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Abstract 

Mesenchymal stem cells (MSCs) represent a promising cell source for cellular therapy and tissue 

engineering and are currently being tested in a number of clinical trials for various diseases. 

However, like other somatic cells, MSCs age, and this senescence is accompanied by a 

progressive decline in stem cell function. Several lines of evidence suggest a role for the Rho 

family GTPase Cdc42 activity in cellular senescence processes. In the present study, we have 

examined aging-associated Cdc42 activity in rat adipose-derived mesenchymal stem cells 

(ADMSCs) and the consequences of pharmacological inhibition of Cdc42 in ADMSCs from 

aged rats. We demonstrate that ADMSCs show a decreased rate of cell growth and a decreased 

ability to differentiate into chrodrogenic, osteogenic and adipogenic cell lineages as a function of 

rat age. This is accompanied with an increased staining for SA-β-Gal activity and increased 

levels of Cdc42 bound to GTP. Treatment of ADMSCs from 24-month old rats with three Cdc42 

inhibitors significantly increased proliferation rates, decreased SA-β-Gal staining, and reduced 

Cdc42-GTP. The Cdc42 inhibitor CASIN increased adipogenic and osteogenic differentiation 

potential in ADMSCs from 24-month old rats, and decreased the levels of radical oxygen species 

(ROS), p16INK4a levels, F-actin, and the activity of the ERK1/2 and JNK signaling pathways that 

were all elevated in these cells. These data suggest that ADMSCs show increased rates of 

senescence as rats age that appear to be due to elevated Cdc42 activity. Thus, Cdc42 plays 

important roles in MSC senescence and differentiation potential, and pharmacological reduction 

of Cdc42 activity can, at least partially, rejuvenate aged MSCs. 
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Introduction 

 

Mesenchymal stem cells (MSCs) represent a promising cell source for cellular therapy and tissue 

engineering due to their ability to proliferate and differentiate into various cell types, including 

those that make up tissues such as bone, ligament, tendon, cartilage and adipose (Cheng et al. 

2013; Fernandez Vallone et al. 2013). MSCs are currently being tested in a number of clinical 

trials for various diseases that include myocardial infarction, stroke, diabetes and cartilage 
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defects (Kramer et al. 2012; Wang et al. 2012a). However, there are some limitations for 

therapeutic use of MSCs. In the case of allogeneic transplantation of MSCs from healthy young 

donors, the production of the desired quantity and quality of MSCs needed for clinical 

application mostly depends upon culture conditions (Chen et al. 2009; Sotiropoulou et al. 2006), 

while autologous therapy is also limited by the patient’s age (Dai et al. 2009; Mareschi et al. 

2006). Like other somatic cells, MSCs age, and this senescence is accompanied by a progressive 

decline in stem cell function. In addition, the ability of human MSCs to divide reduces with age 

of the individual (Mareschi et al. 2006). Aged MSCs can share many characteristics of aged 

somatic cells, including reduced replicative potential, reduced telomere length, enlarged cell 

morphology with stress fibres, and the production of inflammatory markers (Sethe et al. 2006). 

These aged cells also have a reduced ability to differentiate into various tissue types (Sethe et al. 

2006). However, although understanding the basic molecular mechanisms of stem cell aging has 

significant implications for regenerative medicine and stem cell therapy, the mechanisms of 

MSC aging remain obscure (Lee et al. 2006; Mareschi et al. 2006; Sethe et al. 2006; Yue et al. 

2005).  

 There is evidence suggesting the involvement of a small Rho family GTPase, Cdc42, also 

known as cell division control protein 42 homolog, in cell aging and senescence-associated 

inflammation (Ito et al. 2014; Kerber et al. 2009; Wang et al. 2007). Elevated levels of activated 

Cdc42 (Cdc42 bound to GTP) are associated with various age-related pathologies, including 

reduced lifespan, reduced wound healing, muscle wasting, atherosclerosis and osteoporosis (Ito 

et al. 2014; Wang et al. 2007), and are associated with carcinogenesis, diabetes, cardiovascular 

and neurodegenerative diseases (Hooff et al. 2010; Lee et al. 2014; Loirand et al. 2013; Raut et 

al. 2015; Stengel and Zheng 2011). At a cellular level increased Cdc42-GTP results in up-

regulation of senescence related proteins such as p53, p21WAF1 and p16INK4a in mouse embryonic 

fibroblasts and human endothelial cells (Ito et al. 2014; Wang et al. 2007) and the activation of 

stress related MAP kinase pathways such as p38 that can lead to increased inflammatory markers 

in IMR-90 foetal lung cells (Chretien et al. 2008). 

In human adult-derived MSCs Cdc42 plays multiple regulatory roles, including in the 

processes of osteogenic and adipogenic differentiation (Gao et al. 2011; Jirong Wang 2014; Shin 

et al. 2014), and elevated Cdc42-GTP levels lead to MSC morphology changes and elevated F-

actin stress fibres that are features associated with cellular senescence (Xu et al. 2017). In 

addition, an altered microenvironment causes an increased expression of Cdc42 in mouse MSCs 

that may lead to senescent-like changes (McGrail et al. 2012), and with advancing adult age 

there is an increasing deficit of cellular proliferation and signal transduction control in MSCs 

that leads to adipogenic differentiation (Raggi and Berardi 2012).  
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The above data, taken together with the observation that elevated Cdc42 activity in aged 

mouse hematopoietic stem cells (HSCs) is causally linked to HSC aging, and correlates with a 

loss of polarity in aged HSCs (Florian et al. 2012), suggest that Cdc42-GTP activity may be 

involved in MSC senescence and differentiation potential. Any up-regulation of Cdc42-GTP 

activity may, in turn, be associated with difficulties obtaining MSCs for therapeutic use (Dai et 

al. 2009; Mareschi et al. 2006). Thus, in the present study, we have examined aging-associated 

Cdc42 activity in adipose-derived MSCs isolated from rats of different ages and tested the 

effects of pharmacological inhibition of Cdc42 in MSCs isolated from aged animals. 

  

Materials and Methods 

 

Animals 

 

1, 3, 6, 12 and 24 months old male Wistar rats were used in this study. The rats were housed in 

cages with controlled temperature (22 ± 2°C), relative humidity (55 ± 10%) and a 12-hour 

light/dark cycle (07:00 to 19:00 light) with free access to water and a standard rat diet. All the 

experiments were performed in accordance with the ethical guidelines of the U.S. Department of 

Health and Human Services (HHS), Registration of an Institutional Review Board (IRB) and 

approved by the Ethics Committee of the Center for Life Sciences of Nazarbayev University 

(Registration number IORG 0006963). 

 

Adipose-derived mesenchymal stem cell isolation and characterization 

 

Isolation and characterization of adipose-derived MSCs (ADMSCs) was performed according to 

previously described protocol (Arana et al. 2013) with minor modifications. The procedure used 

here is fully described in the Supplementary Methods. ADMSCs are herein defined as CD105-

sorted cells that have been subsequently cultured for 4-5 passages and are CD31-, CD34-, CD45-, 

CD90+ and CD105+ (see Supplementary Methods and Figures). 

 

Culture medium 

 

ADMSCs were routinely cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 

15% FBS and 1% Penicillin/streptomycin (herein called Complete Medium), unless otherwise 

stated. 
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Multipotent Differentiation of ADMSCs 

 

CD105 sorted ADMSCs (passage 4) were plated in 6-well plates at a density of 20,000 

cells/cm2 for adipogenesis, 10,000 cells/cm2 for osteogenesis and chondrogenesis and grown 

until 80% confluence prior to starting differentiation. Osteogenic differentiation of MSCs was 

induced under the influence of 10 nM β-glycerol phosphate, 0.1 µM dexamethasone, and 100 

µM L-ascorbic acid 2 phosphate. Chondrogenic medium consisted of 10 ng/mL TGFβ1, 0.1 µM 

dexamethasone, 50 g/mL ascorbate-2-phosphate, 40 mg/mL proline, and 50 mg/mL Insulin-

Transferrin-sodium selenite. Adipogenic medium contained 1 µM dexamethasone, 5 ng/ml 

insulin, and 0.5 µM 3-isobutyl-1-methylxanthine. Differentiation media was replaced every 3 

days for a total of 21 days. Cells incubated in osteogenic, chondrogenic and adipogenic media 

were fixed in 4% formaldehyde and stained with 40 mM Alizarin Red S, 1% alcian blue and Oil 

Red O, respectively.  

 

Quantification of adipocyte differentiation 

 

ADMSCs that had undergone adipogenic differentiation were fixed in 4% formaldehyde for 1 hr, 

washed with 60% isopropanol and stained with Oil Red O solution (in 60% isopropanol) for 5 

mins followed by repeated washing with PBS. After microscopic observation, Oil Red O was 

destained by 100% isopropanol for 15 mins and aspirates were collected for further analysis 

(Bony et al. 2015). The optical density (O.D.) of the isopropanol containing Oil Red O was 

measured at 540 nm with Synergy Hybrid H1 Microplate Reader (Biotek, USA). 

 

Quantification of osteogenic differentiation 

 

Osteogenic differentiation was evaluated with Alizarin red staining for calcium deposition. 

Briefly, ADMSCs were fixed in 4% formaldehyde for 15 minutes, stained with 40 mM of 

Alizarin Red S for 30 mins, incubated in 10% acetic acid and collected using a cell scraper into 

the micro centrifuge tubes. After centrifugation supernatants were transferred to new tubes and 

10% ammonium hydroxide was added to neutralize the acid while ensuring the pH ranged 

between 4.1 and 4.5. O.D of the Alizarin red was measured at 405 nm with Synergy Hybrid H1 

Microplate Reader.	The Alizarin red concentrations were calculated based on the standard curve. 

 

Cell proliferation 
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ADMSC suspensions were seeded at 5000 cells/well in a 48-well plate in Complete Medium and 

continuously incubated for 24 - 120 hrs in a humid incubator at 370C, 5% CO2. ADMSC 

proliferation rates were analyzed using a cell counting kit-8 (CCK-8, Sigma-Aldrich) according 

to the assay protocol. The volume of cell counting kit solution added to each well amounted to 

10% of the total volume of solution in the well. The plate was incubated for 2 hrs in an incubator 

at 37oC with 5% CO2. 100 µl of suspension was collected from each well, pipetted into a 96-well 

plate and the absorbance measured at 450 nm using a Synergy Hybrid H1 Microplate Reader 

(Biotek, USA) at 24 hrs intervals.  

 

Experiments with Cdc42 inhibitors 

 

ADMSCs were cultured for 16 hrs in complete culture medium containing one of the following 

Cdc42 inhibitors: CASIN (5µM, Sigma Aldrich), ML141 (10µM, Sigma Aldrich), ZCL278 

(25µM , Sigma Aldrich). The cells were washed in PBS and subjected for further measurements 

(Western blot, SA-β-Gal assay, ROS generation analysis, Actin-green and Oil red O and Alizarin 

Red staining and MAPK assays). For the cell proliferation assay, ADMSC suspensions were 

seeded at 5000 cells/well in a 48-well plate and cultured for 16 hrs in complete culture medium 

containing one of the Cdc42 inhibitors, after which the culture medium was replaced with 

complete medium without inhibitors and the cells incubated for up to 120 hrs.   

 

SA-β-Gal staining 

 

To assess the expression of senescence associated β-galactosidase (SA-β-Gal) in cells a 

Senescence Cells Histochemical Staining Kit (Sigma Aldrich) was used according to the 

manufacturer's protocol.	Briefly, passage 5 ADMSCs were fixed in Fixation Buffer for 6-7 mins, 

stained with Staining Mixture and incubated at 37°C without CO2 overnight. The percentage of 

cells expressing β-galactosidase was calculated as the ratio of blue-stained cells: total cells × 100 

with at least 500 cells counted. 

 

Western blot analysis 

 

Cdc42 levels were measured using a Cdc42 detection kit (Cell Signaling) according to the 

manufacturer’s protocol. Briefly, ADMSCs were harvested in 0.5 ml lysis buffer containing 1 

mM of PMSF. Lysates were collected and the active form of the protein (Cdc42-GTP) was 

immunoprecipitated using glutathione resin. Extracts containing Cdc42-GTP were sonicated and 
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resolved by SDS-PAGE gel electrophoresis. After electrophoresis, proteins were transferred to 

nitrocellulose membranes. The blots were incubated with blocking solution (Tris-buffered saline, 

pH 7.4, 5% BSA, 0.5% Tween 20 [TBS-T]) for 1 hr at room temperature. Membranes were 

washed and incubated with mouse anti-Cdc42 antibody (Cell Signaling, 1:200 dilution) 

overnight at 4ºC. After washing with TBS-T, membranes were incubated with anti-mouse IgG, 

HRP-linked Antibody (Cell Signaling, 1:2000) and anti-biotin HRP-linked Antibody (cell 

signaling, 1:1000) for 1 hr at room temperature. Blots were washed 3 times with TBS-T and 

incubated for 1 min in LumiGLO substrate, scanned in a BioRAD ChemiDoc MP imager and 

processed using ImageLab software (BioRAD). Ratios of Cdc42-GTP to total Cdc42 were 

calculated for each sample and normalized to the 1 month’s control. 

p16INK4a protein expression level was detected at 16 kDa. The ADMSCs were harvested 

in 700 µL lysis buffer (Сell Signaling Technology, USA). The concentration of the protein in the 

lysate was determined using BCA protein assay according to the manufacturer’s protocol (Pierce 

BCA Protein Assay Kit, ThermoFisher Scientific USA). Briefly, equal amounts of the lysates 

(25 µL) with total protein concentrations of 1000 µg/ml were collected, sonicated and separated 

in a precast PAGE gel (Biorad USA). The separated proteins were then transferred onto an 

Immun-Blot ® PVDF Membrane (Biorad USA). Blocking was done in Tris buffered saline 

containing 1% tween 20 (TBS-T) and 5% BSA (Sigma, USA) for 1 hr at room temperature. 

Then membranes were washed 3 times with TBS-T and incubated with primary p16INK4a 

Monoclonal Antibody (1:1000, ThermoFisher Scientific) overnight at 4 0C and goat anti-mouse 

IgG – horseradish peroxidase (1:500, Santa Cruz) for an hour at room temperature. For 

quantification, blots were scanned in a BioRAD ChemiDoc MP imager and intensity of protein 

bands was measured as optical density using the ImageLab software (BioRAD) and normalized 

to the 1 month’s control. 

 

Determination of level of reactive oxygen species (ROS) 

 

The 5-(and 6-)chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA, Life 

Technologies) was applied to determine ROS production in the cells. The acetate groups of CM-

H2DCFDA cleaved by intracellular esterases react with oxygen radicals to produce highly 

fluorescent adduct  that is traped inside the cells causing an increased fluorescent intensity of the 

cell. For ROS measurements, cells were seeded in 96 well plates, treated with CASIN in phenol-

red free DMEM for 16 hrs, and incubated with CM-H2DCFDA (2.5 µM) for 1 hr. Fluorescent 

intensity of CM-H2DCFDA were measured using microplate reader Synergy H1. 
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Labeling of F-actin  

 

For assessment of actin polymerization, ADMSCs were grown on cover slips until 50% 

confluency. Cells were fixed in 3.7% paraformaldehyde solution for 30 minutes 

and permeabilized using 0.1% Triton X-100 in PBS for 5 min. Cell labeling was done 

with Actin-greenTM 488 ReadyProbesTM reagent according to manufacturer’s protocol (Life 

Technologies, USA) at room temperature for 30 minutes. 

 

Quantitative immunofluorescence microscopy (QIM) 

 

Bright-field illumination and fluorescence microscopy images were obtained on an Olympus 

IX83 fluorescence microscope coupled with a cooled CCD camera and analyzed on a computer 

with a CellSens Dimension imaging software. Fluorescent imaging parameters were set as 

follows: 20X, NA 0.95 objective; exposure time for image acquisition - 400 msec. Background 

was subtracted for all images prior to analysis. To quantify actin polymerization, the intensity of 

Actin-greenTM 488 ReadyProbesTM-labeled F-actin per cell area was calculated and then 

normalized by the intensity of the labeled F-actin in control cells (1-month old ADMSCs without 

treatment).  

 

MAP kinase assays 

 

The total concentration and the phospho-kinase/total kinase ratio for the JNK and ERK1/2 

kinases were determined in ADMSC whole cell lysates using MSD MAP Kinase Total and 

Phosphoprotein Assay Kits (Meso Scale Discovery). All procedures were performed according 

to the manufacturer’s protocol. Briefly, whole cell lysates were prepared using the buffer 

provided with the kit. Cellular debris was cleared from the lysate by centrifugation at 10,000 x g 

for 10 min. To make the sandwich for electrochemiluminescence immunoassay cell lysates were 

added to the wells of plates pre-coated with capture antibodies and incubated for 3 hrs. 

Afterwards the plates were washed 3 times followed by incubation with detection antibody for 1 

hr. After a final wash, 150 µL of Read Buffer was added to each well and the plates analyzed on 

MSD QuickPlex SQ 120. Bicinchoninic Acid Assay was used as loading control. 

 

Statistical analysis 
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Data are reported as mean ± SD. Proliferative activity of ADMSCs was tested using two-way 

ANOVA with post-hoc comparison. A one-way ANOVA and regression analysis were 

conducted to compare the effect of age on SA-β-Gal staining. In all other experiments the 

unpaired t-test was applied to test mean differences from at least three independent trials. Values 

were considered significantly different when P≤0.05. Statistical analyses were performed with 

Graphpad Prism 7.1 software.  

  

Results 

 

Characterization of the ADMSC phenotype  

 

Freshly isolated cells from adipose tissue were heterogeneously positive for hematopoietic 

markers CD34 and CD45, endothelial marker CD31, and mesenchymal markers CD105 and 

CD90 showing a mixed cell population (data not presented). CD105 sorted cells after being 

cultured for 4-5 passages were more homogeneous: ~90% of the cells from rats of all age groups 

were positive for specific mesenchymal CD90 and CD105 markers (Lotfy et al. 2014), and 

negative for CD34, CD45 and CD31 cell surface markers (Supplementary Figs. 1a, 1b). These 

cells are thus deemed to be MSCs and are the cells referred to as ADMSCs in this paper. 

 

Differentiation capacity of ADMSCs isolated from rats of different ages 

 

To further provide evidence of the mesenchymal nature of these cells their multi-lineage 

differentiation potential was evaluated. The passage 4-5 CD105-positive cells were able to 

differentiate towards osteogenic, chondrogenic and adipogenic lineages (Supplementary Fig. 2). 

However, visual appearance of Alazarin Red S and alcian blue stained cells revealed reduced 

osteogenic and chondrogenic differentiation capacities of ADMSCs isolated from 12-24-month 

old animals (Supplementary Fig. 2). Decreased adipogenic differentiation was confirmed by 

quantification of Oil Red O (Fig. 1a). Our results indicated that ADMSCs from 1-month old 

donors accumulated more fat droplets in their cytoplasm after incubation in adipogenic medium 

and staining with Oil Red O compared to ADMSCs from the 12-month old and 24-month old 

rats (P<0.05, unpaired t-test).  

 

Proliferative activity of ADMSCs isolated from rats of different ages 
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We measured the proliferative activity of ADMSCs isolated from rats of different ages using the 

CCK-8 assay (Fig. 1b). The proliferative activity of ADMSCs from all age groups peaked on the 

second day, after which the cells entered a relatively stationary phase. Both the growth rates and 

proliferation peaks of ADMSCs decreased with increased age of the animals. ADMSCs isolated 

from 1-month old rats had significantly greater proliferative capacity than ADSMSCs isolated 

from older animals. 

 

Expression of SA-β-Galactosidase in ADMSCs isolated from rats of different ages 

  

One widely used biomarker of cell senescence is an increased expression of senescence 

associated β-galactosidase. Phase contrast images of SA-β-Gal-stained ADMSCs and the 

percentage of SA-β-Gal-positive cells are shown in Supplementary Fig. 3 and Fig. 1c. One way 

ANOVA tests revealed significant differences between the ADMSCs from different rat age 

groups (P ≤ 0.001). Furthermore, regression analysis showed that the percentage of SA-β-Gal-

positive ADMSCs gradually increased from approximately 10% in one month old rats to 50% in 

rats of 24 months of age (P 0.001).  

 

Expression of Cdc42 in ADMSCs from rats of different ages 

 

Significant correlations have been reported between elevated levels of Cdc42 and loss of 

polarity, functional deficiencies, and impaired self-renewal capability in mouse hematopoietic 

stem cells (Florian et al. 2012). It has also been demonstrated that Cdc42 levels vary across age 

groups in mice (Wang et al. 2007). Western blot analysis showed increased Cdc42-GTP levels in 

ADMSCs isolated from 6-24 months old rats compared to cells isolated from younger animals, 

with the highest expression of Cdc42 being detected in ADMSCs of 24-month old animals (Fig. 

1d, 1e): indeed there is a progressive increase in Cdc42-GTP levels with increasing age.  

 

Effects of the Cdc42 inhibitor CASIN on the growth kinetics and cellular phenotype of 

ADMSCs from young and aged rats 

 

We tested the consequences of pharmacological inhibition of Cdc42 in ADMSCs isolated from 

24-month old rats in comparison with younger animals (1-month old) using CASIN. 

Assessments by Western blot showed significantly higher levels of Cdc42-GTP in ADMSCs 

isolated from 24-month old animals compared to 1-month old rats and a significant reduction of 

the Cdc42-GTP levels in ADMSCs from both aged and young rats by CASIN (Fig. 2a, 2b).  
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CASIN did not affect the low levels of expression of SA-β-Gal seen in ADMSCs isolated 

from 1-month old rats, but significantly decreased the percentage of SA-β-Gal-positive cells in 

ADMSCs isolated from 24-month old rats compared to untreated control (P ≤ 0.001; unpaired t-

test) (Fig. 2d; Supplementary Fig. 4). However, this treatment did not reduce the level of SA-β-

Gal-positive cells to that seen in ADMSCs from young rats (Fig. 1d). ADMSCs from older 

animals had increased levels of the cyclin-dependent kinase inhibitor p16INK4a compared to cells 

from younger animals (Fig. 2a, 2c), and CASIN treatment decreased this expression to the level 

seen in the young control (P ≤ 0.05; unpaired t-test). 

Using CCK-8 analysis to assess ADMSC growth kinetics showed that CASIN improved 

the impaired proliferative activity of ADMSCs from aged rats (Fig. 2e). However, this treatment 

did not affect growth the rate of cells from 1-month old animals (Fig. 2f) and was not able to 

increase the proliferation rate of cells from older animals to the levels seen in ADMSCs from 

young rats (see Fig. 2e, 2f). 

 The production of high levels of Reactive Oxygen Species (ROS) has been associated 

with cellular senescence (Chandrasekaran et al. 2017; Colavitti and Finkel 2005; Davalli et al. 

2016). In agreement with previous reports, fluorescent analysis showed an ~60% increase of 

ROS level in ADMSCs from aged rats compared to younger controls (P ≤ 0.001; unpaired t-test) 

(Fig. 2g). This increased ROS production in ADMSCs from aged rats was attenuated by CASIN 

with no significant effects on CM-H2DCFDA intensity in younger cells.   

Impaired actin polymerization is another hallmark of cell senescence (Kasper et al. 2009; 

Li et al. 2017; Xu et al. 2017), and it can be mediated by the upregulation and activation of 

Cdc42 (Tang and Gunst 2004; Zlotorynski 2015).	We employed QIM of F-actin labeled with 

Actin-greenTM 488 ReadyProbesTM cells to quantify actin polymerization in ADMSCs isolated 

from young and old animals. QIM data showed that aging promoted actin polymerization in 

ADMSCs (P ≤ 0.001; unpaired t-test) while treatment with CASIN reduced F-actin intensity in 

old cells (P ≤ 0.05; unpaired t-test) (Fig. 2h and Supplementary Fig. 5.), although not to the level 

seen in ADMSCs from 1-month old rats, and does not cause a reorganization of the cytoskeleton 

structure in the younger control. 

 

CASIN increases adipogenic and osteogenic differentiation of ADMSCs from aged rats  

 

A decreased differentiation capacity is a hallmark of MSC aging (Maredziak et al. 2016).	 

Quantitative spectrophotometric analysis of Oil Red O confirmed that the amount of dye in the 

aspirate collected from the cells of 24-month old rats was 1.8-fold lower (P<0.05, unpaired t-test) 

than the amount collected from cells of young rats (Fig. 1a, 3a). Inhibition of Cdc42 by CASIN 
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significantly improved the adipogenic differentiation of ADMSCs from the aged rats, although 

this did not reach the levels seen in ADMSCs from the young rats (Fig. 3a).   

Similarly, quantification of Alizarin Red S that represents calcium deposition in cells and 

serves as a marker of osteogenic differentiation has demonstrated that the amount of mineralized 

matrix in 1-month old rat cells after incubation in osteogenic medium was approximately 10-fold 

higher compared to cells of old rats (P<0.01, unpaired t-test) (Fig. 3b). In turn, CASIN treatment 

enhanced the osteogenic differentiation of ADMSCs from aged rats by more than twice (P<0.05, 

unpaired t-test), yet this was not up to the levels seen in ADMSCs obtained from young rats (Fig. 

3b).  

 

CASIN reduces ERK1/2 and JNK phosphorylation in ADMSCs from aged rats 

 

There is evidence suggesting the involvement of MAP kinases in MSC senescence and inhibition 

of their differentiation capacities (Bost et al. 2005; Jaiswal et al. 2000; Jin et al. 2010; Wang et 

al. 2005). In turn, Cdc42 has been shown to regulate MAPK/ERK signaling pathways under 

conditions of stress (Cheng et al. 2004; Lv et al. 2017; Wang et al. 2005). Thus, we measured the 

activation of ERK1/2 and c-Jun N-terminal kinase (JNK) in ADMSCs, and tested the effects of 

the Cdc42 inhibitor CASIN. Results obtained using the Meso Scale Discovery immunoassay 

demonstrated significantly increased phosphorylation of ERK1/2 and JNK in ADMSCs isolated 

from 24-month-old rats in comparison with cells isolated from 1 month old rats (Figs. 3c, 3d). As 

the activation of these kinases is via phosphorylation, this implies an increase in their activity. 

Treatment with CASIN significantly decreased the phosphorylation of ERK1/2 (63%) and JNK 

(65%) in ADMSCs from 24-month-old rats to levels similar to that seen in ADMSCs from young 

rats, implying reduced kinase activity (Figs. 3c, 3d). 

 

Inhibition of Cdc42 in ADMSCs isolated from 24-month old rats by three different compounds 

 

To confirm that all above mentioned effects of CASIN resulted directly from Cdc42 inhibition, 

and not due to inhibitor off-target effects, we applied two additional inhibitors of Cdc42 

(ZCL278 and ML-141) and assessed their effects on proliferation capability and expression of 

SA-β-Gal in ADMSs isolated from 24 months old rats. Assessment of the Cdc42-GTP level by 

Western blot has confirmed inhibition of Cdc42 activity in aged ADMSCs by all three 

compounds (Fig. 4a). These inhibitors also resulted in a significant decrease in the percentage of 

SA-β-Gal-positive cells compared to untreated control (P ≤ 0.05; unpaired t-test), with the most 

prominent effects seen with CASIN and ZCL278 (Fig. 4b and Supplementary Fig. 6). Using 
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CCK-8 analysis to assess ADMSC growth kinetics showed that CASIN, ML141 and ZCL278 

improved the impaired proliferative activity of ADMSCs from aged rats (Fig. 4c). 

 

Discussion 

 

Cdc42, an abundant small Rho GTPase, is up-regulated in some age-related chronic diseases, 

tumors, and aging-associated cellular signaling pathways (Hooff et al. 2010; Ito et al. 2014; 

Kerber et al. 2009; Lee et al. 2014; Loirand et al. 2013; Raut et al. 2015; Stengel and Zheng 

2011; Wang et al. 2007). There is data indicating that Cdc42 is involved in differentiation and 

proliferation of MSC (Gao et al. 2011; Jirong Wang 2014; Raggi and Berardi 2012; Shin et al. 

2014). In the present study, we have investigated aging-associated Cdc42 activity in adipose-

derived MSCs isolated from male rats of different ages and tested the effects of pharmacological 

inhibition of Cdc42 in MSCs isolated from aged animals. We focused on males in order to 

exclude gender effects since there is accumulating evidence that age-related alterations of 

mesenchymal stem cells can be modulated by sex hormones and estrogen decreases Cdc42 

activity (Azios et al. 2007; Breu et al. 2011; Fossett et al. 2012; Kawagishi-Hotta et al. 2017). 

However, an important question remains whether the activity of Cdc42 plays similar role in 

aging processes of ADMSCs from female animals yet further research is needed to clarify this 

issue. 

Results from this study show that the capability of adipose-derived MSCs (ADMSCs) 

from rats to proliferate decreases in proportion to the age of the animal. This reduced 

proliferative ability is associated with increased levels of activated Cdc42 and an increased 

proportion of SA-β-Gal stained cells, suggestive of cellular senescence. In addition, the 

multipotent differentiation ability of ADSMSCs reduces with increased animal age for the 

osteogenic, chrondrogenic and adipogenic cell lineages. These data suggest that an increasing 

proportion of MSCs show signs of cellular senescence with increasing rat age. 

When ADMSCs isolated from rats at 24 months of age are cultured in the presence of 

three different inhibitors of Cdc42 activity they show a much improved proliferation capability 

and a significantly reduced staining for SA-β-Gal. These effects are associated with a reduction 

in the levels of activated Cdc42. The most effective inhibitor, CASIN, reduces SA-β-Gal staining 

to levels similar to that seen in ADMSCs from 6-month old rats. As these inhibitors are all 

chemically distinct and have distinct modes of action, with CASIN and ZCL278 competing with 

guanine nucleotide exchange factors and ML-141 non-competitively preventing GTP binding to 

Cdc42 (Lin and Zheng 2015), these data strongly suggest the improved proliferation and reduced 

SA-β-Gal staining result from Cdc42 inhibition, and are not due to inhibitor off-target effects. In 
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addition to elevated Cdc42-GTP levels, ADMSCs from 24-month old rats have elevated levels of 

the cyclin-dependent kinase inhibitor p16INK4a, and elevated formation of F-actin stress fibres, 

both features of senescent cells (Guay et al. 1997; Liu et al. 2009). CASIN treatment reduced 

p16INK4a levels to that seen in ADMSCs from young rats, and increased the adipogenic and 

osteogenic differentiation ability of ADMSCs from aged rats and reduced actin polymerization 

in these cells, although this was not increased to the capability seen in ADMSCs from 1-month 

old animals. 

Thus, it appears that ADMSCs isolated from 24-month old rats show several signs of 

increased cellular senescence and a reduction of differentiation potential compared to ADMSCs 

from younger animals that is due, at least in part, to elevated Cdc42, and that these effects 

increase with animal age. In addition, small molecule inhibition of Cdc42 activity can result in 

partial rejuvenation of ADMSCs from aged rats. These results concur with data from mouse that 

show increased active Cdc42 with age in various tissues (Xing et al. 2006), and that  

constitutively increased Cdc42 activity results in aging-like phenotypes in mouse hematopoietic 

stem cells (HSCs) (Florian et al. 2012). In the latter example, pharmacological reduction of 

Cdc42 activity using CASIN results in partial rejuvenation in the HSCs. In conclusion, the data 

demonstrate the involvement of Cdc42 activity in stem cell aging and suggest a common 

mechanism of aging is seen in different stem cell lineages.  

So how does increased Cdc42 activity have these effects? One possibility is via the MAP 

kinase ERK1/2 and JNK signaling pathways that are involved in cellular senescence processes 

and whose activity increases during aging (Jones and Lancaster 2015; King et al. 2007; 

Mylabathula et al. 2006; Shin et al. 2005). The Cdc42 GTPases are involved in the regulation of 

ERK1/2 and JNK (Coso et al. 1995; Frost et al. 1997), suggesting that up-regulation of Cdc42-

GTP activity may lead to increased cellular senescence via activation of these pathways. The 

ERK and JNK pathways are also implicated in differentiation of MSCs. For example, activation 

of ERK1/2 inhibits adipogenic differentiation in mouse cells whereas siRNA depletion of 

ERK1/2 increases this (Kim et al. 2007), and total and phosphorylated ERK1/2 levels are 

reduced at early stages of human MSC adipogenic differentiation (Donzelli et al. 2011). 

Moreover, there is data demonstrating that erythropoietin inhibits adipogenic differentiation of 

bone marrow derived mouse MSCs via activation of ERK (Liu et al. 2015). Finally, an inhibitory 

role has been demonstrated for JNK in both adipogenesis and osteogenesis in human MSCs (Gu 

et al. 2015; Tominaga et al. 2005). Thus, the increased aging and reduced differentiation capacity 

seen in ADMSCs from aged rats may be due to increased Cdc42 activity affecting the ERK1/2 

and JNK signaling pathways. This idea is supported by the observation that phosphorylation of 

both ERK1/2 and JNK is increased in ADMSCs with animal age, and CASIN inhibition of 
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Cdc42 results in reduced cellular senescence and increased adipogenic and osteogenic 

differentiation potential associated with reduced activation of these kinases.  

Studies have suggested that oxidative stress is a major factor accelerating cell senescence 

(Brandl et al. 2011; Davalli et al. 2016), and there is evidence for a critical role of NADPH 

oxidases-mediated ROS signaling pathways in aging process (Sahoo et al. 2016). In addition, 

suppression of NADPH oxidase by apocynin partially reversed the aging process and enhanced 

osteogenic potential of MSCs (Sun et al. 2015). Our results demonstrated that ROS production 

increased in ADMSCs from aged rats and that this was attenuated by CASIN. These data, 

together with the observation that Cdc42 regulates NADPH oxidase activation (Ascer et al. 

2015; Qian et al. 2005; Wang et al. 2012b) suggests the possibility that inhibition of Cdc42 leads 

to an improvement of ADMSC proliferation and differentiation via suppression of NADPH 

oxidase activity.  

Finally, it has been demonstrated that exposure of MSCs isolated from younger rats to 

serum from older animals inhibited cell proliferation and survival by activation of excessive 

Wnt/β-catenin cell signaling pathway (Zhang et al. 2011). In turn, activation of Wnt/β-catenin 

signaling induced a DNA damage response (Xu et al. 2008) leading to up-regulation of p16INK4a, 

resulting in an induction of cellular aging (Kosar et al. 2011). As activation of p16INK4a can result 

from Cdc42 GTPase activation (Chen et al. 2013), and, according to our finding, inhibition of 

Cdc42 activity by CASIN decreases the expression of P16INK4a, it is possible that the increased 

senescence seen in ADMSCs from aged rats results from up-regulated Wnt/β-catenin signaling, 

albeit this is speculation. However, possible support for this comes from data showing that non-

canonical Wnt5a signaling can induce aging-associated phenotypes in HSCs from young mice 

via activation of Cdc42 (Florian et al. 2013). 

In conclusion, our data demonstrate the involvement of Cdc42 in male rat mesenchymal 

stem cell aging and differentiation potential, although the precise mechanisms of Cdc42 action 

are not clearly understood and require further investigations. Understanding the basic molecular 

mechanisms underlying stem cell aging should provide new insights into the development of 

new strategies for rejuvenation treatment, regenerative medicine and stem cell therapy.  
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Figure Legends 

 

Fig. 1 Properties of ADMSCs isolated from rats of different ages (n=25, 5 rats per group). a 

Quantitative analysis of Oil red O stained ADMSCs; data shown as Mean ± SD, *P<0.05 

(unpaired t-test). b Proliferative activity as assessed by CCK-8 assay plotted as optical density 

versus days. CCK-8 assay: two-way ANOVA with post hoc analysis (F=53.24, df=4); **** 

p<0.0001 (1 month vs 3, 6, 12, >24 month; 3 month vs >24 month); *** p<0.0003 (6 month vs 3 
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month); ns – not significant (>24 month vs 6,  12 month). c Bar chart showing percenatge of 

ADMSCs staining for SA-β-Galactosidase activity; P ≤ 0.001 (one way ANOVA and regression 

analysis). d Western blot depicting levels of active and total Cdc42. e  Quantification analysis of 

Cdc42-GTP/tottal Cdc42; *P ≤ 0.05 (unpaired t-test). 

 

Fig. 2 Properties of CASIN treated  ADMSCs from 1 months old (YOUNG) and 24 month old 

(OLD) rats (n=20, 5 rats per group). a Western blot depicting levels of active and total Cdc42 

and total P16INK4a in Cdc42 inhibitor treated ADMSCs compared to the untreated controls. b 

Quantification ratio of the Cdc42-GTP/total Cdc42; *p≤0.05 (unpaired t-test). c Quantitative 

analysis of the total P16INK4a; *p≤0.05 (unpaired t-test). d Percentage of SA-β-Gal-positive 

ADMSCs in the experimental and control (untreated) groups; *p≤0.05, ***p≤0.001(unpaired t-

test). e,f Proliferative activity of Cdc42 inhibitor treated ADMSCs compared to untreated 

controls as assessed by CCK-8 assay. g ROS levels in ADMSCs isolated from 1 month old and 

24 months old rats; *p≤0.05, ***p≤0.001 (unpaired t-test). h Actin polymerization in ADMSCs 

isolated from 1 month old and 24 months old rats; *p≤0.05, ***p≤0.001 (unpaired t-test). 

 

Fig. 3 Properties of CASIN treated ADMSCs from aged rats (n=15, 5 rats per group). a 

Adipogenic differentiation of CASIN treated ADMSCs from aged rats (CASIN) compared to 

untreated ADMSCs from aged (OLD) and 1 month old (YOUNG) rats. Quantitative analysis of 

Oil red O stained cells; data shown as Mean ± SD, *P<0.05 (unpaired t-test).b Quantitative 

colorimetric results of Alizarin Red S staining for osteogenic differentiation; data shown as 

Mean ± SD, **P<0.01,  *P<0.05 (unpaired t-test). c, d Ratio of pERK1/2:ERK1/2 levels (c) and 

pJNK:JNK levels (d) in CASIN treated ADMSCs from aged rats (CASIN) compared to 

untreated ADMSCs from aged (OLD) and 1 month old (YOUNG) rats. Data shown as Mean ± 

SD, *P<0.05 (unpaired t-test). 
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Fig.4 Inhibition of Cdc42 by different compounds in ADMSCs isolated from 24 months old rats 

(n=20, 5 rats per group). a Western blot depicting levels of active and total Cdc42 in aged MSCS 

after treatment with three different Cdc42 inhibitors. b percentage of SA-β-Gal-positive 

ADMSCs in the experimental and control (untreated) groups; *p ≤ 0.05 (unpaired t-test). c CCK-

8 assay: two-way ANOVA with post-hoc analysis (: F=50.79, df=3), ****P < 0.0001 vs control.  
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