrinkage during histology preparation and the fact that
the tissue section rarely passes through the center of the
cell, leading to an underestimation of cell size. The
degree of the underestimation increases as the cell size
increases, and as a result, DiFi tumors have the largest
difference between histology and IMPULSED-derived
cell sizes. The cell sizes of HCT116 and SW620 have
also been measured in vitro by light microscopy and
reported to be 14.40 6 3.88 and 11.09 6 1.58 mm (29,30),
consistent with our MR results.

ADC values obtained with a PGSE sequence at a rela-
tively long diffusion time (20–80 ms) have previously
been negatively correlated with cellularity. However,
they are not always correlated with cellularity (42,43).
For example, increased/decreased ADCs in tumor tissues
due to treatment-induced cell shrinkage/swelling have
been reported previously. IMPULSED method extracts
the cell size and intracellular volume fraction from mul-
tiple ADC values and provides a more direct measure-
ment of the tumor cellularity, independent of cancer cell
size. The IMPULSED-derived apparent cellularity is
demonstrated (Fig. 6) to be a more specific indicator of
cellularity in tumor tissues than conventional ADC
values.

Recently, VERDICT, a PGSE based method, has been
used to quantify microstructural properties (e.g., cell size
and intracellular volume fraction) in tumors (25,44).
However, this method requires prior knowledge of intra/
extra-cellular diffusivities to minimize fitting errors (44).
As demonstrated recently (45), it is challenging for these
PGSE based methods to measure cell size and intracellu-
lar diffusivity simultaneously, presumably due to the rel-
atively long diffusion times used in PGSE measurements.
The incorporation of OGSE acquisitions increases the
sensitivity to intracellular diffusion, which in turn pro-
vides extra microstructural information compared with
methods with PGSE measurements only. In addition, it
has been reported (46) that low-frequency OGSE sequen-
ces provide more sensitivity to the axon diameter than
PGSE sequences when axons have unknown and dis-
persed orientations. This conclusion may also be true
when measuring the tumor cell size if the cells are mod-
eled as ellipsoids. Therefore, the IMPULSED method
provides more comprehensive microstructural informa-
tion about tumors at broader length scales, and thus may
be a plausible way to characterize tumor status.

The water exchange between intra and extracellular
spaces was assumed negligible in the current study. This
assumption has been shown to be reasonable in previous
OGSE studies (47–49), because the effective diffusion
time of the OGSE measurement is usually much shorter
(< 5 ms) compared with the intracellular lifetime of
water molecules (50,51). However, the precise effect of
water exchange on diffusion measurements in vivo
remains unclear. The incorporation of PGSE measure-
ments with a long diffusion time makes this method
more likely to be affected by water exchange than typical
OGSE methods. As reported in our previous in vitro
study, the ignorance of membrane permeability is likely
to underestimate the fitted intracellular volume fraction
without affecting the accuracy of cell size measurement
(28).

In the current study, the fitted intracellular volume
fractions are approximately 65%, 45%, and 55% for
DiFi, HCT116, and SW620 tumors, respectively, which
are lower than typical intracellular volume fractions in
tumor tissues reported previously. Such an underestima-
tion of intracellular volume leads to an underestimation
of cellularities, as shown in Figure 6b. In addition, trans-
cytolemmal water exchange increases significantly in
developing/treated tumors, especially apoptotic regions
(52). Therefore, the influence of transcytolemmal water

FIG. 4. H&E stained histological image, PGSE-derived ADC map,
and IMPULSED-derived parametric maps (apparent cellularity, d,
vin,, Din, Dex0, and bex) of a representative slice through tumor,
overlaid on T2-weighted MR images.
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(c)

(b)
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Such	additional	pathological	specificity	then	has	the	potential	to	provide	robust	biomarkers	(O'Connor	et	

al.,	2017)	for	a	range	of	potential	applications,	including:	

● Distinguishing	tumour/non-tumour	tissue:	Often	tumours	exhibit	alterations	in	cell	packing	that	can	

potentially	be	identified	using	dMRI.	Vasculature	is	also	typically	abnormal	in	cancer.	

● Distinguishing	between	tumours	of	different	grades	and	characterizing	tumour	extent:	As	tumours	

progress,	they	exhibit	phenomena	such	as	infiltration	of	surrounding	tissue,	leading	to	a	mixture	of	healthy	

and	tumour	cell	types	at	the	tumour	margins,	in	addition	to	internal	heterogeneity	of	cellularity	and	

vascularity.	

● Predicting	treatment	response:	Microstructural	characterisation	of	pre-treatment	tumours	may	aid	

interpretation	of,	or	offer	improved	sensitivity	over,	the	observation	of	higher	baseline	ADC	being	linked	to	

poorer	treatment	response	(Tam	et	al.,	2013),	for	example	by	providing	a	means	of	attributing	differences	

in	ADC	to	differences	in	necrosis	or	cellularity	

● Early	assessment	of	response:	Cell	stress	occurring	early	during	treatment	induces	changes	in	the	flux	of	

water	across	cell	membranes,	leading	to	changes	in	cell	size	and	packing	density.	As	cell	death	ensues,	

further	changes	in	these	parameters	may	occur	in	advance	of	gross	tumour	size	change.	

● Distinguishing	pseudo-progression	from	true	progression:	Apparent	tumour	growth	(typically	in	the	context	

of	brain	tumours)	following	treatment	can	be	associated	with	changes	in	contrast	enhancement	caused	by	

damage	to	the	tumour	tissue	and	potentially	to	surrounding	non-tumourous	tissue.	This	increase	in	

apparent	tumour	volume	would	classically	be	associated	with	tumour	progression	but	in	reality	is	a	sign	of	

response	to	treatment.	The	associated	cell	death,	however,	is	reflected	in	changes	in	cell	packing,	which	

should	be	discernible	with	dMRI.		

	

THE	PROMISE		

The	above	measurements	require	the	fitting	of	models	of	water	compartmentalisation	and	exchange	to	

data	obtained	at	a	range	of	diffusion	times	and	gradient	strengths.	As	noted	several	times	already,	current	

clinical	MRI	systems	lack	the	gradient	performance	to	enable	broad	coverage	of	the	G-∆	space	(see	Figure	

1b),	leading	to	model	parameter	imprecision,	poor	model	fitting	and	the	use	of	overly	simplistic	models.	

	

As	is	the	case	for	all	microstructure	imaging	using	dMRI,	access	to	higher	gradient	strengths	enables	higher	

SNR/shorter	 TE	 for	 a	 given	 b-value,	 as	 well	 as	 larger	 b-values	 for	 shorter	 diffusion	 times.	 Although	

differences	in	rise	times	for	80	mT/m	and	300	mT/m	gradients	mean	that	a	wider	range	of	∆	values	are	in	

principle	achievable	with	the	former,	the	lower	∆	values	suffer	from	very	low	b-values	(e.g.,	187	s/mm2	for	

∂=5ms,	∆=18ms,	G=80mT/m,	rise	time=0.4	ms;	see	Figure	1b).	300	mT/m	gradients	make	shorter	diffusion	

times	(∆~24	ms)	more	practical,	as	large	b-values	are	still	achievable	(e.g.	8693	s/mm2	for	∂=8	ms,	∆=24	ms,	

G=300	mT/m,	rise	time=3.6	ms;	see	Figure	9).		As	the	cell	sizes	in	cancer	are	typically	greater	than	the	sizes	

of	axonal	 features	of	 interest	 in	most	neurological	dMRI,	with	the	significant	exception	of	 increased	SNR,	
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the	 advantages	 of	 higher	G	 are	 not	 necessarily	 as	 clear	 for	modeling	 of	 basic	 cell	 dimensions.	However,	

heuristic	quantification	of	the	dMRI	signal	in	cancer	can	also	benefit	from	better	gradient	performance.	For	

example,	 recent	 investigation	 of	 diffusion	 time-dependent	 ADC	 in	 prostate	 tumours	 suggests	 shorter	∆-

values	yield	greater	contrast	between	high-	and	low-grade	tumours	(Lemberskiy	et	al.,	2017).	

	

Cellular	and	sub-cellular	structure	

Combining	 stronger	 gradients	 with	 OGSE	 gradient	 waveforms	 increases	 sensitivity	 to	 differences	 in	 the	

ratio	of	nuclear	volume	to	cell	volume		(Xu,	Does,	&	Gore,	2009),	the	relevance	of	which	is	that	nuclear	size	

is	related	to	tumour	grade,	and	can	change	with	therapy.	However,	the	rise	time	requirements	imposed	in	

order	 to	 meet	 safety	 constraints	 (see	 Section	 11	 below)	 limits	 the	 OGSE	 frequencies	 which	 can	 be	

practically	 achieved	 (~70	 Hz	 for	 a	 3.6	 ms	 rise	 time).	 This	 suggests	 that	 the	 main	 benefit	 of	 stronger	

gradients	 for	 OGSE	 will	 be	 the	 ability	 to	 achieve	 higher	 b-values	 for	 low	 frequencies,	 as	 opposed	 to	

providing	access	to	higher	frequencies.	Alternative	gradient	waveforms,	including	those	used	for	spherical	

tensor	encoding	(Eriksson	et	al.,	2013;	Lasič	et	al.,	2014)	can	also	provide	deeper	insight	into	tissue	than	DT-

MRI,	 characterizing	 differences	 in	 microscopic	 anisotropy	 (Szczepankiewicz	 et	 al.,	 2015;	 2016).	 The	

relatively	long	duration	of	the	waveforms	required	to	play	out	a	spherical	tensor	encoding	mean	that	SNR	is	

compromised	on	commonly-available	hardware,	but	 implementation	with	stronger	gradients	 reduces	 the	

duration	 for	 which	 each	 ‘lobe’	 needs	 to	 be	 played	 out.	 In	 turn,	 this	 conveys	 a	 reduction	 in	 TE	 and	 a	

concomitant	boost	in	SNR	(approximately	50%	at	300	mT/m	compared	to	80	mT/m).	

	

Beyond	cellularity	–	vasculature	and	other	microstructure	

Flow	and	vascular	volume	fraction	have	been	estimated	using	model-based	approaches	for	interrogating	

the	dMRI	signal	in	tumours.	The	simplest	approach	is	to	employ	the	intra-voxel	incoherent	motion	(IVIM)	

model	(Iima	&	Le	Bihan,	2016;	Koh,	Collins,	&	Orton,	2011;	Le	Bihan	et	al.,	1986;	Marzi,	Piludu,	&	Vidiri,	

2013),	although	more	sophisticated	approaches	such	as	VERDICT	(Panagiotaki	et	al.,	2014)	offer	the	

promise	of	greater	specificity	of	signal	characterisation	in	terms	of	the	relative	contribution	of	different	

cellular	architecture	and	vasculature.	An	alternative	pragmatic	approach	is	to	identify	the	contribution	of	

the	vasculature	by	combining	flow-	and	non-flow-compensated	acquisitions	(Wetscherek	et	al.,	2015;	

Ahlgren	et	al.,	2016).	Finally,	beyond	characterising	the	intracellular	and	vascular	spaces,	dMRI	can	provide	

information	about	extracellular	matrix	components	such	as	collagen1	(Col1)	fibres,	which	facilitate	

macromolecular	transport	within	tissue	and	dissemination	of	cancer	cells.	It	has	already	been	shown	that	

metrics	derived	from	DT-MRI	(FA	/	MD)	are	sensitive	to	differences	in	Col1	fibres	(Kakkad	et	al.,	2016).		

	

	

Measurement	validation	
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Measurement	validation	is	obviously	an	essential	step	in	the	development	of	imaging	biomarkers	for	cancer	

(O'Connor	et	al.,	2017).	Ultra-strong	gradients	are	not	currently	available	to	the	clinical	cancer	imaging	

community,	so	methods	that	work	only	with	access	to	such	systems	are	unlikely	to	generate	useful	

biomarkers	(although	see	Section	10	on	Image	Quality	Transfer).	As	such,	the	benefits	of	increased	gradient	

strengths	for	clinical	cancer	imaging	are	currently	likely	to	be	indirect,	derived	from	using	such	high	

performance	systems	to	provide	validation	of	methods	that	can	be	implemented	on	lower-performance	

systems.	Indeed,	this	may	be	the	only	way	to	demonstrate	equivalence	between	biomarker	information	

available	on	human	MRI	systems,	and	on	preclinical	scanners.	With	preclinical	systems,	although	gradient	

strength	is	high,	the	field	strength	is	typically	also	larger,	and	there	are	differences	in	coils,	relaxation	times,	

and	resolution	.	The	ultra-strong	gradient	system,	coupled	with	a	3T	human	system,	allows	us	to	match	

other	(non-diffusion	parameters)	to	clinical	situations,	which	is	useful	particularly	when	histological	

validation	is	unavailable	or	inadequate.		Finally,	we	recognize	of	course	that	ultra-strong	gradient	hardware	

is	not	yet	widely	available,	so	the	immediate	benefits	for	cancer	care	wil	be	indirect.	However,	in	Section	

10,	we	speculate	as	to	how	measurements	on	such	systems	can	inform	more	‘routine’	clinical	assessments	

on	more	standard	hardware.		

	

	

9.	FUNCTIONAL	DIFFUSION	IMAGING	

	

THE	CHALLENGE	AND	ITS	IMPORTANCE	

Measuring	neuronal	activity	non-invasively	is	fundamental	to	understanding	the	brain	and	its	dysfunction	

occurring	in	disease.	Direct	measurements	of	the	effects	of	neuronal	current	can	be	achieved	with	

neurophysiological	techniques,	such	as	electro-encephalography	(EEG)	and	magneto-encephalography	

(MEG).	These	methods,	however,	suffer	from	limited	spatial	resolution,	and	their	sensitivity	is	typically	

restricted	to	cortical	activity.	Functional	MRI	(fMRI)	based	on	blood-oxygenation	level-dependent	(BOLD)	

contrast	on	the	other	hand	provides	a	very	indirect	estimation	of	neural	activation	through	related	

haemodynamic	and	metabolic	changes	(neurovascular	coupling)	(Logothetis	&	Wandell,	2004).	One	of	the	

consequences	is	that	the	BOLD	signal	originates	from	both	capillaries	close	to	the	site	of	neuronal	activity,	

and	larger	vessels	or	distant	draining	veins	(Lai,	Glover,	&	Haacke,	2000;	Olman,	Inati,	&	Heeger,	2007;	

Turner,	2001;	2002)	thus	limiting	the	spatial	specificity	of	BOLD.	In	addition,	the	BOLD	response	will	depend	

on	the	vascular	density,	which	varies	between	brain	areas	(Vigneau-Roy,	Bernier,	Descoteaux,	&	

Whittingstall,	2013),	and	might	be	compromised	in	conditions	such	as	stroke.	The	neurovascular	coupling	

also	imposes	constraints	on	the	temporal	resolution	of	the	BOLD	signal.	The	haemodynamic	response	

function	(HRF)	that	defines	BOLD	signal	change	is	characterised	by	1-2	second	delay	between	the	onset	of	

neural	activity	and	the	time	required	for	blood	to	travel	to	the	active	region,	and	a	time	to	peak	of	
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approximately	6-12	seconds,	with	large	inter-subject	variations.	A	method	able	to	combine	the	high	spatial	

resolution	of	MRI	with	a	more	direct	measurement	of	brain	activity	would	offer	attractive	advantages.	As	

cell	swelling	has	been	reported	as	one	of	the	physiological	processes	accompanying	neuronal	activation	

(Tasaki	&	Iwasa,	1982b;	1982a),	diffusion-weighted	(DW)	MRI	has	been	proposed	as	a	potential	candidate	

for	detecting	temporal	patterns	in	cell	physiology	(Aso	et	al.,	2009;	Latour,	Hasegawa,	Formato,	Fisher,	&	

Sotak,	1994;	Le	Bihan	et	al.,	2012;	Le	Bihan,	Urayama,	Aso,	Hanakawa,	&	Fukuyama,	2006).	

	

	

	

BACKGROUND	

The	idea	that	DW	MRI	could	be	sensitive	to	functional	activation	has	been	mooted	for	several	years	(le	

Bihan	et	al.	2012).	Initial	attempts	to	exploit	this	sensitivity	built	upon	the	concept	of	intravoxel	incoherent	

motion	(IVIM)	reflecting	the	displacement	of	water	molecules	in	the	pseudo-randomly	orientated	capillary	

network	at	low	b-values	(less	than	100-200	s/mm2)	(Turner	et	al.,	1990).	The	observation	of	a	transient	

reduction	in	ADC	of	the	occipital	cortex	during	visual	stimulation	at	high	b	value	(~1400	smm-2),	however,	

pointed	at	a	different	mechanism	(Darquié,	Poline,	Poupon,	Saint-Jalmes,	&	Le	Bihan,	2001).	This	was	

initially	interpreted	as	a	consequence	of	cortical	cell	swelling	resulting	in	increased	tortuosity	of	the	

extracellular	space.	In	2006,	LeBihan	et	al	(Le	Bihan	et	al.,	2006)	explored	the	changes	in	ADC	occurring	at	a	

range	of	b-values,	demonstrating	that	the	effect	is	enlarged	at	large	b-values	(>1500	smm-2)	and	seems	to	

precede	the	haemodynamic	response	measured	by	blood	oxygenation	level	dependent	(BOLD)	contrast.	

Based	on	this	observation	they	advanced	the	hypothesis	that	changes	in	DW	MRI	reflect	early	biophysical	

events	associated	with	neuronal	activation	and	thus	provide	a	more	direct	measure	than	BOLD	that,	as	

discussed	above,	has	a	large	contribution	from	large	and	distant	draining	veins.	

Le	Bihan	et	al	(2006)	proposed	a	quantitative	interpretation	by	means	of	the	biphasic	model	of	water	

diffusion	in	the	gray	matter:	according	to	such	model,	the	empirically	observed	slow	(SDP)	and	fast	(FDP)	

diffusion	pools	correspond	to	both,	extra	and	intracellular	spaces,	with	SDP	originating	from	molecules	

hindered	by	their	close	proximity	to	cell	membranes	(Le	Bihan	et	al.,	2006).	Swelling	of	the	cell	membrane	

may	thus	result	in	the	expansion	of	the	SDP	volume	fraction	(and	a	consequent	reduction	in	the	FDP	

volume	fraction)	resulting	in	a	decrease	in	water	diffusion.	Fitting	this	model	to	the	data	from	6	participants	

yielded	a	constant	increase	of	approximately	0.6%	in	the	SDP	volume	fraction.	This	model,	however,	is	in	

conflict	with	the	extremely	fast	exchange	rates	expected	between	these	water	fractions	(Cowan	et	al.,	

2005;	Jungwirth,	2011).	

The	hypothesis	that	the	diffusion	fMRI	signal	originates	solely	from	neuronal	activity	has,	been	challenged	

by	other	authors.	Miller	et	al.	(Miller	et	al.,	2007)	used	hypercapnia,	a	condition	known	to	induce	vascular	

changes	measurable	with	BOLD,	in	the	absence	of	neuronal	signal.	They	showed	that	the	amplitude	of	the	

change	in	diffusion	fMRI	was	comparable	to	that	obtained	with	a	visual	stimulation,	and	failed	to	replicate	
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the	precedence	of	the	diffusion	fMRI	response	to	stimulation	compared	to	BOLD.	Other	studies	have	also	

failed	to	replicate	the	b-factor	dependency	(Autio	&	Roberts,	2014).	Finally,	a	certain	degree	of	anisotropy	

of	the	hypercapnia-induced	signal	changes	has	been	reported,	which	makes	it	less	likely	to	be	related	to	cell	

swelling	in	the	grey	matter	(Miller	et	al.,	2007).		As	an	alternative	explanation,	Pampel	et	al	(Pampel,	

Jochimsen,	&	Möller,	2010)	have	suggested	that	background	gradients	resulting	from	the	difference	in	

magnetic	susceptibility	between	water	and	blood	might	interact	with	the	diffusion	gradients	thus	causing	

the	observed	changes	in	ADC.	

	

	

	

THE	PROMISE		

The	exact	source	of	diffusion	fMRI	contrast	has	yet	to	be	determined.	Part	of	the	difficulty	in	designing	

appropriate	experiments	lies	in	the	inherently	lowSNR	of	the	diffusion	fMRI	signal,	which	limits	the	range	of	

feasible	experimental	manipulations.	Such	a	low	SNR	is	one	of	the	biggest	concerns	about	diffusion	fMRI,	as	

even	the	simplest	experiment	requires	the	acquisition	of	very	large	datasets	(R.	J.	Williams,	Reutens,	&	

Hocking,	2016)	The	advent	of	faster	sequences	such	as	multiband	imaging,	aka	simultaneous	multi-slice	

(Moeller	et	al.,	2010),	can	help,	but	a	significant	boost	in	SNR	is	the	only	way	to	make	these	experiments	

practical.	Moving	to	higher	field	strength	increases	the	b=0	signal,	but	due	to	the	shortening	of	T2	yields	a	

limited	benefit	at	high	b-values.	A	real	improvement	can	only	be	achieved	with	strategies	that	allow	shorter	

TEs	to	be	used	with	heavily	diffusion-weighted	sequences,	thus	mitigating	the	signal	loss	due	to	T2	decay.	

Multiple	channel	receiver	coils	(e.g.,	128-channels),	with	their	better	SNR	compared	to	20-	or	32-channel	

coils,	could	help,	especially	if	combined	with	parallel	imaging	schemes	that	reduce	the	TE.	However,	the	

acceleration	factor	achievable	is	limited	(Larkman	and	Nunes,	2007).	The	use	of	ultra-large	gradients	is	thus	

an	efficient	way	of	increasing	the	SNR	in	DW-MRI.		In	terms	of	clarifying	the	source	of	the	diffusion	fMRI	

signal	change,	a	high	gradient	performance-scanner	can	help	by	addressing	4	fundamental	issues:	

		

1.	Is	the	diffusion	signal	change	associated	with	functional	activation	dependent	on	the	b-value?		

Le	Bihan	et	al.	(Le	Bihan	et	al.,	2006)	reported	a	linear	increase	of	the	raw	signal	change	with	b,	for	b	

ranging	from	600	to	2400	s/mm2.	They	argued	this	was	compatible	with	the	biphasic	model,	as	higher	b	

values	would	supress	more	of	the	FDP	signal	and	therefore	result	in	the	signal	being	more	heavily	weighted	

by	SDP.	As	discussed	in	Section	4	on	multi-contrast	experiments,	ultra-high	gradients	allow	much	higher	b	

values	than	possible	on	standard	MRI	scanners,	while	keeping	the	TE	relatively	short.	Based	on	Fig	1,	the	

same	b	value	of	4000	smm-2	(which	is	close	to	the	optimum	recommended	for	diffusion	fMRI)	can	be	

achieved	with	a	TE	of	70	ms	on	a	“super-scanner”,	compared	to	a	TE	of	120	ms	on	a	system	with	maximum	

gradient	strength	of	80	mTm-1.	This	results	in	2.3	times	large	SNR	for	a	T2	of	60ms.	Using	the	theoretical	

relationship	between	temporal	SNR	and	number	of	points	needed	(Murphy	et	al.,	2007),	we	can	infer	that,	
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in	order	to	detect	the	expected	effect	size	of	0.16%	(Le	Bihan	et	al.,	2006),	the	number	of	sampling	points	

can	be	reduced	by	a	factor	of	12	when	using	ultra-strong	gradients.		The	faster	gradients	also	allow	efficient	

implementations	of	high	b-value	twice-refocused	spin	echo	sequences	(Reese,	Heid,	Weisskoff,	&	Wedeen,	

2003),	which	should	mitigate	the	impact	of	BOLD	background	gradient	contributions	(Pampel	et	al.,	2010)	

to	the	diffusion	fMRI	signal.	

2.	Is	the	diffusion	signal	change	associated	with	functional	activation	dependent	on	the	TE?	

Another	interesting	question	is	whether	the	change	observed	with	activation	in	the	diffusion	fMRI	raw	

signal	is	caused	not	by	a	change	in	the	SDP	compartment	size,	as	expected	if	the	effect	was	related	to	cell	

swelling,	but	by	a	change	in	the	T2	of	the	diffusion	coefficient	of	either	compartment.	Miller	et	al	

hypothesised	that	veins	and	capillaries	might	have	different	T2	BOLD	effects	(Miller	et	al.,	2007)	because	of	

their	differing	degree	of	oxygenation,	which	might	explain	the	changes	in	the	raw	signal.	

Access	to	ultra-high	magnetic	field	gradients	allows	large	b-values	to	be	obtained	at	relatively	short	TEs,	

and	therefore	the	effects	of	mapping	the	TE	dependency	of	the	raw	signal	(see	also	Section	4	on	multi-

contrast	experiments).		

3.	Is	the	diffusion	signal	change	associated	with	functional	activation	isotropic?	

If	the	effect	observed	with	diffusion	fMRI	is	caused	by	swelling	of	the	neuronal	cell	bodies,	it	would	be	

expected	to	be	fairly	isotropic,	i.e.,	independent	of	the	direction	of	the	diffusion	gradients.	However,	some	

anisotropy	has	been	observed	(Miller	et	al.,	2007)	potentially	attributable	to	signal	coming	from	structures	

with	ordered	geometry,	such	as	vessels	in	the	cortex.	Higher	resolution	scans,	achievable	through	the	SNR	

enhancement	granted	by	ultra-high	gradients	(see	Section	5)	could	help	to	clarify	the	origin	of	this	

observed	anisotropy.	Realistically,	however,	the	estimated	SNR	advantage	of	2.3	estimated	for	T2=60ms	at	

b=400	s/mm2	allows	a	reduction	in	isotropic	voxel	size	of	approximately	0.75.	

	

4.	Is	the	diffusion	signal	change	associated	with	functional	activation	more	spatially	specific	than	BOLD?	

One	of	the	observations	that	support	the	neuronal	origin	of	the	diffusion	fMRI	signal	is	the	more	precise	

localisation	of	activations	within	the	cortical	ribbon,	compared	to	BOLD	(Le	Bihan	et	al.,	2006).	However,	

due	to	the	extremely	low	SNR	of	diffusion	fMRI,	smoothing	is	necessary	to	enable	the	measurement	of	any	

activation	at	all,	thus	compromising	the	spatial	resolution	(Williams	et	al.,	2016).	

As	ultra-high	magnetic	field	gradients	enable	diffusion	measurements	with	short	TE,	the	resulting	enhanced	

SNR	could	be	spent	on	investigating	the	spatial	specificity	of	diffusion	fMRI.	Ideally,	the	profiles	of	diffusion	

and	BOLD	fMRI	could	be	compared	between	different	cortical	layers	(Williams	et	al.,	2016).		
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10.	IMAGE	QUALITY	TRANSFER		

	

THE	CHALLENGE	AND	ITS	IMPORTANCE	

In	this	article	we	have	identified	clearly	the	gains	to	be	made	by	investing	in	ultra-strong	diffusion	gradient	

technology.		However,	as	devices	with	this	technology	are	not	mass-produced,	they	incur	considerable	cost	

and	are	not	currently	widely	available.		A	reasonable	question,	when	reading	an	article	such	as	this	would	

be:	“That’s	all	very	well,	if	you	have	access	to	such	high	performance	equipment.	However,	most	clinical/	

research	imaging	facilities	do	not.	How	then,	can	such	technology	be	of	widespread	benefit?”			

	

One	approach	is	to	establish	regional	centres	that	are	willing	to	accept	patients	/	host	research	visits	from	

parties	outside	of	the	host	institution	(this	is	the	model	employed	in	establishing	the	National	Facility	for	In	

Vivo	MR	Imaging	of	Human	Tissue	Microstructure	in	the	UK).	However,	this	still	necessitates	the	

establishment	of	sufficient	regional	centres	to	provide	access.			Another	approach	is	to	‘transfer’	the	

benefits	of	ultra-strong	gradient	technology	to	systems	with	lower	gradient	performance.		The	idea	of	

image	quality	transfer	(IQT)	is	to	use	modern	machine	learning	techniques	to	construct	a	mapping	from	

“low	quality”	to	“high	quality”	images	from	matched	pairs.	We	can	then	use	the	learned	mapping	to	

approximate	the	high	quality	equivalent	of	a	low	quality	image,	i.e.,	estimate	the	image	we	would	have	

obtained	from	more	time-expensive	protocol	or	hard-to-access	imaging	device	using	only	data	from	easily	

accessible	imaging	hardware	and	software.		

	

Through	this	technology,	we	can	potentially	bridge	the	gap	between	rare	and	experimental	systems,	such	

as	ultra-strong	gradient	or	ultra-high-field	MRI	scanners,	and	widely	available	commercial	systems	and	

bring	the	power	of	tomorrow’s	imaging	technology	into	today’s	clinical	applications.	The	existence	of	one-

off	bespoke	devices	such	as	the	microstructure	scanner	enables	this	kind	of	approach.	The	ambitious	

potential	is	for	a	new	medical-imaging	“paradigm	exploiting	coupled	design	of	a)	bespoke	high-powered	

devices	to	capture	databases	of	high	quality	images,	and	b)	widely	deployed	cheap	and/or	low-power	

devices	designed	specifically	to	exploit	the	rich	information	from	(a)”	via	IQT	(Alexander	et	al.	2017).	

	

BACKGROUND	

Early	demonstrations	of	the	idea	show	good	promise.	Alexander	et	al.	(Alexander,	Zikic,	Ghosh,	Tanno,	

Wottschel,	et	al.,	2017b;	Alexander,	Zikic,	Zhang,	Zhang,	&	Criminisi,	2014)	show	two	potential	applications	

in	dMRI:	i)	resolution	enhancement	of	low-resolution	diffusion-parameter	maps	to	high	resolution;	and	ii)	

estimation	of	microstructural	maps	from	diffusion	tensor	images.	The	resolution	enhancement	from	

learned	mappings	shows	substantial	improvements	over	standard	techniques,	such	as	interpolation.	One	

key	result	demonstrates	how	the	operation	enables	tractography	to	recover	thin	white	matter	fibre	
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pathways,	previously	recoverable	only	at	1.25mm	isotropic	resolution	(unobtainable	in	standard	clinical	

protocols)	but	from	data	acquired	at	2.5mm	isotropic	resolution	(see	Figure	10a).		

	

	
Figure	10.			Examples	of	image	quality	transfer	from	the	literature.	a.	recovering	thin	white	matter	fibre	pathways,	

previously	recoverable	only	at	1.25mm	isotropic	resolution	(unobtainable	in	standard	clinical	protocols)	from	data	

acquired	at	2.5mm	isotropic	resolution	(Alexander	et	al.	2017b);	b.	Constructing	a	mapping	from	3T	structural	

images	to	7T	equivalents	(Bahrami	et	al.	2016)		

	

Moreover,	the	operation	shows	remarkable	generalizability	beyond	training	data	–	even	mappings	learned	

from	fixed	ex	vivo	monkey	brain	images	enhance	in	vivo	human	brain	images	substantially	better	than	

(a)
(b)
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standard	methods.	The	second	operation	–	estimating	microstructural	maps	from	diffusion	tensor	imaging	

–	is	challenging,	because	microstructural	maps,	e.g.	from	NODDI	(Zhang	et	al.,	2012)	and	spherical	mean	

technique	(Kaden	et	al.,	2016)	typically	require	multi-shell	acquisition	protocols	whereas	DT-MRI	requires	a	

much	less	rich,	and	cheaper,	acquisition	protocol	over	only	one	shell.	The	potential	of	IQT	is	to	estimate	

these	microstructural	maps	from	historical	single-shell	data	sets,	from	which	it	would	normally	be	

impossible	to	compute	such	maps.	However,	although	the	estimated	microstructural	maps	in	(Alexander,	

Zikic,	Ghosh,	Tanno,	Wottschel,	et	al.,	2017b)	broadly	match	ground	truth	from	multi-shell	data	sets,	

significant	detail	is	lost	and	the	technology	likely	needs	further	development	before	the	idea	will	find	useful	

application.	Golkov	et	al.	(Golkov	et	al.,	2016)	used	a	similar	idea	to	learn	a	prior	on	the	structure	of	NODDI	

maps	that	enables	reconstruction	from	sparse	data	sets,	although	still	involving	multiple	b-values.	Bahrami	

et	al.	(Bahrami	et	al.	2016)	aim	to	construct	a	mapping	from	3T	structural	images	to	7T	equivalents	again	

showing	promising	results	(see	Figure	10b).	The	original	implementation	of	Alexander’s	work	uses	patch-

based,	random-forest	regression;	Bahrami’s	7T-3T	mappings	use	canonical	correlation	analysis.	A	more	

recent	implementation	for	diffusion	resolution	enhancement	(Tanno	et	al.,	2017)	exploits	the	power	of	

deep	learning	to	gain	substantial	performance	enhancements.	Bahrami’s	more	recent	work	also	explores	

deep	neural	networks	for	mapping	3T	to	7T	(Bahrami	et	al.	2016b).	

	

THE	PROMISE	

Image	quality	transfer	remains	in	its	infancy	and	substantial	further	development	and	validation	is	

necessary	to	support	widespread	adoption.	Key	challenges	in	development	include:	finding	matched	pairs,	

and	handling	and	quantifying	uncertainty	in	mappings.	One	way	to	find	matched	pairs	is	to	acquire	

separate	low	and	high-quality	images	(Bahrami	et	al.,	2016).	However,	this	approach	leads	to	issues	of	

image	registration,	as	alignment	is	never	perfect,	while	learning	approaches	typically	assume	it	is.	Future	

efforts	may	consider	embedding	misalignment	implicitly	in	the	learning	process.	Another	approach,	

(Alexander,	Zikic,	Ghosh,	Tanno,	Wottschel,	et	al.,	2017b),	is	to	simulate	the	low	quality	image	from	the	

high	quality	image	through	a	sub-sampling	procedure.	While	this,	by	definition,	produces	pairs	of	images	

that	are	in	perfect	alignment,	the	artificial	construction	of	the	low-quality	image	can	reduce	the	accuracy	of	

the	learned	mapping.	Quantification	of	uncertainty	is	relatively	straightforward	with	traditional	learning	

algorithms,	such	as	random	forests,	and	Tanno	et	al.	(Tanno	et	al.,	2016)	showed	compelling	results	in	error	

prediction	from	IQT	through	a	Bayesian	random	forest	implementation.	Uncertainty	estimation	with	deep	

neural	networks	is	more	challenging.	Although	efforts	to	do	so	show	promise	(Tanno	et	al.,	2017),	this	is	

still	an	area	for	significant	future	research.	
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11.	PRACTICAL	ISSUES	FOR	THE	USE	OF	ULTRA-STRONG	GRADIENTS	

	

The	advantages	of	ultra-strong	gradients	for	diffusion-based	microstructure	imaging	have	been	clearly	

outlined	in	the	previous	sections.	Here,	we	discuss	the	practical	issues	that	set	limits	on	the	exploitation	of	

ultra-strong	gradients	for	different	types	of	microstructure	imaging	studies.	The	Connectom	scanner’s	

ultra-strong	gradient	hardware	can	reach	a	maximum	gradient	amplitude	of	300	mT/m	(McNab	et	al.,	

2013).		The	maximum	achievable	slew-rate	is	200	mT/m/ms,	which	is	comparable	with	the	maximum	slew	

rate	of	other	commercially	available	gradient	systems	that	provide	lower	maximum	gradient	strengths.	

However,	while	these	specifications	promise	vastly	improved	gradient	performance	in	terms	of	achievable	

b-value	and	q-value	per	unit	TE,	it	is	currently	not	possible	to	exploit	them	to	the	full	hardware	limits	due	to	

physiology-related	constraints.	

	

	

Physiological	limits:	Peripheral	Nerve	Stimulation	(PNS)	and	Cardiac	Stimulation:	

The	first	relevant	safety	constraint	concerns	the	avoidance	of	peripheral	nerve	stimulation	(PNS).	The	time-

varying	magnetic	fields	produced	by	fast-switching	gradient	systems	can	induce	stimulation	in	peripheral	

nerves.	This	is	experienced	as	a	tingling	or	twitching	sensation	close	to	the	threshold	for	stimulation,	but	

can	become	uncomfortable	or	painful	as	the	rate	of	change	of	field	is	increased	significantly	above	

threshold.	The	threshold	for	stimulation	depends	on	the	spatio-temporal	characteristics	of	the	electric	

fields	induced	in	the	conducting	tissues	of	the	body	and	their	relationship	to	the	anatomical	and	

physiological	characteristics	of	peripheral	nerves.	Although	this	complexity	makes	it	difficult	to	predict	the	

site	and	threshold	of	stimulation	at	the	individual	subject	level	(Davids,	Guérin,	Malzacher,	Schad,	&	Wald,	

2017)	the	likelihood	of	stimulation	depends	upon:	(i)	the	rate	of	change	of	gradient	amplitude	with	time;	

(ii)	the	peak	gradient	amplitude;	and	(iii)	the	position	of	the	subject	within	the	gradient	coils	(Chronik	&	

Rutt,	2001).	To	characterise	the	average	stimulation	characteristics	of	a	gradient	system,	MR	scanner	

manufacturers	generally	test	the	PNS	limits	in	experiments	on	human	subjects	using	controlled	gradient	

waveforms.		Using	this	experimental	data,	the	threshold	for	stimulation	for	other	gradient	waveforms	can	

then	be	well	characterized	using	the	SAFE	model		(Hebrank	&	Gebhart,	2000)	and	thus	PNS	can	be	

controlled.	Rapidly	time-varying	magnetic	field	gradients	can	also	potentially	cause	cardiac	stimulation.	

Based	on	studies	using	direct	electrical	stimulation	of	the	heart,	this	would	be	expected	to	take	the	form	of	

ectopic	beats	and	induced	cardiac	arrhythmia	at	lower	levels	of	stimulation	and	fibrillation	at	higher	

stimulation	levels.	No	such	cardiac	stimulation	due	to	MRI	gradient	switching	has	ever	been	reported	in	

human	subjects,	though	ectopic	beats	have	been	generated	in	animal	experiments	using	small	coils	to	

produce	extremely	high	rates	of	change	of	magnetic	field	(2700	T/s	over	a	ramp	duration	of	530	µs)	

(Bourland,	Nyenhuis,	&	Schaefer,	1999;	Schaefer,	Bourland,	&	Nyenhuis,	2000).	As	a	result	of	differences	in	

the	electrophysiology	of	cardiac	muscle	and	peripheral	nerves,	the	probability	for	cardiac	stimulation	
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arising	from	gradient	waveforms	on	clinical	scanners	is	extremely	small	(of	the	order	of	10-9)),	but	the	

higher	hardware	capabilities	of	the	Connectom	scanner	means	that	the	potential	to	cause	cardiac	

stimulation	must	be	considered.	In	previous	work,	(Setsompop	et	al.,	2013)	it	was	also	found	that	

magnetophosphenes	were	perceived	by	some	subjects	when	the	eyes	were	significantly	displaced	from	the	

scanner’s	iso-centre	and	strong	time-varying	gradients	with	long	rise	times	(>	130	mT/m	with	5-7ms	rise-

time)	were	applied.	These	flashes	of	light	in	the	peripheral	visual	field	are	thought	to	result	from	direct	

stimulation	of	the	retina,	and	will	need	to	be	given	some	consideration	in	studies	where	the	head	is	not	

situated	close	to	iso-centre.	

The	PNS	limitations	on	the	Connectom	gradients	when	the	subject	has	their	head	at	iso-centre	are	shown	in	

Figure	11.	It	shows	stimulation	limit	plots	for	Gx.	

	

	

Figure	11.	Comparison	of	performance	limitations	imposed	by	the	system	and	human	physiology.	The	
peripheral	nerve	and	cardiac	stimulation	thresholds	for	the	Connectom	AS302	gradient	as	a	function	of	
gradient	strength	and	rise	time	are	plotted.	Up	to	around	180	mT/m,	the	PNS	limitations	dictate	the	
gradient	performance.	However,	above	180	mT/m,	the	theoretical	possibility	of	cardiac	stimulation	
dominates	the	gradient	performance.	These	limitations	are	built	into	the	scanner	through	the	SAFE	model	
(Hebrank	&	Gebhart,	2000)	and	hardware	gradient	safety	watchdog.	Safe	operation	of	the	scanner	is	
always	ensured	by	these	mechanisms.		
	
For	peak	gradient	strengths	less	than	~	80	mT/m,	on	a	single	axis,	(the	X-axis)	it	is	possible	to	utilise	the	

maximum,	200	mT/m/ms	slew	rate	allowed	by	the	hardware	without	causing	PNS.	For	larger	gradient	

strengths,	and	particularly	when	using	combinations	of	gradients	on	2	or	3	axes,	the	slew	rate	must	be	

limited	to	avoid	PNS,	with	a	limiting	slew	rate	of	around	150	mT/m/ms	for	the	maximum	accessible	

gradient	strength	of	300	mT/m.	For	the	single	gradient	axis	in	Figure	11,	above	150	mT/m	the	gradient	slew	

rate	must	be	further	reduced	to	conform	to	the	IEC	limit	for	cardiac	stimulation,	which	is	based	on	the	
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predicted	probability	of	cardiac	stimulation.		This	means	that	a	rise	time	of	~3.6	ms	is	needed	to	reach	the	

full	gradient	amplitude	of	300	mT/m,	corresponding	to	a	slew	rate	of	around	80	mT/m/ms.	While	this	

restriction	may	not	adversely	affect	classical	Stejskal-Tanner	diffusion	experiments,	in	which	the	duration	of	

the	pulses	are	relatively	long	compared	to	the	rise	times,	it	is	clear	that	this	places	us	far	from	the	‘narrow	

pulse’	approximation	in	q-space	imaging,	and	the	achievable	spectral	bandwidth	in	temporal	diffusion	

spectroscopy	experiments	(e.g.(Gore	et	al.,	2010))	will	be	severely	affected	when	using	the	highest	gradient	

amplitudes.		It	is	important	to	note	however	that	although	the	limits	set	on	gradient	waveforms	to	avoid	

PNS	are	based	on	experimental	measurements	on	human	subjects,	the	cardiac	stimulation	limit	is	based	on	

inference	and	extrapolation	from	animal	experiments,	(Bourland	et	al.,	1999;	Reilly,	1995;	Reilly,	1989;	

1991)	that	have	led	to	the	maximum	rate	of	change	of	magnetic	field	at	the	heart	being	limited	to	values	

less	than	20/(1 − 𝑒!
!!,!""
! )	T/s,	where	𝑡!,!""	is	the	stimulus	duration	in	ms.	(Medical	electrical	equipment	

Part	2-33:	Particular	requirements	for	the	safety	of	magnetic	resonance	equipment	for	medical	diagnosis	

IEC	60601-2-33:2002).	

This	can	be	translated	to	limits	on	the	gradient	strength	and	slew	rate	by	estimating	the	position	of	the	

heart	within	the	gradient	coil-set	and	knowledge	of	the	spatial	variation	of	the	gradient	fields.	As	the	

cardiac	stimulation	limit	becomes	the	main	constraint	on	gradient	performance	it	would	be	timely	to	revisit	

the	prior	literature	and	to	plan	new	simulations	(Davids	et	al.,	2017)	and	experiments	to	test	the	

assumptions	on	which	the	limits	have	been	based	(though	acknowledging	that	any	such	experiments	are	

likely	to	be	challenging	and	complex).		These	investigations	are	well	worth	considering,	since	were	the	

operating	limit	set	by	the	PNS,	rather	than	cardiac	stimulation,	limit,	the	time	needed	to	ramp	to	a	field	

gradient	of	300	mT/m	in	the	Connectom	system	could	be	reduced	to	around	2	ms.		

Modification	of	the	designs	of	whole-body	gradient	coil	systems	of	the	kind	employed	in	the	Connectom	

system	specifically	to	reduce	the	likelihood	of	nerve	stimulation	in	particular	body	regions	may	also	be	

considered	in	the	future	(Davids	et	al.,	2017;	Hidalgo-Tobon,	Bencsik,	&	Bowtell,	2011).	Use	of	head-only	

gradient	coils	can	provide	access	to	higher	gradient	performance	than	whole-body	sized	systems,	like	the	

Connectom	gradients,	at	the	threshold	for	stimulation,	since	the	reduced	coil	size	general	limits	the	

maximum	dB/dt	values	produced	in	the	body.	For	example,	a	recently	described	asymmetric	head	gradient	

coil	system	was	shown	to	be	able	to	exploit	the	full	hardware	capability	in	slewing	to	a	maximum	gradient	

of	80	mT/m	at	a	rate	of	700	mT/m/ms	for	the	y	(anterior-posterior)	gradient	direction	without	causing	PNS	

(in	22/24	subjects	scanned)	(Lee	et	al.,	2016).		However,	head-only	gradient	coils	that	can	generate	

gradient	strengths	as	high	as	300	mT/m	have,	not	yet	been	demonstrated	and	it	is	worth	noting	that	the	

concomitant	field	effects	(described	below)	are	generally	much	more	severe	in	asymmetric	gradient	sets.	

Moreover,	head-only	gradient	sets	limit	the	available	space	for	radiofrequency	coils,	which	becomes	
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problematic	for	systems	larger	numbers	of	receiver	coils	(e.g.,	more	than	32)	and	for	multi-channel	

transmit	systems.		

Duty	cycle/heat	dissipation:	

The	Connectom	gradients	have	been	designed	to	operate	with	the	following	duty-cycle	limits	(assuming	

Trapezoidal	gradient	pulses)-	at	300	mT/m:	6%	on	all	axes	or	17%	on	one	axis,	at	210	mT/m:	12%	on	all	axes	

or	35%	on	one	axis,	at	90	mT/m:	50%	on	all	axes	or	100%	on	one	axis.		

Although	the	diffusion	gradient	pulses	typically	have	a	short	duration,	when	used	at	maximum	gradient	

strength,	the	6%	limit	on	duty	cycle	can	increase	the	required	TR	substantially,	especially	if	the	EPI	train	is	

short	or	non-EPI	readout	techniques	are	used.	Power	amplifiers	generally	operate	with	maximum	and	

average	power	specifications.		They	are	designed	for	average	power	at	100%	duty	cycle,	but	can	also	be	

used	at	peak	power	with	limited	duty	cycle.	The	same	holds	true	for	gradient	coils,	for	which	the	limiting	

factor	is	power	dissipation	in	the	electrical	conductors.	The	most	efficient	design	of	ultra-strong	gradient	kit	

uses	all	available	space	(i.e.,	wire	cross	section)	in	the	magnet	bore	for	gradient	field-generating	conductors	

and	cooling	layers.	In	the	Connectom	system	(McNab	et	al.,	2013)	the	optimum	under	these	technical	

boundary	conditions	requires	the	use	of	four	gradient	amplifiers	and	results	in	a	nominal	(or	average)	

gradient	amplitude	of	~100mT/m.	A	further	increase	under	these	conditions	(i.e.,	limited	space	in	the	

magnet	bore)	would	require	new	cooling	technologies	for	the	gradient	coil	and	an	increase	of	the	average	

power	of	the	amplifier.	Thinking	to	the	future,	one	possibility	might	be	to	incorporate	a	superconducting	

gradient	coil	either	within	the	magnet	cryo	vessel	or	within	a	separate	cryo	vessel,	keeping	in	mind	the	

critical	field	strength	for	superconductivity	which	depends	on	the	static	B0	field	and	the	time	varying	

magnetic	field	of	the	gradient	field	conductors.	Although	this	is	a	challenge	given	that	the	currently	

available	wire	materials	show	significant	heat	production	for	alternating	currents	in	the	1-5KHz	range	even	

at	cryogenic	temperatures,	latest	research	seem	to	indicate	that	this	is	technically	achievable	(see:	Yuan	

and	Shen,	2007	and	patent	number	GB2433600)	

	

		

	

Gradient	non-linearity:	

A	current	trade-off	in	achieving	ultra-high	gradient	amplitudes	has	been	in	the	region	over	which	the	

gradient	system	behaves	linearly.		A	strict	boundary	condition	for	linearity	would	lead	to	suboptimal	

gradient	efficiency	and	lower	the	PNS	limit.		Thus,	the	system	was	designed	to	give	linearity	over	the	typical	

volume	of	a	head,	with	homogeneity	of	approximately	6%	over	a	20cm	sphere	and	17%	over	a	40cm	

sphere.		However,	due	to	the	nature	of	the	gradient	design	(a	symmetric,	whole	body	system),	such	a	

system	can	be	applied	to	other	parts	of	the	human	body,	but	the	reduced	linearity		over	the	extended	

volume	require	improved	strategies	for	handling	gradient	non-linearity.	The	impact	of	non-linearity	in	
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terms	of	image	distortion	is	well	documented	(Jovicich	et	al.,	2006)	and	scanner	vendors	typically	correct	

these	distortions	using	well-established	unwarping	algorithms.	Since	the	non-linearities	in	typical	whole-

body	scanners	in	a	volume	of	the	size	of	human	head	are	very	small,	the	effects	of	such	non-linearities	are	

very	minor.	The	gradient	non-linearities	can	have	a	significant	impact	on	diffusion	studies	in	ways	other	

than	simple	image	distortion,	if	positioning	is	not	well	controlled.	Depending	on	the	non-linearity,	the	b-

matrices	at	each	voxel	location	in	the	brain	will	be	spatially	dependent	and	differ	from	the	nominal	values	

(Bammer	et	al.,	2003;	Borkowski,	Kłodowski,	Figiel,	&	Krzyżak,	2017;	Malyarenko,	Ross,	&	Chenevert,	2014;	

Mohammadi	et	al.,	2012).	Besides,	gradient	non-linearity	distorts	the	true	image	in	concert	with	B0	

inhomogeneity,	making	it	harder	to	disentangle	the	two	effects	in	a	sequential	manner	at	the	post-

processing	stage.	This	complication	has	led	to	the	development	of	diverse	processing	pipelines	(Fan	et	al.,	

2016;	Glasser	et	al.,	2013;	Setsompop	et	al.,	2013;	Sotiropoulos	et	al.,	2013).		Moreover,	given	that	the	

gradient	non-linearities	need	not	be	rotationally	symmetric,	head	movement	can	complicate	the	b-matrix	

temporal	evolution	at	different	voxel	locations	significantly,	requiring	one	to	keep	a	temporal	history	of	b-

matrix	evolution	at	each	location	to	remove	unwanted	biases	in	measured	diffusion	parameters.	The	effect	

of	each	of	these	issues	on	the	final	microstructure	parameters	obtained	should	be	carefully	assessed	and	

where	necessary,	dedicated	processing	pipelines	that	address	gradient	non-linearity	should	be	

implemented	to	make	the	best	use	of	these	novel	hardware	platforms.	

Concomitant	Fields	

The	use	of	high	gradient	strengths	increases	the	concomitant	field	effects	(Bernstein	et	al.	1998;	Baron,	

Lebel,	Wilman,	&	Beaulieu,	2012;	Meier	et	al.	2008;	Norris	&	Hutchison,	1990)		that	can	confound	diffusion	

measurements.	Concomitant	fields	arise	because	the	vector	magnetic	field	generated	by	a	gradient	coil	has	

to	satisfy	Maxwell’s	equations.	Hence,	to	ensure	that	the	curl	and	divergence	of	the	field	are	both	zero	in	

current	free	regions	of	space,	the	desired	spatial	variation	of	the	z-component	of	the	magnetic	field	must	

always	be	accompanied	by	a	spatially	varying	x-	and/or	y-component	of	the	field.	Since	these	concomitant	

fields	are	orthogonal	to	(and	much	smaller	in	magnitude	than)	B0,	their	effect	on	the	Larmor	frequency	can	

usually	be	neglected,	but	in	fact	there	is	always	a	net	change	to	the	Larmor	frequency	𝜔! = 𝛾𝐵! 	due	to	

these	concomitant	fields	which	is	given	by	

𝐵! =
(!!!!!!!)!!

!!!
+ !!!(!!!!!)

!!!
− !!!!!"

!!!
− !!!!!"

!!!
	,			[1]	

when	gradients	𝐺!,	𝐺!	and	𝐺!	are	applied	simultaneously.	Equation	[1]	shows	that	concomitant	fields	scale	

quadratically	with	the	applied	gradient	strength	and	so	become	more	than	56	times	larger	when	the	

gradient	strength	is	increased	from	40	mT/m	(gradients	on	a	conventional	clinical	scanner)	to	300	mT/m		

whilst	keeping	B0	fixed.	Note	that	this	problem	would	be	even	more	pronounced	for	asymmetric	gradient	

designs	(e.g.,	head-only	gradient	systems),	the	extra	complication	arising	from	the	presence	of	odd-order	

terms	to	the	concomitant	field	correction.	Techniques	to	circumvent	such	problems	have	been	proposed,	
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including	manipulating	the	pre-emphasis	(Tao	et	al.	MRM	2017),	real-time	adjustment	of	the	centre	(B0)	

frequency	(Weavers	et	al.	MRM	2018).	These	concomitant	field	effects	are	well	known	to	cause	image	

distortion,	which	particularly	affects	echo	planar	imaging	since	the	concomitant	fields	due	to	the	switched	

read-out	gradient	produce	a	progressively	increasing	position-dependent	phase	accumulation	down	the	

echo	train	(Y.	P.	Du,	Joe	Zhou,	&	Bernstein,	2002;	Norris	&	Hutchison,	1990).	Fortunately,	with	knowledge	

of	the	applied	gradients	this	distortion	can	be	corrected	(Du	et	al.,	2002).	When	the	Connectom	gradient	

system	is	applied	in	diffusion	imaging,	the	peak	gradient	strength	during	the	EPI	readout	is	similar	to	that	

used	on	a	conventional	scanner,	so	the	problem	of	image	distortion	due	to	concomitant	fields	is	not	

particularly	exacerbated,	but	the	effects	of	the	concomitant	fields	due	to	the	diffusion	encoding	gradient	

pulses	can	be	challenging.	In	particular,	the	quadratic	dependence	of	the	effective	field,	Bc,	on	the	gradient	

strength	means	that	phase	accumulation	due	to	concomitant	fields	is	identical	for	positive	and	negative	

gradient	lobes	of	the	same	amplitude	and	duration.	There	is	consequently	no	net	phase	accumulation	when	

unipolar	gradients	are	applied	in	conjunction	with	a	180o	RF	pulse	in	a	Stejskal-Tanner	sequence	(Stejskal	&	

Tanner,	1965),	but	the	concomitant	fields	produce	a	spatial	phase	variation	over	the	imaging	region	when	

balanced	bipolar	gradient	pulses	are	applied.	This	is	problematic	for	diffusion	encoding	sequences	

employing	bipolar	gradients	(Setsompop	et	al.,	2013)	such	as	the	twice-refocused	spin	echo	sequence	

(Reese	et	al.,	2003)	that	is	commonly	used	to	reduce	eddy	current	effects	With	such	sequences,	through-

slice	variation	of	the	accrued	phase	can	produce	a	spatially	varying	image	attenuation	which	modulates	the	

effect	of	diffusion,	while	the	variation	of	phase	within	the	image	plane	can	shift	the	time	of	acquisition	of	

the	centre	of	k-space	by	different	amounts	for	different	regions	causing	image	blurring	and	signal	loss	

(Baron	et	al.,	2012).		The	terms	in	Eq.	[2]	varying	as	xz	and	yz	can	also	produce	a	linear	phase	shift	across	

the	whole	image,	which	may	shift	the	centre	of	k-space	outside	of	the	acquisition	window,	thus	causing	

complete	signal	loss	(Baron	et	al.,	2012).		For	example	if	a	bipolar	x-gradient	of	300	mT/m	strength	is	

applied	with	lobes	of	10	ms	duration,	the	phase	variation	across	a	2	mm-thick	axial	slice	displaced	by	2.5	cm	

from	isocentre	is	around	8π,	while	the	linear	phase	variation	produced	in	the	same	axial	slice	when	bipolar	

gradient	encoding	of	similar	strength	and	duration	is	applied	with	the	gradient	oriented	at	45o	to	x	and	z	

would	be	around	320π	m-1	which	would	be	sufficient	to	shift	the	centre	of	k-space	outside	the	acquisition	

window	in	3	mm	resolution	EPI	data.	Both	these	values	increase	linearly	with	the	displacement	of	the	axial	

slice	from	isocentre.	While	these	effects	mean	that	there	are	strong	incentives	to	stick	with	ST	sequences	

for	diffusion	encoding	when	using	ultra-strong	gradients,	approaches	for	ameliorating	the	effects	of	

concomitant	fields	in	sequences	using	bipolar	gradients	have	been	developed	(Baron	et	al.,	2012;	Meier,	

Zwanger,	Feiweier,	&	Porter,	2008;	Baron	et	al.,	2012).			These	approaches,	which	involve	applying	

compensating	pre-phasing	gradient	pulses	to	eliminate	the	spatially	varying	phase	produced	by	the	

concomitant	fields	during	diffusion	encoding,	currently	allow	localised	reduction	of	confounding	effects,	

but	their	efficacy	is	yet	to	be	evaluated	with	ultra-high	gradient	strengths.	Full	exploitation	of	the	power	of	
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Connectom-like	gradients	in	experiments	using	bipolar	gradients	will	require	the	development	of	new	

approaches	that	can	cancel	the	phase	variation	due	to	concomitant	fields	over	larger	image	volumes.			

CONCLUSION	

Even	though	diffusion	encoding	with	strong	gradients	raises	challenges,	it	is	without	question	that	with	

ongoing	developments	to	better	understand	such	issues,	a	microstructural	‘super-scanner’	provides	

considerable	improvements	to	‘conventional’	diffusion	measurements	and	facilitates	new	measurements	

that	are	impractical	at	lower	gradient	amplitudes.	New	insights	arising	from	this	extended	measurement	

space,	together	with	practical	experience	on	the	challenges	related	to	strong	gradients,	will	provide	a	

sound	foundation	to	develop	the	next	generation	of	microstructural	super-scanners.	

	

ACRONYMS	USED	IN	THIS	WORK:	

ADC	=	apparent	diffusion	coefficient	
AMICO	=	Accelerated	Microstructure	Imaging	via	Convex	Optimization	
BOLD	=	blood-oxygenation	level-dependent		

CHARMED	=	composite	hindered	and	restricted	model	of	diffusion		

CPMG	=	Carr-Purcell-Meiboom-Gill		

DDE	=	double	diffusion	encoding	

DIVIDE	=	diffusional	variance	decomposition	

DKI	=	diffusion	kurtosis	imaging	

dMRI	=	diffusion	MRI	

DTI	=	diffusion	tensor	imaging	

DW-MRS	=	Diffusion-weighted	Magnetic	Resonance	Spectroscopy		

DW-SSFP	=	diffusion	weighted	steady-state	free	precession;		

DW-STE	=	diffusion	weighted	stimulated	echo	

EPSRC	=	Engineering	and	Physical	Sciences	Research	Council	

FA	=	fractional	anisotropy	

FEXI	=	Filter	Exchange	Imaging		

gSlider-SMS	=	Generalised	Slice	Dither	Enhanced	Resolution	with	Simultaneous	Multislice		

HARDI	=	high	angular	resolution	diffusion	imaging	

IMPULSED	=	imaging	microstructural	parameters	using	limited	spectrally	edited	diffusion	

IQT	=	image	quality	transfer		

IR-PGSE	=	inversion-recovery	prepared	pulsed-gradient	spin	echo	
MD	=	mean	diffusivity		

MDE	=	multiple	diffusion	encoding	
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NAA	=	N-acetyl-aspartate	

NODDI	=	neurite	orientation	dispersion	and	density	imaging		

OGSE	=	oscillating	gradient	spin	echo		

POMACE	=	Pulsed	and	oscillating	gradient	MRI	for	assessment	of	cell	size	and	extracellular	space	

PGSE	=	pulsed	gradient	spin	echo		

PGSTE	=	pulsed-gradient	stimulated	echo	

PNS	=	peripheral	nerve	stimulation	

PRESS	=	point	resolved	spectroscopy	

QTE	=	Q-space	trajectory	encoding		

SAFE	=	Stimulation	approximation	by	filtering	and	evaluation	

SDE	=	single	diffusion	imaging	

SNR	=	Signal	to	noise	ratio	

TE	=	echo	time	

	tCr	=	total	Creatine	

tCho	=	total	Choline	

VERDICT	=	Vascular,	Extracellular,	and	Restricted	Diffusion	for	Cytometry	in	Tumours		
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