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Abstract 

Background: Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the UK 

and has a poor 60% 5-year survival rate. The Wnt signalling pathway is fundamental for 

homeostasis of the intestinal epithelium and its deregulation drives development of CRC and 

induces DNA damage. Histone-2AX (H2AX) is a component of the nucleosome whose 

phosphorylated form, γH2AX, is a marker of DNA damage.  

Objectives: Using a well-characterised inducible CRC mouse model of early Wnt deregulation, 

and established Apc-deficient driven tumour and ex vivo organoid models, we have assessed 

whether the spontaneous DNA damage generated in these models can be targeted using 111In-

anti-γH2AX-TAT (RH2AX), a radio-labelled antibody targeting γH2AX. 

Methods: Deletion of the Apc gene was effected in the intestine of VilCreERApcfl/fl and 

Lgr5CreERApcfl/fl models by intraperitoneal or oral induction with tamoxifen. γH2AX 

immunohistochemical (IHC) characterisation of intestines were performed as well as γH2AX 

whole mount immunofluorescent analysis on organoids derived from them. RH2AX, an anti-

γH2AX antibody conjugated to the cell-penetrating peptide TAT to allow cellular internalisation 

and nuclear localisation, was used in these models as an imaging agent SPECT/CT imaging and 

biodistribution studies were conducted after oral induction of VilCreERApcfl/fl and intravenous 

injection of RH2AX. γH2AX and Lgr5 FACS analysis were carried out on intestinal crypt cells of 

VilCreERApcfl/fl mice expressing Lgr5-EGFP reporter. 

Results: Intestinal Apc deficiency increased DNA damage levels in the small intestine of both 

dysplastic (VilCreERApcfl/fl) and tumour CRC mouse (Lgr5CreERApcfl/fl) models. Apc-deficiency-

associated DNA damage is most likely generated through WNT signalling pathway activation 

and, more specifically, by c-Myc transcription. For the first time, we demonstrated that 

intestinal dysplasia can be identified through in vivo SPECT imaging, using low SA RH2AX 

treatment. Low SA RIC treatment in intestinal dysplasia increased the DNA damage levels in 

healthy and Apc-deficient small and large intestines, increased proliferation in the Apc-deficient 

tissue and resulted in variable levels of apoptosis depending on the tissue. 

Conclusion: These findings together indicate that DNA damage is induced by Apc-deficiency, and 

that there is the possibility to exploit the endogenously-increased DNA damage signal, γH2AX, 

to attract the RH2AX for in vivo imaging of intestinal dysplasia. This could help diagnose early 

stages of CRC to provide patients with the appropriate treatment sooner and increase their 

survival.  
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 Introduction 

1.1 The Mammalian Intestine 

1.1.1 Gross structure and function of the small intestine 

The small intestine is an organ of the gastrointestinal system that has evolved to efficiently 

absorb nutrients from the breakdown of food. The small-intestinal wall is comprised of the 

mucosal surface, the submucosal stroma, the muscularis propria and the serosa. The mucosal 

surface is the innermost layer that surrounds the lumen of the intestinal tube and comprises the 

continuous simple columnar epithelium, the lamina propria (which contains blood and 

lymphatic vessels originating from the submucosa) and the muscularis mucosae (a thin smooth 

muscle layer; Young et al. 2013). The mucosal epithelium is responsible for the secretion of 

various digestive enzymes (disaccharidases, peptidases, phosphatases) to facilitate the 

breakdown of macronutrients (Miller and Crane 1961; Peters 1970). The epithelial cells are able 

to absorb monosaccharides, amino-acids, free fatty-acids and monoglycerides (Goodman 2010). 

The submucosa is connective tissue in which blood and lymphatic vessels, as well as enteric 

neuronal cells, reside. The muscularis propria facilitates the movement of partially digested 

food (or chyme) through the lumen of the intestine by peristalsis, which is the coordinated 

contraction between the circular muscle layer and the longitudinal muscle layer. Finally, the 

serosa is a connective tissue with a simple squamous epithelial layer that helps to prevent 

friction which occurs during movement of the bowel. Lymph nodes present in the mucosa or 

the submucosa of the small intestine (Peyer’s patches) initiate the immune response in the 

lamina propria or the epithelium (Macdonald 2003).  
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1.1.2 Organization of the mucosal epithelium 

The intestinal mucosa consists of a continuous monolayer of epithelial cells. The epithelial layer 

extends from the intestinal invaginations (the crypts of Lieberkühn), towards the tip of finger-

like structures called villi (Figure 1.1). These structures, forming the intestinal ‘brush border’, 

increase the absorptive surface area of the intestine and topographically distinguish progenitor 

cells (in the crypt) from terminally differentiated cells (in the villus; Helander and Fandriks 2014; 

Barker et al. 2007).  

The brush border is constantly exposed to various dietary antigens as well as commensal 

microbiota or parasitic microbial pathogens from food consumption. Therefore, multiple innate 

defence mechanisms are employed to sustain epithelial integrity, such as quick cell turn-over 

(every 4-5 days), cell extrusion and innate immunity (Kim et al. 2010). All the cells that reside in 

the epithelium originate from stem cells situated at the bottom of the crypts of Lieberkühn 

(Barker et al. 2007). There are approximately 5-6 active stem cells [crypt base columnar (CBC) 

cells] per human crypt, which divide every 48-72 hours (h) symmetrically or asymmetrically to 

give rise to other stem cells (self-renewal) or progenitor cells (Yang et al. 2015; Morrison and 

Kimble 2006; Potten et al. 1992). Murine crypts are significantly shorter than in humans and the 

intestinal stem cells divide 3 times more rapidly (every 24h) (Kellett et al. 1992). At the forth 

position from the base of the crypt, the +4 quiescent stem cells reside. The +4 cell identity is still 

under investigation; however some studies suggest that, upon CBC stem cell loss they divide to 

replace them (Carulli et al. 2014). The immature progenitor cells, generated after CBC stem cell 

division, are known as transit-amplifying (TA) cells and they occupy the rest of the crypt length. 

TA cells divide 2-3 times, once every 12h, while migrating gradually towards the crypt-villus 

junction. Their highly proliferative nature is essential for the repopulation of the epithelium and 

therefore, its integrity. When they finally reach the base of the villus, they stop proliferating and 

commit to an absorptive or secretory cell lineage (Carulli et al. 2014). Cells committed to an 

absorptive lineage become enterocytes whereas those committed to a secretory lineage 

become either goblet, Paneth, enteroendocrine, Tuft or Microfold cells (M-cells). The 

terminally-differentiated cells continue their gradual migration towards the top of the villus, 

where they eventually die and are shed into the lumen. Figure 1.1 shows a schematic 

representation of the different cell types in the intestinal epithelium. 

The cells at the base of the TA region can differentiate to give rise to Paneth cells which stay 

within the crypt base (Barker 2014). Paneth cells are specialized secretory cells that migrate 

towards the bottom of the crypt and are intermixed with stem cells. Their position facilitates 

the maintenance and modulation of stem and progenitor cells through secretion of signals. 

Moreover, the secretion of antimicrobial molecules by Paneth cells is one of the innate immune 
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mechanisms against pathogens and concomitantly helps the establishment of microbiota 

(Clevers and Bevins 2013). Enterocytes are the predominant differentiated epithelial cells of the 

mucosa, which absorb nutrients. Goblet cells are also present in the epithelium and secrete 

mucus, which is essential for epithelial lubrication and anti-bacterial protection (Johansson and 

Hansson 2013). Another type of matured cell of the intestinal epithelium is the enteroendocrine 

cell. Upon stimulation by micronutrients and microbial products, they secrete hormones into 

the bloodstream to achieve an endocrine effect, transmit the hormonal signal to the enteric 

nervous system or diffuse hormones locally in an autocrine or paracrine mode. Enteroendocrine 

cells modulate food intake, gastrointestinal tract movement as well as mucosal immunity and 

repair (Engelstoft et al. 2008; Moran et al. 2008). Tuft or brush cells, whose function is still 

unclear, are thought to play a role in chemoreception and initiation of type-2 mucosal immunity 

after parasitic infection or allergic reaction (Gerbe et al. 2016; Chandrakesan et al. 2016). M-

cells are responsible for the immunosurveillance of the lumen. These differentiated cells reside 

on the epithelium over Peyer’s patches and lymphoid follicles and they sample antigens and 

whole microbes in order to present them to the immune system lying underneath them 

(Peterson and Artis 2014).  
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Figure 1.1 Mammalian small intestine crypt-villus structure.  

The structure of the small intestinal epithelium is divided into crypts and villi. Within the bottom of the 

crypt, crypt base columnar (CBC) cells reside next to paneth cells. A more quiescent stem cell, namely 

+4 cell, is present at the fourth cell position from the bottom of the crypt. Progenitor cells are localized 

within the transit-amplifying region of the crypt; these cells divide and differentiate into absorptive 

enterocytes, secretory goblet, enteroendocrine, tuft and Paneth cells (Carulli et al. 2014). 
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1.1.3 Intestinal stem cells 

Adult stem cells, residing within the base of the intestinal crypt, are responsible for the renewal 

of the tissue (Cheng and Leblond 1974). Stem cell behavior is sustained by the 

microenvironment or ‘niche’ (Schofield 1978). The stem cell niche in the intestine consists of 

the surrounding epithelial cells (mainly Paneth cells), myofibroblasts, enteric neurons, 

infiltrating immune cells, extracellular matrix as well as cell-associated ligands and soluble 

signals present within the stroma which surrounds the crypts, or provided by Paneth cells 

(Brittan and Wright 2004; Tan and Barker 2014). 

A true stem cell is potentially able to self-renew indefinitely and generate progenitor cells that 

in turn will give rise to the rest of the terminally differentiated intestinal cell types, during 

homeostasis or injury, whilst the parental stem cells remain undifferentiated (Potten and 

Loeffler 1990). Stem cell replication is a highly-regulated process which needs to be coordinated 

with the rate of cell death, occurring at the villus tip, in order to avoid excessive cell loss or 

aberrant accumulation of cells. 

Stem cell division can result in three outcomes. The maintenance of the stem cell population 

under normal circumstances is achieved by asymmetric division, the most common of all three, 

which results in one daughter stem cell and a daughter progenitor cell. This allows the self-

renewal of the stem cell compartment as well as the expansion of the TA region that will 

repopulate the crypt-villus (Potten and Loeffler 1990). In contrast, upon tissue injury, stem cells 

divide symmetrically into two stem cells to expand their numbers and replenish the stem cell 

pool. Alternatively, a stem cell divides into two daughter progenitor TA cells, which will 

eventually differentiate; this leads to the extinction of that stem cell lineage. Hence, symmetric 

cell division contributes to intestinal population homeostasis rather than individual cell 

homeostasis (Shahriyari and Komarova 2013). When stem cells are damaged and incapable of 

repopulating the TA zone, a potential stem cell from the TA zone, which is the progeny of a 

crypt base stem cell, can de-differentiate back to true-stem cells (Potten and Loeffler 1990). 

This concept is discussed in detail below. The plasticity of outcomes from a stem cell division is 

important for the maintenance of normal intestinal homeostasis, given the numerous damaging 

factors which cells face persistently, including carcinogens, digestive enzymes and 

microorganisms (Barker 2014).    

Adult stem cell identity 

Intestinal stem cell identity has been debated since the 1970s. The ‘stem cell zone’ model was 

suggested by Cheng and Leblond (1974) and postulated that stem cells are the crypt base 

columnar (CBC) cells. In contrast, the model suggested by Potten (1977) proposed that stem 
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cells reside immediately above the Paneth cells. Based on recently discovered markers for both 

candidate stem cell populations, it seems like the truth lies somewhere in the middle, with 

distinct stem cell populations responsible for adult epithelial homeostasis and regeneration 

upon damage. 

The stem cell zone model 

Cheng and Leblond (1974) performed one of the first intestinal stem cell lineage experiments 

which suggested that CBCs were the cells of origin of the terminally differentiated epithelial 

lineages. Taking advantage of their observation that CBCs could phagocytise neighbouring dead 

cells, they induced intestinal cell death by irradiating mice and showed that the surviving 

fraction of CBCs contained phagosomes with tritiated thymidine, which had been administrated 

to mice before irradiation and was incorporated into all replicating cells. By 6h, the labelled 

thymidine was present in cells at the crypt-villus junction and by 12h in those at the tip of the 

villus. Those cells included the four major epithelial cell types. However, all four radiolabelled 

cell types could not be identified in the same crypt, arguing against the hypothesis of CBCs 

being the multipotent stem cells.  

Bjerknes and Cheng (1999) introduced heritable somatic mutations, using N-nitroso-N-ethylurea 

(NEU) mutagenasis, in random cells of crypts. Persistent labelled clones which contained all 

epithelial cell lineages always included a CBC cell, successfully proving the presence of a self-

renewing stem cell and reinforced the idea of CBC cells being these cells. Short-term mutant 

clones that existed for 14 days were also observed which signified that mutations in TA cells can 

be passed, through division and differentiation, to all intestinal epithelium lineages, but as those 

cells could not replenish their own TA cell population; these mutations were lost with the death 

of their progeny.   

In the stem cell zone model, adult stem cells reside at the crypt base, where the niche is, and 

divide giving rise to daughter progenitor cells residing in the midcrypt above the 5th position 

from the crypt base (+5 cells). Away from the niche these cells commit to differentiation. 

Progenitor cells localized in the transit-amplifying region divide and differentiate migrating 

towards the villus whereas Paneth progenitor cells differentiate and migrate towards the base 

of the crypt, intercalating with CBC cells. Barker et al. (2007) used in vivo lineage tracing and ex 

vivo studies to identify that CBCs express the Leucine-rich repeat-containing G-protein coupled 

receptor 5 (LGR5) receptor, now one of the most widely used intestinal stem cell (ISC) markers 

(Sato et al. 2009; Barker et al. 2007).  
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LGR5 is an intestinal stem cell Marker 

Leucine-rich repeat-containing G-protein coupled receptor, LGR5, is an adult ISC marker (Sato et 

al. 2009; Barker et al. 2007). In vivo, LGR5 expressing (LGR5+) cells are highly proliferative, as 

demonstrated by BrdU assays, and they can give rise to long lasting (at least 60 days) 

multilineage clones that all originate from CBCs (Barker et al. 2007). Moreover, single cell LGR5 

flow-sorted cells can give rise to in vitro/ex vivo organoid cultures containing all epithelial 

lineages (Sato et al. 2009). In vitro, LGR5 is activated upon R-SPONDIN ligand binding which in 

turn activates canonical Wnt signalling (Carmon et al. 2011); in vivo, Lgr5 depletion in adult 

intestine has little or no effect on Wnt signalling, ISC renewal or Paneth cell production (Garcia 

et al. 2009) in contrast to its homologue Lgr4 (Carmon et al. 2017). Despite the fact that Lgr4 

deficient mice had a 2-fold reduction in proliferation and 85% fewer Paneth cells compared to 

wt, sorted LGR4+ single cells were unable to give rise to organoids, signifying that they are not 

stem cells (de Lau et al. 2011). In addition, combined IHC and in situ mRNA expression of Lgr4 

showed staining in both CBCs and Paneth cells of the small intestine whereas in the large 

intestinal there was a widespread cytoplasmic staining which excluded the cells at the base of 

the crypts where CBCs reside (Yi et al. 2013). Hence, only LGR5 is considered as a true 

multipotent ISC marker despite it being apparently dispensable for ISC function in vivo. LGR5+ 

cells were present in APCMin adenomas (Barker et al. 2007) and it was later demonstrated that 

Apc (Adenomatous Polyposis Coli) tumour suppressor loss from the LGR5 cells could initiate 

tumourigenesis (Barker et al. 2009).  Recently, LGR5 receptor, in the absence of R-SPONDIN, 

was demonstrated to promote cell to cell adhesion in normal adult crypt stem cells and colon 

cancer cells (Carmon et al. 2017). Considering the observations that stem cells usually have high 

levels of integrins that attach on the extracellular matrix of the basal lamina facilitating stem cell 

retention within the niche (Fuchs et al. 2004), LGR5+ cells may have a competitive advantage 

over the differentiated LGR5- cells in remaining within the niche and therefore retaining their 

stem cell potentials through the signals that they receive (Carmon et al. 2017). 

A model for population homeostasis driven by LGR5+ CBCs 

Insights into how CBCs maintain population homeostasis, by regulating their individual cell 

division towards self-renewal and/or differentiation, was provided by multi-colour Cre-reporter 

lineage tracing (Snippert et al. 2010). LGR5+ cells labelled with different fluorescent proteins, 

unexpectedly divided in a symmetrical pattern giving rise to either two stem cells or two TA 

cells, which favoured population homeostasis rather than individual stem cell feature 

retainment. This means, for example, that an injured epithelium can be repopulated faster by 

symmetric division of stem cells compared to asymmetric division. This approach also provided 

evidence for stem cell neutral competition which was also supported by a mathematical model 
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(Snippert et al. 2010). Neutral competition allowed the initially multi-colour labelled CBC 

population to gradually, over time, become mono-chromatic due to stochastic refinement 

(neutral drift) of the stem cell population remaining within the niche through cell-cell 

competition and persistence of the CBC clone with the most advantageous characteristics.  

In contrary, Quyn et al. (2010) study showed that +1 to +7 cells, from the crypt base, (which 

included both CBCs and the putative +4 stem cell) preferentially divide asymmetrically (Figure 

1.2), retaining the template strand in the daughter stem cells and not differentiated cells (called 

the ‘immortal strand’ hypothesis), based on the relationship between mitotic spindle 

orientation and DNA segregation. However, apart from the lack of detail in this study regarding 

exactly which stem cell compartment preferentially divides asymmetrically, multiple subsequent 

studies have shown random DNA strand and chromosome segregation during division (Bellis et 

al. 2012; Escobar et al. 2011; Schepers et al. 2011; Steinhauser et al. 2012). 

The symmetric CBC stem cell division model predominates the field; however, it remains 

unknown whether stem cell fate decisions, at the individual level, are purely stochastic or taken 

based on cell positioning and access to niche or other biochemical factors. 
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Figure 1.2 Symmetric and asymmetric stem cell division 
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Additional Intestinal stem cell Markers of the CBC cells 

Sox9 is a Wnt target gene which encodes for the SOX9 transcription factor which modulates 

intestinal proliferation (Blache et al. 2004). In vivo enhanced GFP expression under the Sox9 

promoter (Sox9-EGFP) highlighted high and low GFP expression (Sox9-EGFPhi and Sox9-EGFPlow, 

respectively) around the crypt base (Formeister et al. 2009). Sox9-EGFPhi cells were post-mitotic 

enteroendocrine cells located around +4-6 crypt positions.  Sox9-EGFPlow cells were co-localized 

with CBC cells and demonstrated to have stem-cell behaviours ex vivo (being capable of 

generating multilineage organoids) and in vivo using cell-lineage tracing (forming persistent 

clones stemming from SOX9+ cells throughout the intestine) (Van Landeghem et al. 2012; 

Furuyama et al. 2011; Formeister et al. 2009). Sometimes Paneth cells were also Sox9-EGFPlow; 

the authors of this study speculated that it was remnant GFP protein originating from SOX9+ 

cells, Paneth cell progenitors, before they become mature Paneth cells (Formeister et al. 2009).  

Musashi homologue 1 (Msi1) encodes a RNA-binding protein which regulates NOTCH signalling 

and plays a role in the proliferation of stem cell in the nervous system (MacNicol et al. 2015). 

Antibody-based staining identified CBC cells as MSI1+ and showed that APCMin tumours had high 

expression of MSI1 (Potten et al. 2003; Kayahara et al. 2003). In addition, fluorescent in situ 

hybridization (FISH) identified the expression of single Msi1 mRNA molecules in the TA region 

(Itzkovitz et al. 2012). 

Prominin 1 (Prom1) or CD133 encodes for a cell-surface glycoprotein whose role as a cancer 

stem cell marker of epithelial cancers has been debated (O’Brien et al. 2007; Shmelkov et al. 

2008). Its usefulness as an intestinal CBC stem cell marker is also unclear. FISH on small intestine 

has identified CBC cells expressing Prom1 mRNA and through in vivo cell lineage tracing it was 

demonstrated that some PROM1+ cells have adult stem cell behaviours (Zhu et al. 2009). 

However, an independent study suggested that PROM1+ cells include most of the proliferative 

crypt zone and that it was mostly TA cells giving rise to the clones observed through the cell 

lineage tracing (Snippert et al. 2009) 

The +4 model 

Cell-tracking studies by Cairnie et al. (1965) brought about the first indications of cells residing 

at the 4th position from the crypt base, named +4 cells, behaving like stem cells. Later, Potten 

(1977) also described the presence of a stem-cell like population at +2 to +7 cell positions of the 

crypt (+4 position on average) that was radio-sensitive, a a surrogate feature of stem cells that 

could possibly protect their progeny from acquiring mutations. He reported that these +4 cells 

divided every 24h, as demonstrated by BrdU label incorporation, and that they were able to 

divide asymmetrically, such that the DNA label was retained in one of the daughter cells under 
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physiological conditions (Potten et al. 2009). These features of the putative +4 stem cell were 

attributed to the ‘immortal strand hypothesis’ (Cairns 1975), according to which the (labelled) 

template DNA strand is preferentially retained upon division, while the newly synthesized DNA 

strand is inherited by the TA progeny cells as a protective mechanism to spare stem cells from 

possible mutations arising from DNA replication errors (Potten et al. 2009). However, this 

hypothesis is based on the assumptions that +4 cells only divide asymmetrically and that DNA 

exchange between sister chromatids does not occur as normally happens in somatic cells 

(Lansdorp 2007).  

An alternative explanation to the DNA label-retaining features of +4 cells is the “Silent Sister” 

hypothesis. Falconer et al. (2010) used the consistent orientation of pericentric major satellite 

DNA, with respect to murine chromosome telomeres, to label by fluorescence in 

situ hybridization sister chromatid segregation in post-mitotic cells. They identified a subset of 

cells having a non-random sister chromatid segregation pattern. This was attributed to the 

different epigenetic status of sister chromatid centromeres which permits chromatid-specific 

chromosomal segregation during metaphase through kinetochore microtubules preferentially 

binding on one of two sister chromatids (Westhorpe and Straight 2015).  The epigenetic marks 

of genes are regulated, by preservation or alteration, during DNA replication (Lansdorp et al. 

2012). Therefore, the regulation of epigenetic marks on stem cell genes present on sister 

chromatids differentially inherited from the parental stem cell might be another mechanism by 

which cell self-renewal and/or differentiation decisions are made during daughter cell 

maturation (Lansdorp 2007). The progeny cells, depending on which sister chromatid they have 

received, would have differential transcriptional patterns, allowing them to retain the parental 

stem or differentiated cell features. The “Silent Sister” hypothesis however, remains to be 

confirmed through combination of sister chromatid identity information and gene expression 

data (Lansdorp 2007).  

Currently, the lack of reliable and solely +4 cell markers make it difficult to prove the radio-

sensitivity or any other stem cell trait of this cell population. Multiple genes have been found to 

be expressed in the candidate +4 cell stem cell population based on in vivo lineage tracing 

studies. However, each candidate label-retaining cell (LRC) gene (discussed below) proposed 

marked phenotypically distinct epithelial cell populations which did not correlate with the 

originally proposed LRC characteristics described by Potten (1977). 

+4 cells and putative stem cell markers 

Bmi1 which encodes a ring finger protein and is a component of the polycomb group complex 1, 

is responsible for self-renewal of hematopoietic and neural stem cells (Sangiorgi and Capecchi 
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2008). Bmi1 mRNA FISH analysis in the proximal small intestine highlighted the +4 cell position, 

a finding validated using the Bmi1-EGFP transgenic mouse model (Tian et al. 2011). In vivo cell 

lineage tracing using a knock-in transgenic mouse model under the Bmi1 promoter, has proven 

that BMI1 cells have adult stem cell features and that their ablation hampered intestinal 

epithelium renewal. In addition, isolated BMI1+ cells when cultured ex-vivo in 3D produce 

multilineage organoids (Yan et al. 2012; Tian et al. 2011). However, these studies did not 

specifically locate BMI1 cells to the +4 region.  Multiple subsequent studies have found BMI1 

expression present throughout the proliferative crypt region (Muñoz et al. 2012; Powell et al. 

2012; Montgomery et al. 2011; Itzkovitz et al. 2012) and Bmi1-CreERT2 mouse models have also 

shown the presence of BMI1+ cells throughout the crypt area, including the CBC region, which 

might explain the cell-lineage data initially observed (Tian et al. 2011). 

Homeodomain-only protein homeobox (Hopx) gene encodes for an atypical homeodomain 

protein which cannot bind DNA (Mariotto et al. 2016). Hopx-lacZ reporter mice showed 

expression of HOPX at the +4 cell position throughout the intestine (Takeda et al. 2011). In this 

study, HOPX+ cells were radio-resistant and able to exit from their quiescent state and 

proliferate, upon IR injury. In vivo cell lineage tracing, using the Hopx–ires–CreERT2 mouse 

model, supported the multipotent stem cell features of cells at the +4 position. In addition, 

evidence supporting the interconversion between the two candidate intestinal stem cell 

populations (i.e. LGR5+ CBCs and +4 cells) was provided by gene expression profiling of HOPX+ 

and their progeny, showing that the progeny of HOPX+ cells have high expression of Lgr5 and 

other CBC markers. In contrast, ex vivo organoid assays showed that the progeny of self-

renewing LGR5+ CBCs give rise to HOPX+ cells (Takeda et al. 2011). Contrary to this study, which 

showed expression of HOPX solely in +4 cells, are the findings of Muñoz et al. (2012) which 

demonstrated by FISH expression analysis that Hopx is expressed not only in +4 cells but 

throughout the crypt, with the highest expression being at the CBC LGR5+ cells. The correlation 

between protein and mRNA expression levels is subject to numerous biological (e.g. translation 

regulators, protein half-life) and technical factors (e.g. identification technique and 

experimental errors) (Maier et al. 2009). Thus, HOPX is not a robust marker for the 

identification of the +4 quiescent cell population, specifically. 

Leucine-rich repeats and immunoglobulin-like domains protein 1 (Lrig1) is a transmembrane 

protein which functions as a negative feedback regulator of the ERBB receptor tyrosine kinase 

(RTK) family in adult tissues. It is a marker of epidermal stem cells and regulates their 

proliferation (Jensen et al. 2009). In vivo lineage tracing using the Lrig1-ires-CreERT2 transgenic 

mouse model identified the presence of long-term clones throughout the small intestine, 

suggesting the behaviour of a multipotent stem cell (Powell et al. 2012). Despite this, the LRIG1 



13 
 

gene reporter was present in a range of crypt base and lower TA compartment cells (+2 to +5 

positions) which was also confirmed by in situ and IHC analyses (Wong et al. 2012; Powell et al. 

2012; Muñoz et al. 2012). There is evidence showing co-expression of Lrig1 and Lgr5 in both the 

small and large intestine. Muñoz et al. (2012) performed a transcriptome analysis of LGR5+ cells 

in the small intestine showing that they highly expressed Lrig1. Similarly, in the colon, Lrig1 was 

sometimes co-localized with LGR5+ CBC cells. Added to these, some LRIG+ cells were actively 

proliferating whereas others were quiescent, but could proliferate upon IR-induced injury 

(Powell et al. 2012) which suggests that this marker is expressed in two different stem cell 

populations. The expression profiles of LRIG+ and LGR5+ colonic cells showed distinct 

transcriptomes, reiterating their distinctive features, but had similarities in the levels of 

candidate +4 marker expression (BMI1, PROM1 and TERT, discussed in the next paragraph). The 

main difference between the cell types was the expression of oxidative stress response markers 

and negative regulators of proliferation specifically in LRIG+ cells only (Powell et al. 2012). Apc 

gene loss from LRIG+ cells, using the Lrig1-CreERT2/+;Apcfl/+ mice, caused adenoma formation, 

suggesting that these cells divide and pass their mutations to their progeny, of which some 

remain within the crypt, suggesting multipotent stem cells (Powell et al. 2012). LRIG1 cannot, 

therefore, be used as a specific marker of +4 stem cells only. 

High expression of telomerase reverse transcriptase (TERT) in stem cells is thought to guard 

against replication-induced senescence (Breault et al. 2008). While TERT-GFP reporter mice 

showed rare GFP expression at the +4 position (Breault et al. 2008), in quiescent, LGR5-negative 

radio-resistant cells (Montgomery et al. 2011), FISH analysis showed, in contrast, Tert mRNA 

expression in LGR5+ cells and TERT activity, as measured by RT-PCR (reverse transcription-

polymerase chain reaction), in all crypt proliferative cells (including strongest activity in LGR5+ 

CBC cells) (Schepers et al. 2011; Itzkovitz et al. 2012). Although apparently contradictory, the 

findings of these studies are consistent with in vivo lineage tracing, which showed a small 

portion of TERT+ cells being actively cycling and contributing to adult intestinal homeostasis, 

whereas the quiescent cell fraction could only proliferate upon IR induced damage in both small 

and large intestines (Montgomery et al. 2011). Thus, it seems that different Tert labelling and 

detection approaches detect different functional compartments. 

An intestinal cancer stem cell? 

The existence of a small portion of cancer cells, the ‘cancer stem cells’, which can initiate and 

sustain tumourigenesis because of their ability to self-renew, like non-malignant stem cells was 

firstly hypothesized by Schofield (1978). Evidence supporting this hypothesis was provided by 

Bonnet and Dick (1997) who showed that only a subset of human acute myeloid leukaemic cells 

(CD34++/CD38-) could initiate leukaemia in immunocompromised mice. Similar transplantation 
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studies have been carried out on subsets of cells from human colorectal cancer (Dalerba et al. 

2007; Ricci-Vitiani et al. 2007; O’Brien et al. 2007). Successful transplants, which indicated the 

presence of cancer stem cells within the fraction of transplanted cells, were those that could 

colonize the site of transplantation and develop tumours histologically similar to the primary 

tumour. Dalerba et al. (2007) identified that transplantation potential (of cancer stem cells) was 

highly enriched in cells with high expression of epithelial cell adhesion molecule (EpCAM) and 

cell surface expression of CD44 and CD166 (EpCAMhi/CD44+/CD166+). Ricci-Vitiani et al. and  

O’Brien et al. also showed that CD133 (PROM1) cells could initiate tumourigenesis, hence 

CD133 was proposed as a CRC stem cell marker. Contradictory data from subsequent studies, 

however, have shown that CD133-  cells could also establish tumours when transplanted in 

mice, sometimes even more efficiently than CD133+ cells, and that CD133 was expressed 

throughout the crypt-villus axis (Shmelkov et al. 2008).  

A recent study showed that human LGR5+ cancer cells act as cancer stem cells. Shimokawa et al. 

(2017) introduced a Cre-inducible multi-colour rainbow reporter into the LGR5 locus of cells 

from human CRC organoids and showed that their xenotransplantation in immunodeficient 

mice, and subsequent induction of Cre recombination, initially labelled cells on the outside 

region of the engrafted organoid. Over several days, the colour-labelled clones took over the 

whole tumour area and persisted for months. Despite all tumour cells being labelled, signifying 

their cancer stem cell origin, not all of them were LGR5+, evidence of the ability of LGR5+ cancer 

stem cells to give rise to differentiated daughter cells as well as self-renew. Shortly after genetic 

ablation of LGR5+ cancer stem cells (in LGR5-iCaspase9 organoids that in the presence of a 

dimerizer, LGR5+ cells expressing an inucible form of Caspase9 undergo apoptosis due to 

Caspase9 homodimerization) LGR5+ cells were completly eradicated and the tumour decreased 

in volume. However, after some days tumours regrew and LGR5+ cells re-emerged. It was 

speculated that re-emergence of LGR5+ cells was due to plasticity of a small fraction of LGR5- 

and fully differentiated KRT20 (keratin-20; a differentiation marker of intestinal epithelium) 

expressing cells. Collectively, these studies are in agreement with the cancer stem cell 

hypothesis but also indicate the potential of cells that do not initially have stem cell capacities 

to revert to stem cells under appropriate conditions.  
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1.1.4 Epithelial homeostasis 

Intestinal epithelial homeostasis is a highly regulated process as any perturbation of the balance 

between proliferation, cell death, differentiation, migration and cell localisation may lead to 

abnormal accumulation or loss of cells, or aberrant organ function. The major signalling 

pathways responsible for the regulation of these processes through their cross-talk are:  

wingless-related integration site (Wnt) signalling, Notch/Delta signalling, transforming growth 

factor-β (TGF-β) and bone morphogenic protein (BMP) signalling, Hedgehog (Hh) signalling and 

phosphatidylinositiol 3- kinase (PI3K)/Akt signalling.  

Wnt signalling pathway 

The Wnt signalling pathway is important in morphogenesis during both embryogenesis and in 

adult tissue self-renewal homeostasis (Giles et al. 2003; Clevers 2006). The canonical Wnt 

signalling pathway has been thoroughly studied in the context of intestinal homeostasis due to 

the strong link between tumourigenesis and Wnt signalling dysregulation (Kinzler et al. 1991; 

Nishisho et al. 1991). It is activated in over 90% of all CRC cases (Giles et al. 2003). 

In the absence of Wnt ligand, β-CATENIN binds to the ‘β-CATENIN destruction complex’, a 

scaffold formed by axis inhibitor-1 (AXIN-1) and APC that allows glycogen synthase kinase-3β 

(GSK-3β) and casein kinase-1α (CK-1α) to phosphorylate β-CATENIN (Figure 1.3). Beta-

transducin repeat-containing protein (β-TrCP) of the E3 ubiquitin ligase complex recognizes β-

CATENIN phosphorylation and catalyses its ubiquitination (Staal and Clevers 2005; Barker and 

Clevers 2006). Subsequently, ubiquitinated β-CATENIN undergoes proteasomal degradation 

(Clevers 2006), resulting in low levels of free β-CATENIN in the cytoplasm. This allows the 

interaction of Groucho-related gene (GRG) family repressors with the DNA bound Lymphoid 

enhancer factor/T-cell factor (LEF/TCF) proteins, which inhibits Wnt target gene transcription. 

Wnt signalling is normally activated by the binding of Wnt ligands on the Frizzled (FRZ) and low-

density lipoprotein-receptor related protein (LRP) co-receptor complex (Clevers et al. 2014).  

Dishevelled (DSH) binds to activated FRZ and oligomerizes at the plasma membrane. The 

assembly of DSH allows the recruitment of GSK3β, which phosphorylates LRP, and AXIN-1 which 

is relocated at the plasma membrane (Gao and Chen 2010; Clevers et al. 2014; Clevers 2006). 

This prevents formation of the destruction complex, allowing β-CATENIN to become stabilized. 

The increased cytoplasmic levels of β-CATENIN, which is a transcriptional activator, allow its 

translocation to the nucleus where it interacts with LEF/TCF family proteins and recruits more 

co-activators that ensure efficient transcription of Wnt targeted genes (Barker and Clevers 

2006; Clevers et al. 2014). 
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Figure 1.3 Canonical Wnt signalling pathway.  

In the absence of Wnt, β-CATENIN binds to the destruction complex consisting of AXIN-1, APC, GSK3β 

and CK-1α to be phosphorylated. Phosphorylated and ubiquitinated β-CATENIN undergoes 

proteasomal degradation (Clevers 2006). LEF/TCF protein activity in the nucleus is repressed by GRG 

family members’ binding that does not allow the Wnt target gene transcription. Wnt signalling is 

normally activated by the binding of Wnt ligands on FRZ and LRP co-receptor complex which is aided 

by DSH (Clevers et al. 2014). DSH binds to FRZ and oligomerizes at the plasma membrane. The 

assembly of DSH allows the recruitment of GSK3β, which phosphorylates LRP, and AXIN-1 (Gao and 

Chen 2010; Clevers 2006; Clevers et al. 2014). The destruction of the AXIN-1, APC, GSK3β complex 

results in the stabilization of β-CATENIN and ultimately its translocation to the nucleus where it binds 

to LEF/TCF allowing the transcription of Wnt targeted genes (Clevers et al. 2014). 

Adapted from Clevers et al. (2014) 
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The base of the crypt, where the stem cells reside, exhibits the strongest Wnt signalling 

activation, gradually diminishing to being inactive at the crypt-villus boundary. Cells further up 

the crypt receive less Wnt signal from their surrounding cells and in addition to that, Wnt 

activity is suppressed by BMP pathway at the crypt-villus junction (Biswas et al. 2015). 

Therefore, cells within the crypt are able to proliferate due to activation of Wnt signaling target 

genes such as c-Myc and Cyclin-D, which allow progression through the cell cycle (Scoville et al. 

2008).  

The shape and migration of the cells within the crypt-villus axis is controlled by EPH receptors, 

which remodel the actin-cytoskeleton. The expression of EPHB2/B3 receptors and EPHRIN-B1 

ligands is inversely regulated by β-CATENIN/TCF signaling on the transcriptional level (in the 

presence of an active β-CATENIN/TCF signaling Eph2/B3 are transcribed, whereas Ephrin-B1 

transcription is downregulated; Batlle et al. 2002). The absence of EPHB3 receptor expression is 

restricted to the crypt base only, where the Paneth cells and CBC cells reside and is responsible 

for the Paneth cell positioning. EPHB2 is expressed strongly at the CBC zone and gradually 

declines towards the crypt-villus junction, where its expression is minimal. EPHRIN-B1 ligands on 

the other hand, are strongly expressed in the villi and gradually reduce within the crypt where 

they exhibit their lowest expression close to the CBC-Paneth cell zone. 

CBCs and Paneth cells, present strictly at the bottom of the crypt, usually have nuclear β-

CATENIN, indicative of an active Wnt pathway, compared to the membrane bound β-CATENIN 

present in cells elsewhere in the crypt. In EPHB2/B3 receptor-deficient mice, non-differentiated 

cells and their differentiated progeny (i.e. CBCs and TA or Paneth cells, respectively) are 

intermingled throughout the crypt axis. It is important to note that nuclear β-CATENIN 

localization is not strictly cell-autonomous, and is dependent on the positioning of the cell. This 

was evidenced by the absence of nuclear β-CATENIN in the stem and Paneth cells positioned 

away from the base of the crypt in EPHB2/B3 receptor-deficient mice, which highlights the 

importance of the niche signals and the supportive myofibroblasts. However, in CRC, nuclear β-

CATENIN localization becomes a fully cell autonomous process, due to Wnt signalling 

hyperactivation coupled with loss of EPHRIN-B ligand expression (Batlle et al. 2002). EPHB2 

receptor loss of expression has also been linked with poor CRC prognosis (Jubb et al. 2005; Lugli 

et al. 2007). 

Cell fate determination is also regulated by Wnt signalling. Tcf4 intestinal loss or the Dkk1 Wnt 

inhibitor block the generation of enteroendocrine cells, whereas overactivation of Wnt 

signalling halts differentiation of all cell types apart from Paneth cells (Madison et al. 2005; 

Pinto et al. 2003; Sansom et al. 2004). Early stages of enteroendocrine differentiation are 

dependent on Wnt signals, and hyperactivation of Wnt signalling at that stage can even result in 
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serotonin-expressing adenoma formation. However, the later stages of enteroendocrine lineage 

are Wnt signaling-independent (Moran et al. 2008) which is in agreement with the fact that Wnt 

signalling dysregulation alone in terminally differentiated cells cannot lead to progression of 

poorly proliferating lesions (Schwitalla et al. 2013).  

The microenvironment can also modulate Wnt signaling which in turn, influences the fate of 

cells. For instance, dedifferentiation of post-mitotic intestinal epithelial cells with increased Wnt 

signaling activation is also possible upon concomitant activation of NF-κB signalling, a key 

transcription factor of inflammation, because it interacts with and enhances β-CATENIN DNA 

binding activity, further enhancing Wnt signalling activation effects.  Dedifferentiation of non-

stem cells with elevated Wnt signaling, allows their conversion into cells with tumour initiating 

capacity (Schwitalla et al. 2013), which also helps explain the reason that chronic intestinal 

inflammation increases the risk of CRC incidence (Axelrad et al. 2016).  

Another way that Wnt signalling activation modulates cell fate determination is through the 

Sox9 target gene. Its absence results in poor negative modulation of Wnt signalling through 

down-regulation of groucho-related corepressors, which leads to Wnt signalling hyperactivation 

and increased cell cycle activity, as well as affecting the secretory lineage development 

characterized by absence of Paneth cells and reduction in goblet cells (McDonald et al. 2012). 

APC: A tumour suppressor 

Structure and function of APC 

The APC gene is located on chromosome 5q22.2 in humans, and in mice on chromosome 18 

(Gene Cards/Human Gene Database; Kwong and Dove 2009). There is a high conservation of the 

APC gene coding regions between these two species with 90% of the amino acid sequence 

being identical (BLASTp search query ID: P25054 against the database of Mus musculus).  

As Figure 1.4 depicts, the mammalian APC protein contains an oligomerization domain, an 

armadillo repeat-domain, a 15- or 20-amino acid residue repeat domain allowing β-CATENIN 

binding, an AXIN binding domain, a basic region for microtubule binding and a C-terminal 

domain that allows binding to the EB1 and DLG proteins (Polakis 1997). 
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The N-terminus and central regions of APC facilitate binding with β-CATENIN, AXIN-1 and AXIN-

2, a negative regulator of Wnt signalling which shares similar structure with AXIN-1, to facilitate 

formation of the β-CATENIN destruction complex. The C-terminus of the protein allows direct 

binding to microtubules of the cytoskeleton, as well as with EB1 family members, which bind to 

the extended ends of spindle and cytoplasmic microtubules and on centrosomes (Fodde et al. 

2001; Fodde et al. 2001). In 2001, two groups demonstrated that APC mutation in embryonic 

stem cells result in chromosomal instability and spindle aberrations, evidence of APC 

involvement in chromosomal segregation (Kaplan et al. 2001; Fodde et al. 2001). Cytoplasmic 

APC can be found either in membrane protrusions, bound to the extending end of the 

microtubule cytoskeleton, or bound to the plasma membrane via actin cytoskeleton (Näthke et 

al. 1996; Rosin-Arbesfeld et al. 2001). APC is able to bind through its armadillo repeat domain to 

a RAC-specific guanine nucleotide-exchange factor (GEF), termed ASEF (APC-stimulated GEF; 

Kawasaki et al. 2003). This interaction can regulate the actin cytoskeletal network during 

lamellipodia formation and membrane ruffling. The binding of APC to ASEF stimulates its GEF 

activity, which decreases the E-CADHERIN and β-CATENIN mediated cell-cell adhesion, 

promoting cell migration (Kawasaki et al. 2003). This is an important aspect in CRC metastasis as 

it has been demonstrated using CRC cell line which contains APC truncations (SW480), that this 

leads to the aberrant motility of the cells (Kawasaki et al. 2003). Usually in CRC, APC is truncated 

in such a way that the β-CATENIN and microtubule binding domains of APC are missing, but the 

armadillo repeat domains are still functional. This seems to be sufficient for ASEF constitutive 

activation and aberrant cell migration of APC truncated cells which as it has been reported, cells 

with specific APC truncations have similar proliferation rates to APC wild-type (wt) cells early 

after transformation (Oshima et al. 1997), however due to their aberrant cell migration they are 

retained in the crypt and form early lesions (Kawasaki et al. 2003).  

Figure 1.4 Apc protein structure. 

Shapes and shaded boxes represent binding regions of the Apc protein with other proteins. 

Figure was adapted from (Riccardo Fodde, Kuipers, et al. 2001). 
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APC regulation 

The regulation of APC activity is complex and takes place at the transcriptional, post-

trancriptional and post-translational levels. In cancer, promoter hypermethylation of the APC 

gene leads to reduced APC expression in 18% of sporadic CRC and adenomas (this underscores 

its occurrence early during the development of CRC); methylation is more frequent (95%) at loci 

of wt APC alleles which is likely the reason that it does not occur in Familial Adenomatous 

Polyposis, FAP, CRC patients with germline APC mutations (Derks et al. 2006; Esteller et al. 

2000; Arnold et al. 2004). At the post-transcriptional level, microRNAs (miRNA), ∼22-

nucleotide-long noncoding RNAs, are able to introduce the RNA-induced silencing complex 

(RISC) to complementary sites of their mRNA target, repressing in this way the mRNA 

translation or forcing them to be cleaved. Nagel and colleagues identified miR-135a and miR-

135b (miR-135a&b) as regulators of APC whose function increases Wnt signalling activity. They 

have also observed the increased expression of miR-135a/b within colorectal adenomas and 

carcinomas coupled with reduction of APC mRNA levels suggesting their involvement in CRC 

development (Nagel et al. 2008). Moreover, a number of post-translational modifications 

occurring on effectors of the Wnt pathway can alter the status of the pathway (Gao et al. 2014). 

APC phosphorylation by GSK-3β increases the binding affinity of APC for β-CATENIN (Ikeda et al. 

2000); similarly, the phosphorylation of APC on Ser-1279/Ser-1392 by CK1ε is crucial for the 

regulation of β-CATENIN (Rubinfeld et al. 2001). It was also shown that, Trabid, an 

uncharacterised deubiquitinase, interacts and deubiquitinates APC, and although its function 

remains unclear there is some evidence from epistasis analysis suggesting that it regulates TCF-

mediated transcription (Tran et al. 2008). Ub-specific protease 15 (USP15) stabilizes APC by 

ubiquitination (Choi et al. 2004; Huang et al. 2009) while E3 ubiquitin-protein ligase HECTD1 

(HECT domain 1)-mediated ubiquitination of APC leads to an enhanced binding to AXIN-1 which 

inhibits WNT signalling (Tran et al. 2013).  

Regulation of Wnt target gene transcription  

The mammalian LEF/TCF transcription factor family, which consists of LEF1, TCF1 (encoded 

by Tcf7), TCF3 (encoded by Tcf7l1), and TCF4 (encoded by Tcf7l2) plays the main role in the 

regulation of transcription of Wnt target genes. Differences in the transcriptional effects of 

different transcription factors occur; for example TCF3 and TCF4 usually lower the 

transcriptional levels of their target genes whereas TCF1 and LEF1 mostly enhance the 

transcription of their targets (Merrill et al. 2004). LEF/TCF proteins that recognize a consensus 

DNA-binding motif therefore may have redundant but also distinct functional features 

depending on cell type (Galceran et al. 1999; Merrill et al. 2001). Wnt signalling activation 

allows β-CATENIN to bind LEF/TCFs and also to attract co-factors for chromatin modification 
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(CBP/p300 and BRG1) that allow target genes to be efficiently transcribed (Lien and Fuchs 

2014).  An example of a co-activator is PYGO, the homologue of the Drosophila Pygopus protein 

(Hoffmans et al. 2005). In the absence of β-CATENIN, LEF/TCF is able to repress gene 

transcription by interaction with a tetramer of transducin-like enhancer of split (TLE) proteins, 

the mammalian homologues of the Drosophila Groucho transcriptional co-repressor (Roose et 

al. 1998). TLEs act as scaffolds for the recruitment of histone deacetylases (HDACs) to modify 

chromatin structure in a repressive way, and halt target gene transcription (Chen et al. 1999) 

rather than competing β-CATENIN for LEF/TCF binding (Daniels and Weis 2005; Chodaparambil 

et al. 2014). For example, in the absence of Wnt signal, TCF3 or TCF4 bound to Wnt response 

element on the promoter region of a gene target, recruits TLE tetramer which binds lysine 20 

(K20) methylated histone H4 tails and promotes chromatin silencing. This results to more 

repressive complexes than when TLE is bound to TCF1 and LEF1 (Chodaparambil et al. 2014). 

Repressive complexes are also formed between C-terminal-binding protein (CtBP) and TCF4 that 

halt Axin-2 transcription (Valenta et al. 2003). Thus, both TLE and CtBP have higher affinity for 

TCF3 or TCF4 rather than TCF1 or LEF1.  

The binding of β-CATENIN on LEF/TCF proteins allows the transcription of different sets of genes 

implicated in essential cellular functions, such as proliferation (e.g., MYC, CCND1, PPARD), stem 

cell fate (ASCL2), survival (ABCB1, BIRC5), differentiation (ID2, ITF2, ENC1), migration (MMP7, 

MMP14), and angiogenesis (VEGF)  (He et al. 1998; Tetsu and McCormick 1999; Shtutman et al. 

1999; He et al. 1999; Jubb et al. 2006; Yamada et al. 2000; Kim et al. 2003; Rockman et al. 2001; 

Willert et al. 2002; Fujita et al. 2001; Crawford et al. 1999; Brabletz et al. 1999; Hlubek et al. 

2004; Zhang et al. 2001). 

TGF-β/BMP signalling pathway 

The bone morphogenic protein (BMP) signalling pathway is important for intestinal 

development and homeostasis (Roberts 2000; Scoville et al. 2008). Juvenile polyposis and 

hereditary mixed polyposis are two hereditary CRC syndromes that occur from autosomal 

dominant dysfunctional members of the TGF-β/BMP signalling pathway. Moreover, 70% of 

sporadic CRC have inactivated BMP signalling. These data show the importance of the BMP 

signalling pathway in normal intestinal homeostasis and cancer (Kodach et al. 2008).  

The transforming growth factor-β (TGF-β) ligand superfamily consists of two subfamilies, the 

BMP and the TGF-β ligands. These ligands bind on the TGF-β receptors which are classified into 

two types. Type I consists of the BMP receptor type (BMPR) -IA, -IB, or activin receptor-like 

kinase-2 (ALK2) and type II is comprised of activin receptor (ACVR-) IIA or IIB (Wakefield and Hill 

2013; He et al. 2004; Shi and Massagué 2003; Scoville et al. 2008). BMP ligands bind the type II 



22 
 

TGF-β receptor homodimers, which are constitutively active, which in turn recruit, 

phosphorylate and activate type I receptor homodimers (Wakefield and Hill 2013; He et al. 

2004; Shi and Massagué 2003; Scoville et al. 2008). This process is antagonised by the BMPRI 

inhibitor Noggin (Groppe et al. 2003). Activated Type I receptors phosphorylate SMAD (small 

body size/mothers against decapentaplegic) transcription factors. The receptor-activated 

SMADs (R-SMADs) 1, 5 and 8 form heterodimers with the co-SMAD SMAD-4 (Wakefield and Hill 

2013). During active signalling, SMAD heterodimers are transported into the nucleus, where 

they bind to 5′-CAGAC-3′ and G/C-rich DNA sequences with low affinity. The affinity of SMAD 

heterodimers to DNA is increased by association with transcriptional co-activators or co-

repressors (Shi and Massagué 2003). The activation of the TGF-β or BMP sub-family results in 

the engagement of distinct groups of R-SMAD proteins, which in turn can interact with various 

cell-type specific DNA-binding co-factors which allows selectivity of the target genes in response 

to distinct receptor-ligand interactions (Massagué 2000).  

In 2004, Haramis et al. developed a mouse model expressing transgenic noggin under the Villin 

promoter which abolished both epithelial and stromal BMP signalling. Ectopic crypts in the villus 

epithelium were formed in adult mice, resembling Juvenile Polyposis syndrome associated with 

hamartomatous polyposis. Interpretation of this data suggested that BMP signalling suppresses 

de novo crypt formation and polyp growth in adult intestinal tissue (Haramis et al. 2004). 

However, Auclair et al. using a the Villin-Cre Bmpr1afl/fl mouse model, which specifically ablated 

the activation of the BMP pathway within the intestinal epithelium only, showed that BMP is 

important for the terminal differentiation of cells towards the secretory lineage but is not 

sufficient for ectopic de novo crypt formation (Auclair et al. 2007). This supports the hypothesis 

that BMP signalling loss within the stromal compartment, rather than the epithelium, is driving 

neoplasia.  

Notch/Delta Signalling 

Notch signalling is important for development, stem cell regulation and cancer. The effects of 

the absence of this evolutionarily conserved signalling pathway was first observed in 1914 by 

John S. Dexter when he identified a subset of a Drosophila melanogaster fly population with 

characteristic notched wings, from which Thomas Hunt Morgan isolated the mutant Notch allele 

(Morgan 1917). The phenotype was a result of haploinsufficiency of the Notch receptor, which 

was sequenced in the mid-1980s (Wharton et al. 1985; Kidd et al. 1986).   

Activation of Notch signalling begins with the interaction between a Notch receptor on one cell 

and a transmembrane ligand on an adjacent cell (Wilson and Radtke 2006). In mammals, there 

are multiple Notch receptors (Notch 1- 4) and multiple ligands namely, Jagged1 and 2 (the 
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Serrate ligand homologues of Drosophila) and Delta-like (DLL) 1, 3 and 4 (the Delta ligand 

homologues of Drosophila) (Radtke et al. 2004). The Notch receptor is expressed as one protein 

which is subsequently cleaved while transported to the cell membrane where the two pieces of 

the protein form a heterodimer.  The interaction of the receptor with its ligand results in 

extracellular cleavage of the receptor by tumour necrosis factor-α-converting enzyme (TACE). 

The extracellularly cleaved Notch receptor is subsequently endocytosed by the ligand-

expressing cell. Further cleavage occurs on the transmembrane part of the receptor by γ-

secretase multiprotein complex comprised of presenilin, nicastrin, APH1 (anterior pharynx-

defective 1) and PEN2 (presenilin enhancer 2). The released cytoplasmic tail of the receptor (the 

Notch Intra-Cellular Domain, NICD) translocates to the nucleus, where it binds to its 

transcription factor, CSL [CBF1 (C promoter-binding factor 1) in humans, Suppressor of Hairless 

in Drosophila, LAG in Caenorhabditis elegans and RBP-J (recombination signal binding protein 

for immunoglobulin κ J region) in mice] (Wilson and Radtke 2006) and displaces its co-

repressors including NCOR1/2, CIR and KyoT2 (Wu et al. 2002) allowing the binding of co-

activators including  PCAF, GCN5, Mastermind-like-1 (MAML1) and p300 (Kurooka and Honjo 

2000; Wu et al. 2000; Oswald et al. 2001). This activates the transcription of Notch target genes, 

including genes of HES (hairy and enhancer of split-1) and HEY (HES-related with YRPW motif) 

subfamilies such as Hes-1 to Hes-7 and Hey1/2. These encode transcription factors with basic 

helix-loop-helix (bHLH) domain (Katoh and Katoh 2007).  

Tissue-specific Notch target gene transcriptional activation is achieved by expression of 

different transcriptional activators in various tissues and through expression of multiple Notch 

receptor paralogues, allowing the formation of different transcriptional complexes with CSL 

(Barolo and Posakony 2002; Tang et al. 2010). Added to these, the interaction of NICD with 

other transcriptional effectors, for example LEF-1, can also activate transcription (Ross and 

Kadesch 2001). Notch-independent expression of Hes-1 and Hey-2 through other pathways is 

also possible, though this mechanism of abrogation of CSL repressive function is unclear (Cave 

2011). 

Multiple studies have demonstrated the importance of Notch signalling in the regulation of 

intestinal homeostasis. In the context of the small intestine, post-natal conditional removal of 

CSL, the transcriptional regulator of Notch signalling (Artavanis-Tsakonas 1999), the use of γ-

secretase inhibitors (Alzheimer’s disease drug in clinical trials) (Milano et al. 2004; Wong et al. 

2004), genetic depletion of both Notch-1 and Notch-2 receptors (Riccio et al. 2008) or DLL-1 

and DLL-4 ligands in rodents (Pellegrinet et al. 2011) all lead to differentiation of the highly 

proliferating TA cells into goblet cells, at the expense of absorptive enterocytes, in normal 

intestinal crypts and adenomas. Reciprocal gain-of-function studies that over-expressed a 
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dominant active form of the Notch-1 receptor showed the opposite effect, i.e. the accumulation 

of progenitor cells within the crypt and the prevention of their differentiation (Fre et al. 2005; 

Stanger et al. 2005).  

Math-1 (Mouse Atonal homologue 1) is a basic helix-loop-helix (bHLH) transcription factor 

regulated by CSL and HES-1. The activation of Notch signalling allows the binding of CSL on 

Math-1 promoter which promotes Math-1 expression, whilst at the same time Notch signalling 

indirectly repressing Math-1 expression via Hes-1 binding on its promoter (Shi et al. 2012). 

MATH-1 has an indispensable role in cell-fate regulation, as Math-1 expression alone is 

sufficient for cell differentiation into the secretory lineage, whereas Math-1 repression favours 

enterocyte differentiation (Yang et al. 2001; Shroyer et al. 2007; VanDussen and Samuelson 

2010). Moreover, lineage tracing studies of Notch-active cells showed that they were long-lived 

progenitors that could generate all the intestinal epithelial cell types (Vooijs et al. 2007; 

Pellegrinet et al. 2011) and that Notch signalling activity in CBC stem cells is necessary for their 

proliferation and survival (VanDussen et al. 2012).  Thus, Notch signalling modulates two 

important intestinal homeostatic functions: the sustainability of the progenitors, and the choice 

between the secretory or absorptive enterocyte lineage (Wilson and Radtke 2006). 

Similarly to Wnt, Notch signalling is activated not only during normal intestinal homeostasis, but 

also in CRC. Recently, it has been described that Notch signalling plays a role in asymmetric 

division of LGR5+ CBCs (the long lived active cycling stem cells) and BMI-1+ cells (the postulated 

+4 quiescent ISC), as well as the inter-conversion between CBCs and +4 ISC (Srinivasan et al. 

2016). Nevertheless, it remains to be elucidated whether it was abrogation or over-activation of 

Notch signalling, or simultaneous effects on other signalling pathways critical for stem cell 

homeostasis, through which these changes could have occurred. Further insides into the 

mechanism of CRC stem cell regulation by the Notch pathway, could potentially lead to clinical 

Notch signalling targets to induce differentiation in adenomas (Radtke and Clevers 2005; Wilson 

and Radtke 2006). 

Hedgehog Signalling 

The Hedgehog (HH) signalling pathway is critical for intestinal development. HH components act 

as morphogens that contribute to the formation of the crypt-villus structure (De Santa Barbara 

et al. 2003). They are rarely mutated in CRC, however, they are important for intestinal 

homeostasis and repair (Watt 2004; Liang et al. 2012; Barker et al. 2007). Since 1990 three 

Hedgehog (Hh) gene homologues, encoding glycoproteins, have been identified in vertebrates; 

Sonic Hedgehog (Shh), Indian Hedgehog (Ihh), and desert hedgehog (Dhh) of which only SHH and 

IHH were detected in the intestinal epithelium (Rimkus et al. 2016). Shh mRNA levels were 
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detected by in situ hybridization at high and low levels in the adult small (SI) and large intestines 

(LI), respectively, only within the crypt base. However, protein levels were so low that could not 

be identified by IHC in both SI and LI (van den Brink et al. 2002). Ihh mRNA expression levels in 

the SI were strongly detected at the crypt-villi junction with a gradual decrease progressing 

towards the tip of the villus (Batts et al. 2006) whilst IHH protein was present on the upper half 

of villi and only within the absorptive enterocytes at the top of the colonic crypts (Jones et al. 

2006).  

In the absence of HH ligand, PTCH-1 (patched homologue-1), a 12-transmembrane receptor, is 

associated on the cell membrane with SMO [Smoothened co-receptor of the G-Protein Coupled 

Receptor (GPCR) family], which inhibits its function.  Furthermore, the microtubule-bound 

inhibitory proteins COSTAL-2/KIF7 and Suppressor of Fused (SUFU) bind to glioma-associated 

(GLI) transcription family proteins (GLI-1, GLI-2, and GLI-3 in mammals), sequestering them in 

the cytoplasm where they are phosphorylated by CK1, GSK3 and PKA, and ultimately processed 

by the proteasome into C-terminally truncated proteins. These then translocate into the 

nucleus and repress HH target gene expression (Zadorozny et al. 2015).  

The binding of HH ligand, on the extracellular domain of PTCH-1 realises SMO, preventing the 

full length GLI protein truncation into the repressor forms, possibly by dissociation of GLI from 

its inhibitory proteins COSTAL-2/KIF7 and SUFU (Zadorozny et al. 2015). Full length GLI Zn-finger 

transcription factors translocate to the nucleus, activating transcription of the HH signalling 

target genes, including those associated with HH pathway feedback (Ptch-1, Gli-1, Hhip-1 

[hedgehog interacting protein; a HH antagonist]), proliferation (e.g., Cyclin-D1, Myc), apoptosis 

(e.g., Bcl-2), angiogenesis (e.g., Ang1/2), epithelial-to-mesenchymal transition (e.g., Snail), stem 

cell self-renewal (e.g., Nanog, Sox2) and differentiation (e.g., Bmp-4) (Stecca and Ruiz I Altaba 

2010; Scales and de Sauvage 2009; Ingham and McMahon 2001; Hui and Angers 2011).  

Although, most studies on HH signalling pathway have investigated its role during development, 

they have also given insights into how it contributes to adult intestinal homeostasis. Mice 

deficient for Ihh-/-, which is normally expressed in the intervilli region (from the base of the villi), 

die perinatally and exhibit short villi due to decreased proliferation, which suggests that the HH 

pathway is involved in crypt-villus axis morphogenesis and stem-cell proliferation (Ramalho-

Santos et al. 2000). Defective Hh signalling in neonatal small intestine and adult colon could 

therefore predispose to cancer formation, due to its pro-proliferative effect (Madison et al. 

2005). Moreover, Ihh mutants had ~50% reduction in endocrine cells in the small intestine, 

which might also imply a role for the HH pathway in intestinal cell fate decisions (Ramalho-

Santos et al. 2000). Similarly, in the colon, cyclopamine inhibition of SMO resulted in 

preferential differentiation of cells towards the goblet cell lineage (Pathi et al. 2001), whilst 
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another study showed that HH activity was necessary and sufficient for colonic epithelial 

differentiation (van den Brink et al. 2004).  

As well as through epithelial autonomous mechanisms, HH signalling regulates the crypt-villus 

morphology by regulating the stroma and epithelium cross-talk, as even the subepithelial 

myofibroblasts and the smooth muscle cells of the submucosa express HH signalling 

components (Ramalho-Santos et al. 2000). Mesenchymal cells secrete pro-proliferative signals 

to adjacent epithelial cells; during adult intestinal homeostasis, HH intestinal activity pattern 

restricts mesenchymal cell population to the crypt base and as a consequence their signals too, 

contributing in this way to the normal intestinal homeostasis (van den Brink et al. 2004). Over-

expression of the pan-hedgehog inhibitor, HHIP, within the epithelium affects the surrounding 

mesenchymal cells, causing their mislocalisation or overexpansion. This can result in ectopic 

epithelial expansion, ectopic crypt formation, remodelling and villus development in the 

neonatal intestine (Madison et al. 2005). In inflammatory bowel disease (IBD), it was shown that 

re-activation of the HH pathway decreases colitis and colitis-mediated adenocarcinoma 

formation by increasing IL-10 stromal secretion and thus suppressing inflammation. This further 

supports the model that HH pathway actively contributes to the cross-talk between stromal 

cells and epithelium (Lee et al. 2016).  

PI3K/AKT signalling 

The phosphatidylinositol-3 kinase (PI3K)/AKT signalling pathway plays a central role in growth, 

cell survival and proliferation, and overstimulation of this pathway has been linked to 

tumourigenesis in multiple tissues. 20-30% of sporadic human CRC have PI3K catalytic subunit-α 

(PIK3CA) gene mutation and more than 40% have mutations that affect PI3K effectors (Yueh et 

al. 2016; Scoville et al. 2008). 

Cellular stimuli or toxic insults can initiate the PI3K/AKT signalling cascade through binding to 

RTKs, integrins, B- and T-cell receptors, cytokine receptors and GPCRs (Carnero et al. 2008). 

Specifically, upon extracellular binding of growth factors, RTKs dimerise and become activated 

by cross-phosphorylation of intracellular tyrosine residues. The phosphorylated RTK C-terminus 

serves as a docking platform on which various intracellular proteins with SH2 (SRC homology 2) 

or PTB (phoshotyrosine binding) domains bind (Carnero et al. 2008). PI3K is a lipid kinase 

consisting of the p110 catalytic subunit and the p85 regulatory subunit. Increased levels of 

monomeric p85 antagonize p85-p110 dimer binding on adaptor proteins; so far, this is the only 

known mechanism by which p85 elicits its repressive function on p110 (Luo and Cantley 2005). 

p85 can either bind directly to the activated RTK or via adaptor proteins (e.g. Grb2–associated 

binding, GAB, a scaffold protein) which assist p85 binding and induce conformational changes to 



27 
 

release the repression on p110. Alternatively, SOS (Son of Sevenless), which contains a RAS-GEF 

(Guanine exchange factor) domain that activates RAS, binds to activated RTK-bound GRB2.  RAS-

GTP then activates p110 (Carnero et al. 2008). P110 activation brings it closer to the cell 

membrane where its substrate resides. The main substrate of PI3K, phosphatidylinositol-4,5-

bisphosphate (PIP2), is anchored in the cell membrane and is phosphorylated by the p110 

catalytic subunit to produce phosphatidylinositol-3,4,5-trisphosphate (PIP3) (Carnero et al. 

2008). PIP3 phospho-lipids can directly bind intracellular proteins containing a pleckstrin 

homology domain which include serine-threonine kinase AKT (Protein Kinase B) and 

phosphoinositide-dependent kinases-1/-2 (PDK-1/-2). This brings them in close proximity, 

allowing PDK-1 to phosphorylate AKT at Thr-308, which partially activates AKT. Full enzymatic 

activation of AKT requires Ser-473 phosphorylation catalysed by multiple kinases including PDK-

2, ILK (integrin-linked kinase), mTORC2 (mechanistic target of rapamycin complex) and DNA-PK 

(DNA-dependent protein kinase)  (Bozulic and Hemmings 2009).  

There are three AKT isoforms (AKT-1/-2/-3), which all recognize substrates with the consensus 

phosphorylation motif RxRxxS/T. There are isoform-specific AKT substrates as well as shared 

substrates, and numerous downstream AKT targets involved in protein synthesis, survival, 

migration, proliferation, glucose metabolism, neural function and NF-κB function (Manning and 

Cantley 2007; Hers et al. 2011).  

When the cell stimulation is over, PIP3 levels decrease and negative regulators, e.g. protein 

phosphatase-2A (PP-2A) and PH-domain leucine-rich-repeat-containing protein phosphatases 

(PHLPP-1/2), de-phosphorylate AKT. The tumour suppressor PTEN de-phosphorylates PIP3, 

causing the same effect (Carnero et al. 2008). 

The PI3K/AKT pathway has been linked to intestinal homeostasis and tumourigenesis, and along 

with the BMP and Wnt pathways, all contribute to ISC homeostasis. PI3K/AKT signalling is 

involved in β-CATENIN nuclear accumulation (Scoville et al. 2008). Although Wnt signaling is 

active throughout the intestinal crypts, as demonstrated by the presence of activated Wnt 

receptors (i.e. phospho-LRP), BMP signaling is blocked at the crypt base in order to promote the 

nuclear accumulation of β-CATENIN. Inhibition of BMP signaling by niche signals leads to 

increased PTEN degradation, which activates AKT kinase potential (Waite and Eng 2003). Active 

AKT phosphorylates β-CATENIN at multiple Ser/Thr sides, including Ser-552, to enhance β-

CATENIN /TCF interaction (Daugherty et al. 2007; Scoville et al. 2008). AKT activation also 

inhibits glycogen synthase kinase 3β (GSK-3β). This destabilizes the β-CATENIN destruction 

complex leading to the accumulation of β-CATENIN in the cytoplasm, its translocation to the 

nucleus and activation of Wnt signalling target gene transcription (Scoville et al. 2008). 
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Therefore, the interplay between BMP and PI3K/AKT signalling restricts full activation of the 

Wnt pathway to the base of the crypt, allowing ISC division (He et al. 2004). 

He et al. (2007) have shown that PTEN deficiency in both epithelial and stromal cells, by wide-

spread PTEN recombination (i.e. Mx1-Cre+ Ptenfl/fl mouse model), can initiate neoplasia, 

highlighting the tumour suppressive function of PTEN. In contrast, Marsh et al. (2008), have 

shown that PTEN deficiency in the intestinal epithelium alone did not perturb intestinal 

homeostasis, alter the number of ISCs or crypt clonogens, or abrogate p53-mediated apoptosis. 

This implied that epithelial-stromal interactions are fundamental for normal intestinal 

homeostasis. BMPRII stromal deletion results in hamartomatous polyposis, the same phenotype 

observed in germline PTEN mutations (Beppu et al. 2008). As shown by Marsh et al. (2008), the 

combination of Apc and PTEN deficiency can fully activate AKT (phospho-AktSer473), promoting 

the nuclear localization of β-CATENIN (as described above) within the villi of the small intestine, 

and contributing to the progression of Apc-deficient adenomas to adenocarcinomas. 

Figure 1.5 shows an overview of the pathways involved in intestinal epithelium homeostasis. 
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1.2 DNA damage 

1.2.1 Sources of DNA damage 

Endogenous sources of DNA damage 

Endogenous DNA damage is naturally occurring and is caused by metabolic and hydrolytic 

processes within a cell. Cell metabolism, including apoptosis and inflammatory responses, 

generates chemical compounds that harm the DNA. These include reactive oxygen species 

(ROS), reactive nitrate species, reactive carbonyl species, lipid peroxidation products, alkylating 

agents etc., whereas hydrolytic processes within a cell cleave chemical bonds on the DNA 

molecule (De Bont and van Larebeke 2004). Cells must be able to respond to extensive DNA 

damage; for example, oxidative DNA damage may happen 10 000 - 11 500 times per day in a 

human cell (Ames et al. 1993; Helbock et al. 1998). Other endogenous sources of DNA 

damage/breaks include: replication fork stalling during cell cycle progression, programmed DNA 

breaks (e.g.  variable, diversity and joining or V(D)J gene segments somatic recombination), 

meiotic crossing-overs, gene rearrangements and apoptosis (Crosetto et al. 2013; Tonegawa 

1983). Mutations usually occur when DNA replication mistakes are not repaired, when DNA 

polymerases copy damaged templates (Marnett and Plastaras 2001) and when there are 

defects in the DNA repair pathway (O’Driscoll 2012). 

Exogenous sources of DNA damage 

Exposure to exogenous physical agents such as ionizing radiation (IR), ultraviolet (UV) radiation 

or chemical compounds including platinum-based compounds (e.g. cisplatin); intercalating 

agents (e.g. benzo[a]pyrenes, daunorubicin and actinomycin-D); DNA alkylating agents (e.g. 

nitrogen mustards, methyl methanesulphonate, N-nitroso-N-methylurea and N-ethyl-N-

nitrosourea); and naturally occurring mutagens such as psoralen, cause DNA damage in 

numerous ways as explained below in section 1.2.2 (Helleday et al. 2014). 

1.2.2 Types of DNA alterations and damage 

Causes of Nucleotide transversions 

A review by Thomas Lindahl (1993) intelligibly explains the liability of N-glycosylic bonds 

(formed between the pentose sugar and their DNA nucleobases) to hydrolysis. It has been 

estimated that 0.2-104 spontaneous depurination events (when a N-glycosidic bond connecting 

a purine with a deoxyribose sugar is hydrolytically cleaved releasing an adenine or guanine) 

happen every day in mammalian cells, and that depurination occurs more frequently than 

depyrimidination (when a N-glycosidic bond connecting a pyrimidine with a deoxyribose sugar is 

hydrolytically cleaved releasing a thymine or cytosine) (Lindahl and Nyberg 1972). This 
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generates apurinic and apyrimidinic sites, and depending on either adenine or guanine purine 

loss, A=T T=A or G≡C T=A transversions arise (Helleday et al. 2014). Cytosine and its 

methylated form (5-methylcytosine) are more susceptible to hydrolytic deamination, compared 

to the rest of the nucleobases, and are converted to uracil or thymine, resulting in DNA base 

mismatches. Compared to cytosine, 5-methylcytosine moieties are more slowly repaired 

following deamination than cytosine which makes the methylated CpG islands preferential 

zones for spontaneous point mutations, such as G≡C T=A transversions (Ehrlich et al. 1990; 

Lindahl and Nyberg 1972).  

Causes of DNA oxidation 

Endogenous or exogenous sources (e.g. metabolism or IR, respectively) of DNA oxidation (e.g. 

hydroxyl radicals) usually cause 8-hydroxylguanine formation. This preferentially binds to 

adenine and, if not repaired post-replication, may generate transversions (Kasai and Nishimura 

1984; Shibutani et al. 1991). Moreover, oxidation may also cause the formation of ring-

saturated pyrimidines which are non-coding bases (Wallace 1988; Breimer 1990). Covalent 

bonds between the nucleobases and the sugar ring or between two purines of different DNA 

strands are also caused by ROS (Dirksen et al. 1988; Carmichael et al. 1992).  

Single and Double strand breaks and their causes 

Single strand breaks (SSBs) are formed in a number of ways: after the disintegration of oxidized 

deoxyribose; upon cleavage of the deoxyribose phosphate by specialised enzymes when a base 

needs to be changed; by collision of defective topoisomerase 1 (TOP1) with RNA or DNA 

polymerases during transcription or replication, respectively; or by defective DNA ligase activity 

(Caldecott 2008; Kazak et al. 2012). Double strand breaks (DSBs) are more dangerous than 

single-stranded breaks, as genomic rearrangements or even loss of genomic information may 

occur if left unresolved. DSBs can be formed by IR, in a similar way to SSBs, but if two SSBs occur 

in opposite strands close to each other this may lead to DSBs (Wang et al. 2003). Furthermore, 

DSBs usually occur when a cell is in S-phase of the cell cycle, as the unravelling of DNA, renders 

it susceptible to breaks (McGowan 2003). Similarly, when a replication fork collapses due to 

DNA damage, this can also lead to DSB formation (Helleday et al. 2014). Generally, during cell 

division, a cell is more vulnerable to DNA damage from both endogenous and exogenous 

sources (McGowan 2003). 

Enzymatic DNA methylation is fundamental for the regulation of gene expression in mammalian 

cells. However, some small reactive molecules within the cell such as S-adenosylmethionine, 

can also non-enzymatically methylate DNA (Paik et al. 1975). Apart from the increased number 

of methylated nucleobases, which increases the chance of having a non-repaired transition, this 
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can also inhibit gene transcription and could lead to cancer (Varela-Rey et al. 2014; Schmidt et 

al. 2016).  

Platinum-based chemotherapeutics form bulky adducts on the nucleobases or cross-links 

between the same or the opposite DNA strand (Nouspikel 2009). Intercalating agents such as 

benzo[a]pyrene diol epoxide, a carcinogenic by-product of tobacco smoking, cause 

transversions of G≡C T=A preferentially on endogenously methylated CpG dinucleotides of 

genes including p53 (Pfeifer et al. 2002). Psoralens, used in the treatment of psoriasis, 

constitute another form of intercalating agents. Upon therapeutic UV radiation, they form 

monoadducts or covalent intra-strand crosslinks between thymidines preferably spaced in 5’-

TpA sites of the genome (Papadopoulo et al. 1993; Yang et al. 1994).  

DNA alkylating agents were first used against cancer as chemotherapeutics; they are 

methylating agents that form adducts on the nucleobases and favour mutagenic transition of 

C≡G T=A. Therefore, non-replaced methylated bases could lead to DSB formation and as 

cancer cells usually have non-fully functional DNA repair mechanisms, this makes them 

susceptible to cell death compared to cells which are able to repair DNA (Kondo et al. 2010). A 

thorough insight into the defective DNA repair pathways of cancer cells is needed for optimal 

selection of chemotherapeutic agents that will be given to the patient. 

In general, any alterations or damage on the DNA molecule, if left un-repaired, can become 

mutagenic. Consequently, cells employ various DNA repair pathways as mechanisms to protect 

their genetic information. 

1.2.3 DNA damage repair pathways 

The importance of DNA integrity is highlighted by the fact that cells use a vast amount of their 

energy in order to repair their DNA (Hoeijmakers 2009). Cells employ elaborate mechanisms for 

the resolution of DNA damage. In the following paragraphs, only the major DNA repair 

pathways will be described (Figure 1.6). The choice of which DNA repair pathway will be used is 

dependent on many factors, one of which is the phase of the cell cycle. 

Base excision repair (BER) pathway  

The BER pathway mediates the excision and replacement of a single nucleobase. BER is 

employed following cytosine deamination and conversion into uracil or thymine, nucleic base 

oxidation or non-enzymatic methylation, and depurination or depyrimidination due to 

hydrolysis. The pathway initiates with the excision of the unwanted base. This is facilitated by a 

family of DNA glycosylases, which flip the nitrogenous base and then cleave the N-glycosylic 

bond, generating a repairable apurinic or apyrimidinic site while keeping an intact pentose-
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phosphate DNA backbone (Lindahl 1986). Uracil is removed by uracil-DNA glycosylase (UNG). 

The DNA backbone is then incised (by cleavage of the 5’- phosphodiester bond), adjacent to the 

abasic site, by DNA-(apurinic or apyrimidinic site) lyase APEX1. The removal of the 5’ 

deoxyribose-phosphate (dRP) is mediated by dRP lyases creating a single strand break, and DNA 

polymerase β (POL β) fills the nucleotide gap that was formed. Lastly, X-ray repair cross-

complementing protein 1 (XRCC1) acts as a scaffold for the attraction of Ligase 3, which joins 

the newly added nucleotide to the rest of the DNA backbone (Helleday et al. 2014). 

Nucleotide excision repair (NER) pathway 

The NER pathway repairs distortions of the DNA double-helix, caused by adducts including those 

generated by UV radiation and platinum-based drugs. The deformed sites in DNA are 

recognized either during transcription or in the global repair taking place throughout the 

genome. The former is believed to be caused by stalling of RNA polymerase at the distorted site 

of the template strand and the latter by XPC [DNA repair protein complementing xeroderma 

pigmentosum (XP)-C cells] in complex with RAD23B. XPC recognition allows the formation of the 

preincision complex. This comprises of XPA, which binds the damaged DNA; transcription factor 

II Human (TFIIH), which aids both recognition mechanisms by opening the DNA double helix; 

XPG, which cuts the 3’-end of the damaged DNA; XPF, which works together with excision repair 

cross-complementing-1 (ERRC1) to incise the 5’-end of the damaged DNA; and replication 

protein A (RPA) which binds single stranded (ss) DNA to stabilize the DNA repair complex. The 

26-29 nucleotide-long gap, generated after incision of the DNA, is filled by POLδ or POLε or on 

some occasions, by POLκ, assisted by the proliferating cell nuclear antigen (PCNA), which acts as 

a DNA clamp (Helleday et al. 2014). 

Mismatch repair (MMR) pathway 

MMR is another excision repair mechanism which removes mismatched nucleobases or 

misincorporated bases during DNA replication generating insertion-deletion loops (IDL). The 

heteromeric complex MUTSα consists of MSH2 and MSH6 (MutS homologue-2 and -6) which 

are ATPases that recognize mismatches and IDLs of 1-2 unpaired nucleotides, whereas MUTSβ 

(comprising of MSH2 and MSH3) recognizes longer IDLs. MUTS recruits the MUTL heterodimeric 

complex, consisting of MUTL homologue 1 (MLH1) and PMS2 (postmeiotic segregation 

increased), whose endonuclease activity incises the lagging strand on the distal site of the 

mismatch in order to remove the mismatched nucleotides. MUTL creates incisions for the 

mismatches on the leading strand, generating a free 5’-end on which exonuclease-1 (EXO1) 

binds to excise the erroneous nucleotides in the presence of RPA and PCNA, while POLδ copies 

the template strand where the nucleotides were excised (Kazak et al. 2012).  
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Homologous recombination (HR) pathway 

The alternative route for repairing DSBs is through HR, but only in the presence of sister 

chromatid during late S and G2 phases of the cell cycle. This mechanism is preferred over NHEJ 

because is less error-prone. ATM and the MRN complex recognize and bind to DNA ends, while 

EXO1 or a complex of SGS1–TOP3–RMI1 (STR)/DNA-2 exonucleases resect one strand of the 

DNA to generate a 3′ ssDNA site (Alterman et al. 2007; Williams et al. 2007; Kazak et al. 2012). 

RAD51 then assembles with the ssDNA to create a nucleoprotein filament that promotes DNA 

strand exchange. RAD51 searches for the undamaged homologous strand to pair this region 

with its complementary DNA molecule creating a crossover. RAD54 binds to RAD51, stimulating 

its DNA pairing function, and stabilizes the nucleoprotein filament (Khanna and Jackson 2001; 

Mazin et al. 2003). BRCA2 plays an important role in moving RAD51 from its site of synthesis to 

the nucleus (Bhattacharyya et al. 2000). DNA POL can then synthesise the missing parts of the 

broken DNA from the 3’ end of the invading strand, using the homologous strand as a template 

(Mcllwraith et al. 2005). LIG1 creates a hetero-duplexed DNA molecule, referred to as Holliday 

junction, which is resolved by sliding and cleavage of the DNA which unfolds the junction 

(Modesti and Kanaar 2001). 

Non-homologous end-joining (NHEJ) pathway 

NHEJ is one of the two main pathways that are used for the resolution of DSBs caused by IR or 

nucleases that cleave DNA. It is used when a cell acquires the DSB while it is in G1 or G0 phase. 

DSBs are repaired by microhomology at ends. However, ends of DSBs generated by DNA 

nucleases or IR cannot be easily ligated; they usually need to be processed and trimmed before 

new nucleotides are incorporated. Hence, during resynthesis of the new DNA, errors may occur 

which may give rise to mutations (Helleday et al. 2014). Upon a DSB formation, in the absence 

of a template strand for HR-directed repair, the MRN complex, consisting of MRE11, RAD50 and 

NBS1, binds to DSBs via NBS1, in order to recruit and activate ataxia telangiectasia mutated 

protein (ATM). KU70/80, which is a DNA-end binding protein complex, binds on the DNA ends 

to structurally support and protect them from further degradation, and to facilitate the 

recruitment of other DNA repair proteins. The catalytic subunit of the DNA-depended protein 

kinase (DNA-PKcs) is then recruited to the DNA ends, where it is activated by Ku70/80. The MRN 

complex and the activated DNA-PK together pull the DNA ends (Kazak et al. 2012). ARTEMIS, a 

nuclease, is then attracted to the DNA ends by DNA-PK, and removes 4 nucleotides from the 5′- 

and 3′-single stranded overhangs in order to join the two DNA ends (Li et al. 2014). POLμ fills 

the gap, followed by binding of XRCC4 (X-ray repair cross-complementing protein 4) on the 

nucleoprotein complex attracted by the DNA-PKcs, to assist ligase-4 (LIG4) in end-joining the 

DNA strands and resolving the break (Kazak et al. 2012). 
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1.2.4 γH2AX: a marker of DSBs 

H2AX protein 

DNA is wrapped around histone proteins (H2A/B, H3 and H4). The H2A protein has multiple 

variants including H2A1/2, H2AX and H2AZ. In humans, H2AX makes up to 10% of H2A protein 

and is randomly present into nucleosomes. H2AX variant differs from H2A due to a carboxyl tail 

that contains conserved serine and glutamine residues at positions 139 and 140, respectively 

(Kuo and Yang 2008). 

H2AX phosphorylation 

Genomic instability can result from unresolved DNA double strand breaks (DSB) (Crosetto et al. 

2013). Immediately upon a DSB formation the MRN complex binds to DSBs via NBS1 to recruit 

ATM (Figure 1.7). ATM phosphorylates H2AX on Serine-139 (Ser139). Through a positive feedback 

loop, mediator of DNA damage checkpoint protein 1 (MDC1) stimulates MRN to recruit more 

ATM kinase to phosphorylate H2AX. Phosphorylated H2AX (γH2AX), which can extend up to 

megabases away from the DNA break, triggers either NHEJ or HR pathways, depending on the 

stage of the cell cycle. DNA-pk, a component of NHEJ, or ATR, a component of HR, 

phosphorylate H2AX on Ser139 (Bonner et al. 2008, Sharma et al. 2012). γH2AX functions as a 

scaffold, recruiting more DNA damage response proteins for the resolution of the break; after 

or during repair, γH2AX is dephosphorylated by PP2A for an efficient DNA break resolution 

(Chowdhury et al. 2005).  

γH2AX is a marker of DSBs 

γH2AX can be observed using fluorochrome-conjugated antibodies as foci. The number of foci 

observed in the nucleus of a cell can be directly associated with the number of DNA breaks 

present. It has been used as a marker for identifying the efficiency cytotoxic drugs and anti-

cancer agents (Kuo and Yang 2008). 
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Figure 1.7 DSB induce H2AX phosphorylation.   

A single DSB can lead to the phosphorylation of H2AX which extends up to 2 megabases of 

chromatin and can be identified as discrete nuclear foci using antibodies (Fernandez-Capetillo et 

al. 2004). The repair of the break results in the dephosphorylation of γH2AX (Bonner et al. 

2008). 
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Apc deficiency and Wnt signalling activation induce DNA damage. 

In 2001 two groups demonstrated chromosomal instability and spindle aberrations in 

embryonic stem cells derived from ApcMin/+ mice. In addition, they showed that APC is involved 

in chromosomal segregation through its phosphorylation by spindle assembly checkpoint 

proteins BUB1 and BUBR1 (Fodde et al. 2001; Kaplan et al. 2001). Truncating mutations of APC 

interfere with the normal microtubule plus-end attachment on the kinetochore of 

chromosomes, resulting in inappropriate chromosome congression at metaphase, which in turn 

leads to abnormal chromosomal segregation (Green and Kaplan 2003; Green et al. 2005).  APC 

loss within human osteosarcoma fibroblastic cells (U2OS) and human colon cancer cells 

(HCT116) resulted in compromised mitotic spindle checkpoints, including decreased association 

of BUB1 and BUBR1 proteins to the kinetochore and reduced apoptosis, which resulted in 

tetraploidy and polyploidy (Dikovskaya et al. 2007). Wnt signalling activation by either APC 

truncations or β-CATENIN activating mutations in intestinal polyps and ES cells resulted in 

increased number of anaphase bridges, which is a marker for chromosomal instability (CIN)Aoki 

et al. 2007). 

Reed et al. (2008) have shown using an AhCreApcfl/fl mouse model, that Apc deficiency within 

intestinal cells increased H2AX mRNA expression, which suggests that there is an increased 

requirement in Apc null cells for H2AX production. Moreover, Méniel et al. (2015) have shown 

that Apc deficiency within the liver induced the DNA damage checkpoint proteins p53 and p21 

due to increased levels of DSBs, as quantified by IHC markers γH2AX and RAD51. Increased 

histone expression is coupled with DNA replication (Lyons et al. 2016); hence, after Apc 

deficiency, one of the effects of Wnt signalling activation is increased proliferation which partly 

explains the increase in H2AX mRNA levels.  However, some histone proteins can also be 

transcribed independently of the cell cycle, including the H2AX variant (Lyons et al. 2016). A 

reason for this replication-independent expression of H2AX could be that cells need to replace 

γH2AX with newly synthesised H2AX proteins, during DNA repair via chromatin remodelling 

(Chowdhury et al. 2005).  

Apc deficiency and Wnt signalling activation result in excess cell division. Increased proliferation 

may contribute to increased DNA damage simply due to increase in the number of replication 

stress. Nonetheless, a study by DiTullio et al. (2002) showed that despite the fact that normal 

colonic epithelium has a higher proliferative index compared to lung and melanocytic 

preneoplastic and neoplastic lesions, γH2AX or phospho-CHK2 IHC stainings were comparably 

low, indicating no increase in DNA damage due to increased proliferation (Gorgoulis et al. 

2005). Thus, although increase in total H2AX levels, as a result of cell synthesis, might vary 

between tissues, phosphorylation of H2AX is unaffected by total H2AX levels and it is induced 
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mainly in the presence of DNA damage; however, cell-division-independent H2AX transcription 

might serve as an alternative mechanism to the dephosphorylation of γH2AX, by which cells use 

to mark the resolution of a DNA break. 

Oncogene activation (including MYC, CYCLIN E, MOS, CDC25A, and E2F1) is usually present in 

preneoplastic lesions (Bartkova et al. 2006; Di Micco et al. 2006; Denko et al. 1994; Halazonetis 

et al. 2008; Bartkova et al. 2005). Furthermore, activation of c-MYC, a main target gene of the 

Wnt pathway, has been demonstrated to induce DNA damage in resting cells, showing that c-

MYC-activity dependent DNA damage induction is not always due to DNA replication defects 

(Vafa et al. 2002). In addition, the same study showed that c-MYC activation altered 

metabolism, causing the production of ROS without inducing apoptosis. Lastly, approximately 

10 times more c-MYC-activated cells treated with IR were able to enter S-phase compared to 

non-c-MYC activated cells, which suggests that c-MYC activation can override DNA damage 

checkpoints. Consequently, Wnt signalling activation, either through Apc mutations, β-CATENIN 

activation or c-MYC expression and activation, can all lead to increased DNA damage that in 

turn could lead to genomic instability.   

1.3 Intestinal Tumourigenesis 

1.3.1 Intestinal Cancer in Humans 

Incidence 

Worldwide statistics show that 14.1 million people were diagnosed with some type of cancer in 

2012. It is estimated that by 2030 this will increase by 63% (Ferlay et al. 2015). Colorectal cancer 

(CRC) is the third most commonly diagnosed cancer and the fourth most common cause of 

cancer death worldwide (Cancer Research UK 2016a and b). Better screening methods and 

enhanced awareness could be among the reasons that the last decade has seen a 12% drop in 

bowel cancer mortality rates in the UK (Cancer Research UK 2015). Despite this fact, only 56-

57% of patients survive 10 years after diagnosis (Cancer Research UK 2016a).  

Environmental risk factors 

Environmental risk factors encompass cultural, social and lifestyle elements. Multiple studies of 

migrants and their 1st generation offspring have shown that geographic factors associated with 

community populations clearly affect CRC incidence (Marley and Nan 2016). Migrants moving 

from low-risk to high-risk countries, for instance from southern Europe to Australia, have an 

increased risk of CRC compared to the population which remain in their country of origin (Boyle 

and Langman 2000). Moreover, within the population of a country, urban residents consistently 

have higher incidence than rural residents (Haggar and Boushey 2009). 
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In 1975, it was demonstrated that there is a strong correlation between red meat consumption 

and CRC incidence in women from 23 countries (Armstrong and Doll 1975). It was hypothesised 

and then proven that high animal fat intake increased the CRC risk (Willett et al. 1990; Beyaz et 

al. 2016). In addition, increased fruit and vegetable consumption was shown to be protective 

against CRC due to the presence of dietary fibre (Boyle and Langman 2000). Physical activity is 

equally important as proven by epidemiological studies, nonetheless, obesity was not 

consistently positively correlated with increased CRC incidence (Boyle and Langman 2000). 12% 

of colorectal cancer deaths are attributed to smoking due to the carcinogens found in tobacco 

(Haggar and Boushey 2009). Finally, high alcohol consumption is another factor that contributes 

to colorectal malignancy via multiple ways; for example, through its carcinogenic metabolite 

acetaldehyde, or the generation of reactive oxygen species (ROS) (Haggar and Boushey 2009). 

Genetic risk factors and predisposition 

Most CRC cases are caused by sporadic mutations, 80% of which occur in the Adenomatous 

Polyposis Coli (Apc) gene (Kinzler and Vogelstein 1996), whilst less than 6% are due to 

hereditary mutations (National Cancer Institute 2016). CRC hereditary mutations are divided in 

the polyposis and non-polyposis syndromes. Hereditary polyposis syndromes account for less 

than 5% of all CRC (Al‐Sohaily et al. 2012). Two main polyposis syndromes include familial 

adenomatous polyposis (FAP) and MYH-associated polyposis (MAP). FAP syndrome is caused by 

an autosomal dominant germline mutation of the Apc gene that leads to the formation of 100 

to 1000 colorectal adenomatous polyps in FAP patients, by the age of 20 (Al‐Sohaily et al. 2012). 

MAP is an autosomal recessive syndrome provoked by bi-allelic mutation of the mutY-homolog 

(MYH) gene, a component of the base excision repair (BER) pathway (Al‐Sohaily et al. 2012). In 

MAP patients, Apc somatic mutations occur frequently, some of which progress to tumour 

formation through loss of heterozygosity (LOH; Al‐Sohaily et al. 2012). The number of 

adenomatous polyps varies between MAP patients, from ten to a few hundred and at the age of 

48, 60% are diagnosed with CRC (Mork and Vilar 2016).  

Less common hereditary polyposis syndromes include: Peutz-Jeghers, an autosomal dominant 

disorder caused by germline mutation in liver kinase B1 (LKB1), gene resulting in 

hamartomatous polyps; Juvenile Polyposis, a rare autosomal dominant syndrome with germline 

mutations in bone morphogenetic protein receptor, type IA (BMPR1A) and SMAD family 4 

(SMAD4); Cowden syndrome or PTEN hamartoma tumours characterised by phosphatase and 

tensin homolog deleted on chromosome ten (PTEN) germline mutations; and lastly, hereditary 

mixed polyposis, an autosomal dominant disorder with characteristic mutations in BMPR1A, or 

gremlin-1 (GREM1) genes (Mork and Vilar 2016; Al‐Sohaily et al. 2012). 
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The most common hereditary CRC syndrome, accounting for 2-3% of CRC cases, is hereditary 

non-polyposis colorectal cancer (HNPCC, sometimes referred to as Lynch syndrome) which is an 

autosomal dominant condition caused by germline mutations in DNA mismatch repair (MMR) 

pathway genes. (Al‐Sohaily et al. 2012; Mork and Vilar 2016). These are predominantly mutL 

homolog-1 (MLH1), mutS homolog-2 and-6 (MSH2 and MSH6) and Postmeiotic Segregation 

Increased, S. Cerevisiae, 2 (PMS2; Al‐Sohaily et al. 2012; Mork and Vilar 2016). Mutation of 

MMR genes fuels the accumulation of more mutations due to microsatellite instability (MSI; 

Jass et al. 2002). The age of CRC onset in Lynch syndrome patients is around 45 years old 

(Jasperson et al. 2010). Nevertheless, patients with MAP or Lynch tumour predisposition 

syndromes have better survival rates than sporadic CRC patients (Mork and Vilar 2016). 

It is worth mentioning that individuals with first degree relatives diagnosed with non-syndromic 

CRC (or familial CRC) have a 2-4 fold higher risk of developing CRC compared to the general 

population and this might be attributed to a combination of environmental and genetic factors 

(Armelao and de Pretis 2014; Johns and Houlston 2003).  

CRC subtypes  

In 2014 the Colorectal Cancer Subtyping Consortium (CCSC) was formed to identify a consensus 

among the molecular subtypes of CRC described by independent groups, based on a large scale 

study of 4000 CRC samples, mainly of stage II and III. These consensus molecular subtypes 

(CMS) were enriched for major genetic and epigenetic characteristics, expression of signalling 

pathways and clinical traits. The subtypes are described in Table 1.1 (Dienstmann 2014; 

Rodriguez-Salas et al. 2017). 
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Table 1.1 Consensus molecular subtypes of CRC 

 % Pathways Involved & other 
characteristics 

Genomic Instability Mutations Clinical traits Survival/ tumour 
recurrence 

CMS1 14 Immune activation and infiltration MSI Tumour Hypermutations; 
BRAF 

Older age at diagnosis; 
females; Right-sided 

tumours 

Intermediate/ rare 
recurrence 

CMS2 41 strong WNT pathway activation High CIN, MSS TP53; EGFR amplification/ 
overexpression 

Left-sided tumours Better/ NS 

CMS3 38 moderate WNT pathway activation;  
enrichment for  multiple metabolism 

signatures  

Low CIN; higher 
prevalence of CIMP 

30% hypermutated; 
KRAS, PIK3CA; 

IGFBP2 overexpression  

 No preference in 
anatomic location 

Intermediate/ NS 

CMS4 20 Mesenchymal features; 
Activation of TGF-β, angiogenesis, 

matrix remodelling and complement-
mediated inflammation 

CIN/ MSI 
heterogeneous 

NOTCH3/VEGFR2 
overexpression 

Younger age at 
diagnosis; tend to occur 

in stages III and IV 

Worse/ tend to 
recur 

CMS5 17 No clear assignment 

MSI= microsatellite instability, MSS= microsatellite stable, CIN= chromosomal instability, CIMP = CpG island methylator phenotype, NS= not specified 
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1.3.2 Multi-step carcinogenesis of the intestine 

Fearon and Vogelstein (1990) have described a sequence of mutational events required for 

adenoma to carcinoma transition. This model was formulated after a mutational profile study 

was performed in CRC samples of various stages, which suggested the requirement of 4-5 

sequential mutations that inactivate tumour suppressor genes or activate oncogenes in a 

preferential sequence, to give rise to colorectal tumourigenesis (Figure 1.8) (Fearon and 

Vogelstein 1990). More than 20 years since the proposal of this model, recent studies still 

support this step-wise model of tumourigenesis, which is also known as the ‘Chromosomal 

Instability’ mechanism of carcinogenesis (Pino and Chung 2010). 

Initiation of colorectal neoplasia 

Intestinal crypt hyperplasia and formation of aberrant single crypt lesions initiate benign 

adenoma development. FAP syndrome has provided the evidence that APC gene mutation is 

one of the important initiators of adenoma formation (Kinzler and Vogelstein 1996). FAP 

patients, who have only one fully functional APC allele, usually develop 100 to 1000 colorectal 

adenomatous polyps by the age of 20 (Al‐Sohaily et al. 2012). APC is usually referred to as the 

gatekeeper to intestinal tumourigenesis because dysfunction of this protein leads to Wnt 

signalling activation (Morin et al. 1997). The majority of CRC have Wnt signalling 

hyperactivation. Apc gene mutation is an early event in colorectal tumourigenesis and 60% of 

colorectal carcinomas and adenomas have an APC gene mutation (Powell et al. 1992). B-

CATENIN (CTNNB1) oncogenic activating mutations are also found in 48% of all CRC but 

mutually exclusively compared to Apc gene mutations (Morin et al. 2016) (Sparks et al. 1998). 

Although both Apc and Ctnnb1 gene mutations are equivalently capable of initiating adenoma 

formation, β-CATENIN mutations are less effective in driving progression of adenoma to 

carcinoma when compared to Apc mutations (Samowitz et al. 1999). This highlights the 

importance of other functions of APC (cell-adhesion, migration, cytoskeletal organization and 

chromosomal stability) in the progression of CRC. Of note, both Apc and β-CATENIN mutations 

result in increased Chromosomal Instability (CI). Wnt signalling activation leads to the 

phosphorylation of CDC2 (Cdk1), which inhibits its activity and therefore allows the progression 

through the G2/M phase of the cell cycle, suppressing mitotic arrest and apoptosis (Aoki et al. 

2007). Consequently, cell-adhesion, migration, cytoskeletal organization could be the link 

between APC (but not β-CATENIN) and adenoma progression. Another, less common, initiating 

mutation and component of the Wnt pathway is Axin-2 which encodes a negative regulator of 

the pathway (Liu et al. 2000).  
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Progression of adenoma to carcinoma 

The transition of benign adenomas to malignant tumours occurs by sustained hyperproliferaton 

of abnormal cells and blocked differentiation which encourage tumour mass growth and 

ultimate transformation of the normal tissue anatomy. Further progression encompases 

submucosal invasion and ultimately metastasis.  Multiple gene and protein expression 

alterations have been associated with progression of colorectal adenomas; however, it is 

unknown whether they cause or are the result of adenoma transformation. According to Fearon 

and Vogelstein (1990), the next events occurring after Wnt signalling activation, include Kirsten-

Ras (K-Ras) oncogene activation, loss of chromosome 18q, and impaired expression of the p53 

tumour suppressor (Figure 1.8).  
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Figure 1.8 Multi-step tumourigenesis of theintestinal epithelium 

 Fearon and Vogelstein (1990) proposed that intestinal cancer formation occurs after a step-wise accumulation of mutations in the Apc, K-ras, Smad4, DCC 

(Deleted in CRC), TP53 genes which create a genomically unstable environment. Inactivation of tumour suppressor genes and activation of oncogenes are 

shown in red and green, respectively. 
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1.3.3 Mouse models for the study of CRC 

The first mouse models studying CRC 

The first written report of an experimental study on colon carcinogenesis in rodents was in 1928 

by Carl Krebs. Those early CRC models used carcinogenic substances such as polycyclic aromatic 

hydrocarbon (methylcholanthrene) 4-aminodiphenyl and 3,2-dimethyl-4-aminodiphenyl or even 

radioactive yttrium to induce the development of gastrointestinal cancer (Lorenz and Stewart 

1940; Lisco et al. 1947; Walpole et al. 1952). When a population study of Guamanians showed 

the potential carcinogenic nature of hydrozines, found in consumed cycad flour, 1,2-

dimethylhydrazine (DMH) and azoxymethane (AOM) were used in rodents to induce CRC and at 

that period this was the most common CRC rodent model being used (Laqueur et al. 1963). 

However, the genetic background of each mouse strain altered the outcome of carcinogen-

induced tumours (Rowlatt et al. 1969; Nambiar et al. 2003). It was also noticed that even aged 

untreated C57BL mice developed sporadic tumours within the gastrointestinal tract (Rowlatt et 

al. 1969).  

Genetically engineered models with germline and conditional non-inducible alleles 

APC mouse models 

An important mouse model that recapitulates the adenoma to carcinoma progression and loss 

of heterozygosity (LOH) observed in FAP patients is the ApcMin/+ mouse model (Min stands for 

Multiple Intestinal Neoplasia; Luongo et al. 1994; Ichii et al. 1992). ApcMin/+ mice were 

developed during a mutagenic study using N-ethyl-N-nitrosourea coupled with phenotypic 

screening. In these mice, a nonsense mutation caused an APC truncation at 850aa (Moser et al. 

1990; Su et al. 1992). ApcMin/+ mice develop a large number (~30) of spontaneous benign 

adenomas within the small intestine but less often within the colon (Moser et al. 1990). 

Subsequently, other Apc deficient genetically engineered mice were developed. Homozygosity 

for the Apc mutation led to embryonic lethality, but heterozygosity resulted in multiple 

adenomas whose number differed depending on the Apc mutation. Among them are the 

ApcΔ716/+ and the Apc1638N/+ mice (Fodde et al. 1994; Oshima et al. 1995). These models 

underscored the importance of WNT/β-CATENIN activation in colorectal cancer development.  

Overexpression of β-CATENIN 

Other non-inducible models included the overexpression of an activated form of β-CATENIN 

under the Calbindin D9K promoter linked to the enhancer of the Aldolase B gene. Those mice 

had intestinal dysplastic lesions but also polycystic kidney disease due to tissue- non-specific 

activation of β-CATENIN (Romagnolo et al. 1999). 



47 
 

The Cre-LoxP system  

The Cre-LoxP system is employed for the deletion, insertion, translocation and inversion of DNA 

at specific sites; therefore, it is used extensively for the manipulation of the mouse genome to 

generate models for disease (Sauer 1998). This system is naturally used by P1 bacteriophages to 

circularize their DNA into plasmids and to unlink interlinked plasmids during bacterial 

replication, ensuring the passage of their DNA to the daughter bacterial cells (Oberdoerffer et 

al. 2003). The two components of the Cre-LoxP system are the Cre (cyclization recombination) 

site-specific DNA recombinase and LoxP (locus of X-over in P1 bacteriophages) a 34bp sequence 

which is recognized by Cre recombinase (Sternberg and Hamilton 1981; Abremski and Hoess 

1984). Recombination occurs between two LoxP sites of the same or opposing DNA strand 

orientation; the former resulting in ‘targeted’ site excision (or floxing out), whereas the latter in 

its inversion (Oberdoerffer et al. 2003). Therefore, using the Cre-LoxP system, whole gene or 

specific parts of a gene can be knocked-out, site-specific mutations can be introduced and 

transgenes can be activated, when a floxed ‘STOP’ silencing cassette preceding the target gene 

is present (Sauer 1987; Orban et al. 1992; Albert et al. 1995; Oberdoerffer et al. 2003). Lastly, 

spatio-temporal regulation of this system can be achieved through Cre recombinase expression 

and activity regulation (Sauer 1998). 

Promoter-coupled Cre expression 

Cre-LoxP mouse models of intestinal tumourigenesis have been generated using different 

tissue-specific promoters such as Fabpl-Cre, Villin-Cre and AhCre. The first model, Fabpl-Cre, 

allows Cre recombinase expression in the small and large intestinal epithelial cells, as well as in 

the ureter and bladder epithelial cells beginning from embryonic day 13.5 (Saam and Gordon 

1999). Two groups generated the Villin-Cre mouse model, independently, in which Cre 

recombinase was switched on at 12.5 days post coitum (dpc) and it was found to be expressed 

in intestinal epithelial cells and in kidney proximal tubule epithelial cells (Pinto et al. 1999; 

Madison et al. 2002).  

Constitutive and tissue-specific study of MMR components 

To replicate the CRC syndromes associated with inactivation of the mismatch repair (MMR) 

system, various mouse models were generated; one of which was the Villin-Cre mediated 

constitutive deficient in two important MMR components, MUTS or MUTL (Msh or Mlh, 

respectively). This model had microsatellite instability (inability of correcting DNA replication 

mistakes occurring in DNA areas with repeats of two or three nucleotides) in the intestinal 

epithelium and developed intestinal tumours after Apc gene inactivation (Nandan and Yang 

2010). 
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Genetically engineered models with inducible recombination of conditional alleles 

Cre-expressing adenovirus 

Tissue specific APC deficiency was the next step in CRC experimental studies, allowing the 

development of models which resembled better sporadic clinical cases. These genetically 

modified mouse models were based on the Cre-LoxP system, targeting Cre-dependent excision 

of exon 14 of from the Apc gene, causing a frameshift mutation at codon 580 (Apc580S). In the 

absence of Cre recombinase activity, Apc580S/580S mice were phenotypically normal. Upon anal 

infection with Cre-expressing adenovirus, homozygous deletion of exon 14 was achieved, 

causing the formation of multiple rectal adenomas within 3 months (Shibata et al. 1997).  

Inducible promoters 

Spatiotemporally regulated Cre recombinase activity has been achieved using a tamoxifen-

dependent Cre recombinase under the control of the Villin (Villin-CreERT2) or Lgr5 (Lgr5-CreERT2) 

promoters. The Villin-CreERT2mouse model expresses Cre recombinase in the epithelial cells of 

the small and large intestines and the kidneys (El Marjou et al. 2004). The Lgr5-CreERT2 mouse 

model targets LGR5+ cells including the CBC stem cells of the small and large intestines (Barker 

et al. 2007), as well as fetal mammary stem cells and adult mammary gland myoepithelial cells 

close to the nipple (Trejo et al. 2017) . The third commonly used inducible model, AhCre, places 

Cre recombinase under the control of the cytochrome P-450 promoter, but transcriptional 

activity is only up-regulated in the presence of lipophilic xenobiotics, such as β-naphthoflavone. 

AhCre Ctnnb1fl/fl mice have been used to assess the effects of β-CATENIN deficiency in many 

organs such as liver, intestine, pancreas, gallbladder, oesophagus, and stomach (Ireland et al. 

2004).  

Tamoxifen-induced Cre activation for Apc gene knockout. 

Using the Villin-CreERT2 Apcfl/fl mouse model Andreu et al. (2005) showed that Apc loss along the 

crypt-villus axis leads to crypt expansion through increased proliferation, apoptosis, prevention 

of migration and differentiation and commitment to Paneth-secretory lineage. Although Apc 

loss within the post-mitotic cells present in the villi resulted in nuclear beta-CATENIN, there was 

no increase in proliferation and there were no other characteristics of transformation. In 

contrast, Barker et al. (2009) using the Lgr5-CreERT2 Apcfl/fl mouse model, showed that loss of Apc 

within the crypt base columnar (CBC) stem cells, expressing the LGR5 receptor, was responsible 

for their transformation and macroadenoma formation within 3-4 weeks. Apc loss within the 

transit-amplified cell compartment, using the Ah-Cre Apcfl/fl mouse model, could only give rise to 

microadenomas that rarely progressed into macroadenomas even 30 weeks later. Both studies 
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highlighted the importance of Apc gene as a gatekeeper in suppressing tumourigenesis and also 

the importance of target cell populations.  

Combinatorial approaches 

Finally, different combinations of gene mutations and/or deficiencies have been used to achieve 

invasive and metastatic tumours in mice based on the genetic model of CRC by Fearon and 

Vogelstein (1990). For example, Tgfbr2 (the TGFβR-II receptor) null mice, developed CRC and 

metastasis only when crossed with mice expressing oncogenic Kras (Trobridge et al. 2009). 

Similarly, Smad3-/- mice developed metastatic colorectal adenocarcinomas within 4-6 months of 

age (Zhu et al. 1998). Since 50% of CRC exhibit activating mutations in RAS genes, multiple 

studies have been carried out to investigate the effects of activated K-RAS using the different 

intestinal tissue-specific promoters described above. Some of the studies have demonstrated 

the formation of aberrant crypt foci and adenocarcinomas, whereas K-ras activating mutations 

driven by the Fabpl-Cre promoter resulted in colon dysplasia (Janssen et al. 2002; Tuveson et al. 

2004) 
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1.4 Cancer Treatment 

The stage and severity of cancer dictates the type of treatment course that a patient should 

undergo. To date, CRC therapies include surgery, chemotherapy, radiotherapy and biological 

treatments.  

1.4.1 CRC disease stage assessment 

The extent of the disease for each case is assessed by contrast-enhanced computer tomography 

(CT). Magnetic resonance imaging (MRI), or in some cases endorectal ultrasound, is used to 

determine the tumour and lymph node staging, as well as the potential area of surgical margins 

to assess the possibility of local recurrence.  

Tumour resection and pre-operational treatment 

Patients with tumours with a potential resection margin and no lymph node metastasis, are 

considered as low risk of recurrence and could be cured after surgery alone. The distance 

between the macroscopic tumour and the resection, the surgical margin, is dependent on the 

position of the tumour. US guidelines state that the surgical margins of proximal and distal 

tumours should be ≥ 5cm which will allow the resection of the tumour with its associated 

vascular and lymphatic vessels (Nelson et al. 2001; Beasley et al. 2017). Nonetheless, even <1cm 

surgical margins can be decided on, for instance when the tumour is close to the anal sphincter 

(Kuvshinoff et al. 2001; Andreola et al. 2001). However, when the tumour size exceeds the 

accepted surgical margins or there is involvement of lymph nodes or an extramural vascular 

invasion, preoperative radiotherapy or chemotherapy could be used with an interval to allow 

tumour shrinkage, as these cases are considered moderate to high risk of recurrence (Poston et 

al. 2011). 

Post-operative therapy 

Adjuvant chemotherapy is considered for high risk stage II and III CRC to prevent local or 

systemic recurrence.  For many years, the standard adjuvant treatment for this CRC stage was 

the combination of 5- fluorouracil (5-FU), a thymidylate synthase inhibitor, and folinic acid (LV), 

which helps longer retention of 5-FU within the body. However, recent evidence showed that 

monotreatment with capecitabine (pro-drug of 5-FU), or FOLFOX increase cancer-free and 

overall survival compared to 5-FU/LV alone. FOLFOX is the combined treatment of both 

oxaliplatin (a platinum alkylating agent which forms inter and intra-strand DNA cross-links 

inhibiting DNA synthesis) and 5-FU/LV (Eggington et al. 2006).  
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Advanced or metastatic CRC therapy 

10-25% of CRC patients with resected primary tumours are diagnosed with liver metastasis, half 

of which also have extrahepatic (pulmonary, distant nodal, peritoneal) secondary tumours 

(Sheth and Clary 2005). Indication of metastatic disease is assessed by CT, MRI and 18-

fluorodeoxyglucose (18FDG) positron emission tomography (PET) in order to proceed to surgical 

removal of metastasis where possible, and/or chemotherapy (Poston et al. 2011). 

Chemotherapy options for advanced and metastatic CRC include (Poston et al. 2011): 

a) FOLFOX as first-line treatment, followed by irinotecan, a topoisomerase II inhibitor. 

b) FOLFOX as first-line treatment, followed by triple combination of 5-FU/LV/irinotecan 

(FOLFIRI). 

c) Combination of Capecitabine with Oxaliplatin as first-line treatment followed by FOLFIRI 

as second-line treatment. 

A phase III clinical trial in metastatic CRC patients showed that TAS-102, a combination of 

tipiracil hydrochloride and trifluridine, could increase the median overall and progression-free 

survival compared to placebo (Mayer et al. 2015). Trifluridine is a deoxyuridine analogue which 

blocks DNA replication. Tipiracil hydrochloride prevents enzymatic degradation of trifluridine 

(Mayer et al. 2015). Therefore, under NICE recommendations, TAS-102 could be used as a third-

line CRC therapy (National Institute for Health and Care Excellence 2016). 

Cytotoxic therapies can result in numerous side effects in other organs of the body. Basic 

research in intestinal tumourigenesis has made it possible to develop more targeted therapies 

that interfere with vital biochemical pathways or block mutated proteins that are essential for 

the survival and growth of cancer cells (Vanneman and Dranoff 2012). It is hoped such targeted 

therapies will target the tumour cells more effectively but with fewer side effects. 

1.4.2 Biological agents used in metastatic CRC treatment 

Targeted therapies include monoclonal antibodies or small molecule inhibitors (Hagan et al. 

2013). Cetuximab for example, is a monoclonal antibody that inhibits the function of epithelial 

growth factor receptor (EGFR) and is used for the treatment of liver metastasis when used in 

combination with chemotherapy (Van Cutsem et al. 2009).  

Panitumumab is another antibody based targeted therapy for metastatic CRC with wt K-RAS or 

N-RAS, which blocks the extracellular domain of the EGFR and hence its activation. It is given in 

combination with FOLFLOX or, in cases where there is disease progression even after 

chemotherapy treatment, it is given as a monotherapy (Giusti et al. 2009). Gefitinib, a small 

molecule which binds to the adenosine-triphosphate (ATP) pocket of the EGFR tyrosine kinase 

and inhibits its kinase activity, is also employed in the treatment of CRC (Rahman et al. 2014).  



52 
 

Various kinase inhibitors are used for the treatment of stromal gastrointestinal tumours which 

are sarcomas of the gastrointestinal tract arising from activating mutations of c-KIT and less 

commonly platelet-derived growth factor receptor alpha (PDGFRA; Linch et al. 2013). These 

include: Imatinib [tyrosine kinase inhibitor targeting ABL which is involved in chronic 

myelogenous leukemia, and the receptors KIT (CD117) and PDGFR (platelet-derived growth 

factor receptor; Lee and Wang 2009), Sunitinib (broad spectrum tyrosine kinase inhibitor) and 

Regorafenib (multi-kinase inhibitor; Pray 2008; Sutent 2007; Ettrich and Seufferlein 2014).  

1.4.3 Nuclear medicine for cancer diagnosis and treatment 

Cancer diagnosis using nuclear medicine 

Nuclear medicine is used for the diagnosis of cancer stage, treatment planning and follow-up to 

assess the efficiency of a therapy (Eary 1999). Some of the most commonly used nuclear 

medicine scans include: bone scans, fluorodeoxyglucose-18 (18F-FDG) scan, thyroid scans, 

multigated acquisition (MUGA) scans and Gallium scans (uses summarised in Table 1.2). The 

scans work by using a radiotracer, which is essentially a radionuclide, that is administered to a 

patient, and tracked by specialized equipment detecting the pattern of radioactivity emitted 

from the examined patient. The scans are performed by Single Photon Emission Computed 

Tomography (SPECT) and positron emission tomography (PET), two nuclear imaging techniques 

whose radioactivity detection system defers. SPECT imaging is performed by a camera that 

rotates 360o around the body, detecting -rays released from it and creating a series of pictures 

depicting the source of radiation in the body. PET scans are used to indirectly detect positron 

emitting radionuclides through pairs of photons (-rays) that are released in opposite directions 

when a positron encounters a free electron inside the body. The pair of photons reaches the 

ring-shape detector which slowly moves over the body to create an image-map of the body 

under examination (Rahmim and Zaidi 2008).  

The interpretation of the site of the radioactivity emission is usually carried out by accompanied 

computer tomography (CT) scans, which use the X-ray energy emission pattern formed by the 

differences in radiological density of each tissue (the ability of each tissue to absorb X-rays) and 

computer processing in order to generate cross-sectional images of the body. These can also be 

used to generate three-dimensional (3D) X-ray images, which are more informative in terms of 

tissue topology. The combined information of the radioactivity pattern and the site of the body 

from which it is emitted are very informative. However, patients are exposed to more radiation 

(Lawrence et al. 2008) and there is a limit for tumour-size detection. Small tumours cannot be 

easily distinguished from the background radioactivity levels; for instance, 4mm is the lowest 

size to acquire good resolution when using PET scanners; this corresponds to the detection of 
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tumours with a volume of 0.2 ml (7 mm diameter) in 5:1 tumour-to-blood (T/B) ratio (Erdi 

2012). Table 1.2 lists the indications of nuclear medicine in oncology as reviewed by Eary 

(1999). 

The dependency of cancer cells on excess use of glycolysis (the Warburg effect) is the 

underlying rationale for 18F-FDG-PET scanning. Although, many studies have shown that 18F-

FDG-PET imaging has a higher sensitivity (98%) than CT scans (91%) for tumour detection (Staib 

et al. 2000), it is not usually used for primary CRC tumour diagnosis (Brush et al. 2011). NICE 

recommendations, instead, indicate the use of 18F FDG-PET for the detection of extrahepatic 

CRC metastasis (National Institute for Health Care and Excellence 2014). 

Table 1.2 Indications of nuclear medicine in cancer 

Scan type Radiotracer  Indications 

Bone scan 99mTc-methylenedi-

phosphonate 

Staging of bone metastasis from primary 

prostate, breast, lung and other cancers; 

and follow-up 

Sestamibi scan 99mTc-sestamibi Localisation of breast cancer in cases which 

remain non-diagnosed after conventional 

diagnostic tests; localisation of thyroid 

cancer in iodine-blocked patients or those 

with non-iodine-avid metastases. 

Thallium scan 201Tl chloride Localisation of viable tissue by testing blood 

flow, particularly in brain tumour, 

osteosarcoma 

Gallium scan 67Ga chloride Staging and treatment response in 

lymphoma and Hodgkin's disease 

Metaiodoben-

zylguanidine 

(MIBG) scan 

131I or 123I labelled MIBG Localisation of neuroendocrine tumours that 

take up norepinephrine 

Octreotide scan 111In-octreotide Localisation of tumours with somatostatin 

receptors (e.g. pancreatic tumours, 

carcinoid tumours, medullary thyroid 

cancer, neuroblastoma) 

FDG PET 18F-FDG Staging and follow-up of lung, colorectal, 

breast, head and neck, testicular cancers as 

well as lymphomas and melanoma 
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Monoclonal 

antibodies 

111In or 99mTc labelled 

tumour antibodies 

To stage cancer and determine presence of 

tumour antigen (e.g. in lung, colorectal, and 

prostate cancers) 

 

Radioimmunoconjugates (RIC) used in cancer 

Monoclonal antibodies (mAbs) and monoclonal antibody-based therapeutics are employed 

against cancer. They are designed to bind specifically to highly expressed molecules on cancer 

cells, or their microenvironment (Goldenberg 2007). Antibody radiolabelling allows the imaging 

of its distirubtion within the body through non-invasive SPECT and PET scans. Some of the 

radionuclides used for mAb labelling are: Zirconium-89 (89Zr), Indium-111 (111In) and Copper-64 

(64Cu). Specifically, 89Zr fits well the serum –half life of the mAb due to its 3.3 days of half-life 

allowing the clearance of non-bound circulating RIC prior to imaging and better tumour 

visualization (Moek et al. 2017). 

A review by Moek et al. (2017) reported 24 RICs (described in Table 1.3) approved by the U.S. 

Food and Drug Administration (FDA) or the European Medicines Agency (EMA) for their use in 

clinical or pre-clinical trials. Most radiolabelled drugs were developed based on already 

approved antibodies used in the treatment of cancer. Examples include: a) trastuzumab, a drug 

used in breast cancer treatment because it recognizes and blocks the human epidermal growth 

factor receptor 2 (HER2) which is usually overexpressed in tumours; and b) cetuximab which 

binds the epidermal growth factor receptor-1 (EGFR1) and is mainly upregulated in CRC. Some 

of the uses of RIC include: 

a) Detection of tumour lesions, and their position, that cannot be detected by 

conventional imaging techniques such us CT scans. 

b) Assessment of tumour saturation by the mAb- based anti-cancer treatment. 

c) Assessment of intrapatient tumour heterogeneity and relate to likelihood of their 

response to treatment. 

d) Selection of patient and treatment according to RIC uptake results (i.e. identifying the 

expression levels of target molecules) . 

e) In the case of bispecific antibodies (see BiTes in Table 1.3), they are used as an 

immunotherapy to attract cytotoxic T-cells onto cancer cells. 

 

 

 

 



55 
 

 

Table 1.3 Clinical trials on cancer patients using radiolabelled monoclonal antibodies or antibody 
based radio-tracers (Moek et al. 2017) 

Target Tracer name 
Tracer 

structure Patient population 

Tumor 
    A33 124I-huA33 mAb CRC 

 CA6 64Cu-B-Fab Fab fragment Breast or ovarian cancer 

 CA9 124I-girentuximab mAb RCC 

 

89Zr-girentuximab mAb RCC 

 CEA 89Zr-AMG 211 BiTE Gastrointestinal adenocarcinoma 

 CD20 

89Zr-ibritumomab 
tiuxetan mAb NHL 

 CD44 89Zr-RG7356 mAb CD44-positive solid tumor 

 EGFR (HER1) 89Zr-cetuximab mAb CRC, HNSCC, stage IV cancer 

 

89Zr-panitumumab mAb 
CRC, NSCLC, sarcoma, urothelial 
carcinoma 

 EphA2 89Zr-DS-8895a mAb EphA2-positive cancer 

 HER2 64Cu-trastuzumab mAb Breast or gastric cancer 

 

68Ga-HER2-Nanobody Nanobody Breast cancer 

 

68Ga-trastuzumab-Fab Fab fragment Breast cancer 

 

89Zr-trastuzumab mAb Breast cancer 

 HER3 64Cu-patritumab mAb Solid tumors 

 

89Zr-GSK2849330 mAb HER3-positive solid tumors 

 

89Zr-lumretuzumab mAb HER3-positive solid tumors 

 MSLN 89Zr-MMOT0530A mAb Ovarian or pancreatic cancer 

 PIGF 89Zr-RO5323441 mAb GBM 

 PSCA 124I-A11 Minibody 
Bladder, pancreatic, or prostate 
cancer 

 PSMA 89Zr-J591 mAb GBM, prostate cancer 

 STEAP1 89Zr-MSTP2109A mAb Prostate cancer 

Microenvironment 
    PD-1 89Zr-pembrolizumab mAb NSCLC, melanoma 

 PD-L1 89Zr-atezolizumab mAb Bladder cancer, NSCLC, TNBC 

 TGFβ 89Zr-fresolimumab mAb Glioma 

 VEGF-A 89Zr-bevacizumab mAb 
Breast cancer, glioma, MM, NET, 
NSCLC, RCC 
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Risks and benefits of low-dose radioactivity exposure  

In contrast to the benefits of using low-dose radioactivity, potential risks are not well defined, 

with conflicting evidence. Clinical studies have demonstrated the benefits of using low-dose 

radioactivity in diagnosis of CRC. PET/CT scans were proven to change the staging of 30% of CRC 

patients and the treatment plan of 1/3 of those (Petersen et al. 2014). Moreover, the use of 

molecular markers to assist radionuclide imaging procedure was found to be even more 

sensitive in CRC metastasis detection compared to MRI and CT scans (83.6% and 88.2%, 

respectively; Boykin et al. 1999; Rohren et al. 2002; Sahani et al. 2005). 

The potential risks associated with low-dose radioactivity were introduced by Muller based on 

his collaborative work with Raychaudhuri (1939-1940) which showed that γ-rays induced 

irradiation dose rates of 0.01 roentgen (R)/min or 0.09 millisieverts (mSv)/min and that doses as 

low as 400 R (equivalent to 3.73 Sv) could cause genetic alternations (Muller 1941). Hence, 

Muller suggested the linear no-threshold dose (LNTD) hypothesis which predicts that doses 

even lower than 400 R, are harmful proportionally to dose, and that they accumulate over time.  

However, multiple studies followed that contradict this LNTD hypothesis. Natural occurring 

background radiation varies in different places on earth, ranging from 1-260 mSv/year (Ghiassi-

Nejad et al. 2002). For comparison, a CT scan alone or combined with F-FDG PET/CT deliver 

doses of 10 and 14 mSv, respectively. Nonetheless, there was no association between cancer or 

childhood deaths and varying background radiation dose exposures, which is inconsistent to the 

LNTD hypothesis (Dobrzyński et al. 2015). Another study from atomic-bomb survivors showed 

that lower than 180 milligrays (mGy; equivalent to 180 mSv) acute dose exposure, did not 

increase the risk of solid-cancer mortality; in some cases, it was even beneficial, reducing cancer 

risk (Ozasa et al. 2011; Sasaki et al. 2014). Different levels of irradiation dose exposure could 

trigger mechanisms such as evolutionary adaptation to irradiation, DNA repair mechanisms and/ 

or elimination of damaged cells (Dauer et al. 2010). These studies suggest that there is a lower 

threshold at which the linear dose to mutation accumulation cannot be applied. 

A statistically significant increase in cancer risk has not been associated with exposure to less 

than 100mSv doses therefore, based on the report of Biological Effects of Ionizing Radiation 

(BEIR) VII, the US National Academy of Sciences defines low-radiation doses as those <100mSv 

(Council 2006). The following paragraphs were dedicated in giving examples of studies pertinent 

to the use of nuclear diagnosis and the associated risks, if any, in increasing cancer incidence. 

One of these studies showed that radiation exposure from CT scans on fetuses and children 

increased their risk in developing cancer, probably due to increased cell division related to their 

developmental stage, as well as the longer life expectancy compared to an adult, which 

increases the opportunity for radiation-related cancers to occur (Stewart et al. 1956; Frush et al. 
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2003). However, diagnostic 0.8-1Gy (0.8-1Sv) doses of 131I in thyroid does not show any increase 

in thyroid cancer risk even when given at an early age (11 years old; Hamilton et al. 1984). 

Different diagnostic methods however, were correlated with increased cancer incidence. For 

instance, there was strong association between dose-response and increased breast cancer 

incidence in patients having fluoroscopic diagnosis (live X-ray imaging) of tuberculosis (Howe 

and McLaughlin 1996). Limited data from a case-control study suggests that there is an 

increased risk of chronic myeloid leukemia associated with gastrointestinal radiography and 

multiple spinal X-rays (Pogoda et al. 2011). In a study carried out in the U.S., a strong link was 

shown between numbers and types of X-ray diagnostic tests and chromosomal translocations in 

the peripheral blood of radiologic technologists (Sigurdson et al. 2008). Overall, more data need 

to be obtained for low-dose radiation exposure in relation to increased cancer risk. 

Nevertheless, these studies are difficult to be done, due to the fact that the radiation-related 

excess cancer risk at low doses cannot be easily extrapolated from the background level 

variation which would require multiple year studies involving millions of people (U.S. Food & 

Drug Administration 2017). 

Radioimmunoconjugates (RIC) in CRC diagnosis 

Radionuclide-labelled monoclonal antibodies are commonly termed radioimmunoconjugates or 

RICs. To date, none of the clinically-tested RICs are currently in use for the diagnosis of primary 

or metastatic CRC. OncoScint®, a radiotracer identifying the tumour-associated glycoprotein-72 

(TAG-72), was approved by the U.S. Food and Drug Administration (FDA) in 1992 but not by the 

European Medicines Agency (EMA) for the detection of CRC and ovarian cancer as a diagnostic 

agent (Animal Cell Technology Industrial Platform 2013). CEA-scan, a radiotracer which 

identifies the carcinoembryogenic antigen (CEA), was approved in 1996 by both the FDA and 

the EMA; however, it was withdrawn from the EU market in 2005 for commercial reasons 

(European Medicines Agency 2005). HumaSPECT®, a [99mTc] labelled mAb against cytokeratin 

tumour-associated antigen, was EMA approved in 1998 for the detection of CRC recurrence 

and/or metastasis in patients with histologically proven carcinoma. In 2003, it was withdrawn 

from the market in EU, as its registration has not been renewed by the marketing authorisation 

holder (European Medicines Agency 2004). 

Pre-clinical and Clinical trials 

Many pre-clinical and clinical trials have been performed using RICs against various antigens 

that are found to be overexpressed in tumour cells such as: VEGF, CEA, CA 19-9, TAG-72 and 

EGFR. Table 1.3 summarises some of the studies that have been carried out since the 1980’s in 
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identifying the appropriate immunoscintigraphy (the procedure that makes use of radioactively 

labelled antibody) for the detection of CRC-related tumours. 
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Table 1.4 Pre-clinical and clinical studies of immunoscintigraphic detection of CRC associated tumours 

Scan type Radiotracer Aim Diagnostic sensitivity, specificity or accuracy Pre-clinical 

or clinical 

Reference 

γ-camera 131I labelled 791T/36 (mAb 

against an osteogenic-

sarcoma cell line, 791T) 

Tumour detection CRC  10/11 patients with primary and/or secondary CRC 

turmours were accurately detected. 

Clinical (Farrands et 

al. 1982) 

PET 64Cu-DOTA-bevacizumab Imaging and biodistribution 

of VEGF to correlate with 

tumour accumulation in 

CRC xenografts 

Correlation (ρ = 0.81, P = 0.004) between VEGF expression 

in tumours with radiotracer accumulation 

Pre-clinical (Paudyal et 

al. 2011) 

SPECT 131I or 111In labelled anti-

CEA F(ab')2 

Immunoscintigraphy of 1o 

and metastatic CRC 

96/121 known lesions detection (abdominal, pelvic and 

lymph node lesions but not liver metastasis) change in 

administration route increased liver metastasis detection. 

Clinical (Riva et al. 

1989) 

SPECT 111In labelled mAb anti-

TAG-72 

Immunoscintigraphy for the 

detection of primary or 

recurrent tumours. 

69% Sensitivity, 77% specificity. In comparison with CT 

immunoscintigraphy has greater sensitivity for the 

detection of pelvic tumours (74% vs 57%, P = .035) and 

extrahepatic abdominal tumours (66% vs 34%, P < 0.001). 

CT was more sensitive in identification of liver metastases 

(84% vs 41%, P < 0.001).  

Clinical (Collier et al. 

1992) 

SPECT 99mTc labelled BW 431/26 Diagnosis and follow-up Primary tumour identification (n = 65), sensitivity was Clinical (Lind et al. 
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intact anti-CEA  antibody patients 95%, specificity 91%. For the diagnosis of early 

recurrences (n = 76) had 94% sensitivity and 86% 

specificity. Overall sensitivity of immunoscintigraphy in 

patients with suspected colorectal carcinomas and early 

recurrences was 95%, with 88% specificity. 

1991; Hertel 

et al. 1990) 

SPECT 99mTc labelled BW 431/26 

intact anti-CEA  antibody  

Diagnosis and follow-up 

patients 

Immunoscintigraphy had an overall sensitivity of 70.0%, 

37.5% for primary tumours 75.0% for recurrences and 

100% for distant metastases 

Clinical (Vieira et al. 

1993) 

SPECT 99Tcm labelled BW 431/26 

anti-CEA antibody 

Follow-up CRC patients Differentiation of tumour recurrence vs scar tissue. On 

evaluation of 40 lesions, the radiotracer had a sensitivity 

and accuracy of 80%. On a patient basis had 83% 

sensitivity, 100% specificity and 87% accuracy. 

Clinical (Lacic et al. 

1999) 

SPECT 99mTc labelled anti-CEA  

antibody 

Diagnosis of recurrent CRC 78% sensitivity and 90% specificity for 

immunoscintigraphy in extrahepatic abdominal and pelvic 

disease. CT scans was more accurate than 

immuoscintigraphy for detecting liver and lung metastasis. 

Clinical  (Fuster et al. 

2003) 

PET 64Cu-DOTA-cetuximab Selection of patients with 

EGFR positive tumours, 

monitor therapeutic 

efficacy of EGFR treatment, 

Imaging EGFR-positive tumours Pre-clinical (Cai et al. 

2007) 

89Zr-DOTA-cetuximab Selection method for cetuximab treatment in patients 
with wt RAS metastatic CRC (6/10 patients with tumour 
uptake) 

Clinical (Menke-van 

der Houven 
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optimization of dosage of 

cetuximab treatment 

 van Oordt et 

al. 2015) 

SPECT Imacis 1: combination of 

(111 MBq 131I) mAb CA 19-9 

F (ab’) 2 and mAb anti CEA F 

(ab’) 2 

Detection of metastasis and 

recurrence of colorectal 

carcinoma based on CAE 

and CA 19-9 expression 

Generally, sensitivity of immunoscintigraphy was 97%, 

specificity 82%, positive predictive value 92%, negative 

predictive value 93%, and accuracy 92% 

Clinical (Artiko et al. 

2011) 

Indimacis 19-9: 111In-DTPA- 

CA 19-9 F (ab’) 2  

Oncoscint CR 103: (site-

specific modification of the 

mAb B72.3) 111In labelled 

TAG-72 
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Cancer therapy using nuclear medicine 

Radiotherapy is one of the main therapies approved by the NICE for the treatment of CRC. It is 

currently used: 

• pre-operatively for the reduction of the tumour size, making it possible for resection of 

tumours that cannot initially be excised with sufficient margins. 

• post-operatively as an adjuvant therapy for the elimination of remaining cancer cells. 

• to palliate the symptoms of advanced and metastatic cancer due to intestinal blockage, 

or infiltration through pelvic structures (Janjan et al. 2002). 

IR is usually administrated using external beam. Brachytherapy, an internally administered IR, is 

usually used for rectal tumours, because it avoids exposure of the skin and other abdominal 

tissues, thereby minimising some side effects. Radioembolization, which is the radioisotope 

injection into blood vessels from which tumours retrieve nutrients, and radiofrequency ablation 

of tumours through the generation of heat from medium frequency alternating current, are also 

used (American Cancer Society 2017). 

Clinical trials 

Some clinical trials have been conducted using radionuclides alone or conjugated to a 

monoclonal antibody (mAb), for the treatment of advanced and/or metastatic CRC. A 

systematic review carried out by Rosenbaum et al. (2013) showed that radioembolization with 

90Y, either as a monotherapy or combined with chemotherapy, could increase survival in 50% of 

the patients with unresectable and chemorefractory liver lesions for more than 12 months. 

Currently, at the University of California in San Francisco a combination radioembolization 

therapy with TAS-102 and 90Y resin microspheres (phase I clinical trial) is being tested in patients 

with chemo-refractory CRC liver metastasis (ClinicalTrials.gov 2016). 

A phase I clinical trial has been attempted in the past using a radiolabelled anti-CEA antibody. 

Patients were screened with 111In-DTPA cT84.66 [a mouse/human chimeric anti-CEA antibody 

derived from the parental murine mAb T84] to identify CEA-expressing tumours; positive 

patients were then treated with 90Y-DOTA-cT84.66. In this study, there was a dose-limiting 

haematopoietic toxicity observed with this treatment. In addition, the highest antibody uptake 

and tumour doses were observed in small nodal lesions, suggesting that 90Y-DOTA-cT84.66 may 

be best applied in cases of minimal tumour burden (Wong et al. 2006).  

Although some other clinical studies have been completed, no results have yet been published. 

Examples of these studies include: 
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• the use of 90Y-DOTA-anti-CEA mAb M5A  in combination with chemotherapy and 

bevacizumab for CRC metastatic patients (ClinicalTrials.gov 2015) 

•  the treatment of advanced CRC patients with 131I- humanized antibody (huAb) A33 

(glycoprotein highly expressed in colon tumours) (Barendswaard et al. 1998; 

ClinicalTrials.gov 2013). 

111In -anti- γH2AX-TAT characteristics 

111In makes a highly potent radionuclide thanks to emission of short-range Auger electron 

(Cornelissen et al. 2012). Auger electron emission triggers a cluster of ionization events in the 

scale of nanometres (O’Donoghue and Wheldon 1996; Spitz and Hauer-Jensen 2014) causing 

irreparable local DNA damage. 

 

 

 

 

111In is an electron capture (EC) nuclide (100% of its decay occurs via EC), with a radioactive half-

life of 2.8047 days which, upon capture of its orbital electrons, forms 111Cadmium (111Cd) 

nuclide in an excited state. 111Cd is stabilized by emission of 171.3 (90%) and 245.4 (94%) kilo 

electron-volts (keV) γ-rays and X-rays of 23 keV (68%). Some of the atomic disintegrations of the 

111Cd nucleus expel orbital electrons, with energies 145 and 219 keV (8% and 5%, respectively), 

by internal conversion, resulting in X-ray emission. K and L Auger electrons can then be ejected 

from the X-ray emission with energies of 19 and 3keV respectively (in 16% and 100% of atomic 

disintegrations, respectively) (Perkin Elmer 2010).  

Auger electrons 

Auger electrons have a low kinetic energy with a subcellular range of a few nanometers (nm) to 

a few micrometers (μm). The different DNA condensation states, such as chromatin fibres, 

nucleosomes and double stranded DNA, are within this range. Thus, if the source of Auger 

electrons happens to be close to or within the nucleus, this could lead to DNA damage. Howell 

Figure 1.9 Anti-γH2AX RIC structure.  

An anti-γ-H2AX antibody modified with a Tat peptide for nuclear 

localization and conjugated with a radioisotope (111In). 
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et al. (1990) showed that Auger electrons are as capable as α-positron-emitting radionuclides at 

causing biological damage when incorporated into DNA. 

 

Auger electrons do not have the potential of γ-, x-rays or α-, β-positrons in causing ionization 

events to a whole organ. Intracellularly, however, they can affect structures that may be 

irreversibly damaging to the cell. The survival of the cell is dependent on the extent of damage 

to DNA integrity caused by Auger electrons (Baverstock and Charlton 1988; Hofer 1996). An in 

vitro study by McLean et al. (1989) showed that differences in cellular localization of 111In can 

affect cell survival. Extracellular 111In-chloride caused damage at a rate of about 6.1 X 10-12 

Gy/decay, whereas intracellular introduction of high specific activity 111In (0.389 Bq/cell; 2.9 X 

104 Gy/decay) stopped cell division whilst low (0.075 Bq/cell; 7.2 x10-4 Gy/decay) to moderate 

(0.204 Bq/cell; 4.5 X 104 Gy/decay) activities did not. The surviving fraction of cells treated 

internally with 111In could divide and redistribute 111In to their daughter cells, as indicated by 

reduction of radioactivity in cells post mitotic phase (McLean et al. 1989). However, it remains 

unclear whether these cells had repaired any possible DNA damage caused by low or medium 

activity exposure to 111In prior to division; the opposite could imply that there is an increased 

possibility of DNA damage accumulation in the daughter cells. 

Internalization, retention and γH2AX affinity 

111In-anti-γH2AX-TAT Ab (Figure 1.9) enters a cell and its nucleus irrespective of the expression 

of γH2AX due to its antibody and TAT associated properties. TAT peptide 

(GRKKRRQRRRPPQGYG) has cationic charge as it is rich in arginine and lysine which facilitate the 

cell membrane and nuclear penetration (Drin et al. 2003). The mechanism is not clear, however 

multiple studies have suggested that TAT peptides are enclosed in endosomes post cellular 

membrane internalization (Brooks et al. 2005; Ferrari et al. 2003; Fittipaldi et al. 2003). In 

agreement with these, a study by Cornelissen et al. (2007) showed that cellular and nuclear 

importation of 111In-anti-mIgG-TAT was decreased by 3-fold and 2-fold respectively after 

inhibition of lysosomal acidification. TAT contains a nuclear localization signal containing domain 

of the HIV-1 transactivator of transcription (TAT) which has proven to be capable of penetrating 

nuclear membranes using importins (Cornelissen et al. 2008).  

A competition radioimmunoassay (RIA) was performed by Cornelissen et al. (2011) to assess the 

affinity of 111In-anti-γH2AX-TAT for γH2AX. Unlabelled DTPA-anti-γH2AX-TAT and anti-γH2AX had 

similar affinity for γH2AX. Moreover, fluorochrome conjugated anti-γH2AX-TAT but not 

fluorochrome conjugated anti-IgG-TAT could co-localise with γH2AX foci in vitro at 2h post 

treatment whilst both were also present on the cell membrane and cytoplasm (Cornelissen et 

al. 2011). At 24h there was a complete nuclear internalization and γH2AX foci colocalization 
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only by fluorochrome-conjugated anti-γH2AX-TAT. γH2AX foci exist even 23h post irradiation in 

the presence of either fluorochrome conjugated anti-γH2AX-TAT or fluorochrome conjugated 

anti-IgG-TAT which implies that DNA damage repair pathways are not altered in the presence of 

the fluorochrome conjugated anti-γH2AX-TAT. Furthermore, the localization of fluorochrome 

conjugated anti-γH2AX-TAT is specific to the site of γH2AX induction determined by Cornelissen 

et al. (2011) through the slit-irradiation technique.  

The pharmacokinetics of 111In-DTPA–anti-γH2AX-TAT or isotype control (111In-DTPA–mIgG-TAT) 

Ab in a cell were also addressed by Cornelissen et al. (2012). RICs were incubated for 0-4h with 

4Gy irradiated or sham-irradiated MDA-MB-468 cells.  At 10h 111In-DTPA–anti-γH2AX-Tat or 

111In-DTPA–mIgG-Tat were mostly eliminated from the sham-irradiated cells reaching 20%. Only 

111In-DTPA–mIgG-Tat had similar fate in irradiated cells reaching background levels at 10h (T1/2 

elimination half-life= 0.23 ± 0.09 h). Significantly higher was 111In-DTPA–anti-γH2AX-TAT 

retention in irradiated versus sham-irradiated cells (half-life 27.71 ± 11.01h vs. 1.81 ± 0.87h, 

respectively; P = 0.0076, F test), indicating the specificity 111In-DTPA–anti-γH2AX-TAT retention 

in γH2AX-induced cells. As determined by Cornelissen et al. (2012) the percentage of 111In 

remaining internalized in MDA-MB-468 cells at 4h after 1h of exposure to 111In-DTPA-anti-

γH2AX-Tat (0.5μg/mL, 0-6MBq/μg) with or without 10 Gy IR was proportional to the specific 

activity of the RIC. 

111In -anti- γH2AX-TAT for imaging DNA damage in vivo 

111In has a well-developed radiochemistry and available Ab labelling chelators such as 

diethylenetriaminepentaacetic acid (DTPA) and 1,4,7,10-Tetraazacyclododecane-1,4,7,10-

tetraacetic acid (DOTA), due to its various applications in patient diagnosis. Some of the imaging 

applications of 111In include labelling of platelets, leukocytes, octreotide, anti-CD20 Ab and 

capromab pendetide, which are used for the diagnosis of thrombus formation, inflammation, 

neuroendocrine tumours, lymphoma and prostate cancer, respectively (Peters et al. 1984; Lewis 

et al. 2014; Jamar et al. 1995; Knox and Levy 2015; Petronis et al. 1998). 

Initially, 111In-anti-γH2AX-TAT Ab was developed to image DNA damage and more specifically 

DSBs in vitro and in vivo (Cornelissen et al. 2011). Imaging DSBs is useful as they are the most 

dangerous form of DNA damage. Moreover, the number of DSBs and their persistence in the 

cell reflects the likelihood of cell death (Banáth et al. 2010). DNA damage and cell death are two 

important factors on which many anti-cancer treatments depend on.  In vivo imaging of 

superficial tumour DNA damage could be carried out by fluorescence imaging after intravenous 

(i.v.) injection of a fluorochrome (Cy3)-conjugated anti-γH2AX-TAT Ab. However, this technique 

could not be used for tumours positioned deep inside the body due to light retention by 
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overlying tissues; therefore, they used the γ-rays of 111In labelled anti-γH2AX-TAT Ab to image 

the DSBs of these tumours using SPECT imaging (Cornelissen et al. 2011). 

A study was conducted by Cornelissen et al. (2011) to assess the in vivo pharmacokinetics of 

111In-DTPA-anti-γH2AX-TAT, described in this paragraph. MDA-MB-468 xenografts bearing mice 

were injected with bleomycin (10 μg/mouse) or IR (10 Gy) and subsequently injected (10 μg, 1 

MBq/μg) intravenously with 111In-DTPA-anti-γH2AX-TAT or 111In-DTPA-mIgG-TAT. SPECT-CT 

imaging was carried out at 24, 48 and 72h post RIC injection (Figure 1.10 A). Volume of interest 

analyses for tumours (Figure 1.10 B) showed that 111In-DTPA-anti-γH2AX-TAT had higher uptake 

in treated tumours at each time point compared to 111In-DTPA -mIgG-TAT. In addition, 111In-

DTPA-mIgG-TAT could not distinguish between treated and untreated tumours; whereas, both 

bleomycin and IR tumour treatment resulted in significantly increased uptake of 111In-DTPA-

anti-γH2AX-TAT compared to control, which implies that tumours had higher DNA damage 

content. Even 72h post RIC treatment, 111In-DTPA-anti-γH2AX-TAT was retained within the 

bleomycin treated tumours, as DNA damage was not resolved compared to IR tumours. 

Increased γH2AX foci induction was positively correlated to increased 111In-anti-γH2AX-TAT 

uptake (Spearman r=0.9; p=0.042) confirmed by biodistribution assays from harvested tissue 

and SPECT-CT imaging (Cornelissen et al. 2011) confirming the fact that 111In-DTPA-anti-γH2AX-

TAT exerts its specific to tumour uptake due to increased levels of γH2AX. 

Generally, 111In-DTPA-anti-γH2AX-TAT and 111In-DTPA -mIgG-TAT biodistributions were 

comparable for normal tissues at all time points (i.e. 2, 24, 48, 72h; Table 1.4; Cornelissen et al. 

2011). This was due to the fact that 111In-anti-γH2AX-TAT Ab has a non-specific mode of cellular 

internalization, hence isotype control RIC (111In-anti-IgG-TAT), could also internalize into 

tumours, probably due to the enhanced permeability and retention (EPR) effect usually 

characterising uptake into tumours.  

Whilst ionizing events from γ-, X-photons and Auger electrons are capable of damaging 

macromolecules, the small quantities of radioactivity used in imaging procedures (as opposed 

to therapeutic doses) are not expected to cause significant cell or DNA damage. As a proof, the 

specific activity of 1MBq/μg of 111In-anti-γH2AX-TAT used for in vivo imaging has not been 

shown to decrease cell survival when used in vitro on MDA-MB-468 breast cancer cell line 

(Cornelissen et al. 2011). 

111In -anti- γH2AX-Tat as a radiosensitizer 

Cornelissen et al. (2012) have demonstrated that 111In-anti-γH2AX-TAT RIC can also be used as a 

radiosensitizer when labelled with high-enough specific activities (>3MBq/μg), taking advantage 

of the Auger electron emission for the amplification of the DNA damage signal caused by DNA 
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damaging agents (Kersemans and Cornelissen 2010). In their study, they showed that IR (4Gy or 

10Gy) or bleomycin (20μg/mL) treatment of two breast cancer cell lines (MDA-MB-468 and 231-

H2N), used to induce γH2AX formation, when followed by treatment with 6MBq/μg of 111In-anti-

γH2AX-TAT, resulted in 2-fold increase in γH2AX foci number and 10-fold increase in the 

cytotoxic effect of these DNA damaging agents, whereas combination treatment with the 

isotype control RIC had no effect on cell survival. Hence, the specific activity of 111In-anti-γH2AX-

TAT was a critical variable in the amplification of DNA damaging agent-induced cytotoxicity.  

The damage caused by high specific activities of 111In-anti-γH2AX-TAT was the result of 

ionization events from 111In decay which generated oxidised purines whose number increased in 

combination treatment with IR. In MDA-MB-468 cells, the combination of 4Gy IR with 111In-anti-

γH2AX-TAT increased purine oxidisation but did not generate more pyrimidine oxidisation or 

AP-sites compared to control. Furthermore, 111In-anti-γH2AX-TAT alone could also generate 

oxidised purines compared to control though fewer than when combined with IR (Cornelissen et 

al. 2012). In contrast, 111In-mIgG-TAT alone or IR combined could not significantly increase the 

number of oxidised purines or pyrimidine, or AP-sites (Cornelissen et al. 2012). 

γH2AX foci spatial distribution in 231-H2N cells has been also studied by Cornelissen et al. 

(2012). Specifically, γH2AX foci grouping tendency was estimated by spatial descriptive statistics 

using Ripley’s-K value (Kiskowski et al. 2009). This demonstrated that combination treatment of 

a genotoxic agent with 111In-anti-γH2AX-TAT, but not the isotype control, generated γH2AX foci 

in groups with ~1 μm average diameter, independent of the foci number/cell, compared to 

genotoxic agent alone (Cornelissen et al. 2012). Therefore, γH2AX foci clustering in combination 

treatment with 111In-anti-γH2AX-TAT was a result of the ionization events from the specific 

antibody rather than due to the increased foci number/ cell, which provides additional evidence 

of the amplification of already existing DSB. 

The in vivo results were even more promising showing that the combination of the RIC along 

with 10Gy IR in breast cancer xenograft-bearing mice resulted in a 20-fold decrease in tumour 

growth (Cornelissen et al. 2012). It was demonstrated that tumour growth rate was significantly 

reduced following just one dose of 10 Gy IR combined with 111In-anti-γH2AX-TAT (10μg/mouse, 

6MBq/μg) compared to untreated mice or each treatment alone. Non-radiolabelled anti-γH2AX-

TAT or 111In-mIgG-TAT combined with IR did not significantly decrease tumour growth rate 

compared to IR alone. Moreover, all treatments were proven to be well tolerated by the mice 

with no significant weight loss (Cornelissen et al. 2012). 
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Figure 1.10 γH2AX induction within tumours by IR is correlated to the percentage of 
uptaken 111In-anti-γH2AX-TAT. 

MDA-MB-468 tumours (circled) of xenograft bearing mice were sham-irradiated or 

irradiated with 1-4Gy 1h before 111In-DTPA -anti-γH2AX-TAT injected (10 μg, 1 

MBq/μg). (A) SPECT-CT transverse images through the tumour are shown. (B) 

Radioactivity uptake within the tumour is expressed as %ID/g or as tumour to muscle 

ratio (Cornelissen et al. 2011). 
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Table 1.5 Biodistribution data comparing 111In-DTPA-anti-γH2AX-TAT and 111In-DTPA -mIgG-TAT 
(Cornelissen et al. 2011) 

 Control Bleomycin IR (10 Gy) 

%ID/g 111In-

mIgG-Tat 

111In-anti-

γH2AX-Tat 

111In-

mIgG-Tat 

111In-anti-

γH2AX-Tat 

111In-mIgG-

Tat 

111In-anti-

γH2AX-Tat 

Blood 3.61 ± 0.30 3.04 ± 0.77 3.29 ± 0.32 3.19 ± 0.26 3.43 ± 0.77 3.69 ± 0.52 

Tumour 2.62 ± 1.02 3.58 ± 0.41 2.39 ± 1.07 6.86 ± 0.71 2.27 ± 0.42 2.56 ± 0.36 

Muscle 0.47 ± 0.23 0.41 ± 0.08 0.53 ± 0.02 0.30 ± 0.27 0.48 ± 0.14 0.37 ± 0.03 

Stomach 0.27 ± 0.07 0.35 ± 0.04 0.26 ± 0.13 0.39 ± 0.24 0.28 ± 0.08 0.44 ± 0.08 

Small 

Intestine 0.80 ± 0.05 0.84 ± 0.03 0.78 ± 0.06 0.92 ± 0.24 0.72 ± 0.04 0.79 ± 0.12 

Large 

Intestine 0.54 ± 0.02 0.64 ± 0.14 0.52 ± 0.02 0.68 ± 0.13 0.52 ± 0.07 0.59 ± 0.05 

Spleen 1.05 ± 0.07 1.03 ± 0.51 1.08 ± 0.07 2.05 ± 0.15 0.98 ± 0.45 2.02 ± 0.18 

Liver 4.24 ± 0.55 4.10 ± 0.33 4.00 ± 0.75 4.20 ± 0.52 4.50 ± 0.58 4.60 ± 0.64 

Kidneys 5.19 ± 0.61 4.72 ± 0.59 5.48 ± 0.28 4.89 ± 0.21 5.00 ± 1.18 4.88 ± 0.32 

Heart 1.71 ± 0.24 1.38 ± 0.23 1.69 ± 0.69 1.43 ± 0.21 1.64 ± 0.18 1.38 ± 0.07 

Lungs 2.21 ± 0.08 1.85 ± 0.25 1.95 ± 0.22 1.93 ± 0.20 2.22 ± 0.37 2.00 ± 0.25 
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1.5 Aims and objectives 

Based on the anti-tumour effects of 111In-anti-γH2AX-TAT radioimmunoconjugate (RIC) in 

amplifying the effects of DNA damaging agents, the hypothesis of this project was that the DNA 

damage caused endogenously after Apc loss and excess Wnt signaling activation will be enough 

to attract 111In-anti-γH2AX-TAT RIC. The usage of high enough specific activity 111In-anti-γH2AX-

TAT RIC could potentially amplify endogenous DNA damage, thereby increasing apoptosis and 

ultimately reducing tumourigenesis. 

Key aims of this project were, first, to quantify γH2AX levels in Apc-deficient intestinal dysplasia 

and tumours of transgenic mouse models, as well as in ex vivo intestinal organoids derived from 

these mouse models and human tumours. Second, this project aimed to use low specific activity 

RIC treatment to image intestinal lesions in vivo, and subsequently assess its effects on DNA 

damage, cell death and proliferation. Although initially being part of the project aims, the 

investigation of the 111In-anti-γH2AX-TAT RIC potential in amplifying Apc-deficiency-associated 

DNA damage has not been possible. 
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 Materials and Methods 

2.1 Experimental animals 

All animal procedures and experiments were conducted in accordance with the UK Animals 

(Scientific Procedures) Act 1986, under the authority of Home Office project and personal 

licenses following local ethical review and in accordance with the ARRIVE guidelines. 

2.1.1 Transgenic constructs and animals 

Mouse models with a Cre-LoxP conditional allele of the Apc gene were used. Mice carrying LoxP 

(locus of cross over in P1 bacteriophages) sequences in the introns flanking exon 14 of APC 

(‘flanked by LoxP sites’ or floxed; abbreviated fl; Shibata et al. 1997) were crossed with mice 

that express Cre (causes recombination) recombinase under a tissue specific promoter. The 

initiation of transcription of the promoter triggers the expression of the Cre recombinase and 

the excision of the flanked region of DNA (Kühn and Torres 2002). The VilCreERApcfl/fl model 

expresses CreER, a fusion protein of Cre recombinase connected to a mutated ligand-binding 

domain of human estrogen receptor (ER) under the Villin (Vil) promoter which is expressed in 

the mouse intestinal enterocytes (Crosnier et al. 2006; El Marjou et al. 2004). Similarly, the 

Lgr5CreERApcfl/fl model expresses CreER under the control of the Lgr5 promoter, which is 

expressed in intestinal stem cells (Barker et al. 2007). ER fusion proteins are normally present in 

the cytoplasm where they bind to chaperones (Hayashi and McMahon 2002). Tamoxifen, an 

antagonist of estrogen, binds the ER fusion protein and disrupts its interactions with 

chaperones allowing CreER to translocate into the nucleus, where the modified Cre recombinase 

can recombine the floxed gene (Chen et al. 2007; Hayashi and McMahon 2002). 

2.1.2 Experimental procedures 

All experimental procedures were carried out on mice that were at least 10-weeks old. 

Administration of solutions was either via intraperitoneal injection using 1 ml syringe (BD 

Plastipak) and 25G needle (BD Microlance 3), or via oral gavage, using 1 ml syringe (BD 

Plastipak) and bulb tipped gastric gavage needle (Harvard apparatus). 

Injection of Tamoxifen 

Mice carrying the VilCreER or Lgr5CreER transgene were administrated Tamoxifen to induce Cre 

recombination. Tamoxifen powder (Sigma-Aldrich) was mixed in corn oil (Sigma-Aldrich) at a 

concentration of 10 mg/ml by heating up to 80oC while being stirred continuously. Aliquots 

were stored at -20oC. Before each procedure, aliquots were thawed and kept warm at 80oC until 

prior to the administration. The remaining tamoxifen solution was re-frozen, but thawed out for 

up to three times only, in order to avoid tamoxifen degradation. The induction of VillinCreER 
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mice was carried out by three intraperitoneal administrations of 80 mg of tamoxifen per kg of 

mice, at least 3h apart (but in a single day). Lgr5CreER mice were orally gavaged with tamoxifen 

once daily for four days (80mg/kg).   

2.1.3 Polymerase Chain Reaction (PCR) genotyping 

Genotyping of the animals was performed by PCR using extracted DNA from ear biopsies, both 

at weaning and also confirmed at death. PCR primers were selected from either previous 

publications or designed through Primer3 software 

(http://fokker.wi.mit.edu/primer3/input.htm). Primer specificity was confirmed by Basic Local 

Alignment Search Tool (BLAST) software against the Ensembl sequence database 

(http://www.ensembl.org/Multi/Tools/Blast) before being synthesised by Sigma Genosys. 

DNA extraction from ear biopsies 

Ear biopsies were stored at -20oC in 1.5 ml eppendorf tube until processed. Tissue digestion was 

facilitated by incubation in 250 μl of Cell Lysis Buffer (5 Prime; ThermoFisher Scientific) including 

0.4 mg/ml Proteinase K (Roche) overnight at 37oC with agitation. Addition of 100 μl of Protein 

Precipitation Solution (5 Prime; ThermoFisher Scientific) and subsequent mixing by inversion, 

precipitated the protein. Following centrifugation at 13000 rcf for 10 min, the resulting 

supernatant, containing the DNA, was transferred to a 1.5 ml eppendorf tube containing 250 μl 

of isopropanol. The solution was mixed and centrifuged at 13000 rcf for 15 min to pellet the 

DNA. Supernatant was discarded carefully, before pellets were air dried for 1h and dissolved in 

PCR-grade water (Sigma-Aldrich). 

Generic PCR genotyping protocol 

PCR reactions were mixed in thin-walled 0.2 ml strip tubes or thin-wall 96-well plates (Alpha 

Laboratories) using a multichannel pipette with filtered pipette tips. In individual wells, 2.5 μl of 

either PCR-grade water (Sigma-Aldrich) or purified genomic DNA from an ear biopsy were added 

to 47.5 μl of prepared master-mix (seeTable 2.1) The 96-well plates were then covered with 

aluminium foil seals (StarLab) or the caps of the strip tubes were closed, always ensuring that 

there were no bubbles in the mixture. The reactions were run using GS1 (G-Storm) thermal 

cycler using the conditions shown in Table 2.2. Primer sequences and sizes for each transgene 

and LoxP-targeted Apc Allele amplification are outlined in Table 2.3 and examples of the 

genotyping results are depicted in Figure 2.1. Cre and LacZ transgenes were run together in a 

single PCR reaction. Note that the Lgr5-Cre transgene was run using 2 reverse primers and one 

forward primer to identify both WT and mutant bands simultaneously.   

http://fokker.wi.mit.edu/primer3/input.htm
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2.1.3.1  Visualization of PCR products 

PCR products were separated by agarose gel electrophoresis. 5 μl of DNA loading dye (50% 

Glycerol (Sigma-Aldrich), 50% distilled water (dH2O), 0.1% [w/v] Bromophenol Blue (Sigma-

Aldrich)) were added to the PCR products and mixed by pipetting. The samples, as well as DNA 

ladder (Promega) were loaded onto 2% agarose gel (4 g agarose (Eurogentech), 200 ml 1X Tris 

Borate-EDTA (TBE) buffer (National Diagnostics), 10 μl of 10 mg/ml ethidium bromide (Sigma) or 

10 μl Safeview (NBS Biologicals)). Gels were run in 1X TBE at 120V for approximately 30min and 

then visualised under UV light using GelDoc UV Transilluminator (BioRad). GelDoc software 

(BioRad) was used to capture the images. 

 

Table 2.1 Genotyping PCR reaction mixture 

 

 

 

 Cre ApcLoxP Lgr5-Cre Villin-Cre 

PCR reaction components:     

DNA extract 2.5 μl 2.5 μl 2.5 μl 2.5 μl 

Master Mix:     

PCR-grade H2O (Sigma-

Aldrich) 

31.7 μl 31.7 μl 31.6 μl 31.7 μl 

GOTaq PCR Buffer (5X, 

Promega) 

10 μl 10 μl 10 μl 10 μl 

Magnesium Cloride (25 mM, 

Promega) 

5 μl 5 μl 5 μl 5 μl 

dNTPs (25 mM, 

ThermoFisher Scientific) 

0.4 μl 0.4 μl 0.4 μl 0.4 μl 

Forward Primer (100 mM,  

Genosys; Sigma-Aldrich) 

0.1 μl 0.1 μl 2 x 0.1 μl 0.1 μl 

Reverse Primer (100 mM,  

Genosys; Sigma-Aldrich) 

0.1 μl 0.1 μl 1 x 0.1 μl 0.1 μl 

Taq Polymerase 0.2 μl 0.2 μl 0.2 μl 0.2 μl 

Taq Polymerase Brand GOTaq DreamTaq DreamTaq GOTaq 

Total Reaction Volume 50 μl 50 μl 50 μl 50 μl 
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Table 2.2 PCR thermal cycler conditions 

 

Table 2.3 Primer sequences and band sizes 

 

 

 

 

 

 

Cycling conditions (Time; 

Temperature) 

Cre ApcLoxP Lgr5-Cre Villin-Cre 

Initial denaturation 3 min; 95 °C 3 min; 95 °C 3 min ; 95 °C 2.5 min ; 95 

°C 

Cycle number 30 40 40 35 

Step 1 (Denaturation) 30 sec; 94 °C 30 sec; 95 °C 30 sec; 94 °C 30 sec; 94 °C 

Step 2 (Annealing) 30 sec; 55 °C 30 sec; 60 °C 30 sec; 58 °C 30 sec; 62 °C 

Step 3 (Elongation) 1 min; 72 °C 1 min; 72 °C 30 min; 72 °C 1 min; 72 °C 

Final Extension 5 min; 72 °C 5 min; 72 °C 5 min; 72 °C 5 min; 72 °C 

Hold ∞; 10 °C ∞; 10 °C ∞; 10 °C ∞; 10 °C 

Name  Forward primer Reverse primer Product size 

Cre  TGA CCG TAC ACC AAA ATT TG ATT GCC CCT GTT TCA CTA 

TC 

1000 bp 

ApcLoxP GTT CTG TAT CAT GGA AAG 

ATA GGT GGT C 

CAC TCA AAA CGC TTT TGA 

GGG TTG ATT C 

WT at 226 bp;  

Targeted at 314 

bp 

Lgr5-CreER CTG CTC TCT GCT CCC AGT CT ATA CCC CAT CCC TTT TGA 

GC 

WT at 298bp; 

 

GAA CTT CAG GGT CAG CTT 

GC 

Targeted at 174bp 

Villin-CreER CAA GCC TGG CTC GAC GGC C CGC GAA CAT CTT CAG GTT 

CT 

Targeted at 220bp 
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Figure 2.1 Genotyping band sizes 
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2.2 Tissue harvesting and processing 

Experimental animals were culled by cervical dislocation according to schedule-1 of the Animals 

(Scientific Procedures) Act 1986. Tissue was immediately harvested after humane killing of an 

animal to avoid degradation of RNA and protein or alteration of the phosphorylation status of 

phospho-proteins.   

2.2.1 Tissue harvesting 

Dissections were carried out using a micro-dissection kit in a designated area. The abdominal 

fur was dampened with 70% ethanol and the skin together with the peritoneal muscle wall were 

cut open using one incision at the bottom of the ventral mid-line and two longitudinal incisions 

stemming from this incision towards the upper abdominal sides. Kidney, spleen and a small part 

of liver were removed before disconnecting the small intestine from the stomach at the pyloric 

junction to the beginning of the caecum. The large intestine including the anus was separated 

from caecum. The contents of both small and large intestines were flushed out using a syringe 

(BD Plastipak) filled up with cold tap water, unless otherwise specified. Both small and large 

intestines were opened longitudinally on a flat surface exposing the intestinal epithelium (Figure 

2.2). A small piece (0.5 – 2.0 cm) of small and large intestine and dissected tumours were placed 

in separate eppendorf tubes and immediately snap-frozen on dry ice to be stored at -80°C until 

processed for RNA or protein extraction. Using forceps, the side from the pylorus junction of the 

small intestine was rolled inside towards the end of small intestine; similarly, the large intestine 

closer to caecum was rolled inside towards the anus. The gut-rolls were pierced through by a 

23G syringe needle (BD Microlance), to hold the required shape for fixing. 

 

Figure 2.2 Longitudinal incision of the small intestine. 

2.2.2 Tissue fixation 

The dissected tissues for immunohistochemical analysis were immersed in 10% neutral buffered 

formalin (Sigma-Aldrich) and quick-fixed for 24 h at 4oC. 24h later tissues were either paraffin 

embedded or kept in 70% ethanol at 4oC until processed.  
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2.2.3 Tissue processing for light microscopy 

Processing of fixed-tissue 

Fixed-tissues were transferred to a cassette (ThermoFisher Scientific) and passed through an 

automated processor (Leica TP1050) which dehydrated the tissues by immersing them into 

increasing alcohol gradients (70% ethanol for 1 h, 95% ethanol for 1 h, 2 x 100% ethanol for 1.5 

h each, 100% ethanol for 2 h) and 2 x 2 h soaking in xylene. Subsequently, liquid paraffin 

covered the tissues 3 x for 1 h each. 

Sectioning of paraffin embedded tissue 

A microtome (Leica RM2135) was used to cut 5 μm sections of the paraffin embedded tissue, 

which were then placed on Poly-L-Lysine (PLL) coated slides to be incubated at 58°C for 24 h. 

The sections were then stained by Haemotoxylin and Eosin (H&E; see section 2.3) or by 

immunohistochemistry (see section 2.4). 

2.3 Histological analysis 

2.3.1 Haematoxylin and eosin staining of tissue sections 

Paraffin embedded fixed tissue on PLL slides was dewaxed and rehydrated (section 2.4.1) 

before immersion in Mayer’s Haemalum (R.A. Lamb; ThermoFisher Scientific) stain for 5 min. 

The slides were then washed for 5 min under running tap water, before staining in 1% Eosin 

solution for 2 min (R.A. Lamb; ThermoFisher Scientific) and briefly washed in water for 15 sec. 

2.3.2 Quantitative histological analysis of H&E sections 

Images of the stained sections were taken with a Leica MC170-HD camera, attached to an 

Olympus BX41 light microscope, using Leica software. Otherwise, a ZEISS slide-scanner was used 

for automatic imaging through ZEN software under 20 x magnification. 

Scoring of crypt length 

All epithelial cells from the base of the crypt until the crypt-villus junction (isthmus) were 

counted. The average number of crypt cells per mouse was quantified after scoring 50 half-

crypts from each section.  

2.4 Immunohistochemical staining (IHC) 

2.4.1 Dewaxing and rehydrating tissue sections 

Paraffin embedded fixed tissue sections were dewaxed twice for 10 min in xylene 

(ThermoFisher Scientific). Subsequently, the sections were rehydrated by immersing in a 

gradient of decreasing ethanol (ThermoFisher Scientific) concentration (2 x 3 min in 100% 
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ethanol, 1 x 3 min in 95% ethanol, 1 x 3 min in 70% ethanol). The slides were then transferred in 

dH2O before the antigen retrieval process. 

2.4.2 Antigen retrieval  

The antigen retrieval step was used to partially revers the formalin-mediated cross-linking of the 

amino acids, which changes the conformation of, or masks, the epitopes. This step involved 

heating the slides in 10 mM sodium citrate buffer, pH 6.0, (Sigma-Aldrich) unless otherwise 

specified (Table 2.4). The heating procedure was either performed in a water bath or using a 

pressure cooker. The water bath procedure involved immersing the slides for 20 min in citrate 

buffer which had been gradually heated up to 99.9 oC in a Coplin jar (R.A. Lamb; ThermoFisher 

Scientific). For the pressure cooker method, citrate buffer, was heated up for 10 min in a 

pressure cooker inside a microwave at full power (1000 W). The slides were placed in the citrate 

buffer and further heat was applied at full power for approximately 5min, so that maximum 

pressure was reached inside the cooker. Subsequently, the power of the microwave was 

lowered to 400W to keep heating the citrate buffer at high pressure for 15 min. Slides were left 

to cool to room temperature (rt) for 20-30 min, before a brief wash in dH2O and 3 x 5 min 

washes in either 1X PBS or 1X TBS with 0.1% (v/v) Tween-20 (Sigma-Aldrich; Table 2.4). 

2.4.3 Blocking endogenous peroxidase activity 

To avoid non-specific staining due to endogenous peroxidase activity, the sections were 

immersed in hydrogen peroxide solution (H2O2) (Sigma-Aldrich) inside a Coplin jar (R.A. Lamb; 

ThermoFisher Scientific). Table 2.5 shows the incubation times of the different H2O2 

concentrations used, after dilution of the 30% (v/v) H2O2 in dH2O or PBS, for each primary 

antibody used. H2O2 was then removed and washing buffer added to wash the slides for 3 x 5 

min. 

2.4.4 Blocking non-specific antibody binding 

Non-specific binding of antibodies on tissue epitopes with neutral side-chain amino acids via 

hydrophobic interactions could lead to unwanted background (unspecific) staining. Normal 

serum (DAKO; Agilent) is used to minimise the non-specific binding of antibodies due to 

hydrophobic interactions. The serum used was from the same species as those in which the 

secondary antibody was developed. After the blocking step for endogenous peroxidase activity, 

sections were circled with a hydrophobic pen (DAKO; Agilent) before they were placed in a 

humidified chamber. 70 μl of normal serum diluted in washing buffer (blocking serum) was 

added to each section. Slides were covered with parafilm to ensure hydration of the sections 

and equal distribution of the buffer throughout the section. The incubation time and normal 

serum dilutions for each primary antibody used are indicated in Table 2.5. 
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2.4.5 Primary Antibody 

Parafilm was removed after incubation of sections with normal serum buffer. 70 μl of primary 

antibody diluted in blocking serum, as indicated in Table 2.5 were added on each section and 

subsequently covered with a new piece of parafilm to be incubated for a period of time, as 

designated in Table 2.5. The slides were subsequently washed 3 x 5 min in washing buffer in a 

Coplin jar (R.A. Lamb; ThermoFisher Scientific). 

2.4.6 Secondary Antibody 

The secondary antibody was chosen to recognize antibodies made from the species in which the 

primary antibody was produced in. Slides were placed back in the humidified chamber and 

sections were covered with 70 μl of secondary antibody and subsequently covered with 

parafilm to be incubated as per Table 2.5. The slides were washed 3 x 5 min in washing buffer in 

a Coplin jar. When a signal amplification step was required a biotinylated secondary antibody 

(Vector laboratories) was used. Otherwise, a Horseradish peroxidase (HRP) conjugated 

secondary antibody (DAKO; Agilent), was added. Table 2.5 shows the details of the type of 

secondary antibody used and the incubation time. 

2.4.7 Signal amplification  

A signal amplification step was included for certain primary antibodies, listed in Table 2.5, 

where the HRP-conjugated secondary antibodies were not suitable. As indicated by 

manufacturer’s instructions, the Avidin-Biotin Complex reagent (Vectastain ABC kit, Vector 

laboratories) was prepared 30 min before application. In a humidified chamber, 70 μl of the 

reagent were applied on sections and the slides were covered with parafilm. The slides were 

washed 3 x 5 min in washing buffer in a Coplin jar. 

2.4.8 Signal visualisation using DAB  

The presence of a biomarker was detected using the addition of 3,3'-diaminobenzidine (DAB) 

(Envision+ Kit, DAKO; Agilent). The peroxidase activity of the HRP-conjugated secondary 

antibody or of the HRP-Avidin-Biotin complex on the secondary antibody oxidises DAB to 

generate an insoluble brown precipitate. Diluted DAB (made in the ratio 1 drop of chromogen in 

1 ml of DAB substrate) was added to the slides for 5-10 min. Slides were then washed for 5 min 

in dH2O. 

2.4.9 Counterstaining, dehydration and tissue mounting  

Slides were placed in a slide-rack and submerged in Mayers Haemalum (R.A. Lamb; 

ThermoFisher Scientific) for 30 sec to 1 min. After counterstaining, the slides were washed in 

running tap water for 3 min. The slides were then dehydrated in an increasing gradient of 

ethanol (ThermoFisher Scientific) (1 x 3 min 70%, 1 x 3 min 95%, 2 x 3 min 100%) and finally 2 x 
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5 min in xylene (ThermoFisher Scientific).  Two drops of DPX mounting solution (R.A. Lamb; 

ThermoFisher Scientific) were placed on each slide and a coverslip (ThermoFisher Scientific) was 

applied. 

 

Table 2.4 Washing buffer stock solutions 

Buffer Grams of solute/ 

1L dH2O 

Chemical Substance Manufacturer 

10X PBS (pH 7.4) 

14.4 
Sodium Phosphate Dibasic 

anhydride (Na2HPO4) 

Sigma-Aldrich 

80 Sodium Chloride (NaCl) Sigma-Aldrich 

2 Potassium Chloride (KCl) Sigma-Aldrich 

2.4 
Potassium Phosphate 

Monobasic (KH2PO4) 

Sigma-Aldrich 

10X TBS (pH 7.6) 
8.8 

Tris base NH2C(CH2OH)3 ThermoFisher 

Scientific 

88 Sodium Chloride (NaCl) Sigma-Aldrich 
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Table 2.5 Antibody-specific conditions for immunohistochemical staining 

Primary 
antibody  
(species) 

Manufacturer  Antigen retrieval  Peroxidas
e Block 

Serum Block Wash 
Buffer  

Primary 
antibody 
incubation  

Secondary 
antibody  

Signal 
amplification  

Anti-β-
catenin 
(mouse) 

BD 
Transduction 
Labs #610154 

Citrate buffer, 
Water bath, 20 

min 

1.5% 
H2O2 in 
dH2O, 20 
min, RT 

10% Normal 
Rabbit Serum 

(NRS) in 
TBS/T, 45 
min, RT 

3 x 5 
min 

TBS/T 

1:200 in 10% 
NRS, o/n, 4°C 

Envision + HRP-
conjugated anti-
mouse (DAKO; 

Agilent), 30 min, 
RT 

N/A 

Anti-Cleaved 
Caspase-3 

(rabbit) 

Cell Signalling 
Technology 

#9661 

Citrate buffer, 
Pressure cooker-
microwave, 15 

min 

3% H2O2 
in dH2O, 
10 min, 

RT; 

5% Normal 
Goat Serum 

(NGS) in 
PBS/T, 1h, RT 

3 x 5 
min 

TBS/T 

1:200 in 5% 
NGS, 2 days, 

4°C 

Biotinylated 
anti-rabbit 

(Vector 
Laboratories), 

1:200 in 5% 
NGS, 30 min, RT 

ABC Kit (Vector  
Laboratories) 

Anti-γH2AX 

(mouse) 

Millipore  

#05-636 

Citrate buffer, 

Pressure cooker-

microwave, 15 

min 

1.5% 

H2O2 in 

PBS, 15 

min, RT 

5% Normal 

Goat Serum 

(NGS) in 

PBS/T, 1h, RT 

3 x 5 

min 

PBS/T 

1:2000 in 5% 

NGS, o/n, 

4°C 

Biotinylated 

anti-mouse 

(Vector  

Laboratories), 

1:200 in 5% 

NGS, 30 min, RT 

ABC Kit (Vector  

Laboratories) 

Anti-Ki67 

(rabbit) 

Abcam 

#16667 

Citrate buffer, 

Pressure cooker-

microwave, 15 

min 

0.5% 

H2O2 in  

dH2O , 20 

min, RT 

20% Normal 

Goat Serum 

(NGS) in 

TBS/T, 1h, RT 

3 x 5 

min 

TBS/T 

1:50 in 20% 

NGS,  o/n, 

4°C 

Biotinylated 

anti-rabbit 

(Vector 

Laboratories), 

ABC Kit (Vector  

Laboratories) 
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1:200 in 5% 

NGS, 30 min, RT 

Anti-pS1981-

ATM 

(mouse) 

Rockland 

#200-301-500 

Citrate buffer, 

Solution 1.96mM 

citric acid and 

9.35mM sodium 

citrate in 

10% 

H2O2  in 

dH2O, 10 

min, RT; 

5% Normal 

Goat Serum 

(NGS) in 

PBS/T, 1h, RT 

3 x 5 

min PBS 

1:500 in 5% 

NGS, o/n, 

4°C 

Envision + HRP-

conjugated anti-

mouse (DAKO; 

Agilent), 30 min, 

RT 

N/A 
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2.4.10 Quantification of histological traits by the use of cell specific stains 

Stainings were quantified from the bottom of the crypt to the crypt-villus border either 

manually or automatically (see section 2.9). Per cohort, the average of the mean number of 

positive cells per mouse within a cohort was calculated. 

γH2AX staining was used as a DNA damage marker and both the overall number and staining 

intensity (low, medium or high) of γH2AX staining were quantified. Staining intensity was 

considered to be indicative of the DNA damage level. Quantification of γH2AX staining in 

Lgr5CreERApcfl/fl lesions was performed as in Figure 2.3. DSBs in dividing cells were identified 

using RAD51 staining. Cells with nuclear RAD51 foci (RAD51 positive or RAD51+) were 

quantified. Phospho-Serine1981 (pSer1981) ATM nuclear staining was indicative of DSB 

formation. 

Cleaved Caspase-3 staining was used to mark apoptotic cells and localization of beta-catenin 

staining was used to mark Wnt signalling activity. Nuclear β-catenin staining was considered to 

indicate canonical Wnt signalling pathway activation. Ki67 staining was used as a marker of 

proliferation. 
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Figure 2.3 Example of γH2AX quantification in the Lgr5CreERApcfl/fl lesions. 

IHC staining for γH2AX on paraffin sections of 24h 10% formalin fixed intestinal rolls of 50 days p.i. Lgr5CreERApcfl/fl. Irregular shapes within the lesion (encircled) 

shows neoplastic epithelial cells. Arrows indicate γH2AX positive cells. 
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2.5 Radioimmunoconjugate (RIC) treatment 

DNA double strand breaks (DSB) were targeted in vivo by 111In-DTPA-anti-γH2AX-TATprobes. All 

procedures involving radioactive material were performed in designated areas controlled for 

radioisotope usage and storage and were conducted by our collaborator Dr. James Knight in the 

group of Dr. Bart Cornelissen at Oxford University. 

2.5.1 Synthesis of RIC 

111In-DTPA-anti-γH2AX-TAT and 111In-DTPA-anti-IgG-TAT probes were synthesised as described 

by Cornelissen et al. (2011). The γH2AX antibody purchased from Merck cross-reacts with 

mouse γH2AX and is specific to a synthetic phospho-peptide which includes the Human H2AX 

Ser139 phosphorylation site. γH2AX antibody (Merck Millipore), or mouse serum IgG (Sigma-

Aldrich) were dissolved in 0.1M 2-(N-morpholino) ethanesulfonic acid. TAT-peptide 

(GRKKRRQRRRPPQGYG) was incorporated by N-(3-dimethylaminopropyl)-N’-ethylcabodiimide/ 

N-hydroxysuccinimide (EDC/NHS; Pierce Biotechnology) activation. Incubation of 5-fold molar 

excess of TAT for 2 h at rt allowed TAT incorporation. Sephadex G50 gel filtration columns (SEC; 

Sigma-Aldrich) were used to remove unconjugated TAT resulting in 5:1 ratio of Tat:IgG. 

Incubation of anti-γH2AX-TAT with isocyanatobenzyl-DTPA (p-SCN-Bn-DTPA) (Macrocyclics), an 

activated metal ion chelator, formed DTPA-anti-γH2AX-TAT. Unconjugated p-SCN-Bn-DTPA was 

removed by G50 gel SEC. An appropriate volume of 111In chloride (111InCl3) was added to Bn-

DTPA-anti-γH2AX-TAT for 1 h at rt to form 111In-DTPA-anti-γH2AX-TAT of 1MBq/μg specific 

activity (e.g 20 MBq of 111InCl3 in 20 μg of antibody).  

2.5.2 Assessing RIC purity 

RIC purity was assessed by instant thin layer chromatography (iTLC). On one side of each iTLC 

strip (Agilent) a 12 mm spot was drawn by pencil. As control, 1MBq of 111InCl3 was dissolved in 

0.1M citrate buffer (pH 5.5). 2 μl of reaction mixture or control were placed on each iTLC strip 

spot and allowed to dry. iTLC strips were placed in 50ml Falcon tubes (Corning) with 750 μl of 

0.1M citrate buffer (pH 5.5) so that citrate buffer was absorbed up to 1-2cm from the top. Strips 

were removed, allowed to dry and then wrapped with cling film to prevent contamination. 

Strips were placed in an autoradiography cassette and image plane (IP) film (Kodak), which had 

been previously placed in a light box for 5 min, was placed on top. Film was exposed to iTLC 

strips for 2 min. IP film was placed on the Cyclone phosphor imager, which is covered with 

photostimulable phosphor crystals (BaFBr:Eu2+) of a europium (Eu) -activated barium 

fluorohalide compound, to determine radiochemical purity (Van Kirk et al. 2001). The 

radioactivity from a sample are able to eject Eu2+ electrons converting them into Eu3+ which 

become traped in bromine crystal vacancies. Light exposure of the crystals reverts the 
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excitation event allowing Eu3+ to return to its ground state by releasing light. Intensity of the 

light emission is detected quantitatively and spatially. The signal is digitally converted into a 

histogram of light units and migrating distance. The amount of detected signal (hence 

radioactivity) is proportional to the radiolabelled sample and different sample components have 

differential distribution when carried by liquid citrate buffer. Thus, different peaks indicate 

different radioactive conjugates or free radioisotopes.  Therefore, if RIC purity was lower than 

95% then the reaction mixture was run through G50 gel SEC to achieve >95% radiochemical 

purity. RIC was eluted with an appropriate volume of 1X PBS (Gibco) so that each mouse could 

receive 5MBq in ~100 μl (maximum 200 μl allowed injected volume). 

2.5.3 Administration of RIC 

All experimental procedures were carried out on mice of at least 6 weeks of age. Mice were 

restrained (Harvard apparatus) and their tails placed in warm (30-35 ºC) water for 2 min to 

dilate the tail veins for easier solution administration. RIC administration was conducted via 

intravenous tail injection using 1 ml syringe (BD Plastipak) and 25G needle (BD Microlance 3).  

2.5.4 SPECT-CT (Single Photon Emission Computed Tomography - Computed 

Tomography) in vivo imaging. 

24 h post RIC administration, mice were anaesthetised with 5% isoflurane (Piramal) through an 

anaesthetic machine (Harvard apparatus). Mice were then transferred into the scanner. To 

maintain the unconscious state of the animals, 2.5 – 3.5% isoflurane was provided to each 

mouse while a heat pad maintained their body temperature at 37oC. In vivo imaging of RIC 

localization in the VilCreER Apcfl/fl mice was carried out by nanoScan SPECT-CT preclinical scanner 

(Mediso). Nucline (Mediso) software was used for the acquisition of the images. Due to 

scheduled replacement of the imaging instrument, Lgr5CreER Apcfl/fl mice were imaged via 

VECTor-CT SPECT/PET-CT preclinical scanner (MILabs) and pmod (PMOD Technologies LLC) 

software was used for the imaging processing. 

2.5.5 Ex vivo Biodistribution studies   

Detailed quantification of the radioactivity in each organ was assessed by a biodistribution 

assay. Mice were euthanised, using a schedule 1 protocol, immediately after SPECT-CT imaging. 

Each tissue (large intestine including caecum, 15 cm of proximal small intestine, distal small 

intestine, blood, heart, lung, liver, spleen, stomach, pancreas, kidney, muscle, skin and fat) was 

rinsed twice in H2O and placed on a tissue to drain excess H2O. Each tissue was weighed and 

placed in round bottom tubes (Corning) that were read by a γ-counter (Perkin Elmer). γ-counter 

data was analysed by Prism-5 (GraphPad) using 1-way ANOVA analysis. 



87 
 

2.6 Intestinal stem cell ex vivo enrichment 

2.6.1 Intestinal crypt isolation 

Small intestine was harvested as described in section 2.2.1 (Figure 2.4a) but with some protocol 

alterations. Using a syringe (BD Plastipak) filled with ice-cold HBSS (Gibco) including 1:50 

Penicillin and Streptomycin (Pen-Strep) (10 000 U/ ml) (Gibco), the contents of the intestine 

were flashed out. Subsequently, a longitudinal incision along the length of the intestine was 

made to expose the epithelial side of the intestine (Figure 2.4b). Only 15-20 cm of the proximal 

intestine including the duodenum and jejunum were further processed. Villi and mucus were 

scraped off gently using a coverslip (Fisher Brand; Figure 2.4c). The scraped intestine was cut 

into 5 mm pieces (Figure 2.4d) which were collected in 25 ml of Pen-Strep enriched HBSS 

(Gibco) and kept on ice for up to 45min.  

Processing the proximal intestinal pieces 

Samples were processed 20 - 45 min after collection under sterile conditions in a Class II 

Biological Safety cabinet (Thermo Scientific). Tube were gently inverted three times before HBSS 

was removed using a 25 ml Strippet (Costar). Tissue pieces were washed three more times using 

15 ml Pen-Strep enriched ice cold HBSS (Gibco) or until HBSS was relatively clear. After removal 

of most of the HBSS the tissue was incubated for 5 min at room temperature (rt) in 10 ml of 

8mM EDTA (Sigma) in HBSS (Gibco) kept at rt. Vigorous shaking of the tube for 1 min released 

any residual epithelial cells from villi that have not been removed by scraping and they were 

discarded. Then intestinal pieces were incubated in 10 ml of fresh 8mM EDTA (Sigma) in ice-cold 

HBSS (Gibco) for 30 min. Vigorous shaking for 1 min allowed detachment of the crypts and the 

suspension was collected in a separate 50 ml falcon tube. An equal volume of DMEM/F12 

(Gibco) with 1X Glutamax (Gibco) was added to the crypt suspension and kept on ice. 10 ml of 

HBSS were added to the tissue and vigorously shaken for 1 min to be pooled with the already 

collected suspension. The last step was repeated and the collected cryptsuspension was 

centrifuged at 650 - 700 rpm for 5 min. The supernatant was discarded as it contained mostly 

epithelial cells of the villi. Crypts were resuspended in 10 ml of DMEM/F12 (Gibco) and passed 

through a 70 μm cell strainer (Falcon).  
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a 

b 

c 

d 

Figure 2.4 The Isolation and process of the small intestine.  

a) The intestinal tube was flushed and b) cut longitudinally to expose the epithelium. c) Using 

a coverslip, the villi were scraped off. d) The intestine was then cut in 5mm pieces in order to 

be processed for crypt isolation. 
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Quantifying the crypt number 

Three lines of 10 μl crypt suspension were laid on a petri dish (Corning) to quantify the crypt 

number under bright field microscope (Olympus BX41) as indicated by Figure 2.5. The average 

of the crypt number from each 10 μl sample was calculated as well as the total crypt number. 

 

Figure 2.5 Crypt quantification.  

Bright field image of 10x magnification. Crypts are encircled in dashed line. Arrows show the 

presence of lymphocytes in the preparation.  

Seeding crypts 

Crypts were seeded in an extracellular protein matrix (Matrigel) to support their three-

dimensional (3D) structure. 200 - 500 crypts were seeded in 50 μl of ice-cold Matrigel in the 

middle of a well in a 24-well plate (Corning), pre-warmed at 37oC for minimum 10 min. To allow 

polymerization of Matrigel, the crypt-seeded plate was incubated at 37oC, 5% CO2 for 20 - 30 

min. 500 μl of media (see Table 2.6; detailed medium of each organoid line) was added in the 

well and incubated at 37oC, 5% CO2. Media was changed every three days. 

Expansion of organoid number 

Seven days post intestinal crypt culture or dissociated organoid culture (as described in this 

section), organoids were mechanically or enzymatically dissociated to expand their numbers.  

Mechanical organoid dissociation 

The Matrigel embedded organoids were dislodged from the bottom of the well using a 1000P 

pipette tip, resuspended in the media from the well and transferred to a 15 ml falcon tube (BD 
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Plastipak). Organoids were resuspended by pipetting up and down 100 times using a 1000P 

pipette tip and 100 times more using a 200P pipette tip. Organoids were then centrifuged at 

900 rpm at rt for 4 min. Media phase was discarded and 1 ml of HBSS (Gibco) was added to 

further dissociate the organoids by resuspending using the same pipetting protocol or until 

suspension became homogeneous. The suspension was centrifuged at 1100rpm at rt for 4 min 

to discard the media phase. Depending on how dense the culture was before passage, 

triturated organoids were seeded in up to 1:5 dilution in Matrigel.  

Enzymatic organoid dissociation into single cells. 

The media was removed and the well (of a 24-well plate) was washed with 200 μl 1X PBS 

(Gibco). PBS was removed and 300 μl of TrypLE Express (Gibco) was added. A 1000P pipette tip 

was used to detach and disperse the Matrigel and the plate was returned back to the incubator. 

6 min later, the dissociated Matrigel was further resuspended using a 1000P pipette until it 

became homogeneous. An equal volume of FBS (Gibco) was added to exhaust TrypLE’s action. 

The suspension was collected in a 15 ml falcon tube (BD Plastipak) and topped up to 5 ml with 

HBSS (Gibco). Equal volumes (100 μl) of cell suspension and Trypan blue (Gibco) were mixed 

and 10 μl of the mixture loaded at each side of a haemocytometer (Weber Scientific) to quantify 

live cell number. An appropriate volume of cell suspension was centrifuged at 1600 rpm for 5 

min and, after supernatant removal, 4000 cells per 10 μl Matrigel were seeded in each well of a 

96-well plate with glass bottom (Cellvis), pre-warmed at 37oC for at least 10 min. The plate was 

returned to the incubator (37oC, 5% CO2) for 20 - 30 min before 100 μl of media per well (see 

Table 2.6) was added. Cell cultures were incubated at 37oC with 5% CO2 and media was changed 

every three days.  

2.7 Imaging organoids by whole mount Immunofluorescence 

Organoids grown in Matrigel (section2.6) in a glass bottom 96-well plate (Cellvis) were fixed and 

stained in their wells. Images of organoids at different plane (z) levels were captured under 20 x 

magnification by confocal imaging (Zeiss LSM-710) and ZEN software. All reagents used, (see 

Table 2.7) were at rt and incubations were carried out at 37oC. 

2.7.1 Organoid fixation and immunostaining  

The organoid media was removed and wells were washed with 100 μl of 4% PFA (Sigma) in 1X 

PBS (Gibco). Organoids were incubated for 30 min in 100 μl of fresh 4% PFA, washed 3 x with 

100 μl of 100 mM Glycine (Sigma), the last wash being 10 min before it was replaced by 

blocking buffer for an o/n incubation. The next day, wells were rinsed 2 x with 100 μl of washing 

buffer followed by an o/n wash. Organoids were then incubated o/n with 100 μl of mouse anti-

γH2AX antibody (1:900 dilution; Millipore). Primary and secondary antibodies were diluted in 
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the washing buffer. After washing the wells as previously, organoids were incubated o/n with 

100 μl of AF488 conjugated anti-mouse secondary antibody (1:200 dilution; Invitrogen). Wells 

were rinsed as previously and DNA was stained by a 30 - 60 min incubation with 100 μl of 

20μg/ml DAPI (Sigma) in the washing buffer. Wells were washed 2 x before imaging. 

Table 2.6 Crypt culture medium 

Crypt culture medium 

Constituents: Company Final dilution/concentration 

Advanced DMEME/F12 Gibco 1X 

Glutamax Gibco 1:100 

1M Hepes buffer Solution Gibco 10mM 

Pen/Strep Gibco 1:100 

Gentamycin Sigma 1:500 

N2 supplement Invitrogen 1:100 

B27 supplement, retinoic acid free Invitrogen 1:50 

Fungizone Invitrogen 1:500 

Human recombinant noggin Peprotech 100ng/ml 

Human recombinant EGF Sigma  50ng/ml 

Human recombinant R-spondin 1 R & D systems 665ng/ml 

 

Table 2.7 Whole mount IF reagents 

 

  

 

 

 

 

 

 

Components Company 

100mM Glycine in 1xPBS Sigma 

IF buffer in 1xPBS:  

0.1% w/v BSA Invitrogen 

0.2% v/v TritonX-100 Sigma-Aldrich 

0.05% v/v Tween 20 Sigma-Aldrich 

IF blocking in 1xPBS:  

1% w/v BSA Invitrogen 

3% Normal Goat serum DAKO 

0.2% v/v TritonX-100 Sigma-Aldrich 

0.05% v/v Tween 20 Sigma-Aldrich 
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2.8 Cytometric analysis of extracted intestinal epithelial cells 

2.8.1 Single cell extraction from intestinal crypts 

Intestinal Crypt Isolation was performed as in section 2.6.1, without the inclusion of antibiotics, 

and all reagents and equipment were kept at 4oC, unless otherwise stated. Up to 30cm of 

intestine was processed per mouse. Intestinal crypts were isolated as per section 2.6.1. After 

discarding the supernatant, containing mostly single epithelial cells from the villi, the crypt 

pellet was further enzymatically dissociated into single cells using 3ml of TrypLE (Thermofisher 

Scientific) per 20cm harvested intestine supplemented with 0.01mM of ROCK inhibitor (Y-

27632; Sigma-Aldrich) to avoid death of the anchorage-dependent cells after their detachment 

from the surrounding extracellular matrix (anoikis). Enzymatic digestion was performed at 37oC 

for 10min with 15 sec of vigorous shaking every 2min. An equal volume of FBS was added to 

stop the enzymatic digestion. The suspension was topped up to 10 ml with HBSS and passed 

through a 40 µm cell strainer (Falcon). Cell number was determined by haemocytometer as per 

section 2.6.1 (Figure 2.6). 0.2 - 0.4 x 106cells / sample were spun down in eppendorf tubes at 

1500 rpm for 5 min. The cell pellet was washed with PBS and re-centrifuged as before. 

2.8.2 Sequential extracellular and intracellular cell staining  

The staining procedure was performed in the dark to avoid photobleaching and the cells were 

kept on ice until FACS analysis. The cell pellet was vortexed in 100 µl of staining buffer (to stain 

extracellular epitopes) and incubated for 25min.  1ml of FACS buffer was added, the sample was 

centrifuged at 500 rcf for 5 min and the supernatant was removed. The cell pellet was then 

vortexed in 200 µl of fixation buffer and incubated for 12 min. After centrifugation at 500 rcf for 

5 min the supernatant was removed and the pellet was vortexed in 200 µl of permeabilization 

buffer and incubated for 15 min (to make intracellular epitopes accessible). After 10 min 

centrifugation at 300 rcf, the cell pellet was vortexed in 1 ml of washing buffer and centrifuged 

again at 500 rcf for 5 min. The pellet was then vortexed with 100 µl of staining buffer and 

incubated in the dark for 30 min after which it was vortexed with 1ml of FACS buffer and again 

centrifuged at 500 rcf for 5min. The last step was repeated once before the cell pellet was 

vortexed with 200 µl of washing buffer. Reagents used are listed in Table 2.8. 
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Figure 2.6 Crypt enzymatic digestion into single cells.  

Enzymatically digested crypt cells were stained with Trypan blue and the percentage of viability 

was determined using a haemocytometer. After the enzymatic digestion, most crypt cells are in 

singlets or doublets.  

Table 2.8 Constituents of FACS staining 

Extracellular Staining 

Reagent Constituents 

FACS buffer 2% FBS (Gibco) in PBS (Gibco) 

Staining buffer Conjugated Antibody (Biolegend) in FACS buffer 

Intracellular Staining 

Reagent Constituents 

Fixation buffer 4% PFA (Sigma) in PBS (Gibco) or 1% PFA in PBS (Thermo Scientific) 

Permeabilization buffer 0.1% Triton (Sigma-Aldrich) with 2% BSA (Sigma) in PBS (Gibco) 

Washing buffer 0.1% Triton (Sigma-Aldrich) in PBS (Gibco) 

Staining buffer Conjugated Antibody (Biolegend) in permeabilization buffer 

FACS buffer 2% BSA (Sigma) in PBS (Gibco) 
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2.8.3 FACS analysis 

Cells were passed through a 40µm strainer (Falcon) into 5ml Falcon tubes (BD Falcon) and kept 

on ice until FACS analysis on the BD LSRFortessa Cell Analyzer. The isotype and antigen-specific 

stained samples were analysed to set the voltages and determine the cut-off for positive 

staining. Debris was excluded from gates on the forward scatter area (FSC-A) / side scatter area 

(SSC-A), and the live cells were further gated to exclude doublets by using FSC-Height (FSC-H) / 

FSC-A (Figure 2.7). Unstained samples, isotype controls, or ‘fluorescence minus one’ (FMO) 

were used to gates for positive staining (Figure 2.8). 
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Figure 2.8 Gating strategy for antigen-specific stained cells. 

Schematic representation of the gating strategy used. (b) Background fluorescence of cells 

stained with a fluorochrome-conjugated isotype control antibody instead of the specific 

antibody, was used to guide the selection of positive cell populations. Samples without EGFP 

signal i.e. cells not derived from LGR5-EGFP knockin mice were used to gate the EGFP 

positive cells. 
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2.9 Development of scripts for automatic quantification of immunohistochemical 

(IHC) stainings.  

ImageJ Macro Language (IJM) was used to create programmes that would automatically score 

IHC images in order to avoid the subjective scoring that accompanies manual quantification and 

to increase the speed of image analysis.  

The aim was to quantify only the brown nuclei within the intestinal crypts excluding the lamina 

propria and the vili. The brown (DAB) staining was first separated from the blue (haematoxylin 

staining) and then the total number of nuclei (blue) were identified and tabulated after 

segmentation of the edges of nuclei that touched other nuclei. The number of brown areas that 

colocalized with blue staining (i.e. DAB positive nuclei) was then identified and tabulated. 

Hence, the number or percentage of positive cells within the crypt were calculated. 

The following section describes the series of steps undertaken to automatically quantify the 

DAB positive nuclei within the crypt. 

2.9.1 Macro used for scoring on IHC images. 

Selection of field of view and image extension.  

IHC images were acquired by Zeiss Slide Scanner at 20x magnification using the brightfield 

option. The images were then processed using the ZEN software by zooming 100% into the 

scanned tissue section, selecting the field of view showing a whole crypt and then creating 

image from view. Images were saved as TIFF (.tif) in order to preserve most of their features. 

Manual elimination of unwanted tissue structures. 

The images were opened with Fiji. Manually, the crypts were selected by drawing around each 

of them. Everything else apart from the crypt was cleared. Then the black background was pool-

filled with white which is translated into “intensity signal = 0”. The image (Figure 2.9) was saved 

with the extension “_clear.tif”. 

 

 

 

Figure 2.9 Selection of crypts from a field of view. 



97 
 

 

Separating the haematoxylin staining from the DAB staining. 

The “_clear.tif” image was opened in Fiji and using colour deconvoloution with H&E DAB as an 

option, the Red, Green and Blue (RGB) colours were separated into three different images as in 

Figure 2.10. 

   

 

 

 

 

 

 

 

 

Creating a mask for identification of the nuclei. 

To identify the nuclei the background signal was decreased by increasing the brightness and 

contrast (B&C) of the Colour 1 image within the range of 0-185 (Figure 2.11). 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Colour deconvolution using Fiji's H&E DAB option. 

Colour 1 = Blue Colour 2 = Green Colour 3 = Red 

Figure 2.11 Increased B&C to decrease background signal. 
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The resulting image was blurred using the smooth option to avoid the discontinuity and 

segmentation of main structures (Figure 2.12). 

 

 

 

 

 

 

 

 

 

Otsu’s clustering-based thresholding iterates through all the possible threshold intensity signal 

values in order to identify the optimum threshold that separates the foreground from the 

background pixels into black (255) and white (0), respectively (Otsu 1979). This threshold was 

applied using the intensity range (0-212) in order to convert the greyscale image into binary (0 

and 255) (Figure 2.13). 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 Image blurring. 

Figure 2.13 Otsu thresholding to convert the greylevel into binary image. 
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In order to distinguish better the boundaries of each object, the erode option was applied 

therefore the pixel size of the objects in the foreground shrinks (Figure 2.14). 

 

 

 

 

 

 

 

 

 

 

Next step was to remove the noise from the objects’ boundaries. Therefore, the median 

filtering was used by which the centre pixel value of a square window with a radius of 2 pixels 

was replaced by the median value of its surrounding pixels (Figure 2.15). 

 

 

 

 

 

 

 

 

 

 

Smaller objects on the foreground were converted to background using the “open” option 

(Figure 2.16).  

Figure 2.14 Erosion applied for more distinguishable object boundaries. 

Figure 2.15 Median filtering to remove the noise from the foreground boundaries. 
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Image dilation was then applied to expand the size of an object and smooth the object 

boundaries and to close holes and gaps (Figure 2.17). This was performed using the MorphoLib 

plugin. 

 

 

 

 

 

 

 

 

 

To separate objects touching each other the Watershed method was applied that creates a 

distance map from the centre of an element to its edges (Figure 2.18). Filling that "topological 

Figure 2.16 Morphological noise removal 

Figure 2.17 Image dilation 
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map" with imaginary water results in "Watersheds". Where they meet, a “dam” is drawn to 

separate the elements.  

 

 

 

 

 

 

 

 

 

 

Identifying the DAB stained cells. 

The image indicated as Colour 3 which corresponded to the red colour and therefore DAB stain 

was used in order to identify the positively stained areas. Therefore, Otsu thresholding was 

applied (Figure 2.19). 

Figure 2.18 Separating the elements using watershed. 

Figure 2.19 Identification of γH2AX stained areas including background 
signal. 
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Overlapping the nuclei mask on the thresholded Colour 3 image enabled the identification of 

the positive cells, and allowed non-specific staining to be excluded (Figure 2.20). 

 

 

 

 

 

 

 

 

 

 

 

 

Using this overall approach for each input image, ROIs were generated for the selected positive 

cells, (in this case each ROI = a nucleus) and their staining intensity was measured and tabulated 

in an excel spreadsheet. The described steps were automatically performed using a Macro 

script that I have written (see Appendix). Subsequently, the tabulated data were manually 

assessed and represented using GraphPad. 

  

+ = 

Figure 2.20 Identifying the cells that are positive for γH2AX. 

Application of the nuclei mask over the Colour 3 image allows identification of positive nuclei 

shown with red arrow. 
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2.9.1 Comparing manual versus automatic staining quantification 

IHC analysis was conducted either manually or automatically using an in-house written macro 

script, created accordingly for the identification of each surrogate marker. The accuracy of the 

macro script staining quantification was compared to manual counting for each surrogate 

marker. Depicted in Figure 2.21 is the manual and automatic quantification for γH2AX, cleaved 

caspase-3, Ki67 staining in different samples. Automatic quantification of γH2AX and Ki67 in 

some of the samples was significantly different from the results of manual quantification. 

Whereas, for cleaved caspase-3 the automatic counting reflects the manual counting. 

Therefore, automatic quantification was only used for the quantification of cleaved caspase-3 

only when specified under the figure.  

Figure 2.21 Comparison between manual and automatic methods of IHC counting. 

IHC analysis of a sample of multiple crypts or crypt-villi was performed for (a) Ki67, (b) γH2AX and (c) 

Cleaved Caspase-3 markers. Analysis was conducted both by manual counting and automatically, using a 

macro script that had been created uniquely for each marker. Any significant differences between the 

methods of counting excluded the automatic counting as a suitable method for analysis of that particular 

marker. Mann-Whitney two-tailed test was used, *p=0.0286, ** p=0.0062. 
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2.10 Statistical Analyses 

Statistical analyses were performed using GraphPad Prism version 6.00 for Windows, (GraphPad 

Software, La Jolla California USA). 

Mann-Whitney test 

The unpaired Mann-Whitney test was used to assess the statistical significance between the 

distribution of unrelated groups whose data sets did not follow Gaussian distribution. 

(GraphPad Software n.d.).   

ANOVA 

One-way ANOVA was used to compare, simultaneously, more than two unpaired groups whose 

samples follow Gaussian distribution. Brown-Forsythe test was used to identify differences in 

standard deviation between groups. Dunnet’s multiple comparison was used after ANOVA 

analysis in order to correct for obtaining false significantly different results by chance due to 

multiple independent comparisons (GraphPad Software n.d.).  

Comparisons with p-values less than 0.05 were considered significantly different.  
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3. Apc status influences the DNA damage repair pathway, both directly and 

indirectly 

  Introduction 

One of the hallmarks of malignant cells is genomic instability (Negrini et al. 2010). DNA damage 

usually occurs spontaneously, via endogenous products of cellular processes or exogenous 

factors such as IR (Hoeijmakers 2009). Thus, cells employ various mechanisms to repair each 

type of DNA lesion, as unrepaired DNA damage may ultimately lead to the development of 

cancer. As an example, Lynch syndrome, one of the familial CRC syndromes, causes instability in 

microsatellite DNA sites due to germline mutations in DNA MMR pathway proteins (Jasperson 

et al. 2010). However, not all familial or sporadic CRC are initially driven by deficient DNA repair. 

Studies have shown that oncogene activation can induce DNA damage by stalling and collapsing 

DNA replication forks (Halazonetis et al. 2008). Frequently mutated genes in CRC promote 

genomic instability (Rao and Yamada 2013). These include the Apc tumour suppressor gene, a 

negative regulator of the WNT signalling pathway. Apc dysfunction contributes to DNA damage; 

however, it remains unclear the exact mechanism by which this occurs. 

DNA damage could stem from (i) the technique used to knockout Apc or (ii) the direct effect of 

APC loss of function. It has been demonstrated that there is an association between APC and 

efficient chromosomal segregation, via direct APC attachment and enhancement of microtubule 

stability in murine embryonic stem cells (Fodde et al. 2001; Kaplan et al. 2001) and in the 

human CRC cell line HCT116 (Green and Kaplan 2003; Green et al. 2005). In line with these, APC 

loss within HCT116 contributed to tetraploidy and polyploidy (Dikovskaya et al. 2007), whereas 

its loss within murine embryonic stem cells caused the formation of anaphase bridges, a marker 

of CIN (Aoki et al. 2007). Deficiency in Apc inevitably activates WNT signalling, which in turn 

induces c-Myc proto-oncogene transcription. Therefore, based on the evidence for oncogene 

induced DNA damage, Apc deficiency could (iii) indirectly lead to DNA damage (Robinson et al. 

2009). 

DSBs are the most dangerous form of DNA breaks, as genetic information can be lost or altered 

if not repaired properly, and the free DNA ends which result can lead to genomic 

rearrangements (Costanzo et al. 2009). The two most commonly cited markers of DSBs are 

γH2AX, pATM and RAD51. ATM is the first protein to be activated upon DSB formation. Similarly, 

H2AX phosphorylation on Ser139 (γH2AX) is one of the earliest events in response to any type 
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of DNA damage event  and can extend up to ~ 3Mb away from a lesion (Fernandez-Capetillo et 

al. 2004). γH2AX foci are easily detected and visualized by immune-based assays. The number of 

foci observed in the nucleus of a cell is thought to be directly proportional to the number of 

DNA breaks present (Sharma et al. 2012). Although, the direct relationship between number of 

DSB and γH2AX foci is yet to be confirmed, γH2AX assays are commonly used to determine DNA 

damage and its resolution (Löbrich et al. 2010). 

Whilst γH2AX foci form throughout the cell cycle, RAD51 translocates into the nucleus to form 

clusters (foci) only during the S-phase of the cell cycle as it is a component of the HR DNA repair 

pathway which requires sister chromatids for the error-free completion of DNA repair. Thus, 

γH2AX marks DNA damage in both dividing and non-dividing cells, whereas RAD51 nuclear foci 

formation only signifies damage in dividing cells. Nonetheless, both markers have been 

suggested as potential clinical biomarkers to predict patient response to therapies targeting 

defective DNA (Ivashkevich et al. 2012; Stover et al. 2016). 

Using the AhCreApcfl/fl mouse model of intestinal Apc deficiency, Reed and colleagues (2008) 

showed increased H2AX mRNA expression in Apc deleted cells. However, it has only been shown 

in the murine liver that Apc deficiency induced the DNA damage checkpoint proteins p53 and 

p21 due to increased levels of DSBs, as quantified by IHC markers γH2AX and RAD51 (Méniel et 

al. 2015). Hence, apoptosis can be induced in p53 wt cells when DNA damage is unrepaired 

(Norbury and Zhivotovsky 2004).  

In this chapter, we visualised and quantified DNA damage in detail in the intestines of mice 

where Apc has been deleted using either the epithelial-specific promoter VilCreER, or the stem 

cell-specific promoter Lgr5CreER in order to investigate the hypothesis that Apc deficiency leads 

to DNA damage. The second aspect of this chapter investigates the mechanisms by which Apc 

loss causes DNA damage. We hypothesised that the Cre-LoxP recombination technique, which 

was used to knockout the Apc gene, was partly responsible for the DNA damage signal 

observed, and that the WNT signalling activation following Apc loss, was also involved. 
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  Apc deficiency increases DNA damage levels in the small intestine of an early 

CRC mouse model (VilCreER Apcfl/fl). 

3.2.1 Apc loss in the VilCreER Apcfl/fl mouse model induced by IP tamoxifen injection, increases 

γH2AX levels in small intestinal crypts.  

The investigation of γH2AX levels following Apc deficiency was not only necessary for the 

determination of DSB induction, but also for the quantification of the target protein levels for 

111In-anti-γH2AX-TAT RIC, as this project investigates its use as a theranostic agent. Before 

performing any in vivo experiments using the VilCreER Apcfl/fl model, it was necessary to 

characterise the intestinal crypt γH2AX levels following Apc deficiency. Mice were injected 

intraperitoneally with tamoxifen (80mg/kg; 200µl/ 25g) to induce Cre recombinase expression 

within the small and the large intestine, and mice were killed 1 - 4 days p.i.. Small intestinal rolls 

were fixed, sectioned and IHC processed and analysed. Apc deficiency resulted in previously 

described crypt-progenitor area expansion (Sansom et al. 2004), which was more prominent 

within the first 15 cm of the small intestine (Figure 3.8). Nuclei were counted starting from the 

crypt base to the crypt-villi junction, in order to determine crypt cell number within the tissues. 

As early as day 2 p.i. there was a small but significant increase in the crypt cell number of Apcfl/fl 

mice compared to control (Apc+/+) mice, which was more prominent at days 3 and 4 p.i., 

signifying WNT signalling hyperactivation and excess proliferation of crypt epithelial cells (Figure 

3.3). 

γH2AX levels in crypt epithelial cells of the small intestine were quantified by IHC to assess the 

kinetics of DSB formation following Apc loss (Figure 3.1 and Figure 3.3). IHC staining was 

assessed for specificity by comparing to staining patterns of an isotype control antibody being 

detected by an anti-mouse secondary antibody (Figure 3.2).  There was no difference at day 1 

p.i. between Apcfl/fl and Apc+/+ mice, but at days 2 - 4, overall γH2AX levels were significantly 

higher in Apcfl/fl compared to Apc+/+ mice (Figure 3.4a). However, normalization of these data to 

the total number of cells within each crypt showed that there was no difference in the 

percentage of positive cells between the two genotypes at any of the days p.i. (Figure 3.4b).  

γH2AX intensity levels were stratified into low, medium and high (for examples see Figure 3.5) 

and quantified for the time course of 1 – 4 days p.i.. Figure 3.6 shows the percentage of γH2AX 

positive cells stratified by staining intensity after normalization to the total number of cells in a 

crypt. The stratification of γH2AX intensity was used as a relative measurement of DNA damage 

severity. Generally, the majority of the γH2AX positive cells in either Apc+/+ or Apcfl/fl mice had 
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low staining intensity throughout the time course. Approximately 5% and 3% of the cells in both 

groups were stained with medium or high γH2AX, respectively between days 1-3 p.i.. However, 

at days 3 and 4 p.i., Apcfl/fl mice had significantly increased high γH2AX intensity levels compared 

to Apc+/+ mice; although medium γH2AX intensity levels followed a similar pattern the results 

were not significantly different.  

IHC quantification is represented in two ways in this chapter. Column bar plot representation 

(e.g. Figure 3.4) shows the average value of all crypts per mouse within the group, whereas in a 

dotted plot (e.g. Figure 3.12), each dot represents the value for each quantified crypt within a 

group of mice. The initial experiments performed by IP injection of tamoxifen were represented 

as a column bar plot based on the traditional way our group represented IHC quantifications. 

Whilst column bar plots depict clearer the differences between each group of mice, when the 

number of animals used for each group was less than 4, no non-parametric statistics could show 

any significant difference between groups that appeared to be significantly different. Hence, 

subsequent analysis of data from oral gavaged VilCreER mice or IP injected AhCre mice (section 

3.3) was represented on a dot plot because statistics could be applied on the average 

quantification of crypts within a group rather than per mouse.  
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Figure 3.1 Immunohistochemical analysis for the identification of γH2AX levels in VilCreERApcfl/fl and VilCreERApc+/+ mice over a time course of 4 days. 

Bright field images of histological sections of the small intestine from VilCreER Apc+/+ (a - d) and VilCreER Apcfl/fl (e - h) mice, 3 days post oral induction. Brown 

stained nuclei indicate γH2AX positive cells; non-specific staining due to anti-mouse secondary antibody binding on mouse B-cells of lamina propria. On day 

3 p.i. (c) an abnormal crypt-villi structure was formed in Apcfl/fl which is more prominent on day 4 p.i. (d). Bright field images; scale bar = 100 μm; n = 3 or 4 

mice per group. 
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Anti-γH2AX  Isotype control 

Figure 3.2 Specific and unspecific IHC staining of the mouse anti-γH2AX antibody in the small 

intestine.  

IgG1 (isotype control) and γH2AX stainings were performed on small intestinal sections of the 

same VilCreER Apcfl/fl mouse (n = 1; not serial sections) 4 days post IP injection with 80mg/kg of 

tamoxifen. Scale bar = 50µm. 
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Figure 3.3 Increased crypt cell number after induction of the VilCreERApcfl/fl mouse model.  

VilCreERApcfl/fl and VilCreERApc+/+ mice were induced with 80mg/kg of tamoxifen by IP 

injection. IHC analysis in the small intestine of mice was performed for samples taken at 

different days post Induction. Total number of cells per half crypt section ±SD in 

VilCreERApcfl/fl and VilCreERApc+/+ mice are shown. One-tailed Mann-Whitney test was 

performed, *p ≤ 0.05; n = 3 or 4 mice per group. 
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Figure 3.4  Increased γH2AX levels in small intestinal crypts after induction of the VilCreERApcfl/fl 

mouse model.  

VilCreERApcfl/fl and VilCreERApc+/+ mice were induced with 80mg/kg of tamoxifen by IP injection. 

IHC analysis in the small intestine of mice was performed for samples taken at different days 

post induction. (a) Overall γH2AX levels per half crypt small intestinal sections of VilCreERApcfl/fl 

and VilCreERApc+/+ mice. Mean values of 50 half crypts per mouse ± SD are shown (n = 3 or 4 

mice per group; One-tailed Mann-Whitney test, *p ≤ 0.05). (b) The percentage of overall γH2AX 

levels per crypt are shown after normalization to the total number of cells within half crypt 

section. p ≥ 0.05 
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Figure 3.5 Quantification method for different γH2AX intensities in the 

small intestine of the early Wnt signalling deregulation mouse model. 

 IHC staining for γH2AX on paraffin sections of 24h 10% formalin fixed 

intestinal tissue of VilCreERApcfl/fl mice. Arrows indicate the different 

level of γH2AX intensity. H = High, M = Medium, L = Low staining 

intensities. 

H M 

L 
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Figure 3.6 Increased γH2AX intensity levels in small intestinal crypts at days 3 and 4 post induction 

of the VilCreERApcfl/fl mouse model. 

VilCreERApcfl/fl and VilCreERApc+/+ mice were induced with 80mg/kg of tamoxifen by IP injection. 

IHC analysis in the small intestine of mice was performed for samples taken at different days 

p.i.. The percentage of stratified quantification of γH2AX intensities per crypt section of 

VilCreERApcfl/fl and VilCreERApc +/+ mice is shown. 50 half crypts per mouse were quantified and 

the measurements were converted to percentage per crypt ±SD (n = 3 or 4 mice per group; 

One-tailed Mann-Whitney test; *p ≤ 0.05). Error bars = ± SD. 
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3.2.2 Differences in γH2AX levels in intestines from VilCreER Apcfl/fl mice induced with tamoxifen 

by IP injection or oral gavage 

The experiment described in the previous section was performed in Cardiff premises. To 

overcome the unexpected adverse effects of IP corn-oil injection, we investigated whether 

tamoxifen administration by oral gavage could be used as an alternative administration route. 

Changes in tamoxifen pharmacokinetics and mode of administration could affect recombination 

efficiency and therefore γH2AX levels. Therefore, as crypt length following induction shows the 

extent of Apc deficiency and therefore reflects Apcfl/fl recombination levels (Feil et al. 2009), we 

compared crypt cell number following either IP or oral tamoxifen administration in VilCreER 

Apcfl/fl and VilCreER Apc+/+ mice at day 3 p.i. and found no significant difference between 

administration routes in either genotype (Figure 3.7 a), despite the fact that oral administration 

resulted in more variable crypt length compared to IP injection. Crypt length at day 2 p.i. in IP-

injected mice was also scored and compared to crypt length in day 3 oral-administered mice in 

order to assess whether recombination following oral gavage was occurring with similar 

efficiency to IP injection despite the differences in tamoxifen pharmacokinetics. 

Quantification of γH2AX staining in the crypts at day 3 p.i showed that levels were higher in 

both genotypes following IP injection in comparison to oral gavage (Figure 3.7 b). Levels were 

similar for day 3 post oral administration and day 2 after IP injection (Figure 3.7 b). Detailed 

γH2AX intensity analysis (Figure 3.7 c) showed that at day 3 post oral tamoxifen administration, 

there were significantly more cells showing high γH2AX intensity in Apcfl/fl mice compared to 

both IP-administered groups. In Apc+/+ mice, at both days 2 and 3 after IP injection there were 

significantly more cells showing medium γH2AX intensity compared to orally-administered mice, 

where intensity was almost exclusively low. Generally, Apc+/+ mice administered with tamoxifen 

by oral gavage had almost no cells with medium or high γH2AX intensities which is consistent 

with the phenotype present in wild-type tissue (Figure 3.23a). However, administration of 

tamoxifen by IP injection in Apc+/+ mice showed that there were cells with medium and high 

γH2AX intensities in the intestinal crypts. This could possibly be attributed to the administration 

route per se. IP injections cause abdominal inflammation in some extend (Hubbard et al. 2017) 

due to a) the penetration through the skin into the abdominal cavity and b) the deposit of a 

non-sterile liquid (tamoxifen in corn oil) into the cavity. This might induce cell stress hence 

γH2AX (Mah et al. 2010); whereas, the technique of oral gavage does not cause any tissue injury 

and the non-sterile liquid passes through the same route as the non-sterile food given to the 

mice.  
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Taking these results together, oral administration of tamoxifen had a similar expansion of the 

crypt to IP injection, implying similar recombination efficiency, and a similar pattern of γH2AX 

staining differences between Apc+/+ and Apcfl/fl crypts, albeit IP injection generally resulted in 

higher γH2AX staining levels compared to oral gavage. Hence, we changed the induction 

protocol for the VilCreER Apcfl/fl mouse model in order to perform the in vivo experiments in 

Oxford. 
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Figure 3.7 Comparison of γH2AX levels following oral gavage or IP administration of tamoxifen in the 

VilCreER Apcfl/fl mouse model. 

Tamoxifen was administered to VilCreER Apcfl/fl and VilCreER Apc+/+ mice orally by gavage or by IP 

injection. (a) Total number of crypt cells scored from γH2AX IHC. (b) Quantification of IHC staining for 

overall γH2AX positive cells per half crypt, at days 2 and 3 post IP injection and day 3 post oral 

administration of tamoxifen (both 10mg / kg; 3 times in a day). Each dot represents the mean value of 

50 half crypts per mouse (n = 3 or 4 mice per group; p ≤ 0.05. (c) Stratified quantification of γH2AX 

low, medium and high intensities are given. Average ±SD of 50 half crypts per mouse are shown (n = 3 

or 4 mice per group). One tailed Mann-Whitney U-test; *p ≤ 0.05. 
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3.2.3 Apc loss in the VilCreER Apcfl/fl mouse model induced by oral gavage of tamoxifen, 

increases γH2AX levels in small intestinal crypts.  

Similar to the results obtained by IP injection, were the results obtained for mice 3 days after 

oral gavage, using the same regime (3x in single day of 80mg/kg of tamoxifen; 200µl/ 25g). 

There was an increase in the number of cells within the crypt zone of Apcfl/fl mice, as quantified 

by the number of nuclei within a crypt section (Figure 3.8, Figure 3.11). Analysis of IHC and IF 

γH2AX staining showed significantly increased γH2AX overall levels in Apcfl/fl mice compared to 

the Apc+/+ mice (Figure 3.10a and Figure 3.11b, respectively). Stratification of γH2AX staining 

intensity showed that the percentage of cells with medium and high staining intensities was 

significantly higher in Apcfl/fl mice compared to Apc+/+ mice (Figure 3.10b). 

Ex vivo intestinal crypt cultures derived from VilCreERApcfl/fl and VilCreERApc+/+ intestinal tissue, 3 

days after IP injection with tamoxifen (60 mg/kg), gave rise to 3D mini-organs, called organoids, 

which contained all of the epithelial cell lineages found in the in vivo intestinal system (Sato et 

al. 2009). Whole mount immunofluorescence for γH2AX was performed on 3 day old organoids 

from both genotypes and representative confocal images of maximum projection are shown in 

Figure 3.12. The images depict the phenotypic differences between Apc+/+ and Apcfl/fl organoids 

stemming from the inability of  Apcfl/fl cells to generate differentiated cells (Sansom et al. 2004). 

Apc+/+ form buds (crypts) which are all linked to the main organoid body (villi) (Sato et al. 2009). 

Apcfl/fl organoids form cyst-like structures due to expansion of stem and progenitor cells, 

similarly to the crypt expansion observed in intestines of the VilCreERApcfl/fl mouse model (Figure 

3.1). Quantification of γH2AX positive cells in organoids showed a significant increase in Apcfl/fl 

compared to Apc+/+ organoids (Figure 3.12b), which was in agreement with the in vivo 

quantification. 
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Figure 3.8 VilCreERApcfl/fl oral gavage induction with tamoxifen expands the proximal small intestinal crypt 

compartment. 

Representative bright field images of H&E staining of histological sections of the small intestine of (a) 

VilCreER Apc+/+ and (b) VilCreER Apcfl/fl mice, 3 days post oral induction. Scale bar = 100 μm; n = 4 mice 

per group. 
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Figure 3.9 VilCreERApcfl/fl oral gavage induction with tamoxifen induces γH2AX in the proximal small intestine. 

Representative bright field images of histological sections of the small intestine of (a) VilCreER Apc+/+ and (b) 

VilCreER Apcfl/fl mice 3 days post oral induction Brown stained nuclei indicate γH2AX positive cells. Scale bar 

= 100 μm; n = 4 mice per group. 
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Figure 3.10 Increased crypt cell number and γH2AX levels after induction of the VilCreERApcfl/fl 

mouse model by oral gavage.  

VilCreERApcfl/fl and VilCreERApc+/+ mice were induced with 80mg/kg of tamoxifen by oral gavage. 

IHC analysis in the small intestine of mice was performed for samples taken 3 days p.i.. (a) The 

percentage of overall γH2AX levels per crypt are shown. Two-tailed Mann-Whitney test was 

performed; *p = 0.0286. (b) The % of stratified γH2AX levels per crypt section is shown. Two-

tailed Mann-Whitney test was performed; * p = 0.0286; n = 4 mice per group. Error bars = ± 

SD. 

 

 

a 

b 

A p c
+ /+

A p c
f l/ f l

0

1 0

2 0

3 0

4 0

5 0

G a v a g e  D a y 3

%
 o

f


H
2

A
X

 p
o

s
it

iv
e

c
e

ll
s

 i
n

 a
 c

r
y

p
t

M a n n -W h itn e y  tw o -ta ile d , p  =  0 .0 2 8 6

*

lo w  m e d iu m h ig h

0

1 0

2 0

3 0

N o rm a liz e d  to  c ry p t  s iz e  g H 2 A X  le v e ls  d if .  in te n s it ie s

%
 o

f


H
2

A
X

 p
o

s
it

iv
e

c
e

ll
s

 i
n

 a
 c

r
y

p
t

A p c
f l / f l

A p c
+ / +

 H 2 A X  s ta in  in te n s ity

*

*

M a n n -W h itn e y  tw o -ta ile d , p  =  0 .0 2 8 6



121 

 

Ap c
+ /+

Ap c
f l/ f l

0

2 0

4 0

6 0

% g H 2 A X +  c e lls / h a lf  c ry p t

%


H
2

A
X

+
 c

e
ll

s
/ 

h
a

lf
 c

r
y

p
t

* * * *

Figure 3.11 Apc deficiency in the murine small intestine increases the number of crypt epithelial cells 

with γH2AX foci. 

(a) γH2AX IF analysis in half crypt sections of the small intestine from VilCreERApc+/+ and 

VilCreERApcfl/fl mice, 3 days post oral induction with 80mg/kg of tamoxifen. Representative images 

of γH2AX + cells are shown. Scale bar = 20 μm. (b) Mean percentage of nuclear γH2AX positive cells 

from >47 half crypt sections / mouse for 4 mice within each group ±SD are shown. Unpaired 2-

tailed Mann Whitney test was performed; ****p < 0.0001.  
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Figure 3.12 Apc deficiency in murine small intestinal organoids increases the number of crypt epithelial 

cells with γH2AX foci. 

(a) γH2AX whole mount IF analysis of organoids derived from small intestinal crypts of VilCreER Apc+/+ 

and VilCreER Apcfl/fl mice, 3 days post oral induction with 60mg/kg of tamoxifen. Representative 

maximum projection confocal images are shown. Scale bar = 50 μm. Arrows indicate specific γH2AX 

positive nuclei. (b) Percentage of nuclear γH2AX positive cells per organoid ± SD, from 44 wt or 104 

Apcfl/fl organoids. Unpaired 2-tailed Mann Whitney test was performed; ****p < 0.0001. Biological 

replicates: n = 2 and n = 3 for the VilCreER Apc+/+ and VilCreER Apcfl/fl, respectively. 
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3.2.4 Apc loss in the VilCreER Apcfl/fl mouse model increases the number of cells in small 

intestinal crypts with perinuclear phospho-Ser1981 ATM.  

ATM (Ataxia Telangiectasia Mutated) is the first protein in the DDR pathway to be activated 

upon a DSB (So et al. 2009). It localizes to the DSB with the help of the MRN complex and is 

activated by autophosphorylation or trans-phosphorylation at Ser1981. The activated ATM 

monomer triggers the collective responses necessary for the resolution of the DNA break, as 

well as controlling cell cycle, transcription, apoptosis and cell proliferation (Shiloh and Ziv 2013).  

Hence, assessing the presence of activated nuclear ATM was the first step in identifying the 

presence of DSBs in VilCreER Apc+/+ and VilCreER Apcfl/fl mice (in this chapter referred to as Apc+/+ 

and Apcfl/fl) 3 days after oral gavage with 80mg/kg of tamoxifen. Small intestinal sections were 

fixed and IHC stained with an antibody recognising phospho-Ser1981 ATM (pATM). We 

hypothesised that Apc loss induces DSB; hence we expected nuclear localization of the 

phosphorylated ATM, similarly to observations made by other studies following irradiation of 

melanoma and fibroblast cells (Zhang et al. 2016). Unexpectedly, nuclear, perinuclear or both 

patterns of pATM staining were observed, in epithelial cells of both Apc+/+ and Apcfl/fl crypts 

(Figure 3.13). The majority of stained cells had perinuclear staining pattern which sometimes 

extended towards the cytoplasm.  

As Figure 3.13 suggests, the number of total pATM cells (independent of staining localization) 

was higher in the small intestine of the Apcfl/fl mice compared to the Apc+/+ mice. However, this 

was a result of excess proliferation and cell accumulation in crypts, as normalization of the 

pATM positive cell number to the total cell number of crypts showed that there was no 

significant difference in percentage of positive cells between the two groups (Figure 3.14a). The 

few cells with nuclear pATM staining were significantly higher in the Apc+/+ crypts compared to 

Apcfl/fl, whereas the opposite was observed for cells with both nuclear and perinuclear pATM 

staining (Figure 3.15 a-c).  

Usually, staining for pATM was observed at +3 cell positions of the Apc+/+ crypt base, whereas 

positions +1 to +4, +7 and +8 of Apcfl/fl crypts more often accommodated perinuclear pATM 

positive cells (Figure 3.14b). The described crypt positions were mostly accommodated by cells 

with perinuclear pATM staining. 
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Figure 3.13 pATM staining in the VilCreER Apc+/+ and VilCreER Apcfl/fl mouse models. 

 pATM IHC staining in the small intestine of VilCreER Apc+/+ and VilCreER Apcfl/fl mice 3 days post oral 

induction. Bright field images; scale bar = 50 μm; Arrow heads showing  perinuclear (sometimes 

cytoplasmic),  nuclear or   both perinuclear (sometimes cytoplasmic) and nuclear staining. 
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Figure 3.14 pATM IHC staining quantification in the small intestine 

(a) Percentage of cells with pATM IHC staining in small intestinal crypts of VilCreER Apc+/+ and VilCreER Apcfl/fl 

mice, 3 days post oral induction by tamoxifen (212 and 205 crypts, respectively; biological replicates n = 4 

per group).  Two-tailed Mann Whitney U-test was performed; NS; p ≥ 0.05.  

(b) Average number of pATM positive cells per crypt position (starting from the crypt base) in the small 

intestine. Error bars show ±SD. 
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Figure 3.15 Perinuclear, nuclear or combined pATM IHC staining quantification in the small intestine 

Percentage of cells with (a) perinuclear, (b) nuclear, or (c) both perinuclear and nuclear pATM IHC staining in 

small intestinal crypts of VilCreER Apc+/+ and VilCreER Apcfl/fl mice, 3 days post oral induction by tamoxifen (212 and 

205 crypts, respectively; biological replicates n = 4 per group).  Two-tailed Mann Whitney U-test was performed; 

*p < 0.05. Error bars show ±SD 
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Figure 3.16 Position of perinuclear, nuclear or combined pATM IHC staining 

quantification in the small intestine 

Average number of cells with (a) perinuclear, (b) nuclear or (c) both perinuclear and 

nuclear pATM staining per crypt position (starting from the crypt base) in the small 

intestine. Error bars show ±SD; n = 4 per group. 
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3.2.5 Apc loss in the VilCreER Apcfl/fl mouse model increases the number of cells with nuclear 

RAD51 foci in small intestinal crypts.  

Next, we investigated whether the HR pathway was activated to repair DSBs formed after Apc 

loss, which could signify that DSB were generated in proliferating cells. Similarly, to γH2AX, 

RAD51, a HR component, clusters on DSB in the cell nucleus, and can be detected by 

immunofluorescence as nuclear foci. RAD51 IF staining was performed on fixed small intestinal 

sections from Apc+/+ and Apcfl/fl mice, 3 days p.i. by oral gavage with 80mg/kg of tamoxifen 

(Figure 3.17 a). Quantification of the percentage of RAD51+ cells within a section of a crypt 

showed significantly increased levels in Apcfl/fl mice compared to control mice (Figure 3.17 b), 

indicating that the HR pathway is employed after DSB formation mediated by Apc loss. γH2AX 

and RAD51 co-IF staining was also performed and quantified (Figure 3.18); cells with γH2AX and 

RAD51 co-stained foci were significantly higher in Apcfl/fl mice compared to Apc+/+ mice. 
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Figure 3.17 Apc deficiency in the murine small intestine increases the number of crypt epithelial cells 

with RAD51 foci. 

 (a) RAD51 IF analysis in half crypt sections of the small intestine from VilCreERApc+/+ and 

VilCreERApcfl/fl mice, 3 days post oral induction with 80mg/kg of tamoxifen. Representative images 

of RAD51+ cells are shown. Dotted lines surround a crypt. Arrows indicate nuclei with RAD51 foci. 

Scale bar = 20 μm. (b) Mean percentage of nuclear RAD51 positive cells from >47 half crypt 

sections / mouse for 4 mice within each group ± SD are shown. Unpaired 2-tailed Mann Whitney 

test was performed; ****p < 0.0001.  
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Figure 3.18 Apc deficiency in the murine small intestine contributes to significantly increased number 

of crypt epithelial cells with DSB induced during cell replication. 

(a) RAD51 and γH2AX IF staining quantification in half crypt sections of the small intestine from 

VilCreER Apc+/+ and VilCreER Apcfl/fl mice, 3 days post oral induction with 80mg/kg of tamoxifen. 

Representative images of double-positive Rad51+γH2AX + cells are shown. Scale bar = 20 μm.  

(b) Percentage of double-positive Rad51+γH2AX + cells in a section of a half crypt are shown based 

on IF staining. Mean percentage of >47 half crypt sections / mouse for 4 mice within each group 

±SD are shown. Unpaired 2-tailed Mann Whitney test was performed; ****p<0.0001. 
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3.2.6 Apc loss in the VilCreER Apcfl/fl mouse model increases the apoptotic index of small 

intestinal crypts.  

We quantified the levels of apoptosis within the intestine to assess whether there was a 

correlation with the levels of DNA damage, indicating that high levels of DNA damage were 

possibly eliminated by apoptosis. Hence, active caspase-3, the surrogate marker for apoptosis, 

was stained by IHC (Figure 3.19). Quantification showed that at days 3 and 4 p.i. there was a 

significant increase in apoptotic cells per half crypt section in VilCreER Apcfl/fl compared to 

VilCreER Apc+/+ mice which was not a result of excess proliferation that lead to crypt expansion 

(Figure 3.19a and b).  

Phenotypically, some high intensity γH2AX positive cells resembled cells undergoing apoptosis, 

as they were round/circular, similarly to the pyknotic nucleus of apoptotic epithelial cells, and 

usually situated towards the apical side of the epithelium close to the lumen (Figure 3.20). To 

further analyse this, a linear regression analysis was performed between the independent IHC 

quantifications for γH2AXhigh and cleaved caspase-3-expressing cells of the crypt, from non-serial 

sections as shown in Figure 3.21. There was no significant correlation between the number of 

γH2AXhigh and active caspase-3 positive cells of the crypt for Apc+/+ mice at days 1 - 4 p.i., 

however for the Apcfl/fl group of mice there was.  

Studies have shown that apoptotic cells are characterised by a γH2AX pan-nuclear staining 

pattern, resembling our IHC staining, as opposed to H2AX foci (Bonner et al. 2008; Solier and 

Pommier 2014). To investigate whether this occurs in both human and murine intestinal cancer, 

whole mount IF co-staining for active caspase-3 and γH2AX was performed in spheroids from a 

human CRC cell line (HCT116) and organoids derived from induced VilCreER Apcfl/fl mice (Figure 

3.22). Apoptotic bodies and condensed nuclei positive for active caspase-3 staining showed this 

pan-nuclear γH2AX staining, whereas nuclei with individual γH2AX foci did not have concurrent 

active caspase-3 staining. It is important to note that not all γH2AXhigh+ cells also express active 

caspase-3. 

Quantification of the % of cleaved caspase-3 positive cells in VilCreER Apcfl/fl or VilCreER Apc+/+ 

mice-derived organoids showed no significant difference (Figure 3.23 a and b). Hence, the rate 

by which cells undergo apoptosis in those two different genotypes was unaffected ex vivo. 
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Figure 3.19 Increased apoptotic cells post induction of VilCreERApcfl/fl mice. 

(a) IHC analysis of cleaved caspase 3 in VilCreERApcfl/fl and VilCreERApc+/+ mice 1 to 4 days post IP 

injection. Brown cells indicate positive cells.  (b) Mean number of active caspase-3 positive cells 

in a crypt section. Mean values of 50 half crypts per mouse are shown ± SD. (c) Percentage of 

cleaved caspase 3 positive cells in a crypt section after normalization to total number of cells in a 

crypt section. Unpaired 1-tailed Mann-Whitney test was performed; *p ≤ 0.05 (n = 3 or 4 mice 

per group); scale bar = 20 µm 
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Figure 3.20 Some high γH2AX intensity cells are apoptotic. 

IHC staining for γH2AX on paraffin sections of 24h 10% formalin fixed intestinal tissue 

of VilCreERApcfl/fl mice. Dotted arrows indicate γH2AXhigh cells that resemble apoptotic 

cells. AR = Apoptotic ring, H = High staining intensity and NS = Non-specific staining. 
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Figure 3.21 Correlation between γH2AXhigh staining intensity and apoptosis in VilCreERApcfl/fl. 

Linear regression analysis between the number of active caspase-3 and γH2AXhigh positive cells / 

half crypt in the VilCreERApcfl/fl and VilCreERApc+/+ mice for a course of 4 days p.i.. Points 

represent the mean values of each marker in each group of mice (> 50 half crypts / mouse, for n 

= 3 or 4 mice per group) for days 1 – 4 p.i.. One-tailed Spearman correlation test was 

performed. There was no correlation between the two markers for VilCreERApc+/+ mice, as 

opposed to VilCreERApcfl/fl mice; * p = 0.04, SD of the residuals (Sy.x) = 0.63. 

0 .0 0 .5 1 .0 1 .5 2 .0 2 .5

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

X Y  D a ta : C o rre la t io n  o f  A p o p to s is  v s  G h a 2 x

H 2 A X
h ig h

 p o s it iv e  c e lls  / h a lf c ry p t

a
p

o
p

to
ti

c
 c

e
ll

s
 /

 h
a

lf
 c

ry
p

t

A p c
f l / f l

S p e a rm a n  c o rre la t io n  te s t,  *  p  =  0 .0 4 1 7 , S y .x =  S D  o f th e  re s id u a ls

R
2

=  0 .7 3

S y .x  =  0 .6 3

0 .0 0 0 .0 5 0 .1 0 0 .1 5 0 .2 0 0 .2 5

0 .0

0 .1

0 .2

0 .3

0 .4

X Y  D a ta : C o rre la t io n  o f  A p o p to s is  v s  G h a 2 x

H 2 A X
h ig h

 p o s it iv e  c e lls  / h a lf c ry p t

a
p

o
p

to
ti

c
 c

e
ll

s
 /

 h
a

lf
 c

ry
p

t

A p c
+ / +



135 

 

 

 

 

Figure 3.22 Colocalization of active caspase-3 with panuclear γH2AX staining 

Whole mount immunofluorescence in (a) VilCreERApcfl/fl and (b) HCT116 cell line- 

derived organoids, double-stained with fluorochrome-conjugated antibodies against 

cleaved caspase-3 (red) and γH2AX (green). DAPI (blue) was used for DNA staining. 

Maximum projection confocal images are shown. Arrow heads indicate cells co-

stained with active caspase-3 and pan-nuclear γH2AX whereas small arrows show 

γH2AX foci. Scale bars, 20 μm. 
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Figure 3.23 Apoptosis in VilCreERApcfl/fl mouse derived organoids ex vivo. 

Whole mount IF for apoptosis (cleaved caspase-3) in VilCreER Apc+/+ and VilCreER Apcfl/fl, mice 

derived organoids, 3 days post seeding. (a) Representative sections and maximum projection 

images are shown. Scale bar = 50 μm (b) Percentage of peripheral cleaved caspase-3 positive 

cells per organoid was quantified. Mean percentage of 44 or 104 organoids / VilCreER Apc+/+ or 

VilCreER Apcfl/fl, mouse respectively ± SD is represented with a horizontal line. Unpaired 2-tailed 

Mann Whitney test was performed; NS; p > 0.05. Biological replicates: n = 2 and n = 3 for the 

VilCreER Apc+/+ and VilCreER Apcfl/fl, mice derived organoids, respectively. 
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  Investigating the mechanisms by which Apc deficiency contributes to DNA 

damage 

3.3.1  Recombination alone causes DNA damage 

It was necessary to analyse whether the increase in DSBs following Apc loss was at least partly 

due to the Cre-LoxP-mediated recombination that was used to knockout exon 14 of the Apc 

gene. To investigate this, we induced VilCreER, VilCreER Apc fl/fl and VilCreER LacZfl/fl mice with 

tamoxifen (80mg/kg) by oral gavage. The induction of the latter resulted in recombination of 

the loxP sites flanking the exogenous gene LacZ, which induced Cre-mediated recombination 

without excision of the Apc gene. 3 days p.i. mice were culled and the intestinal tissue was 

collected and fixed. Overall, induced VilCreER LacZfl/fl mice had a healthy intestinal structure 

similar to VilCreER mice, whereas VilCreER Apc fl/fl mice had an expanded crypt area, as described 

in chapter 3. γH2AX IHC staining of small intestinal sections was performed and quantified 

(Figure 3.24). The percentage of γH2AX positive cells was similar but significantly higher in 

VilCreER LacZfl/fl mice when compared to VilCreER; but much higher in VilCreER Apc fl/fl mice (Figure 

3.24 b). Less than 9% of the VilCreER intestinal cells of the crypt have a background level of low 

γH2AX intensity, whereas cells with medium and high γH2AX intensity were rarely present 

(Figure 3.24 c - e). Induced VilCreER LacZfl/fl mice had significantly higher numbers of cells with 

medium and high γH2AX intensities, whereas VilCreER Apc fl/fl mice had significantly more cells 

with low, medium and high γH2AX levels when compared to VilCreER LacZfl/fl. This data suggests 

that recombination of any gene would cause an increase in the number of γH2AX positive cells 

in the mouse small intestine, but deletion of the Apc gene causes the majority of the increased 

γH2AX expression in this model. 
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Figure 3.24 Apc loss induces higher DNA damage than LoxP site recombination alone in the small intestine 

(a) Representative pictures of γH2AX staining performed on small intestinal sections of VilCreER (n = 4), 

VilCreER LacZfl/fl (n = 3) and VilCreER Apcfl/fl (n = 4) mice, 3 days post oral induction with 80mg/kg of 

tamoxifen; scale bar = 50µm, inset scale bar = 20µm. (b – e) % of γH2AX positive cells per half crypt 

section are shown for (b) total, (c) low, (d) medium and (e) high γH2AX intensity cells. % of >50 half crypts 

per mouse ± SD are shown. Kruskal-Wallis multiple comparisons test was performed; *p≤0.05, **p≤0.01 

and **** p≤0.0001. 
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3.3.2  Is Apc loss-induced DNA damage Wnt-driven? 

Following the demonstration that Apc-deficiency in the VilCreER Apc fl/fl mouse model causes 

increased γH2AX levels in cells of small intestinal crypts, we wanted to know whether this due 

to WNT signalling activation or Apc loss itself, possibly through its involvement in chromosomal 

segregation (K B Kaplan et al. 2001; Green and Kaplan 2003; R Fodde et al. 2001). In order to do 

this, we used archived intestinal samples from mice where Cre recombinase was expressed 

using the cytochrome P450 promoter (AhCre) instead of the Villin promoter. AhCre Apcfl/fl, 

AhCre Mycfl/fl and AhCre Apcfl/flMycfl/fl mice were induced with 3 doses of 80mg/kg of β-

napthoflavone (βNF) each in a day and culled 4 days p.i.. Small intestinal tissue was fixed and 

IHC stained for γH2AX (Figure 3.25 a). Overall, induced AhCre Mycfl/fl mice had a healthy 

intestinal structure, whereas AhCre Apc fl/fl mice had an expanded crypt area, as previously 

described (Sansom et al. 2004), and similar to the phenotype of induced VilCreER Apc fl/fl mice, as 

described in chapter 3. The intestinal structure of AhCre Apcfl/flMycfl/fl mice resembled those of 

wt, as previously described (Sansom et al. 2007). Levels of γH2AX were counted and the 

percentage of total cells with γH2AX positivity was similar for both AhCre Apcfl/fl (n=4) and AhCre 

Mycfl/fl mice (n = 1), whereas combined loss of Apcfl/fl and Mycfl/fl (n=3) resulted in less γH2AX 

positive cells (Figure 3.25 b). Crypts from AhCre Apcfl/flMycfl/fl mice had more cells with medium 

and high γH2AX intensities compared to AhCre Apcfl/fl, and more cells with low γH2AX intensity 

when compared to AhCre Mycfl/fl crypts. The latter had significantly less cells with medium 

γH2AX intensity than AhCre Apcfl/fl crypts. The comparisons of γH2AX percentage in AhCre Apcfl/fl 

or AhCre Apcfl/flMycfl/fl crypts with AhCre Mycfl/fl might not be reliable because only one AhCre 

Mycfl/fl mouse was analysed. 

An alternative way to investigate whether activation of the WNT signalling pathway contributes 

to increased γH2AX levels and numbers of γH2AX positive cells, was to use the AhCre β-

cateninfl/fl and AhCre Apc fl/flβ-cateninfl/fl mouse models. We used archived samples from mice 

induced with 80mg/kg of βNF. 3 days p.i. mice were culled and small intestinal tissue was 

collected, fixed and IHC processed for γH2AX (Figure 3.26a). Intestinal structures in both 

genotypes were comparable to wt. However, quantification of γH2AX staining in crypts of the 

small intestine showed that combined deficiency of Apc fl/fl and β-cateninfl/fl contributed to 

approximately 2-fold increase in the percentage of γH2AX positive cells compared to β-

cateninfl/fl deficiency alone. This was a result of significant increase in the percentage of cells 

with low and medium γH2AX staining intensities. Unfortunately, there were no historical 

samples available to compare this data with AhCre Apc fl/fl mice at 3 days p.i..  
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Figure 3.25 Apc loss-related γH2AX increase partly contributed to increased c-Myc. 

(a) γH2AX staining was performed on small intestinal sections of AhCre Apcfl/fl (n = 4), AhCre Mycfl/fl 

(n = 1) and AhCre Apcfl/fl Mycfl/fl (n = 3) mice 4 days post IP injection with 80 mg / kg of β-

napthoflavone (βNF); scale bar = 50µm, inset scale bar = 20µm. (b – e) % of γH2AX positive cells per 

half crypt section are shown: (b) total, (c) low, (d) medium and (e) high γH2AX intensity cells. % of 

>50 half crypts per mouse ± SD are shown. Kruskal-Wallis multiple comparisons test was 

performed; *p≤0.05 and **p≤0.01. 
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Figure 3.26 Deficiency of both β-Catenin and Apc contribute to higher γH2AX levels compared to β-

Catenin deficiency alone. 

(a) γH2AX staining was performed on small intestinal sections of AhCre β-Cateninfl/fl (n = 2) and 

AhCre Apcfl/fl β-Cateninfl/fl (n = 2) mice, 3 days post ost IP injection with 80 mg / kg of β-

napthoflavone (βNF); scale bar = 50µm, inset scale bar = 20µm. (b – e) % of γH2AX positive cells 

per half crypt section are shown: (b) total, (c) low, (d) medium and (e) high γH2AX intensity 

cells. % of >50 half crypts per mouse ± SD are shown. Two-tailed Mann-Whitney test was 

performed; **p≤0.01, **** p≤0.0001) 
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3.3.3  LGR5+ intestinal stem cells often have higher γH2AX levels compared to non-stem cells  

To investigate further the γH2AX levels of the LGR5+ stem cell population in Apc-proficient and -

deficient small intestines, we used the Lgr5-EGFP VilCreERApcfl/fl mouse model. Single cells 

isolated from crypts of Lgr5-EGFP VilCreERApcfl/fl and Lgr5-EGFP VilCreERApc+/+ mice 4 days p.i., 

were analysed by FACS, as shown in (Figure 2.6). Lgr5-EGFP VilCreERApcfl/fl mice had 

approximately 3-fold higher percentage of EGFP positive cells compared to Lgr5-EGFP 

VilCreERApc+/+, although these data were not significantly different. Subsequently, the 

percentage of LGR5+ cells stained with low or high γH2AX fluorescent intensities were analysed 

for both genotypes (Figure 3.27). The Apc-deficient LGR5+ population had significantly more 

cells with high γH2AX fluorescence and there was also a non-significant trend for more cells 

with low γH2AX intensities. 

  

Figure 3.27 γH2AX levels in Apc proficient or deficient LGR5+ stem cells. 

VilCreERLgr5-EGFP Apc+/+ and VilCreERLgr5-EGFP Apcfl/fl mice were IP injected with 80mg/kg of 

tamoxifen for four consecutive days. Mice were sacrificed 4 days post induction and 15 cm of small 

intestine were isolated. Single cell murine epithelial cells were yielded and intracellularly stained for 

γH2AX for FACS analysis. (a) % of LGR5-GFP low or high intensity positive cells (b) % of LGR5 and 

γH2AX double positive cells with low or high γH2AX levels. Error bars indicate SD; Apc+/+ and Apcfl/fl n 

= 3 and 4 respectively; One-tailed Mann Whitney test; * p ≤ 0.05. 
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  Discussion 

Malignant cells are genomically unstable, their genomic instability is usually driven by oncogene 

activation or tumour suppressor gene dysfunction (Rao and Yamada 2013; Halazonetis et al. 

2008). Loss of Apc leads to DNA damage formation, possibly through c-MYC oncogene 

activation, that contributes to excessive cell proliferation and replication fork stalling (Robinson 

et al. 2009), or directly through the inability of microtubules to interact with APC for efficient 

chromosomal segregation (Fodde et al. 2001; Kaplan et al. 2001; Green and Kaplan 2003; Green 

et al. 2005). 

DSBs are the most dangerous form of DNA damage and are recognised by the DDR pathway. 

ATM is the first mediator of this pathway, is activated immediately upon the formation of a DSB 

and directly contributes to the phosphorylation/ activation of other components of the DDR 

pathway, including H2AX and CHK1. Activated CHK1 halts cell cycle progression and also 

activates RAD51, a component of the HR DNA repair pathway. ATM, γH2AX and RAD51 are used 

as DSB markers; ATM and γH2AX detect cells with DSB formed throughout the cell cycle, 

whereas RAD51 is only activated in those generated during cell division (Wang et al. 2014).  

Previous studies in both embryonic stem cells and HCT116 human colon cancer cells have 

demonstrated the importance of APC in chromosomal segregation by its attachment to the 

microtubule spindle and chromosomal segregation (Fodde et al. 2001; Kaplan et al. 2001; Green 

and Kaplan 2003; Green et al. 2005). Two studies have also provided evidence that Apc loss 

contributes to DNA damage in vivo. Reed et al. (2008) used the AhCreApcfl/fl mouse model to 

show that Apc deficiency increased H2AX mRNA expression in intestinal cells, while Méniel et al. 

(2015) used the same model to show that Apc deficiency induced the DNA damage checkpoint 

proteins p53 and p21 in the mouse liver, due to increased levels of DSBs, as quantified by IHC 

for γH2AX and RAD51.  

In this chapter, our aim was to investigate in detail the in vivo effects of Apc loss within the 

murine intestinal epithelium with respect to DNA damage markers, to provide the necessary 

background information for targeting such damaged cells with an anti-H2AX antibody. We used 

VilCreERApcfl/fl and Lgr5CreER Apcfl/fl mice to induce Apc deficiency in the small intestinal 

epithelium and in the intestinal LGR5+ stem cells, respectively, in order to visualize and quantify 

DNA damage using ATM, γH2AX and RAD51 DSB markers and to determine the levels of 

apoptosis caused upon Apc loss. The hypothesis was that Apc loss in the murine intestinal 

epithelium would contribute to DNA damage, either directly or indirectly. 
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3.4.1  Intestinal Apc deficiency increases endogenous DNA damage levels in the small intestine of 

dysplastic (VilCreER Apcfl/fl) CRC mouse model. 

Nuclear ATM activation has been linked with DDR and senescence (Pospelova et al. 2009; 

Pankotai et al. 2009), whereas cytoplasmic staining has been associated with ROS-induced ATM 

activation (Kozlov et al. 2016). Perinuclear phospho-Ser1981ATM staining was previously 

observed in a study where irradiated cells were treated with hypertonic medium which 

inhibited DSB rejoining (Reitsema et al. 2005). Before describing the data relevant to pATM 

staining, it is important to note that IHC staining was performed without the negative control to 

test for non-specific binding of the anti-mouse secondary antibody on the sections; hence, the 

significance of this part of data should be taken with caution.  

The majority of crypt cells with pATM staining had perinuclear staining regardless of the 

genotype (Figure 3.15 a). The reason for this particular localization remains unknown; however 

we can hypothesize that the sequestration of pATM away from the DNA can affect the 

resolution of DNA breaks. The few nuclear pATM stained crypt cells were significantly higher in 

Apc+/+ crypts compared to Apcfl/fl (Figure 3.15 b), which could signify that either Apc+/+ cells have 

more DNA damage compared to Apcfl/fl, which is unlikely according to the literature (Fodde et 

al. 2001; Kaplan et al. 2001) or that Apcfl/fl cells might not be able to efficiently use pATM for the 

recognition and repair of possible DNA damage. In contrast to these speculations is the fact 

that, Apcfl/fl crypts had significantly higher percentage of cells with both nuclear and perinuclear 

staining compared to Apc+/+ (Figure 3.15 c). Nonetheless, more experiments need to be 

performed in order to identify the protein levels of pATM in cells of each staining pattern 

(nuclear, perinuclear or both), from both genotypes, and their efficiency in repairing DNA 

damage. In addition, due to the low frequency of cells with nuclear or both nuclear and 

perinuclear staining in the small intestinal crypts, a higher number of crypts (> 50 half crypts/ 

mouse) should be quantified in order to clarify the importance of these staining patterns.  

VilCreERApc+/+ crypt cells with pATM staining, mainly perinuclear, predominantly resided in +3 

cell positions from the crypt base (Figure 3.14), which could mark a specific cell population of 

the crypt. In contrast, VilCreERApcfl/fl crypts had a different and broader pattern of predominantly 

perinculear pATM cell positioning (usually at +1 to +4, +7 and +8 crypt cell positions). This could 

be due to the expansion of the crypt area and the decrease in the ability of cells to differentiate 

(Sansom et al. 2004) which reiterates the results of abnormal tissue homeostasis and cell 

migration along the crypt-villus axis and increase the likelihood of Apcfl/fl cells to outcompete 

Apc+/+ cells (Suijkerbuijk et al. 2016). 
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Apc loss in the intestinal epithelium of the VilCreERApcfl/fl mouse model (induced by IP injection) 

increased the number of cells with γH2AX, hence DNA DSB, as early as 2 days p.i. and up to 4 

days p.i. (which is the average life span of this mouse model; Figure 3.4a). Total crypt cell 

number was higher due to increased proliferation of pre-neoplastic Apcfl/fl cells throughout the 

time course (Figure 3.3); hence, the increase in the number of cells with γH2AX staining was 

attributed to the overall increase in the crypt cell compartment (Figure 3.4b). Although the 

percentage of total γH2AX positive cells remained unchanged regardless of the genotype or day 

p.i., the extent of DNA damage (measured by low, medium or high γH2AX intensity) on days 3 

and 4 p.i. by IP injection was significantly higher in VilCreERApcfl/fl compared to VilCreERApc+/+ 

mice, which was most probably caused by direct or indirect effects of APC loss and not by 

increased crypt cell number (Figure 3.6). 

It was necessary to identify the day post induction that resulted in similar, high levels of γH2AX 

following oral administration in order to adjust the animal experiment performed at Oxford 

accordingly. IHC counting of γH2AX within the proximal small intestine showed that on day 3 p.i. 

there were similar, but not the same, numbers of γH2AX-positive cells within the crypt following 

either gavage or IP injections. Albeit IP injection generally resulted in a slightly higher γH2AX 

staining levels compared to oral gavage, the latter technique resulted in the further separation 

of γH2AX staining levels between the two groups (Apc+/+ and Apcfl/fl; Figure 3.7 c). Hence, when 

tamoxifen was administered in mice by oral gavage, the percentage of γH2AX positive cells at 

day 3 p.i. was significantly higher in Apc-deficient cells compared to Apc-proficient cells (Figure 

3.10). 

Furthermore, IHC staining intensity can be used only as a semi-quantitative approach because it 

cannot be directly related to the extent of DNA damage and it is very difficult to identify foci. 

Using IF and the nuclear γH2AX foci quantification (Figure 3.11), it was demonstrated that there 

were significantly increased numbers of cells with γH2AX foci in IP-induced VilCreERApcfl/fl mice 

compared to VilCreERApc+/+, supporting the interpretation that oral induction of recombination 

is magnifying differences between the Apcfl/fl and Apc+/+ models which are already present, 

rather than having a different biological effect. 

γH2AX+ cell number quantification in VilCreERApc+/+ and VilCreERApcfl/fl derived intestinal 

organoids recapitulated the in vivo results (Figure 3.12, Figure 3.10a and Figure 3.11). This 

suggested that the increase in the number of cells with DNA damage in organoids was not a 

result of DNA DSB formation at LoxP sites being recombined by Cre activity, because the loxP 

flanked Apc exon was recombined in vivo, and also because the VilCreERApcfl/fl organoid culture 

media did not allow the growth of non-recombined VilCreERApcfl/fl cells, due to lack of R-
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SPONDIN, which supports WNT signalling activation and cell survival. Therefore, cells growing 

under these conditions must already have recombined the loxP-flanked exons prior to plating. 

Although Cre recombinase is expressed continuously, it could not create new DNA breaks in 

recombined cells with a single remaining loxP site while growing in culture. Hence, the 

agreement between in vivo and ex vivo results, imply that Apc-deficiency contributes to increase 

in DNA damage. 

Apc-deficient cells employ the HR pathway to repair at least a portion of the DSBs caused in 

dividing cells, as evidenced by an increase in RAD51+ crypt cells (Figure 3.17). Moreover, 

apoptosis is one of the biological processes which is disturbed after APC loss of function, which 

hyperactivates WNT signalling and leads to c-MYC induced expression of pro-apoptotic proteins 

(Askew et al. 1991; Dang 1999). APC is also linked to aberrant mitotic spindle formation and 

polyploidy (Dikovskaya et al. 2007) which might lead to aberrant mitosis and mitotic 

catastrophe-induced apoptosis through a p53-independent mechanism (Merritt et al. 1997). 

Unrepaired DNA damage can also lead to cell death by apoptosis via p53 (Rogakou et al. 2000). 

Our data showed that apoptosis is induced in Apc-deficient cells on days 3 and 4 p.i. (Figure 

3.19),as previously described (Sansom et al. 2004), and that γH2AX pan-nuclear staining could 

mark apoptotic cells (Figure 3.22), as demonstrated in previous studies (Bonner et al. 2008; 

Solier and Pommier 2014). Due to the fact that this mouse model has a short lifespan we could 

not assess whether the apoptotic index in those organoids eventually reverts back to basal 

levels. Interestingly, apoptosis in ex vivo growing organoids was independent of Apc status 

(Figure 3.23), probably because Apc-proficient organoids were constantly supplied by R-

SPONDIN which kept the WNT signalling pathway levels high. This could imply that apoptosis in 

wt organoids in vitro was artificially elevated because of the need to add R-SPONDIN. Another 

possible explanation for this results could be the fact that apoptosis induction in Apc-deficient 

cells requires the cooperation of the immune system, which is absent from the cell culture 

system; therefore, Apc-deficient organoids might have artificially low apoptosis in culture. 

Lastly, a combination of both could also explain these results. 

3.4.2  Investigating the mechanisms by which Apc deficiency contributes to DNA damage 

Apc-deficient small intestine had more LGR5+ stem cells than Apc-proficient intestine, because 

normal intestinal cell differentiation was abolished (Sansom et al. 2004). Moreover, Apc-

deficient LGR5+ stem cells were more prone to DNA damage when compared to normal LGR5+ 

stem cells. 
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To exclude the possibility that increased DSBs in crypt cells following Apc loss was due to the 

Cre-LoxP recombination itself, we knock-out the exogenous LacZ gene using the VilCreER LacZfl/fl 

mouse model. This resulted in more crypt cells with DNA damage, often at higher levels, as 

indicated by more intense γH2AX staining, compared to wt (VilCreER; Figure 3.24). However, the 

number of cells with DNA damage was significantly lower than in Apc-deficient intestine, which 

indicates that although recombination itself induces some level of DNA damage 3 days p.i. in 

the VilCreER Apcfl/fl mice, additional high levels of damage are caused by deficiency of the 

particular gene, Apc. Interestingly, even wt cells had a background percentage of crypt cells 

positive, mainly, for low levels of DNA damage (< 9%), which is probably due to the rapid 

turnover of cells within this tissue (Darwich et al. 2014) as well as general repair of endogenous 

damage. It is worth noting that VilCreERApcfl/fl-derived intestinal organoids after 2 passages had 

retained the increased DNA damage levels when compared to wt (Figure 3.10) suggesting that 

Apc-deficiency, and not only recombination of loxP sites, contributes to the increase in DNA 

damage. 

 Our next step involved examining whether this increase was a result of WNT signalling 

activation or due to Apc gene loss itself, which is known to be involved in chromosomal 

segregation (Green and Kaplan 2003; R Fodde et al. 2001; K B Kaplan et al. 2001). This was 

assessed in two ways; the first combined deficiency of Apc and c-Myc, a target gene of the WNT 

signalling pathway, which restored the Apc loss-associated crypt-progenitor like phenotype 

(Figure 3.25a; Sansom et al. 2007) and reduced the percentage of cells with medium or high 

levels of DNA damage (Figure 3.25 b). This may imply that DNA damage is a result of WNT 

signalling pathway activation and, more specifically, of c-Myc transcription, either through 

excess proliferation and replication fork collapse (Robinson et al. 2009) or generally through 

oncogene-mediated DNA damage formation (Halazonetis et al. 2008). 

The second approach combined Apc and β-catenin deficiency. β-CATENIN is the essential 

regulator of transcription of canonical WNT signalling target genes, hence even in the absence 

of functional APC, the absence of β-CATENIN does not allow activation of the canonical WNT 

pathway. Therefore, combined deficiency of Apc and β-catenin contributed to approximately a 

2-fold increase in the number of γH2AX positive cells compared to β-catenin deficiency alone. 

These results can be interpreted as Apc-deficiency contributing to an additional increase in DNA 

damage on top of that caused by β-catenin loss. Due to the fact that both APC and β-CATENIN 

are involved in chromosomal segregation through mitotic spindle attachment and protection 

from genomic instability (R Fodde et al. 2001; Aoki et al. 2007), it might be expected that 
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combined deficiency of both would increase damage when compared to single β-catenin 

deficiency.  

On the other hand, this data contradicts the result of combined c-Myc and Apc deficiencies, 

with regard to increased DNA damage through canonical WNT signalling activation. 

Nevertheless, c-Myc transcription can be activated through other pathways besides canonical 

WNT signalling, such as PI3K/AKT and MAPK (Zhu et al. 2008). Also, it is not yet explored 

whether non-canonical WNT signalling can activate c-Myc transcription, as most work has been 

done on cytoskeleton and cell movements rather than target gene expression (Wallkamm et al. 

2016).  

  Summary  

The hypothesis that Apc deficiency drives DDR was supported by γH2AX nuclear accumulation in 

Apc-deficient dysplastic crypts. Apc-deficient cells employ the HR pathway, evidenced by 

increased number of RAD51 positive cells, to repair at least a portion of DSBs caused in dividing 

cells. Although the Cre-LoxP recombination technique used to excise Apc in VilCreER Apcfl/fl mice 

induced some DNA damage, the majority was caused by deficiency of the Apc gene, most likely 

generated through WNT signalling pathway activation and more specifically, by c-Myc 

transcription. However, we cannot eliminate the possibility that increased DNA damage by Apc-

deficiency is also caused by APC loss of function related to microtubule spindle binding and 

chromosomal segregation (Green et al. 2005; K B Kaplan et al. 2001).  

This chapter showed evidence that Apc-deficient murine LGR5+ stem cells had more DNA 

damage than wt, which led to the hypothesis that tumours originating from Apc-deficient LGR5+ 

stem cells would also have increased DNA damage levels. This study is described in chapter 5. 

 



149 

 

4. Apc status influences the DNA damage repair pathway in the tumour CRC 

mouse model (Lgr5CreERApcfl/fl) 

  Introduction 

Although the VilCreERApcfl/fl mouse model is useful in studying the effects of Apc deficiency in 

the intestine due to the rapid transformation of a large part of the tissue and the intense 

dysplastic phenotype that follows loss of the gene (chapter 3), it does not reflect the random 

sporadic tumourigenic events occurring in patients initiated by transformation of a single cell 

(Barker et al. 2009). Therefore, the Lgr5CreERApcfl/fl tumour mouse model was also used, as Apc 

deficiency can be induced specifically in the intestinal stem cell compartment, leading to 

adenoma formation which is more clinically relevant (Barker et al. 2009). This model allows the 

investigation of different developmental stages of cancer, i.e. from early/dysplastic up to small 

and large adenoma formation. In this chapter, we visualised and quantified DNA damage in 

detail in the intestines of mice where Apc has been deleted using the stem cell-specific 

promoter Lgr5CreER in order to investigate the hypothesis that Apc deficiency leads to DNA 

damage. 

 

 DNA damage levels in Apc-deficient tumour CRC mouse model 

(Lgr5CreERApcfl/fl) 

4.2.1 Wnt signalling activation in lesions of the Lgr5CreERApcfl/fl mouse model 

To investigate γH2AX levels upon Apc deficiency in the intestinal stem cell compartment, IF and 

IHC analyses were performed in this model prior to and after tumour formation. WNT signalling 

activation can be observed by IHC for nuclear β-catenin. Therefore, to track WNT signalling 

hyperactivation occurring post Apc deletion in the intestinal stem cell compartment, mice were 

culled at various time points (days 4 – 6, 9, 12, 15, 27, 33) after induction. Small and large 

intestines were stained for β-catenin, as shown in Figure 4.1 and Figure 4.2, respectively. At 

days 4 and 5 there were single cells positive for nuclear β-catenin in both small and large 

intestines (Figure 4.1 a and b respectively). At days 6 and 9 clusters of nuclear β-catenin positive 

cells were present in otherwise phenotypically normal intestinal structures (Figure 4.1 c and d 

respectively). From day 12 p.i. small lesions were present which were positive for nuclear β-

catenin and at days 27 and 33 larger lesions (adenomas) were also visible (Figure 4.1 e - h).
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Figure 4.1 Immunohistochemical staining for β-catenin in the Lgr5CreER Apcfl/fl small intestine over a time 

course post induction. 

Paraffin sections of 24h 10% formalin-fixed small-intestinal rolls were immunostained. Brown 

stain indicates β-catenin presence; nuclear stain signifies stabilised β-catenin and WNT 

targeted gene transcription. Images captured under bright field microscope, scale bar = 

50μm, n = 1 for each time-point. 
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Figure 4.2 Immunohistochemical staining for β-catenin in the Lgr5CreER Apcfl/fl large intestine over a time course 

post induction. 

Paraffin sections of 24h 10% formalin fixed large-intestinal rolls were immunostained. Brown stain indicates 

β-catenin presence; nuclear stain (arrowheads) signifies stabilised β-catenin and WNT targeted gene 

transcription. Images captured under bright field microscope, scale bar = 50μm, n = 1 for each time-point. 
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4.2.2 Quantification of γH2AX levels in lesions of the Lgr5CreERApcfl/fl mouse model 

Early after Apc deficiency, the levels of DNA damage within the small intestine were quantified. 

Lgr5CreERApcfl/fl mice were orally administered with tamoxifen (80mg/kg for 4 days) and 

humanely killed at days 0, 5, 6 and 9 p.i.. Small intestinal sections were stained for γH2AX 

(Figure 4.3) by IF in order to identify any small differences in the cell number with γH2AX foci, as 

γH2AX positive cells were more discretely stained when identified using this technique 

compared to IHC. Although more biological replicates will be required to fully validate the IF 

pattern for days 5 and 9 p.i., there is an indication that more γH2AX foci are observed in the 

crypts early post induction compared to non-induced (day 0 p.i.) samples.  

Quantification of γH2AX positive cells was carried out as in Figure 2.3 for single crypt lesions, 

microadenomas, small adenomas and large adenomas of the small and large intestines (Figure 

4.4). Small and large intestines of mice 50 days p.i., had 11.9±3.6% and 8.7±4.0% of γH2AX 

positive cells/ lesion, respectively (Figure 4.5 a). Generally, small intestines had a significantly 

higher % of γH2AX positive cells in single crypt lesions and microadenomas when compared to 

the large intestines. γH2AX percentage was proportional to the stage of the lesion, being higher 

in more advanced compared to early lesions (Figure 4.5 b). In the small intestine, large 

adenomas had significantly higher levels of γH2AX positive cells compared to single crypt 

lesions. Similarly, in the large intestine, small and large adenomas had significantly higher 

percentage of γH2AX positive cells compared to microadenomas. In phenotypically normal 

crypts of the small and large intestine there were only 3±2 or 1±1 γH2AX positive cells, 

respectively (9±6% and 2±3% of γH2AX positive cells/ crypt; Figure 4.6 a and b). In the small 

intestine, the percentage of γH2AX positive cells in large adenomas was significantly higher 

compared to phenotypically normal crypts, whereas in the large intestine, phenotypically 

normal crypts have significantly lower percentage of γH2AX positive cells compared to the rest 

of lesions.  
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Figure 4.3 DDR response early after Cre-induced Apc excision in the Lgr5 stem cells of the small intestine.  

Lgr5CreERApcfl/fl induced with 80mg/kg of tamoxifen for 4 days were killed at days 0, 5, 6 and 9 p.i.. (a) 

Representative images of γH2AX IF stained sections of the small intestinal gut rolls. Dotted line shows 

the barriers of the crypt epithelium. Scale bar = 10 μm. (b) Quantification of the average number of foci 

in a nucleus of crypt epithelial cells according to their position from the base of the crypt (min 4 crypts/ 

time point). Biological replicates n = 4, 1, 3, 1 for days 0, 5, 6, 9 p.i. respectively.  
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a 

Fiugre 4.4 (b) and figure legend are on the next page.  
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Figure 4.4 Apc deficiency in the murine small and large intestinal LGR5+ cells leads to the development of lesions 

with γH2AX+ cells.  

γH2AX quantification in the Lgr5CreERApcfl/fl lesions. IHC staining for γH2AX on intestinal sections of 50 days p.i. 

Lgr5CreERApcfl/fl. Representative bright field images of the (a) small and (b) large intestine for each lesion type: 

(i) normal crypts, (ii) single crypt lesion, (iii) microadenomas, (iv) small adenomas and (v) large adenomas. Scale 

bars: i – iv = 50 µm, v = 200 µm; arrow heads indicate γH2AX positive cells; biological samples n = 3. 

b 
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Figure 4.5 Apc deficiency in the murine small and large intestinal LGR5+ cells leads to the development 

of lesions with γH2AX+ cells. 

(a) Percentage of γH2AX+ cells in all lesion types of the small and the large intestine. Normally 

distributed data analysed using two-tailed T-test; NS; p > 0.05.  

(b) Tukey-style box and whiskers plot represents the percentage of the average γH2AX cell number 

in different types of lesions per field of view within the small intestine (single crypt n = 73, 

microadenoma n = 29, small adenoma n = 27, large adenoma n= 26) and the large intestine (single 

crypt n = 76, microadenoma n = 42, small adenoma n = 31, large adenoma n= 21). The running mean 

of the percentage of the average γH2AX cell number within a field of view for each lesion was used 

to identify the required number of samples to be quantified. Biological samples n = 3. One-way 

ANOVA multiple comparisons test; *p < 0.05, ** p < 0.005. 
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Figure 4.6 γH2AX quantification in the Lgr5CreERApcfl/fl single crypt lesions and phenotypically normal crypts. 

γH2AX quantification in the Lgr5CreERApcfl/fl mouse model in phenotypically normal or dysplastic whole 

crypt sections of the small and large intestine. γH2AX IHC staining was performed on intestinal sections of 

Lgr5CreERApcfl/fl mice, 50 days p.i.. (a) The number of γH2AX positive cells within phenotypically normal 

whole crypt sections of the small and the large intestine (n = 91 and 87, respectively) is shown. (b) 

Percentage of the average γH2AX positive cells ± SD in sections of the small intestine (phenotypically 

normal crypts, n = 91; single crypt lesions, n = 73, microadenoma, n = 29; small adenoma, n = 27; large 

adenoma, n= 26) and the large intestine (phenotypically normal crypts, n = 87; single crypt, n = 76; 

microadenoma, n = 42; small adenoma, n = 31; large adenoma, n= 21) are shown. The running mean for 

both normal and dysplastic crypts was used to identify the required number of crypts to be quantified. 

Tukey-style box and whiskers plot was used to represent the data. Two-tailed Mann-Whitney test was 

performed; **** p < 0.0001; Biological samples for (a) and (b) n = 3. 
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 Discussion 

This chapter investigated the in vivo effects of Apc loss within the murine intestinal, to broaden 

our knowledge in this system in order to design experiments for targeting tumour cells using a 

radioisotope conjugated anti-γH2AX antibody. We used a more clinically relevant mouse model, 

Lgr5CreER Apcfl/fl, to induce Apc deficiency in the intestinal LGR5+ stem cells, in order to visualize 

and quantify DNA damage γH2AX DSB marker. The hypothesis was that Apc loss in the murine 

intestinal epithelium would contribute to DNA damage in tumours. 

Increased levels of γH2AX foci in cells of the Lgr5CreERApcfl/fl mouse model was observed in 

multiple stages of tumour development. This indicates that DNA damage is not only induced 

early after Apc deficiency (Figure 4.3) but is also present at later stages of tumour development 

(Figure 4.4). In addition, it was observed that more advanced tumours had higher levels of DNA 

damage, suggesting that the progression of a lesion allows further cells to acquire DNA damage 

(Figure 4.6 b). Generally, large intestinal tumours had lower levels of DNA damage compared to 

those in the small intestine, which might suggest they have different mechanisms for coping 

with DNA damage. In human patients, sporadic tumours usually occur in the large intestine and 

less often in the small intestine (Aparicio et al. 2014) which suggest different homeostatic 

functions between small and large intestine. 

  Summary  

The hypothesis that Apc deficiency drives DDR was supported by γH2AX nuclear accumulation in 

Apc-deficient intestinal tumour models. Having determined the key parameters of the system, 

we subsequently tested the hypothesis that 111In-anti-γH2AX-TAT antibody could be attracted 

by the endogenous DNA damage signal, γH2AX, present in dysplastic Apc-deficient intestinal 

tissue or intestinal tumours. These studies are described in chapter 5.  
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 In vivo imaging and characterization of CRC mouse models following low 

specific activity 111In-anti-γH2AX-TAT 

5.1 Introduction 

The critical role of APC in intestinal tumourigenesis suppression is well established (Fearon and 

Vogelstein 1990). One of the crucial studies for establishing the role of APC loss in tumourigenesis 

was conducted by Sansom et al. (2004) using an inducible AhCre Apcfl/fl transgenic mouse model, 

which showed that Apc loss throughout the intestinal epithelium immediately results in whole 

intestinal crypt dysplasia. Later it was demonstrated by Barker et al. (2009) that Apc deletion within 

LGR5+ intestinal stem cells is sufficient to drive tumourigenesis.  

In Chapter 3, we demonstrated that Apc deficiency either throughout the intestinal epithelium, or 

specific to intestinal LGR5+ stem cells, results in increased DNA damage in dysplastic crypts or 

intestinal lesions respectively, as indicated by elevated levels of the DSB markers γH2AX and RAD51. 

Cornelissen et al. (2011) have developed 111In-anti-γH2AX-TAT, an 111In radiolabelled antibody that 

recognizes the γH2AX DNA damage marker, can penetrate cell nuclei using a NLS- containing 

peptide (TAT) and can also be tracked in vivo via its radioactive emissions. In a breast cancer 

xenograft mouse model, they imaged in vivo γH2AX caused by DNA damaging agents such as IR or 

bleomycin, using a low specific radioactivity of this RIC, and without significantly increasing the 

number of γH2AX foci/cell. 

This chapter aims to identify the in vivo localization pattern of 111In-anti-γH2AX-TAT (RH2AX) in both 

early CRC and tumour mouse models. We hypothesised that the Apc deficient (Apcfl/fl) intestinal 

tissue would have higher uptake of the RH2AX compared to controls (RIgG). Relevant biological 

outputs from the RH2AX-exposed intestinal tissue are also interrogated in this chapter, in order to 

investigate the effects of the RIC with low specific activity within the tissue. 

5.2 Early CRC mouse model 

5.2.1 111In-anti-γH2AX-TAT localization following tamoxifen IP injection 

To demonstrate that RH2AX localized at sites of the intestine where DNA damage was generated 

after Apc loss, we used the VilCreER Apcfl/fl early WNT signalling deregulation CRC mouse model, due 
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to the high γH2AX levels present in the small intestine at days 3 and 4 p.i. in this mouse (Figure 3.3). 

The maximum life span of this model is 5 days p.i. (Johnson and Fleet 2013), hence RIC treatment 

was performed at day 3 p.i. when γH2AX levels were high. Due to funding and money constraints 

we could not perform a time course experiment to identify the best possible time point for RIC 

treatment and SPECT imaging. However, previous work (Cornelissen et al. 2011 and 2012) showed 

that the RIC uptake in irradiated tumours was similar after 24, 48 and 72 h post treatment. Based 

on the fact that this mouse model has a really short life span post induction, we decided to perform 

SPECT imaging at 24 h after RIC treatment (day 4 p.i.). All experiments using the RIC were 

performed in Oxford, using mouse induction protocols first established in Cardiff. 

Mice were injected with 80 mg/kg tamoxifen or an equivalent volume of corn oil (vehicle) and 3 

days later with the radioactive specific antibody (RH2AX) or its isotype control (111In-anti-IgG-TAT; 

RIgG). Unexpectedly, IP injection of tamoxifen or corn oil caused health issues when carried out at 

Oxford, even with the same reagents as used in Cardiff. Injection of corn oil alone caused rapid 

weight loss and peritonitis to some non-induced mice during the first two days post injection. These 

mice recovered by day 3 post injection; however, some of the tamoxifen-induced mice had to be 

culled at this point due to worsening health status. 

SPECT images acquired at day 4 p.i. from corn oil-injected mice, show RH2AX accumulation in the 

heart, liver, nasal glands and throughout the abdomen (Figure 5.1).  The latter is presumably due to 

inflammation from peritonitis, since the RIC is IV-administered and the inflamed sites are likely to 

accumulate radioactive signal because of higher blood flow. Moreover, free 111In is sequestered by 

the reticuloendothelial system; for example, neutrophils internalize free 111In, thus some may have 

been sequestered by the circulating neutrophils that aggregate in areas of inflammation 

(Castronovo Jr and Wagner Jr 1973; Segal et al. 1976). RIgG accumulated in the liver, kidneys, nasal 

glands, bone joints and abdomen for the same reason. Bone joint accumulation of radioactivity 

following 111In-immunoconjugate treatment is usually observed when 111In is released from the 

antibody and binds to transferrin or is engulfed by neutrophils (Castronovo Jr and Wagner Jr 1973; 

Segal et al. 1976).  

Tamoxifen-injected (hereafter referred to as Apcfl/fl) mice similarly accumulated RH2AX in the heart, 

liver, nasal glands and abdominal site indicated by an arrow in Figure 5.1 (see Figure A.1 in appendix 

for the full panel of SPECT images). There were no obvious differences in RH2AX uptake between 
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Apc+l+ and Apcfl/fl mice; hence we performed biodistribution assays on the organs, to measure and 

compare their radioactivity.  
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Figure 5.1 In vivo DNA damage imaging in VilCreER Apcfl/fl mouse model using 111In-anti-γH2AX-TAT. 

Tamoxifen (3x 80 mg / kg) or vehicle IP injected VilCreER Apcfl/fl mice were treated intravenously with 

111In-anti-γH2AX-TAT or 111In-anti-IgG-TAT (1MBq/μg; 5μg/mouse). Tamoxifen injected and 111In-anti-

IgG-TAT treated group had to be killed before 111In-anti-IgG-TAT treatment. 24h later mice were 

scanned by SPECT/CT imaging. Representative maximum projection images showing the percentage 

of injected dose per gram of tissue (%ID/g) using colour code. White arrow indicates RIC uptake in the 

abdomen. Mouse orientation is indicated with red letters: H= head, F= feet, R= right, L= left; Organs 

are indicated with the letters: h=heart, K=kidney, Li=liver, J= bone joints, N= nasal glands; n = 3 for 

RH2AX treated Apc+/+ and Apcfl/fl groups and n = 4 for RIgG treated Apc+/+ group. 
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At 24h post RIC injection, mice were culled after imaging and biodistribution assays performed. 

Tissue and organ radioactivity is shown in Figure 5.2. In corn oil-administered mice (hereafter 

referred to as Apc+/+) treated with RIgG, radioactivity was > 6% ID/g in blood, liver, spleen, pancreas 

and kidneys 24h after treatment. Administration of RH2AX in Apc+/+ mice resulted in similar 

biodistribution patterns to the RIgG treated Apc+/+ mice, showing > 5% ID/g in blood, liver, spleen, 

pancreas and kidneys but also within the heart, lung, skin and fat. Whilst high accumulation of RIC 

in the these tissues/organs is usually observed (Cornelissen et al. 2011), high RIC uptake in the skin 

and fat is uncommon. However, due to the fact that skin and fat samples were collected from the 

abdominal site it is likely that peritonitis-induced inflammation affected those tissues. Neutrophil 

engulfment of free 111In could possibly be observed in both RH2AX and RIgG treated mice with 

peritonitis due to accumulation of the labelled neutrophils in inflamed areas. However, only a very 

small percentage of 111In is released from the antibody, hence, this could not explain the high 

radioactivity uptake observed at the abdomen of these mice.  Activation of the innate immune 

system in inflamed organs could explain the intense radioactivity uptake in the abdomen, as it 

induces ROS production in the surrounding tissues, which in turn activates the DNA damage 

response, hence H2AX phosphorylation (Martin et al. 2011). Thus, RH2AX (but not the RIgG) could 

accumulate within those tissues. RIC uptake was < 5% ID/g in the stomach and intestines of these 

two groups. In the Apcfl/fl mice, RH2AX treatment resulted in high accumulation of radioactivity in 

the same tissues, i.e. blood, heart, lung, liver, spleen, pancreas, kidneys and fat, and medium RH2AX 

accumulation in the skin; whereas < 2.5% ID/g radioactivity accumulation was observed in the 

stomach and muscle, respectively. A single radioactivity measurement for each mouse was 

obtained for full length non-flushed small and large intestines, including caecum. There was no 

significant difference between the percentage of RIgG uptake in the intestine for both Apc+/+ and 

Apcfl/fl mice (< 5% ID/g) compared to RH2AX uptake in the Apcfl/fl group (~ 5% ID/g). Unfortunately, 

we could not obtain data for the RH2AX uptake in the Apc+/+ group because animals had to be killed 

due to the health issues described above. Thus, we could not compare the RH2AX accumulation 

between Apc+/+ and Apcfl/fl intestines.  
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Figure 5.2 Biodistribution analysis in VilCreER Apcfl/fl mouse model post RIC treatment.  

Tamoxifen IP (3x 80 mg/kg) or vehicle injected VilCreER Apcfl/fl mice were injected intravenously with 

111In-anti-γH2AX-TAT or 111In-anti-IgG-TAT (1 MBq / μg; 5 μg / mouse). 24h later mice were scanned by 

SPECT/CT imaging and then culled. Organs were removed and passed through a γ-counter to quantify 

their radioactivity. The average percentage of injected dose per gram of tissue (% ID / g) is shown for 

(a) all the analysed tissues/organs and (b) specifically for the intestinal tissue (including small and large 

intestines and caecum). 1-way ANOVA, Tukey’s multiple comparisons test was performed; ns p > 0.05; 

n = 3 for RH2AX treated Apc+/+ and Apcfl/fl groups and n = 4 for RIgG treated Apc+/+ group. 
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5.2.2 111In-anti-γH2AX-TAT localization following oral administration of tamoxifen. 

To overcome the unexpected effects of IP corn oil administration, and also to generate more 

widespread yH2AX lesions to provide a greater signal / noise ratio, we next tested the RICs in the 

oral induction VilCreER Apcfl/fl model. At day 3 post oral induction of VilCreER Apcfl/fl mice, 

experimental (RH2AX) or control (RIgG) RICs were intravenously injected (1MBq/μg; 5μg/mouse) 

and SPECT-CT scans performed 24h later (Figure 5.3) as previously following IP injection. Maximum 

projection SPECT images showed a general pattern of RIC accumulation in the heart, liver and 

sometimes in kidneys, which is normally observed in RIC-based in vivo scans (See section 1.4.3 for 

comparison with previous studies). There was some uptake of RH2AX in nasal and Harderian glands, 

which was more prominent in the RH2AX-treated Apcfl/fl mice (See Figure A.2 for full panel of SPECT 

images). Importantly, an abdominal pattern of RIC localization was only seen in RH2AX-

administered mice, indicated in Figure 5.3 by an arrow. 

To further investigate specific RIC uptake in each tissue, mice were killed following imaging and 

biodistribution assays performed (Figure 5.4 a-c). In Apc+/+ or Apcfl/fl mice injected with RIgG, >5% 

ID/g of radioactivity accumulated in the blood, and lungs 24h post intravenous injection. 

Radioactivity uptake in spleen and kidneys of Apc+/+ and Apcfl/fl mice injected with RIgG was <5% 

ID/g and >5% ID/g, respectively. Administration of RH2AX to Apc+/+ mice resulted in similar 

biodistribution in these tissues. Radioactivity uptake of <5% ID/g was observed in the heart, liver 

and pancreas of all three groups. In Apcfl/fl mice treated with RH2AX, >5% ID/g of radioactivity were 

seen in the same tissues (blood, lung, spleen and kidneys) and liver, as well as medium uptake in 

the heart. Radioactivity uptake of <2.5% ID/g in Apc+/+ mice was present in the skin, fat and faeces. 

Apcfl/fl mice had considerably, but not significantly, higher levels (7 to 10-fold increase) of 

radioactivity in their faeces compared to Apc+/+ mice, possibly due to crypt dysplasia causing 

inflamed intestine and diarrhoea. There was a negligible (i.e. <1% ID/g) amount of radioactivity 

present in the stomach and muscle of all groups of mice. In the distal small intestine, radioactivity 

was low and similar for all groups. Importantly, however, in the proximal small intestine, Apcfl/fl mice 

treated with RH2AX had significantly higher radioactivity compared to controls (Figure 5.4 c). In the 

large intestine, radioactivity was also significantly higher in Apcfl/fl mice treated with RH2AX 

compared to Apc+/+ mice however, this is most probably due to reduced uptake within the corn-oil 

administrated group rather than due to higher uptake within the Apc deficiency. 
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Figure 5.3 Imaging intestinal dysplasia in the VilCreER Apcfl/fl mouse model using 111In-anti-γH2AX-

TAT. 

Tamoxifen-induced (3x 60mg/kg) or vehicle gavaged VilCreER Apcfl/fl mice were injected 

intravenously 72 hours later with 111In-anti-γH2AX-TAT or 111In-anti-IgG-TAT (1MBq/μg; 

5μg/mouse). 24h later, mice were imaged through SPECT/CT imaging. Representative maximum 

projection images showing percentage of injected dose per gram of tissue (% ID / g) using colour 

code (n = 3 per group). White arrow indicates RIC uptake in the abdomen. Mouse orientation is 

indicated with red letters: H= head, F= feet, R= right, L= left; Organs are indicated with the letters: 

h=heart, K=kidney, Li=liver, J= bone joints, N= nasal glands, hg = Harderian glands, B= bladder. 
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Figure 5.4 Biodistribution analysis in VilCreER Apcfl/fl mouse model post RIC treatment.  

Tamoxifen induced (3x 60mg/kg) or vehicle gavaged VilCreER Apcfl/fl mice were injected intravenously 

with 111In-anti-γH2AX-TAT or 111In-anti-IgG-TAT (1MBq / μg; 5μg / mouse). 24h later mice were imaged 

through SPECT/CT imaging and then sacrificed. Tissues were harvested and run through a γ-counter to 

record radioactivity. (a) The average percentage of injected dose per gram of tissue (% ID / g) is shown 

for all organs that were removed and specifically for (c) the proximal and distal small intestine and 

large intestine. 1-way ANOVA statistical analysis was performed; p < 0.05. (b) Fold change of the % 

ID/g after normalization to the % ID/g of the Corn-oil + 111In-anti-IgG-TAT group. n = 3 per group. 
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5.3 Tumour CRC mouse model 

Using oral gavage activation in the early CRC mouse model, VilCreER Apcfl/fl, we have shown by in 

vivo SPECT imaging that there was an increased RH2AX uptake in the abdomen of these mice; more 

specifically biodistribution assays showed that early dysplastic intestinal lesions accumulated 

significantly higher levels of the RH2AX due to higher expression of the γH2AX DNA damage 

biomarker. This data has clinical potential for visualising lesions that cannot be identified by normal 

intestinal screening procedures such as colonoscopy. Next, we asked whether established 

macroscopic tumours could be imaged, using RH2AX with low specific activity. While imaging 

macroscopic tumours by RH2AX might have similar sensitivity to current intestinal screening 

procedures for identifying tumours, an additional benefit of specific uptake of RH2AX within 

tumours could be as an indicator of the potential for using a higher specific activity RIC as a 

therapeutic agent. 

5.3.1 111In-anti-γH2AX-TAT localization post oral administration of tamoxifen. 

At day 34 post oral induction of Lgr5CreER Apcfl/fl and Lgr5CreER Apc+/+ mice, RH2AX or RIgG were 

intravenously injected (0.5MBq/μg; 5μg/mouse) and SPECT-CT scans performed 24h later (Figure 

5.5). The total number of mice induced was 6 per group; SPECT-CT scans were planned to be 

performed on n = 3 per group and all mice of each group were dissected for the biodistribution 

assay. However, 6 out of 12 mice induced with tamoxifen had to be killed, due to weight loss, 

before the end point. Hence, the remaining tamoxifen induced mice were randomly distributed in 

two groups (n = 3 / group) to be either treated with RIgG or RH2AX. Based on a pilot experiment 

performed at Cardiff, all mice induced orally by gavage with tamoxifen (80 mg / kg for 4 consecutive 

days) developed macroscopic tumours at day 34 (data not shown). Whilst all 3 mice induced by 

tamoxifen and treated with RIgG had tumours, only 1 out of 3 mice treated with RH2AX had 

tumours. This was only identified after SPECT imaging, during animal dissection.  

Maximum projection of SPECT images showed a general pattern of RIC accumulation in the heart 

and liver. There was a specific accumulation of RH2AX in the abdomen of a Apcfl/fl mouse with 

intestinal tumours (n= 1/3), whereas SPECT images of RH2AX treated Apcfl/fl mice that did not have 

any intestinal tumours (n= 2/3) following dissection, showed no specific abdominal accumulation of 

radioactivity. SPECT images of RIgG treated Apcfl/fl mice with intestinal tumours (n= 2/3) showed 

abdominal accumulation of radioactivity. Consistent with these observations, SPECT images of 
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Apc+/+ mice (which do not develop tumours after induction), did not show any abdominal 

accumulation of RIgG (n = 3/3) or RH2AX (n = 3/3); see Figure A.7 for the entire panel of SPECT 

images). Sometimes, SPECT images identified RIC accumulation in nasal and Harderian glands of 

mice. 

 Biodistribution assay was performed to specify the radioactivity levels of each organ (the total 

number of animals analysed was n = 6, 5, 3 and 3 for the corn oil + RIgG, corn oil + RH2AX, 

tamoxifen + RH2AX and tamoxifen + RIgG groups, respectively; Figure 5.6 a - b). In Apc+/+ mice 

treated with RIgG or RH2AX, radioactivity accumulated in the blood, lungs, liver, spleen, and kidneys 

at 24h post intravenous injection. A similar localization was observed in Apcfl/fl mice that had been 

treated with RH2AX. There was a trend towards decreased uptake of radioactivity in every organ 

and tissue of RIgG treated Apcfl/fl mice. This group of mice, compared to RH2AX treated Apcfl/fl group 

of mice, had significantly lower radioactivity uptake in the blood, spleen, small and large intestines 

and kidneys, whereas their intestinal tumours accumulated radioactivity of approximately 5% ID / g. 

This trend was also observed in RH2AX treated Apcfl/fl mice especially in the small and large 

intestines and pancreas. Unfortunately, only one mouse in the RH2AX treated Apcfl/fl group of mice 

had macroscopic tumours, however its radioactivity uptake was not recorded; therefore, we cannot 

draw any conclusions regarding the specific uptake of RH2AX in tumour tissue.  
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Figure 5.5 Imaging intestinal dysplasia in the Lgr5CreER Apcfl/fl mouse model by 111In-anti-γH2AX-TAT. 

Tamoxifen induced (80 mg / kg; 1x daily for 4 days) or vehicle gavaged Lgr5CreER Apcfl/fl mice were injected 

intravenously with 111In-anti-γH2AX-TAT or 111In-anti-IgG-TAT (0.9 MBq / μg; 5μg / mouse) 34 days p.i.. 24h 

later (day 35) mice were scanned by SPECT/CT imaging. Representative maximum intensity projection (MIP) 

images showing the average percentage of injected dose per gram of tissue (% ID / g) is depicted by colour 

code and it is overlaid to a single slice of the CT image (n = 3 per group). h = heart, Li = liver, I = intestine, B = 

bladder; letters showing mouse orientation: H = head, F = feet, L = left, R = right. White arrows indicate 

presumed intestinal tumours. 
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Figure 5.6 Biodistribution analysis in Lgr5CreER Apcfl/fl mouse model post RIC treatment. 

Tamoxifen induced (80 mg / kg; 1x daily for 4 days) or vehicle gavaged Lgr5CreER Apcfl/fl mice were injected 

intravenously with 111In-anti-γH2AX-TAT or 111In-anti-IgG-TAT (0.5 MBq / μg; 5 μg / mouse) 34 days p.i.. 24h later 

(day 35) mice were sacrificed, after SPECT/CT scan, and tissues were harvested and run through a γ-counter to 

record radioactivity levels. The average percentage of injected dose per gram of tissue (% ID / g) is shown. 

Kruskal-Wallis non-parametric test was performed for each tissue/organ identifying discrepancies in the sum of 

ranks for each one, hence the exact p-value for each test is shown (* p < 0.05, ** p < 0.01, *** p < 0.001). 

Dunn’s multiple comparisons test compared the differences in the sum of ranks for each group within a 

tissue/organ and connected groups have adjusted p-value < 0.05. n = 5, 6, 3 and 3 for the corn oil + RIgG, corn 

oil + RH2AX and tamoxifen + RIgG and tamoxifen + RH2AX groups, respectively.   

 

b 

% ID /g  g ra p h

B
lo

o
d

H
e
a
r t

L
u

n
g

L
iv

e
r

S
p

le
e
n

S
to

m
a
c
h

L
a
rg

e
 i
n

te
s
t i

n
e

T
u

m
o

u
r

S
m

a
ll
 i
n

te
s
t i

n
e

P
a
n

c
re

a
s

K
id

n
e
y

M
u

s
c
le

S
k
in

F
a
t

0

4

8

1 2

1 6

2 0

2 4

2 8

C o rn  o il +  R H 2 A X

C o rn  o il +  R Ig G

T a m o x ife n  +  R H 2 A X

T a m o x ife n  +  R Ig G

%
ID

/g

*

*

* * *
* * *

* *

a 



173 

 

5.4 Low specific activity effects of 111In-anti-γH2AX-TAT on the early CRC (VilCreER 

Apcfl/fl) mouse model 

No weight loss or other adverse effects on the mouse health following RIC treatment have ever 

been recorded by Cornelissen et al. (2012); however, none of the previous studies have ever 

addressed the biological effects that RIC treatment could have on the intestine.  Hence, we looked 

for any differences in biological outputs following treatment with low specific activity of either the 

control or the specific RIC (RIgG or RH2AX, respectively; 1MBq/μg; 5μg/mouse) which might 

indicate localised radiation damage from the RIC. These included γH2AX levels, proliferation and 

apoptosis in the proximal small intestine and the large intestine. Whilst desirable in the therapeutic 

context, such biological effecst would not be desirable in the context of screening and diagnostic 

imaging. 

5.4.1 Small intestine 

γH2AX levels were used as an indicator of DSBs. Tissue recombination alone significantly increased 

γH2AX levels (Figure 5.7a). In non-recombined and recombined small intestine, administration of 

either RIC resulted in increased number of γH2AX positive cells within the crypt (Figure 5.7a), 

indicating that non-specific RIC treatment itself can generate de novo DNA damage. RIC effect was 

even more prominent in the recombined proximal small intestine compared to the non-recombined 

tissue (Figure 5.7a). 

Detailed analysis of the extent of DNA damage was performed by quantification of different levels 

of IHC staining intensity; low, medium and high. The results showed that within non-recombined wt 

small intestine, both RIgG and RH2AX increased the levels of medium and high γH2AX intensity, 

whereas within the recombined small intestine, low, medium and high γH2AX intensity levels were 

increased by the RICs. RIgG treatment in the recombined tissue significantly increased the 

percentage of cells with low γH2AX intensity compared to non-recombined tissue, whereas the 

number of cells with medium γH2AX intensity decreased. There was no change in the number of 

cells with high γH2AX intensity between non-recombined and recombined tissue upon RIgG 

treatment. RH2AX treatment in the recombined tissue significantly increased the number of cells 

with low γH2AX intensity only (Figure 5.7 b, g).  

Higher levels of DNA damage could result in increased apoptosis or decreased proliferation, two 

mechanisms by which cells protect their progeny from acquiring DNA alterations (Insinga et al. 
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2013). Moreover, it has been previously described that Apc loss leads to higher levels of cell death 

by apoptosis (Sansom et al. 2004) which is in agreement with our findings showing higher levels of 

apoptosis (Figure 5.7 c). Either of the RIC treatments significantly increased the apoptotic index in 

the non-recombined tissue compared to untreated. In contrast, there were no significant 

differences in the levels of apoptosis within the recombined tissue after RIC administration. RIgG 

treatment resulted in significantly increased apoptotic levels in the recombined tissue compared to 

non-recombined, whereas the effects of RH2AX treatment on the tissue were independent of tissue 

recombination.  

As expected, proliferation in the small intestines of tamoxifen administered mice was generally 

higher compared to vehicle administered mice, as assessed by staining for Ki67 (Figure 5.7a). 

Unexpectedly, in both non-recombined and recombined intestines, treatment with RIgG increased 

proliferation, in comparison with either untreated (no RIC) or RH2AX-treated (Figure 5.7 d). Both 

treatments significantly increased the number of proliferating cells in the recombined compared to 

the non-recombined tissue.  

In conclusion, RIC treatment induced DNA damage in cells of both Apc-proficient and -deficient 

small intestines, increased cell death by apoptosis and proliferation. 
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Figure 5.7 The biological effects on the small intestine following treatment with 1MBq of 111In-anti-γH2AX-

TAT in the VilCreER Apcfl/fl mouse model.   

Tamoxifen induced (3x 60 mg / kg) or vehicle (corn oil) gavaged VilCreER Apcfl/fl mice were injected 

intravenously 3 days later with 111In-anti-γH2AX-TAT or 111In-anti-IgG-TAT (1 MBq / μg; 5μg/mouse). 24h 

later, mice were scanned by SPECT/CT imaging and then sacrificed to harvest the tissue. The small 

intestine was collected and fixed overnight in 4% PFA, after which it was immersed in 20% sucrose, 

before cryopreservation. 5µm sections were immunohistochemically stained for (a - f) γH2AX, (g) cleaved 

caspase 3 and (h) Ki67. (b) γH2AX staining intensities were stratified into (c) unstained, (d) low, (e) 

medium and (f) high. The scoring for γH2AX and Ki67 was performed manually whilst for cleaved 

caspase-3 automatically using an in-house macro script on Fiji software. The percentage of stained cells 

per crypt is shown ± SD for n = 3. Two-tailed Mann-Whitney test was performed; tables next to each 

graph shows statistics results; * p ≤ 0.05, **p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. 
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5.4.2 Large intestine 

Recombination in the large intestine significantly increased γH2AX levels, similarly to the small 

intestine (Figure 5.8 a). The number of γH2AX positive cells in the Apc-proficient and -deficient large 

intestine was higher following either RIgG or RH2AX administration (Figure 5.8 a). This suggests 

that, similar to the small intestine, RIC treatment caused an additional DNA damage in the large 

intestine, irrespectively of the genotype). 

The effects of RIgG treatment on the overall percentage of cells with combined γH2AX staining 

intensities were independent of tissue recombination (Figure 5.8 a). However, looking at each 

staining intensity level separately, whilst there was a significant decrease in the number of cells with 

medium γH2AX levels following RIgG treatment on the recombined tissue, there was a significant 

increase in the number of cells with high γH2AX levels (Figure 5.8 b, e - h). This probably indicates 

that RIgG treatment in the recombined tissue upgraded DNA damage in cells with medium γH2AX 

staining levels to cells with high γH2AX staining levels. 

Following RH2AX treatment, the percentage of cells with combined γH2AX staining intensities was 

significantly higher in the recombined compared to the non-recombined tissue (Figure 5.8 a), which 

was due to significantly increased number of cells with low, medium and high DNA damage levels 

(Figure 5.8 b, e - h). 

RIgG treatment on the non-recombined tissue had significantly higher levels of low and medium 

γH2AX staining intensities compared to RH2AX. However, on the recombined tissue RH2AX 

treatment had significantly higher levels of medium γH2AX staining intensities compared to RIgG. 

These observations indicate that RH2AX effects on the recombined tissue might be attributed to its 

epitope specificity. 

Both non-recombined and recombined tissues had significantly decreased apoptotic levels after RIC 

treatment (except for RH2AX treatment on the non-recombined tissue, which had no effect 

compared to untreated) and significantly higher proliferation index (Figure 5.8 c and d). Generally, 

the recombined tissue had significantly higher levels of apoptotic and proliferating cells in 

comparison to the non-recombined. Particularly, the effects on proliferation were more profound 

on both non-recombined and recombined tissues following RIgG treatment. 
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Figure continued on next page, legend follows. 
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Figure 5.8 The biological effects on the large intestine following 1MBq of 111In-anti-γH2AX-TAT in the 

VilCreER Apcfl/fl mouse model.  

Tamoxifen induced (3x 60 mg / kg) or vehicle gavaged VilCreER Apcfl/fl mice were injected 3 days later 

intravenously with 111In-anti-γH2AX-TAT or 111In-anti-IgG-TAT (1 MBq / μg; 5 μg / mouse). 24h later mice 

were imaged by SPECT/CT and then sacrificed to harvest tissue. The large intestine was collected and 

fixed overnight in 4% PFA after which it was immersed in 20% sucrose, before cryopreservation. 5µm 

sections were immunohistochemically stained for (a, b) γH2AX, (c) cleaved caspase 3 and (d) Ki67. (b) 

γH2AX staining intensities were stratified into (e) unstained, (f) low, (g) medium and (h) high. The 

scoring for γH2AX and Ki67 was performed manually whilst for cleaved caspase 3 automatically using an 

in-house macro script on Fiji software. The percentage of stained cells per crypt is shown ± SD for n = 3. 

Two-tailed Mann-Whitney test was performed; tables next to each graph shows statistics results; * p ≤ 

0.05, **p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. 
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5.5 Discussion 

Apc tumour suppressor gene mutations are found in 57% of sporadic CRC cases (Furuuchi et al. 

2000). Animal studies have shown that Apc deficiency alone within the intestine can initiate 

tumourigenesis (Sansom et al. 2004). Coupled with increased cellular proliferation and decrease in 

differentiation, Apc deficiency increases the levels of H2AX transcriptional levels (Reed et al. 2008). 

Data from this project, described in detail in section 3.2, shows that irrespective of crypt size, the 

number of cells with γH2AX foci is also increased in Apc-deficient mouse tumour models.  

Cancer cells tend to be genomically unstable and many cancer treatments work by inducing DNA 

lesions. Thus, cancer cells have higher levels of DNA damage compared to normal cells (Negrini et 

al. 2010). To exploit this, Cornelissen et al. (2011) have developed 111In-anti-γH2AX-TAT, a 

radioactive antibody that accumulates at sites of DNA damage in vitro and in vivo, and with the 

potential for numerous clinical applications, such as identifying surgical margins and non-

macroscopic tumours. It can access any cell; however, its retention within the nucleus depends on 

its specificity for γH2AX. 

We aimed to image DNA damage in two conditional intestine-specific Apc-deficient mouse models, 

without prior treatment with IR. One mouse model represented the early stages of CRC 

development, whereas the other represented established macroscopic tumours. Our hypothesis 

was that soon after intestinal Apc deficiency, or within well-established Apc-deficient tumours, 

there would be significantly higher levels of endogenous γH2AX foci. We could then be able to 

identify the presence of abnormal pre-cancerous Apc-deficient intestinal regions in vivo using SPECT 

imaging. By identifying the biodistribution of the RIC within these mouse models, we assessed 

whether it localised specifically to Apc-deficient regions.  

5.5.1 In vivo imaging of early intestinal lesions with 111In-anti-γH2AX-TAT antibody.  

In vivo SPECT-CT imaging 24h after treatment with low SA RH2AX or RIgG (1 MBq/μg) in the early 

CRC mouse model (VilCreER Apcfl/fl), induced by IP injection of tamoxifen, showed no obvious 

differences in the pattern of RIC localization. Unfortunately, IP injection of the vehicle (corn oil) or 

tamoxifen caused unexpected peritonitis to mice, in the Oxford animal facility, which had not been 

observed previously at Cardiff. This occurred despite the fact that the same protocol was carried 

out at Oxford by an experienced and competent personal licence holder, using identical reagents 

and equipment, on mice that were transferred from Cardiff’s animal facility to Oxford.  When 



183 

 

injected in a control animal, RIC is usually distributed in organs rich in blood vessels such as heart 

and liver (Cornelissen et al. 2012), hence inflammation in the abdomen of these control mice, due 

to peritonitis, altered SPECT imaging results, showing radioactivity accumulation throughout the 

abdomen. 

The simplest way to overcome this problem was to change our induction method. Using oral 

gavage, which also had a better recombination compared to IP injection (Figure 3.6), resolved the 

peritonitis problem caused by IP, resulting in SPECT images which had otherwise normal RIC 

biodistribution, except for the intense RH2AX uptake in the upper intestinal track.  Subsequent, 

radioactivity measurements from each organ, confirmed the SPECT imaging results. Namely, the 

proximal small intestine and the large intestine as a whole, were the only tissues with significantly 

higher levels of uptake of the specific RIC (RH2AX). High RH2AX uptake within the Apc-deficient 

small and large intestines was not previously observed in other mouse models with healthy 

intestinal tissue (Cornelissen et al. 2012). This demonstrated that RH2AX was prevalent in tissues 

where DNA damage was present without the additional need of other sources of DNA damage. 

Therefore, Apc deficiency alone is enough for the attraction of RH2AX due to higher γH2AX 

expression. 

5.5.2 Low specific activity effects of RIC in the intestine of the early CRC mouse model 

RIC treatment increases the DNA damage levels of healthy and Apc deficient small and large intestines  

Consistent with data from section 3.2, Apc deficiency increased the levels of DNA damage within 

the small and large intestine by additionally 6% and 13%, respectively. Both control and specific RIC 

(i.e. RIgG and RH2AX, respectively) had additionally 7 - 8% and 15 - 21% of cells with DNA damage in 

Apc-deficient small and large intestines, respectively. This effect was also observed in Apc-wt mice, 

as the RIC treatment increased the number of cells with DNA damage by additionally 4-5% and 11-

25% in the small and large intestines, respectively. From these results, it can be extrapolated that 

RIC treatment has a greater effect on γH2AX levels in the large intestine compared to the small 

intestine, which suggests different susceptibilities to cellular insults between the two tissues. In the 

Apc-wt small intestine, RIgG and RH2AX increased the number of cells with medium and high γH2AX 

intensity levels whereas, in the Apc-deficient small intestine, they increased the low and medium 

γH2AX intensity levels. In the Apc-wt large intestine, RIgG and RH2AX increased the number of cells 

with low and high γH2AX intensity levels whilst particularly RIgG increased the number of cells with 

medium γH2AX intensity. In the Apc-deficient large intestine, RIC increased only low γH2AX 
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intensity levels. The increase in the extent of DNA damage in the presence of either of the two RICs, 

signifies that even low specific activity RIC can alter in some extent the DNA damage content, even 

where the genome is unaltered, most likely through ROS or directly through ionization of DNA. It is 

unknown, though, whether RH2AX generates more γH2AX foci in cells that already have γH2AX foci, 

or in cells with no previously existing γH2AX foci. The indirect effects or otherwise called ‘the 

bystander effect’ of radiation could also be a reason for the increase in the number of cells with low 

DNA damage (Nagasawa and Little 1992). This data also fuels the hypothesis that Apc status might 

affect the susceptibility of cells to low specific activity RIC, or that Apc-deficient cells cannot repair 

the low levels of DNA damage as efficiently as healthy cells, which is consistent with studies that 

link Apc deficiency with genomic instability (Fodde et al. 2001; Leslie et al. 2003; Aoki et al. 2007; 

Dikovskaya et al. 2007; Méniel et al. 2015).  

Levels of apoptosis vary between small and large intestines in response to treatment with RIC. 

In the healthy small and large intestines, apoptosis of crypt cells is a rare event (Figure 5.7 c Figure 

5.8 c); however, treatment with either the specific or non-specific RIC significantly increased the 

levels of apoptosis in the small intestine. This might be attributed to the presence of ROS, which 

oxidise proteins and damage DNA, leading to oxidative stress and cell death (England et al. 2006). 

For the actively proliferating cells, this could be interpreted as a DNA integrity protection 

mechanism.  

In wt large intestine, RH2AX did not affect the apoptotic index of the healthy tissue; this could also 

be associated to the unchanged γH2AX levels following RH2AX treatment. However, the non-

specific RIC treatment decreased the levels of apoptosis in wt large intestine. The different RIC 

effects on apoptosis between wt small and large intestines indicate that changes in apoptosis could 

also be attributed to different response mechanisms to ROS presence between the two tissues.  

 In both small and large intestines, Apc loss induced apoptosis (Figure 5.7 c and 5.8 c) which is in 

agreement with the previous findings of Sansom et al. (2004). Following Apc loss, WNT signalling is 

hyperactivated; this drives c-Myc transcription, which in turn is known to induce proliferation and 

apoptosis (Prendergast 1999; Vafa et al. 2002; Pelengaris et al. 2002). Mitotic cell death might be 

another reason for the increased apoptotic levels, due to the role of APC in mitotic spindle 

formation, or due to replication-stress caused by excess proliferation (Vitale et al. 2011; Fodde et al. 

2001; Kaplan et al. 2001).  
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In the Apc-deficient small intestine, RIC treatment did not further increase the number of cells 

undergoing apoptosis. This could suggest that the protective mechanism against ROS insult might 

no longer function properly following Apc loss. As such, APC might be playing an additional role in 

protection from DNA damage and accumulation of oxidised proteins, as it has been previously 

linked with respiratory ROS-dependent apoptosis (Cristofaro et al. 2015).  

In the Apc-deficient large intestine, RIC treatment significantly decreased the number of cells with 

medium γH2AX staining (Figure 5.8 g), which might have contributed to the unexpected decrease in 

the number of apoptotic cells, without entirely abolishing the Apc loss-related apoptosis 

RIC treatment in the Apc-deficient intestine leads to increased intestinal proliferation 

Increased proliferation following Apc loss is one of the features previously observed by Sansom et 

al. (2004). Our data also showed small but significant increase in small and large intestinal 

proliferation levels, between wt and Apc-deficient mice.  

In wt mice, the specificity of the RIC of low SA (1MBq/μg) had different effects on proliferation of 

the intestinal crypt epithelium depending on the tissue treated. Whilst in the wt or Apc-deficient 

small intestine only RIgG treatment increased proliferation (Figure 5.7d), in the large intestine, both 

types of RIC treatment, but more profoundly the RIgG, resulted in a significant increase in 

proliferation Figure 5.8 d). This implies that low specific activity RIC treatment can induce higher 

proliferation when not targeted to the nucleus, which could be a cellular response to ROS 

production and protein oxidization. 

In the presence of DNA damage the specificity of RH2AX sequesters it in the nucleus compared to 

RIgG whose concentration in the cytoplasm of cells is higher compared to RH2AX, as reported by 

Cornelissen et al. (2007). This explanation only satisfies the small, but not large, intestinal responses 

to RIC as they both had comparable DNA damage levels.  

5.5.3 In vivo imaging of Apc deficient intestinal tumours  

SPECT imaging following 24h treatment with low SA RIgG or RH2AX (0.9 MBq / μg) in the intestinal 

tumour mouse model (Lgr5CreER Apcfl/fl) showed variable radioactivity uptake in several organs. A 

general radioactivity pattern was observed in the heart, liver and sometimes carotid arteries and 

bladder. Importantly, radioactivity accumulation was also observed in various areas of the 

abdomen, particularly in Apcfl/fl mice following treatment with RIC, mainly over the vena cava where 
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the large intestine lies, and at the upper part of the abdomen, where the small intestine lies and is 

likely to develop tumours in this mouse model.  

The imaging parameters used for these in vivo imaging experiments gave a sufficient signal-noise 

ratio to detect the hot-spot zones within the abdomen. However, it may be possible to improve the 

imaging performance by either increasing the time post treatment before the SPECT scan, which 

could give a better tumour to blood ratio, thereby lowering background levels, or by optimizing the 

amount of antibody injected into the mice, which could again result in better tumour to blood ratio.  

Whilst biodistribution assays showed a radioactivity uptake in the blood, lungs, liver, spleen, and 

kidneys of Apc+/+ mice treated with RIgG or RH2AX, and Apcfl/fl mice treated with RH2AX, in RIgG 

treated Apcfl/fl mice there was decreased uptake of radioactivity in the blood, spleen, small and 

large intestines and kidneys, whereas their intestinal tumours accumulated radioactivity of 

approximately 5% ID / g. The generally lower radioactivity levels in organs and tissues of RIgG 

treated Apcfl/fl mice could be a result of RIgG sequestration away from the bloodstream of the 

animal, in intestinal tumours or in faeces of Apcfl/fl mice which usually have irregular defecation due 

to tumour development.  

Increased tumoural radioactivity of the RICs is usually due to Enhanced Permeability and Retention 

(EPR) of macromolecules with molecular weight > 40 kilo Daltons (kDa) in tumours as opposed to 

normal tissue (Matsumura and Maeda 1986; Greish 2007). Hence, the radioactivity uptake of 

approximately 5% ID / g in tumours of RIgG treated Apcfl/fl mice, is likely to be due to the EPR effect. 

Unfortunately, only one mouse in the RH2AX treated Apcfl/fl group of mice had macroscopic 

tumours. More biological replicates need to be obtained, to determine whether RH2AX specificity 

to γH2AX could enhance tissue radioactivity uptake. 

5.6 Summary 

In conclusion, in vivo imaging of intestinal dysplasia can be achieved with low SA RH2AX treatment 

of mice, following intestine-specific deletion of Apc by oral administration of tamoxifen. Apc-

deficient intestinal tumours can also be imaged by low SA RIgG, likely to be due to the EPR effect, 

and possibly by low SA RH2AX.  The latter remains to be confirmed by increasing the animal number 

with intestinal tumours treated by RH2AX. This will also allow the comparison of RH2AX uptake to 

RIgG in order to assess whether any of its uptake is likely to be a result of RH2AX specificity to DNA 



187 

 

damage in tumours. In the next chapter, we describe the development of ex vivo human patient-

derived CRC spheroid model of γH2AX focus formation for testing the therapeutic effects of RH2AX. 
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 Development of ex vivo human patient-derived models of γH2AX focus 

formation for testing of RH2AX therapy 

6.1 Introduction 

This project explored the use of RH2AX as a theragnostic antibody in CRC mouse models; 

however, it is well known that the translation of drug studies into the clinic can be hindered by 

multiple factors, including complicated genetic mutations involved in human tumour 

development. Hence, we speculated that γH2AX levels in human tumours may vary from person 

to person. Our ultimate aim, which due to time constraints was not accomplished, was to 

induce DNA damage in human-derived CRC spheroids with low γH2AX levels and subsequently 

treat them with high specific activity of RH2AX antibody to investigate its killing effects, similarly 

to the study of Cornelissen et al. (2011) on breast cancer cell lines. Hence, this chapter is 

looking into using common chemotherapeutics, cisplatin and 5FU, to induce DNA damage in 

human CRC cell line (HCT116)-derived spheroids and Apc-deficient mouse-derived organoids, 

respectively.  

6.2 Inducing DNA damage in intestinal organoids using common 

chemotherapeutics  

6.2.1 Variable γH2AX levels in human tumour derived spheroids. 

To investigate γH2AX levels in human CRC, we used 4 lines of human CRC tumour-derived 

spheroids (isolations 38, 58, 65 and 74) generously provided by Prof. Trevor Dale’s group. 

Whole mount γH2AX immunofluorescence and confocal imaging were performed and γH2AX 

staining gave variable patterns in the different tumour isolations. Quantification in organoids 

derived from isolation no.58 (Figure 6.1) showed that 5.3 ± 4.7% of cells were positive for 

γH2AX. Most cells were either of low (≤10 foci) or high (panuclear) γH2AX intensities. 
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Figure 6.1 γH2AX levels in human CRC tumour derived 

spheroids 

(a) Maximum projection representative images of 

organoids from isolation no. 58, 38, 74, 65. Scale bar = 50 

μm (b) Percentage of overall γH2AX positive cells or γH2AX 

positive cells with low (≤ 10 foci), medium (> 10 foci) and 

high (panuclear) staining intensity levels per organoid from 

isolation no. 58 (n = 13, Error bars = SD). 
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6.2.2 Determining EC50 for cisplatin and 5FU in HCT116 and Apc-deficient murine-derived 

organoids, respectively 

Our ultimate aim, which due to time constraints was not accomplished, was to induce DNA 

damage in human-derived CRC spheroids with low γH2AX levels and subsequently treat them 

with high specific activity of RH2AX antibody to assess cell killing. Nevertheless, we identified 

the drug response curve for two common chemotherapeutics, cisplatin and 5FU, in the human 

CRC cell line (HCT116)-derived spheroids and Apc-deficient organoids derived from the small 

intestine of induced VilCreER Apcfl/fl mice, respectively. 

To induce DNA damage in HCT116-derived spheroids, single cells were plated in a 96-well plate 

a density of 4000 cells/10ul matrigel. Three days after seeding, spheroids were treated with 

cisplatin at a range of concentrations (0 – 0.3 mg / ml). A cell viability assay was performed 

using CellTitreGlo 24h after treatment to quantify the luminescence signal which reflected ATP 

levels in the wells (Riss et al. 2013). The drug concentration with half maximal response (EC50) 

was interpolated from the killing curve for cisplatin on HCT116 spheroids and it was found to be 

4 μg / ml (Figure 6.2). This concentration was then used to analyse γH2AX levels of spheroids (3 

days post single cell seeding) at various time points  after treatment (0, 1, 2, 4, 8, 12, 24h; Figure 

6.3 a). Quantification of γH2AX whole mount immunofluorescence staining (Figure 6.3 b) 

showed a background level of DNA damage within HCT116 spheroids, with ~14% of cells being 

γH2AX-positive. A peak of damage was seen at 12h, where 80% of cells were γH2AX-positive. By 

24h post treatment, there was a reduction in γH2AX-positive cells (~49%) in spheroids, 

signifying partial resolution of DNA damage.   

To determine the killing curve for 5FU in Apc-deficient organoids, VilCreER Apcfl/fl mice were 

induced with tamoxifen (60mg / kg, 3x IP injection in a day) and 3 days p.i. the first 15cm of the 

small intestine were collected and processed for crypt extraction to form organoids, as per 

section 2.6. Organoids were enzymatically digested after 7 days of culture. Single cells were 

plated in a 96-well plate at a density of 4000 cells / 10ul matrigel. Three days post seeding, 

organoids were treated with 5FU in a range of concentrations (0 – 10 mg/ml; Figure 6.4 a). Cell 

viability assay was performed by CellTitreGlo 72h post treatment. The EC50 was equal to 0.115 

mg/ml (Figure 6.4b).  
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Figure 6.2 HCT116 spheroid response to cisplatin  

A cell viability assay was performed by CellTitreGlo to quantify the luminescence signal 

which reflects the ATP levels in a well. Relative light units indicate the luminescence 

signal; N = 1; EC50 = 3.87 μg/ml. Media was additionally supplemented by 30 % with 

growth factors to compensate for being diluted by cisplatin or distilled water addition. 

Mean values are shown ± SD. 
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Figure 6.3 Increased γH2AX levels in HCT116 cells post cisplatin treatment. 

Three day old organoids were treated with 4 μg/ml cisplatin for 0 to 24 h. γH2AX whole mount 

immunofluorescence was performed and imaged by confocal imaging. (a) Representative maximum 

projection images of 90 z-slices are shown (each z-slice = 5.7 µm). Scale bar = 20 µm; γH2AX = yellow, 

DAPI = blue. (b) Percentage of γH2AX positive cells per organoid is shown.  Mean values ± SD. 
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Figure 6.4 VilCreER Apcfl/fl organoid response to 5FU treatment.  

Three days post seeding, VilCreER Apcfl/fl organoids were treated with 5FU in a range of concentrations. 

Three days post treatment, (a) organoids were imaged with GelCount (Oxford Optonix) and (b) cell 

viability assay was performed by CellTitreGlo which allows quantification of luminescence signal which 

reflects the ATP levels in a well. Relative light units indicate the luminescence signal; N = 1; EC50 = 115 

μg/ml. Media was diluted by 2% by cisplatin in distilled water. Mean values are shown ± SD. 
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6.3 Discussion 

This project aimed to explore the use of RH2AX as both a diagnostic/imaging and therapeutic 

agent in CRC mouse models and organoids; however, the therapeutic part was not carried out 

due to unforeseen circumstances. As tumour development involves complicated genetics 

(Fearon and Vogelstein 1990), we speculated that γH2AX levels in human CRC tumours would 

vary between patients and so we tested this using human colorectal tumour-derived spheroids. 

Hence, based on a previous drug combination study carried out by Cornelissen et al. (2011) 

where chemotherapy (bleomycin, a chemotherapeutic used in breast cancer; Hecht 2000) was 

combined with RH2AX demonstrating reduction in breast cancer cell (MDA-MB-468) growth, we 

aimed to use RH2AX together with common CRC chemotherapeutics, either cisplatin or 5FU, to 

induce DNA damage in human tumour-derived spheroids with low γH2AX levels, in order to 

assess their effects on spheroid growth. Drug response curves were generated for cisplatin and 

5FU in human CRC cell line (HCT116)-derived spheroids and Apc-deficient mouse-derived 

organoids respectively; unfortunately, we were unable to attain the therapeutic radioactivity 

dose (specific activity ≥ 3 MBq / μg) for RH2AX to complete our aim in carrying out the 

combination treatment. 

Human CRC tumour-derived spheroids from different tumour isolations had variable levels of 

γH2AX, implying that the genetic background of each tumour affects the endogenous DNA 

damage levels (Figure 6.1).  The hypothesis for the therapeutic value of this project is that 

RH2AX could promote cancer cell death in the presence of high levels of endogenous DNA 

damage. A previous study by Cornelissen et al. (2012) has demonstrated in a breast cancer cell 

line (MDA-MB-468) that cells with >10 γH2AX foci/ nucleus, induced with IR, were more likely to 

be killed by >3MBq/μg of RH2AX compared to those with <10 γH2AX foci/ nucleus. Hence, cells 

in tumours with low endogenous DNA damage levels (with <10 γH2AX foci/ nucleus) would 

probably not be killed. 

To increase the extent of DNA damage in cells of tumour spheroids with low endogenous DNA 

damage levels, we used cisplatin or 5FU. We determined that the EC50 of cisplatin on HCT116 

spheroids was 4 μg/ml (Figure 6.2), similar to previously published data on wt organoids 

(Grabinger et al. 2014) and that 12h post treatment spheroids had the maximum DNA damage 

levels, whereas at 24h, DNA damage was reduced (Figure 6.3). Knowledge of the γH2AX kinetics 

post treatment is necessary for drug combination assays, as the selection of the time of RH2AX 

treatment, could dictate its additive or synergistic effects. In addition, the EC50 for 5FU in 

murine Apc-deficient organoids was 0.115 mg/ml (72h treatment; Figure 6.4b) and was 

comparable to that determined in human CRC cell line-derived spheroids, Caco-2, after 24h 

treatment (Grabinger et al. 2014).  
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6.4 Summary  

The variability in mutations occurring in human tumour development probably contributed to 

the differing γH2AX levels present in human CRC tumour-derived spheroids from different 

patient tumour isolations. Hence inducing DNA damage in human tumour-derived spheroids 

with low γH2AX levels prior to RH2AX treatment could allow assessment of the combination 

treatment effects on spheroid growth and consequently their translational potential. 
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 General Discussion  

The research presented in this thesis aimed to test in in vivo models the utility of RH2AX 

antibody for visualisation and treatment of lesions in CRC. The model system selected for this 

was the treatment of lesions in Apc-mutant mouse intestine. As a prerequisite, this required the 

presence of DNA damage in Apc-deficient intestine; hence, our first major finding demonstrated 

that intestinal Apc deficiency increases DNA damage levels, as assessed by γH2AX levels,  in the 

small intestine of both dysplastic (VilCreERApcfl/fl) and tumour CRC mouse (Lgr5CreERApcfl/fl) 

models. We provided evidence to suggest that Apc-deficiency-associated DNA damage is most 

likely generated through WNT signalling pathway activation and, more specifically, by c-Myc 

transcription. Next, we demonstrated for the first time that we can identify intestinal dysplasia 

through in vivo SPECT imaging, using low SA RH2AX treatment. Our findings on low SA effects of 

RIC treatment in intestinal dysplasia showed increased DNA damage levels in healthy and Apc-

deficient small and large intestines, increased proliferation in the Apc-deficient tissue and 

variable levels of apoptosis depending on the tissue. These findings together indicate that DNA 

damage is induced by Apc-deficiency, and that there is the possibility to exploit the 

endogenously-increased DNA damage signal, γH2AX, to attract the RH2AX for in vivo imaging of 

intestinal dysplasia. 

Demonstrating that intestinal Apc deficiency increases endogenous DNA damage levels 

complemented previous studies linking genomic instability with malignancy (Rao and Yamada 

2013; Halazonetis et al. 2008), but also showed that the DDR pathway is employed in the 

intestine following Apc dysfunction. Two studies have also previously provided evidence that 

Apc loss contributes to DNA damage in vivo: Reed et al. (2008) used the AhCreApcfl/fl mouse 

model to show that Apc deficiency increased H2AX mRNA expression in intestinal cells, while 

Méniel et al. (2015) used the same model to show that Apc deficiency induced the DNA damage 

checkpoint proteins p53 and p21 in the mouse liver, due to increased levels of DSBs, as 

quantified by IHC for γH2AX and RAD51.  

Our findings showed that although the Cre-LoxP recombination technique, which was used to 

excise Apc in VilCreER Apcfl/fl mice, increases DNA damage levels itself, the majority was caused 

by deficiency of the Apc gene. It was demonstrated that the mechanism by which Apc deficiency 

contributes to increased DNA damage in the small intestine is most likely via WNT signalling 

pathway activation and, more specifically, by c-Myc transcription. c-MYC probably induces DNA 

damage through its oncogenic functions, possibly due to excessive proliferation of cells, leading 

to replication-fork stalling and collapse (Halazonetis et al. 2008). However, we cannot eliminate 
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the possibility that increased DNA damage by Apc-deficiency is also caused by APC loss of 

function related to microtubule spindle binding and chromosomal segregation (Green et al. 

2005; Kaplan et al. 2001). 

This study demonstrates, for the first time, that intestinal dysplasia driven by Apc-deficiency can 

be imaged in vivo in mice, through the endogenous γH2AX signal, which was found to attract 

RH2AX.  The RIC was developed by  Cornelissen et al. (2011), is an 111In-radiolabelled antibody 

that recognizes the γH2AX DNA damage marker, can penetrate cell nuclei using a NLS-

containing peptide (TAT) and can also be tracked in vivo via its radioactive emissions. It was 

previously shown that human-derived breast cancer xenografts could be imaged, in mice, using 

low SA RH2AX, in combination with DNA damaging agents IR or bleomycin (Cornelissen et al. 

2011). A similar antibody, conjugated to 89Zr instead of 111In, was used for imaging early 

pancreatic cancer following chemotherapy (Knight et al. 2017). Thus, the novelty of our findings 

lies in the fact that RH2AX accumulation occurs in lesions without prior induction of DNA 

damage using IR or chemotherapy. 

For the first time, we provide evidence for biological effects of low SA RIC treatment in the small 

and large intestine. Cornelissen et al. (2011) showed that in vitro treatment of the MDA-MB-468 

breast cancer cell line with low SA RIC treatment, either RIgG or RH2AX, did not significantly 

increase the number of γH2AX foci/cell, and that cell survival was unaffected. However, we 

show that low SA RIgG or RH2AX treatments in the small and large intestine affect key biological 

processes (DNA damage, cell death, and cell division) in vivo. 

The small and large intestines have different levels of radioresistance, with colonic LGR5+ stem 

cells being more radioresistant compared to those of the small intestine (Hua et al. 2017). This 

might explain some of the differences in tissue response upon RIC treatment. Apoptosis does 

not occur often in the crypts of healthy small and large intestines, as observed in our findings 

and other studies (Sansom et al. 2004). However, in the presence of RIC, levels of apoptosis 

increase more readily in the small intestine than the large intestine. It is more likely that this 

occurs due to higher DNA damage levels that accumulate within the small intestine compared 

to the large intestine, and not because of the dysfunction of the large intestine in inducing 

apoptosis, as we show that Apc deficiency causes a similar increase in apoptosis in both small 

and large intestines. 

Sansom et al. (2004) have shown that proliferation increases following intestinal Apc deficiency 

and our data showed similar patterns. A study by Kevin et al. (2013) showed that after Apc 

deficiency, RAC1 activity was increased and that it was responsible for the increase in ROS and 

activation of the NF-kB pathway, resulting in inflammation. The increase in proliferation 

following RIC treatment within the Apc-deficient intestine might signify that RIC treatment can 
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initiate proliferation through ROS production, which stimulates the stem cells to divide 

symmetrically or asymmetrically (Buongiorno et al. 2008; Myant et al. 2013). Symmetric division 

could either enhance tumourigenicity if it drives Apc-deficient stem cell self-renewal, or act as a 

safety mechanism where Apc-deficient stem cells divide to produce differentiated TA cells.  This 

hypothesis could be tested in vivo, using TA- and CBC-labelled cells (e.g in BMI1+ and LGR5+ 

reporter mice), to identify BMI1+/LGR5+ asymmetric, BMI1+/BMI1+  or LGR5+/LGR5+ symmetric 

cell division determined by LGR5, BMI1 expression, and co-IF for α-TUBULIN (indicating 

dividing cells) as previously performed by Srinivasan et al. (2016).  

Generally, RIgG delivers ionising radiation to cell contents non-specifically, and this will tend to 

increase ROS. RH2AX, due to its specificity for γH2AX, remains closer to the DNA for longer and 

delivers ionising radiation mainly to the DNA (Cornelissen et al. 2012). This may lead to higher 

levels of DNA damage such that a threshold is reached, which could be detrimental for cell 

survival, as opposed to RIgG treatment which results in more cells with DNA damage of lower 

severity. As an example, in wt small and large intestine, the proliferation index increases after 

RIgG treatment, but this occurs to a lesser extent after RH2AX treatment. This supports the 

hypothesis that ROS production stimulates proliferation, whereas ionizing radiation on the DNA 

caused by RH2AX, even in the presence of ROS, does not cause this to happen.   

Phospho-Ser1981 ATM, γH2AX and RAD51 DSB markers were used in this study to identify 

changes in Apc-loss-driven DNA damage effects. The former is at the top of the pyramid of DDR 

components that are activated upon a DSB, however it had a more distinctive localisation 

pattern and frequency compared to either γH2AX or RAD51 DSB markers. Moreover, as the 

majority of ATM-positive cells showed perinuclear staining, indicating sequestration of 

phospho-Ser1981 ATM away from the DNA, we hypothesized that these cells might be less 

efficient in resolving DNA breaks (Reitsema et al. 2005). To investigate this, assays such as co-

localization of phospho-Ser1981 ATM with DDR proteins (e.g. γH2AX, RAD51, LIG4, XRCC3 and 

TP53) and cell cycle profile analysis by flow cytometry that tests for cell cycle arrest, should be 

performed. 

Interestingly, phospho-Ser1981 ATM-positive cells predominantly resided at the +3 position of the 

crypt, which could indicate a specific cell type. Multiple studies have attempted to find the 

identity of cells residing over the last Paneth cell of the crypt base (positions +3 to +6). It has 

been postulated that they mark a quiescent stem cell population, or possibly a secretory cell 

lineage population that upon injury, can revert back to LGR5+ stem cell population (Potten et al. 

1997; Pellegrinet et al. 2011). Hence, it would have been interesting to further investigate the 

identity of cells with phospho-Ser1981 ATM staining in normal homeostasis. It is important to 

note that crypt sectioning might have influenced quantification results, as some crypt sections 
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appeared to have no cells with phospho-Ser1981 ATM staining whereas others had ~5%, 

irrespectively of genotype. Thus, to support the notion of perinuclear phospho-Ser1981 ATM 

marking a specific cell population, these cells need to be present in every crypt of the small 

intestine. Thus, more reliable quantification results could have been acquired through multiple 

sections of a crypt, or z-stack confocal images. 

Further investigation into the types of DNA repair pathways employed upon Apc deficiency-

induced DNA damage, could give a better insight into the efficiency of DNA damage resolution 

and also help identify which are the most critical for the Apc loss-related DNA damage. 

Moreover, DNA damage levels in human CRC tumours of various stages could be assessed along 

with adjacent phenotypically normal tissue, in order to compare the percentage of γH2AX  

positive cells between human and mouse intestinal lesions. This could help validate the 

translational potential of the mouse data to the clinic. 

Although the Cre-LoxP recombination technique used to excise Apc in VilCreER Apcfl/fl mice 

induced some DNA damage, the majority was caused by deficiency of the Apc gene. We were 

unable to determine whether this was В-CATENIN/ c-MYC transcription dependent or a result of 

loss of the microtubule-binding functions of APC. To test this would have required data from 

Apc mutants with dysfunctional β-catenin-binding but unaffected c-terminal microtubule 

binding site, and vice-versa.  

It is important to highlight the fact that results may vary depending on the technique and 

models used. Although apoptosis is increased early after Apc deficiency in the small intestine, 

the apoptotic index in the organoid model seems to be independent of Apc deficiency possibly 

due to activation of WNT signalling by the addition of R-SPONDIN in the culture media of Apc-

proficient organoids. This implies that the level of WNT signalling activation in organoids might 

not reflect in vivo levels. An alternative explanation might be the fact that Apc-deficient cells are 

able to adapt to high induction of pro-apoptotic proteins. According to the Human Protein Atlas 

database, colorectal tumours have variable levels of active caspase-3 proteins (Uhlen et al. 

2015), whereas from our experience working on CRC tumour mouse models we have noticed 

that apoptosis is usually present in tumours, including Apc-deficient tumours (unpublished 

data). Hence, it would be useful to quantify the apoptotic index at various stages of tumour 

development in the Lgr5CreER Apcfl/fl mouse model.  

Alternatively, apoptosis induction in Apc-deficient cells might be modulated by the immune 

system which is a fundamental aspect in cancer elimination through recognition of mutated 

self-proteins (van Vloten et al. 2018). It is important to note that studies have proven cancer 

immunity in mutagen-induced tumour mouse models, however spontaneous murine tumours 



200 
 

were found to be weakly immunogenic (Houghton and Guevara-Patiño 2004). Hence, it is 

unknown whether Apc-mutations could induce an anti-tumour immune response. It should also 

be noted that cleaved caspase-3 staining was the only marker used to quantify the apoptotic 

index; however, cell death may take place in a programmed fashion, independently of caspase 

activity (e.g. necroptosis). Thus, other cell death markers such as Annexin-V (identifying early 

stages of apoptosis; Crowley et al. 2016) or TUNEL (DNA fragmentation assay; Kyrylkova et al. 

2012) could possibly complement the cleaved caspase-3 results. 

Identifying that Apc-deficient LGR5+ stem cells were more likely to have DNA damage than Apc-

proficient cells raises the question of what is the extent of DNA damage in Apc-deficient and wt 

LGR5+ stem cells? According to Cornelissen et al. (2012) > 10 γH2AX foci/ nucleus is a level 

which enables a high specific activity of RH2AX (> 3 MBq / μg) to induce cell death in a human 

breast cancer cell line. Thus, if Apc-deficient LGR5+ stem cells have substantially more than 10 

γH2AX foci/ nucleus, whilst wt LGR5+ stem cells are below this level, this could provide the 

possibility to attract RH2AX primarily to cancer stem cells in order to induce their death whilst 

sparing the wt stem cells. Moreover, treatments targeting stem cells as well as the bulk of the 

tumour are thought to be more effective in the long term (Tu et al. 2009) Hence, one way to 

test whether RH2AX treatment with high specific activity kills stem cells is to compare the 

organoid formation potential of sorted Apc-deficient and -proficient LGR5+ single cells cultured 

in the presence or absence of RH2AX.  

Due to time limitations and other circumstances beyond our control, we were unable to 

complete the therapeutic objective of this project; however our human spheroid data, showing 

cells with > 10 γH2AX foci/nucleus (Figure 6.2), support our hypothesis that RH2AX could be 

attracted directly by the endogenous levels of DNA damage present in Apc-deficient intestines. 

Thus, future directions for this project could include our initial goals of using RH2AX with high 

specific activity as a monotherapy, or using RH2AX in combination with common CRC 

chemotherapeutics (e.g. cisplatin or 5FU) or IR, as described previously (Cornelissen et al. 2012). 

Chemotherapy or IR could initially induce DNA damage in human tumour-derived spheroids 

with low γH2AX levels, which could be subsequently amplified by RH2AX. This would allow 

assessment of the combination treatment effects on spheroid growth and consequently their 

translational potential. 

The possible clinical relevance of imaging dysplasia using RH2AX could include (i) the 

identification of early lesions that could not be identified with current CRC cancer diagnostic 

tools, (ii) similarly to FDG PET imaging (Petersen et al. 2014), staging of CRC could become more 

accurate, hence the appropriate treatments would be given to the patients on time, and (iii) 

RH2AX imaging tool could also help in identifying the surgical margins of tumours more 
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accurately. However, our findings indicated possible biological effects on the tissue from low SA 

RIC treatment. 

To overcome these effects, 89Zr-anti-γH2AX-TAT could be used instead of 111In-anti-γH2AX-TAT, 

as the nuclear absorbed dose of cells taking-up 89Zr-anti-γH2AX-TAT was found to be two-fold 

lower than 111In-anti-γH2AX-TAT (Knight et al. 2015). Nonetheless, as results from this project 

showed that normal intestinal tissue has a low background DNA damage level, it remains to be 

examined whether there is any long term effect, e.g. increased possibility of mutations to occur, 

when using RH2AX as a diagnostic agent in the intestine, or any other tissue with frequently 

occurring background levels of DNA damage (possibly skin due to its quick turn over;  

Sotiropoulou et al. 2010).  

Results from our study indicate that Apc-deficient intestinal tumours can also be imaged using 

low SA RIgG, likely due to the EPR effect, and possibly by low SA RH2AX, although the latter 

remains to be confirmed by increasing animal numbers. Comparing uptake of both in tumours 

will allow us to assess the specificity of RH2AX to seek out DNA damage. Localisation of RH2AX, 

due to epitope specificity, would suggest that therapeutic RH2AX levels might be retained for 

longer in lesions/ tumours that have increased levels of DNA damage, minimising off-target 

effects of such treatment.  

On the other hand, systemic administration of the RH2AX, via IV injection, may induce ROS 

production in any type of cell, particularly in highly vascularised tissues. ROS levels post-RIC 

treatment should be compared to those in untreated tissue, using immune-based techniques. 

Also, as the therapeutic effects of RH2AX are based on the fact that DNA breaks are caused 

cause by ionization events, treatment with free-radical scavengers prior to (or along with) RIC 

treatment could protect cells from excess ROS generation without affecting the therapeutic 

efficacy of the RIC; however, this remains to be tested. 

It will be interesting to explore whether therapeutic doses, such as 6MBq / μg of RH2AX, as used 

by Cornelissen et al. (2012) in a breast cancer xenograft mouse model, are able to cause Apc-

deficient cell death and reduction of intestinal tumour burden. Furthermore, the prophylactic 

potential of RH2AX treatment to kill Apc-deficient cells as they arise could be investigated by 

treatment of the inducible mouse model Lgr5ERApcfl/fl, soon after its induction (days 5-9 p.i.; 

Figure 4.2). Reduction in tumour burden could provide evidence of its positive therapeutic 

effects. 

In conclusion, CRC is the third most commonly diagnosed cancer and the fourth most common 

cause of cancer death worldwide (Cancer Research UK 2016a and b). The findings of this project 

provide some evidence that imaging intestinal DNA damage could diagnose early stages of CRC 
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which could help provide patients with the appropriate treatment sooner, providing a better 

survival.  
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Appendix 1: 

The script used for quantifying the number of total cells and γH2AX quantification 

Note: This can be copied and pasted in fiji/ImageJ command line, changing the input and output 

file directories (i.e. the directory following dir1 and save as, respectively) accordingly. 

dir1 = "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\imagesTEST\\";  

list = getFileList(dir1);  

setBatchMode(true);  

for (i=0; i<list.length; i++) {  

showProgress(i+1, list.length);  

open(dir1+list[i]);  

imgName=getTitle();  

run("Colour Deconvolution", "vectors=[H&E DAB]");  

selectWindow(imgName + "-(Colour_2)");  

close();  

selectWindow(imgName +"-(Colour_1)");  

run("Duplicate...", " "); 

title = getTitle();  

print("title: " + title);  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\imagesTESToutput\\"+title);  

close();  

selectWindow(imgName +"-(Colour_1)"); 

//run("Brightness/Contrast..."); 

setMinAndMax(0, 185); 

run("Apply LUT"); 

run("Smooth"); 

setAutoThreshold("Default"); 
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//run("Threshold..."); 

//setThreshold(0, 212); 

setOption("BlackBackground", false); 

run("Convert to Mask"); 

run("Close-"); 

run("Erode"); 

run("Median...", "radius=2"); 

run("Open"); 

run("Morphological Filters", "operation=Dilation element=Disk radius=1"); 

run("Adjustable Watershed", "tolerance=0.2"); 

title = getTitle();  

print("title: " + title);  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\imagesTESToutput\\"+title);  

selectWindow(imgName + "-(Colour_3)");  

run("Duplicate...", " "); 

title = getTitle();  

print("title: " + title);  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\imagesTESToutput\\"+title);  

close(); 

selectWindow(imgName + "-(Colour_3)");  

rename("colour");  

run("Set Measurements...", "area mean standard modal min perimeter fit shape median display 

add redirect=colour decimal=3"); 

selectWindow(imgName); 

Dilation = getTitle; 

index = lastIndexOf(Dilation, "."); 
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if (index!=-1) Dilation = substring(Dilation, 0, index);  

Ddilation = Dilation + "-Dilation.tif"; 

selectWindow(Ddilation); 

run("Analyze Particles...", "  circularity=0.00 show=Outlines display clear record add"); 

selectWindow("colour"); 

roiManager("Set Color", "black"); 

roiManager("Set Line Width", 0); 

roiManager("Show All without labels");  

roiManager("Show All"); 

roiManager("Show All without labels"); 

run("Flatten");  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 

(1)\\Fiji.app\\imagesTESToutput\\"+imgName);  

close(); 

selectWindow("colour"); 

roiManager("Set Color", "black"); 

roiManager("Set Line Width", 0); 

roiManager("Show All with labels");  

roiManager("Show All"); 

roiManager("Show All with labels"); 

run("Flatten");  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 

(1)\\Fiji.app\\imagesTESToutput\\"+imgName+"labels");  

close(); 

selectWindow("colour"); 

close(); 
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selectWindow(imgName); 

dir = getDirectory("image");  

name = getTitle;  

index = lastIndexOf(name, ".");  

if (index!=-1) name = substring(name, 0, index);  

name = name + ".xls";  

saveAs("results", dir+name);  

print(dir+name);  

roiManager("Reset");  

run("Close");  

}  

The script used for the quantification of the total number of cells and the cleaved caspase 3 

positive cells: 

 

dir1 = "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\CC3a\\";  

list = getFileList(dir1);  

setBatchMode(true);  

for (i=0; i<list.length; i++) {  

showProgress(i+1, list.length);  

open(dir1+list[i]);  

imgName=getTitle();  

run("Colour Deconvolution", "vectors=[H&E DAB]");  

selectWindow(imgName + "-(Colour_2)");  

close();  

selectWindow(imgName +"-(Colour_1)");  

run("Duplicate...", " "); 
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title = getTitle();  

print("title: " + title);  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\CC3outputa\\"+title);  

selectWindow(imgName +"-(Colour_1)"); 

//run("Brightness/Contrast..."); 

setMinAndMax(0, 185); 

run("Apply LUT"); 

run("Smooth"); 

//run("Threshold..."); 

//setThreshold(0, 212); 

setOption("BlackBackground", false); 

run("Convert to Mask"); 

run("Close-"); 

run("Erode"); 

run("Median...", "radius=2"); 

run("Open"); 

run("Morphological Filters", "operation=Dilation element=Disk radius=1"); 

run("Adjustable Watershed", "tolerance=0.2"); 

title = getTitle();  

print("title: " + title);  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\CC3outputa\\"+title);  

selectWindow(imgName); 

Dilation = getTitle; 

index = lastIndexOf(Dilation, "."); 

if (index!=-1) Dilation = substring(Dilation, 0, index);  

Ddilation = Dilation + "-Dilation.tif"; 
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run("Set Measurements...", "area display add redirect=None decimal=3"); 

selectWindow(Ddilation); 

run("Analyze Particles...", "  circularity=0.00 show=Outlines display clear record add"); 

selectWindow(Ddilation); 

close(); 

selectWindow(imgName +"-(Colour_1)-1.tif"); 

roiManager("Set Color", "black"); 

roiManager("Set Line Width", 0); 

roiManager("Show All with labels");  

roiManager("Show All"); 

roiManager("Show All with labels"); 

run("Flatten");  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\CC3outputa\\"+imgName+"-

(Colour_1)"+"labels");  

close(); 

selectWindow(imgName); 

name = getTitle;  

index = lastIndexOf(name, ".");  

if (index!=-1) name = substring(name, 0, index);  

name = name + "total.xls";  

saveAs("results", "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\CC3outputa\\"+name);  

print("C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\CC3outputa\\"+name);  

roiManager("Reset");  

selectWindow(imgName + "-(Colour_3)");  

run("Duplicate...", " "); 

selectWindow(imgName + "-(Colour_3)");  
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title = getTitle();  

print("title: " + title);  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\CC3outputa\\"+title);  

selectWindow(imgName + "-(Colour_3).tif"); 

setAutoThreshold("Otsu B&W"); 

setThreshold(0, 166, "B&W"); 

setOption("BlackBackground", false); 

run("Convert to Mask"); 

title = getTitle();  

print("title: " + title);  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\CC3outputa\\"+title+"otsu");  

selectWindow(imgName + "-(Colour_3).tifotsu.tif"); 

run("Analyze Particles...", "size=100-Infinity circularity=0.00 show=Outlines display clear record 

add"); 

selectWindow(imgName + "-(Colour_3).tifotsu.tif"); 

close(); 

selectWindow(imgName +"-(Colour_3)-1"); 

roiManager("Set Color", "black"); 

roiManager("Set Line Width", 0); 

roiManager("Show All with labels");  

roiManager("Show All"); 

roiManager("Show All with labels"); 

run("Flatten");  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\CC3outputa\\"+imgName+"-

(Colour_3)"+"labels");  

close(); 
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selectWindow(imgName); 

name = getTitle;  

index = lastIndexOf(name, ".");  

if (index!=-1) name = substring(name, 0, index);  

name = name + "stain.xls";  

saveAs("results", "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\CC3outputa\\"+name);  

print("C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\CC3outputa\\"+name);  

roiManager("Reset");  

run("Close");  

//run("Threshold..."); 

run("Close");  

} 

The script used for the quantification of the total number of cells and the Ki67 positive cells: 

 

dir1 = "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\KI67TEST\\";  

list = getFileList(dir1);  

setBatchMode(true);  

for (i=0; i<list.length; i++) {  

showProgress(i+1, list.length);  

open(dir1+list[i]);  

imgName=getTitle();  

run("Colour Deconvolution", "vectors=[H&E DAB]");  

selectWindow(imgName + "-(Colour_2)");  

close();  

selectWindow(imgName +"-(Colour_1)");  

run("Duplicate...", " "); 
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title = getTitle();  

print("title: " + title);  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\KI67TESToutput\\"+title);  

selectWindow(imgName +"-(Colour_1)"); 

//run("Brightness/Contrast..."); 

setMinAndMax(53, 217); 

run("Apply LUT"); 

run("Smooth"); 

//run("Threshold..."); 

//setThreshold(0, 212); 

setOption("BlackBackground", false); 

run("Convert to Mask"); 

run("Close-"); 

run("Erode"); 

run("Median...", "radius=2"); 

run("Open"); 

run("Morphological Filters", "operation=Dilation element=Disk radius=1"); 

run("Adjustable Watershed", "tolerance=0.2"); 

title = getTitle();  

print("title: " + title);  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\KI67TESToutput\\"+title);  

selectWindow(imgName); 

Dilation = getTitle; 

index = lastIndexOf(Dilation, "."); 

if (index!=-1) Dilation = substring(Dilation, 0, index);  

Ddilation = Dilation + "-Dilation.tif"; 
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run("Set Measurements...", "area display add redirect=None decimal=3"); 

selectWindow(Ddilation); 

run("Analyze Particles...", "  circularity=0.00 show=Outlines display clear record add"); 

selectWindow(Ddilation); 

close(); 

selectWindow(imgName +"-(Colour_1)-1.tif"); 

roiManager("Set Color", "black"); 

roiManager("Set Line Width", 0); 

roiManager("Show All with labels");  

roiManager("Show All"); 

roiManager("Show All with labels"); 

run("Flatten");  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 

(1)\\Fiji.app\\KI67TESToutput\\"+imgName+"-(Colour_1)"+"labels");  

close(); 

selectWindow(imgName); 

name = getTitle;  

index = lastIndexOf(name, ".");  

if (index!=-1) name = substring(name, 0, index);  

name = name + "total.xls";  

saveAs("results", "C:\\Users\\maria\\Desktop\\fiji-win64 

(1)\\Fiji.app\\KI67TESToutput\\"+name);  

print("C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\KI67TESToutput\\"+name);  

roiManager("Reset");  

selectWindow(imgName + "-(Colour_3)");  

run("Duplicate...", " "); 
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selectWindow(imgName + "-(Colour_3)");  

title = getTitle();  

print("title: " + title);  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\KI67TESToutput\\"+title);  

selectWindow(imgName + "-(Colour_3).tif"); 

setAutoThreshold("Otsu B&W"); 

setThreshold(0, 114, "B&W"); 

setOption("BlackBackground", false); 

run("Convert to Mask"); 

run("Open"); 

run("Close-"); 

run("Open"); 

run("Adjustable Watershed", "tolerance=0.1"); 

title = getTitle();  

print("title: " + title);  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 

(1)\\Fiji.app\\KI67TESToutput\\"+title+"otsu");  

selectWindow(imgName + "-(Colour_3).tifotsu.tif"); 

run("Analyze Particles...", "size=50-Infinity circularity=0.00 show=Outlines display clear record 

add"); 

selectWindow(imgName + "-(Colour_3).tifotsu.tif"); 

close(); 

selectWindow(imgName +"-(Colour_3)-1"); 

roiManager("Set Color", "black"); 

roiManager("Set Line Width", 0); 

roiManager("Show All with labels");  
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roiManager("Show All"); 

roiManager("Show All with labels"); 

run("Flatten");  

saveAs("Tiff", "C:\\Users\\maria\\Desktop\\fiji-win64 

(1)\\Fiji.app\\KI67TESToutput\\"+imgName+"-(Colour_3)"+"labels");  

close(); 

selectWindow(imgName); 

name = getTitle;  

index = lastIndexOf(name, ".");  

if (index!=-1) name = substring(name, 0, index);  

name = name + "stain.xls";  

saveAs("results", "C:\\Users\\maria\\Desktop\\fiji-win64 

(1)\\Fiji.app\\KI67TESToutput\\"+name);  

print("C:\\Users\\maria\\Desktop\\fiji-win64 (1)\\Fiji.app\\KI67TESToutput\\"+name);  

roiManager("Reset");  

run("Close");  

//run("Threshold..."); 

run("Close");  

} 
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Appendix 2: 

Supplier Information 

Company City Country 

Agilent Santa Clara US 

Alpha Laboratories Eastleigh UK  

BD (Becton Dickenson) Wokingham UK  

BioLegend San Diego US 

BioRad Hercules, California US 

Cell Signaling 

Technologies 

Danvers US 

Corning Corning, New York US 

Eurogentech Liège Belgium 

GelCount Oxford Optonix UK 

GraphPad La Jolla US 

G-storm Somerton UK 

Harvard apparatus Holliston US 

Invitrogen Carlsbad US 

Kodak Rochester US 

Leica Wetzlar Germany 

Macrocyclics Plano US 

Mediso Budapest Hungary 

Merck Millipore Billerica US 

National Diagnostics Charlotte US 

NBS Biologicals Huntingdon UK  

Olympus Stock Road UK 

Peprotech Rocky Hill US 

Perkin Elmer Waltham US 

Pierce Biotechnology Rockford US 

Piramal Mumbai India 

Promega Madison US 
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R&D systems Minneapolis US 

Roche Basel Switzerland 

Sigma-Aldrich St. Louis US 

StarLab Blakelands UK 

ThermoFisher Scientific Waltham US 

Vector Laboratories Orton Southgate UK 

Zeiss Oberkochen Germany 

Zen Rochdale UK 
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 Appendix 3: 

Additional Information of the in vivo imaging of VilCreERApcfl/fl mice (induced by IP injection) using 111In-anti-γ-H2AX-TAT 

 

 

 

 

 

 

 

 

 

 

 

 

Table A. 1 Comprehensive information of the injected dose decayed to time of experiment (IP injection)  

Cage..Mouse.. Mouse Induction agent - RIC Injected 

dose 

(MBq) 

Injection time Time of imaging 

experiment 

ID decayed to time of 

experiment 

(MBq) 

C1M1 1 Tamoxifen + RH2AX 6.53 03/12/2014 10:13 04/12/2014 10:13 5.10 

C1M2 2 Tamoxifen + RIgG 6.83 03/12/2014 10:17 04/12/2014 10:17 5.33 

C1M3 3 Corn oil + RH2AX 7.85 03/12/2014 10:24 04/12/2014 10:24 6.13 

C2M1 4 Corn oil + RH2AX 6.84 03/12/2014 10:52 04/12/2014 10:52 5.34 

C2M2 5 Corn oil + RIgG 6.80 03/12/2014 10:57 04/12/2014 10:57 5.31 

C2M3 6 Corn oil + RIgG 6.43 03/12/2014 11:05 04/12/2014 11:05 5.02 

C3M1 7 Tamoxifen + RH2AX 6.39 03/12/2014 13:25 04/12/2014 13:25 4.99 

C3M3 8 Tamoxifen + RH2AX 6.20 03/12/2014 13:31 04/12/2014 13:31 4.84 

C3M5 9 Tamoxifen + RIgG 3.95 03/12/2014 13:37 04/12/2014 13:37 3.09 

C4M3 10 Corn oil + RIgG 6.45 03/12/2014 14:12 04/12/2014 14:12 5.04 

C4M2 11 Corn oil + RH2AX 6.51 03/12/2014 14:18 04/12/2014 14:18 5.09 

C4M4 12 Corn oil + RIgG 6.87 03/12/2014 14:27 04/12/2014 14:27 5.37 

     average 5.05 
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Table A. 2 Biodistribution data (% Injected Dose / gram of tissue; IP injection) 

Organ/Tissue Tamoxifen+ RH2AX Corn oil + RH2AX Corn oil + RIgG 

 C1M1 C3M1 C3M3 C1M3 C2M1 C4M2 C2M2 C2M3 C4M3 C4M4 

Blood 20.48216626 12.60809832 24.75782943 11.2295181 16.256537 8.438572 16.94658 4.74908 15.05175 8.717877 

Heart 5.267787212 4.424583175 4.519951941 3.66456727 5.25213546 6.89702 4.355881 3.20449 2.95151 2.919041 

Lung 7.053941261 6.199345269 7.04261514 4.85353287 6.351264923 7.876135 5.8883 4.647247 5.08542 3.593526 

Liver 11.49376221 10.93706571 10.28044811 8.12711264 7.888980372 12.51434 8.850002 8.854736 9.762048 6.114267 

Spleen 10.28658914 11.27989068 11.09010354 10.9652973 9.940066834 12.76656 7.195353 5.55638 6.637221 4.7707 

Stomach 0.985606759 4.386649656 0.594236851 5.53208813 1.77095853 5.236772 3.177906 2.24406 6.994519 2.33284 

Intestines 4.923409007 4.035757111 4.012162777 3.3782675 2.819652497 3.537159 1.891698 3.158123 2.010934 3.306438 

Pancreas 7.216710778 9.971240253 3.883263494 10.4997177 14.55046517 15.81079 6.521882 5.451633 15.42724 4.245076 

Kidney 18.54841046 18.11765362 18.63838135 11.3819406 13.22290486 16.41857 29.47557 21.42994 23.09992 22.6197 

Muscle 1.280524017 1.392114602 0.79610387 1.12046678 2.437115373 1.566358 2.524833 1.528295 1.052763 1.569856 

Skin 4.268240074 5.436479561 3.438752146 6.46575841 6.598283005 9.035966 3.753586 4.023895 9.540398 2.932024 

Fat 5.848961905 4.220292876 4.997104175 5.17647829 8.923790227 5.891541 6.408851 5.766714 4.824029 1.662166 

 

  



248 
 

  

Figure A. 1 Full panel of SPECT images (IP injection) 
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Additional Information of the in vivo imaging of VilCreERApcfl/fl mice (induced by oral gavage) using 111In-anti-γ-H2AX-TAT 

 

Table A. 3 Comprehensive information of the injected dose decayed to time of experiment (oral gavage) 

Mouse Induction agent - 

RIC 

Injected dose (MBq) Injection time Time of imaging 

experiment 

ID decayed to 

time of 

experiment 

(MBq) 

1 Corn oil + RH2AX 4.229275 14/12/2015 16:30 15/12/2015 16:30 3.30 

2 Corn oil + RH2AX 4.342728 14/12/2015 16:36 15/12/2015 16:36 3.39 

3 Tamoxifen + RH2AX 4.522507 14/12/2015 16:47 15/12/2015 16:47 3.53 

4 Tamoxifen + RH2AX 4.455696 14/12/2015 16:52 15/12/2015 16:52 3.48 

5 Corn oil + RH2AX 4.13226 14/12/2015 17:02 15/12/2015 17:02 3.23 

6 Corn oil + RIgG 4.354034 14/12/2015 17:17 15/12/2015 17:17 3.40 

7 Corn oil + RIgG 3.866614 14/12/2015 17:22 15/12/2015 17:22 3.02 

8 Corn oil + RIgG 4.098577 14/12/2015 17:25 15/12/2015 17:25 3.20 

9 Tamoxifen + RIgG 4.472497 14/12/2015 17:35 15/12/2015 17:35 3.49 

10 Tamoxifen + RH2AX 4.363192 14/12/2015 17:38 15/12/2015 17:38 3.41 

11 Tamoxifen + RIgG 4.475037 14/12/2015 17:46 15/12/2015 17:46 3.50 

12 Tamoxifen + RIgG 3.845796 14/12/2015 17:50 15/12/2015 17:50 3.00 

    Average 3.33 
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Table A. 4 Biodistribution data (% Injected Dose / gram of tissue; oral gavage) 

Organ / Tissue Tamoxifen + H2AX Tamoxifen + RIgG Corn oil + H2AX Corn oil + RIgG 

Blood 15.10808 15.76191 12.31747 15.80996 11.9802 8.561631 9.467001 11.2696 9.722519 10.12844 9.521292 11.32195 

Heart 4.658106 3.505342 3.786327 4.625941 2.957213 2.293721 3.125546 3.671738 3.235233 3.834765 3.443553 3.217129 

Lung 6.378894 6.861897 5.609453 6.149812 5.990719 5.34187 4.626723 5.425245 4.342539 5.275755 5.194942 6.691512 

Liver 5.857863 5.88809 4.993063 7.895882 1.326225 3.717233 2.69757 2.722748 2.981434 3.333612 2.177266 3.822166 

Spleen 8.149392 9.498537 5.634729 7.912605 3.014018 3.896496 4.048487 5.178561 3.960495 4.580472 3.405285 5.095124 

Stomach 0.3814598 0.4969921 0.4887747 0.8194758 0.4518414 0.2414625 0.5225976 0.5559067 0.7204322 0.5585756 0.8261824 0.5588275 

Large Intestine 1.002869 1.194053 1.455874 1.166839 0.6436026 0.1470713 0.3069075 0.3049543 0.2579677 0.8295382 0.8763427 0.6695805 

Proximal Small 

Intestine 

3.122228 2.087129 2.171867 1.698608 1.694434 0.7349114 1.51973 1.431291 1.012472 1.635022 1.505911 1.082374 

Distal Small 

Intestine 

2.081323 1.66182 0.2346612 1.764351 1.506158 0.4507276 0.814459 0.9014391 0.8686076 0.6141504 1.233973 0.8782868 

Pancreas 3.141846 5.201639 2.960861 5.399676 2.480139 1.369007 2.700202 4.177962 1.976546 2.312522 2.40132 4.30534 

Kidney 7.775376 8.739444 5.898999 6.780791 5.75809 3.241656 3.584805 5.126558 4.760666 4.238009 4.073318 4.792851 

Muscle 0.4985863 0.5635775 0.6963965 0.6373765 0.5938765 0.5550903 0.460038 0.6291177 0.5438843 0.6561363 0.7056484 0.823526 

Skin 1.443698 1.394203 1.953373 1.618338 1.271605 0.8 0.8174319 1.193623 1.272913 1.231753 1.009762 1.201355 

Fat 4.068699 2.618023 1.713673 3.180874 2.289459 0.6487923 0.7549706 1.776497 1.235559 0.8932936 1.164897 0.9916469 

Faeces 2.480196 1.346132 1.818197 5.025683 1.965409 0.870955 0.127483 0.122404 0.138555 0.222394 0.194257 0.428956 
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Figure A. 2 Analysis report of 111In-anti-γ-H2AX-TAT radioactive purity (oral gavage) 
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Figure A. 3 Analysis report of 111In-anti-γ-H2AX-TAT radioactive purity after gel filtration (oral 
gavage) 
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Figure A. 4 Analysis report of the radioactive purity of 111In-anti-IgG-TAT (oral gavage) 
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Figure A. 5 Analysis report of the radioactive purity of 111In-anti-IgG-TAT after gel filtration (oral 
gavage) 
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Figure A. 6 Full panel of SPECT images (oral gavage) 
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Additional Information of the in vivo imaging of Lgr5CreERApcfl/fl mice (induced by oral gavage) using 111In-anti-γ-H2AX-TAT 

Table A. 5 Comprehensive information of the injected dose decayed to time of experiment 

Mouse Induction agent RIC Injected dose 

(MBq) 

Injection time Time of imaging 

experiment 

ID decayed to time of experiment  

(MBq) 

1 Corn oil RH2AX 2.59 11/04/2017 09:40 12/04/2017 10:40 2.00 

2 Corn oil RIgG 2.67 11/04/2017 09:54 12/04/2017 11:15 2.06 

3 Corn oil RIgG 2.74 11/04/2017 09:58 12/04/2017 11:53 2.10 

4 Corn oil RH2AX 2.78 11/04/2017 10:15 12/04/2017 12:41 2.12 

5 Corn oil RIgG 2.68 11/04/2017 10:20 12/04/2017 14:20 2.01 

6 Corn oil RIgG 2.75 11/04/2017 10:23 12/04/2017 12:14 2.11 

7 Corn oil RH2AX 2.81 11/04/2017 12:22 12/04/2017 14:45 2.14 

8 Tamoxifen RH2AX 2.73 11/04/2017 12:40 12/04/2017 15:20 2.08 

9 Tamoxifen RIgG 2.72 11/04/2017 12:45 12/04/2017 16:10 2.05 

10 Tamoxifen RH2AX 2.63 11/04/2017 13:01 12/04/2017 16:59 1.97 

11 Tamoxifen RIgG - Bad tail vein - - 

12 Corn oil RH2AX 2.53 11/04/2017 16:38 12/04/2017 17:53 1.94 

13 Corn oil RH2AX 2.53 11/04/2017 16:08 12/04/2017 18:13 2.12 

14 Corn oil RIgG 2.75 11/04/2017 16:45 12/04/2017 18:41 1.93 

15 Corn oil RIgG 2.52 11/04/2017 16:52 12/04/2017 18:57 2.06 

16 Tamoxifen RH2AX 2.77 11/04/2017 16:58 12/04/2017 18:29 1.99 

17 Tamoxifen RIgG 2.69 11/04/2017 17:05 12/04/2017 17:38 2.05 

18 Tamoxifen RIgG 2.58 11/04/2017 17:09 12/04/2017 10:40 2.00 

19 Tamoxifen RH2AX 2.63 11/04/2017 17:13 12/04/2017 11:15 2.06 
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Table A. 6 Biodistribution data (% Injected Dose / gram of tissue; oral gavage) A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Organ 

/ Tissue 

Corn oil + H2AX Corn oil + RIgG 

Blood 
21.42922 20.40821 13.68926 24.58221 19.85216 29.34822 33.06631 19.4111 20.44572 23.43252 23.53986 

Heart 
6.793561 6.708369 4.322784 8.372586 8.746058 9.542422 10.36989 4.569996 6.124021 4.768692 9.082738 

Lung 
14.37665 8.888518 7.54172 12.43297 10.16274 11.81733 12.31987 9.103745 10.01675 8.694998 10.9405 

Liver 
10.02415 8.782959 4.953934 10.74477 9.920172 10.52235 10.79435 6.988125 6.550108 8.502943 9.445633 

Spleen 
16.06478 11.63942 5.539249 11.53311 7.710381 14.48082 16.85855 12.11142 11.04129 9.924133 12.27067 

Stomach 
0.622595 1.766647 1.884153 2.161703 2.170159 1.40684 2.416902 1.656882 1.644617 2.485053 2.230927 

Large 

Intestine 
1.840518 1.742768 1.532974 2.31526 1.892821 2.496783 1.92017 1.524809 2.130448 1.688769 2.101605 

Tumour 

  

N/A   N/A 

Small 

Intestine 
2.039933 2.26173 2.312649 2.743129 2.139167 2.374363 3.17366 2.641028 2.220494 1.922972 2.743595 

Pancreas 
4.321729 3.29732 2.947625 4.644328 3.579924 3.895577 4.19388 2.541644 2.583612 3.704286 3.77802 

Kidney 
7.982258 8.270896 6.22924 8.440649 8.323069 9.581827 9.388331 7.762703 9.445999 7.928268 10.69577 

Muscle 
1.860682 1.404196 1.213816 2.073243 1.473397 1.701556 2.178234 1.177215 1.363736 1.436324 1.498041 

Skin 
3.973752 1.982566 1.615899 3.284002 3.991443 3.764758 3.605891 2.175326 2.252954 2.367947 2.822427 

Fat 
2.459203 1.414668 1.593898 2.625364 1.928838 1.582815 1.484768 1.14258 1.47548 1.809202 1.604347 
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Table A. 7 Biodistribution data (% Injected Dose / gram of tissue; oral gavage) B 

 

 

 

 

 

 

Organ 

/ Tissue 

Tamoxifen + H2AX Tamoxifen + RIgG 

Blood 
11.38059 25.85994 16.91466 13.51107 15.67798 5.397302 

Heart 
5.014489 6.473518 5.596861 4.548012 3.376464 1.227468 

Lung 
5.244147 7.516111 11.87682 5.108927 6.055246 15.82551 

Liver 
3.961738 8.055472 15.57779 4.935936 6.364983 8.832209 

Spleen 
6.756132 10.83417 22.94978 6.607034 5.220332 3.494227 

Stomach 
3.125294 1.60884 1.43532 1.365184 0.6984972 2.962521 

Large Intestine 
1.133197 1.476536 1.351006 0.6529444 0.6604086 0.8695902 

Tumour 

 

N/A 

 

6.509776 5.177146 2.269368 

Small Intestine 
1.285247 1.754588 1.846294 1.359647 1.100939 0.6774493 

Pancreas 
2.563636 2.449159 2.378962 1.723891 2.166613 0.7009751 

Kidney 
5.11667 7.074582 8.243851 5.476905 5.836075 4.806015 

Muscle 
0.7926089 1.05909 1.923193 0.8850738 0.5319 0.2891997 

Skin 
1.857871 1.532354 2.692363 1.611776 1.241367 0.5213182 

Fat 
1.919774 1.192948 2.431473 0.8927475 1.996707 0.3462364 
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Figure A. 7 Full panel of SPECT/CT images- 35 days post induction 

M10 M19M8

Tamoxifen + RH2AX

M9 M17 M18

Tamoxifen + RIgG

M1 M4 M7
Corn oil + RH2AX

M2 M3 M5

Corn oil + RIgG

% ID/g

0

% ID/g

0

~23



260 
 

Figure A. 8 Biodistribution data of Lgr5CreER Apcfl/fl mice 35 days post induction and 24h post RIC 
treatment 
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Figure A. 9 Full panel of SPECT/CT images- 21 days post induction 
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Figure A. 10 Autoradiography on small and large intestines of mice treated with RIgG or RH2AX 
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Appendix 4: 

 

Stomach  Caecum 

Figure A. 11 Dissection plan for flow cytometry analysis of Apc+/+ or Apcfl/fl small intestinal epithelial cells. 

The small intestine of an Lgr5CreER-EGFP; VilCreER Apc+/+ or Apcfl/fl mouse was detached from the stomach and the first 10cm of the proximal end 

was fixed in formalin for 24h, whereas the next 15cm were used for crypt isolation.  


