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Abstract 

Cancer immunotherapy, focused on harnessing and empowering the immune system against 
tumours, has transformed modern oncology. One of the most promising avenues in development 
involves using genetically engineered T-cells to target cancer antigens via specific T-cell receptors 
(TCRs). TCRs have a naturally low affinity towards cancer-associated antigens, and therefore show 
scope for improvement. Here we describe approaches to procure TCRs with enhanced affinity and 
specificity towards cancer, using protein engineering or selection of natural TCRs from unadulterated 
repertoires. In particular, we discuss novel methods facilitating the targeting of tumour-specific 
mutations. Finally, we provide a prospective outlook on the potential development of novel, off-the-
shelf immunotherapies by leveraging recent advances in genome editing. 
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Highlights (3-5, 85 characters each): 

• T-cell receptors (TCRs) can be used to re-direct patients’ immune system to cancer 
• Directed evolution can enhance TCR affinity towards cancer antigens 
• Affinity-enhanced TCRs can be used in gene transfer or as soluble molecules 
• TCR targeting of somatic mutations offers personalised, safe and specific therapy 
• Modern genome engineering offers promise of new improved immunotherapies 
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Introduction 

Conventional cytotoxic CD8+ T-cells recognise short peptide antigens, derived from degradation of 
intracellular proteins and presented by molecular cradles called the major histocompatibility 
complex (MHC, also known as human leukocyte antigen, HLA) class I at the cell surface (reviewed in 
[1]). This recognition allows T-cells to scan the intracellular proteome for anomalies and destroy cells 
expressing foreign, pathogen-derived proteins. Recognition of the highly variegated MHC-associated 
peptide cargo is possible thanks to generation of diverse αβ T-cell receptors (TCRs) by somatic gene 
rearrangement process that has potential to theoretically generate ~1018 different receptors in 
human [2]. Immature T-cells are then selected in the thymus so that only those with TCRs that 
weakly engage self MHC molecules are allowed to enter the periphery. Cells that bear inept TCRs 
“die by neglect” while those that recognise self peptides strongly, and have capacity to induce 
autoimmunity, are culled [3] Thus, the TCRs of T-cells that populate the periphery should not be self-
reactive but have potential to bind foreign peptides with relatively high affinity. This central 
tolerance mechanism restricts the TCR pool with anticancer specificity to predominantly weak 
affinity receptors [4] because the majority of cancer antigens, with a notable exception of 
neoantigens stemming from mutated proteins, are derived from over- or aberrantly expressed self-
proteins [5] (Figure 1). The challenge that this presents to anti-tumour T-cells is further amplified 
because successful tumours exploit a variety of systems that are designed to protect against 
excessive T-cell activity in the periphery [6]. Neutralisation of peripheral tolerance mechanisms via 
the application of immune checkpoint inhibitors has shown great promise in cancer treatment but is 
associated with concomitant autoimmune toxicities [7]. More targeted approaches in current 
development aim to adoptively transfer cancer-reactive T-cells. Adoptive T-cell therapy originally 
involved transfer of expanded tumour infiltrating lymphocytes [8] but has been extended to include 
autologous T-cells engineered ex vivo to express well-defined, cancer-specific receptors. The genetic 
redirection of T-cells to cancer can be achieved by using antibody-like chimeric antigen receptors 
(CARs) targeting surface-expressed proteins (which became the first gene therapy approved by the 
FDA [9]), or via conventional TCRs which can scan the intracellular proteome presented as peptide-
MHC complexes. Here we discuss the recent developments in procurement of the optimal TCRs for 
cancer immunotherapy and cutting-edge technologies that enable high throughput, in-depth 
assessment of potentially therapeutic TCRs. 

The critical importance of TCR affinity 

The first-in-human attempt to re-direct patient T-cells to cancer was conducted in 2006 by 
Rosenberg and colleagues and used the DMF4 TCR that targets a peptide from a melanocyte 
differentiation antigen highly expressed in melanoma [10]. While the results of that clinical trial 
were encouraging in terms of safety and feasibility, only a relatively small fraction of patients 
experienced an objective response (Table 1). The clinical response was improved in the follow up 
trial which made use of another natural TCR targeting the same epitope as DMF4 but selected by 
screening of hundreds of T-cell clones for TCRs exhibiting substantially higher sensitivity [11,12]. 
These two trials therefore demonstrated the importance of T-cell sensitivity to antigen, a property 
known to be critically dependent on TCR affinity/half-life [13]. As natural anti-cancer TCRs are of low 
affinity, several strategies have been devised to generate TCRs with optimal affinity as described 
below. 

Directed evolution can create super-high affinity TCRs 



The first robust method for affinity maturation of TCRs involved displaying a degenerate library of 
TCRs on the surface of M13 bacteriophage, followed by several rounds of increasingly stringent 
selection using immobilised cognate peptide-MHC complexes. This directed evolution approach, 
routinely applied to antibody production, could increase the TCR-peptide-MHC affinity by over a 
million-fold, through introduction of multiple mutations in the short hairpin loops, termed 
complementarity determining regions (CDR), that comprise the antigen binding site [14]. Yeast 
display, aided by computation modelling, has also been used to generate TCRs with enhanced 
binding affinity and/or stability [15–17]. 

Affinity maturation can enhance the natural affinity of anti-tumour TCRs (dissociation constant KD 
range 10-100 μM [3]) by over a million-fold (KD  ~10 pM [14]). However, TCRs with affinities that are 
higher than the very strongest natural TCRs (KD <0.1 μM) can activate T-cells irrespective of the 
cognate peptide [13,18,19] (Figure 2A). Additionally, engineered TCRs circumvent the rigours of 
thymic selection so that even slight alterations to TCR sequence may lead to unexpected cross-
reactivities with antigens other than the cognate peptide-MHC.  Such cross-reactivities can result in 
fatal adverse events [20–22]. Despite these caveats, TCRs with pM affinity towards cancer antigens 
could be used therapeutically as soluble molecules instead of in TCR gene-modified T-cells, without 
compromising the peptide specificity (Figure 2B). These super-high affinity TCRs can efficiently label 
cancer cells presenting endogenously processed peptide antigens (as few as 5 copies per cell [23]) 
and, when linked to an anti-CD3 antibody fragment, are capable of re-directing polyclonal 
populations of T-cells to kill cancer [24]. TCR-anti-CD3 antibody fusion proteins, termed ImmTAC™ 
(immune-mobilising monoclonal TCRs against cancer), have been developed by Immunocore 
(Abingdon, UK) and are being tested in six clinical trials, either as a single agent or in combination 
with checkpoint inhibitors (clinicaltrials.gov identifiers: NCT02889861, NCT01211262, NCT03070392, 
NCT01209676, NCT02570308, NCT02535078). A detailed description of how to manufacture super-
high affinity TCR-anti-CD3 antibody fusion proteins has recently been published [25]. 

Bypassing thymic selection yields highly sensitive TCRs 

Procurement of TCRs from T-cell populations that have not been selected against self antigens, such 
as HLA-transgenic murine models, provides a further way of generating high affinity cancer-specific 
receptors [11]. An extension of this methodology that avoids any potential immunogenicity of 
murine TCRs when transferred to human patients was proposed by Blankenstein and colleagues, 
whereby mice were humanised to express both a given HLA allele and the human tcr locus [26]. The 
lack of human antigens in these mice prevents deletion of high affinity human-reactive TCRs in the 
thymus. Thymic deletion can also be bypassed by using HLA-mismatched donors to generate allo-
TCRs specific for a given peptide-MHC [27]. Allogenic TCRs are sensitive enough to target antigens 
expressed at a very low copy number that cannot be targeted by antibody-based therapies [28]. 
However, it is crucial to ensure that TCRs procured from allogeneic HLA donors are truly peptide-
specific rather that recognising allo-HLA irrespective of the peptide cargo. Finally, enhanced affinity 
TCRs can be procured by antigen-driven differentiation of TCR-α transduced haematopoietic 
progenitor cells (HPCs) in vitro. Since HPCs undergo natural TCR-β rearrangement, the resulting TCRs 
do not contain any mutations in germline-encoded CDR loops, and non-germline encoded CDR3s can 
differ in length compared to parental TCR, making this approach potentially safer and more versatile 
than directed evolution of TCR proteins [29]. 

TCRs targeting tumour neoantigens are sensitive and specific – but at a price 

Accumulation of somatic mutations is a hallmark feature of cancer. If non-synonymous mutations 
occur within protein fragments that can be displayed by MHC molecules, these potentially 



immunogenic epitopes are termed “neoantigens” [30]. MHC-presented neoantigens offer an 
attractive target for immunotherapy as they are non-self, highly specific to cancer cells and 
circumvent thymic selection. T-cell responses against mutated antigens, but not the unmutated 
counterpart, can be sporadically detected in patients, and exploited to induce cancer regression 
[31]. Neoantigen-reactive T-cells can be identified non-invasively in peripheral blood of cancer 
patients using programmed death (PD)-1 expression as a biomarker prior to testing antigen 
specificity using mutations identified by high-throughput tumour exome and transcriptome 
sequencing [32]. Neoantigen-specific TCRs identified in this way can be subsequently used for 
personalised therapy. While targeting even a single point mutation with a specific TCR may be 
sufficient to eradicate established tumours, the particular mutation must be uniformly expressed by 
heterogeneous tumour cell populations and be essential for cancer cell fitness in order to avoid 
selection of escape variants [33]. Since cancer immunoediting ensures poor immunogenicity of 
potential driver mutations, at least at the early stages of cancer formation, endogenous T-cell pools 
may neglect the most therapeutically relevant mutations [34]. This problem can be circumvented by 
using HLA-matched healthy donors to procure TCRs against neoantigens that have escaped 
detection during the process of immunoediting [35]. 

Given the heterogenous composition of tumours and potential for immunoevasion when targeting 
only a single point mutation, it would seem optimal, although cost and labour-intensive, to target 
several neoantigens simultaneously, using an array of different TCRs. Emerging technologies may 
make targeting neoantigens more streamlined and applicable to larger cohorts of patients.  
Advances in high-throughput sequencing now enable rapid, non-invasive determination of 
mutations within the neoplastic exome [36]. Several cutting-edge methods have also been devised 
to infer the TCR specificity. We and others developed high-throughput methods for identification of 
cognate peptide ligands of TCRs of interest, using combinatorial peptide libraries [37,38] or yeast-
display libraries of peptide-MHC [39]. Additionally, TCRs specific for predicted, patient-derived 
neoantigens can be identified and selected in a massively parallel way, by using DNA-barcoded 
peptide-MHC multimers, thus enabling screening of >1,000 putative peptide antigens in one sample 
[40]. This powerful technology can be further combined with single-cell transcriptomics [41], leading 
to rapid and streamlined identification of candidate TCRs. Finally, the most promising, neoantigen-
specific TCRs can be introduced into patient-derived T-cells using a transposon/transposase system, 
offering a safer and cheaper alternative to currently used γ-retroviral/lentiviral vectors [42]. 

Perspectives – the brave new world of genome editing and synthetic biology 

The ideal therapeutic T-cell should: (i) efficiently traffic to the tumour site; (ii) overcome the 
immunosuppressive microenvironment; (iii) successfully target all, potentially heterogeneous, 
tumour cells; (iv) be inert to healthy tissues; and, (v) be available as an off-the-shelf product that can 
be administered to patients regardless of their HLA allelic composition (Figure 3). While this may 
seem like wishful thinking, recent advances in synthetic biology and genome editing offer a very real 
potential to sculpt T-cells to fit a given therapeutic purpose. Tailoring T-cells to exact therapeutic 
needs can be achieved using artificial gene circuits, such as recently developed synthetic Notch 
receptors [43], engineered to release a selected transcription factor upon antigen binding to drive a 
bespoke transcription programme within the tumour [44]. T-cells can also be engineered to express 
two antigen receptors, with the second one becoming expressed only after productive antigen 
recognition by the first so as to limit the possible damage to healthy tissue [45].  However, the 
improved specificity of such dual recognition also amplifies the risk of cancer evasion. An off-the-
shelf T-cell product would ideally be devoid of endogenous HLA to reduce the speed of rejection by 
the recipient immune system and express an antigen receptor that recognises cancer irrespective of 



patient HLA type [46]. Removal of donor HLA and TCR is easily achievable by using programmable 
nucleases, and thus engineered allogenic T-cell products transduced with anti-CD19 CAR have 
recently been used in clinic [47]. Non-HLA restricted TCRs provide an alternative to CARs; in this 
respect tumour-specific γδ TCRs may prove more applicable than the conventional αβ TCR options 
that are currently being explored in the clinic. γδ TCRs can target a broad range of cancers but not 
healthy tissue - however, little is still known about possible ligands for these TCRs (reviewed in [48]). 
We have recently shown that using gene editing to remove endogenous αβ TCRs greatly enhances 
the anticancer activity of donor T-cells simultaneously transduced with γδ TCRs [49], and thus expect 
non-HLA restricted TCRs to be worthy of further clinical investigation. 
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Table 1 Completed clinical trials utilising TCR-transduced T-cells for cancer 
immunotherapy. Target refers to the protein from which the cognate peptide is derived 
(presented by HLA-A2, unless indicated otherwise) while the response rate indicates the 
number of patients experiencing objective clinical response out of all the evaluated patients. 
† denotes TCRs of murine origin; * presented by HLA-A1; ‡ presented by HLA-A24. MART, 
melanoma-associated antigen recognised by T-cells; NY-ESO, New York esophageal 
squamous cell carcinoma; CEA, carcinoembryonic antigen; MAGE, melanoma antigen gene. 

Target TCR Cancer Response Adverse 
effects Reference 

MART-1 Wild type Metastatic melanoma 2/17 None [10] 

MART-1 Wild type Metastatic melanoma 6/20 Grade 3  [11] 

gp100 Wild type† Metastatic melanoma 3/16 Grade 3  [11] 

NY-ESO-1 Affinity 
enhanced 

Metastatic melanoma, 
synovial cell carcinoma 

9/17 None [50] 

NY-ESO-1 Affinity 
enhanced 

Metastatic melanoma, 
synovial cell carcinoma 

22/38 None [51] 

NY-ESO-1 Affinity 
enhanced 

Multiple myeloma 18/20 Grade 3 [52] 

CEA Affinity 
enhanced† 

Metastatic colorectal cancer 1/3 Grade 3  [53] 

MAGE-A3 Affinity 
enhanced† 

Metastatic melanoma/ 
synovial cell carcinoma/ 
oesophageal cancer 

5/9 Fatality  [20] 

MAGE-A3* Affinity 
enhanced 

Metastatic melanoma/ 
multiple myeloma 

0/2 Fatality [21] 

MAGE-A4‡ Wild type† oesophageal cancer 0/10 None [54] 

 

  



Figure legends: 

Figure 1. Natural anticancer responses consist of T-cells recognising short peptide antigens derived 
from aberrantly-expressed or mutated proteins. T-cells scan the intracellular proteome, presented 
as short peptides bound to MHC class I at the cell surface, using their hypervariable TCRs. The 
process of thymic selection prevents autoimmunity by culling T-cells bearing TCRs with high affinity 
towards peptides derived from self-proteins. Since many tumour-associated antigens are derived 
from self-proteins which are over- or aberrantly expressed (in particular, proteins expressed 
predominantly in immunologically privileged sites such as testes or developing foetus give rise to 
tumour antigens), thymic selection limits the pool of TCRs specific for these antigens to weak 
affinity, sub-optimal receptors. Thymic selection has little impact on TCRs specific for cancer-specific 
peptides arising from non-synonymous somatic mutations, as these are essentially foreign, highly 
personalised, antigens. 

 

Figure 2. The affinity of TCRs towards cognate peptide-MHC can be enhanced – but requires 
tailoring to a particular application. (A) TCRs targeting cancer in context of peptide-MHC class I can 
be used for genetic re-direction of patient CD8 cytotoxic and CD4 helper T-cells. However, 
unmodified TCRs have a relatively weak affinity towards self/cancer-antigens – which may be 
sufficient to re-direct cytotoxic T-cells (which use CD8 co-receptor to enhance TCR binding to 
peptide-MHC-I) but not helper T-cells. As a result, CD4 T-cells require TCRs with higher affinity than 
CD8 T-cells to target cancer antigens via MHC-I without loss of specificity. Enhancing the TCR affinity 
to sub-nanomolar levels generally correlates with non-specific recognition of MHC molecules, when 
transduced into primary T-cells. Based on [17]. (B) TCRs with sub-nanomolar affinity towards their 
cognate antigens can be used as soluble molecules and are capable of binding to cancer cells with 
long half-lives. These super-high affinity TCRs can be covalently linked to single chain variable 
fragments (scFv) of an antibody (UCHT1) specific for CD3 molecule. Since CD3 is a component of the 
TCR, these bispecific reagents are capable of re-directing patient polyclonal T-cells to target cancer. 
Based on [23].  

 

Figure 3. Hallmarks of an optimal cellular product for adoptive cell transfer. An optimal T-cell 
product can be generated by combination of gene knock-ins (for instance, delivered via a lentiviral 
vector) and knock-outs (transiently delivered in a form of Cas9 complexed with gRNAs). While Cas9 
system can be easily multiplexed to target multiple genes at the same time, the amount of 
exogenous DNA that can be knocked in is limited by vector packaging constraints and cellular fitness 
considerations. Therefore, it may be advantageous to use an optimal T-cell subset for starting 
material, exhibiting the desired phenotype, cytokines and chemokine receptors. An alternative 
approach would involve using mutant Cas9 to activate endogenous gene expression. Finally, a safe 
off-the-shelf T-cell product should not express endogenous TCRs which can drive graft versus host 
disease, or endogenous MHC-I molecules which can lead to donor cell rejection. An optimal off-the-
shelf T-cell product should target cancer, but not essential tissues, via a non-MHC restricted receptor 
to allow recognition in all patients. 
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