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Abstract: The synthesis of the first zig-zag O-doped molecular 

rhombic ribbon has been achieved. This includes oxidative C-C and 

C-O bond formations that allowed the stepwise elongation and 

planarization of a oxa-congener of 2,7-periacenoacene. X-ray 

diffraction analysis corroborated the flat structure and the zig-

zag topology of the O-doped edges. Photophysical and 

electrochemical investigations showed that the extension of the 

PXX into the molecular ribbon induces a noticeable shrinking of 

the molecular band gap devised by a rising of the HOMO energy 

level, a desirable property for p-type organic semiconductors. 

 

Keywords: Zig-zag peripheries, nanoribbons, heteroatom doping, C-O 

bond formation, Cu-catalyzed cycloeterification, supramolecular 

chemistry. 
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Inspired by the silicon-based technologies, the doping route is 

recently affirming as an effective strategy to prepare organic 

semiconductors with tailored optoelectronic properties.[1] The 

controlled replacement of carbon atoms with isostructural 

heteroatoms[2] gives access to congeners of size-defined molecular 

graphenes.[3] In particular, the isolation of extended polycyclic 

aromatic hydrocarbons (PAHs) featuring zig-zag edges[4] such as 

m,n-perifusenes (Fig. 1, m and n designates the number of fused 

rings)[5] is challenging owing to their susceptibility toward O2.[6] 

Consequently, the preparation of archetypal zig-zag full-carbon 

scaffolds has been restricted so far to individual molecules under 

UHV conditions.[7] m,n-Periacenes are rectangular graphene-like 

nanoflakes exhibiting orthogonal zig-zag and armchair edges and 

derive from the fusion of a m number of [n]acenes[6a, 8] at their 

peri-position. On the other hand, m,n-periacenoacenes are rhombic 

nanographenes with a 60° angle featuring two zig-zag peripheries 

(Fig. 1). Among those, extended m,n-periacenoacenes are certainly 

the rarest examples. 

 

Fig. 1. Peri-acenes and peri-acenoacenes nanographenes: armchair/zig-zag (left) 

and zig-zag/zig-zag (right) topologies.  

 

The substitution of the carbon edges with heteroatoms[9] has 

provided a viable approach to prepare stable extended PAHs 

featuring zig-zag peripheries, and noticeable examples included O-

,[10] N-,[11]; OBO-,[12] NBN-[13] and BNB-doped[14] structures. Amongst 

those, Pummerer’s peri-xanthenoxanthene (PXX),[15] the O-doped 
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congener of anthanthrene, is certainly one of the oldest examples. 

The replacement of the C11 and C12 carbon atoms with oxygen atoms 

provides chemically stable derivatives,[10a, 10b, 16] which can be used 

as p-type semiconductors.[17] Building on this structural motif, one 

can conjecture that this approach could lead to PAHs featuring 

extended zig-zag peripheries. Indulging this line of thought, 

herein we put forward the first synthesis of a O-doped congener of 

2,7-periacenoacene, in which six carbon atoms at the zig-zag edges 

have been replaced by oxygen atoms. 

 

 

Scheme 1. Engineering O-doped peripheries with armchair and zig-zag topologies. 

 

Recently, we synthesized O-doped benzorylenes featuring cove 

armchair peripheries from oligonaphthalenes precursors that, made 

from 2,3-dihydroxynaphthalene and 2-hydroxynaphthalene through Cu-

mediated oxidative C-C oligomerization at the C1 and C4 positions, 

were planarized by oxidative O-annulation (Scheme 1).[18] In 

studying this synthetic strategy, we noticed that O-doped PAHs 

featuring zig-zag peripheries could be also prepared (Scheme 1). 

In fact, we envisioned these PAHs as arising by the 

oligomerization of 2,6-dihydroxynaphthalene at the C1 and C5 

positions followed by the C-O oxidative planarization reaction 

using an appropriate protection/deprotection management of the 
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hydroxyl groups. At the synthetic planning level (Scheme 2), these 

considerations led us to contemplate at first the C1-C5 

oligomerization of 2,6-dihydroxynaphthalene and then the oxidative 

cycloetherification reaction involving the hydroxyl groups at the 

2 and 6 positions (path A). 
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Scheme 2. Synthetic strategies for preparing Zig-zag O-doped peri-acenoacenes. 

PG: protecting group. 

 

However, the high susceptibility of 2,6-dihydroxynaphthalene and 

of its protected analogues under oxidative conditions forced us to 

abandon this path. This led us to consider divergent (path B) and 

convergent (path C) synthetic strategies using hydroxyl-

functionalized PXX precursors, thus relegating an oxidative 

planarization step at an earlier stage. As we have predicted a 

potential chemical instability of the dihydroxy-PXX core of 

divergent path B under oxidation conditions, we decided to 

undertake convergent plan C. This line of thought led us back to 

prepare a 2-hydroxy-PXX precursor as the key building unit. 

Anticipating a strong tendency to form aggregates,[18] xylyl 

moieties were added. 

 

To commence, dimethoxynaphthalene 2 was reacted with n-BuLi and 

TMSCl to give TMS-functionalized naphthalene 3 that, upon 

subsequent treatment with ICl gave desired diiodonaphthalene 4 

(Scheme 3).[19] Subsequent Suzuki cross-coupling of 4 with 2,6-
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dimethylphenylboronic acid led to 5 (see X-ray structure in Fig. 

2a) that, in the presence of n-C12H25SNa, could be monodeprotected 

to give naphthol 6 in 65% (see X-ray structure in Fig. S21). 

 

Scheme 3. Synthesis of Zig-zag O-doped peri-acenoacenes 1. Reagents and 

conditions: a) [1] n-BuLi/hex (2.4 eq) THF, 0 °C, 3 h; [2] TMSCl (2.4 eq) 0 °C 
to rt., 2 h; [3] n-BuLi/hex (2.0 eq) 0 °C, 2 h; [4] TMSCl (2.0 eq) 0 °C to rt., 

82%; b) ICl (2.1 eq), CH2Cl2, 0 °C to rt., 10 h, 96%; c) 2,6-

dimethylphenylboronic acid (6.0 eq), K3PO4 (6.0 eq), SPhos (0.2 eq), Pd(dba)2 

(0.1 eq), dioxane/water (5:1), 101 °C, 4 h, 93%; d) n-C12H25SH (1.1 eq), NaOH 

(2.2 eq), NMP, 130 °C, 48 h, 77%; e) 2,6-dimethylphenylboronic acid (2.0 eq), 

K3PO4 (2.0 eq), SPhos (0.2 eq), Pd(dba)2 (0.1 eq), dioxane/water (5:1), 101°C, 12 

h, 97%; f) BBr3 (1M in CH2Cl2, 3 eq), CH2Cl2, 0 °C to rt., 12 h, 94%; g) naphthols 

1:1, CuCl2 (2 eq), PhCH(NH2)CH3 (2.5 eq), MeOH/ CH2Cl2, 0 °C to rt., 2 h, 35%; h) 

CuCl (0.3 eq), K2CO3 (2.0 eq), N-methylimidazole (0.6 eq), 120 °C, 20 h, 64%; i) 

dodecane thiol (3.0 eq), NaOH (5.0 eq), NMP, 130 °C, 4 h, 93%; j) Cu-TMEDA (0.1 

eq), CH2Cl2, rt., 5 min, 84%; k) CuCl (0.3 eq), K2CO3 (2.0 eq), N-methylimidazole 

(0.6 eq), 120 °C, 20 h, 17%. 

 

In parallel, Suzuki cross-coupling reaction between 2-bromo-6-

methoxynaphthalene 7 and 2,6-dimethylphenylboronic acid followed 
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by demethylation with BBr3 gave naphthol 9 with an overall yield of 

81%. Subsequent C-C oxidative heterodimerization of 6 and 9 gave 

binaphthol 10 as a racemic mixture in 35% yield (Scheme 3). 

Surprisingly, oxidative O-annulation of 10 following our protocol 

(CuI, PivOH in DMSO at 140 °C)[18] failed, giving 11 with only 7% 

yield and extensive degradation. However, when using the protocol 

of Kamei and co-worker, CuCl (cat.) and N-methylimidazole (NMI) in 

m-xylene at 120 °C,[20] we could obtain MeO-PXX derivative 11 in 64% 

yield (see X-ray structure in Fig. 2b). Subsequent removal of the 

methyl protecting group with n-C12H25SNa gave hydroxy-PXX 12 that, 

being prone to oxidative degradation, was immediately 

homodimerized into derivative 13 (78%) in the presence of Cu-TMEDA 

(10%) in CH2Cl2.[21] Final oxidative ring-closure reaction under 

Kamei’s conditions[20] gave desired zig-zag nanoribbon 1 as an 

orange solid (Scheme 3). The molecular ion of 1 was identified by 

HR-MALDI through the detection of the peak at m/z 1214.4518 

(C88H62O6, calc.: 1214.4546, Fig. S19). Solution 1H-NMR spectra 

further confirmed the structure of 1 (Fig. S18). Whereas the 

aromatic region is not conclusive due to the overlapping of the 

proton resonances, a clear indication of the product formation was 

given in the aliphatic region, with the methyl protons appearing 

as three singlets (integration 1:1:1) at 2.10, 2.05 and 1.97 ppm. 

To unequivocally corroborate the chemical structure of 1, crystals 

suitable for X-ray diffraction analysis were obtained by hot 

recrystallization of 1 from toluene (Fig. 2c). The X-ray analysis 

confirms the flat structure of the zig-zag framework, with C-O 

lengths varying from 1.383 to 1.416 Å. Given the hindering nature 

of the xylyl substituents, we could not evidence the presence of 

any face-to-face - stacking interactions and only edge-to-face 

arrangements, held by C-H… interactions, were observed (Fig. S20). 

Similar organizations were also observed for 5 and 11. All 

molecules displayed thermal and photochemical stability at the 

solid state under ambient conditions. To appraise the effect of 

the O-doping on the aromatic -surface, we further determined the 

charge distribution of the crystal structure of 1 in the form of 
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Electrostatic Surface Potential (ESP, Fig. 3) calculated with 

Gaussian 09 at B3LYP/6-31G(d,p) level of theory (SI). 

 

 

Fig. 2. Top- (top) and side- (bottom) view of the X-ray crystal structures for 

a) 5 b) 11 and c) 1 (space groups: P-1, P21/c and P21/n, respectively). Crystals 

were obtained from thermal recrystallization from isopropanol (5), pentane (11) 

and toluene (1). 

 

One can notice that the sequential C-O fusion of the naphthyl 

monomers leads to a notable charge distribution within the π-

surface of the aromatic ribbon, with the negatively charged 

regions segregated at the two C-edged naphthyl peripheries and O-

edges of molecules 11 and 1. Surprisingly, weakly positively 



 

9 
 

charged areas (Fig. 3, white arrows) appear at the centers of each 

pyranopyran cycles, suggesting the occurrence of significant 

charge depletion on the two inner naphthyl rings. These 

observations likely indicate that the presence of the pyranopyran 

rings restricts the electron delocalization due to their 

antiaromatic contribution. 

 

 
Fig. 3. Electrostatic Surface Potentials (ESP) for a) 5, b) 11 and c) 1 mapped 

on the vdW surface up to an electron density of 0.001 electron.bohr-3. 

 

UV-vis absorption and emission properties of molecules 1 and 11 

and reference 5 in THF are displayed in Fig. 4 and Table 1. The 

lowest-energy electronic transition of 1 appears in the green 

region (523 nm) at significantly lower energy than that of 11 (449 

nm). This finding suggests that the dimerization and planarization 

of 11 into 1 causes a contraction of the optical bandgap (Δopt = 

0.40 eV). Consistently, the emission spectra shown in Fig. 4 
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reflect the same trend, with the intense emission peak of 1 (max = 

540 nm, Φfl = 0.38) significantly red-shifted with respect to that 

of 11 (max = 457 nm, Φfl = 0.48), with nanosecond lifetimes (Table 

1).[10, 22]  

 

a) b)

 

Fig. 4. Absorption (—) and normalized emission (---) spectra of 1 (blue), 5 

(black) and 11 (red) in THF at r.t. Inset: solutions containing 5, 11 and 1 in 

THF a) and b) under UV lamp (λexc = 254 nm). 

 

Table 1. Photophysical data in THF at r.t. Estimated HOMO-LUMO energy gap (Eg) 
as determined by optical (E00) and theoretical (EgT) studies. 

Molecule 

Absorption Emission Energy Band Gap  

, nm 

(, M-1 cm-1) 
max (nm) τ (ns)[a] Φfl

[b] E00 (eV)[c] EgT (eV)[d] 

5 
346 (5000) 

332 (3800) 
356 6.5 0.48 3.50 4.40 

11 

449 (39000) 

421 (29500) 

397 (12900) 

457 5.9 0.67 2.74 3.29 

1 

523 (23900) 

486 (19500) 

457 (11500) 

540 5.1 0.38 2.34 2.78 

 [a]λex = 372 or 459 nm. [b]Standard: C153 in EtOH at r.t. (Φ = 0.53).[23] [b]9,10-

Diphenilanthracene in CyH (Φ = 0.97±0.03).[24] [c]Energy (eV) calculated from normalized 
lowest absorption band and highest emission band cross in nm, exploiting the 

conversion nm to eV: E00 = 1240.5/λcross. [d]Calculated bandgap value at the B3LYP/6-31G** 
level of theory, from gas phase optimized geometry. 
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Next, we examined the redox properties by cyclic voltammetry (CV) 

measurements and differential pulse (DPV) voltammetry (Table 2 and 

Fig. S24 and S25). The CV of 5 feature a reversible first 

oxidation wave at approximately 0.84 V and a second irreversible 

event around 1.20 V. Both peaks are considerably higher in energy 

with respect to those observed for 11 (0.35 V). Two reversible 

monoelectronic redox oxidations with very similar current were 

instead observed for nanoribbon 1, at -0.06 and +0.09 V vs Fc, 

respectively. The first and second oxidation peaks each correspond 

to a 1-e- process, advocating that the first oxidation of 11 splits 

into two couples for 1 (as it also happens with the irreversible 

processes). Notably, the first oxidation wave of 1 is negatively 

shifted by ca. 0.90 and 0.41 V compared to that of 5 and 11, 

respectively. No relevant reduction waves were detected at any 

scan rates for any of the molecules under the same experimental 

conditions.  

Taken together, these physical data allowed us to estimate the 

energies of the HOMO and LUMO orbitals, resulting to be -4.74 eV 

(HOMO) and -2.40 eV (LUMO) for 1, -5.14 eV (HOMO) and -2.41 eV 

(LUMO) for 11 and -5.64 eV (HOMO) and -2.14 eV (LUMO) for 5 (Fig. 

4). The extension of the molecule provokes a rise of the HOMO 

energy level, making nanoribbon 1 a strong electron donor (i.e., 

p-type semiconductor). To shed further light on the structure-

property relation, we calculated the HOMO and LUMO orbitals for 1 

Table 2. CV data calculated vs. the Fc/Fc+ couple in THF at r.t. Peak 

separations in mV are in brackets. Scan rate: 50 mV/s. Supporting electrolyte: 

TBAPF6. 

Molecule E1/2ox,1[a] E1/2ox,2[a] ΔEHL 

5 0.84 (90) 1.20[c]  3.50 

11 0.35 (93) 0.80[c] 2.74 

1 -0.06 (70) 0.09(88) 2.34 

[a]Halfwave potentials unless differently specified. [b]Peak potential. 

[c]Irreversible wave. "nd" stands for "not detected". 
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(Fig. 4). While the LUMO of 1 is mainly located on the central 

core of the ribbon, both HOMO and LUMO of molecules 5 and 11 are 

distributed on the entire -surface. 

 

Fig. 5. Frontier orbital energies estimated from the CV and photophysical data 

for molecules 1, 5 and 11 together with theirs HOMO and LUMO profiles at 

B3Lyp/6-31G(d,p) level of theory (gaussian09). Reduction potentials of the 

excited triplet states are evidenced as the narrower optical energy gaps (ET* = 

E1/2ox-EoptT). Fc+/Fc = 0.46 V vs. SCE; -4.8 eV vs vacuum.  

 

In conclusion, in this paper we have described the first synthesis 

of an unprecedented, chemically and thermally stable, O-doped zig-

zag molecular graphenes taking advantage of the formation of 

pyranopyran rings through an oxidative C-O planarization protocol. 

UV-vis absorption and emission studies showed that these molecules 

feature high emission yields and tunable absorption properties 

throughout the UV-vis spectral region, with the hexaoxo derivative 

being a green absorber. Electrochemical investigations showed that 

the progressive extension of the O-annulated framework provokes a 

shrinking of the HOMO-LUMO energy gap due to a rise in the HOMO 

energy level. The remarkable chemical stability and electron-

donating capabilities make this class of molecules fascinating for 

the engineering of p-type semiconductors. Given the importance to 

transfer our O-doped molecular graphenes into 1D and 2D materials, 

we are currently developing novel synthetic approaches that will 

give access to different doping patterns, extending the current 

molecular framework into macromolecular ribbons. 
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