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Abstract

In this thesis is presented a brief review of quantum computing, the DiVincenzo

criteria, and the possibility of using a solid state system for building a quantum

computing architecture. Donor electron systems in silicon are discussed, before

chalcogen, “deep”, double donors are suggested as a good candidate for fulfilment of

the criteria; the optically driven Stoneham proposal, where the spin-spin interaction

between two donor electron spin qbits is mediated by the optically controlled, exci-

ted, state of a third donor electron, forms the basis of this [1]. Coherence lifetimes

are established as a vital requirement of a quantum bit, but radiative lifetimes must

also be long. If the spin-spin interaction between qbits is decreased, or turned off,

by the de-excitation of the mediating donor electron then the coherence of the qbit

is rendered irrelevant; de-excitation will ruin quantum computations that depend

upon an interaction that only happens when the mediating electron is in an excited

state.

Effective mass theory is used to estimate excited state donor, 2P , wavefunctions for

selenium doped silicon, and recent Mott semiconductor to metal transition doping

data [2] is used to scale the spatial extent of the 1S(A1) ground state wavefunction.

Using these wavefunctions, the expected radiative lifetimes are then calculated, via

Fermi’s golden rule, to be between 9 ns and 17 ns for the 2P0 state, and 12 ns to 20

ns for the 2P±1 state. Fourier Transform InfraRed (FTIR) absorbance spectroscopy

is used to determine the optical transitions for selenium donors in silicon, this has

ix



allowed agreement between literature, measured, and effective mass theory energy

values for the particular samples measured. FTIR time resolved spectroscopy has

then been used to measure the radiative emission spectrum of selenium doped silicon

samples at 10-300K, following a 1220 nm laser pulse. Fitting to the exponentially

decaying emission data, selenium radiative lifetimes as long as 80 ns are found; for

the 2P0 to 1S(A1) transition in an atomic selenium donor complex at 10K. A factor

of between 4 and 8 agreement is found between calculated and measured radiative

lifetimes. This offers the possibility of nanosecond scale donor electron coherence

times for chalcogen dopants in silicon.
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Thesis Overview

A brief overview of this thesis is given here, along with a schematic diagram in fi-

gure 0.1. The document should be read starting with chapters 1 and 2. A thorough

background of Fourier transform spectroscopy is given in appendixes C and D, these

provide context and detail for the experimental methods in chapter 4. Similarly, a

review of the basic quantum mechanics used and necessary derivations are shown in

appendixes A and B respectively; these then provide support to chapter 3 which is

an introduction to, and application of, effective mass theory for estimating radiative

transition rates. Chapter 5 then contains experimental results and their compari-

son to the calculations from chapter 3. The conclusions and future directions are

summarised in chapter 6.
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Figure 0.1.: Sketch of the thesis layout. Read from chapter 1 to chapter 6. Chapters 3
and 4 may be read in either order. Appendixes A and B may be omitted if
familiar with EMT, while the same is true of C and D for Fourier transform
spectroscopy.

Chapter 1 The thesis begins with a chapter justifying and providing a goal for the

work carried out. This consists of a brief explanation of the need for quantum com-

puting and what it is, followed by a review of the DiVincenzo criteria. The use of

donor electron system in silicon as part of both the Kane [7] and Stoneham[1] quan-

tum computing proposals is described. The long decoherence lifetime DiVincenzo

criteria is singled out as a target to move towards. However, firstly the radiative

lifetimes must be confirmed and this must be done via a comparison of measurement
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and calculated prediction.

Chapter 2 This is a review of some of the relevant properties of silicon, along

with the reasons for its choice as a host material and chalcogens as donors. The

reasons for the choice of dopants, such as manufacturing ability and possible doping

concentrations, are discussed along with donor energy levels and vulnerability to

thermal perturbation.

Chapter 3 Here an attempt is made to calculate radiative transition lifetimes,

this is to compare them with measured values. This is done using an effective

mass degenerate scaled hydrogenic basis to obtain dipole transition elements for

donor electrons in silicon. It begins with a reproduction of the EMT wavefunction

calculations by Kohn[8]. The published literature only provides a framework and

calculated energy levels, no wavefunction parameters, thus the energy functions

must be re-obtained and parameters recalculated. The central cell problem, which

is a breakdown in applicability of the EMT approximations for the ground donor

state, is then overcome by the use of recent Mott semiconductor to metal transition

data[2]. Transition rates are then estimated using Fermi’s golden rule.

Chapter 4 Chapter four then contains the experimental methods, and a brief des-

cription of the equipment used. FTS is introduced, along with absorbance and step

scan time resolved spectroscopy. The measurement of the time evolution of the

emission from a selenium doped silicon sample, following 5 ns 1220 nm optical

pumping with 7.5 mJ pulses, is fully explained; this experiment allows an estimate

of the radiative lifetime to be extracted from a fit to the data.

Chapter 5 Absorbance spectroscopy used to identify the optimal sample available

is shown. This is followed by the results of the time resolved emission experiment,

explained in chapter 4. Fits to emission data are compared to the calculations from

3
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chapter 3.

Chapter 6 Finally a conclusion is given where the results, the usefulness of EMT

in predicting them, and the implications are summarised. Possible avenues of future

work are briefly discussed.
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1. A Brief Review of Quantum

Computing in Silicon

This chapter begins by explaining the question that this thesis attempts to answer,

and justifying why this is important. Firstly, an introduction to quantum computing

and its purpose is given. Secondly, the criteria for a potential system to be used for

quantum computing are detailed, these are the DiVincenzo criteria [9][10]. Finally,

the satisfaction of these criteria is reviewed for silicon based quantum computing

architecture, the Kane[11][7] and Stoneham[1] proposals, and a gap in our knowledge

is thus identified. Can chalcogen group dopants in silicon provide a system that fulfils

the criteria for long decoherence times?

This question is narrowed down by considering that a quantum computing archi-

tecture must have a 2 level system, to be used as a Quantum bit (qbit), and these

must remain coherent over any computation time; it has been suggested that the

qbit information can be encoded on deep donor electron spins[1], or shallow donor

nuclear spins [7]. Sets of these qbits must be able to interact, and must remain

coherent over the interaction time. Chalcogen group donors in silicon are a possible

donor system because of their deep binding energy, giving the expectation that they

will be more resistant to thermal excitation, and have a smaller ground state than

shallow donors. Such a donor’s excited electron states could provide the interaction

between qbits of a different donor element, as for Stoneham[1], or the small ground

5



1. A Brief Review of Quantum Computing in Silicon

state could use its spin as a qbit. To expand on this, Stoneham proposes an archi-

tecture where there are two spatially separated donor electrons whose spin states

form qbits, with a third and different donor in-between them. Excited states of the

middling donor electron overlap both the others, far more so than the ground state,

thus increasing their spin to spin interaction strength.

Either way, the optically excited state must have a long decoherence time and a long

radiative lifetime. The question prompted is then: what are the radiative lifetimes

of chalcogen donor electrons in silicon? This thesis attempts to begin answering

that for the chalcogen selenium.

1.1. Introduction to Quantum Computing

A quantum computer is simply a computer that uses the principles of quantum, rat-

her than classical, mechanics. The justification for why we as a civilisation should,

and arguably must, work towards building such a computer are outlined here. Fol-

lowing this an introduction, albeit brief, of the basic principles and terminology is

given.

1.1.1. Justifying the Importance of Quantum Computing

As computing architecture tends to smaller and smaller scales, it is in one sense

inevitable that quantum effects must be considered at some point. But this doesn’t

justify, it merely indicates that quantum effects must be considered; perhaps a

classical computer could be built in such a manner as to bypass or overcome quantum

effects. The fundamental motivation comes from the practical need to be able to

simulate, or calculate, the behaviour of reality. However, reality depends on quantum

behaviour, that is, to simulate reality exactly requires a computer based upon the

principles of quantum mechanics; this line of reasoning was outlined by Feynman in
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1982 [12].

This is the quantum simulation justification. To numerically calculate the behaviour

of any quantum system, described by the Schrodinger equation, various approxima-

tions must be applied, this is true for both a classical or a quantum computer.

However, as the size of the system increases linearly the computational complexity

increases exponentially. For a classical computer this means the cost in time (or

in size and clock speed) is exponential, but for a quantum computer this cost sca-

les polynomially; for example, molecular systems are notoriously complex to simu-

late using classical computers resulting primarily in simple diatomic and triatomic

molecular systems being studied [13]. This has severe implications for novel drug

development, etc, being that many organic molecules are far more complex than

triatomic systems. In addition, the potential technological applications for precisely

engineered atomic scale electronic, and optical, devices cannot be easily realised

unless their behaviour can be simulated.

The potential of a quantum computer beyond simulating physics systems then be-

came apparent in 1994 with the Shor algorithm[14]. The factorisation of large num-

bers into their prime factors is a task that can only be accomplished by a classical

computer in approximately exponential time, while Shor showed that a quantum

algorithm could solve this in polynomial time.[15] This is a concern because the well

known Rivest-Shamir-Adleman (RSA) public key encryption algorithm, the basis of

secure online communication and commerce, this is a public key encryption scheme

that relies on the computational difficulty of finding the prime factors of very large

numbers. The factorisation of primes using Shor’s algorithm has been demonstrated

for the number 15 [16][17][18][19].

Other quantum algorithms that solve a problem faster than is possible with a classi-
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cal system do exist, for example Grover’s search[20]; Grover’s search finds an object

in a list of size N in at least
√
N steps, compared to the classical N steps. Thus

quantum computing is justified because it allows the simulation of things a classical

computer cannot simulate, and algorithms exist for specific tasks that are faster

than the classical alternative. The source of this improvement is that the quantum

system can use interference, this causes the most probable measured outcome to be

the answer to the computation.

1.1.2. Quantum Computer Basics

A quantum computer relies on the fundamental properties of interference and superposition[21][22].

To build a computing architecture exploiting these properties thus requires a quan-

tum bit and a quantum logic gate to replace the classical analogues. While not

complete, these quantum bits and gates are the basics necessary for an understan-

ding of what a quantum computing architecture would be like.

1.1.2.1. A Quantum Bit

A classical bit is a two state switch, with the two state 0 and 1. Correspondingly

a qbit is a two state system, the simplest possible quantum system; the qbits state

is then a unit vector in a two dimension vector space [21][22], shown in figure1.1.

The two states of the system are then orthogonal and are represented by the state

vectors |0〉 and |1〉, these are then the quantum analogues of the classical bit states

of 0 and 1. This qbit is in general in a superposition of the form ψ = a |0〉 + b |1〉,

where a and b are complex constants subject to the normalisation |a|2 + |b|2 = 1;

when measured the probability of the qbit to be found in a particular state is then

|a|2 or |b|2 for the states |0〉 and |1〉 respectively.

The probability coefficients a and b are complex numbers because of being quantum

objects, it is their defined fundamental property[23]. Being complex vectors they
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can be represented as a phasor aeiθ, however, only the phase difference φ is relevant,

thus the state of the qbit can be written as in equation 1.1[24, p15], or in column

vector form in equation 1.2. This can be represented as a vector on a sphere, the

Bloch sphere shown in figure 1.1.

|ψ〉 = cos
(θ

2

)
|0〉+ eiφ sin

(θ
2

)
|1〉 (1.1)

ψ =

 cos
(
θ
2

)
eiφ sin

(
θ
2

)
 (1.2)
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x
y

z

Figure 1.1.: Bloch sphere representing a qbit. The direction of a vector on the surface
of the sphere shows the state of the qbit, directly up is the |0〉 state while
down is |1〉. Superposition of the states is then represented by any vector
not directly up or down, i.e the θ angle. The phase of the state is represented
by the x,y direction, i.e the φ angle.
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1.1.2.2. The Gate Model

In order to carry out any simulation or algorithm the qbit state must be acted upon.

Classical computing uses various logic gates, for example the AND, OR, NOT, etc

and the quantum equivalent is correspondingly an operator which can be written

as a matrix; the gate matrix then acts on the column vector representation of the

qbit. This operator can be written in terms of the interaction Hamiltonian H ′ of the

system, this could be caused optically, via magnetic field, or some other method;

this is shown in equation 1.3. This is an arbitrary quantum gate, the form and time

evolution of the Hamiltonian dictating the operation performed; however, it must

be unitary to preserve the norm of the system, U †U = I where I is the unit matrix

[24, p206].

U = e
− i

~
∫ t
t0
H′(t′)dt′ (1.3)

In general, in a matrix representation that acts on the column vector qbit, a quan-

tum gate has the form of equation 1.4[24, 1.17]. Here β and δ are phase angles

corresponding to rotation around the x,y plane of the Bloch sphere, and γ is a rota-

tion angle corresponding to a rotation between the |0〉 and |1〉 states, α is then just

a phase term for the whole gate and is practically irrelevant.

U = eiα

e−iβ2 0

0 ei
β
2


cos(γ

2
) − sin(γ

2
)

sin(γ
2
) − cos(γ

2
)


e−i δ2 0

0 ei
δ
2

 (1.4)
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1.2. DiVincenzo Criteria

The qbit and quantum gates are the basic building blocks, but there are conditions

necessary for a quantum computing architecture. DiVincenzo outlines the “five”

conditions for the realization of a physical quantum computer [10] :

1. “A scalable physical system with well characterized qubits”

2. “The ability to initialize the state of the qubits to a simple fiducial state”

3. “Long relevant decoherence times, much longer than the gate operation time ”

4. “A ‘universal’ set of quantum gates”

5. “A qubit specific measurement capability”

The requirements form a check list for a quantum computer, but there are two bonus

criteria for exchanging quantum information [10] :

1. “The ability to interconvert stationary and flying qubits”

2. “The ability faithfully to transmit flying qubits between specified locations”

The initial five criteria are those directly applicable to a quantum computer, which

can be achieved by fulfilling these directly. However, a larger number of qbits, or

a geographically wider quantum information network, requires the final two criteria

to be met; these will not be focused on in this thesis in any further detail.

1.2.1. Fulfilment of the Criteria

There are several systems that could fulfil the DiVincenzo criteria, such as trapped

ions[25], superconductors[26], but they are not the focus of this thesis. Instead

silicon is the target, specifically dopant atoms in silicon so as to form a solid state
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quantum architecture. A brief explanation of how each criterion can be met by

donor dopants in silicon, along with any specific advantages, is given here.

1.2.1.1. Scalable System

The first requirement is that there is a “scalable physical system with well characte-

rised qubits”. As the computation revolution of the 20th century has shown, doped

silicon is indeed a scalable physical system; the computer this was written on is

evidence for this. While the requirement for a qbit could be met by the two distinct

spin states of donor nuclei or electrons, it is even conceivable that the ground state

and an excited state of a donor electron in silicon could correspond to the two states

of a qbit. Indeed all that is required is a two level system that is scalable, and doped

silicon is full of them. For the system to be well characterised, DiVincenzo states

that the Hamiltonian of the system must be known [10]; the Hamiltonian of spin

states in Si is known [27, eq1], and that of an electromagnetic interaction with a

donor electron system is well known [28, eq 7.1]. Thus doped silicon meets the first

criteria.

1.2.1.2. A Universal set of Quantum Gates And Initialisable qbits

The second and third requirements are grouped together here, because while ex-

plicitly separate requirements, they are both “solved” by the same properties of

resonant optical interaction with the two level atomic system that a donor electron

can form.

Initialization

The second requirement is “The ability to initialize the state of the qubits to a

simple fiducial state...” . This requirement is relatively simple, in that it only

requires that qbits are initialised into a known state in reproducible manner before

any computation begins. This has been demonstrated in phosphorus doped silicon,
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with hyperpolarization of nuclear spins [29], and effectively for an optical interaction

by the coherent control of the electron state [30].

Universal Quantum Gates

The third requirement is then “A ‘Universal’ set of quantum gates”. Every quantum

gate must then be a unitary transformation that can be applied to a qbit; if it

is not unitary then the normalisation of the qbit wavefunction no longer holds,

the consequences of this are non-physical. Any scheme for quantum computation

requires an implementation of the quantum gates that is good enough that quantum

error correction can function [10]; quantum error correction is beyond the scope of

this thesis and will not be discussed in any more detail.

As shown above in equations 1.2 and 1.4, a quantum gate can be built out of the

application of some perturbing Hamiltonian to a system. A resonant interaction

between a perturbing electromagnetic field and a donor electron system can then

be represented as equation 1.5; where ω is the angular frequency corresponding the

energy difference between the |0〉 and |1〉 states, T is the total time of the gate

operation and the optical pulse is assumed to be zero outside of this time window,

while Ω is the pulse area defined in equation 1.6[31, 13.23][22]; for a constant field

amplitude this gives the Rabi frequency multiplied by T .

U = eiα

e−iωT2 0

0 ei
ωT
2


cos(Ω

2
) − sin(Ω

2
)

sin(Ω
2
) − cos(Ω

2
)

 (1.5)

Ω = |
~di,j
~
.

∫ T

0

~E(t′)dt′| (1.6)
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Thus a resonant optical pulse can form any arbitrary quantum gate by tuning the

pulse area to obtain rotation between |0〉 and |1〉; tuning refers to both the optical

field strength and the duration of the pulse. The phase is then determined only by

the timing of the pulse. If such a pulse can arbitrarily set the state of a qbit and

apply arbitrary gate operations to it, both criteria are satisfied.

1.2.1.3. Qbit Specific Measurement

The fourth condition is “A qubit specific measurement capability”. This requirement

is arguably the most immediately obvious of the five, one must be able to read

the quantum state of output qbits for any computation to have been or be of any

practical use. This is required to happen without influencing any other qbits.

A simple comparison with classical computing shows just why this appears to be

necessary and is, in common physics terminology, a “non trivial” task. For a set of

classical bits, for example chained together in a shift register, the state of any bit

can be found by merely shifting that state along the register until it reaches the end

and outputting that bit; it is key to point out that in this case each bit has no effect

upon the state of those in front of or behind it. However, because of the quantum

no cloning theorem [32] a quantum shift register cannot exist. This is because the

state of one qbit cannot be copied to another; the information in one qbit can be

transferred, but this is no more than entangling multiple qbits and would directly

violate the qbit specific measurement criteria. Thus any measurement must occur

for each specific qbit, as the criterion states, and there is no universal solution to

this problem for silicon dopant atoms.

The specific readout method will depend upon the exact scheme implemented. An

example proposed method [1] uses essentially what is a blockade effect along with

a separate control qbit system; blockade effects have been experimentally demon-
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strated for e.g. rubidium [33] and so are plausibly potential for silicon. The control

qbit must be close enough to interact with the other, so that when one is in an

excited state the other cannot be excited to the same state because of their mutual

interaction. If a resonant laser is directed at only the control qbit and it absorbs a

photon then the other qbit must be in its ground or |0〉 state, otherwise if photons

are scattered then the qbit must be in a |1〉 state. This is only a proposed scheme

and it is highly likely to be extremely challenging to realise in practice, especially

only targeting the control atom; it is possible that a blockade occurs between two

different atoms and thus the laser is only resonant with the control atom, removing

the chance for catastrophic readout caused changes of the qbit.

1.2.1.4. Long Decoherence Times

The fifth condition for quantum computation is “Long relevant decoherence times,

much longer than the gate operation time”. While the gate operation time is de-

pendent on the implementation of the gate, using qbits with the longest possible

decoherence times is ideal; this reduces the constraints on possible gate implemen-

tations. Decoherence time is one of the key issues which the use of doped silicon can

address. The decoherence time is a measure of the qbits interaction with their envi-

ronment, and depending on the implementation, the dephasing manifests differently

e.g. at a different speed.

For a single two level system (e.g. electron or nucleus spin) acting as a qbit, the

dephasing can manifest as the evolution of the relative phase between the |0〉 and

|1〉 states. If the state is written as |ψ〉 = a |0〉 + eiφb |1〉, then the dephasing is

essentially the changing of the a and eiφb complex coefficients by interaction with

the environment; φ is then the phase angle between the two states that changes

in an unknown manner due to the dephasing. For an ensemble of spins acting as

the qbit, not only does each particle dephase as a single particle qbit, but due to
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inhomogeneity of their environment each particle may, and probably will, dephase

at a different rate. In a solid state doped silicon approach, for example, this inho-

mogeneity can arise due to thermal gradients, doping gradients, or different isotopes

being present, etc.

This leads on to one of the main advantages to using silicon, that it is one of the most

isotopically pure materials that can be created [34], thus reducing any isotopically

caused decoherence; although environmentally caused decoherence will always occur

to some extent. However, it has been shown that this problem could partially be

overcome by using coherent π laser pulses, demonstrated by the optical analogue of

the “Hann echo”, where an ensemble of phosphorus donor spins have been shown

to be brought back into phase with each other. While it has been demonstrated for

an ensemble[30], in principle it should work for single spins as well, albeit with a

much smaller and harder to detect signal because of the lack of in phase emission

amplification, i.e. super-radiant emission as in the Dicke model [35]. This means

that by applying π pulses , which do not change the |0〉 or |1〉 magnitudes, the state

is rotated by π around the Bloch sphere and the dephasing then operates backwards

relative to before.

1.2.1.5. Stationary and Moving Qbit Conversion

In brief this requirement is that a qbit must be able to be transferred to an object

that can move; for example from a spin state to a photon polarisation.

1.2.1.6. Transmittable

Once converted to a qbit form that can move, such as a photon polarisation, this

must then be able to travel to another piece of quantum computing architecture

without losing its state or phase coherence; lasers are particularly good at this.
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1.2.2. Decoherence and State Lifetimes

With the conditions for quantum computation now reviewed, the condition that is

most relevant to doped Si is the fifth condition, long decoherence lifetimes. However,

as long as the decoherence is invariant over the gate operation time, it is possible that

this decoherence can be corrected or ignored by the use of ensembles of qbits; this

relies on applying a π pulse to the set of qbits and allowing the phase decoherence

to work in reverse, putting the elements of the ensemble back into phase with each

other at their original phase point [30]. Quantum error correction also exists, where

errors caused by the decoherence can be corrected [36], and have been demonstrated

[37]. However, decoherence is by its very nature not known to be time invariant,

and cannot by definition be predicted quantifiably.

The problem of state lifetimes must then be considered. That is, any qbit requires a

two level system, where one state must be of higher energy than the other; otherwise

there is only the single level, or there are two systems. Intrinsically the qbit can

then transition from one of the states to the other, emitting a quanta of energy

(probably radiation) as it does so, and will do so with an average lifetime following

an exponential decay pattern. If that radiative lifetime is less than the average time

for the state to decohere, then the long decoherence time is useless. Thus there are

two lifetime parameters that are of vital importance, the radiative and decoherence

lifetimes. These are often referred to as the T1 and T2 lifetimes or transverse and

longitudinal; the reason for this can be seen on the Bloch sphere, where dephasing is

transverse to the state axis and decaying from one state to the other is longitudinal.

1.2.2.1. T1 Radiative Lifetime

The radiative lifetime only becomes relevant in specific implementations of the qbit.

If Kane’s scheme [11] were to be used, then the radiative lifetime would be relevant

as a donor electron is used to mediate interaction between two nuclear spins. The
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electron needs to be able to be shifted between the two nuclei, in order to transfer

spin states from one to the other. The ground state S wavefunctions of the electron

are localised upon the nucleus, and thus less susceptible to being moved than the

larger P like states. However, the P like states are excited states and as such they

have a characteristic lifetime before they decay back to the ground state. The

Stoneham scheme [1] also calls for excited electron states to control spin based

qbits, and this has a similar decay problem. Decays between spin states is one

additional possibility. The natural decay lifetime can also be decreased by the local

environment of the electron via inhomogenous processes.

Whatever the radiative lifetime is, it is certain that for a quantum computation to

be successful it must be completed before any electron involved decays back to its

ground state by itself. This radiative lifetime then sets the upper bound on the

realisable decoherence lifetime.

1.2.2.2. T2 Coherence Lifetime

The mechanics of quantum computation rely upon exploiting quantum interference

effects between qbits. These qbits evolve in time in a unitary manner, that is they

do not lose or gain information. When interacting with the environment, qbits are

said to become decoherent if their evolution is non unitary; it must be noted that

the system as a whole including the environment will still have unitary evolution

even if parts of it do not do so in isolation.

A physical example of this is an electron spin state; if it interacts with a nuclear

spin state of a nearby atom unintentionally, then while the combined evolution will

be unitary, the state of a given electron may be non unitary. What this means is

that the electron spin state may appear to be forced into one state or another, i.e.

the appearance of wave function “collapse”. Another way of looking at it is that by
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interacting with the nuclear spin, the relative phase of the electron’s state becomes

dependent on that of the nuclear spin. If the nuclear spin state is unknown, then the

phase of the electron is unknown, so that when the electron’s wavefunction interferes

with that of another (during a quantum computing operation), the result is then

altered by the phase difference between them. Thus it is called decoherence, the

phase is no longer coherent. [22] [38] [39] [40]

The decoherence lifetime is then the average time before the phase of a qbit is

changed significantly, or the average time before its evolution is no longer unitary.

It is the T2 decoherence times that are of ultimate utility, as they are in effect

the lifetime of the quantum information in the system, and are typically shorter

than the T1 state relaxation times. However, the measured T2 are bounded by the

T1 relaxation times, that is T2 ≤ T1. Thus it can be seen that the first step in

investigating any new system is to establish T1, and then if this is sufficient to

measure T2.

1.2.2.3. Minimum Practical Lifetimes for Donor Qbit Systems

As lifetime measurements have been carried out on a variety of systems, establishing

lifetime targets is vital for assessing whether a particular system is suitable or not

for quantum computing. These lifetime targets are then the time necessary for the

operation of some quantum gate operation. The precise times necessary will of

course depend on the exact implementation, but comparisons are still possible.

Chalcogen donors were first suggested as qbits in 2001[41]. The scheme proposed

involved the use of magnetic force microscopy to address the spins of the qbits.

Their conclusion was that a coherence time ≤ 2.5ms would be needed for quantum

computation [41]. Different methods will, of course, require different coherence

times. For example, optical read out of the state of chalcogen donors would also
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require the coherence lifetime to be longer than the Rabi time period; although

this is an ultimate lower bound on the coherence time. This then depends upon

the specific donor states used for the qbit, via the dipole moment, along with the

strength of the exciting field.

The selection of the specific dopant in silicon then sets the lifetime constraints.

1.3. Proposalsfor Silicon Based Quantum Computing

in the Literature

There has been interest in using doped silicon as the containing medium for quantum

bits, i.e silicon would be the substrate of the quantum computing architecture.

Kane’s proposal [11], is one of the first attempts to outline a quantum computing

architecture in silicon, while that of Stoneham [1] proposes using donor impurity

electron states as a key part of a, different, silicon quantum computing architecture.

These, along with several other proposed competing quantum computing schemes in

silicon, their key advantages, and relative pros and cons are briefly discussed below.

1.3.1. Kane’s Proposal: Electrical

Several others had previously proposed using spins half particles as qbits, with

nuclear spins[42], nuclear or electron spin [22]. The first detailed proposal using

silicon is attributed to Kane [11], and is expanded in [7]. Following this, Kane

proposed using the nuclear spin of a donor atom in Si as the qbit, as the nuclear

spin state is a typical two level system.

The Kane proposal calls for phosphorus donors to be located in silicon, beneath

arrays of of metal gates; these are used to apply magnetic fields to the donor electron

and nucleus to act as the quantum gates and for state readout. This state readout
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then occurs via the electrical contacts, as the donor charge can move only if in a

specific state. This can then be measured by its effect on the capacitance of the

gate to gate system; giving in effect an electrical readout of the state. Electric fields

can be applied to shift the spatial distribution of donor wavefunctions, turning on

qbit to qbit interactions by making them overlap. The qbit is the nuclear spin of

the phosphorus donor. In silicon the nuclear spin of the donor atom can be used

to advantage, as silicon has (excluding for the moment isotopes) 28 protons and

neutrons which give it a total nuclear spin of 0; this lack of nuclear spin offers the

advantage that spin interaction is minimised, thus reducing decoherence; especially

for any proposal using the spin state to form the qbit.

Kane proposes that the electron spin could then be used to control and readout

the state of the nuclear spin, mediated by the electron-nucleus hyperfine coupling.

This has been experimentally achieved [43]. Here a radio frequency π pulse changes

the nuclear spin state, while a microwave frequency π does the same for the donor

electron spin. The combination state is then written |ab〉, where a is the nuclear

spin state and b the electron; |0〉 and |1〉 represents spin down and up respectively.

States |00〉 and |01〉 then form the electron spin qbit, where the electron spin is in a

superposition of spin up and down; the nuclear spin is here only in the down state.

The states |11〉 and |01〉 then form the nuclear spin qbit, where the nuclear spin is in

a superposition of spin up and down; the electron spin is here only in the up state.

Beginning in the X |00〉+ eiφY |01〉, or electron qbit state, an application of a radio

π pulse brings the system to the state X |00〉 + eiφY |11〉; coherence is maintained,

as the X, Y coefficients and φ angle are unaffected by the pulse. Following this a

microwave π pulse is applied, bringing the state to X |01〉 + eiφY |11〉. Thus the

state of the qbit has been transferred from the nuclear spin to that of the electron.

The nuclear spin is thus chosen to be the qbit over the electron spin, as the electron
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is less isolated from its environment, and thus more likely to become decoherent,

or entangled with its environment, leading to error in any quantum computation.

Nuclear spin coherence times are then measured to be in the second time-scale, but

only for donor nuclear spins as this is two orders of magnitude greater than bulk

silicon [44].

1.3.2. The Stoneham Proposal: Optical

The Stoneham [1] proposal bypasses the need for metal gates as in Kane’s scheme.

Nearby metal contacts give a risk of thermally ionised donor electrons wandering

off, and would be a manufacturing challenge due to the atomic scale required; this

would present difficulties when attaching electrodes to these metal gates. Stoneham

instead introduces the idea of using deep donor states, which have binding energies of

100’s of meV compared to 30 meV for phosphorus; this can prevent the accidental

thermal ionisation risk. The proposal then proceeds by using one type of donor

element as the qbit, with the spin states acting as the two level system. Another

donor element of a different type would then act as a control and qbit interaction

mediator, where an excited state of the control electron would need to have a large

enough spatial extent that it overlaps two qbits. These are then controlled optically,

with no need for electrodes; a similar scheme to that used to move nuclear and

electron spin states in the Kane proposal could be used for this, albeit with optical

π pulses.

This proposal is less well experimentally realised than Kane’s, but by focusing on

measuring the radiative, and eventually the coherence, lifetimes of chalcogen donors

in silicon it is hoped that this may soon not be the case. The reasons for the choice

of chalcogen donors are outlined in chapter 2.

23



1. A Brief Review of Quantum Computing in Silicon

Quantum computing remarks

A silicon deep donor system has great potential to become the foundation of a

quantum computing architecture. The first three DiVincenzo criteria are fulfilled

already in principle, and qbit specific measurement is then an engineering challenge

along with the plus two. Only the decoherence, and thus radiative, lifetimes remain

entirely dependent upon experiment. In the system outlined here optical pulses

provide arbitrary quantum gates, these then act upon donor electron state qbits

which interact with each other via higher excited states; the nuclear spin could then

form longer lived qbits and quantum memory. The excited states which provide qbit

interaction must then have long radiative lifetimes, this thesis attempts to move

towards a greater understanding of these lifetimes. In conclusion, the promised

potential of silicon donor systems is matched only by the amount of work necessary

to implement it; step one is to check whether chalcogen donor states have longer

lifetimes than the current best donor, phosphorus, with 200ps lifetimes [45].

There is one immediate potential problem to using chalcogen donors in silicon as part

of the Stoneham proposal, that is, because they are double donors the net spin of

the ground state system is zero spin. Therefore, the ground state cannot be used for

any quantum computation, as any interaction, and subsequent measurement, would

not be able to distinguish which electron was which, giving a 50/50 probability of

any resulting qbit being 1 or 0.

However, the Stoneham proposal involves using a donor excited state to act as an

interaction mechanism between two other, different, donors. In this case the lack

of precision regarding the spin of the excited electron need not be a problem, as

there are several possible solutions. Firstly, the Hadamard quantum gate operation

could be applied to the excited chalcogen donor electron, this puts a qbit into

an equal superposition of 0 and 1 states irrespective of its prior state. Secondly, a
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magnetic field could be applied at the site of the donor impurity, Zeeman splitting the

two donor electron ground states, and allowing a specific spin state to be selected,

perhaps optically. Thirdly, donors may be singly ionised and the resulting single

donor impurity centres may be used. It is clear that further work needs to be done

to specifically incorporate any chalcogen donor into the Stoneham proposal.

1.3.3. Silicon Quantum Dots

Quantum dots provide an alternative method of creating a silicon based quantum

computing architecture. A quantum dot is a small region, typically on the nano-

metre scale, that has different electrical and optical properties to the material that

surrounds it. Because the quantum dot confines electrons, or holes, in all three

spatial dimensions they are often referred to as zero dimensional. This acts much

like an artificially created atom, making the similarities to donor impurities in si-

licon clear. One of the key advantages of qunatum dots is that their coupling to

theElectroMagnetic (EM) spectrum, size, and location are all dependant on their

physical dimensions, which are themselves precisely controllable via conventional

semiconductor compound growth techniques.[46]

One of the earliest quantum dot for computing proposals[47] made the case that such

quantum dots may be strongly coupled together, allowing qbit to qbit interactions

and therefore the implementation of two qbit quantum gates. The essential function

of this scheme is as many others in silicon, to treat the spin state of an electron,

confined in the quantum dot, as the qbit. The tunnelling between nearby quantum

dots can then be controlled via applied voltages, and the interaction, or not, of mul-

tiple qbits can be measured by charge readout methods[47]. In addition, it has been

shown that the spin state of such a quantum dot may be read out using electrical

methods, i.e. the applicaiton of a voltage to the quantum dot .[48] Furthermore,

spin lifetimes in silicon quantum dots, when the conduction band valley degeneracy
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is lifted by an applied electric field, can exhibit spin relaxation lifetimes “exceeding

2 s”[49]. An alternative method uses a double well quantum dot, allowing electron

confinement in two locations within the quantum dot, which may also be coupled

to a single electron transistor quantum dot allowing measurement of the position

of the electron, therefore showing that charge based Quantum bit (Qbit)states are

possible.[50]

Double well quantum dots coupled to single electron transitors have been shown

to operate like a “single electron memory latch”[51], that is, they form a quantum

system capable of storing information that can be accessed, or made to interact with

part of a larger quantum system, by the controlled application of a voltage. Electron

tunnelling between quantum dots can also be controlled by GHZ radiation, and

detected by electrical charge measurements.[52] It has also been demonstrated that

error proof, high fidelity, quantum dot qbits are possible, i.e. that the application

of quantum gate operations to such structures is possible, along with the readout

of the resulting state, that is, the combination of silicon spin quantum information

storage and electrical control.[46]

What this means is that purely electrically quantum dot qbits are possible, via

the application of controllable voltages and single electronic charge measurement

techniques, and that they remain coherent long enough for gate operations to be

carried out. In addition, combining such electrical readout and control methods

with optical, GHZ, radiation is possible. Therefore silicon based quantum dots

allow for the exploitation of the precision of semiconductor growth, a combination

of electrical and optical control and readout techniques, electrically and optically

controllable qbit to qbit coupling, and the long intrinsic spin lifetimes possible in

isotope free silicon.
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1.3.4. Morse Proposal for a Chalcogen Qbit

A proposal for a chalcogen impurity in silicon based qbit exists in the literature,

this is the proposal by K. J. Morse. [53] This is an elegant proposal, where singly

ionised selenium donors in silicon form the qbit system. In isotopically pure silicon,

discussed in chapter 2, different spin states are spectroscopically resolvable. It is

proposed that the 1s(A1) ground state spin operates as a qbit while the EMT

forbidden, but reality allowed due to the failure of EMT assumptions to be fully

applicable to the ground state (discussed in chapter 3 ), transition to the symmetry

split 1S(A1) ground state from the 1S(T1)Γ7 spin state is then optically measura-

ble. This would allow, in conjunction with careful use of photonic crystal structures,

optical measurement of donor qbit states. The ground state of the system is men-

tioned as being only weakly affected by “fields, strain, and phonons”[53] making a

long coherence lifetime likely, as the only large interaction of the ground state spin

is with magnetic dipole, of which there are few in isotopically enriched silicon. The

optical transition in question has a long lifetime of ≈ 39µs.

It is suggested that by implanting the donor centre into an optical cavity, the re-

sonance of specific 1S(T1)Γ7 states with modes of that cavity can be tuned by the

application of electric and magnetic fields, allowing a single spin state to be cou-

pled, or uncoupled, strongly with the cavity - “the cavity will preferentially transmit

any light matching the bare cavity frequency (or reflect, depending on how light is

coupled to the cavity)” [53]. This would allow for the readout of the spin state,

without exciting any transitions and affecting the qbit. This is a similar readout

method to that of the Stoneham proposal. This scheme may be applicable to the

2P0 to 1S(A1), rather than the 1S(T1)Γ7 to 1S(A1), transitions, although excited

state lifetimes may be shorter due to the likely stronger dipole matrix element due

to the 2P state being not just p like as the 1S(T1) states.
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1.3.5. Specific advantage of Silicon - Donor Placement Via

Hydrogen Lithography

There are several advantages to using silicon donor impurities for a quantum com-

puting architecture, discussed above. An additional advantage to donor impurities

is the potential for precision positioning, such as with a Scanning Tunnelling Mi-

croscope (STM) hydrogen lithography method.

It has been possible to use a STM tip to precisely position atoms on a metal surface

for some time [54], however, the strong covalent bonding typical of semiconductors

prevents this from being applied as is to position donor atoms on a silicon substrate,

instead hydrogen lithography can be used [55].

Firstly, “a clean, defect free silicon surface”[55] is prepared, this can be done via

heating to 1200◦C in a high vacuum chamber, and then slowly bringing the tem-

perature down while maintaining the vacuum.[55] Then atomic hydrogen can be

deposited upon the surface via a heated filament source. There are several different

ways in which the hydrogen can be adsorbed by the silicon, depending upon the sur-

face temperature, and these include single or double hydrogen complexes upon the

surface, or triplet groups these complexes.[55] It has been shown that the type of

hydrogen complexes formed on the silcon surface are experimentally measurable[56],

and theoretically understood. [57]

A STM tip then removes, or desorbs, specific hydrogen atoms from the silicon

surface by the application of a controlled voltage[55]; precise dangling bond configu-

rations, where surface hydrogen atoms are removed with a STM tip and electrons

trapped in the dangling silicon bond, have been investigated and it was found that

“atomically precise quantum states can be fabricated on silicon”[58]. It has been

found that, counter intuitively, STM tips that facilitate accurate, single atom,
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measurement are the least likely to desorb a hydrogen atom, while those unable

to resolve single atoms are most likely to remove single atoms. [59]. In addition

some rapid patterning techniques developed for e-beam lithography have been in-

vestigated as potentially applicable to STM hydrogen lithography, specifically the

removeal of hydrogen atoms from the silicon surface in line shaped, and grid like,

patterns. [60] Phosphene gas can then be used to adbsord phosphorus atoms into

the spaces where the hydrogen layer has been removed[55], it is possible that a

similar corresponding gas compound may be used for different donor atoms. The

remaining hydrogen layer can then be removed by heating, “without disturbing the

lithographically defined structure”.[61]

Using this technique single atom transistors have been built[62] , along with the

measurement of anti correlated spins in nearby single donors [63] - a quantification of

the donor separations necessary for donor wavefunctions to have measurable overlap.

The result of this is that donor impurity atoms can be reliably positioned, using

hydrogen lithography, in arbitrary patterns, with measurable wavefunction overlaps,

to create arbitrary quantum systems and potentially form the basis of a universal

quantum computing architecture.

1.3.6. Alternative Quantum Computing Schemes

There are several alternative, non silicon based, proposals being worked towards to

build a quantum computer. Some of the prominent and promising ones are, briefly,

discussed here along with their relative pros and cons to silicon based approaches.

1.3.6.1. Superconducting Resonators

One of the alternative proposals for quantum computing is to use superconducting

resonators. These exploit the properties of superconductivity, where when cooled
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past some critical temperature a material exhibits zero resistance due to cooper pairs

of electrons forming, which condensing into the same, now macroscopic, quantum

state. The macroscopic quantum state, like any other, is subject to interference,

quantised eigenstates, etc that are manipulatable and measurable on a macroscopic

scale. There are two primary attributes of this that are exploitable for quantum engi-

neering: flux quantisation, and Josephson tunnelling through a Josephson junction.

For the former, when subject to a magnetic field (during the cooling past the cri-

tical temperature) which is then turned off, the magnetic field per unit area (flux)

remains constant due to an induced superconducting current which is then quanti-

sed. For the latter, a Josephson junction is an insulting barrier between two parts

of a superconducting material, which cooper pairs of electrons, as they are in a

coherent quantum state, can tunnel through allowing a constant electric current to

flow through the insulating region (depending upon its thickness); it is possible to

engineer the two superconducting regions of a Josephson junction to have differing

energy levels for the electrons. This readily gives the basis for a qbit, a pair of

discrete quantum states. [64]

There are three main proposals for superconducting qbits : flux, where the two states

correspond to an electric current flowing clockwise or anticlockwise to maintain the

magntic flux present during the superconducting transition[65][66]; charge, where a

pair of Josephson junctions form a superconducting region with quantised energy sta-

tes, i.e. a potential well, that can be higher than those outside of it, called a “Cooper

pair box”[64] thus forming the two states: charged, and uncharged[67][68][69][70];

flow, where an electric current is applied across a pair of Josephson junctions close

to the maximum current that can flow before the superconducting region is no lon-

ger superconducting, in this state there is a large energy gap between the quantised

levels of the superconducting potential well region allowing the two lowest lying to

be used as qbit states.[71][72]

30



1. A Brief Review of Quantum Computing in Silicon

Like donors in silicon, superconductor based qbits are scalable, being built of of

Josephson junctions, which relies on conventional lithography techniques, although

each superconducting qbit is slightly different and the coupling between different

qbits cannot easily reconfigured.[73] Their properties can also be more easily tuned

than that of a donor impurity atom, i.e a donor atom has predefined electronic

energy levels, while that of the resonator can be adjusted by external parameters,

such as the application of a controllable electric field across a Josephson junction.

However, this tunability is also a source of weakness, providing strong coupling to

external fields. In addition, the coherence times are poor, compared to that of

silicon donors, with 1.2s, 2.0s, and 0.3 for flux, charge, and phase qbits respcetively.

[64][74]

1.3.6.2. Cold Ion Vacuum Traps

Vacuum ion traps are similar to donors in silicon in many ways. They take atoms and

confine then spatially using EM field traps, and are laser cooled to bring the atoms to

the bottom of the potential wells formed by the EM traps. This is done in an ultra

high vacuum to minimise interference, decohering collisions, stray coulomb fields

from contaminant atoms etc, with collisions typically occuring “roughly once per

hour per ion”[73].[75] These confined atoms are then ionised, and typically arranged

in lattice like grids which form due to the coloumbic repulsion of the ions balancing

against the EM field trap force. The qbit can be formed in one of two ways: from

two electronic energy levels of the trapped ions, or sing the spin of the ground orbital

state. Both can be interacted with optically or with EM pulses of the appropriate

frequency.

Trapped ion qbits are identical, as the ions are all the same. They can be coupled to

other qbits via optical interactions, which also allow state initialisation, quantum
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gate application, and initialised with almost 100% fidelity.[76] A problem with the

coherence times of trapped ion systems, is that they are limited by the average rate

of collision with contaminant atoms in the vacuum chambers. However, the greatest

difficulty faced by trapped ions is that of scaling to the large number of qbits needed

for a practically useful quantum computer, with 14 reported in 2011[77] . Recently,

scalable methods[78] have been proposed allowing up to 106 qbits but this is far

from being experimentally achieved yet.
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2. Dopants in Silicon: Which Atoms

to Choose?

2.1. Introduction

With the ultimate goal being to work, in some small part, towards a solid state

system that could eventually be used for quantum computing, the group iv material

silicon appears to be the most convenient to use; it has been proposed as the sub-

stratum of both an electrically [11] and optically [1] mediated quantum computing.

However, before discussing the relevant details of deep and shallow donor doping in

silicon, first it must be established, albeit briefly, why the semiconductor discussed

should be silicon at all. Or in a more succinct question: “what are the advantages of

using silicon as opposed to any other semiconductor material with potential scalable

fabrication and controllable doping?”

In order to place this thesis into the correct context, next it is necessary to summarise

several topics. Firstly, the relevant properties of silicon, a brief mention of how to

manufacture silicon of the necessary purity, and the effects of doping silicon with the

group iii to vi elements; group vi are known as the chalcogens. This is essentially

highlighting the important manufacture and material properties.
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Secondly and finally, what the current “state-of-the-art” is with regard to, or working

towards, fulfilling the necessary conditions for quantum computing using donor atom

electrons in a silicon host lattice as the quantum bit, with ideally optical as opposed

to electrical, quantum interactions.

As a caveat, while pure optical control of the qbits is ideal, electronic control of

some aspects of a donor qbit in silicon may or may not need to be integrated, as

schemes such as that proposed by Kane [11] differ from those of Stoneham [1] sub-

stantially. Ultimately elements from both will probably need to be used, as after

all it is presumed that any optics are still electronically controlled, and silicon is an

ideal material in which to integrate optical and electrical components. Briefly, opti-

cal control is ideal because control and readout must be coherent, and a laser is in

general easier to produce (for now) than a coherent electrical current. However, co-

herent readout of spin states has been demonstrated experimentally for phosphorus

in silicon [79]. Optically induced Rabi oscillation, corresponding to quantum gate

operation, is also possible at much higher speeds than electrical. Optical switching

frequencies are THz, while electrical are GHz for a factor of 103 difference.

2.2. Properties of Silicon

Here some of the basic properties of silicon are summarised. These include the

structure and size of the unit cell, the phonon spectrum, and the Debye temperature.

2.2.1. Structure

Silicon has a tetrahedral bonding structure, with a face centre cubic lattice. The

basic face centre cubic crystal has a lattice point at each vertex and the centre of

each face of a cube. As this lattice structure is periodic, only 4 of the 14 total points

are in each unit cell. For silicon the lattice then has a basis of two atoms, the first at
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the (0, 0, 0) and the second at the (1
4
, 1

4
, 1

4
) coordinates with respect to the lattice

points; there are then 8 total silicon atoms per unit cell. The cubic lattice has side

length of 0.565nm.[80][81] The silicon unit cell is shown in figure 2.1.

Figure 2.1.: Silicon unit cell, grey circles represent silicon atoms. The tetrahedral primi-
tive basis is shown highlighted in green. The blue atoms are the primitive
lattice points. Those in red are the (1

4
, 1

4
, 1

4
) offset additional atoms for

the two atom silicon basis. Each silicon atom has 4 covalent bonds with its
nearest neighbouring atoms. asi = 0.545nm.
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The elemental properties of silicon are: an atomic mass of 28, with 14 protons, and

an electronic configuration of 1s22s22p63s23p2.[82] Each silicon atom must have 4

covalent bonds to form the tetrahedral structure that it has, one bond to each of its

nearest neighbouring atoms. The four valence electrons, filling the 3s band and two

possible 3p states, then form the bonds between silicon atoms.

2.2.2. Phonon Spectrum

The reciprocal lattice of a face center cubic lattice is shown in figure 2.2. This

is necessary to match to the various wavevector positions in the phonon spectrum

shown in figure 2.3

asi

4 π

Figure 2.2.: The reciprocal lattice of silicon.
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Figure 2.3.: Phonon dispersion bands of silicon, along with density of states. Modified
reproduction of [83, fig 1 and fig 2].

The density of states of the phonon modes in silicon are then shown in more detailed

form in figure 2.4.
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Figure 2.4.: Density of states of silicon phonon modes. Modified reproduction of [83, fig
2], maximum phonon energy value of 64.5meV taken from [84, table 1].

A key point from the phonon dispersion bands and density of states is the maximum

frequency, and thus energy, of phonon possible. The highest phonon energy in silicon

is 520.2 cm−1 (64.5meV or 15.6THz) [84, table 1] which agrees with the phonon

dispersion bands from source [83, fig 1]; the Debye temperature corresponding to

this is 748.5K.

2.3. Manufacture and Growth

The decoherence of any prospective qbit is maximised by high levels of impurities,

defects, and asymmetries, this can be expressed succinctly as a non uniform local

environment; where local means the limits of what can be interacted with before
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coherence is, on average, lost. This is vital to the idea, and more importantly

any future physical implementation, of a silicon based quantum computer. A non-

uniform environment is also intrinsically tied to the scalability of the material, but it

must be confirmed that silicon of high uniformity or purity can be manufactured, so

that the decoherence and scalability DiVincenzo criteria can be met. Thus, following

is a brief review of the state of silicon manufacture, and recent developments in high

isotopic purity silicon which should allow for longer coherence times.

2.3.1. Mass Production

Commercially mass produced silicon can be broadly split into two categories, me-

tallurgical and electronic.

2.3.1.1. Metallurgical Grade

Metallurgical grade silicon has impurity concentrations sometimes as high as 1 part

in a thousand to 1 part in 250 for aluminium, with the difference compared to electri-

cal grade silicon being explained by the lack of an intermediate chemical purification

stage; the purity of metallurgical grade silicon is then 98 to 99%.[85, p116]

2.3.1.2. Electronic Grade

Due to the needs of the semiconductor based microprocessor industry, silicon ele-

mental purity has been a historically pursued goal. However, the bulk nature of

classical computing architecture means that the concentration of unwanted impu-

rities must be less than the concentration of wanted n− or p+ type dopants. As

can be discovered from a consideration of the number of donors and acceptors, their

binding energies, and Fermi-Dirac statistics, the charge carrier density of a doped

semiconductor is approximately linear with respect to the dominant dopant concen-

tration. Because of this, if the unwanted impurity concentration is very small then

it can be concluded that the bulk electrical characteristics are unduly affected.
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Electrical grade single crystal silicon has a typical purity of 99.9999% as claimed by

chipmaker Intel [86, p3], which corresponds to 1 part in a million. This is largely

carbon and oxygen, at 1 part in two million and between 5 to 20 parts per million

respectively, with other impurities such as iron being present at 1 part in a trillion.

This corresponds to a concentration of 1010cm−3 to 1016cm−3 for oxygen, carbon

and iron, compared to those ranging from 1012cm−3 to 1020cm−3 for specifically

introduced impurities. [87, table 3.2 p58] Much lower concentrations are required

for the group iii, v, and metallic impurities, of less than 0.3, 1.5, and 0.1 parts per

billion respectively.[85, p115] This is often referred to as “eleven nines”[85], for it is

99.999999999% pure silicon.

For the above impurity concentrations it can be noted that 1 part per billion cor-

responds to a concentration of 4.99 ×1013cm−3; this is based upon a typical silicon

atom number density of 4.99 ×1022cm−3, calculated from the volume of a unit cell

cube, of side length 5.43 ×10−8 cm, containing 8 silicon atoms in total.

2.3.2. Isotopically Pure: Bespoke for Now

Electronic grade silicon, sufficient for bulk scale electrical effects such as the mass

charge movement of millions and billions of electrons through transistors, whether

FET or BJT, still presents decoherence problems for a quantum computer; the

classical computer experiences no ill effect from isotopic impurities such as 29Si,

whereas this is not true for any application sensitive to the phase evolution of the

system, i.e. a quantum computer.

However, isotopic and elemental impurities in silicon do present a problem to the

realisation of a donor electron based qbit. For example, if a donor electron is intended

to contain quantum information in the wavefunction of its spin, then additional
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spin moments around it will increase perturbations to that wavefunction. This will

both lessen the coherence of the electron spins and lead to increased scattering

interactions, decreasing the T2 coherence lifetime and T1 state lifetimes respectively.

Elemental impurities provide a differing set of problems, as the most common ele-

mental impurities in silicon are carbon and oxygen[88], which have many fewer nuclei

and electrons than silicon and thus do not increase the spin to spin interactions over

a silicon atom. However, a differing set of spins in the local environment, from the

elemental and isotopic impurities, will affect the phase evolution of the donor elec-

tron spin, leading to differences in the phase evolution that depend on the specific

qbit implementation. Thus qbits are not responding in the same way to each other.

Coulombic interactions, due to elemental impurities having differing charge struc-

tures to the host silicon atoms, can also be found to cause two main problems. The

first being additional poles which provide a scattering mechanism, e.g. changing the

state of donor electrons and rendering any quantum operation void; this is seen in a

reduction of the relevant T1 lifetime of the excited donor spin states. A donor elec-

tron could also be elevated into a excited, higher energy, spin state via interactions

with electronic poles and spin moments.

The difference in the coulombic potential, due to the local donor environment, also

changes the Hamiltonian for the system, thus altering the energies of the donor

electron states. It is clear that if the state of the donor electron is to be inferred via

optical scattering, such as in the Stoneham proposal[1], or indeed any method that

uses a specific wavelength of light and its interaction with the donor electron, then

a change in the energy of the states will reduce the reliability of the interaction.

Schemes for quantum computing require that two qbits can interact in a coherent

41



2. Dopants in Silicon: Which Atoms to Choose?

manner, for example the use of donor electron excited states and its coupling (en-

tanglement) with other donor atoms of a differing type [1]. To remain coherent this

interaction must not be perturbed by any impurities in the qbits’ local environment.

However, the interaction between two systems is proportional to the integrated over

all space of their respective wavefunctions. Thus because as an excited state has a

wavefunction typically with a greater spatial extent, the probability of interaction

with any single impurity is small. If the number of impurities in the qbits’ local

environment is too high, then the total interaction probability increases. As the

impurities are not perfectly uniformly distributed, the interactions they have with

any qbit will be different, the time evolution of each qbit will then be different; if the

evolution of qbits is different then each quantum gate and readout operation must

be qbit specific, making scalability questionable. Thus the impurity concentration

must be low enough that a qbit impurity interaction is probably not going to happen

over the time scale of any calculation.

The effect of the silicon purity on the state and coherence lifetimes of donor states

can be described by a“catch-all” name, familiar to any physicist, inhomogeneous

broadening. This makes more sense when viewed in the opposite Fourier domain

to time, frequency, where any optical transition between donor electron states will

be some form of Gaussian curve. The Fourier relations between the two domains

is the same as the Heisenberg uncertainty principle, shown in equation 2.1. Be-

cause of the differing local environments, each donor atom in a region of silicon will

have slightly different energy states. This gives a Lorentzian spectral lineshape of

the donor electron transitions, thus due to the Fourier domain inverse relationship

these transitions have a width inversely proportional to the lifetime of the upper

state. The different local environments cause different wavefunctions, the higher

energy wavefunctions then have different overlaps with the lower, causing different

transition probabilities. This is the cause of the inhomogeneous broadening name.
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Reducing the inhomogeneity of the environment will reduce this.

∆E∆t ≤ ~
2

(2.1)

2.3.2.1. The Avogadro Project

With decoherence in mind, the Avogadro project is fortuitous. The Avogadro pro-

ject is “aimed at determining the Avogadro constant by counting the atoms in an

isotopically enriched silicon crystal” [89]. This has led to the creation highly isoto-

pically pure 28Si silicon.

The Avogadro project aims to define the Avogadro constant, in order to provide a

method of defining the kilogram. This can be done, for example, via the relation

defining the Rydberg constant R∞ = αMec
2NAh

[89]. Here R∞ is the Rydberg constant, α

the fine structure constant, Me the rest mass of an electron, h Planck constant, and

finally NA the Avogadro constant apart from which each is a fundamental constant.

The Avogadro constant itself is then determined by applying the equation NA = nM
ρa3

to a sphere of purified silicon; n is the number of atoms per unit cell, a the lattice

constant, a3 the volume per unit cell, ρ the density, and M the molar mass of sili-

con. The average molar mass can be determined by the fundamental masses of the

different isotopes of silicon,28Si ,29Si, and 30Si, along with their ratio which itself is

determined by mass spectroscopy. This is a reason why the Avogadro project re-

quires high isotopic purity silicon, without highly pure silicon, errors in determining

the ratio of isotopes would, in all likelihood, be larger in absolute terms, leading to

an absolutely larger error in any quantities calculated downstream.

Next is the number of atoms per unit cell, determined by the crystal structure;
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for silicon this is face centre cubic. This is determined experimentally by X-ray

and, along with the volume of the sphere of silicon and the lattice constant, optical

interferometric measurements [89].

The final variable left is the density, ρ, which requires that the mass and volume of

a fixed portion of silicon be known. Turning to the definition of the molar mass,

Mm = NAMa, the mass of an atom Ma can be defined in atomic mass units, and

the molar mass Mm is, again by definition, the number of grams that there are

atomic mass units in the mass of the atom. The volume is then known from the

interferometric measurement of the silicon lattice constant, a. This is then another

part of the origin of the Avogadros projects need for isotopically pure silicon. For if

the atomic mass varies, then so does the mass and thus the density, creating greater

uncertainty or errors in the determination of Avogadros constant . [90].

The question is then, why is isotopically pure silicon of any value to quantum infor-

mation processing?

There are two reasons for this. Fistly, there is the nuclear spin of 29Si, and secondly,

the different mass of the 29Si and 30Si atoms.

The additional neutron in 29Si causes it to possess a net nuclear spin of ±1
2
. Thus

a silicon bulk with some of the atoms being 29Si will be, in effect, a bath of nuclear

spin moments. The precise state of these nuclear spin moments will be, in gene-

ral, unknown; they will be susceptible to fluctuation, from, for example, thermally

caused agitation via phonon interactions, or stray, unaccounted for, magnetic fields

from the outside environment. This bath of nuclear spins can then, via the hyperfine

interaction, couple with the spin of a donor electron. The nuclear spins can also

couple to each other and cause each other to flip; this changes the magnetic field
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environment of the silicon, thus changing the energy of donor electron states, via

the Zeeman effect.

This not only causes incoherence of the donor electron state, as the phase evolution

has changed via the unknown and unpredictable interaction with the spin bath, but

inhomogeneous broadening. This broadening occurs, because a change of the state of

the spin bath changes the energy of the donor states, via affecting the surrounding

magnetic fields, thus effecting each donors spin energy levels in an unpredictable

manner, creating a broadened spectrum of energies.

In addition to the spin bath, the different masses of the silicon isotopes, 29Si and

30Si, contribute to the homogeneous broadening. This occurs because the different

isotopes have different masses than that of normal, 28Si, silicon. This different mass

alters the interactions of the valence electrons, particularly when forming the bonds

of the lattice. Thus the ground states of the valence electrons are changed by their

host atom being, itself, or bonded to, a non-standard isotope of silicon. The presence

of the isotopes in the surrounding environment also changes the interaction of the

excess donor electrons with the lattice; due to the nucleus mass being coupled to

the electromagnetic field.

All of these isotope mass interaction differences cause the donor electron states, via

the mass coupled electromagnetic interactions, to have different energies that they

otherwise would have had. As this depends upon the local environment which, due

the random distribution of isotopes in the lattice, is inhomogeneous, inhomogeneous

broadening is a result.

According to the Avogadro project, the isotopic purity needed for a highly accurate

measurement would only be 99.99% [91], giving a ratio of not 28 Si to 28 Si as only

45



2. Dopants in Silicon: Which Atoms to Choose?

more than 1 in 104. The Avogadro project has yielded samples with 28Si isotopic

purities of at least 99.9957 [92, p362, t1], giving only 43 in a million non 28Si isotopes.

2.4. Doping

The advantage of silicon in doping is largely due to the ease with which silicon can be

doped with extrinsic materials, typically those in groups iii to v for p+ and n− doping

respectively. This is key for the integration advantage of the solid state and silicon,

the well developed control of the electrical characteristics of any silicon adjoining

the part to be used in any quantum operation. Doping is also intrinsically part

of the two primary (Kane and Stoneham; electrical, and optical) silicon quantum

computing proposals, as the donor electrons of dopants are intended to form the

basis from which the two level system that is the qbit, is formed.

Dopant types are then reviewed in brief, along with some of the relevant problems

associated with them. The specific doping element groups, and the possible doping

concentrations are then discussed, leading to the conclusion of which grouping of

donor elements is believed to be most suitable as the basis for a qbit in silicon.

2.4.1. Types of Dopant

The first issue to be considered is the location of the dopant. There are two main

possible locations of a dopant atom, substitutional or interstitial; these replace the

position of a silicon atom or are somewhere else in the lattice, in between silicon

atoms. If a dopant is substitutional then assumptions about bonding are correct,

that is, there is a donor electron or electrons or there is a similar number of hole

states.

Secondly, and despite the great range of possible dopants in silicon, dopants can
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all be reduced to two broad categories: acceptors and donors. Acceptors are atoms

that typically have one fewer valence electron than the host silicon, that is, 3 valence

electrons. Using the periodic table excerpt shown in figure 2.5, silicon can be seen

to be in group iv the typical acceptor atoms are then from group iii; double accep-

tors are known to be possible in silicon [93], triple acceptors would be very weakly

bound, and a quadruple acceptor would be no more than a wandering atom diffu-

sing randomly through the silicon bulk. The corresponding elements from groups

v, or higher, then form the donors; a factor limiting the amount of possible donor

electrons is then the size of the atom, eventually a potential donor will become too

large to fit inside the silicon lattice, double donors are experimentally known [94].

The lack of valence electrons, relative to the surrounding silicon atoms, causes accep-

tor atoms to form electron hole states. These are states of the system that behave as

particles to complement the electron; they are states of the acceptor system, holes

are fully described by the Schrödinger equation, etc. Donor atoms then have extra

electrons than the surrounding silicon, these remain bound to the dopant nucleus.[95]

Acceptors and donors have been commonly used to control the electrical charac-

teristics of silicon, such as the conductivity, by creating regions with an excess of

electrons or holes. This allows the creation of modern electronics, e.g. the bipolar

junction transistor. Both acceptors and donors also have defined energy states in

between the conduction and valence bands of the host silicon.[95] Donor electrons

can then behave very similarly to simpler hydrogenic, or helium like and so on,

atomic systems; holes also have corresponding states. Quantum computing schemes

for acceptors do exist, e.g. for boron acceptors in silicon [96], but these are not

examined here, only donor states are focused on in this thesis. This is a necessary

narrowing of the possible avenues of investigation, partly because of a lack of time,

partly because the Kane and Stoneham proposals utilise donor atoms and these are
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the quantum computing schemes focused on.

2.5. Donor Atoms Suitable as Qbits

Considering donor atom systems, the properties are then largely governed by a com-

bination of the charge carrier wavefunction overlapping, the density of states of the

material, and the availability of energy, e.g. as temperature or applied magnetic or

electric field. When selecting a possible donor to build the quantum system outlined

in chapter 1, the periodic table is the ideal construct to visualise the possibilities.
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Figure 2.5.: Part of the periodic Table, information taken from [82]. Data for Groups
iii to v and the adjacent pnictogen and chalcogen groups are labelled, along
with the elements, atomic numbers, masses, and electron configuration.

If intending to use a donor atom’s outermost electrons as as qbit, it must be conside-
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red why that atom and in what environment it must be. Many of the advantages of

silicon rely upon the use of the periodic table, or the basic properties of the elements,

to succinctly explain; once the unsuitable elements are removed from the periodic

table you are left with the group iii to v elements.

The assumption is taken that electrons in a solid state material are used to form a

qbit, or qbit interaction method. The two primary reasons for using the solid state

are that this is highly scalable, and allows easier integration with classical electronic

components. It can be seen by considering a target of a solid state quantum com-

puter, such as the Kane or Stoneham proposals discussed in chapter 1, a section of

silicon doped with material that forms at least 2 qbits with controllable interaction.

As Stoneham proposes[1], it can be imagined to be 2 donor atoms substitutionally

replacing silicon atoms, these are the qbits, and then with some third atom, different

to the first 2 and not silicon, substitutionally replacing another silicon atom at some

position in between them.

Via optical pumping, the middle atom’s donor electron could then mediate inte-

raction between the other two donor electrons; this would allow the interaction of

multiple qbits. It could then be imagined that some optical waveguides are present,

embedded in the surrounding silicon, to channel optical pulses of the appropriate

wavelength, intensity, and duration, to implement quantum gate operations. If this

model could be repeated, it could be possible to construct a quantum computer

of arbitrary size. This is so far no different to having qbits in any other medium,

ion traps, superconducting wires, etc, however, as silicon fabrication is inherently

scalable, and the quantum system required is only on order of a few unit cells of

silicon at most, a large number of qbit building blocks can be assembled in a small

piece of silicon; the only space hungry requirement then being the waveguides and

source of the light necessary for interaction with the qbits.
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The second advantage, of easy integration, can then be seen. it is imagined that

classically controlled diode lasers are embedded into the silicon material, and then

used to pump and control the qbit systems, this is one possible integration with

classical electronics. It does not take much more to see how the results of a quantum

computation could be then converted, of course now no longer quantum information,

into classical transistor states and read out on a classical computer screen. While

any other method of quantum computing can do all this, separate structures are

required to do so.

As the use of a dopant atom in silicon has been shown to possess some benefits,

then it must be determined which atom. Some possible choices are immediately

removed for practical reasons. The noble gases, firstly for the obvious reason that,

being renowned for their lack of reactivity, they have filled outer electron (sp) shells,

and are thus inert; this hinders the formation of shared electron bonds with the

surrounding silicon lattice. As a result the gas atom is often found in an interstitial

position, allowing unwanted variance in the local environment from dopant atom to

atom; it should also be noted that such interstitial gas atoms are thought to diffuse

through the host material [97], rendering a precisely constructed quantum system,

as a qbit most surely must be, from being maintained. The atoms are also thought

to form complexes [97], groups of multiple dopant atoms interstitially positioned and

interacting in a non-trivial manner; this again adds decoherence mechanisms that

ruin the noble gases for use in the solid state as a qbit. Finally, it should be noted

that noble gases do have one redeeming feature, they form mid bandgap states in

silicon, which is vital for the qbit to remain localised [98, p66].

Nor are the alkali or alkaline earth metals suitable, for they are too reactive outside

the bulk. Because of their singular unpaired outer electrons, alkali metals are then
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only able to form single covalent bonds with the bulk silicon. This makes it seem

problematic for them to be interstitially located, as a substitutional donor requires

the capacity for 4 bonds; the single bond is assumed to be a weaker than more,

making the atom weakly bound to its location, i.e. highly mobile. Metals are

also unsuitable, for similar reasons to the noble gases in regard to bonding with

the silicon. Metals also form band structures that, due to significant wavefunction

overlap, delocalise electrons; this makes localised coherent states much more difficult

to achieve. The periodic table can then be used to guide guesses that the elements

further from silicon will have greater problems as substitutional dopants in silicon,

due to greater differences in outer electron shells (for silicon the 3s and 3p levels).

The relevant remaining section is the semiconductors, shown in the periodic table

excerpt in figure 2.5.

The periodic table excerpt in figure 2.5 shows the semiconductor elements, such as

Si, Ge, and the elements used to form composite semiconductor compounds from

groups iii to v such as InP, AlGaAs, etc. With the ultimate aim of using a donor

atom as a qbit in an optically addressed quantum computer, one can remove the

compound semiconductors from contention. This is because of their fundamental

structure, being comprised of more than one atom each with a differing number of

outermost electrons, a substitutional donor atom may replace either of the intrinsic

material atoms, thus being either an n or p type donor.

Once it has been decided to use a semiconductor dopant atom as a quantum system,

in general, dopant atoms in silicon, or indeed in any semiconductor material, can be

categorized in one of two ways, as a “shallow” or a “deep” donor. These donors are

referred to as such because of the binding energy of their donor electrons. Different

energy levels will then require different wavelengths for optical interactaction and

will have wavefunctions of different spatial extents. This will change the donor
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spacing, and thus concentration, needed for qbit to qbit interactions; such qbit to

qbit interactions are vital because of the universality of two bit quantum gates [99],

that is, a set of pairs of qbits where each qbit can interact with one other and

the result can be read out, is capable of being a universal quantum computer and

carrying out any arbitrary quantum computation given sufficient time and or number

of qbits. Such multiple qbit interactions, probably mediated by a donor electron in

a higher and thus spatially larger energy state or even an electron from a different

donor element entirely, are of course vital for the implementation of the various

operations necessary for a quantum computer; these operations will be analogues to

the classical computing operations AND, OR, and NOT. Thus is it vital for there

to be donor states with both a large spatial extent, and with the small.

The following topics are discussed below: the “shallow” and “deep” donors in silicon

and their uses, along with the causes of the respective shallow or deepness of their

energy levels, the links between the “deepness” of the energy level and the likely

wavefunction extent, and the currently existing measured and inferred lifetimes.

The body of knowledge about lifetimes, in different systems for different dopants,

are then added to by the results later in this thesis.

2.5.1. “Shallow” Donors: The Pnictogens

The first group of donors in silicon to receive attention were the “shallow” or group

15/group v donors. Shallow donors are the ideologically simpler donor type, ideally

with the dopant atom substitutionally replacing a silicon atom. This substitutional

replacement is ideal because it is repeatable, and the dopant atom is less susceptible

to diffusion throughout the host material than if it were interstitial. To clarify this

point, if the interstitial atom displaces one of silicon and then does not occupy the

silicon atom’s former position, then the silicon structure is broken and this is not

the most stable configuration of the lattice; if the interstitial atom does not displace
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a silicon atom, then it must only have weak bonds with the silicon lattice due to

the lack of spare valence electrons in silicon to form additional bonds. Either way,

the interstitial atom can be expected to be more susceptible to thermally agitated

positional drift, than a substitutional atom. Continuing on, if multiple dopants

replace multiple silicon atoms it can be assured that their local environments are at

least broadly similar, they will each be bonded to 4 surrounding silicon atoms and sit

somewhere in the tetrahedral structure, and thus experience similar if not identical

phase evolution with respect to time and other dopants, compared to e.g. interstitial

dopants which may have a much more variable interaction with the surrounding

silicon.

For the dopant to be of use, part of itself must have at least 2 nondegenerate states to

form the |0〉 and |1〉 quantum states necessary for representation of quantum infor-

mation. To be valid in silicon, it must have a greater or fewer number of outer shell

electrons than silicon (...3s23p2, henceforth referred to as 3sp), and will thus allow

a pair of donor electron states, or acceptor hole states, to act as the qbit. This need

for extra or fewer electrons is made clear by recalling that conduction (electrons),

or valence (holes), band states are not spatially confined in a single material; thus

any qbit cannot have controllable interactions and be in the conduction or valence

bands. As acceptors are not considered in this thesis, the shallow donors that fulfil

these conditions are the pnictogens: nitrogen, phosphorus, arsenic, antimony, and

bismuth.

If a donor dopant has a different number of 3sp electrons than the surrounding

silicon, the additional electron will posses energy states that are not part of the

host materials conduction band. The donor electrons states are in between the

conduction and valence bands, and these are referred to as mid band-gap states.
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If the doping concentration is high enough, then the donor electron wavefunctions

may overlap significantly enough that a new dopant band is formed. An example

of this, in the case of pnictogens who have one additional electron over the silicon

host, is found once the doping concentration is high enough that the ground state

wavefunctions overlap. Here the conduction of the silicon can increase rapidly as

the doping concentration increases past some threshold point. This is known as the

Mott semiconductor transition, and is discussed in further detail in section 3.7.2. For

“shallow” dopants, these mid-bandgap states are, as may expected, quite shallow

binding energies typically a few tens of meV; some examples of pnictogen binding

energies are shown in table 2.1.

The “shallow” dopants are often referred to as “Hydrogenic Impurities”[95] because

of their single donor electron being similar, in some ways (wavefunction, Hamilto-

nian, etc), to a hydrogen atom. Because of coulombic attraction affecting binding

energies, ”shallow” donor electron states are found for single donor dopants, i.e. for

silicon, the pnictogens. The hydrogenic label then comes from the single donor atom

having one additional valence electron compared with the surrounding silicon, and

assuming substitutional doping, this leaves one electron. This remaining electron

will be subject to a coulombic attraction to the donor core, although this will be

reduced both by the inner electron structure of the donor, and by the electrons in

the surrounding silicon lattice. As a gross approximation, the donor electron is then

like or analogous to a scaled hydrogen atom. If, as for the “shallow” donor case, the

binding energies are small and thus the donor electron wavefunction is likely to be

large in spatial extent, then the donor electron can be treated exactly as a hydrogen

atom but by accounting for the different dielectric constant (electric permittivity)

of the bulk silicon lattice, which is approximately εr = 11.7[80]. This implicitly

assumes that the average distance of the donor electron is so great as to allow the

averaging of the electric field from the surrounding silicon over multiple unit cells.
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This “shallow” hydrogenic approximation can be readily seen in equation 2.2, descri-

bing the energy behaviour of the pnictogen donor electron; where m* is the effective

mass, n an integer, and ε0 the dielectric constant in vacuum. This then leads into

the effective mass approximation, originally derived by Kohn and Luttinger [8], and

discussed in much more detail in chapter 3. However, only the excited states are

accurately described by this equation, due to the approximations inherent in EMT

theory, that the donor electron has a large wavefunction with respect to the host

crystal unit cell, the ground state requires alternative description as described in

more detail in chapter 3. [100]

En =
m∗

2(n~)2 (
q2

4πε0εr
)2 (2.2)

Equation 2.2 then makes clear the phrase “shallow” donors when referring to group

v semiconductors. Using equation 2.2 to estimate the binding energy of the ground

state gives 5̃0meV, whereas the room temperature (3̃00K) bandgap of silicon is

1.11eV [100]. The ground state is much closer to the conduction band than the

valence band, hence the name “shallow”.

The common examples of single donor or acceptor dopants are phosphorus and

boron, as donor and acceptor respectively. Boron is more commonly used than

aluminium due to issues of solubility in silicon, as the achievable concentration

of aluminium is lower; although the concept of using aluminium as the simplest

acceptor is still perfectly valid. However, due to differences in the conduction and

valence bands of silicon, and the extra difficulty in calculating the properties of

acceptor hole states [95, p174], only pnictogen donors are discussed.

There is much material on donor lifetimes in the literature, primarily on the phos-
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phorus substitutional donor. The T1 of some dopant levels are collated and shown

in table 2.1; it should be noted that most values are not direct lifetime measure-

ments, they are inferred lifetimes from spectral linewidths, which may be converted

into a lifetime using the uncertainty principle and the differential of the energy,

∆E =
(
∂E
∂ν

)
∆ν =

(
∂hcν
∂ν

)
∆ν = hc∆ν.

Only T1 lifetimes are shown in table 2.1, because the single T2 lifetime, at least

known to the present author, has been measured as 160 ± 20ps [101]; this is for a

2P0 state of a phosphorus donor.

Donor Element Transition Energy (meV) T1 (ps)
P 2p±1 → 1S(A1) 34 118 5

P 2p0 → 1S(A1) 34.1 205 3

P 2p±1 → 1S(A1) 34.1 160 3

P 2p0 → 1S(A1) 34.1 235
P 2p0 → 1S(A1) 34.1 71.0 ∗ 1

Li 2p±1 → 1S(A1) 26.6 18.5 ∗ 1

P 2p0 → 1S(A1) 34.1 73.1 ∗ 2

P 2p±1 → 1S(A1) 39.2 39.6 ∗ 2

P 3p0 → 1S(A1) 40.1 17.9 ∗ 2

P 4p0 → 1S(A1) 42.3 30.9 ∗ 2

P 3p±1 → 1S(A1) 42.5 47.3 ∗ 2

P 4p±1 → 1S(A1) 43.4 83.2 ∗ 2

P 4f±1 → 1S(A1) 43.7 92.8 ∗ 2

P 5p±1 → 1S(A1) 44.1 109.7 ∗ 2

P 6p±1 → 1S(A1) 44.5 104.9 ∗ 2

B (w) 44.6 56.1 ∗ 4

B (ao) 44.5 201 ∗ 4

Table 2.1.: Energy levels with respect to the conduction band, state or phase lifetimes,
for pnictogen donors in Silicon. ∗:Lifetime inferred from linewidth. 1: [102].
2:isotopically enriched 28Si [103]. 3:These direct measurement values are for
10K[45]. 4: Boron transitions are unidentified, hence the letter label which is
the same as used in the source [103, table III]; only the widest and narrowest
boron transitions are given, as they are unlabelled and cannot be compared
in full to phosphorus. 5: This is a phosphorus donor in Si0.991Ge0.009 at
6K:[104]. 6: isotopically enriched 28Si[105].

Once the lifetimes have been considered, the next limiting factor for the shallow
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donors is their utility at room temperature. The shallow nature of the dopant do-

nor atom states requires low temperatures; at room temperature the donor atom is

typically completely disassociated from the donor nucleus. According to the equi-

partition theorem, from basic statistical mechanics, the average energy of a particle

in a system at thermal equilibrium is approximately kbT (per degree of freedom);

energy is linear with respect to temperature; here kb is the Boltzmann constant. For

a room temperature of 300K the average energy is then 25 meV, which is com-

parable to the binding energies of the donors in table 2.1. Any pnictogen donor is

then susceptible to unwanted thermal ionisation at room temperature, delocalising

the electron and disrupting if not utterly ruining, via decoherence, any quantum

operation that involves said donor. This is a factor motivating the investigation of

“deep” donor states.

The shallow donor levels are not just susceptible to thermal effects, but the inherent

phonon spectrum of silicon works against them. As discussed above in section 2.2.2,

the Debye energy of silicon is 64.5meV, there is also a plethora of possible phonon

frequencies up to this energy. It can then be seen that the T1 lifetime of any pnictogen

donor states is not just limited by the radiative, but by the phonon lifetimes as well.

There is also the possibility of the donor electron not only decaying and emitting

phonons, but of being excited from the ground state; both of these interactions will

render the phase evolution of a quantum state incoherent.

2.5.2. “Deep” Donors: The Chalcogens

When considering the donor atom of choice in the silicon lattice, by inspection of

the periodic table (figure 2.5) it is noticed that the next column from the pnictogens

is the chalcogen group. This group has an electron state structure that is similar

to the pnictogens and the group iv elements, with one and two additional electrons

respectively, in the outermost np states, where n is 2 for the uppermost row and
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proceeds incrementally downwards. From the periodic table it would be expected

that sulphur would make an ideal substitutional donor in the silicon lattice, due

to the same electron structure, allowing the formation of similar, if not identical,

bonds to the surrounding silicon atoms (as would be found for the donor atom if it

were also silicon). The outer electron configurations of the other chalcogen elements

are p states, where the p states all have similar wavefunctions and a large spatial

extent, and it could also be expected that some form of similar bond could form

with the surrounding silicon atoms, irrespective of the particular chalcogen; the

chalcogens have similar s states that also contribute to their bond structure. As the

chalcogens have two additional electrons than those of silicon, in the same manner

that the pnictogens form hydrogen like systems, the chalcogens can form helium like

or hydrogen like exciton systems, for un-ionised and singly ionised donor atoms.

Calculations based on the EMT model have been used to confirm that isolated

sulphur and selenium donors occupy substitutional sites in silicon. This is based

on using the difference in EMT[106][107] calculated and measured spectra, of both

donor transitions and silicon conduction band; calculated energies, based on the

assumption of being a substitutional donor, that match to those measured validate,

at least partially, the assumptions used in the calculation. The small difference, in

calculated excited state measured and calculated energy, is then attributed to the

donor atom causing expansion of the silicon lattice, due to the different local volume

of the donor and silicon atoms. The conclusion is that single, un-ionised, chalcogen

group donors are highly likely to be substitutional in nature[108].

Of course, it is to be expected that a doubly ionised donor atom will differ, if only

minimally, from a silicon atom. Silicon in its most common form is 28Si, as discussed

in section 2.3.2, and thus has zero nuclear spin, if the donor atom has an odd atomic

number and thus a nuclear spin which will affect the electron energy states, affecting
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the bonds between donor and silicon atoms. The greater mass, with the exclusion of

oxygen impurities, will also have an effect upon the atom to atom spacing, or lattice

constant; as this has been measured for isotopic mass differences in silicon [109], it

can be concluded that mass differences due to elemental differences will also affect

the lattice spacing and thus the nature of the bonds or vice versa. Finally while the

p states are similar they do differ, most notably in extent, which will again affect

the bond structure and thus affect the lattice spacing.

Thus the key difference between the chalcogens and the pnictogens is then the energy

of the donor electron states, with the pnictogens referred to as “shallow” donors,

and the chalcogens as “deep” donors. While for an ionised chalcogen donor it may

be expected that the energy levels are deeper, simply due to the greater coulombic

attraction from an additional positive charge on the nucleus, it is not immediately

clear that the un-ionised double donor states would also be.

This greater binding energy leads to the possible advantages of the “deep” donor

states over those of more “shallow” states, of course this is with respect to use as

a qbit. Thus not only is there is a lesser chance of a donor electron being excited

out of a low energy state, but it may remain in that low energy state, on average,

at greater temperatures.

Consider the phonon spectrum, discussed in section 2.2.2, where the Debye energy

of silicon is 64.5meV at room temperature. This Debye energy is much less than

the several hundred meV binding energies that the ground states for “deep” donors

have. Therefore multiple phonon interactions are required with a“deep” donor si-

multaneously for it to be excited out of a low energy ground state. It is also less

likely for multiple phonons to be emitted simultaneously, thus reducing the likeli-

hood of an excited state decaying to a lower or ground state, if the energy gap is
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greater than the Debye frequency; the probability then decreases as the energy gap

increases.

This highlights one key advantage that deep donors have in regard to fulfilling the

DiVincenzo criteria[10] for quantum bits to have long lifetimes. A lower probability

of interacting with phonons will increase the radiative lifetime of the excited donor

states. Although the interaction of a phonon, without emission of absorption of said

phonon, with a donor electron is possible by simply changing the local environment

that the electron is in, altering the phase evolution and thus possibly reducing the

phase lifetime of the donor electron states.

Just as the energy levels of pnictogen donor electrons can be described well by an

EMT hydrogen model, deep donors in silicon could be described by a helium ana-

logue [100]. The binding energies of sulphur and selenium agree well with effective

mass model calculations, while the bound states of telurium donor electrons are dee-

per than effective mass models suggest [110] [94]. However, as discussed in chapter 3,

due to the smaller wavefunction or greater attractive potential of the “deep” donors,

the lowest lying energy levels are increasingly poorly described by EMT. This is

known as the central cell problem, essentially the small ground state wavefunctions

are not large enough to average over the dielectric permittivity of the silicon crystal;

the ground state wavefunctions being on order of the silicon unit while the next

smallest is 36 times area. The ground state energies of even the pnictogen donors

are included in this, but the discrepancy is less due to the ground state being bigger.

Energy measurements are collected in table 2.2; these show that the ground state

energy levels of chalcogen group donors in silicon are much greater than those of the

Pnictogens; however, the singlet (E) and triplet (T2) 1S and p like states are then

comparable to those of the pnictogens. The energies can then be compared to the
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Debye energy of 64.5 meV and the average thermal energy of 25 meV to evaluate

their prospective utility.

Donor Element State Energy (mev)
S0 1S(A1) 318.321

S0 1S(T2) 34.621

S0 1S(E) 31.6 1

S0 2S(A1) 18.4 1

S0 2p0 11.48 1

S0 2S(T2) 9.22 1

S0 2p±1 6.39 1

S+ 1S(T2)[Γ7] 429.32

S+ 1S(T2)[Γ8] 429.62

Se0 1S(A1) 306.631

Se0 1S(T2) 34.441

Se0 1S(E) 26.46 1

Se0 2S(A1) 18.0 1

Se0 2p0 11.49 1

Se0 2S(T2) 9.27 1

Se0 2p±1 6.39 1

Te0 1S(A1) 199 3

Te0 1S(T2) 39 3

Te0 2p0 12 3

Te0 2p±1 7 3

Te+ 1S(A1) 411 3

Te+ 1S(T2) 177 3

Te+ 2p0 47 3

Te+ 2p±1 26 3

Table 2.2.: Energy levels of chalcogen group donors in silicon with respect to the con-
duction band. Binding energies are taken with respect to the conduction
band. 1:[94, table 2, p29] 2:[111, fig 2] 3:[110, table 4, page 4583]

It can be seen that the chalcogen group donors in silicon have the sufficient binding

energies to be less susceptible to either phonon decay, or unwanted excitation from

the ground state.

Once it has been shown that the chalcogen group donors have the advantage of

greater, or deeper, binding energies, the next step is the verification that they might

also fulfil some of the other necessary criteria for use as a qbit. The key criterion
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that this thesis is concerned with is lifetime. Evidence is found in the literature

to support the further investigation of chalcogen donors in silicon, however direct

measurement of T2 or even T1 lifetimes of suitable donor states are somewhat lacking,

and thus are largely limited to a few linewidth inferred possible T1 lifetimes; hence

the absence of any comprehensive tabulation of the lifetime values. There are no

direct T2 decoherence times measurements for chalcogen dopants that the present

author is aware of in the literature.

Absorbance spectroscopy, of sulphur donors in silicon, shows at a temperature of

1.5K that the Full Width Half Maximum (FWHM) absorbance linewidth for the

1S(A1) to 1S(T2)(Γ7) and 1S(T2)(Γ8) (the 1S states are split due to the symmetry

of the silicon lattice) for singly ionised sulphur states to be 0.008 cm−1 and 0.022

cm−1[111][112]; this is assumed to be the transition to the silicon conduction band

minimum. The difference between the two transition linewidths can be understood

by the following argument. As sulphur has an outer electron configuration with

two extra electrons over the host silicon lattice, there are both singly ionised and

un-ionsed donor electron states; due to the much smaller FWHM of the ionised

state it is the only one considered here. A singly ionised donor atom will have a

stronger coulombic potential, due to the absence of the negatively charged electron,

which should cause a greater binding energy and a wavefunction extent that is lesser;

the smaller wavefunction will then have a smaller overlap with any inhomogeneity

in the silicon and thus be less likely to be perturbed by such deviations and thus

would have a narrow FWHM and a longer lifetime. These absorbance lines also

have the Lorentzian shape which is a characteristic signature of an exponential

population decay; the connection may be made that the intrinsic state decays are

of an exponential form and thus this Lorenzian shape is highly likely to be due to

this, however, a direct measurement of the state decay is needed for proof. The

linewidths of 0.008cm−1 and 0.022cm−1 then equate to lifetimes of 301ps and 109ps
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respectively.

Further evidence for the chalcogen donors can be found for the donor selenium. For

this chalcogen double donor, the narrowest linewidth measured was again 0.008cm−1,

as for the sulphur[112]. In addition to this narrow linediwdth, hyperfine splitting

“due to a hyperfine coupling with the I = 1/2 nuclear spin was shown for 77Se+”[113].

The hyperfine splitting for the ionised 77Se donor 1S(A1) to 1S(T2)(Γ7) transistion at

1.5k was found to be 0.056 cm−1, or 0.00694 meV [113]. This raises the possibility

of a potential donor for the Stoneham quantum computing proposal [1], as the

resolvable nuclear hyperfine splitting could be used to form between the |1〉 and |0〉

qbit states.

These Chalcogen T1 lifetimes are then collated into table 2.3.

Donor Element Transition T1 (ps)
S+ 1S(T2)[Γ7]→ Cond. 301∗ 1

S+ 1S(T2)[Γ8]→ Cond. 109 ns∗ 1

Table 2.3.: Phase and state lifetimes for chalcogen donors in Silicon. ∗: Inferred from
linewidth. 1: [111, fig 2]. Cond.: Conduction Band.

One possible factor limiting future measurements of the chalcogens, is their solid

solubility; this is how much of the element can be mixed into silicon by thermal

diffusion processes. It is important, because the measurement of lifetimes is not

going to be done using single donor atoms, but with large ensembles. This ma-

kes measurement easier, simply because of the greater possible signal from many

donors as opposed to one. The maximum solid solubility of sulphur in silicon is

3× 1016cm−3[114] ; this is not as high as the 1020 factor that is common for electri-

cal dopants in silicon, but may be sufficient.
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2.5.2.1. Conclusion

Thus it is found that, for at least the sulphur and selenium donors, long radiative

lifetimes are likely. This encourages further investigation, firstly to prove for certain

that there are in fact long radiative lifetimes, via direct measurement. Secondly, the

phase coherence lifetimes of the electron donor states must be measured, so that

their ultimate utility as qbits may be known.
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3. Introduction to Effective Mass

Theory in Silicon

3.1. Introduction

It is necessary to give a brief description of EMT before introducing each part in

the following sections. The detailed working through of the mathematics, including

required derivations, are left to the more detailed appendix B. This chapter outlines

the EMT framework and its application to the calculation of donor state transition

rates.

The EMT single donor approach is that followed in this chapter, which would seem

to be naively inappropriate for application to double donors. It is, however, able

to provide extremely good agreement with all non-ground state energies, and more

importantly as I will show, order of magnitude agreement for radiative lifetimes are

obtained. These indicate that there is some truth in the model.

While this chapter is an introduction to EMT in silicon, the formalism is the same

in all materials with the same degree of electron effective mass anisotropy, i.e. the

same in the x, y plane but different along the z axis. The material must also have a

set of conduction band energy minimums equidistant in each momentium direction,

and, of course, the explicitly stated assumptions of the effective mass model must
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hold, as will be discussed further below. In addition, the different electron effective

mass, and also the average dielectric constant must be changed from material to

material.

EMT was originally developed by Kohn and Luttinger to describe donor impurity

states in semiconductors [106][8] with conduction band minima that are prolate sp-

heres. The rest of this chapter follows their and Faulkner’s [107] work. It does this

by estimating the wavefunctions and energies of hydrogen like systems with x, y

and z, axis nondegenerate effective masses; this is achieved by the solving of the

Schrödinger equation with the EMT Hamiltonian. Also the dielectric permittivity

is not restricted to that of vacuum, being scaled to that of the macroscopic average

dielectric permittivity of the environment surrounding the modelled hydrogenic sy-

stem.

Because the true wavefunctions of the Hamiltonian are not analytically known, and

because of the naive similarities of the system to that of scaled hydrogen (and he-

lium) atoms, a trial basis of scaled hydrogen wavefunctions is used. Variational para-

meters are used to scale the hydrogen wavefunctions, in the x, y and z axis directions,

until the calculated energy meets some criteria. Single hydrogen basis states, or mul-

tiple basis states of the same parity and magnetic quantum number, can be used,

with appropriate weighting, to construct an estimate of the wavefunction. This is in

effect using a scaled 1S wavefunction or 1S and 2S,3S,4S....,3D,4D...,5G..etc. states

out of which to build the estimated wavefunction.

For the ground state of the system the variational criterion can be the minimum

possible energy, within the bounds imposed by constraints upon the variational

parameters, or the minimum difference between the calculated and experimentally

measured energies. The former condition can be shown (see section A.2.2.2) to be
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an upper bound on the true ground state energy of the Hamiltonian used; this is

not necessarily the same as the real physical system, due to the simplifications and

neglections implicit in any model.

For the higher energy states the same minimisation of the calculated energy criteria

can be used, but there is then no guarantee that the calculated energy is an upper

bound of the Hamiltonian’s energy; despite this it should be noted that this still

gives good agreement with experimental results for the higher energy excited states

of selenium in silicon.

The calculated 2p0 state has deviations, with respect to the measured [94, table 2]

energies of substitutional atomic selenium donors in silicon, of −2.44%, +0.174%

and +0.0174% , while those of the 1S state energy are much greater at −90.2%,

−89.8% and −89.8% for 1, 18, and 90 basis states respectively. The 1S inaccuracy

is, however, due to the degeneracy of the 1S state being broken by the symmetry

of the crystal field of the surrounding silicon, also called the central cell correction;

higher energy states are more widely spatially distributed, often over multiple silicon

unit cells, and thus are less susceptible as a fraction of the energy to asymmetries

in the crystal field.

Thus the 1S state results, while inaccurate, are still in agreement with being an

upper bound on the true energy of the Hamiltonian, and that Hamiltonian being

an approximately correct description of the measured system. The energies for the

18 and 90 basis state energies are also taken from [94, table 2], with the 1 basis

state energies taken from my own calculations described in detail; shown in results

section 3.7.1.

Once the wavefunction parameters have been variationally found, such that the
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energy eigenvalues are in approximate agreement with measured values, it can then

be assumed that the wavefunction is approximately correct. This is discussed in

more detail in the following sections.

3.2. Assumptions of the Effective Mass Theory

Model

The effective mass model of donor states is often said to be based upon two key

assumptions [106][115][8] [116].

1. The perturbation to the host, due to the donor, is slowly varying over the scale

of the host’s lattice constant.

2. The donor wavefunctions extend over such large distances that they can be

represented by the Bloch states at only the conduction band minima, or only

from states within a very narrow range of momentium values.

However, it is clear that each of the assumptions implies the other. For the

donor wavefunctions to be made up of basis states within a very narrow range of

momentium values, they must be slowly varying with respect to real space. If the

wavefunctions are slowly varying then the potential, of which they are eigenfunctions

of, must also be slowly varying, and vice versa.

3.3. The EMT Schrödinger Equation

Following Kohn[8][106], to find the wavefunction Ψ(r) of an impurity donor state in

a semiconductor the Schrödinger equation, shown below, must be solved

(
H0 + U(r)

)
Ψ(r) = EΨ(r) (3.1)

69



3. Introduction to Effective Mass Theory in Silicon

Where, in the Schrödinger equation 3.1, r is the 3D radial distance coordinate,

the centre of the donor atom nucleus is the origin, U(r) is the additional potential

from the donor atom, and H0 is the Hamiltonian of the system without the donor

impurity.

The Hamiltonian H0, where V (r) is the periodic potential of the crystal lattice, is

then of the familiar form shown:

H0 = − ~2

2m
∇2 + V (r) (3.2)

Because of the first assumption of the effective mass model the donor atom potential

U(r) can be assumed to be of the form:

U(r) = − e2

4πε0εrr
(3.3)

Equation 3.3 is for a single donor, εr and ε0 are then the relative and vacuum

dielectric constants.

The donor atom potential is, of course, not in reality of this form. It is only approxi-

mated by this if the expected positions of the donor states are at distances such that

the donor atoms core electrons can be assumed to be a single point. This is the first

of two key assumptions in the EMT, the donor atom electrons are far away from the

donor nucleus. It should be noted that while this is explicitly only true for a single

donor, the calculated energy values for the non-ground states, using a potential of
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this form, are reasonably accurate for double donors, and this is discussed in more

detail in chapter 4.

It is assumed that the, perturbing, “fractional change of U over a unit cell is

small”[106]. To see explicitly why this is the case , and increasingly so as the distance

from the donor atom increases, consider the fractional strength of the potential U(r)

at some distance from the donor, r1, compared to one lattice constant further away,

r2. Here r1 = aN , and r2 = a(N +1), where a is the lattice constant, and N is some

number of lattice constants. As shown in equation 3.4 (via L’Hospitals’s rule [117]),

as the distance from the donor atom increases the fractional potential change over

one unit cell tends towards 0; the ratio of the potentials, in the limit of N tending

towards infinity, is 1.

That is, the further away the donor electron from the donor nuclei, the greater the

accuracy of the statement; the potential is only valid at large distances. This as-

sumption amounts to taking the FT of the “true” physical potential and neglecting

all but the lowest spatial frequency, or momentium, components; it is directly equi-

valent to the second assumption of EMT.

U(r1)

U(r2)
=
− e2

εr1

− e2

εr2

=
r2

r1

=
(N + 1)a

Na
=

(N + 1)

N

lim
N→∞

((N + 1)

N

)
= lim

N→∞

( ∂(N+1)
∂N
∂(N)
∂N

)
=

1

1
= 1

(3.4)
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3.3.1. Bloch Function Basis

Now that the Hamiltonian of the system is described, complete with slowly varying

donor potential, the wavefunction of the donor states must be considered. This can

be accomplished by writing it as a basis element in a complete, orthonormal, basis

of the H0 + U(r) operator. However, the basis of this operator is not known, and

therefore the wavefunction must be expanded as a vector in another complete basis;

the vector in this new basis is then a basis element in eigenbasis of H0 + U(r).

To find the basis with which to describe donor states, begin by following Kohn [106],

consider the basis of conduction band electrons in silicon. It is possible to describe

the wavefunction of any electron in the conduction band of the silicon by using

the complete set of eigenfunctions of H0, the Bloch functions Φn,k(r). The Bloch

functions, being a complete set of eigenfunctions, describe all states in all bands,

not just the conduction band. The Bloch functions are then the set of solutions of

the Schrödinger equation, 3.5, where the energy En(k) is the energy of the nth state

with momentium k, this then describes the band structure of the silicon.

H0Φn,k(r) = En(k)Φn,k(r) (3.5)

The Bloch functions can be written as in equation 3.6, where un,k(r) is a function

with the periodicity of the silicon lattice.[81]

Φn,k(r) = eik.run,k(r) (3.6)
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The second assumption of EMT then becomes relevant, and is tied to the first.

Because of the assumption that the donor electron states are far away from the

donor atom, such that the donor potential can be assumed to be slowly varying

and of the form in equation 3.3, the donor state comprises only a narrow range

of momentium space states; because the spatial extent of any function, such as the

wavefunction, has an inverse relation with the momentium space extent. Thus Kohn

[106, eq II.4] is able to assert, and then prove [106, equations ii.4 to ii.12 ]) that the

set of Bloch functions at the silicon conduction band minimum forms a complete

basis set with which to describe the donor states.

The conduction band minima can be found at the positions shown in equation

3.7[116]; where asi = 5.431× 10−10m [80] is the silicon real space lattice parameter.

k±x = 0.85
2π

asi
(±1, 0, 0) (3.7)

The new basis built out of the Bloch functions at the minima is described in equation

3.8; where i indexes the conduction band minima, of which there are 6 for silicon,

the minima at the (+kx,−kx,+ky,−ky,+kz,−kz) positions for i equals (1, 2, 3, 4,

5, 6) respectively.

Φk(i)(r) = eik
(i).run,k(i)(r) (3.8)

Silicon has 6 degenerate conduction band minima, thus it may be concluded that

each calculated EMT donor state is also at least 6 fold degenerate; this does not take

into account any spin degeneracy, as the hyperfine interaction is neglected in the
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EMT Hamiltonian. As the set of Bloch functions at the conduction band minima

are a complete basis, any wavefunction should be a linear combination of these basis

states. This then gives a total wavefunction.[106, equation ii.40] [8, equation 3.3]

Ψ(r) =
∑
i

Fk(i)Φk(i)(r) (3.9)

Where in equation 3.9 each Bloch function is weighted by an envelope function

Fk(i) , which will vary depending on each specific state. Each individual effective

mass basis state is then given by: [106, equation ii.40] [8, equation 3.3]

Ψk(i)(r) = Fk(i)Φk(i)(r) (3.10)

3.3.2. The Effective Mass Equation

The envelope functions, F (i), are then the solutions to the effective mass equation.

[
− ~2

2m⊥

( ∂2

∂x2
i

+
∂2

∂y2
i

)
− ~2

2m‖

∂2

∂z2
i

− e2

4πε0εrr

]
F (i)(r) = EcF

(i)(r) (3.11)

In the effective mass equation, 3.11, m⊥ and m‖ are the effective masses in the

perpendicular and parallel directions respectively, me is the rest mass of an electron,

and Ec is then the energy of the state with respect to the conduction band minimum;

see [106, equations ii.13 to ii.38 or A.1 to A.15] for a derivation of the effective mass

equation. As the effective mass equation applies to the envelope wavefunctions of

silicon donors, i indexes the six degenerate conduction band minima. The values for

the effective masses in silicon are:
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m⊥ = 0.19me

m‖ = 0.98me

(3.12)

There are then 6 effective mass equations, one for each conduction band minimum

in silicon indexed by i, where each of the 6 F (i)(r) states is the solution of the ith

effective mass equation. Kohn [106] states that zi is along the direction of the ith

k (momentium) vector, which points in the direction of the ith conduction band

minimum in momentium space. This can be seen by considering that the k(0) vector

is in the direction of the kx axis minimum in k space, which is then perpendicular

to the x axis in real space, and allowing it to be in the direction of z1.

It is possible to write the effective mass equation in one set of coordinates, rather

than the 6 i coordinates systems. To do so the coordinates used must be switched

around, with (+x,−x,+y,−y,+z,−z) being the possible directions in laboratory

coordinates of the zi coordinate. Because of the second order dependence upon

the spatial coordinates, the replacement of x with −x results in the same F (i)(r)

solution. Thus the k+x and k−x effective mass equations have the same solutions,

just like the k+y and k−y, and the k+z and k−z. To obtain each of the respective

effective mass equations, simply switch zi with x for k+y and k−y (k3 and k4), or y

for k+z and k−z (k5 and k6).

The envelope function solutions, F (i)(r) can thus be seen to have the same solutions,

except with the coordinates similarly switched. This is because they must have the

same energy eigenvalues, and thus if the effective mass equation has altered its

coordinates, by what is in effect a label switching, for the energy to remain the

same the eigenfunctions must also switch coordinate labels in the same way. As an
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example, rewriting F (1)(r) as F (1)(x, y, z), the function is of the same form for the

3rd or 4th conduction band index but with the coordinates changed to F (3,4)(z, y, x);

the other states will then have solutions F (5,6)(x, z, y).

This is the single valley description of donor states. For this effective mass descrip-

tion of the donor states each state will then have a degeneracy of six, corresponding

to the six conduction band minima and their respective effective mass equations and

envelope function solutions.

Now in the rescaled cartesian coordinates the final transform is applied, that to sp-

herical coordinates. The advantage here is that it makes the analytical maths easier.

In particular, the wavefunction basis states become easier to integrate, making the

analytical calculation of the Hamiltonian matrix elements simpler. For example, for

the ground state the form changes from e−(x2+y2+g2)
1
2 , to e−rg .

3.3.2.1. The Unitless Effective Mass Equation

The effective mass equation, 3.11, can in effect be treated as a Schrödinger equation

with Hamiltonian H1. To make the analytical calculation of the Hamiltonian matrix

elements easier a series of coordinate transformations are then carried out. The first

of these is to change to unitless coordinates. This converts the EMT Hamiltonian

into a slightly simpler form and removes Bohr radii factors from the hydrogenic donor

electron wavefunction basis. Not only does this make analytically dealing with the

EMT Hamiltonian and wavefunctions easier, it makes numerical calculations ( such

as the later variational minimising of the Hamiltonian matrix) less susceptible to

rounding errors and instability from the physical constant values at, sometimes,

differing scales.

To obtain the unitless effective mass equation, the units of length and energy are
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defined as :

aB =
4π~2εrε0
m⊥e2

E0 =
m⊥e

4

2~2(4πεrε0)2

(3.13)

Then the ratio of effective masses γ is defined as:

γ =
m⊥
m‖

(3.14)

Finally the i superscript is dropped for convenience, and taking the unit and γ

definitions from equations 3.13 and 3.14 respectively the effective mass equation

3.11 becomes:

H1 = −
( ∂2

∂x2
+

∂2

∂y2

)
− γ ∂

2

∂z2
− 2

r

H1F (r) = EcF (r)

(3.15)

In equation 3.15 H1 is the effective mass hamiltonian; for a more detailed derivation

of the unitless effective mass equation see appendix B.1.

To obtain the unitless effective mass Hamiltonian for the different i states, equation

3.15, the coordinates can simply be altered as for the non unitless effective mass

equation.
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3.3.2.2. Converting to Spherical Coordinates

It is then possible to perform a coordinate transformation to change the effective

mass Hamiltonian, and the donor envelope functions, into radial coordinates. Howe-

ver, the coordinate system must first be transformed in a scaled Cartesian coordinate

system. This is the second coordinate transformation applied to the EMT Hamil-

tonian and wavefunctions, after that to unitless form. In the EMT Hamiltonian,

because of the non-degenerate electron effective masses along the xy and z directi-

ons in silicon, the z axis terms have a factor of γ = m⊥
m‖

; for the same reason, the z

axis terms of the hydrogenic wavefunction states have a factor of β
γ
)

1
2 , where β is a

scaling parameter. To make this easier to deal with analytically, the z coordinate is

rescaled to g = (β
γ
)

1
2 z.

Once in the rescaled Cartesian coordinates the final, third, transform is applied, that

to spherical coordinates. This is done, like all the other transformations, to make the

analytical maths easier. In particular, the wavefunction basis states become easier

to integrate, making the analytical calculation of the Hamiltonian matrix elements

simpler. For example, for the ground state the form changes from e−(x2+y2+g2)
1
2 , to

e−rg . The transformations to shifted Cartesian and then spherical coordinates are

shown in appendix B.2.

The laboratory coordinates are (x, y, z). Then the effective mass equations are

(xi, yi, zi) for i = 1, 2, 3, 4, 5, 6. Let the i = 1 system coincide with the laboratory

coordinates for simplicity. Thus the coordinates are defined as in table 3.1.

Then the scaled Cartesian system rescales the zi to become gi, as in equation 3.16;

where β is now a variational parameter that is the same for all i due to the imposed

degeneracy of the states in the effective mass model.
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i xi yi zi (kx,ky,kz)
1 x y z (1, 0, 0)
2 x y -z (-1, 0, 0)
3 z y x (0, 1, 0)
4 z y -x (0, -1, 0)
5 x z y (0, 0, 1)
6 x z -y (0, 0, -1)

Table 3.1.: Relations of the i Cartesian coordinate systems.

gi = (
β

γ
)

1
2 zi (3.16)

Then the spherical coordinates, and their relation to the ith set of Cartesian coor-

dinates, where the subscriptgi indicates the ith scaled set of g coordinates. is given

below:
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xi = rgi sin(θgi) cos(φgi)

yi = rgi sin(θgi) sin(φgi)

gi = rgi cos(θgi)

rgi = (x2
i + y2

i + g2
i )

1
2

ri = (x2
i + y2

i + z2
i )

1
2

= (x2
i + y2

i + (
γ

β
)g2
i )

1
2

= rgi

(
1− (1− γ

β
) cos2(θgi)

) 1
2

φgi = arccos(
gi
rgi

)

φi = arccos(
zi
ri

)

θgi = θ = arctan(
yi
xi

)

(3.17)

The Laplacian operator is taken to be:

∇2
gi

=
1

r2
gi

∂

∂rgi
(r2
gi

∂

∂rgi
) +

1

r2
gi

sin(θgi)

∂

∂θgi
(sin(θgi)

∂

∂θgi
) +

1

r2
gi

sin2(θgi)

∂2

∂φ2
gi

(3.18)

Rearranging, and changing the differential operator with respect to zi to the relevant

spherical coordinates, the Hamiltonian H1 then becomes:
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H1i = −∇2
gi +

(
1− β

)[(cos(θgi) sin(θgi)

r3
gi

(
2− 1

tan2(θgi)

)
+

1

tan(θgi)rgi

)
∂

∂θgi

+
sin2(θgi)

rgi

∂

∂rgi
+

sin2(θgi)

r2
gi

∂2

∂θ2
gi

+ cos2(θgi)
∂2

∂r2
gi

− 2
sin(θgi)

rgi
cos(θgi)

∂

∂rgi

∂

∂θgi

]

− 2

rgi

(
1− (1− γ

β
) cos2(θgi)

) 1
2

(3.19)

3.4. The Scaled Hydrogenic Basis for Fk(i)(r)

The effective mass equation, equation 3.11, cannot be directly solved analytically.

Thus a scaled hydrogen basis is used as solutions for the F (r). If the scaled hydro-

gen basis includes variational parameters, then an upper bound on the energy for

the ground state, and a surprisingly good agreement with experimentally measured

energy for higher excited states, can be found. This is discussed in detail in appen-

dix A.2.2. The variational parameters are then the same for each of the 6 i states,

because otherwise the states would not be degenerate in energy Ec.

Following Faulkner [107, eq 2.5 and 2.6] a scaled set of hydrogen wavefunctions can

be used as the donor envelop wavefunctions Fi(r).

Fn,`,m(r) =
β

γ

1
4

Rn,`,m(r)Y`,m(θ, φ) (3.20)

In equation 3.20 α`,m is a variational parameter that depends upon the angular

momentium and magnetic quantum numbers. The radial parts of the hydrogenic
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basis is given by:

Rn,`,m(r) =
2α

3
2
`,m

n2

((n− `− 1)!

[(n+ `)!]3

) 1
2
(2α`,mr

n

)`
e

[
−
α`,mr

n

]
L2`+1
n−`−1(

2α`,mr

n
) (3.21)

The angular by:

Y`′,m(θ, φ) =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm
l

(
cos(θ)

)
eimφ (3.22)

For both angular and radial hydrogenic state functions, equations 3.21 and 3.22, the

coordinates are the radial gi coordinates described in section 3.3.2.2, however, the

i and g subscripts have been dropped for clarity. In all future cases it should be

assumed that the coordinates are in a gi spherical system, unless specified otherwise.

For equation 3.21 L2`+1
n−`−1(2α(`)r

n
) is the associated Laguerre polynomial [118], and

is then defined below:

L2`+1
n−`−1(

2α`,mr

n
) =

n−`−1∑
s=0

(−1)s
[(n+ `)!]2

(n− `− 1− s)!(2`+ 1 + s)!s!

(2α`,mr

n

)s
(3.23)

For equation 3.22 Pm
`

(
cos(θ)

)
is then the associated Legendre polynomial [119],

shown below:

Pm
`

(
cos(θ)

)
=

(−1)m

2``!

(
1− cos(θ)2

)m
2

d`+m

d cos(θ)`+m
(

cos(θ)2 − 1
)`

(3.24)
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3.4.1. Multiple Hydrogenic States as a Basis State

Following Faulkner[107], a more accurate donor envelope function can be constructed

from a linear combination of the hydrogenic states. That is, the set of hydrogenic

states is used as a basis out of which to construct the basis of the donor envelope

wavefunctions.

The effective mass Hamiltonian H1 is invariant with respect to coordinate inversion,

i.e. is of even parity. Because of this, states of differing parity will not contribute

to the calculated energy expectation value; they are not part of wavefunctions of

the H1 operator. It can be seen that by considering the energy expectation value

integral, 〈F |H1|F 〉 = E, if the inside of the integral is a purely odd function with

no even component then E must be zero.

The Hamiltonian H1 is also invariant with respect to any rotation about the zi

axis. This can be seen by consideration of the spherical coordinate form of the

Hamiltonian, where the components involving the zi axis are then dependent upon

the azimuthal angle coordinate φgi. The form of the hydrogenic basis states spherical

harmonics, equation 3.22, then has an exponent imφgi, this will force the overall

energy expectation value integral to have odd parity and thus be zero. Thus it can

be concluded that states of differing angular momentium projection, defined by the

magnetic quantum number m, are not mixed in the energy overlap integral.

Thus the envelope functions become of the form in equation 3.25; where an,` is simply

a weighting coefficient, and depends upon only n and ` because of the non-mixing

of states of different m by the Hamiltonian H1, and the Pn,`,m(r) are hydrogenic

basis states. The envelope function is no longer indexed by the same hydrogenic

quantum numbers as the hydrogenic basis states, because of the dependence upon

states of multiple quantum numbers, although all of its basis states will have the
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same azimuthal angular momentium projection m and thus m′ = m for all.

Fn′,`′,m′(r) =
∑
n,`

an
′,`′,m′

n,` Pn,`,m(r)

Pn,`,m(r) =
β

γ

1
4

Rn,`,m(r)Y`,m(θ, φ)

(3.25)

3.4.2. How to Find the Correct Variational Parameters of the

Donor Envelope Wavefunctions

To match the correct weighting of each hydrogenic basis state in any representation

of the donor envelope function, the variational parameters α`,m and β must be

scaled. There are then several possible procedures that can be followed, depending

upon whether the donor envelope function is constructed out of a single or multiple

hydrogenic basis states. For both situations the β parameter is universal for all the

donor envelope functions, F (r), and the α`,m parameters are then different for all

separate (`,m) pairs.

The process for either situation is then, in general, to multiply the Schrödinger

equation from the left by the complex conjugate of that state. Evaluating this over

all space, and making use of the normalisation and orthogonality of the hydrogenic

basis, then yields a function of the variational parameters that described the energy

expectation value of the state in question. This is discussed in much more detail in

appendix A.2.

As discussed in appendix A.2.2.2, the ground state upper bound can be found by

minimising the energy as a function of the variational parameters. For non-ground

states this is not true; however a comparison to experimentally measured [100]

energies and absorbance spectra in section 5.3, shows that minimisation does yield

accurate results. Thus either minimisation, or a minimisation of the difference to a
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measured energy for each state, can be used to variationally find the best parameter

values.

For this function to be at a minimum, its derivative can be taken and set to zero,

because of the nature of the hydrogenic basis states the second order differential

will always then be positive; there are no maxima as the energy as the parameters

tend to infinity is infinity. This then allows the two parameters to be related to

each other, allowing only one to be varied. Then one parameter, with the other

calculated from the minima condition, can be varied until the minimum energy or

energy difference is found.

Alternatively for higher excited states, because the minimum upper bound condition

is not provably true, both parameters can be varied independently. However, this

yields results that are almost identical to those obtained by assuming the parameters

are connected by the minimisation criterion.

Note on number of variational parameters

The requirement of minimisation of the energy expectation value allows the α pa-

rameters to be linked to the β value. If the minimisation condition is extended to

all other states, which appears to be the best fit to experimental data, then the

number of variational parameters is greatly reduced. The final number of variatio-

nal parameters then depends upon the choice of single or multiple basis states for

the donor envelope function. For the single hydrogenic states, this means that the

α parameters are all directly linked to β, resulting in β being the only variational

parameter; there is a one to one, or isomorphic, mapping of each α`,m to the β.

However, if there are multiple hydrogenic states that form the basis, this results in

a Hamiltonian matrix (see section 3.4.2.2) that must be diagonalised to obtain the
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energy expectation values. In this situation the individual α parameters are not

linked to β in an isomorphic manner, but where β is now equal to a sum of different

αs including multiple different power terms. Thus the wavefunctions are described

by the eigenvectors of the Hamiltonian matrix, where this then implicitly causes a

set of new parameters, the eigenvectors themselves. Therefore it is possible that

different sets of α values, in combination with different eigenvectors, will yield the

same energy expectation values.

3.4.2.1. Single Basis State per Donor Envelope

Considering the first situation, where we only have a single basis state, the energy

equations are of the form shown in equation 3.26; where the Fn,`,m states are then

the states from equation 3.20.

〈Fn,`,m|H1|Fn,l,m〉 = En,l,m(β, α`,m) (3.26)

3.4.2.2. Multiple Basis State per Donor Envelope

For the second situation, that of multiple hydrogenic basis states, each donor wa-

vefunction is of the form in equation 3.25. To evaluate equation 3.26 it can be

written as the matrix equation 3.27; where the set of weighting coefficients, an,`,mn,` , is

then written as a column vector with individual elements now indexed by j, k corre-

sponding to n, ` of the basis states and n, `,m labels of the donor envelope function

respectively. This multiple basis state representation of the envelope functions is

also sometimes known as the Rayleigh-Ritz method, as it was used to construct the

modes of church organs out of a set of trial basis functions.[120][121]

It should be noted that because of the different basis states having only the same m,

the n, ` of the donor envelope states are not explicit, they are merely labels; they can
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be expected to indicate the hydrogenic basis state with the greatest contribution,

or an,`,mn,` coefficient.

This is then for a single donor envelope function. For all states involved in the de-

composition see appendix A.39 for the form of the equation, in essence an,`,mn,` are no

longer a column vector but a square matrix with columns indexed by n, `,m. The

Hamiltonian matrix elements are then defined as hj,k = 〈Pk(r)|H1|Pj(r)〉, where

Pj(r) are hydrogenic basis states which are then indexed as n, ` pairs with the m de-

pendence dropped because of the lack of mixing between states of different m. The

j and k indexes refer to the initial and final states, as used else where in this thesis.

The number N is then the number of basis states used in any particular calculation,

as N tends to∞ the accuracy of the calculated energy and the wavefunctions them-

selves will tend to 100%, but only for states which satisfy the initial assumptions of

the effective mass model.

This Hamiltonian matrix can then be diagonalised with standard linear algebra

techniques, producing a diagonal matrix where the diagonal elements are the energy

expectation values of the donor envelope wavefunctions. The eigenvectors of this

diagonalised Hamiltonian matrix are then the an,`,mn,` coefficients written as column

vectors.

The 1S donor state then has hydrogenic 1S, 2S,.., 3P ,... basis states; of course

states with even parity are only constructed out of states of even parity and thus

it will always be so. The converse is true for states of odd parity. Thus the S

states are constructed out of basis states of ` = even numbers (0, 2, 4, 6, etc.....),

because the 1S is confined to m = 0 they all are. The P donor state is constructed

out of basis states of ` = odd numbers (1, 3, 5, 7, etc.....), with m now allowed to

vary, but all different values of m will have entirely separate Hamiltonian matrixes;
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although including states of different m will not affect the outcome, because they

do not mix, it will increase the size of the matrix and thus the computational effort

in diagonalising it, thus wasting time for no gain at all.



h1,1 h1,2 ... h1,N

h2,1 h2,2 ... ...

... ... h3,3 ...

hN,1 ... ... hN,N





a1
j

a2
j

...

aNj


= Ej



a1
j

a2
j

...

aNj


(3.27)

The same minimisation conditions as for single basis states then exist. That is, a

link can be made between the α`,m and β parameters via the first order differential

of the energy function. Thus the parameters that minimise the energy, or the energy

difference with respect to a measured energy, can be found variationally. This results

in both the energy, which can be easily verified via comparison with peaks from

optical absorbance measurements, and the estimated donor envelope wavefunction.

3.4.3. Ground State Splitting Due to the Symmetry of the

Silicon Lattice

The symmetry of the silicon lattice surrounding the donor atom, the tetrahedral

group Td, further complicates the effective mass theory. The effect of the symmetry

upon the effective mass donor states is commonly called “valley orbit coupling”[95,

p161]. This name arises from each individual donor state no longer being comprised

of a single Bloch function from a single conduction band minimum, or valley, but

rather being a combination of all or some of them; the combination and weighting

is then determined by the symmetry of the donor’s surroundings.

Due to the effect of the symmetry of the silicon lattice, the effective mass states

88



3. Introduction to Effective Mass Theory in Silicon

have their degeneracy split into smaller groupings or manifolds. These groupings

are determined by the symmetry of the silicon lattice, whereby the effective mass

states must then be a basis to construct representations of the Silicon lattice sym-

metry group. Or rather that each effective mass state is then split into components

corresponding to the irreducible representations of the silicon symmetry.

The result is a set of donor states that are weighted linear combinations of the prior

effective mass states, but now become representations of the symmetry group of the

silicon lattice. Thus the states become, in general, of the form shown in equation

3.28; where Ξj(r) is then the state that corresponds to an irreducible representation

of the symmetry of the silicon lattice, Cj
i is a weighting coefficient for each of the 6

non-degenerate j states, Ψk(i)(r) are the 6 effective mass basis states indexed by i,

Fk(i)(r) is the donor envelope function, and the Φk(i)(r) are the Bloch functions at

the conduction band minimum.

Ξj(r) =
6∑
i=1

Cj
i Ψk(i)(r)

=
6∑
i=1

Cj
i Fk(i)(r)Φk(i)(r)

(3.28)

The effective mass states corresponding to the irreducible representations of the Td

tetrahedral symmetry group can then be nondegenerate. The raw silicon lattice has

the symmetry of the cubic or octahedral Oh group [122], which by adding a donor

atom at the centre of the coordinate system breaks any translational symmetry. The

silicon lattice around the donor then has the symmetry of the tetragonal Td group[8].

The point here being that the presence of the donor itself removes the translational

symmetry.
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There are then two singlet (A1, A2), one doublet (E) and two triplet (T1,T2)

representations[122], so that any state will be comprised out of a combination of

these; not all states will include all the representations. Each representation of each

state will then be a separate manifold of states, with one, two or three degenerate

states for singlet, doublet and triplet representations respectively; these will then

will be further split by any hyperfine interaction with atomic nuclei.

However, in a most convenient manner, the symmetry caused splitting of effective

mass states is largely inconsequential. The measured energies of excited donor sta-

tes in silicon are largely degenerate, and they will have similar wavefunctions but

with the coordinates exchanged in the respective parts of the linear combination

of effective mass basis states, equation 3.10. Only the 1S like effective mass state

appears to be significantly split by symmetry, becoming the 1S(A1), 1S(E), and

1S(T1) states.

The higher excited states in general, according to Kohn[8], all have a large spatial

extent and thus the effective mass potential of equation 3.3, and the other assump-

tions, hold true. This then gives all the symmetry split states the same calculated

energy. The 1S states are different due to the lowest lying symmetry spit state being

very close to the donor atom, and as a result, the assumptions of the effective mass

model no longer hold true.

The 1S wavefunctions can then be symmetrised, or made to obey the required

symmetry conditions, by following [8, eq 4.30]. Thus the 6 degenerate effective mass

1S states become as in equation 3.28, with the Cj
i coefficients for the 1S state given

by equation 3.29; where the 1S(A1), E, and T1, then correspond to the C1, C2,3, and

C4,5,6 coefficients. It must be noted that equation 3.29 only gives the coefficients

for the 1S state, although all other possible states will have a set of 6 weighting
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vectors. There is a direct link to the vectors being in a 6 dimensional space and

the 6 conduction band minima, or valleys; a semiconductor with N valleys can have

donor state wavefunctions expanded in a set of N , with symmetry then dictating a

set of N weighting vectors with N elements.

A1 =

{
C1 = 1√

6

(
1, 1, 1, 1, 1, 1

)
E =


C2 = 1

2

(
1, 1,−1,−1, 0, 0

)
C3 = 1

2

(
1, 1, 0, 0,−1,−1

)

T1 =


C4 = 1√

2

(
1,−1, 0, 0, 0, 0

)
C5 = 1√

2

(
0, 0, 1,−1, 0, 0

)
C6 = 1√

2

(
0, 0, 0, 0, 1,−1

)

(3.29)

To further explain why the 1S(A1) state is the ground state, again paraphrasing

Kohn[8], the Ψk(i)(r) basis states are all equal at the r = 0 point; this is due to

periodicity, i.e. the donor atom is assumed to be equidistant from the conduction

band minima. Thus it can be seen, from equation 3.29, that the A1 representation

will have a much greater wavefunction amplitude at the donor atom site (r = 0).

A direct consequence of this is that the assumed donor potential, equation 3.3,

is no longer accurate, as the wavefunction is of large magnitude exactly upon the

donor. Not only does this render the assumptions of the effective mass formalism not

applicable, but it can easily be seen that due to coulombic interactions, such states

must have a high binding energy to be so densely located. Thus to be correctly

identified, the 1S state must always be referred to with an additional symmetry

label.

The other two 1S states, E and T1, are described relatively well by the effective mass
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formalism in the same way that higher excited states are. As a result of fulfilling

the effective mass assumptions, the 1S(E) and 1S(T1) are degenerate, giving an

effective 1S(notA1) state with a degeneracy of 5.

3.4.3.1. Higher Excited States

Kohn[106] is able to show that the higher excited states can be made to obey the

symmetry of the surrounding silicon lattice. The result of this is that the states will

split into the decomposition shown below, taken from [106, eq 5.11].

|m| = 0 : A1 + E + T1

|m|even(6= 0) : A1 + A2 + 2E + T1 + T2

|m|odd : 2T1 + 2T2

(3.30)

As will be seen later, the two excited states of principle interest are 2P0 and 2P±1.

Thus Kohn has given the decompositions necessary to construct the 2P0 state, as it

has |m| = 0 and thus only has the A1 + E + T1 representations which are given by

the coefficients in equation 3.29.

Symmetry weighting vectors

The symmetry weighting coefficients of equation 3.29 can be formed into vectors.

These then describe the symmetrised effective mass states. Using the combinations

of irreducible representations from equation 3.30, and with the ultimate intention

of using them for calculating transition rates, the total symmetry weighting vectors

for the 2P0 and 1S(A1) states are given below:
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~C1S(A1) =
1√
6

(
1, 1, 1, 1, 1, 1

)
~C2P0 =

1√
6

(
1, 1, 1, 1, 1, 1

)
+

1

2

(
2, 2,−1,−1,−1,−1

)
+

1√
2

(
1,−1, 1,−1, 1,−1

)
(3.31)

The T2 irreducible representation of the Td symmetry group is not given by Kohn,

and so far it has not been possible to calculate it. Because of this the weighting

coefficients for the 2P±1 state cannot be determined. However, as is outlined in

detail at the end of section 3.6.1, it is possible to show that the dot product of the

weighting coefficients of the 2P±1 state with those of the 1S(A1) are 1, as for the

known 2P0 to 1S(A1) product.

3.5. Applying the Effective Mass Hamiltonian to

Single Hydrogenic Basis States

Evaluating the unitless effective mass Hamiltonian, equation 3.19, for single hyd-

rogenic basis states gives energy functions with the β and α`,m as the functional

parameters. The parameters can then be iteratively varied until the minimum, or

minimum difference with respect to measured energy, can be found.

3.5.1. Simple Scaled Hydrogen Model

For comparison to the EMT states a far simpler model of the donor wavefunctions

can be constructed by using a spherically symmetric scaled hydrogen model. The

key difference is then between the ellipsoid EMT model and that of simply scaling a

hydrogen wavefunction to the energy, i.e. the scaling is uniform not axially depen-

dent. This is shown in detail in appendix B.4, and consists of adding in the effective
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mass, relative dielectric permittivity, and a scaling factor to the well known energy

and Bohr radius expressions for hydrogen.

Because this completely ignores the lack of full spherical symmetry in silicon, there

is no variational routine to use; a direct solution for the scaling parameter is found

from inputting the relevant energy, electron mass etc. It is obtained by rearranging

equation B.128 to find α0,0, given in equation 3.32; where E is the state energy. This

uses the vector average value of the effective masses in silicon, 0.453me = m∗, and

the relative dielectric permittivity of 11.7.

It must then be noted that this simple hydrogenic model is the same as the EMT

model with β and γ set to 1, while the effective masses are replaced with the vector

average of the effective masses, m∗ = 0.453m0.

α`,m =
4π~ε0εrn

e2

√
2E

m∗
(3.32)

3.5.2. Donor Envelope Wavefunctions and Energy

The donor envelope wavefunctions for the 1S, 2p0 and 2p±1 states and their energy

functions are listed here. All wavefunctions and energies are for the ith conduction

band minimum and are in the gi spherical coordinate system; this is equivalent to

the top left, or first, Hamiltonian matrix element for the multiple hydrogenic basis

state expansion approach.

Application of the unitless Hamiltonian operator, multiplication from the left by

the complex conjugate of the wavefunction, and integration over all space, yields

the energy functions for the respective donor envelope wavefunctions. This is shown

in equation 3.33; in appendix B.3 is shown the derivations of the individual energy
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functions and the energy minimisation relationship between the α and β parameters

for each state.

Ej = 〈F i
j (rgi, θgi, φgi)|H1|F i

j (rgi)〉

=
(γ
β

) 1
2

∫ ∞
0

∫ π

0

∫ 2π

0

r2
g sin(θg)F

∗
j (rg, θg, φg)H1Fj(rg, θg, φg)drgdθgdφg

(3.33)

3.5.2.1. 1S

The unitless 1S donor envelope basis function is:

F i
1s(A1)(rgi) =

(β
γ

) 1
4
α

3
2 (0, 0)√
π

e−α0,0rgi (3.34)

The energy function is:

E1S(α0,0, β, γ) =
1

3
α2

0,0

(
β + 2

)
− 2α0,0(

1− γ
β

) 1
2

arcsin
((

1− γ

β

) 1
2

)
(3.35)

For the derivation of the energy function see B.3.1.

For the reasons discussed previously, the calculated energy is only applicable for the

1S(E) and 1S(T1) states due to the breakdown of the effective mass assumptions.

Verifying the 1S Energy in the Free Space Hydrogen Limit

When the γ, β, and α0,0 of equation 3.35 are all equal to, or tending towards, 1 the

state becomes that of a hydrogen atom in free space. This can be easily checked

by taking the limit of the E1S(α0,0, β, γ) as all of the parameters tend towards 1,

shown in appendix B.3.5.1.
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The final result for the α0,0, β, γ → 1 case gives an energy of −1. As this is the

unitless expression it can then be multiplied by aB, equation 3.13 where m⊥ is now

the free space mass of an electron, which indeed gives the 1S state energy of a

hydrogen atom in free space (≈13.6eV ).

Relating α0,0 and β at the Energy Minima

For variational minimisation purposes the α0,0 and β parameters can be related by

taking the first order differential of the 1S energy function with respect to α0,0 and

rearranging. This can then be written as:

α0,0 =
3 arcsin([1− γ

β
]

1
2 )

[1− γ
β
]

1
2 (2 + β)

(3.36)

3.5.2.2. 2p0

The unitless 2p0 donor envelope basis function is:

F i
2p0

(rgi) =
(β
γ

) 1
4
α

5
2 (1, 0)

4
√

2π
rgi cos(θgi)e

−
α1,0rgi

2 (3.37)

The energy function is:

E2p0 =
1

20
(2 + 3β)α2

1,0 −
3

8[1− γ
β
]

3
2

α1,0

(
2 arcsin([1− γ

β
]

1
2 )− sin(2 arcsin([1− γ

β
]

1
2 ))

)

=
1

20
(2 + 3β)α2

1,0 −
3

4[1− γ
β
]

3
2

α1,0

(
arcsin([1− γ

β
]

1
2 )− [1− γ

β
]

1
2 (
γ

β
)

1
2

)
(3.38)
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Equation 3.38 is derived in equation B.3.2.

Verifying the 2P0 Energy in the Free Space Hydrogen Limit

When the γ, β, and α1,0 of equation 3.38 are all equal to, or tending towards, 1,

the state becomes that of a hydrogen atom in free space. Thus equation 3.38 can

easily be checked by taking the limit as all of the parameters tend towards 1. This

is shown in detail in appendix B.3.5.2.

The final result of this is that in the limit that the α1,0, β, γ parameters all tend

towards 1, the energy tends towards the unitless value of −1
4

. As the energy of

hydrogen states follows a E1S

n2 pattern, to obtain the energy requires multiplication

by that of the ground state E1S, and for the 2P0 state n = 2, the limiting energy

value is correct (≈3.4eV ).

Relating α1,0 and β at the Energy Minima

As for the 1S state, α1,0, corresponding to the 2p0 state, can be related to β, this is

then written as:

α1,0 =
15

2

(
arcsin([1− γ

β
]

1
2 )− [1− γ

β
]

1
2 ( γ

β
)

1
2

[1− γ
β
]

1
2 (2 + 3β)

)
(3.39)

3.5.2.3. 2p±1

The unitless 2p±1 donor envelope basis function is:

F i
2p±1

(rgi) = ∓
(β
γ

) 1
4
α

5
2 (1, 1)

8
√
π

rgi sin(θgi)e
±iφgie−

α1,1rgi
2 (3.40)
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The energy function, derived in equation 3.41, is:

E2p±1 =
1

20

(
4 + β

)
α2

1,1 −
3α1,1

8[1− γ
β
]

1
2

(
2 arcsin([1− γ

β
]

1
2 )
(
1− 1

2(1− γ
β
)

)
+

( γ
β
)

1
2

[1− γ
β
]

1
2

)
(3.41)

Verifying the 2P±1 Energy in the Free Space Hydrogen Limit

When the γ, β, and α1,1 of equation 3.41 are all equal to, or tending towards, 1,

the state becomes that of a hydrogen atom in free space. Thus equation 3.41 can

easily be checked by taking the limit as all of the parameters tend towards 1. This

is shown in detail in appendix B.3.5.3.

As for the 2P0 state, the final result of this is that in the limit that the α1,1, β, γ

parameters all tend towards 1, the energy tends towards the correct unitless value

of −1
4

(≈ 3.4eV ); the energy of hydrogen states follows a E1S

n2 pattern and for the

2P±1 state n = 2.

Relating α1,1 and β at the Energy Minima

As for the other states, α1,1, corresponding to the 2p±1 state, can be related to β.

α1,1 =

5

(
3

4[1− γ
β

]
1
2

(
2 arcsin([1− γ

β
]

1
2 )
(
1− 1

2(1− γ
β

)

)
+

( γ
β

)
1
2

[1− γ
β

]
1
2

))
4 + β

(3.42)

3.6. Fermi’s Golden Rule Transition Rates

It has been established that scaled hydrogenic functions are an approximate descrip-

tion of donor envelope wavefunctions in silicon. The likely transition rate between

two of the effective mass donor states can be estimated by using Fermi’s golden rule.

Equation 3.43 shows this, and is of the form where the interaction of atomic states
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with the electromagnetic field is assumed to be that of a dipole interacting with

atomic state wavefunctions, and the density of states of the transition is that of the

vacuum electromagnetic field. This is shown to be the case in appendix A.3; in this,

j and k indexed the initial and final atomic states, ωj,k is the angular frequency of

the transition, c the speed of light in a vacuum, gj,k the respective degeneracies of

the atomic states, ε0 the permittivity of free space, and e the charge of an electron.

Γj,k =
(
| 〈φ0

k|x |φ0
j〉 |2 + | 〈φ0

k| y |φ0
j〉 |2 + | 〈φ0

k| z |φ0
j〉 |2

) e2ω3
j,kgk

3ε0~c3πgj
(3.43)

The donor medium, silicon, has a cubic structure, with six degenerate conduction

band minima. There are identical odd-parity excited states in each of the ± x, y,

z conduction band valleys, out of which the overall donor state is assembled. For

an arbitrary perturbation it can be shown that the total transition rate, summed

over all valleys, is equal to the maximum transition rate for a single valley (see

section 5.4 for a related discussion). For example, the 2P0 state in the z valley has

a maximum transition rate for z polarized light, and this single valley z polarized

rate is the same as the total multi-valley rate for an arbitrary polarization. In

this work the transition rate has been calculated for a fixed electric field amplitude

and polarization of E0(1, 1, 1) (equations 3.50 and A.114), and in future work the

calculations should be generalised to be applicable to an arbitrary polarisation.

3.6.1. Transitions with Effective Mass States

In the EMT framework outlined above, the total donor electron wavefunction Ξj

can be approximated as a linear combination of the 6 conduction band minima

states Ψk(i) , with appropriate symmetry determined weighting factors Cj
i , as in

equation 3.28; j indexes the donor state, i the conduction band minima (valley) in

99



3. Introduction to Effective Mass Theory in Silicon

the +kx,−kx,+ky,−ky,+kz,−kz order, and Ψk(i) is the total wavefunction where

Fk(i) is the EMT slowly varying envelope, and Φk(i) the Bloch function at the ith

valley.

With the wavefunction now known the dipole matrix element can be found If ~E =

(a, b, c) is the perturbing electric field vector, ~r = (x, y, z) is the radial coordinate

vector, e the unit of electric charge, and ex and fi index the initial excited and final

ground state respectively, the matrix element is:

〈Ξfi| e~r. ~E |Ξex〉 = 〈
6∑
i=1

Cfi
i F

fi
i Φi|e~r. ~E|

6∑
j=1

Cex
j F

ex
j Φj〉

=
6∑
i=1

Cfi∗
i

6∑
j=1

Cex
j 〈F

fi
i Φi|e~r. ~E|F ex

j Φj〉
(3.44)

Equation 3.44 can be significantly simplified by considering the orthogonality of the

Bloch states Φ.

〈Φi|Φj〉 = δi,j (3.45)

It can be assumed that because the Bloch states are orthogonal, equation 3.45,

the dipole matrix elements of two functions containing different Bloch states (at

different conduction band minima) is zero. This is equivalent to saying that it can

be assumed that there are no dipole transitions between different Bloch states.

It must be noted that, in general, the integral over all space of two orthogonal

functions multiplied by two other arbitrary functions (in this case the EMTenvelope
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functions) is not zero. The arbitrary functions change the weighting of the integral,

for example, sin and cos are orthogonal but if the integral from 0 to π
2

is weighted

as 1 and the rest of the integral to 2π at 0.1 then the result is not zero.

However, this assumption of wider orthogonality can be justified for the effective

mass theory. The donor states are explicitly assumed to extend over a large area,

many thousands of silicon unit cells, and the Bloch functions are periodic every

unit cell. Thus the change in the weighting envelope function, over those many

thousands of unit cells, may be assumed to be slow and consequentially relatively

constant, at least compared to the Bloch functions, allowing the approximation that

the donor envelopes are constant. This can be extended to apply to the dipole matrix

element. If i and j index conduction band minima (valleys), while ex and fi label

donor envelope wavefunctions, this can be shown as:

〈F fi
i Φi|F ex

j Φj〉 ≈ 〈F fi
i |F ex

j 〉 〈Φi|Φj〉

≈ 〈F fi
i |F ex

j 〉 δi,j

〈F fi
i Φi|e~r. ~E|F ex

j Φj〉 ≈ 〈F fi
i |e~r. ~E|F ex

j 〉 δi,j

(3.46)

Additionally, the Bloch function states are, by definition, at different momentium

positions. Because of this, a transition is only likely to occur if phonon emission

(or absorption) occurs simultaneously, which is highly unlikely. Thus, even if the

Bloch functions were not orthogonal, transitions that do not also involve extremely

unlikely coincidental phonons can be considered to be unlikely.

By applying the conditions of equations 3.45 and 3.46, the dipole matrix element

from equation 3.44 can be simplified. The form of this matrix element is then the
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same as that obtained by Kohn [115, equation 5.56].

6∑
i=1

Cfi∗
i

6∑
j=1

Cex
j 〈F

fi
i Φi|e~r. ~E|F ex

j Φj〉 ≈
6∑
i=1

Cfi∗
i

6∑
j=1

Cex
j 〈F

fi
i |e~r. ~E|F ex

j 〉 δi,j

≈
6∑
i=1

Cfi∗
i Cex

i 〈F
fi
i |e~r. ~E|F ex

i 〉

(3.47)

The effect of the different wavefunctions for the 6 different EMT states and the

electric field polarisation within the dipole interaction term must then be considered;

the final result is that, in the case of spontaneous emission where the perturbing

electric field vector is (1,1,1), the net effect is as the total states were single basis

states in free space. Recall that the upper and lower donor state wavefunctions are

comprised out of a linear combination of the 6 effective mass basis states arising

from the 6 conduction band minima in silicon. Each of the 6 effective mass valley

states corresponds to one of the conduction band minima, with labels ±kx, ±ky,±kz

corresponding to the energy degenerate minimum energy positions in momentium

space.

To explain this, as discussed above in sections 3.4.3 and 3.3.2.2, in the EMT fra-

mework each of the 6 valley basis states has the same wavefunction as the others,

but, and this is the key point, with x, y, z coordinates changed (where x,y,z refers

to a fixed, laboratory, set of coordinates). The laboratory coordinates are taken

to coincide with those of the conduction band minima at +kx, with differences in

coordinates between states given by table 3.1.

Hydrogenic wavefunctions cause a negligible, or entirely absent, effect upon the

dipole matrix element squared for this coordinate change. For example, for the

1S state the coordinate terms all appear squared and added together in the radial
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exponent and therefore a change results in an identical function. For each of the 2P0

or 2P±1 wavefunctions, the coordinate change is an effective rotation, along with a

change in the overall sign which when squared has no effect.

The dipole interaction must then be taken into account. To do this the electric field

is taken to be of amplitude a,b,c in the x, y, z directions and to have a randomly

varying due to being the vacuum field for spontaneous emission, appendix A.3.1.1

) phase factor eiφx,y,z(t).

~E = (aeiφx(t), beiφy(t), ceiφz(t)) (3.48)

Therefore the dipole matrix element, taking into account the 6 conduction band

valleys, from equation 3.47 , and taking the radial coordinate vector to be r =

(x, y, z), becomes:

6∑
i=1

Cfi∗
i Cex

i 〈F
fi
i |e~r. ~E|F ex

i 〉 =
6∑
i=1

Cfi∗
i Cex

i 〈F
fi
i |e(xaeiφx(t) + ybeiφy(t) + zceiφz(t))|F ex

i 〉

(3.49)

Therefore the specific dipole matrix element for each polarisation must be consi-

dered. However, in the spontaneous emission case the electric field vector from

equation 3.48 is equal in each direction, therefore the polarisation is:

~E = (E0e
iφx(t), E0e

iφy(t), E0e
iφz(t))eiωj,kt

= E0(eiφx(t), eiφy(t), eiφz(t))eiωj,kt
(3.50)
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Therefore the dipole matrix element becomes:

E0

6∑
i=1

Cfi∗
i Cex

i 〈F
fi
i |e(xeiφx(t) + yeiφy(t) + zeiφz(t))eiωj,kt|F ex

i 〉 (3.51)

This is the same result, albeit with the electric field vector chosen, as is shown in

[115, p282, eq 5.56]

For the 2P0 to 1S transition it is well known that the dipole matrix element is only

non zero for the z axis polarisation (see appendix B.5.0.1). Therefore, due to the

coordinate changes between the 6 difference effective mass valley states, the ±kx

states will have non zero matrix elements for the z polarisation of the electric field,

the ±ky for x polarised, and ±kz for y polarised. A similar point is true for the 2P±1

to 1S transition, however, now it is the x and y polarisations that are non zero for

the ±kx, y and z for ±ky, and z and x for ±kz.

Therefore, for the spontaneous emission case where the polarisation strength is iso-

tropic, the total contribution to the dipole element of each conduction band valley

state is the same. Each contributes the same transition amplitude for what is, from

the perspective of each valley state, the polarisations that are non-zero. The dipole

matrix element is then given by its symmetry determined weighting factor Ci and

the dipole matrix element of the non EMT state (as if the donor were in free space

and not in silicon with its 6 conduction band minima). These are then summed

in amplitude, as they are part of the same state linear superposition and cannot

be incoherent relative to each other (otherwise they could not be parts of the same

state as a linear combination to begin with). The envelope functions are now taken
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to be the same as in free space which is the same as the laboratory coordinates and

the +kx valley, the total matrix element squared is given by:

|E0|2e2

(
|

6∑
i=1

Cfi∗
i Cex

i 〈F
fi
i |x|F ex

i 〉 |2 + |
6∑
i=1

Cfi∗
i Cex

i 〈F
fi
i |y|F ex

i 〉 |2

+ |
6∑
i=1

Cfi∗
i Cex

i 〈F
fi
i |z|F ex

i 〉 |2
) (3.52)

The penultimate form of Fermi’s golden rule for effective mass transitions, where fi

is the final and ex the excited state, is then:

Γfi,ex =
e2ω3

fi,exgfi

3ε0~c3πgex

(
|

6∑
i=1

Cfi∗
i Cex

i 〈F
fi
i |x|F ex

i 〉 |2 + |
6∑
i=1

Cfi∗
i Cex

i 〈F
fi
i |y|F ex

i 〉 |2

+ |
6∑
i=1

Cfi∗
i Cex

i 〈F
fi
i |z|F ex

i 〉 |2
)

(3.53)

3.6.1.1. Effect of Multiple Valleys on the 2P0 to 1S(A1) transition

The effect that the multiple conduction band valleys, and the symmetry of the

silicon crystal, has upon the 2P0 to 1S(A1) transition can be found by considering

the dipole matrix element, from equation 3.52 , for each of the symmetry determined

2P0 states.

The 1S(A1) state is a linear combination of all 6 valley states weighted equally, while

the 2P0 state is a more complex combination of the 6 states; the combinations of

the valley states are determined by the symmetry of the surrounding silicon crystal,

however, the 2P0 weightings cannot be taken directly from equation 3.31. The 2P0

state is comprised of one A1, two E, and three T1 components. Of these, the 1S(A1)
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to 2P0(A1) is forbidden by parity, as is the 1S(E) to 2P0(A1), i.e. the matrix

element is zero due to valley orbit interference. As a proxy for the sum of the

allowed transitions to the triply degenerate set of 2P0(T1) excited states, the rate

for 1S(A1) to the 2P0(A1) shall be used and valley interference will be ignored. In

future work the rate calculation should be made to include a general polarization,

the valley orbit interference, and the degeneracy.

Only the z polarisation has a non zero matrix element for a 2P0 to 1S transition.

Therefore the ±kx components have a non zero matrix element for the z polarisa-

tion, and then because of the coordinate change in the different conduction band

valley states the ±ky and ±kz components have non zero matrix elements for x and

y polarised light respectively. As the electric field is assumed to be equal in all

directions this has no overall effect.

The 2P0(A1) to 1S(A1) transition, where the C coefficients are all 1√
6

for both states.

The matrix elements are then:
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|( 1√
6

1√
6

+
1√
6

1√
6

) 〈F fi
±kx|z|F

ex
±kx〉 |2

+ |( 1√
6

1√
6

+
1√
6

1√
6

) 〈F fi
±ky|x|F

ex
±ky〉 |2

+ |( 1√
6

1√
6

+
1√
6

1√
6

) 〈F fi
±kz|y|F

ex
±kz〉 |2

= |2
6
〈F fi
±kx|z|F

ex
±kx〉 |2 + |2

6
〈F fi
±ky|x|F

ex
±ky〉 |2 + |2

6
〈F fi
±kz|y|F

ex
±kz〉 |2

=
4

36

(
| 〈F fi

±kx|z|F
ex
±kx〉 |2 + | 〈F fi

±ky|x|F
ex
±ky〉 |2 + | 〈F fi

±kz|y|F
ex
±kz〉 |2

)

=
12

36
| 〈F fi

±kx|z|F
ex
±kx〉 |2

=
1

3
| 〈F fi

±kx|z|F
ex
±kx〉 |2

(3.54)

As there are three total degenerate 2P0(T1) the total transition rate of equation 3.54

is multiplied by three. Therefore, the total transition rate is multiplied by a factor

of 1 relative to that of a single valley transition rate without any consideration of

the symmetry.

3.6.1.2. Effect of Multiple Valleys on the 2P±1 to 1S(A1) transition

The 2P±1 state is comprised of 2T1 and 2T2 components. The present author has

been unable to determine the T2 coefficients. However, because only the perpendi-

cular components of the matrix element are non zero for 2P±1 to 1S, i.e x and y for

±kx, y and z for ±kz, and x and y for ±ky, which can be seen from inspection of

equation 3.29 to only have C coefficients of 0. Despite this, it is assumed that the

net effect of the T2 coefficients is to give an overall multiplication of 1 as for the 2P0

case; as absorption spectra show that 2P±1 transitions do occur, it can be inferred
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that the T2 group does have a non zero matrix element.

3.6.1.3. Accounting for Not Being in Free Space

There is then one final factor to be included in the form of Fermi’s golden rule. The

effective mass states are by definition not in a vacuum, thus the speed of light and

dielectric permittivity must be altered. These factors, where n is now the refractive

index of the surrounding silicon, and µr is the relative magnetic susceptibility, as-

sumed to be ≈ 1 for silicon, are shown below:

c→ c

n

n =
√
εrµr ≈

√
εr

ε0 → ε0εr

1

ε0c3
→ ε

3
2
r

ε0εrc3

=
ε

1
2
r

ε0c3

(3.55)

The final form of Fermi’s golden rule for effective mass states is then:

Γi,j =
e2ε

1
2
r

3ε0~c3π
ω3
i,j

gj
gi

(
~Cj∗. ~Ci

)2
(
| 〈F j

0 |x|F i
0〉 |2 + | 〈F j

0 |y|F i
0〉 |2 + | 〈F j

0 |z|F i
0〉 |2

)
(3.56)

3.6.2. Dipole Elements for Specific Transitions

In order to estimate the transition rate for different donor envelope states, their

dipole matrix elements are written here. This is done in terms of the effective mass

variational parameters, α`,m and β, so that the transition rate for differently scaled

states can easily be obtained. This is done using scaled hydrogenic wavefunctions
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of the form from equation 3.20.

There is one point that must be considered when estimating the transition rates

using wavefunctions scaled with these variational parameters, the link between the

β and the α`,m. To be explicit, the α`,m are different for each (`,m), while the β

are not. For single basis states this partly subverts the need to minimise each state,

as minimising merely the ground state then gives all the parameter information.

For multiple basis states, the Hamiltonian matrix of even party states including the

ground state must be minimised; the other parameters can then be input in the

Hamiltonian matrixes that describe them, and then be diagonalised to find the final

states.

3.6.2.1. 2p0 to 1S(A1) Dipole Element

The 2p0 to 1S dipole matrix element squared, derived in appendix B.5.0.1, can be

written as:

| 〈F 1S
0 |x|F

2P0
0 〉 |2 + | 〈F 1S

0 |y|F
2P0
0 〉 |2 + | 〈F 1S

0 |y|F
2P0
0 〉 |2 = 215a2

B

(β
γ

) α3
0,0α

5
1,0[

2α0,0 + α1,0

]10

(3.57)

3.6.2.2. 2p±1 to 1S(A1) Dipole Element

The 2p±1 to 1S dipole matrix element, derived in appendix B.5.1, can be written

as:

| 〈F 1S
0 |x|F

2P±1

0 〉 |2 + | 〈F 1S
0 |y|F

2P±1

0 〉 |2 + | 〈F 1S
0 |z|F

2P±1

0 〉 |2 = 215a2
B

α3
0,0α

5
1,1[

2α0,0 + α1,1

]10

(3.58)
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3.6.2.3. Confirming the Dipole Elements in the Isotropic Hydrogen Limit

As a confirmation check the EMT dipole elements can be compared to those of a

hydrogen electron in isotropic free space, as the various effective mass parameters

tend towards those in such conditions. The EMT wavefunction scaling parameters

α0,0, α1,0, α1,1, the hamiltonian z axis scaling factor β, the ratio of the perpendicular

and parallel (to the z axis) effective masses γ, and the relative dielectric permittivity

εr all tend towards their isotropic free space values of 1; the effective mass of the

electron m⊥ tends towards the mass of an electron in free space me.

The simple derivation of dipole elements for the 2P0 / 2Ppm1 → 1S transitions of a

hydrogen atom in isotropic, free space, environment are shown in appendix section

B.5.3 ; the EMT transition rates in the same limit are taken in appendix section

B.5.2.

2P0 → 1S

The free space hydrogen 2P0 → 1S transition dipole element squared, duplicated

here from equation B.162 , is then given by:

| 〈ψ1S
hydrogen|x|ψ

2P0
hydrogen〉 |

2 + | 〈ψ1S
hydrogen|y|ψ

2P0
hydrogen〉 |

2 + | 〈ψ1S
hydrogen|z|ψ

2P0
hydrogen〉 |

2 =
215

310
a2

0

(3.59)

The corresponding free space isotropic limit of the EMT 2P0 → 1S transition rate,

equation 3.57 , is taken in appendix section B.5.2.1 , with the result shown below:
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lim
α0,0,α1,0,β,γ,εr→1

m⊥→me

(
| 〈F 1S

EMT |x|F
2P0
EMT 〉 |

2 + | 〈F 1S
EMT |y|F

2P0
EMT 〉 |

2 + | 〈F 1S
EMT |z|F

2P0
EMT 〉 |

2

)
=

215

310
a2

0

(3.60)

A comparison of the EMT in the free space isotopic limit, equation 3.60, and

isotropic hydrogen, equation 3.59 , transition rates shows that they are the same.

2P±1 → 1S

The corresponding 2P pm1 → 1S isotropic free space hydrogen transition rate, du-

plicated from equation B.169 is:

| 〈ψ1S
hydrogen|x|ψ

2P±1

hydrogen〉 |
2 + | 〈ψ1S

hydrogen|y|ψ
2P±1

hydrogen〉 |
2 + | 〈ψ1S

hydrogen|z|ψ
2P±1

hydrogen〉 |
2 =

215

310
a2

0

(3.61)

The corresponding free space isotropic limit of the EMT 2P1 → 1S transition rate,

from equation 3.58 , is taken in appendix section B.5.2.2 , with the result shown

below:

lim
α0,0,α1,1,β,γ,εr→1

m⊥→me

(
| 〈F 1S

EMT |x|F
2P±1

EMT 〉 |
2 + | 〈F 1S

EMT |y|F
2P±1

EMT 〉 |
2 + | 〈F 1S

EMT |z|F
2P±1

EMT 〉 |
2

)
=

215

310
a2

0

(3.62)

Again, a comparison of the EMT , equation 3.62, and isotropic hydrogen, equation

3.61 , transition rates shows that they are the same; that is, in the isotropic free

space limit.
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Therefore it can be concluded that the EMT obtained transition rates lead to the

correct transition rate in the isotopic free space limit, and therefore they are less

likely to be incorrect than if this was not the case.

3.7. Calculations

In the following section the results of the EMT calculations are shown. This is in

three subsections. Firstly, the results of variational calculations are shown; these

find the state energy, α`,m, and β parameters. Secondly, due to the failure of EMT

for the ground state, the Mott semiconductor-metal transition is briefly discussed

and applied; thus allowing the 1S ground state to be correctly scaled. Thirdly,

Fermi’s golden rule is used to calculate transition rates based upon the variationally

and Mott transition scaled parameters.

3.7.1. EMT Energies

The overall goal of this thesis is to check the agreement of EMT theory with the

measured lifetimes of donor electron states in silicon. A simple consideration of

Fermi’s golden rule and the atomic state wavefunctions allows the calculation of

transition rates for dipole interactions. Assuming that the calculated transitions are

the dominant decay pathways, the average expected lifetime of upper atomic states

is then obtained. In order to calculate the wavefunctions, EMT was used in section

3.5.

The eigenfunctions used in the nondegenerate effective mass environment of sili-

con are scaled hydrogenic wavefunctions, dependent upon the parameters α and

β scaling in all directions and along the silicon z axis (the unique effective mass

axis) respectively. These parameters can be and are linked by the imposition of the
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energy being at a minimum. Imposing such a condition then leads to the variatio-

nally minimised energy being an upper bound on the actual value, which can itself

only be found by the selection of a perfectly true eigenbasis for the system, which

is not possible as closed form analytical solutions for non-hydrogen systems are not

known; this is explained in detail in appendix A.2.2.2. Minimisation of the energy

(or difference with respect to a measured energy) by the variation of parameters,

with appropriate choice of function dependent upon those parameters, allows an

estimate of the wavefunction of the corresponding state.

Variationally minimising the energy of hydrogenic wavefunctions in silicon has been

performed before by others in the literature, namely for single basis states by Kohn

and Luttinger [8] and then for multiple basis states, albeit only those of the same

parity and projection of angular momentium, by Faulkner [107]. Janzen [94] exten-

ded the work of Faulkner to chalcogen donors, and found a small improvement in

accuracy of a few significant figures. Equation A.43 shows that if there is only a

small change in calculated energy from increasing the number of basis states, then

the single basis state is still the dominant part of the resulting wavefunction. This

means that the multiple basis state method will yield only small improvements in

accuracy to any lifetime calculation.

As an example of the small size of this correction, a calculation showing the energy

correction for the 2p0 state, the lowest lying calculated with any accuracy, was

performed by both Faulkner [107] and Janzen [94]. This was done with ellipsoidal

hydrogenic basis states with quantum numbers `=1,n={2,..7}, `=3, n={4...9} and

`=5,n={6,...11}, forming a total of 18 basis states for Faulkner, and 6 ` values

with 15 n values for 90 basis states in a similar fashion by Janzen; ` is the angular

momentium quantum number.
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For an un-ionised atomic selenium complex in silicon the measured energy is 11.49meV

[94], the single basis state energy is 11.21meV (from calculations shown below), the

18 basis state is 11.51meV [94, table 2], while that of the 90 basis state is 11.49meV

[94, table 2]. This shows that a single basis state gives only −2.43% inaccuracy,

18 basis states a +0.17%, and 90 basis states cannot be distinguished from the

experimental measurement at the resolution at which it was taken at.

In general good agreement to measured energies for all but the 1S ground state of

various donors is found. This lack of accuracy for the 1S state naively makes any

lifetime calculation involving it inaccurate, however, is it possible to scale this state

by the use of the Mott semiconductor-metal transition; this is discussed in detail

in section 3.7.2. While the good agreement of non-ground states to the measured

values has been long known (Kohn published in 1955), the present author is unaware

of any published variational parameter values except for Kohn’s 1S state [115]; only

the energies have in general been published.

Because of the lack of variational parameters in the literature, it is necessary to fully

reproduce the work of Kohn to obtain them, as the only given parameter is that

for the 1S state, which is inaccurate. Unfortunately due to time constraints the ap-

proach of Faulklner[107], which is in essence the Rayleigh-Ritz method discussed in

greater detail in appendix A.2.2.1, has not been completed; the multiple basis state

approach, as mentioned above, can only be expected to yield small improvements

in lifetime calculations.

The reproduction of Kohn’s work for the 1S, 2P0, and 2P±1 states is then shown

in section 3.5, with the results of calculations shown below. The longitudinal and

perpendicular effective masses used in the calculations are those of silicon, i.e. 0.98

and 0.19 electron rest masses respectively[80]. The relative dielectric constant of
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silicon is also used, this is 11.7.[80] The EMT γ parameter, that is perpendicular

over longitudinal effective masses, is 0.1939 ≈ 0.19 in silicon.

For the wavefunctions to be used to calculate the dipole matrix elements, using

the functions shown in section 3.5, the different states must share a common β

parameter. While it is conceivable that the dipole elements based upon different

β parameters could be calculated, although the integral over all space would be

awkward, this would not fit with the EMT Hamiltonian; the Hamiltonian is β de-

pendent, thus the different excited states are explicitly being modelled as in different

environments if they have differing β parameters. There are then several variations

of the EMT calculations.

Firstly, the α and β parameters can be linked by imposing minimisation conditions

upon the state energy functions. In this regime the state energies can be variationally

minimised, or the difference with measured energies can be minimised. However

there is no difference, the obtained parameters should be identical, therefore only

the values minimised absolutely are given. Secondly the α and β parameters can

be varied separately, this should give the same result as when they are linked by

the minimisation condition; it is left in to show that the minimisation condition is

correct by showing the same obtained parameters.

3.7.1.1. 1S

The wavefunction, energy function, and α0,0 and β parameter link from section

3.5.2.1 are used here. The results of variational calculations are then presented in

table 3.2.

From table 3.2 it can clearly be seen that there is only minor difference in any of

the calculated parameters. The different parameters calculated all agree to within
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Mode of Calculation Calculated Energy (meV) α0,0 β
Linked −30.0541016592 1.35078313467 0.616683622982

Separate −30.0541008846 1.3511159818 0.616488350005
Simple Hydrogenic Na 2.60965895981 1

Table 3.2.: Collection of variational calculation results for the 1S scaled hydrogenic
state. The energy and α0,0 and β parameters are shown for the parameters
being linked by minimisation conditions, and for them being treated
as independent variables. Both show similar energy results, that differ
only because of the effect of finite step sizes for the parameters in the
variational minimisation. In both the energy is minimised absolutely.
Linked:α0,0 and β related by equation 3.36.
Separated: α0,0 and β treated as independent variables.
Simple Hydrogenic: The calculated parameter using the simple model
from section 3.5.1, where the experimentally measured energy of −306.63
meV[94] is used to scale the α0,0 parameter. This shows the difference
between the spherically symmetric hydrogen, and the EMT, wavefunctions.
Note: the hydrogenic energy is not given in the table because it is not
calculated, the hydrogenic wavefunction parameter is calculated from the
measured energy, the opposite way around to the EMT states.

3 significant figures for α0,0 = 1.35, and 2 s.f for β = 0.61. Taking the same

precision as the measured energy, 5 significant figures, gives a value of −30.054meV.

By comparison to the measured value of −306mev it can be seen that the resulting

EMT calculated energies of −30mev is highly inaccurate. This is attributed to

the breakdown in the effective mass assumptions, especially the donor potential

accuracy, for the 1S(A1) state. However, this is also just an upper bound on the

possible “true” value, and in these terms it is still valid.

It is illustrative to compare the EMT wavefunction with its unscaled basis, that of

hydrogen. Taking the 1S wavefunction from equation 3.34 and converting it back

into Cartesian coordinates, with distance units included, and substituting in the

variational parameters gives equation 3.63; where ab is the Bohr radius for hydrogen.

The raw hydrogen wavefunction is obtained by replacing all the numerical values

with 1.
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F1S(A1)(x, y, z) =
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γ

) 1
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e
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([
x2+y2

]
+3.21z2

) 1
2 (3.63)

While the energy value may be incorrect, the form or equation of the resulting

EMT wavefunction does appear to be consistent with the EMT model; however,

this is not proof of it being correct. The relative dielectric permittivity of the silicon

environment smears out the wavefunction over a large distance, that is, it has no

preferred direction and thus could account for the ≈ 0.0525 factor for the whole.

The x, y plane and the z axis are then additionally stretched by the exponential

term, and in differing amounts, e0.115 = e0.115 and e0.115
√

0.321 = e0.206 respectively;

presumably this is due to the differing effective masses in those directions (0.98 and

0.19 electron rest masses respectively).

It should be noted that the square root in the scaling factors above comes from the

square root in the exponent of the wavefunction, and that due to the nature of the

square root the exponent cannot be removed in this fashion, hence the ≈ sign; it is

not possible to quantify the x,y plane scaling without specifying the z coordinate,

so in this case the scaling factor can be taken to be accurate for the z = 0 line. In a

similar fashion the z axis scaling factor can be taken to be along the x = y = 0 line.

Energy as a function of γ
1
3 compared to Faulkner and Kohn

For further confidence that the 1S energy function gives the same or similar results

as Kohn [8] and Faukner[107], the energy as a function of γ
1
3 is calculated. This is

plotted in figure 3.1, with select values shown in table 3.3; the values shown are the

same as those given by Faulkner in [107, table I].
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γ
1
3 Own Faulkner Kohn

0.0 3.7010 na 3.701
0.1 3.1232 3.17 3.123
0.2 2.6666 2.69 2.667
0.3 2.3001 2.31 2.300
0.4 2.0017 2.01 2.002
0.5 1.7558 1.759 1.756
0.6 1.5510 1.553 1.551
0.7 1.3787 1.380 1.379
0.8 1.2326 1.233 1.233
0.9 1.1076 1.108 1.108
1.0 1.0000 1.000 1.000

Table 3.3.: Here are shown the calculated binding energies for the 1S state, relative to
the conduction band minima, for a donor electron. The values for Kohn and
Faulkner are taken from [107, table I], except the Kohn value for γ

1
3 which is

from source [8, equation 4.26]. The energy values are in unitless energy form,
see equation 3.13. Own refers to the values the present author has calculated
using equation 3.35.
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Figure 3.1.: Kohn and Faulkners energy values for the 1S state plotted against the aut-
hor’s own calculations. Kohn’s values are the circular black dots, Faulkner’s
the diagonal green crosses, and the authors own are plotted as a line. The
values for γ

1
3 and energy in silicon are highlighted by an upright blue cross

with dashed blue lines to the two axis; here γ = 0.19 for silicon. The y axis
is the energy in unitless form, while the x axis is the γ ratio of the effective
masses to the third root.
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As table 3.3 and figure 3.1 show, the values the present author has calculated agree

extremely well with those in the literature for the 1S state. Therefore the wa-

vefunction parameters obtained can be assumed to accurate within the EMT fra-

mework for the 1S state.

3.7.1.2. 2P0

The wavefunction, energy function, and α1,0 and β parameter link from section

3.5.2.2 are used here. The results of variational calculations are then, as for the

1S state, presented in table form, table 3.4. The same modes of obtaining the

variational parameters as for the 1S state are used, but with an additional mode

where the value of the β variational parameter of the 1S state is used to obtain the

α1,0 and energy values for the 2P0 state.

Mode of Calculation Calculated Energy (meV) α1,0 β
Linked −11.2134095625 1.80008053667 0.555020531689

Separate −11.2134049187 1.79897877598 0.55645981983
1S β −11.1945871728 1.7594153917 0.61

Simple Hydrogenic Na 1.01033743392 1

Table 3.4.: Collection of variational calculation results for the 2P0 scaled hydrogenic
state. The energy and α1,0 and β parameters are shown for the parameters
being linked by minimisation conditions, and for them being treated
as independent variables. Both show similar energy results, that differ
only because of the effect of finite step sizes for the parameters in the
variational minimisation. In both the energy is minimised absolutely.
1S β : Energy and α1,0 calculated using 1S deri-
ved β = 0.61, the energy here is minimised absolutely.
Linked : α1,0 and β related by equation 3.39.
Separated: α1,0 and β treated as independent variables.
Simple Hydrogenic: The calculated parameter using the simple
model from section 3.5.1,where the experimentally measured energy of
−11.49meV[94] is used to scale the α1,0 parameter, the β is arbitrarily
set to 1. This shows the difference between the spherically symmetric
hydrogen, and the EMT, wavefunctions. Note: the hydrogenic energy is not
given in the table because it is not calculated, the hydrogenic wavefunction
parameter is calculated from the measured energy, the opposite way around
to the EMT states.
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From table 3.4 it can be clearly seen that all the different methods of calculation

yield extremely similar values. The energy values for the variational methods are

now only 2.43% inaccurate with respect to experimental measurement. The different

parameters calculated all agree to within 2 significant figures for α0,0 = 1.8, and 2

s.f for β = 0.55. The 1S β calculated energy is found to be extremely close to the

variationally found energy, with an inaccuracy of only 2.61%.

Again the scaling of the wavefunction is shown by taking the 2P0 state wavefunction

from equation 3.37, reintroducing units of distance, and writing it in Cartesian form

yields:

F2p0(x, y, z) =
(β
γ

) 1
4

(α1,0

abεr

) 5
2 1

4
√

2π
(
β

γ
)

1
2 ze
−
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2abεr

([
x2+y2

]
+β
γ
z2
) 1

2

≈ 0.0210
( 1

ab

) 5
2 z

4
√

2π
e
− 0.150

2ab

([
x2+y2

]
+3.21z2

) 1
2

(3.64)

In a similar manner as for the 1S state, the 2P0 state is found to be stretched

out in all directions by a factor of 0.0210. There is then an additional scaling, or

smearing, in the x,y axis by a factor of e0.150 = e0.150 and in z axial direction by

e0.150
√

3.21 = e0.269. As before, these scaling factors are only applicable directly along

the z = 0 line for the x,y plane, and the x = y = 0 line for the z axis.

For the state parameters to be consistent with EMT one must take the α1,0 with

the same β value as the 1S state. Thus one finds the 2P0 α1,0 and β to be 1.76 to 3

s.f and 0.61 to 2 s.f respectively.

Energy as a function of γ
1
3 compared to Faulkner and Kohn

For further confidence that the 2P0 energy function gives the same or similar results
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as Kohn [8] and Faukner[107], the energy as a function of γ
1
3 is again calculated.

This is plotted in figure 3.2, with select values shown in table 3.5; the values shown

are the same as those given by Faulkner in [107, table II]

γ
1
3 Own Faulkner Kohn

0.0 3.4698 na 3.47
0.1 2.3710 2.41 2.371
0.2 1.6852 1.70 1.685
0.3 1.2368 1.24 1.237
0.4 0.9323 0.933 0.9323
0.5 0.7188 0.719 0.7188
0.6 0.5650 0.565 0.5650
0.7 0.4516 0.452 0.4516
0.8 0.3663 0.3663 0.3663
0.9 0.3009 0.3009 0.3009
1.0 0.2500 0.2500 0.2500

Table 3.5.: Here are shown the calculated binding energies for the 2P0 state, relative to
the conduction band minima, for a donor electron. The values for Kohn and
Faulkner are taken from [107, table II], except the Kohn value for γ

1
3 which

is from source [8, table iv]. The energy values are in unitless energy form,
see equation 3.13. Own refers to the values the present author has calculated
using equation 3.35.
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Figure 3.2.: Kohn and Faulkners energy values for the 2P0 state plotted against the aut-
hor’s own calculations. Kohn’s values are the circular black dots, Faulkner’s
the diagonal green crosses, and the author’s own are plotted as a line. The
values for γ

1
3 and energy in silicon are highlighted by an upright blue cross

with dashed blue lines to the two axis; here γ = 0.19 for silicon. The y axis
is the energy in unitless form, while the x axis is the γ ratio of the effective
masses to the third root.

Table 3.5 and figure 3.2 show that the values the present author has calculated agree

extremely well with those in the literature for the 2P0 state. The wavefunction

parameters obtained can be assumed to then also be accurate within the EMT

framework. EMT can now be used to estimate the radiative lifetime for the 2P0 →

1S transition, extending the application of EMT to not only energy values but to

radiative lifetimes as well.

3.7.1.3. 2P±1

The wavefunction, energy function, and α1,1 and β parameter link from section

3.5.2.3 are used here. The results of variational calculations are shown in table 3.6.

The possible modes of calculation are the same as for the 2P0 state calculations: the
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variational parameters linked by differential minimisation conditions, the β parame-

ter taken from the 1S EMT calculations and obtaining the α1,0 via the differential

minimisation condition, and for both parameters treated as independent variables.

Mode of Calculation Calculated Energy (meV) α1,1 β
Linked −6.10552309506 1.19390537711 0.5363914925

Separate −6.10552131944 1.19324869329 0.536206343773
1S β −6.09659876777 1.18346951914 0.61

Simple Hydrogenic Na 0.753454201571 1

Table 3.6.: Collection of variational calculation results for the 2P±1 scaled hydrogenic
state. The energy and α1,1 and β parameters are shown for the parameters
being linked by minimisation conditions, and for them being treated
as independent variables. Both show similar energy results, that differ
only because of the effect of finite step sizes for the parameters in the
variational minimisation. In both the energy is minimised absolutely.
1S β:Energy and α1,1 calculated using 1S derived
β = 0.61, the energy here is minimised absolutely.
Linked :α1,1 and β related by equation 3.42.
Separated: α1,1 and β treated as independent variables.
Simple Hydrogenic: The calculated parameter using the simple model
from section 3.5.1,where the experimentally measured energy of −6.39
meV[94] is used to scale the α1,1 parameter, the β is arbitrarily set to 1.
This shows the difference between the spherically symmetric hydrogen, and
the EMT, wavefunctions.

Again it can be seen that the different variational modes of calculation yield near, or

perfectly identical values. All of the calculated energies have, to 3 s.f, an inaccuracy

with respect to the measured energy of 4.54%.

To show the relative scaling with respect to a pure hydrogenic state one takes the

2P±1 state wavefunction from equation 3.40, reintroducing units of distance and

using Cartesian form to give:
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(3.65)

The 2P1 state is found to be smeared out in all directions by a factor of 0.00432.

The x, y plane and z axis are additionally scaled by, in this case, rather complex

factors that are not easily stated as for the other states.

The final 1S β = 0.61 calculated α1,1 parameter is 1.18 to 3s.f.

Energy as a function of γ
1
3 compared to Faulkner and Kohn

For further confidence that the 2P±1 energy function gives the same or similar results

as Kohn [8] and Faukner[107], the energy as a function of γ
1
3 is again calculated as

for the aS and 2P0 states. Figure 3.3 shows the energy as a function of γ
1
3 , with

select values shown in table 3.7; the values shown are the same as those given by

Faulkner in [107, table III]
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γ
1
3 Own Faulkner Kohn

0.0 0.4337 na 0.434
0.1 0.4216 0.4265 0.4216
0.2 4.026 0.4057 0.4026
0.3 0.3816 0.3835 0.3816
0.4 0.3602 0.3612 0.3602
0.5 0.3392 0.3400 0.3392
0.6 0.3191 0.3195 0.3191
0.7 0.3001 0.3002 0.3001
0.8 0.2822 0.2823 0.2822
0.9 0.2656 0.2656 0.2656
1.0 0.2500 0.2500 0.2500

Table 3.7.: Here are shown the calculated binding energies for the 2P±1 state, relative to
the conduction band minima, for a donor electron. The values for Kohn and
Faulkner are taken from [107, table III], except the Kohn value for γ

1
3 which

is from source [8, table iv]. The energy values are in unitless energy form,
see equation 3.13. Own refers to the values the present author has calculated
using equation 3.35.
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Figure 3.3.: Kohn and Faulkners energy values for the 2P±1 state plotted against the
author’s own calculations. Kohn’s values are the circular black dots, Faulk-
ner’s the diagonal green crosses, and the author’s own are plotted as a line.
The values for γ

1
3 and energy in silicon are highlighted by an upright blue

cross with dashed blue lines to the two axis; here γ = 0.19 for silicon. The
y axis is the energy in unitless form, while the x axis is the γ ratio of the
effective masses to the third root.
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Table 3.7 and figure 3.3 show that the values the present author has calculated agree

extremely well with those in the literature for the 2P±1 state; the wavefunction

parameters are then assumed to be accurate within the EMT framework. Radiative

lifetime calculations for the 2P±1 → 1S transition can now proceed.

3.7.2. Using the Mott Transition to Approximate the Ground

State

The 1S(A1) ground state cannot be correctly scaled in the effective mass frame-

work; this is due to the state being too close to the donor nucleus for the relevant

EMT assumptions to hold. For the dipole matrix elements to be as in section 3.6.2

the ground state wavefunction must be assumed to have a scaled hydrogenic wa-

vefunction envelope, as is true for all other donor states. Because of the failure of

the EMT to correctly scale this ground state, the Mott insulator-metal transition

can be used.

Mott Insulator-Metal Transition

The Mott transition is, as the name implies, where an insulator, or semiconduc-

tor material, undergoes a transition to exhibiting metal like conductivity.[123] This

transition is caused by doping with donor or acceptor atoms. As the doping con-

centration, nd cm−3, passes above some critical value, there is a rapid change in the

conductivity, and number of charge carriers, in the material; this is characteristic of

a metal.[124]

There are then three main features, or stages, of the simple Mott model of the phe-

nomenon, corresponding to three characteristic doping concentrations, and shown

in the list below, paraphrased from [124, p816].

1. At a critical donor concentration, nc cm−3, donor electrons become delocalized;
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as the ground state wavefunctions overlap significantly they begin to form a

band, this is shown in explanatory cartoon form in figure 3.4. Below this the

donor electrons are all bound to individual atoms. This concentration marks

the Mott transition.

2. Above another generally separate concentration, nf cm−3, the Fermi level of

the system is within the conduction band of the host material. This is not

necessary for the material to exhibit metallic behaviour, but must occur once

the number of donor atom donated electrons is high enough. At this point the

host material is most definitely metal like, due to having charge carriers in the

conduction band; vice versa for acceptors and the valance band.

3. In between the Mott and Fermi doping concentrations lies what has been

referred to as an “impurity band”[124]. In this state the donor atoms are

sufficiently close together that donor electrons are delocalized and yet, except

for thermal excitation, are not in the conduction band. In this case the doping

concentration nd is nc < nd < nf .

In order to explain and clarify the change in the Fermi level, it must be recalled

that this is not the same as the Fermi energy. The Fermi level is the energy at

which, if a state at this energy existed, there would be a 50% probability of it being

occupied; the Fermi energy is the energy of the highest occupied state at 0K. In

the silicon system, as the donor concentration increases, at any temperature other

than absolute zero, the Fermi level will increase; assuming substitutional doping and

thermal equilibrium.

Both the donor and intrinsic electrons follow a Fermi-Dirac distribution which, as-

suming the extra doping concentrating has a negligible effect upon the extra binding

energy of each electron (eg. due to extra or lesser coulombic attraction from nearby
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dopant atoms), for a given energy is only temperature dependent. This means that

at any given temperature,when considered individually, the donor and host electrons

will have the same energy difference between their ground state and the energy at

which they have a 50% probability of being (this is the Fermi level). Because the

donor electron has a ground energy state higher than the valence band of the host

material silicon, the donor electron has a higher energy at which there is a 50%

probability of such a state being occupied.

Replacing host atoms with dopants then adds in more donor electrons with a higher

Fermi level, raising the total average Fermi level for the whole composite system. At

a fixed temperature, if the Fermi level of a donor electron considered by itself is at an

energy in the host materials conduction band, then increasing the doping concentra-

tion will eventually raise the Fermi level of the whole material into the conduction

band. Increasing the doping concentrating brings the composite materials average

Fermi level closer and closer to that of a single donor electron; at a doping con-

centration such that all host material atoms are replaced then the composite Fermi

level is then, of course, that of the donors. If the temperature is low, such that the

donor electron has a less than 50% probability of being in the lowest lying state in

the host materials conduction band, then no increase in doping concentration will

raise the Fermi level into the conduction band.
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n
c 

cm
-3

Figure 3.4.: Two dimension cartoon representation of the donor ground states. The three
stages of dopant concentration nccm−3 are shown. Edges of the circles re-
present the 1/e point in wavefunction magnitude. Firstly, the donor ground
states do not significantly overlap. Secondly, they are on the threshold of
doing so. Finally, they do overlap, forming a band like structure.

A single donor electron will be bound in a single set of mid-bandgap donor states,

at a single location. The qualitative explanation of why metal like behaviour results

from the crossing of a doping concentration threshold, is that as the concentration of

donors is increased, they are closer together. If one assumes that the donor atoms’

spatial locations are randomly distributed, but susceptible to change, perhaps via

thermally energized wandering, then the system will eventually find an equilibrium

state. This will be where the donors are, on average, equidistant and uniformly dis-

tributed; there will then probably be some form of Poissonian distribution of donor

separation about the equilibrium separation distance. As the donor concentration

reaches the nc mark, the ground state wavefunctions of the donor electrons begin

to significantly overlap. As this overlap increases, the energy required to move an

electron from adjacent state to state decreases, thus raising the conductivity. At a

critical concentration the ground state electrons become fully delocalized and are
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able to form a band like structure throughout, and are thus now exhibiting metallic

behaviour. Once the host material is fully filled with a web of delocalized donor

electrons, any extra donor electrons are able to add linearly to the number of charge

carriers. See figure 1 and figure 2 of [124] for an example of the rapid then linear

rise in charge carriers and the rapid increase in conductivity, with respect to doping

concentration, respectively.

Mott was able to devise a relation between the Bohr radii of the donor ground state

and the donor doping concentration, shown in equation 3.66; where nc is the critcal

donor doping concentration, C is a scalar constant, and ab is the ground state Bohr

radius.[123] The constant C can be shown to be 0.26 ± 0.05 for a wide range of

physical systems and situations.[125]

nc ∼=
(C
ab

)3

(3.66)

3.7.2.1. Application of the Mott Criteria to Chalcogens

The prior statements about the Mott criteria are all true for single donors, such as

the pnictogens, however chalcogens double donors cause two problems.

Firstly, it is difficult to dope silicon with a high concentration of chalcogen atoms.

Normal methods of doping can involve thermal diffusion of dopants throughout the

silicon, and higher concentrations require higher temperatures. This, of course, puts

a limit on the possible dopant concentrations, as at some point the silicon will simply

melt.

In [2], Winkler et al were able to exceed the thermally diffusing equilibrium doping

130



3. Introduction to Effective Mass Theory in Silicon

concentration by the use of ion implantation, followed by melting with an excimer

laser pulse, then finally ending with cooling and resolidification; they determined

that this resulted in a host crystal with approximately 1% sulphur content. The ion

implantation allowed for the greater number of dopant atoms to be implanted into

a localised region of the silicon. The melting by the excimer laser allowed for the

dopant to be distributed approximately homogeneously in the melted region. While

rapid cooling, and resolidification afterwards, prevented the dopant concentration

from reaching a lower concentration in equilibrium with the whole silicon crystal;

the dopants are mixed to an equilibrium distribution in the melted region, but the

rapid cooling prevents much diffusion of dopants outside from this region.

Secondly, the ground state of chalcogen donor electrons has a degeneracy of two.

This is because of symmetry induced splitting of the 1S state, the 1S(A1) state is

then the ground state. As there are two donor electrons any impurity band, from

overlapping ground state wavefunctions, cannot conduct at absolute zero; one of the

donor electrons must be spin up, one spin down, there are then no empty states for

electrons to move to as needed for conduction.

However, for the highest doping concentrations Winkler et al show that the conducti-

vity remains approximately constant between 1.7K and 300K. For the less heavily

doped samples the conductivity is thermally activated, with the thermal effect being

stronger for the least doped of all their samples. [2, fig 1, and table 1] Winklers data

shows that, for heavily sulphur doped silicon, there is only a weak temperature effect

on conductivity such that the samples behave as if they were metals.[2, fig 2] It could

be that the conductivity doesn’t decrease with temperature like a metal because of

the lack of phonons at the appropriate energy for single phonons to interact with

the donor ground state, however this is speculation. There is also no mention of

the assumed paucity of free states in any of the literature on the Mott transition
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in chalcogen doped silicon, and I cannot explain why conduction does not seem to

increase with temperature, due to an increase in empty ground states.

Regardless, the conductivity does not disappear at low temperature, and the findings

of Winkler et all are assumed to be true for the purposes of estimating the Mott

transition donor concentration.

Winkler et all were then able to use conductivity measurements to determine the

Mott transition concentration to be between 1.8 and 4.3× 1020cm−3.[2]

The 1S(A1) ground state binding energies, with respect to the conduction band

minima, of sulphur and selenium dopants in silicon are 318.32 meV and 306.63 meV

respectively.[94] The binding energy is related to the distance of the donor electron

from the donor atom, or Bohr radii. Thus the closeness of the two binding energies

suggests that selenium may have a similar Bohr radius to that of sulphur.

Referring back to the EMT energy expression for the 1S state, equation 3.35, one

can see that there is both a linear and quadratic relation between energy and the

variational α0,0 parameter. And α itself is then related to the Mott scaled Bohr radii

as in equation 3.67, where one must highlight the distinction between aB the native

or raw Bohr radii used as a unit of length in EMT (equation 3.13), and ab the Mott

transition estimated Bohr radii (the actual ground state radius distance).

ab =
aB
α0,0

=
4π~2εrε0
α0,0m⊥e2

(3.67)

Mott Estimated Bohr Radii and α0,0

The relation between nc and α0,0 is:
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ab =
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nc

) 1
3

α0,0 =
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n
1
3
c

C

(3.68)

The doping concentration of 1.8× 1020cm−3 thus gives α0,0 = 0.0708 to 3 significant

figures. Meanwhile a value of 4.3 × 1020cm−3 gives α0,0 = 0.0946 to 3 s.f. Both

concentrations are sourced from [2], and a value of C = 0.26 is taken from [125].

Both scaling parameters are without dimension or units.

3.7.2.2. Mott Scaled Ground State Energy

The energy of the Mott scaled 1S(A1) state can be estimated by two methods,

by assuming firstly a spherically symmetric wavefunction, and secondly a prolate

wavefunction lengthened along the silicon axis of differing effective mass; in both

cases the energies calaculated are relative to the conduction band minima in silicon,

and εr is the relative dielectric permittivity of silicon, 11.7 [80].

Firstly, the naive treatment as a purely hydrogenic energy level results in scaling

the energy as in equation 3.70. This equation is assembled from equations 4.23 to

4.25 from [95], shown in appendix B.4. For this perfectly symmetrical treatment the

effective mass,m∗, cannot be degenerate in different directions, and thus the vector

average is used as in equation 3.69.

Secondly, by using the EMT energy expression from equation 3.35, two possible

energies are obtained. One with the β parameter set to 1, and then another by

scaling β such that it satisfies the minimisation criteria of equation 3.36; because

the energy minimisation condition linking the two variational parameters mixes

both power and trigonometric functions in such a manner as to be non-trivial to
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analytically solve, a numerical routine is used to match β to the Mott transition

scaled α0,0.

m∗ = me

(
m⊥ + 2m‖

)
3

= 0.453me
(3.69)

E1S,hydrogen =
α0,0m

∗e4

32π2ε2rε
2
0~2

(3.70)

The energy equation, 3.70, is then shown in SI unit form.

E1S =
m⊥e

4

32π2~2(εrε0)2

{
1

3
α2

0,0

(
β + 2

)
− 2α0,0(

1− γ
β

) 1
2

arcsin
((

1− γ

β

) 1
2

)}
(3.71)

These different estimates of the 1S(A1) energy are then compared to those expe-

rimentally measured[94], in table 3.8. This is a comparison of the energy that a

scaled hydrogenic and an EMT scaled 1S ground state would have to give the Mott

transition Bohr radii.

As can be seen the estimates do not come remotely close to the experimentally

measured values, while at the same time being close to each other; this indicates

that the spherical to prolate models are close, which was already known as one is

simply the scaling of the other along the silicon z axis. The large experimentally

measured ground state binding energy, and the small size of the Mott transition

scaled α0,0, indicate that the ground state wavefunction is small and closely packed

to the nucleus. Thus the estimated energy is grossly incorrect in precisely the
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Estimation Method α0,0 β Binding Energy meV)

Scaled Hydrogenic
0.0708 1 3.19
0.0946 1 4.26

EMT

0.0708 1 3.23
0.0946 1 4.27
0.0708 62.3 2.03
0.0946 45.9 2.70

Table 3.8.: Comparison of the calculated energies of the 1S(A1) ground state. For all
energies the Bohr radii are obtained from both the upper and lower bounds
for Mott transition. Scaled hydrogenic are simply uniformly scaled hydrogen
energies, with the average effective mass and dielectric permittivity of silicon.
The EMT values are those calculated by equation 3.71; β being set to 1
means that the prolate scaling of the wavefunction is determined purely by
the effective masses in each direction, while the other betas are scaled so that
the Mott Bohr radius and β value obey the minimisation conditions of the
EMT 1S energy equation. Experimentally measured energies: selenium [94]
318.32meV and sulphur [94] 306.63meV.

circumstances in which the model is not valid. More specifically this highlights the

breakdown of the one over r donor potential at an extreme short distance from the

donor nucleus.

There is then an additional factor for double donor systems which must be conside-

red. Firstly, the accuracy of the effective mass model for non-ground states is shown

in references [115][8][107][94]. Secondly, the degeneracy of the ground state is two,

due to spin, and thus both donor electrons can be in the ground state at the same

time. Then one can accept, via the arguments above, or assume, that the ground

state electrons are extremely close to the nucleus, and thus any interaction between

a ground state and non-ground state electron is minimised due to a small overlap.

Thus the higher excited state energies, despite ignoring donor-donor interactions,

are reasonably accurately predicted.
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3.7.3. EMT Transition Rates

With the sets of parameters now obtained, calculations of the 2P0 and 2P±1 to

1S(A1) transition rates for atomic selenium donor complexes can proceed. There

are three possible rates, each with different parameters.

Firstly, the simple hydrogen model can be used. This is where the donor states are

treated as just being scaled hydrogen wavefunctions. The same EMT dipole matrix

elements are used for this, albeit when the β and γ parameters are set to 1, while

the effective mass is treated as being the vector average of the perpendicular and

parallel masses in silicon at the conduction band minima.

There is then a second category of possible transition rates. For this the 2P0 and

2P±1 parameters are set to those obtained by EMT energy minimisation calculations.

Thirdly, 1S state can be scaled via the Mott semiconductor to metal transition. The

2P0 state is then scaled via EMT variational calculations.

It must be noted that for all transition rate calculations the β parameter must be

the same for the initial and final states. This is because this parameter is part of

the EMT hamiltonian, therefore each β has a separate set of eigenfunctions.

For all possible transition rates, there are factors other than the dipole matrixes

that must be considered. Fermi’s golden rule for effective mass state transitions

from equation 3.56 is restated below in equation 3.72. Here it can be seen that there

is a factor in common for all transition rates, followed by the angular frequency

cubed, the symmetry weighting vectors, relative degeneracy factors of the states,

and then the final term is the dipole matrix element squared.
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Γi,j =
e2ε
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(3.72)

3.7.3.1. 2P0 → 1S

For all ways of calculating the 2P0 to 1S(A1) transition there are several factors in

common that can be calculated before the dipole element is considered.

Firstly, the relative degeneracies of the states are gj = 6 for 2P0 and gk = 1 for

1S(A1), this ignores spin degeneracy because it is common to all states and thus

cancels out; note that the 1S states in total have 6 states, due to the 6 conduction

band minima in silicon, but the symmetry splitting forces the ground state to be

isolated.

Secondly, using the weighting vectors from equation 3.31, the dot product of the

symmetry weighting vectors of the 2P0 and 1S(A1) states is:

~C2P0 · ~C1S(A1) =
1√
6

(
1, 1, 1, 1, 1, 1

)
·
[ 1√

6

(
1, 1, 1, 1, 1, 1

)
+

1

2

(
2, 2,−1,−1,−1,−1

)
+

1√
2

(
1,−1, 1,−1, 1,−1

)]
=

1√
6

(
1, 1, 1, 1, 1, 1

)
· 1√

6

(
1, 1, 1, 1, 1, 1

)
= 1

(3.73)

Thirdly, the experimentally measured energies can be used to obtain ω1S(A1),2P0 . The

values are taken from [94], thus ω1S(A1),2P0 is:
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E1S,2P0 = −11.49 + 306.63 = 295.14meV

ω1S,2P0 =
E1S,2P0

~

(3.74)

Fourthly, all other quantities are then physical constants. Assessing the dipole

matrix elements is then done using equation 3.57. The dipole elements, parameters,

and final transition rates for the different models are collated in table 3.9.

2P0 1S(A1) β α0,0 α1,0 Γ1S(A1),2P0 104s−1 Lifetime ns
Hydrogenic Hydrogenic 1 2.61 1.01 3.600 27600
Hydrogenic Mott 1 1 0.0708 1.01 1550 64.7
Hydrogenic Mott 2 1 0.0946 1.01 2460 40.6

EMT EMT 0.61 1.35 1.76 8130 12.3
EMT Mott 1 0.61 0.0708 1.76 5900 16.9
EMT Mott 2 0.61 0.0946 1.76 11000 9.09

Table 3.9.: The dipole matrix elements and transition rates for the 3 different methods.
All values are only given to 3 significant figure accuracy, except for β which is
given to only 2 significant figures so as to be in agreement with all variational
energy calculations. Hydrogen: Using naively scaled hydrogen wavefuncti-
ons to match the energy. EMT: Effective mass theory variationally scaled
prolate ellipsoid hydrogenic wavefunctions. Mott: Mott transition scaled
1S(A1) states, with 1 and 2 corresponding to the donor concentrations of
1.8 and 4.3× 1020cm−3 respectively.

From table 3.9 it can be clearly seen that all rates are of the order of 1 − 100 ns,

except for that of that of the hydrogen to hydrogen scaled states where the large

lifetime is entirely due to the larger scaling α0,0 in the dipole element. Consequently

these are assumed to be of questionable veracity in comparison to the other lifetimes.

Transition Dipole Matrix Element As γ Varies

It is of interest to calculate what the transition rate is for the 2P0 to 1S EMT

states as a function of γ, the ratio of the perpendicular to longitudinal effective

masses. However, the transition rate depends not only on γ but on the specific
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effective masses, along with the relative dielectric permittivity of the material. For

this reason, the unitless dipole matrix element for the transition is calculated as a

function of γ instead; here the dipole element is not only unitless as for the EMT

states elsewhere in this thesis, but is divided by the additional factor of e2. These

calculations are shown in figure 3.5.
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Figure 3.5.: The unitless dipole matrix element for the EMT 2P0 to EMT 1S transition
plotted against γ, the ratio of perpendicular to parallel effective mass; the
1S state is not scaled by the Mott criteria here The values for γ

1
3 and the

unitless dipole matrix element in silicon are highlighted by an upright blue
cross with dashed blue lines to the two axis; at this point γ = 0.19 for silicon.
The y axis is the unitless dipole matrix element divided by e2, where ψi and
ψj are the initial and final states respectively. The x axis is the γ ratio of
the effective masses to the third root.

3.7.3.2. 2P±1 → 1S

Following the same procedure as for the 2P0 transition rate calculations, the common

factors for 2P±1 are listed below. Firstly, the relative degeneracies of the states are

gj = 12 for 2P±1 and gk = 1 for 1S(A1), this again ignores spin degeneracy. The

2P±1 state has twice the number of states as the 2P0 due to a set of 6 from the plus
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and 6 from the minus m states; this is in effect two separate states with the same

energy, wavefunction and thus transition rate.

Secondly, and unfortunately, the T2 representation of the Td symmetry group using

the effective mass states as a basis has not been calculated by the present author.

Thus the assumption has been made that, like the 2P0 state, the symmetry weighting

vectors dot product is 1; ~C2P±1 . ~C1S(A1) = 1.

Thirdly, and as before, the experimentally measured energies are used to obtain

ω1S(A1),2P±1 . The values are taken from [94], thus ω1S(A1),2P±1 is given by:

E1S,2P±1 = −6.39 + 306.63 = 300.24meV

ω1S(A1),2P±1 =
E1S,2P±1

~

(3.75)

Fourthly, all other quantities are then physical constants,and assessing the dipole

matrix elements is done using equation 3.58. The dipole elements, parameters, and

final transition rates for the different models are then collated in table 3.10.

2P±1 1S(A1) β α0,0 α1,1 Γ1S(A1),2P±1 104s−1 Lifetime ns
Hydrogenic Hydrogenic 1 2.61 0.753 1.34 74700
Hydrogenic Mott 1 1 0.0708 0.753 4680 21.4
Hydrogenic Mott 2 1 0.0946 0.753 6650 15.0

EMT EMT 0.61 1.35 1.18 7420000 135
EMT Mott 1 0.61 0.0708 1.18 50900000 19.6
EMT Mott 2 0.61 0.0946 1.18 85200000 11.7

Table 3.10.: The dipole matrix elements and transition rates for the 3 different methods.
All values are only given to 3 significant figure accuracy, except for β which
is given to only 2 significant figures so as to be in agreement with all vari-
ational energy calculations. Hydrogenic: Using naively scaled hydrogen
wavefunctions to match the energy. EMT: Effective mass theory varia-
tionally scaled prolate ellipsoid hydrogenic wavefunctions. Mott: Mott
transition scaled 1S(A1) states, with 1 and 2 corresponding to the donor
concentrations of 1.8 and 4.3× 1020cm−3 respectively.
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3. Introduction to Effective Mass Theory in Silicon

Table 3.10 shows that all transition rates are between 1− 135 ns, except for that of

that of the hydrogen to hydrogen scaled states where the large lifetime is entirely

due to the larger scaling α0,0 in the dipole element. Consequently these are also

assumed to be of questionable veracity in comparison to the other lifetimes, as for

the 20 transitions.

Transition Dipole Matrix Element As γ Varies

It is also of interest to calculate what the transition rate is for the 2P±1 to 1S EMT

states as a function of γ. As discussed in the 2P0 section, the transition rate depends

other factors than γ: the specific effective masses, the relative dielectric permittivity.

Therefore, the unit-less dipole matrix element is calculated as a function of γ; here

the dipole element is unitless as for the EMT states and is divided by e2. The

calculations for the 2P±1 → 1S transition is shown in figure 3.6.
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Figure 3.6.: The unitless dipole matrix element for the EMT 2P±1 to EMT 1S transition
plotted against γ, the ratio of perpendicular to parallel effective mass; the
1S state is not scaled by the Mott criteria here. The values for γ

1
3 and

the unitless dipole matrix element in silicon are highlighted by an upright
blue cross with dashed blue lines to the two axis; at this point γ = 0.19
for silicon. The y axis is the unitless dipole matrix element divided by e2,
where ψi and ψj are the initial and final states respectively. The x axis is
the γ ratio of the effective masses to the third root.
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4. Experimental Methods

4.1. Introduction

This chapter contains descriptions of the methods and procedures used for the two

forms of experimental measurement performed for this thesis. Firstly, absorbance

spectroscopy using a Fourier transform spectrometer is explained. While secondly,

and building on the first experiment, step scan Fourier transform spectroscopy is

explained; the Si:Se emission measurement is then elaborated in detail. Thirdly,

a brief description of the experimental equipment used is given where relevant; for

commercially purchasable “off the shelf” components, an extremely brief description,

part number, and directions to the manufacturers website are given.

The simplest description of spectroscopy is as the study of the EM spectrum, a

measure of intensity as a function of photon energy; spectra are often given in

other linearly related quantities, frequency or wavenumber. The choice of scale is

usually determined by relation to the measurement technique; for example when

wavenumbers cm−1 are used to express the spectrum from an FTS measurement,

because a physical mirror has moved a distance of some cm.

In order to measure a spectrum one must exploit the fundamental property that is

common to all waves, interference. There are then two main spectroscopy techniques,

FTS and dispersive spectroscopy; both rely on the property of interference, albeit in
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superficially different ways. A dispersive spectrometer requires a diffraction grating

with spacings, this must be on order of the wavelength of the light measured in

the spectrum. The resulting interference pattern separates the light by wavelength

intrinsically creating a spectrum; diffraction gratings for the InfraRed (IR) spectrum

are historically difficult to make. However, an FTS does not require a grating,

moving a mirror to obtain its interference pattern and has several other advantages

other a dispersive system.

In the measurements described here only FTS is used, this involves measuring an

interference pattern and taking its FT to obtain the spectrum. For this a vertex

80v spectromter is used, this is allows the measurement of the intensity of a elec-

tromagnetic radiation as a function of the photon wavenumber cm−1; wavenumbers

and the wavelength, in cm, are inversely related. The specific methods of using such

a spectrometer, to obtain both time independent and dependent spectra, are briefly

discussed here; along with the experiments carried out for this thesis, and how FTS

was a vital part of them.

4.2. FTIR Rapid Scan Spectroscopy

The FTS rapid scan technique is explained in brief; for more details read appendix

C. This is done via reference to a diagram, figure 4.1, in the list below.
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Figure 4.1.: Absorbance Experiment set-up using a Brüker Vertex 80V Fourier Trans-
form spectrometer (for details see [126]). Beam path is highlighted in parti-
ally transparent red. E labels refer to light input ports. X labels then refer
to light output ports, where an external detector may be used. Each input
or output port can be fitted with a window, this is selected specifically for
optical transmission characteristics to fit a particular measurement. NIR
is a near-infrared lamp. MIR is a mid-infrared globar lamp. BMS is a
beamsplitter, selected for the wavenumber range of what is being measured.
APT is an optical aperture selector, to control lamp intensity and beam
size. OF is a optical filter wheel. The spectrometer diagram is based upon
that in [127, fig 19].

• Light is emitted by a source, either Near InfraRed (NIR) or Mid InfraRed

(MIR), and focused through an aperture and beam offset selector. The default

sources for the vertex 80v are a tungsten halogen lamp for visible to NIR, and

a globar, a “shaped silicon carbide piece”[127], for MIR.
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• The light is collimated by a parabolic mirror and directed into the interfero-

meter section of the spectrometer.

• The interferometer is a Michelson interferometer: aBeam Splitter (BS) directs

the input light down two separate and perpendicular beam paths of a similar

length, the beam’s then recombine again at the BS. The mirror at the end of

one of the beams paths moves to change the path length; the other path is of

fixed length.

• The recombined beams exits the interferometer and are focused onto the sam-

ple position. The Optical Path Difference (OPD) of the separate and per-

pendicular beam paths determines the wavelength dependent intensity at the

sample; this is caused by the interference of the two split beams, as they are

out out phase due to their different beam distances.

• Finally, the light exiting the sample is focused onto a detector element. A

helium neon guide laser, at λ = 632nm, runs along the same beam path as

the measured light. As the OPDof the two beam paths in the interferometer

change, the interference fringes of the HeNe are measured; this allows the OPD

to be measured. The intensity as a function of OPD is digitized, and this forms

the interferogram.

The key part of the spectrometer is the interferometer, in this the input light is

split into two perpendicular beams of equal intensity by the BS. Of these two

beams one travels a fixed distance to a mirror, while the distance to the other is

variable; this introduces a path length difference between the beams. Once reflected

by their respective mirrors, the two beams are recombined at the BS; half of the

combined beam intensity is then directed back out in the direction they entered the

spectrometer, while the other half continues on in their original direction. Because

of the wave nature of light, the combined beam exhibits constructive or destructive
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interference; this depends upon the path length difference, and the wavelengths of

light present in the beam.

Assuming that the input light is of constant intensity and spectral composition, by

scanning the movable mirror and measuring the detector signal as a function of the

OPD an interferogram is built up. An example interferogram for an ideal mono-

chromatic light source at wavenumber position ν, where I(δx) is the interferogram,

δx is the optical path difference, or twice the mirror position difference, in cm and

A0 is the amplitude, is shown below:

ν =
2π

λcm

I(δx) =
A2

0

2
cos(νδx)

(4.1)

By taking the Fourier transform of the interferogram a spectrum is obtained, where

S(ν) is the spectrum, shown below:

S(ν) =

∫ ∞
−∞

I(δx)e2πiνδxdδx =
A2

0

2
(4.2)

Of course, in reality the mirror cannot be moved from minus to plus infinity to satisfy

the Fourier transform; this gives rise to spectral leakage, discussed in appendix C.

4.2.1. Absorbance Spectroscopy

Now that the measurement of a spectrum has been outlined, the measurement of an

absorbance spectrum can be described. Firstly, a background spectrum is measured

using the experiment set-up of figure 4.1; for a background spectrum there is no

147



4. Experimental Methods

sample, only the lamp light spectrum is measured. Secondly, the sample is placed

in the sample position, and the spectrum of light that can pass through the sample

unabsorbed is measured. The sample temperature is controlled as described in

section 4.4.1.2.

The transmittance of the sample is then defined as T (ν) in equation 4.3; where

S(ν)B and S(ν) are the background and sample spectra respectively. Absorbance is

then defined as the negative base ten logarithm of the transmittance.

T (ν) =
S(ν)

S(ν)B
(4.3)

A(ν) = − log10(T )
(4.4)

4.3. Time Resolved Spectroscopic Measurements

Time resolved measurements are a conceptually simple, but practically difficult ex-

tension of conventional rapid scan FTS; one example of rapid scan FTS is the

absorbance measurement described in 4.2. In order to obtain the time evolution of

a spectrum, an interferogram as a function of time must first be measured.

In conventional rapid scan FTS, to obtain an interferogram one mirror is moved

continuously; this gives rise to a detector signal that changes as a function of mirror

position, and assuming predictable movement speed, of time as well. However,

because movement through the full mirror range will not occur instantly, a time

changing real spectrum will cause a resulting interferogram that mixes data from
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different points along its time evolution. Taking the Fourier transform of this will

result in no further spectral information, only if the time evolution of the spectrum

is already known can it be reconstructed; this makes rapid scan a useless technique

for measuring spectra that change over the measurement time.

Step scan time resolved FTS avoids the problems of rapid scan by making the mirror

movement no longer constant. The mirror is instead discretely stepped between

points, at each it is kept stationary while the detector signal is measured as a

function of time. This is repeated for every discretised data point along the OPD

axis in the corresponding rapid scan measurement; this gives a 2D grid of detector

signal position, where one axis is time and the other is mirror position (OPD). This

is a set of time separated interferograms. Taking the FT of each interferogram then

yields a set of time resolved spectra, each one a snapshot of the spectrum at a

particular time, in the same manner as for the rapid scan method. This is shown in

diagrammatic form in figure 4.2.

A challenge for this type of experiment is that it must be repeated for every point

in the interferogram, this can easily amount to thousands of repeats without even

considering averaging to reduce random signal noise. A further problem is managing

the recording of the detector signal at precise ns intervals, while synchronising this

acquisition with the experiment repetition.
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Figure 4.2.: Diagram of step scan operation. Top: Detector signal as a function of
time. Bottom: Time evolution of the reconstructed interferogram; here I
is the measured light intensity, and ∆x the mirror position. This figure was
created by S. A. Lynch and is reproduced here with permission.

4.4. Time Resolved Si:Se Emission

Now that step scan time resolved FTS has been reviewed, the measurement of

emission from a Si:Se sample can be described. This experiment is a time resolved

measurement of emission from a Si:Se sample, following optical pumping at 1220nm

by a 5ns laser pulse. It is shown diagrammatically in figure 4.3.
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Figure 4.3.: Transient Emission Experiment. The dashed inset shows the cryostat 90
degrees relative to the main figure, the P label marks the same position in
both inset and main diagrams, and the X,Y,Z axes are labelled in both. L1
is a CaF2 lens with a focal length of 10cm[128] . Above the cryostat at point
P, is an gold off axis parabolic mirror[129].

Extra Details for Figure 4.3

From figure 4.3, there are additional details about the specific pieces of equipment

used: The ns tunable pulse laser is an Ekspla NT342B-10-DGF-AW [130]. Mirrors

used to direct the laser are Thorlabds aluminium mirrors [131]. Thorlabds planar

gold mirrors [132] direct the collimated emission from the sample (the gold off axis

parabolic mirror mentioned in the figure does the collimating of the isotropic emis-

sion from the Si:Se sample). The spectrometer emission input window as well as
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the BS are Kbr[133]. The transient recorder card is a Spectrum m3i4142EXP. Fi-

nally the signal is measured by a HgCdTe 1mm infra-red photovoltaic detector. The

internal spectrometer diagram is based upon that in [127, fig 19].

Experimental procedure

The emission experiment proceeds as follows:

• The pump laser emits 1220nm, 8197cm−1, pulses at a rate of 10 Hz; each

pulse sends a trigger signal to a Spectrum m3i4142EXP transient controller

card. Pulses have approximately 7.5 mJ per pulse, lasting for between 3ns and

5ns.

• Planar aluminium mirrors direct the laser pulses to a CaF2 focusing lens with

a focal length of 10cm. This is positioned so as to concentrate the laser pulse

more strongly upon the sample. However, the laser is not focused upon the

sample as this would probably damage it.

• The laser pulse passes through a CaF2 window of the cryostat, and is incident

upon the sample.

• Fluorescent emission from the sample spreads out, presumably in all directions,

and passes through the CaF2 cryostat windows.

• Emission passing out of the top of the cryostat is then collimated by a gold

off axis parabolic mirror.

• The collimated emission beam is directed by gold planar mirrors through a

Kbr window at the back of the spectrometer.

• The emission beam passes through the interferometer, and is focused upon

the active element of a HgCdTe fast photovoltaic detector; the mirror position

remains stationary during this.
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• Upon receiving a trigger pulse from the laser the transient recorder card does

one of three things: Firstly, it commences recording the detector signal every

2.5ns for 400 data points, this covers 1 µs. Secondly, the time measurement is

repeated, for a total of 32 times, and thus 32 trigger pulses are required. Thi-

rdly, if all 32 time measurements at the current mirror position have occurred,

then the mirror is finally stepped to the next position. The mirror is then

left to settle for at least 40ms, before the next trigger pulse begins the next

measurement; if the next trigger pulse occurs before 40ms then it is the second

pulse that begins the measurement.

• Following the mirror stepping, the next trigger pulse causes the first of 32 me-

asurements at the new mirror position. There are then 242880 total pulses, for

7360 interferogram points, and including the mirror stepping time, this gives

a total time of six and three quarter hours as an estimate of the measurement

time; in reality the measurements took roughly twice this long, it is assumed

because the mirror movement and stabilization wait took longer than a single

pulse(0.1s), thus doubling the number of trigger pulses required.

A series of the emission experiments described above were performed, each with a

different sample temperature. The temperatures used were 10K, 80K, and 300K.

4.4.1. Experiment Components

The step scan measurement outlined above is performed with several specific set-

tings, described one by one here.

4.4.1.1. Pump Laser

The Ekspla NT342B-10-DGF-AW laser is a tunable wavelength laser. It has three

output ports, in total covering the wavelength ranges 410nm to 2600nm; output at
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355nm is also possible. A 1064 nm fundamental laser, in conjunction with second and

third harmonic generation crystals an optical parametric amplifier and a difference

frequency generator, gives the wide wavelength range of the output.

For the time resolved emission experiment the laser pump power output at 1220 nm

was measured, this was done by a Coherent Fieldmax 2 laser power meter; 20 repeats

were take to give an average of 7.61 mJ per pulse, with a pulse to pulse standard

deviation of 0.25 mJ. This measurement of the pulse power was taken immediately

before the 10K emission data acquisition began. The duration of the pulse was not

measured, as it is below the response time for the fastest detector available in the

laboratory at that time; the pulse duration is nominally 3-5 ns [130]. Finally the

laser repeats at a rate of 10 Hz, and at each pulse a trigger signal is sent to the

transient recorder card.

4.4.1.2. Cryostat and Cooling

The cryostat was evacuated to a pressure of approximately 10−5 mbar, as measured

by an Edwards vacuum AIM-X-NW25 gauge [134]. The low pressure was neces-

sary to allow cooling of the samples, as without a vacuum inside the cryostat the

ambient heat would leak in and prevent useful cooling. The vacuum was achieved

by a combination of an Oerlikon Leybold turbo pump; for low temperatures, 10K,

the condensation or adhesion of atmosphere to the cryostat walls may have also

contributed to lowering the pressure.

Both absorbance and emission experiments require temperatures in the 4-300 K

range. Each sample is held at the end of a cold finger inside a custom flow cryostat;

this is similar to those sold by Oxford instruments [135]. An Oxford Instruments

iTc Mercury [136] temperature controller and associated sensor is used measure the

temperature, while a resistor based heating element again controlled by the Mercury
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iTc was used to heat the sample.

To provide the necessary cooling both a constant flow of liquid helium, and a Col-

dEdge Technologies Stinger pulsed tube cryo-cooler were used. The absorbance data

used constant flow, while the Si:Se emission experiment required the cryo-cooler. A

recirculation of a fixed amount of helium requiring only constant power to function,

helped in enabling the longer step scan emission experiment.

4.4.1.3. Spectrometer Settings

The nominal spectral resolution of the emission measurements was 20cm−1, giving

a mirror movement distance of 0.05cm in the interferometer. However, the interfe-

rogram was taken as fully double sided, thus the mirror was moved between plus

and minus 0.05 cm with respect to the zero path difference position. Because of

dispersion, the optical path difference is not constant for all frequencies of light in

the spectrum; upon taking the FT of a single sided interferogram with such artefacts

an incorrect spectrum results.

By measuring a double sided interferogram a complex spectrum occurs instead of

a purely incorrect one, with the error now represented by the angle between the

real and imaginary components. Thus these are called phase errors and can be

corrected, see appendix C.2.5.3. This means that the true mirror movement distance

was 0.1cm. In addition it should be noted that a much higher resolution is possible

with the Vertex 80v system, which has a maximum of 0.075cm−1 for a total possible

mirror movement of 13.33cm. However, as the experiment must be repeated 32

times at each mirror position, higher resolutions would cause a prohibitively long

measurement time.

A spatial sampling rate of 15798cm−1 was used; this gives, via the Shannon sampling
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theorem D.3.1.1, a possible measurement spectral range of 7899 cm−1. This means

that the mirror was stepped between 15798 positions per cm, for a total of 1580

interferogram points; the resulting spectrum will also have this many points in total,

although this will cover the positive and negative frequency ranges giving only half

as many points in the usable spectrum.

A KBr BS was used, with a spectral range of 350cm−1 to 8000 cm−1 [127]; this is

a good fit with the Shannon sampling rate determined possible spectral range of

7899cm−1.

4.4.1.4. Transient Recorder Card

A key component in the step scan measurement is a Spectrum m3i4142EXP transient

recorder card. This allows the measurement of the amplified detector output voltage

at 2.5 ns intervals. The input voltage range for the measurements carried out was ±

500mV, giving a 1V dynamic range. The card has 14 bits to discretise the dynamic

range, however, due to random noise, in practice the card had only 12 bits[137]. Thus

there are 212 = 4096 different measurable discrete intensity positions for the detector

output. At each trigger pulse from the pump laser this card begins the measurement

of the 400, 2.5ns separated, detector voltage values for each interferometer mirror

position. This is controlled by a computer running Windows 7 and using the Brüker

OPUS spectrometer control software.

4.4.1.5. Detector and Amplifier

A Kolmar model MCP0393 photovoltaic detector with a 1mm HgCdTe element was

used, its active element requires cooling to liquid nitrogen temperatures to function.

The detector is reverse biased by 50mV in order to increase the response speed,

this gives an approximate signal rise time of 20ns and a exponential fall lifetime

of 40ns. The amplifier and reverse biasing circuit of the Kolmar detector used
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are not standard; the standard amplifier was found to be incapable of matching

the detector response time of 40ns. Instead a Pasternack PE15A1007 microwave

frequency amplifier is connected to the detector SMA output, with a Picosecond

Pulse Labs PSPL5575A[138] bias tee to facilitate the 50mV reverse biasing of the

detector without affecting the amplifier. A detector and amplifier circuit sketch is

shown in figure 4.4.

+50 mV

+12 V

AMP

Bias 
Tee

Detector

Output

Figure 4.4.: Circuit sketch of the detector amplifier set-up. Detector: A Kolmar
MCPMCP0393 photovoltaic. Amplifier: A Pasternack PE15A1007 mi-
crowave frequency amplifier[139]. Bias Tee: Picosecond Pulse Labs
PSPL5575A[138]. The 12 V line is the power supply for the amplifier, while
the 50 mV reverse biases the detector.

4.4.2. Summary

The purpose of the experiment outlined above is to measure the fluorescent emis-

sion from chalcogen doped silicon samples; this is to investigate whether they can

fulfil the DiVincenzo criteria and be used to partly construct a quantum computing

architecture. The radiative transition lifetimes can be obtained from fitting to the

data obtained. The 2P to ground state transitions are the target transitions, due to

being the lowest lying optically active transition; however, the full time evolution of
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the emission spectrum is of interest as it is unknown.

If the measured lifetimes are longer than those of the corresponding shallow donors,

e.g. phosphorus has a lifetime of 200ps [45], then chalcogen donors warrant further

work. In addition the measured lifetimes can be compared to the calculated lifetimes

from chapter 3, which predict 10–100ns lifetimes. If agreement is found then the

EMT description of the wavefunction is approximately correct. This is important

as the optical pulse area needed to construct quantum gates, section 1.2.1.2, relies

upon the dipole overlap integral which itself requires the wavefunction. Without an

ability to accurately predict the system wavefunction, it cannot be used in quantum

computing. The extension of the modelled wavefunction in describing not only

excited state energies, but transition lifetimes is then a very small step towards this.

The experiment is far from perfect. The primary problem is the slow response of

the detector, 20ns rise and 40ns fall, which is just on the threshold of the predicted

lifetimes. A major improvement would be moving to a faster detector, although

this would require a smaller detector element; with a fixed signal intensity this

would make the measurement more sensitive to random noise. Obvious candidates

for improvement are then more signal averages, and measurements at a far greater

number of temperatures; perhaps 5K increments would be a good place to start. If

a wider range of doped samples could be obtained, perhaps with different dopant

concentrations, these should also be measured; perhaps the dopant concentration

has an effect upon the lifetime.

A major problem with the experiment is that the 2P to ground state transitions are

the target, and yet non-resonant excitation is used. This was done because resonant

excitation laser pulses could not be sufficiently filtered out to prevent detector satu-

ration; even with the perpendicular beam geometry used, the stray scattered laser
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light was dominant over the fluorescent emission. This can be fixed by completely

changing to a time resolved pump probe experiment, although this then removes the

ability to see the whole spectrum evolve in time. The pumping wavelength could

also be varied, investigating the effect of pumping to higher up in the conduction

band upon the measured lifetime.
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5.1. Introduction

This chapter sets out the results of spectroscopic experiments, and details their

comparison to the calculations made in chapter 3.7. It is split into three main secti-

ons, with the first being a brief discussion of the measured selenium doped silicon

sample. This includes sets of absorbance data of several doped silicon samples, in

order to explain the selection of the sample which was measured with time resol-

ved spectroscopy. The remaining two sections regard the energy and time axis of

emission data from donor electron transitions.

For the energy axis, the transitions in the 71-8 sample are tabulated from absor-

bance spectra. The absorbance determined, EMT, and literature sourced measured

energies are then compared; thus the energy accuracy of EMT, for excited states, is

verified, along with some degree of confidence in the wavefunction parameters being

established.

For the time axis, the time trace of fluorescent emission from sample 71-8, at appro-

priate transition energies, is analysed. The analysis is done using relatively simple

exponential fitting, and yields average transition lifetimes. This experiment is the

time resolved step scan Fourier transform spectroscopy fluorescence experiment,

described in detail in chapter 4. The estimated transition rates, calculated by the
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union of Fermi’s golden rule and the EMT parameters, are then compared with fits

to experimental data.

The energy and lifetime data, and the quality of agreement with the EMT mo-

del and calculated lifetimes, then allow answers to be formulated to the principal

questions of this thesis. Beginning with the zeroth question, or rather the overall

meta-motivation for this investigation: are there “deep” donor systems in silicon

with radiative lifetimes that are sufficient to be useful qbit candidates? Unfortuna-

tely this question is not yet answered, to do so would require additional experimental

work such as: demonstrating coherent control of the Rabi cycle of such donor state

transitions, determining the phase coherence lifetime of the chalcogen donor sys-

tems, demonstrating arbitrary donor electron state initialisation (upon the Bloch

sphere map of possible states), along with application of unitary optical quantum

gates upon the system.

The zeroth question then leads to the two principal questions answered in this thesis:

• Are there are optical transitions with long radiative lifetimes in chalcogen deep

double donor silicon systems?

• Do simple scaled hydrogen wavefunctions from EMT provide a good descrip-

tion of reality for chalcogen deep double donor electrons in silicon?

The first question is motivated by the knowledge that similar pnictogen donor sy-

stems in silicon have radiative lifetimes of ≈200ps[104][45][105], and a coherence

lifetime of 160± 20ps[101]; for the 2P0 state. It is only partly answered in reduced

form: Do selenium donors in silicon have longer radiative lifetimes than phospho-

rus? The answer is yes, and this demonstration of longer times in a selenium system

merits further work.
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The second question is important because the wavefunction of a system contains

all the properties of that system, which can be extracted by the application of

the appropriate operator. The demonstration that the EMT model can predict

radiative lifetimes allows other information to be predicted, such as Rabi frequency.

The answer to this is, yes but only roughly and within an order of magnitude.

There are then, of course, the follow on questions of how different chalcogen do-

nor systems compare. Do some chalcogen donors exhibit longer lifetimes, or better

agreement with the EMT model? Perhaps different doping concentrations of the

different chalcogens have markedly different properties? Unfortunately these ques-

tions remain unanswered, the expansion of these measurements to other chalcogen

dopants has been limited by experimental difficulty and time. But importantly some

measurements have been made upon a single doped sample, out of the several sam-

ples available to the lab at the time the work for this thesis was performed. Before

moving on to present and analyse the results, with answers to the two principle

questions, it must be explained why the single measured sample was chosen.

It was initially intended to measure all available samples. However, the limitati-

ons, and inevitable delays and failures that accompany experimental work, mean

that only a single sample has been measured using the time resolved fluorescence

technique; reality had some minor disagreements with the plan to measure all.

5.2. Sample Selection

The experimental evidence required for this thesis can only be obtained by the ana-

lysis of the optical absorbance and fluorescent emission of a Silicon sampled doped

with a deep donor chalcogen donor impurity. As is described in more detail in chap-
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ter 2, donors of the chalcogen group in silicon form a substitutional double electron

donor. The donor may then form one of several complexes at the substitutional site,

the most common of these being the atomic and diatomic or molecular. The com-

plexes in silicon have well defined sets of infra-red spectral lines, with a characteristic

1
n2 Rydberg like spacing that is familiar to all those who have studied hydrogenic

systems. These spectral lines then correspond to transitions of the mid-bandgap,

“deep donor”, electron states both to each other, and from and to the conduction

band of the host silicon lattice.

Absorbance measurements have been performed on many doped samples. However,

only one sample has been measured with time resolved spectroscopy. The sample

measured, selenium doped silicon labelled sample 71-8, had the strongest absorbance

lines measured; these made it the optimal candidate for first measurement. This

sample has atomic and diatomic selenium concentrations, along with boron impurity

concentrations, of 5.5× 1015cm−3 , 2.8× 1015cm−3 and 2.0× 1012cm−3, respectively.

These doping concentrations were obtained by Y Astrov et al [140], by fitting to

Hall resistivity data as described in [141] [142].

However, the Mott insulator-metal transition (see section 3.7.2) is used to scale the

ground 1S(A1) state in the EMT model; this is then used to estimate radiative

transition lifetimes. The data used to perform the scaling is not for selenium, but

rather for sulphur impurities. Thus one is faced with the question as to why measure

a selenium doped sample instead? The answer is practical, because out of the

few samples available the single most promising sample, with the highest doping

concentration, was selenium doped. This gives two reasons for the choice of optimal

sample, albeit one is rather nebulously defined as “promising”, which will be clarified

by a brief inspection of absorbance data below.
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Firstly, and most importantly, the selenium samples were able to be doped to ap-

proximately an order of magnitude higher concentration. This is shown by the

possible doping concentrations for sulphur being ≈ 1014cm−3 [141][142]. While in

contrast the selenium samples are of concentration ≈ 1015cm−3 [140]. This higher

doping concentration can be expected to give stronger optical fluorescence, at least

compared to a sample of the same size under the same conditions; the stronger

fluorescence occurs for the simple reason that the presence of more dopant atoms

allows more absorbed pumping photons and thus more photons emitted as the donor

electron undergoes transitions back to its stable ground state.

The doping concentrations for the different samples, available at the time of work

for this thesis, are shown in table 5.1; it clearly shows that sample 71-8 has the

highest concentration of both atomic, and diatomic, chalcogen dopants.

Sample Atomic Se cm−3 Diatomic Se cm−3 B cm−3

71-8 5.5× 1015 2.8× 1015 2.0× 1012

72-7 2.6× 1015 2.5× 1014 2.0× 1012

73-8 1.5× 1015 2.0× 1013 2.0× 1012

75-6 ≈ 1015 Not Known 1.3× 1015

63-6 3.0× 1014 7.0× 1014 2.7× 1012

Table 5.1.: Doping concentrations of atomic and diatomic chalcogen dopants in silicon
samples, along with boron impurities. Values are from [140][141][142].

5.2.1. Absorbance Spectra of Doped Silicon Samples

The second reason for the choice of sample requires the inspection of the absorbance

spectra of the samples available. These are presented below in figure 5.1, for the

single temperature 4K. Details of the methods used to obtain absorbance spectra

such as these, and all such spectra in this thesis, are shown in section 4.2.
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Figure 5.1.: Absorbance data for various doped silicon samples. All data was taken
using a vertex 80V Fourier transform spectrometer using the rapid scan FTS
technique detailed in appendix C, with the experimental set up described
in section 4.2. Samples were cooled to 4K, and the spectral resolution is
0.5 cm−1. The doping concentrations are given in the form“sample label:
atomic : diatomic : boron impurities”; where the concentration is per cubic
cm. SiS 76-6: ≈ 1015 : unknown : 1.3×1015. SiS 75-5: ≈ 1015 : unknown
: 3.0 × 1015. SiSe 72-7: 2.6 × 1015 : 2.4 × 1014 : 2.0 × 1012. SiSe 73-8:
1.5 × 1015 : 2.0 × 1013 : 2.0 × 1012. SiSe 71-8: 5.5 × 1015 : 2.8 × 1015 :
2.0× 1012. It must be noted that this data was measured by S.A. Lynch on
29/11/2012.

Figure 5.1 shows that each of the different samples have different sets of peaks in

their spectra. These peaks are, in general, due to electron state transitions of the

measured sample. Those that are not are either noise, which is more likely the

smaller the size of the peak in both number of points (width) and absolute y axis

size compared to the surrounding spectral baseline, or due to contaminants in the
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spectrometer.

Water vapour and carbon dioxide are ever present in the atmosphere, and as such

are the only contaminants worth being concerned over. It is well known that water

vapour has three main absorption bands, corresponding approximately to stretching

symmetrically, asymmetrically and rotation; there are then also many additional li-

nes from different isotopes of hydrogen and oxygen. These three bands are located at

approximately 3650cm−1, 3750cm−1, and 1590cm−1.[143][144][145][146] While car-

bon dioxide bands are in the≈ 600−750cm−1, 2250−2350cm−1, and 3600−3750cm−1

regions [147].

As this absorbance data was taken using a Fourier transform spectrometer, sets of

minor peaks in the 1500−1750cm−1 and 3600−3900cm−1 regions can be attributed to

water vapour contamination along the interferometer beam path. Thus samples 72-7

and 75-6, which exhibit such sets or bands, should be evaluated with this in mind;

that is, the quality of the samples is not affected by water vapour contamination.

Moving on to other features of the absorbance spectra, one comes to the sets of large

and small peaks in the approximate region of 1100 cm−1. These can be attributed

to oxygen contamination in the silicon. Oxygen impurities in the silicon sample

are well known to form a molecule like the Si2O substitutional complexes, these

are electrically neutral defect structures [148]. These oxygen structures have an IR

vibrational absorption band in the region of 1136.2 cm−1 [149], or centred at 1107

cm−1 with a FWHM of ≈ 32 cm−1 at room temperature [150]; the oxygen bands

are also superimposed upon a silicon transverse optical phonon absorption band,

centred at 1118 cm−1 with an FWHM of ≈ 50cm−1. It can be concluded that there

are oxygen impurity peaks in the absorbance data. These can be assumed not to

affect the quality of the samples, as one is looking for radiative donor transitions
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that do not overlap with this spectral region.

This leaves a few remaining clear peaks, which depending upon sample differ in their

clarity, and strength; these are attributed to dopant donor electron transitions. The

peaks then appear present in several separate and distinct families of a Rydberg

like pattern, where each successive peak is at a shorter distance to the last than the

prior pair; this is characteristic of 1
n2 patterns. These peaks can be assumed to be

due to different types of dopant, in this case being atomic, molecular, and ionised

donor atom series; this assumption is due to the clear separation of the families of

peaks. The ionised family is then unique to the chalcogen double donors, having no

correspondent in pnictogen doped silicon due to a lack of sufficient donor electrons.

Thus from inspection of figure 5.1 one can see that the three families of spectral lines

are located at ≈ 1500cm−1, 2400cm−1, and 4900cm−1 for selenium doped silicon.

Of these only sample 71-8 has all, and with the clearest and strongest sets at all

positions. Sample 72-7 has clear sets at 2400cm−1 and 4900cm−1 that are almost as

intense as those of 71-8. Sample 73-8 appears to be utterly devoid of any chalcogen

dopant.

The sulphur doped samples appear to have slightly shifted families of spectral lines,

which is presumably because of the slightly different binding energies for sulphur

donor states compared to selenium; however, due to the low quality of the spectral

lines it is difficult judge this accurately. Sample 75-6 has a weak family of peaks in

the 4700cm−1 region and a single large peak at 3500cm−1; while sample 76-6 has a

weak set of peaks in the 1400cm−1 region. Thus the natural conclusion is that the

optimal sample for investigation of donor transition lifetimes is 71-8.
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5.3. Transition Energies: The Spectra

In order to place any time resolved emission into the appropriate context, and also

to verify that the measured sample does indeed have optical transitions at the ener-

gies shown in the literature, it must first be shown that the sets of spectral lines

correspond to the various transitions and different ionisation states or substitutional

complexes (atomic or diatomic). The energies of specifically identified states, obtai-

ned by the present author’s EMT variational calculations, and their comparison

with the literature are of importance. Any calculation of a transition rate and thus

radiative lifetime depends upon the wavefunction of the state being as accurate as

possible, which if given the correct Hamiltonian to describe the system, will result

in an energy eigenvalue that is as accurate as possible. The literature values, EMT

predicted, and absorbance spectra peaks locations are discussed and compared. This

verifies the EMT calculations and the nature of the transitions in the sample.

5.3.1. Absorbance Measurements of Selenium Doped Silicon

Sample 71-8

Absorbance measurements of the selenium doped silicon sample number 71-8 are

shown here in more detail in figure 5.2; the clarity and narrow appearance of these

spectral lines, with respect to the transition spacing, indicate the potential for long

intrinsic lifetimes (discussed in greater detail in chapter 2).

As can be expected from a simple consideration of coulombic forces, the atomic donor

has greater binding energies than the diatomic, due to the repulsive interaction of

the two sets of two donor electrons that the diatomic selenium possesses. This then

leads to a clear distinction between the sets of spectral lines of neutral and singly

ionised selenium donor atoms, thus allowing the groupings of spectral lines in figure

5.2 to be identified; such identification of the families of lines is corroborated by
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both data in the literature [94], and by the present author’s EMT calculations in

section 3.7.1, with the information collated in table 5.3.

The absorbance spectra for each grouping of lines are then shown in more detail,

and labelled in accordance with the energies obtained by EMT calculations and the

values in the literature [94, table ii], in figure 5.3.

A more detailed comparison with the data from [151, table 1] has allowed the strong

absorbance peak at 1136 cm−1, and smaller peaks at 1132 cm−1, and 1128 cm−1 to

be correspondingly identified as a set of oxygen-silicon vibrational modes; these are

the 16O, 17O, and 18O isotopes of oxygen.
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Figure 5.2.: Absorbance spectra of a SiSe sample at 4K,14K,80K and 300K. The measu-
rement was taken at a spectral resolution of 0.5 cm−1 , 100 averages, using
the 4 term Blackman Harris apodization function, and a spatial sampling
rate of 15798 cm−1; other conditions and experimental set-up as described in
detail in section 4.3. This particular data was measured by my supervisor,
S.A. Lynch on 29/11/2012.
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From figure 5.2 it is immediately apparent that the distinct families of spectral lines

are no longer present at 300K, and the baseline absorbance of the sample has also

increased. The 80K data shows a slight rising of the baseline absorbance, but little

more detail is visible. It is then necessary to move on to a more zoomed in, spectral

grouping specific view, of the data; the specific spectral groupings are shown in more

detail in figure 5.3.
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Figure 5.3.: Absorbance spectra of a SiSe sample at 4K,14K,80K. Because at 300K there
are no spectral peaks in the absorbance data, it is omitted here. A) Si : Se2

- Diatomic substitutional complex. B) Si : Se - Atomic substitutional
complex. C) Si : Se+ - Singly ionised atomic substitutional complex. The
top x axis in each sub plot labels the energy in mev, while the bottom is in
wavenumbers (cm−1). Data is the same as in figure 5.2. Pre-empting the
analysis to come in the following section 5.3.2, peaks for sub-plots A) and
B) are labelled by comparison to the energy differences between states in
[94]. Peaks in sub-plot C) are estimated by comparison to A) and B).

Figure 5.3 can clearly be seen to have peaks which are in general weaker and broader,

or not visible at all, at 80K compared to 4K and 14K. The various optical transitions

in the SiSe sample, and an estimate of their state lifetimes, can then be identified.

Central peak positions identify the energy of each transition, while the FWHM of
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each peak provides an estimate of the lifetime.

Obtaining this information was done by firstly adjusting the data to remove the ba-

seline upon which the various peaks are superimposed. This analysis was performed

by a python 2.7[6] script, making use of the numpy [4], and scipy [5] libraries, with

the additional use of the baseline function from the peakutils[152] library. In brief

the spectrum baseline, upon which peaks are superimposed, is found by use of an

iterative polynomial fitting routine from the peakutils[152] library, which uses a least

squares fitting to the data and then reduces the effective weighting of the spectral

positions with peaks at each iteration. This continues until only a baseline estimate

remains. The spectrum baseline in each region of interest was then subtracted from

the spectrum, with the peak positions then identified manually. The FWHM was

then estimated by finding the nearest data points at half the local maxima.

In addition to removing the baseline, the 1S(T2) to 1S(A1) transitions on the far left

of the spectra in figure 5.3 are not included. This is because this thesis is concerned

primarily with the 2P to 1S transitions and the estimation of the transition rate.

This can not be estimated using the same theoretical tools; the 1S(T2) to 1S(A1)

transition has a dipole matrix element of zero for parity reasons.

The baseline subtracted data is shown in figure 5.4.
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Figure 5.4.: Absorbance spectra of a SiSe sample at 4K,14K,80K. A) Si : Se2 - Diatomic
substitutional complex. B) Si : Se - Atomic substitutional complex. C)
Si : Se+ - Singly ionised atomic substitutional complex. Data is that of
figure 5.4, but with the baseline of each region calculated and subtracted.
Pre-empting the analysis to come in the following section 5.3.2, peaks for
sub-plots A) and B) are labelled by comparison to the energy differences
between states in [94]. Peaks in sub-plot C) are estimated by comparison
to A) and B).

5.3.1.1. Peak Broadening Analysis

The analysis of the peaks in figure 5.4 is presented in this section.

An inspection of the line shape in figures 5.4 and 5.3 shows that, for the ionised sele-

nium complex (section C in both figures), there is a small dip before the 1S(T2), 2P0
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and 2P±1 to 1S(A1) transition peaks. This is characteristic of a Fano resonance[153].

Such a resonance is caused by the coupling of a discrete energy state, in this case the

atomic states of selenium donor atoms, to those in a continuum. However, it is not

clear what this continuum could be, for the energy range in question is well outside

that of silicon phonons. By process of elimination, the only remaining continuum

known to the present author are those of the electronic bands of silicon, and the

continuum of photon modes in free space. Which of these, if it is indeed them (or

even both), that cause the Fano resonance dip before the peak is unclear. It is also

unclear why only the 2P and 1S(T2) to 1S(A1) transitions exhibit such a feature.

This peak analysis continues with a tabulation of the various peaks, along with their

FWHM and estimated lifetime, in table 5.2.

Table 5.2 shows that the FWHM linewidth estimated lifetime does not significantly

change between 4K and 14K. For most peaks they are the same, except for variations

of between -9% and -12%, with a single change of -59% for the peak at 1653.34 cm−1.

Variations between the FWHM of peaks at 4K and 80K are much larger, ranging

from -93 % to -36%.

The exact nature of the change in the peaks is shown in figures 5.5 and 5.6, which

show modelled line shape fits to peaks corresponding to 2P0 and 2P±1 to 1S(A1)

transitions respectively. Comparison is made between Gaussian and Lorentzian

curves at both 4K and 80K, which then imposes the selection of the two specific

transitions because of the weak, or absent, absorption peaks at 80K for any other

transitions. The nature of the closet fit to the peak should indicate the dominant

mechanism behind the broadening, that is, whether it is caused by: inhomogene-

ous broadening, associated with a Gaussian peak shape; homogeneous (lifetime)

broadening, corresponding to a Lorentzian peak shape.
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Figure 5.5 shows the peak believed to correspond to the 2P0 to 1S(A1) transition

(because of comparison to energy values in the literature, discussed in the following

section 5.3.2 ) for the two families of selenium donors, at 4K and 80K. Only the

Si : Se2 diatomic and Si : Se atomic families of lines are considered for the 2P0

transition, because the absorption peak at 80K is so weak as to render useful fitting

to Lorentzian and Gaussian curves difficult, if not outright meaningless. Lorentzian

and Gaussian Curves are then fit to the peaks, using a least squares regression

routine written in python to find the various parameters. The equations used to fit

the Gaussian and Lorentzian curves in figure 5.5 are shown below, where: σ is the

standard deviation of the Gaussian distribution, and the width of the Lorentzian; µ

is the mean or centre position of each.

L(x) =
1

π

1
2
σ

(x− µ)2 + 1
4
σ2

(5.1)

G(x) =
1

σ
√

2π
e
− 1

2

(
x−µ
σ

)2

(5.2)

It is clear that at 4K the closest fit is to a Gaussian curve, and at 80K to a Lorentzian.

This is true for both families of donor complex, and is both visually clear, and is

given by considering the standard errors of the fitting parameters: lesser (or for some,

equal to the given number of significant digits) for Gaussian fits at 4K, lesser for the

Lorentzian fits at 80K. This indicates that inhomogeneous broadening dominates at

4K, and homogeneous at 80K.
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Figure 5.5.: Baseline subtracted absorbance spectra in the region of the 2P0 to 1S(A1)
transition, of a SiSe sample at 4K(left) and 80K(right). This is a zoomed
in excerpt of the same data as in figure 5.4. Lorentzian (red) and Gaus-
sian(blue) curves are fit the the experimental data(black points), while the
fitting parameters, temperature, and family of lines from which the tran-
sition peak is taken from, are shown on each sub-figure with the units in
those of the respective axis; fitting parameter errors are to one standard
deviation, and the equations used to create the fits are those of equations
5.1 and 5.2.
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Figure 5.6 shows the peak believed to correspond to the 2P±1 to 1S(A1) transition

(because of comparison to energy values in the literature, discussed in the following

section 5.3.2 ) for the three families of selenium donors, at 4K and 80K. Lorentzian

and Gaussian curves are fit to these peaks, using the same python least squares

regression routine to find the various parameters as for the 2P0 case, as are the

equations used to fit the Gaussian and Lorentzian curves.

It is clear to the eye that in figure 5.5 , for 4K (the left hand side of the figure), the

Gaussian fits better than the Lorentzian to the data. This indicates that at 4K the

inhomogeneous environments of multiple Si:Se donors is the dominant contribution

to the broadening. A more quantitative approach gives the same conclusion, as the

one stand deviation error ( standard deviation of the mean value) of the Gaussian

fitting parameters is lesser than those of the Lorentzian fits for all of: diatomic(Si :

Se2), atomic (Si : Se), and single ionised (Si : Se+) selenium complexes.

For 80K (the right hand side of the figure) the situation has changed. The Lorentzian

curve is now both a visually, and numerically, superior fit to the data; the standard

errors of all of the fitting parameters is lower, giving a higher probability that the

Lorentzian curve is a better fit to the data. Therefore, homogeneous, such as lifetime

limit caused, broadening is now likely to be the dominant mechanism; radiative

lifetime decay has a Lorentzian curve shape due to it being the Fourier transform of

the exponential decay.

Having considered the two clearest peaks in the spectra, it is clear that in all cases

the broadening is likely to be dominantly homogeneous at 80K and inhomogeneous

at 4K. A tentative explanation is that at 4K the disorder of the surrounding donor

environment has a greater contribution to the broadening than the intrinsic lifetime
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Figure 5.6.: Baseline subtracted absorbance spectra in the region of the 2P±1 to 1S(A1)
transition, of a SiSe sample at 4K(left) and 80K(right). This is a zoomed
in excerpt of the same data as in figure 5.4. Lorentzian (red) and Gaus-
sian(blue) curves are fit the the experimental data(black points), while the
fitting parameters, temperature, and family of lines from which the tran-
sition peak is taken from, are shown on each sub-figure with the units in
those of the respective axis; fitting parameter errors are to one standard
deviation, and the equations used to create the fits are those of equations
5.1 and 5.2.

178



5. Results

of the states, recall that (discussed in chapter 3) the 2P excited states of donors in

silicon extend over a large spatial area, allowing a greater amount of inhomogeneous

lattice distortion, defects, other impurities etc to effect each excited electron. Howe-

ver, it is then not clear as to why at 80K the lifetime, or homogeneous, component

dominates.

Comparing this to homogeneous and inhomogeneous broadening of donors in silicon

in the literature [154], it is found that the presence of silicon phonon modes resonant

with a transition can cause additional broadening. However, there are no phonon

modes resonant with the 2P transitions of selenium donors, due to the deep ground

state, removing this as a cause for the homogeneous broadening dominance of hig-

her(80K) temperature transitions; it is plausible, although unlikely, that multiple

phonon emission becomes a dominant decay pathway for the 80K excited states,

and this may fit with the homogenous broadening mechanisms discussed in[154].

It is reasonable to conclude that temperature does affect the lifetime, with inhomo-

geneous broadening form the donor environment as the probable dominant cause

at 4K, and lifetime caused homogeneous broadening dominating at 80K and, pos-

sibly higher, temperatures. The cause of this is change in dominant broadening

mechanism is not known or understood by the present author.

5.3.1.2. Examination of Possible Water Absorption Lines

To examine the effect of the instrument upon the line shapes, water absorption lines

can be investigated. As mentioned elsehwehre in this thesis, there are water absorp-

tion bands in the regions of 3650cm−1, 3750cm−1, and 1590cm−1.[143][144][145][146]

However, there is at least one set of carbon dioxide bands in the region of 3600 −

3750cm−1 [147]. The 4K absorption spectra shown in figure 5.2 is shown, zoomed in

on the region around 3750cm−1, in figure5.7. It is not clear whether the three small
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peaks in this figure are due to water or CO2 absorption, therefore it is assumed that

they are due to water vapour present in the Fourier transform spectrometer. Here

the apodization function, used for all Fourier transform spectroscopy in this thesis,

the 4 term Blackman Harris function is fit to the three small and narrow peaks that

appear. Because water vapour absorption lines are typically extremely narrow, the

instrument lineshape should be possible to recover from fitting to them.
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Figure 5.7.: Absorption spectra of a SiSe sample at 4K, zoomed in on the region around
3750cm−1; this is the same data as in figure 5.2. The measurement was
taken at a spectral resolution of 0.5 cm−1. The 4 term Blackman Harris
apodization function was used (from equation D.39) to fit to the three me-
asured peaks in the spectra; the W parameter is the spatial distance over
which the Fourier transform interferogram is measured, thus 1

W
= 0.5cm−1

(if the instrument lineshape is a delta function, otherwise this may be bro-
adened). Fitting parameter information is given for each peak, in text near
the corresponding peak, on the figure.

The exact distance of the Fourier transform spectrometer used in the measurement

was 1
W

= 0.5cm−1. Comparison to the extracted parameters from the peaks in figure
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5.7 shows minor disagreement, as the fit parameters for 1
W

are 0.564,0.65, and 0.666

cm1 which are not too far from the expected 0.5 cm1. As a result, the instrument

line shape is likely to have a small, although it will have some, effect upon any other

measured spectral peaks. The final resolution of the spectra can then be taken to be

≈ 0.67cm−1, which is far more than enough to separate any of the features discussed

in any detail in this thesis. The 2P0 and 2P±1 to 1S(A1) transitions are of interest,

and are at least an order of magnitude, or more, apart from the nearest other peaks

in the absorption spectra; the emission spectra, discussed later on in this chapter,

is so broad that discernment of individual transitions is impossible, rather, only

groupings of transitions can be identified, and these are separated by more than this

experimentally found resolution.

The wider consequences of the use of the Blackman Harris 4 term apodization

function are the suppression of side lobes near real peaks, and the creation of broad

side lobes slightly further away, along with a slightly wider central peak compared

to a simple boxcar apodization function. This is, in effect, a trade off for a slightly

wider central peak in order to suppress, and push further away, side lobes that would

be close to each peak. The effect of this apodization function on a delta function

like peak can be seen in the appendix, figure D.2

5.3.2. Transition Energy Comparisons

The state energies taken from [94] allow the transition energies to be determined.

The transition energies are compared to the measured values of absorbance peaks in

table 5.2. This is done to confirm that absorbance peaks really are the transitions

they are believed to be. Of course even perfect agreement is not a guarantee, and

neither is a minor deviance proof of falsehood, but as long as gross deviances are not

found then it is reasonable to assume that the peaks in the Si:Se absorbance spectra

are the donor electron states. This comparison is presented in tables 5.3 and 5.4 for
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atomic and diatomic selenium donor complexes respectively.

Atomic Selenium Transitions

Table 5.3 shows that many of the observed peaks in absorbance spectra (part B figure

5.4, table 5.2) match approximately with transition energies predicted by the litera-

ture. The literature transition energies have been matched to the closest observed

peak in the measured absorbance spectra. Because the absorbance measurements

were taken with a spectral resolution of 0.5 cm−1, which is the resolution at which

delta function like peaks could be separated, in reality the absorbance peaks are not

delta functions and have their own width caused by various factors, such as lifetime

or inhomogeneous broadening. Thus any measured absorbance peaks less than 0.5

cm−1 from the literature value can be confidently attributed to the literature tran-

sition, while other peaks that are further away can also be included in this, as long

as the difference is not too large; the exact size of this difference is not trivial to

quantise and depends on the intrinsic lifetime of the transition (not always known),

the temperature, level of disorder in the material, isotopic composition, etc.

The 5F0, 5F1, 5P1, 6P1, and 7P1 to 1S(A1) transitions are all extremely close in

energy, and appear to be either merged together in a single peak in the absorbance

spectra, or many of the transitions are too weak to be observed or absent entirely.

There are then three observed absorbance peaks which do not appear to correspond

to known possible transitions, at 2195.45, 2273.67, and 2398.73 cm−1; the cause of

these peaks is not clear.

Of importance are the 2P0 and 2P±1 to 1S(A1) transitions, which agree most accu-

rately with the literature, and have an observed deviance less than the spectral

resolution. These two transitions are of importance because they are the deepest

energy states which can exhibit optical transitions to the ground state.
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Diatomic Selenium Transitions

Table 5.4 shows that many of the observed peaks in absorbance spectra (part A of

figure 5.4, table 5.2) again match approximately with transition energies predicted

by the literature. The literature transition energies have, for precisely the same

reasons as for atomic state transitions, been matched to the closest observed peak

in the measured absorption spectra. For some sets of literature transitions there is

only a single observed peak in the absorbance data, again as for the atomic states

this can be for a variety of reasons. Some of the transitions may be too weak to be

clearly seen, some may be absent, and some may be merged together in the single

observed peak. There is also an observed transition at 1599.88 cm−1 that does not

appear to match up to any labelled transition from the literature.

Again of importance, for exactly the same reasons as for the atomic states, are the

2P0 and 2P±1 to 1S(A1) transitions, which agree with the literature; there is also,

as before, an observed deviance that is less than the spectral resolution.

As a result it is possible to be confident that the key 2P0 and 2P±1 to 1S(A1) tran-

sitions for both atomic and diatomic selenium complexes can be clearly identified.

5.4. Oscillator Strengths: Linking Absoption Spectra

to Dipole Matrix Elements

The absorption spectra presented so far, gives an opportunity to compare the

strength of the measured transitions with that predicted by the calculated dipole

matrix elements. In order for this comparison to be carried out, the various values

are given in the unit-less, normalised, oscillator strength form.

The matrix elements are calculated using several variations of the EMT wavefuncti-
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ons, and parameters, calculated in chapter3. These different variations include:

EMT wavefunctions from calculations in this thesis, where the parameters are varied

to find the minimum energy for both upper and lower states; effective mass states as

the upper state, with ground states spatially scaled via Mott semiconductor to con-

ductor transition data[2]; spatially scaled, spherical, hydrogen wavefunctions (that

ignore the anisotropic effective mass of silicon), for both upper and lower states;

spatially scaled, spherical, hydrogen wavefunctions for the upper state, with Mott

transition scaled ground states.

The calculated dipole matrix elements can then be converted into oscillator strengths,

for comparison with values in the literature. Finally, both the literature values and

the present authors calculations can be compared to oscillator strengths estimated

from the absorption spectra shown prior in this chapter.

This forms an intermediate stage between the absorption spectra shown and ana-

lysed, section 5.3 , and the dipole matrix element dependant transition rates, cal-

culated in chapter 3. If reasonable agreement is found between the triad of mea-

sured absorption spectra estimated oscillator strengths, calculated EMT oscillator

strengths, and those found in the literature then the likelihood of the calculated

transition rates being true, or at least not wholly inaccurate, is increased (due to

them sharing the dipole matrix element with the oscillator strengths). A qualitative

more, or less, likely veracity of the dipole matrix elements affects the overall strength

of this thesis.

Oscillator Strength

The oscillator strength is a unit-less measure of the strength of an absorption/emission

transition between two states of a system. In the context of a dipole interaction cau-

sed transition, the dipole oscillator strength is defined by:[155]
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fa,b =
2m∗

~2

(
Eb − Ea

)
|~1. ~rb,a|2 (5.3)

In equation 5.3 , fa,b is the oscillator strength, a and b the initial and final states of

the dipole interaction, Ea and Eb the energies of those states, ~1 is a unit polarisation

vector, ~rb,a the dipole matrix element, and m∗ is the effective mass harmonic mean.

The harmonic mean of the effective mass is given by:

m∗ =

[
1

3

(
1

m∗‖
+

2

m∗⊥

)]−1

(5.4)

Where, in equation 5.4 , m∗‖ is the parallel (or longitudinal), and m∗⊥ the perpendicu-

lar effective mass of silicon, they are weighted differently because two axial direction

have the perpendicular effective mass and one the parallel.

The oscillator strength can also be obtained from integrating the area under an

absorption curve: [155, eq 2]

fa,b =
nm∗c

2~e2π2

∫
band

σ(~ωa,b)d(~ωa,b) (5.5)

For equation 5.5 , σ = α
Nimp

is the absorption cross section, α the absorption co-

efficient (e.g. as for the Beer-Lambert law) and Nimp the density of absorbing

impurity centres, n is the refractive index, and ωa,b the angular frequency of the

transition between the a and b states.
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The unit polarisation vector, ~1, introduces an additional piece of complexity into the

oscillator strength. Due to the 6 fold degenerate conduction band minima (valleys)

in silicon, the dipole matrix element is reduced relative to that which it would be if

the states were built out of states from a single valley, if the polarisation vector is of

magnitude 1. [155].

This reduction does not occur for vacuum electric field perturbation caused dipole

transitions, as the field is assumed to be of equal amplitude in all vector directions

(discussed in detail in section 3.6.1), giving it a magnitude of
√

3 relative to the

unit polariastion used by Claus et al [155]. When squared, as in the dipole matrix

element squared, this magnitude difference accounts for the factors of one and two

thirds that are the oscillator scaling factors that Claus et al [155] use, although this

is covered in more detail in the section discussing the differences in assumptions

between the literature oscillator strengths and those from this thesis.

For comparison to the literature, the scaling factors are, in general and unless ot-

herwise explicitly stated, present in the oscillator strengths calculated here by the

EMT wavefunctions from this thesis. They are not included in the transition rates

of chapter 3.

Before stating the EMT 6 fold conduction band valley introduced scaling factors

some terms must be defined: f0 and f± are the oscillator strengths of transitions

to the 1S(A1) ground state of a donor in silicon, taking into account silicon’s multi

conduction band minimum (valley) nature, from m = 0 and m = ±1 states respecti-

vely (where m is the magnetic quantum number); f‖ and f⊥ are the corresponding

(to m = 0 and m = ±1 respectively) oscillator strengths ignoring the multi-valley

nature of silicon, i.e as if the states were in free space. For relevance to this thesis,
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2P0 transitions correspond to f0, and 2P±1 to f±.

f0 =
1

3
f‖ (5.6)

f± =
2

3
f⊥ (5.7)

5.4.1. Expected Causes of Differences Between Oscillator

Strengths

There are, of course, likely to be differences in the literature, absorption spectra,

and EMTwavefunction from this thesis based oscillator strength calculations. Each

of these three are expected to differ to the others due to three primary reasons.

Firstly, the chalcogen selenium is a double donor and is not hydrogen like as in

the EMT models in the literature and this thesis, therefore the absorption spectra

derived oscillator strengths are likely to differ in some degree to those calculated by

such methods. Secondly, as will be explained in more detail below, the Hamiltonian

used in the literature to calculate EMT states is different to that used in this

thesis, making different wavefunctions and thus oscillator strengths likely. Thirdly,

the Mott criteria is not used in the literature to scale the spatial size of ground state.

A fourth differences arises, due the choice of polarisation vector of the electric field

in the dipole matrix element. These expected differences, and their relations, are

sketched in figure 5.8 below.
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Absorption
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Thesis
EMT 
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EMT 

Different 
Hamiltonian 

Mott transition
scaled ground state
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Double Donor

Figure 5.8.: Representative diagram of the likely differences between the three sources
of oscillator strengths discussed below, each shown at a vertex of the black
triangle. Red lines and labels show the expected causes of discrepancies
between each method.

The differences in the assumption between the work in this thesis and the literature

are discussed below.
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5.4.1.1. Selenium Double Donor

The ground state wavefunction in this thesis is spatially scaled, rather than the

Hamiltonian being adjusted as above. That is, the wavefunction has a parameter,

α0,0, which is phenomenologically fit to measured Mott semiconductor to conductor

transition data[2] , discussed thoroughly in section 3.7.2 . The result is that the

spatial extent of the Mott scaled 1S ground state wavefunction is extremely small,

while the spatial extent of the Hamiltonain adjusted wavefunction is not known (as

this is not published in the literature, only the energy values of the state), but may

differ. As the method used to calculate the higher excited states is entirely the

same, in this thesis, and the literature, eg. [155], any difference in dipole interaction

oscillator strength can be attributed to a difference in the ground state wavefunction.

In contrast to the Mott adjusted ground state, the given sources in the literature

adjust the α′ parameter of the Hamiltonian to match the measured energy. While

the general EMT approach includes a β parameter in the Hamiltonian, which is

adjusted (in conjunction with α`,m to minimise state energy), this does not yield the

correct ground state energy. The use of the Mott criteria to scale the ground state

then adjusts only the wavefunction, with β remaining at the value which gives the

incorrect ground state energy. This is because the β parameter is shared between

the ground, and excited states, while the α`,m are not, and therefore β is set to that

which gives the correct excited, but not ground, state energies.

5.4.1.2. Effective Mass Hamiltonian

The calcualted oscillator strengths from the literature [156, section 5.4] [155] differ

from those of this thesis, because of a different EMT Hamiltonian. This difference

is due to the failure of EMT to accurately predict the ground state energy of do-

nors; the assumptions of EMT break down for the ground state electron, essentially

because it is too close to the donor nucleus. The form of the Hamiltonian used in
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this thesis, where r is the radial coordinate, is:

−2

r
(5.8)

In order to adjust the ground state energy to match reality, [156, section 5.4] and

[155] introduce a phenomenological scaling parameter α′ (different to the α`,m used

elsewhere in this thesis). The adjusted Hamiltonian is then:

−2

r

[
1 + (εr − 1)e−α

′r
]

(5.9)

The α′ parameter is then adjusted until the EMT energy matches that of the

measured ground state.

5.4.1.3. Ground State

The ground state wavefunction in this thesis is spatially scaled, rather than the

Hamiltonian being adjusted, as above. That is, the 1S ground state wavefunction

α`,m parameter is varied to phenomenologically fit to measured Mott semiconductor

to conductor transition data [2] , in contrast to [155] and [156] where the α′

parameter of the Hamiltonian is varied so that the state energy matches that which

is measured. In the EMT variational method, the excited states are found by

minimising the energy of the states by varying β and α`,m parameters, where β is

part of the Hamiltonian. This differs from the α′ parameter, because β is constant

for all states, excited and ground, while α′ only affects the ground state.

The result is that the spatial extent of the Mott scaled 1S ground state wavefunction
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is extremely small, while the spatial extent of the Hamiltonian adjusted wavefunction

is not known (as this is not published in the literature, only the energy values

of the state). However, because the excited states are obtained the same way,

via variational minimisation, it is extremely likely that they are the same. If the

resulting oscillator strengths are different, then the only possible explanation, besides

calculation error, is different ground states, or more precisely, different ground states

with different spatial sizes, or scaling.

5.4.1.4. Polarisation Magnitude

The dipole matrix elements for the oscillator strengths have a scaling factor, shown

in [155] . This scaling factor can arise from two places, and due to the lack of

clarity in the explaination of [155], it is not completely clear which is the cause:

the effect of the silicon crystals symmetry on the effective mass states, or that there

is a polarisation vector of magnitude 1. Therefore, to be certain of which is the

cause, the two possible causes are considered in the context of the 2P0 to 1S(A1)

transition.

Firstly, the 2P0 state is split into one A1, two E, and three T1 components. The T1

cannot undergo a transition to the 1S(A1) state, because the amplitude components

of the 6 different effective mass conduction band valley states cancel each other out.

However, the single A1, and each of the E states, in isolation, can be shown to have

the appropriate scaling factor. This is shown in section 3.6.1.1 . Summing the states

together gives a total factor of 1. Then, of course, it is appropriate to account for

the correct degeneracy of the excited state. by dividing by the number of excited

states any donor electron may be in, as in the non effective mass case.

Secondly, as the first possible cause gives the total dipole squared factor of 1, and

only a third for each one of three parts, all the matrix elements of the 2P0 states (A1,
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E, T1) summed together can have the factor of one third, but only for a polarisation

magnitude of 1. For the uniform in all directions polarisation case, described in

section 3.6.1.1 , this can be made clear by considering the polarisation vector used

in equations 3.53, and 3.54 .

~E = (1, 1, 1) (5.10)

If the polarisation vector is normalised to be of magnitude 1 then it becomes:

~E =
1√
3

(1, 1, 1) (5.11)

The magnitude 1 polarisation vector then modifies the 2P0(A1) to 1S(A1) matrix

element, equation 3.54 , to become:

4

36

(
| 〈F fi

±kx|
1√
3
z|F ex
±kx〉 |2 + | 〈F fi

±ky|
1√
3
x|F ex

±ky〉 |2 + | 〈F fi
±kz|

1√
3
y|F ex

±kz〉 |2
)

=
12

36
| 〈F fi

±kx|z|F
ex
±kx〉 |2

=
1

3

1

3
| 〈F fi

±kx|z|F
ex
±kx〉 |2

(5.12)

Setting the polarisation to the unit magnitude one makes the two 2P0(E) to 1S(A1)

matrix elements, equations ?? and ?? , then become:
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1

6
| 〈F fi

±kx|z
1√
3
|F ex
±kx〉 |2 +

1

6
| 〈F fi

±ky|x
1√
3
|F ex
±ky〉 |2

=
2

6

1

3
| 〈F fi

±kx|z|F
ex
±kx〉 |2

(5.13)

1

6
| 〈F fi

±kx|z
1√
3
|F ex
±kx〉 |2 +

1

6
| 〈F fi

±kz|y
1√
3
|F ex
±kz〉 |2

=
2

6

1

3
| 〈F fi

±kx|z|F
ex
±kx〉 |2

(5.14)

Summing the contributions, of the one 2P0(A1), and two 2P0(E), to 1S(A1) matrix

elements ( for the unit magnitude polarisation, gives the total matrix element:

1

3

1

3
| 〈F fi

±kx|z|F
ex
±kx〉 |2 +

2

6

1

3
| 〈F fi

±kx|z|F
ex
±kx〉 |2 +

2

6

1

3
| 〈F fi

±kx|z|F
ex
±kx〉 |2

=
1

3
| 〈F fi

±kx|z|F
ex
±kx〉 |2

(5.15)

The factor of one third that Clauws et al [155] give is found to be a direct con-

sequence of the polarisation vectors magnitude. Therefore, it does not need to be

included in the radiative emission, as it is effectively accounted for by the strength

of the electric field amplitude, only the oscillator strength calculations.
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5.4.2. Comparisons of Oscillator Strengths

The oscillator strengths are presented here, with notable differences summarised in

the ending section.

5.4.2.1. Oscillator Strengths From This Thesis

Oscillator strengths from this thesis, calculation, and determined from integrating

the area under absorption curves.

From Calculation

The different oscillator strengths from the wavefunctions calculated in this thesis

are given here. All include the scaling factors of one, or two, thirds. The different

methods of calculating the wavefunctions are the same as those for tables 3.9 and

3.10. As the oscillator strength involves the energy difference between the states,

it can be calculated using the energy values from the literature[94]. The oscillator

strengths are then given in table 5.5.

The oscillator strengths calculated by hydrogenic, fully spherical, wavefunctions for

the excited are approximately the same for both 2P0 and 2P±1 to 1S(A1) transitions,

regardless of how the ground state is calculated. However, for the EMT states, there

appears to be a factor of 3 difference: for the EMT scaled ground state the 2P0 is

thrice that of the 2P±1; for the Mott scaled ground state the 2P±1 is thrice that of

the 2P0.

From Absorption Spectra

The absorption spectra allows the extraction of an oscillator strength, via the use of

equation 5.5. The oscillator strength is extracted from the baseline removed spectra

of figure 5.4 for 4K. Only 4K is chosen as this should show the most accurate

absorption peaks, and allow more accurate oscillator strengths to be determined;
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the calculated oscillator strength is temperature independent, and so it is most

valid to compare to measured oscillator strengths that exhibit the smallest possible

thermal effects. The integral over the absorption band,
∫
band

σ(~ωa,b)d(~ωa,b), is

obtained by simply calculating the area under the points of the absorption data.

Between each 2 successive points a straight line is drawn, and the areas of all such

trapezoids summed together is then taken to be the integral, where the boundary

of the absorption bands is determined by the authors inspection. The absorption as

measured is the absorbance coefficient, α, multiplied by the thickness of the sample

which is known to be ≈ 1mm. The average concentration of donor centres is then

needed to obtain the absorption cross section σ, which can be obtained from table

5.1. The resulting areas under the curve, along with the corresponding oscillator

strengths are shown below.
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Figure 5.9.: Absorption spectra of a SiSe sample at 4K. OS: Oscillator strength. The
blue shaded areas indicate the area under the absorption peaks used to
calculate the oscillator strengths, which were calculated using equation 5.5;
σ = A

LNimp
, where A is the absorbance, L = 1mm the thickness of the silicon

sample, and Nimp the concentration of donor impurities. Top: Atomic
selenium donor complex: donor concentration = 5.5 ×1015cm−1. Middle:
Diatomic selenium donor complex: donor concentration = 2.8 ×1015cm−1.
Bottom: Ionised atomic selenium donor complex: the donor concentration
is not known for this, therefore that of the atomic complex was used. Doping
concentrations are from table 5.1. Left and right shaded peaks correspond
to the 2P0 and 2P±1 to 1S(A1) transitions respectively.

The oscillator strengths from figure 5.9 are collected into table 5.6.

5.4.2.2. Oscillator Strengths From the Literature

Oscillator strengths from [156, section 5.4] , for the 2P0 and 2P±1 to 1S(A1) transi-

tions, are collected into table 5.7. It should be noted that these include those from

[155]. The oscillator strengths, in both sources, are calculated by the use of EMT

to find hydrogenic wavefunctions for the excited states, for one (source c) this is via
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a variational method as in chapter 3. However, source b is originally published in

a journal the present author does not have access to and so all that can be said of

it is what is reprduced in [156] , that is, it uses the same Hamiltonian as source c,

but does not use a variational method. The ground state is found the same way,

however there is an additional phenomenological parameter introduced to the Ha-

miltonian, to adjust the obtained energy to match that measured, as discussed in

section 5.4.1.2. This additional Hamiltonian element is likely to change the ground

state wavefunctions spatial extent, relative to that obtained by the present author’s

own calculations.

The literature values approximately agree with each other.

5.4.2.3. Concluding Differences

The different calculated, literature sourced, and measurement inferred oscillator

strengths are collated here in table 5.8, both 2P0 and 2P±1 to 1S(A1) transition

oscillator strengths are shown.

An inspection of table 5.8 shows that there are some similarities between some

of the oscillator strengths, and also that some of the methods of calculating the

oscillator strength do not appear to match that measured at all.

Intra-Category Consistency

Firstly, let the self consistency of each of the three overall categories be assessed.

The two literature sources agree very well with each other, for both transitions,

which is to be expected given that it is implied that they use the same Hamiltonian

(modified coulombic term to account for the screening potential of the donor core).
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However, the different methods of the present authors own EMT calculated oscillator

strengths do not agree with each other. This is to be expected, as the wavefunctions

will differ considerably, as in the hydrogenic and EMT wavefunctions are obtained

with different Hamiltonians; EMT refers to wavefunctions found by variationally

minimising the energy, using prolate anisotropic hydrogen wavefunctions, and Mott

scaled are the same wavefunctions but found by comparison to semiconductor to

conduction transition data. In addition, the Mott scaled ground states are, in both

hydrogenic and EMT cases, much smaller in spatial extent than those obtained

by pure calculation. It is odd that the 2P0 and 2P±1 oscillator strengths differ

approximately by a factor of three for the EMT to Mott oscillator strengths, but a

factor of one third for the EMT to EMT oscillator strength. The poor agreement

of the hydrogenic to hydrogenic oscillator strengths, to the other values calculated

by the present author, is likely due to the entirely incorrect scaling of both excited

and ground states, the donor electron is not just hydrogen after all. The different

groupings of calculated oscillator strengths, hydrogenic to Mott scaled and EMT

to Mott scaled, are all within an order of magnitude of each other within their

respective subcategories.

The absorption spectra determined oscillator strengths are also all within an order

of magnitude of each other, but differ considerably. This is to be expected as there

are considerably different situations for atomic, diatomic, and single ionised donor

impurities.

Inter-Category Consistency

Secondly, the differences and agreements between the three overall categories can

be assessed.

Literature - Calculation

The literature does not agree with the present authors calculations, there being at
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best a factor of ≈ 2 difference for the hydrogenic to Mott 2 values. This diffe-

rence may be because of the different methods used to obtain the wavefunctions, i.e

different EMT Hamiltonian used, Mott (spatially) scaled ground state, and the as-

sumption that the purely hydrogenic wavefunctions are just scaled fully symmetric

scaled hydrogen wavefunctions, which is not true for donors in silicon.

Literature - Absorption Spectra

In general the literature does not agree with the oscillator strengths obtained from

absorption spectra. The 2P0 atomic, and 2P±1 singly ionised donor centres are

the only ones that have oscillator strengths that approximately match those of the

literature. As the literature values are calculated with the assumption of having a

single, rather than a double, donor it is to be expected that the values agree only

for the singly ionised centre.

Calculation - Absorption Spectra

In general the calculated oscillator strengths do not agree with those obtained from

absorption spectra. This is likely because the spherically symmetric hydrogenic wa-

vefunctions are known to be incorrect, as is that of the EMT ground state. However,

the EMT wavefunction is known to be approximately correct, for non ground states

in deep donors, and the Mott scaled ground state relies upon experimental evidence

[2] , therefore it is expected to be approximately correct for the single donor, or

ionised, case, which it appears to be.

Furthermore, the atomic impurities have two donor electrons, and this is likely

to complicate the ground state wavefunction (assuming the one is excited and one

remains in the ground state when the transition is measured); the diatomic impurity

transitions are complicated by the presence of an entire additional impurity atom.

Both are likely to render the assumptions of the ground state wavefunction incorrect,

along with the assumptions of the Mott transition model. That is, a single donor
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with a slowly varying wavefunciton - isolated in a sea of silicon with no nearby

impurities to cause rapid spatial changes in the wavefunction. The Mott criteria

doping concentration, used to spatially scale the ground state, is given as an upper

and lower bound, therefore the finding that one bound gives much closer agreement

to measured oscillator strengths can be used to update estimates of which Mott

bound is closer to the truth. The Mott scaled 2 ground state gives values that are

much closer, almost identical, for both 2P0 and 2P±1 oscillator strengths, making

the corresponding doping concentration more likely to be the correct one.

Summary

Using simple EMT to obtain the excited state wavefunction, and the Mott semicon-

ductor to conductor transition for the ground state, of a singly ionised double donor

predicts the correct oscillator strengths. Atomic double donor oscillator strengths

are approximately 2.7 to 2.9 times this, and diatomic donor complexes have those

that are a factor of 8.6 greater(than the ionised); the uniformity of the factor between

the EMT -Mott prediction and the ionised/atomic/diatomic donors immediately rai-

ses the question of whether it holds for higher, i.e. 3P, etc, states as well.

5.5. Transition Lifetimes: Time Resolved Spectra

Following the measurement of the peak energies of the Si:Se sample is the measure-

ment of the radiative emission lifetime. This is done by the experimental procedure

shown in detail in section 4.3, here it is merely the data and analysis that are

presented.

The experiment consists of using step scan time-resolved Fourier transform spectroscopy,

to measure the emission from Si:Se sample 71-8 following excitation by a 1220nm,

approximately 5ns, laser pulse. The emission is directed into a Vertex 80V Fourier

transform spectrometer via a series of aluminium mirrors. The experimental data
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consists of an emission spectra extending from 1000 to 5000 cm−1, and in time over

1000 ns; as there are no discernible features past 3000 cm−1, and 400ns, all displayed

graphs are cut off past these points. There are then three datasets, corresponding

to the temperatures 10K, 80K, and 300K. The data is presented in three forms.

1. The overall data is displayed as a contour plot of the amplified detector signal

over the 1000 to 3000 cm−1, and 0ns to 400ns, ranges. This shows the overall

evolution of the emission intensity with respect to time, wavenumber, and

temperature.

2. For each temperature the emission over the full time range 0ns to 1000ns is

averaged, and shown superimposed alongside the corresponding temperatures’

absorbance spectra. The donor electron transition peaks in the absorbance

spectra become weaker, and broader, as the temperature increases. Because

of this, and to facilitate clear identification of the averaged emission peaks

with specific transition groupings, a copy of this figure is shown where the

absorbance spectra at each temperature is replaced by that at 10K; the 10K

absorbance spectra having the clearest, and most sharply defined, transition

peaks.

3. The natural log of the time trace, along the wavenumber positions correspon-

ding to the transitions of primary interest 2P0 and 2P±1 → 1S(A1), for both

atomic and diatomic substitutional centres is shown; a least squares fitting

procedure has been used to generate a straight fit line to this data, thus ex-

tracting the estimated emission lifetime.

These figures then allow the examination of: the spectral character, which transi-

tions are likely dominating emission from the sample, the quality of lifetime fits,

and a comparison of the fitting to simple scaled hydrogen and EMT transition rate

models.
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5.5.1. Experimental data

The overall data is shown in figure 5.10. It is apparent that there is a rapid increase

in the measured optical signal at ≈75 ns from the beginning of the measurement, this

indicates that the pumping laser pulse begins at this time. The signal intensity is

increased from the start of this pulse across the entire measured range; it is assumed

that in the vicinity of emission peaks that this results from both the sinc function

sidelobes inherent in Fourier transform spectroscopy, and the broadband emission

to be expected from the heating of the Si:Se sample following the laser pumping.

At 10K the optical signal is strongest and appears to be split into a set of four

distinct emission bands, while intensity is greatest at 2000 cm−1 and 105 ns. These

bands appear to be in the regions of (1150-1500), (1550-1650), (1700-2300) and (2375

-2700) cm−1; these bands are referred to as first, second, and so on in increasing

wavenumber order. Each of the emission bands extends in time for ≈175 ns.

At 80K the emission for all bands has become far weaker, and now only extends for

≈100 ns. The first emission band, at 1550-1650 cm−1, is far weaker in proportion

to the others and extends over a smaller wavenumber range; it now only covers

≈ 1280− 1500cm−1.

Finally for 300K the emission appears greatly reduced in both intensity and breadth

of spectrum, with the first band being almost invisible; this is largely due to the

loss of emission outside a 1300cm−1 to 1350 cm−1 range for this band. As the first

band becomes weaker it becomes ever more indistinguishable from the broadband

increase in emission following pumping.
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Figure 5.10.: Si:Se emission following 1220 nm ≈ 5ns laser pulse. Top: 10K. Middle:
80K. Bottom: 300K. The 2P0 → 1S(A1) transition energies are marked
on the x axis at 1572 and 2380 cm−1 , or 195 and 295 meV, for atomic and
diatomic Si:Se centres respectively.
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As it is difficult for the human eye to easily compare the time traces of the emission

data in figure 5.10 the same data is shown, but rescaled, in figure 5.11. The

rescaling is done to the detector signal data before the natural log is taken, thus this

is equivalent to merely shifting the datasets up in the log scale. Rescaling the data

in the same way but post logarithm is less clear, as the widespread signal floor (eg.

blue region in the 10K data) is greater in value for the 80K and 300K data.
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Figure 5.11.: Rescaled version of figure 5.10 The 80K and 300K data sets are rescaled by factors of
≈ 2.1 and ≈ 2.0 respectively, so that their peak detector signal is the same as that at
10K; the time trace of the emission can be more easily compared between temperatures.
Top: 10K. Middle: 80K. Bottom: 300K. The 2P0 → 1S(A1) transition energies are
marked on the x axis at 1572 and 2380 cm−1 , or 195 and 295 meV, for atomic and
diatomic Si:Se centres respectively.
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5.5.1.1. Averaged Emission Data with Absorbance Spectra

Figure 5.12 shows that at 4K two of the four emission bands line up roughly with

the start of the atomic and diatomic Si:Se complex families of transitions in the

absorption spectra. It appears that the set of atomic donor absorption peaks may

correspond to the emission band centred at 1572cm−1. Similarly, the diatomic peaks

correspond to emission that begins at ≈2380cm−1 and extends broadly until 2700

cm−1; it is not clear why this emission should be so broad compared to that at 1572

cm−1. However, the bands are extremely broad. It may be that phonon absorption

contributes to this, as the Debye energy is 64.5 mev which would may explain the

broadness of the peak beginning around 2380cm−1. However, there are two problems

with this, firstly any such phonon absorption or emission caused broadening of the

emission bands may be expected to not only extend in one direction, i.e. why only

phonon absorption and not emission? Secondly, why is the broadness of the emission

bands appear to be temperature independent?

Meanwhile the origin of the emission bands centred on 2000 cm−1 and 1300 cm−1

are unaccounted for. As the temperature increases the emission intensity lowers,

while emission between 1200 and 1500 cm−1 disappears almost entirely by 300K.

The absorbance peaks are broadened at 80K and absent at 300K.

Figure 5.13 shows how the positions of the emission bands remain approximately

constant.
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Figure 5.12.: Si:Se emission data averaged over the total time of the measurement, detector voltage
shown on the right axis. Absorbance data, shown on the left axis. Top: 10K. Middle:
80K. Bottom: 300K. The emission data is averaged over the total measurement time
of one microsecond, with 400 data points each sepatated by 2.5ns.

207



5. Results

Figure 5.13 has the same emission data as from figure 5.12, however the absorbance

data is now the same 10K data set so as to more clearly show the overlap of the

emission and different transition positions.
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Figure 5.13.: Si:Se emission data averaged over the total time of the measurement, detector voltage
shown on the right axis. Absorbance data, shown on the left axis. Top: 10K. Middle:
80K. Bottom: 300K. The emission data is averaged over the total measurement time
of one microsecond, with 400 data points each separated by 2.5ns
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5.5.1.2. 2P0 and 2P±1 → 1S(A1) Time Traces

The aforementioned radiative transitions are of primary interest. They are also the

first and second strongest sets of absorption peaks, and can thus be expected to be

strong emitters. Thus traces along the time axis, showing only one set of energy

data points, will show the evolution of the measured detector signal at a single

wavenumber point, and thus the emission from the Si:Se sample. By fitting to the

time trace of emission, and assuming a single exponential decay, the decay time

constant can be estimated.

Thus sets of time traces, for both the 2P0 and 2P±1 transitions, at the three measured

temperatures 10K, 80K and 300K, are shown for atomic and diatomic selenium donor

complexes in figures 5.14 and 5.15 respectively; where fitting lines are included in

red and extend past the point that the data is fit to, in order to clearly show where

the fit fails. The detector signal measuring emission is shown in blue.

Fitting Procedure

Non-coherent radiative emission is proportional to the number of excited atoms,

thus an exponential decay of emission will result with the assumed form of equation

5.16; where A is a scaling constant, Y (t) is the intensity as a function of time t,

and τ is the radiative emission decay constant. In order to fit to an exponentially

decaying optical emission the natural logarithm of the emission intensity is taken,

and a linear least squares fitting routine is used; this gives a straight line equation

as in 5.17.

This has an advantage over fitting to the exponential decay form of the data. An

arbitrary fixed difference between the data and fitting line will give a greater per-

centage error at the low value exponential tail as compared to that at the peak

value; because there are many more low value points than high, an exponential fit
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will preferentially fit to the low value points. Fitting to a linear decay, as when the

logarithm of the data is taken, also has this problem, but because the data intensity

only varies linearly rather than exponentially, the overweighting is lessened, giving

a better overall fit between data and model at the decay tail. The fitting is then

performed by the python numpy.polyfit function [4], and errors are then obtained

from the data to fit covariance matrixes in the usual manner [157]. The time points,

over which the lines are fit to the data, were determined manually, by varying the

time so as to minimise the statistical error in the fit. In addition to this, a real

trend in the data will be fitted to even with a low number of data points, as long

as the noise remains constant and random, although the fitting uncertainty will be

larger. By reducing the fitting time until the lifetime is approximately invariant

(small changes will occur due to the noise in the data), an estimate of the lifetime

is obtained and the time range to fit over is then extended until the fit begins to

diverge from the data.

Y (t) = Ae−
t
τ (5.16)

ln(Y (t)) = ln(A)− t

τ
(5.17)

Figure 5.14 shows the atomic transitions. Fitting errors are small in this, and it is

apparent to the eye that the fitting lines agree well with the data for all temperatures,

and both transitions. In the 10K and 80K plots, most especially for 80K 2P±1,

there is weak evidence of a second decay process; a second straight line region of

the logarithm data indicates that there may be a slower radiative process, with a

longer lifetime. Due to time constraints this second potential decay has not been
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investigated. However, a proposed explanation is a slower process occurring, with

the 2P states as the lower level; it is possible that this slow process is filling in the

2P states at a much slower rate than they are depopulated, giving rise to a second

straight line region in the logarithm data.

For both transitions the lifetime fits show a shortening as the temperature increa-

ses. Non-radiative decay processes which reduce the excited state population will

manifest as a shortening of the fit lifetime. Because of this the shorter lifetimes at

higher temperature are to be expected, due to the increased probability of phonon

assisted non-radiative transitions reducing the excited state populations.
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Figure 5.14.: Emission time traces at wavenumbers corresponding to atomic 2P0 and 2P±1 to 1S(A1)
Si:Se donor electron transitions. Detector: detector voltage amplified by the circuit
in figure 4.4. Top: 10K. Middle: 80K. Bottom: 300K. Fitting line parameters are
given in inset legends; dashed lines show the fit peak and half maximum points, with
corresponding times.
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Figure 5.15 then shows the diatomic transitions. It can be clearly seen, and fitting

errors corroborate this, that the fitting lines agree very well with the data for all

temperatures and both transitions. In the 10K and 80K plots, most especially for

80K and 2P±1, there is weak evidence of a second decay process. This manifests

as a second straight line region of the logarithm data, and indicates that there is a

slower, longer lived, radiative process occurring. Due to time constraints this second

potential decay has not been investigated in details, however a possible explaination

is a slower process with the 2P states as the lower level; it is thus possible that

this slow process is filling in the 2P states at a much slower rate than they are

depopulated, giving rise to a second straight line region in the logarithm data.
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Figure 5.15.: Emission time traces at wavenumber corresponding to diatomic 2P0 and 2P±1 to
1S(A1) Si:Se donor electron transitions. Detector: detector voltage amplified by the
circuit in figure 4.4. Top: 10K. Middle: 80K. Bottom: 300K. Fitting line parameters
are given in inset legends; dashed lines show the fit peak and half maximum points,
with corresponding times.
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A cartoon schematic of the believed donor electron behaviour is shown in figure

5.16. This shows the optical pumping of the donor electrons into the conduction

band, their presumed phonon decay to the band bottom, or direct optical transition

to ground, followed by a set of transitions from excited donor states; the emission

spectrum is then shown at the bottom of the figure.
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Figure 5.16.: Proposed electron decay pathways, along with a corresponding emission
spectra. y axis: Energy levels of the atomic and diatomic selenium donor
electrons, on the right and left. x axis: Photo-luminescence shown in
cm−1; 2P0 transitions for atomic and diatomic donors, marked at 1572cm−1

and 2380cm−1. The Blue arrow: 1220nm pump laser.Green arrows:
Phonon mediated conduction band relaxation. Debye frequency is shown
in green.
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5.5.2. Experiment to Theory Comparison

The fit lifetimes for both atomic and diatomic selenium donor complexes are col-

lected and compared to those estimated by Fermi’s golden rule, in table 5.9; tran-

sitions occurring in diatomic complexes could not be predicted as accurately as the

atomic transitions. This is because the EMT and simple hydrogen wavefunction

modelling completely ignores any effects from a nearby selenium atom, as for the

diatomic states.

Comparing the lifetimes values in table 5.9, it can be seen that all the measured

lifetimes are longer than the detector response time of 40 ns; this lifetime is defined

as that to reach 1
e

of the peak intensity. Strictly speaking, the total measured signal

must be longer than 40ns to be sure of this, and if the rise time of 20ns is also

considered then that gives a target of 60ns. Beginning at the start of the signal rise,

which occurs at ≈75ns, there is between 75 to 100 ns until signals have decayed. A

conclusion to be drawn from this is that the measured lifetimes must be due to the

radiative emission.

The measured lifetimes for each set of transitions remains roughly constant with se-

lenium complex and temperature categories, for example all atomic 2P0 transitions

are similar. Weaker agreement is found with the estimated lifetimes. The strongest

agreement for the 2P0 is the scaled hydrogen, with 101 ns compared to measured

values within the 52.3 - 82.4 ns range. This is unexpected because the scaled hydro-

gen model does not account for the degeneracy of the effective masses of the donor

electrons in the silicon.

Meanwhile the best agreement for the 2P±1 is the EMT to EMT scaled transition,

with a value of 135 ns to the measured 44.5 - 74.9 ns range. This is also unexpected

because the EMT scaled 1S(A1) state is known to be incorrect due to the energy
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inaccuracy.

However, there is agreement within an order of magnitude between the experiment

and theory. Firstly, this suggests that the Mott transition scaled 1S(A1) state is

not wholly accurate. The effects of the second selenium donor electron may not

be as small as initially estimated. As they have the weakest absorbance lines, it

is not surprising that the ionised transitions do have any measurable emission; any

emission from ionised states could be expected to be unaffected by the second donor

electron, as it is not localised at that same nucleus. Regardless of the cause, it seems

that the ground state wavefunction is only approximately estimated.

An counterintuitive aspect of the lifetimes shown in table 5.9 is that those for the

diatomic complexes get longer, rather than shorter, with increasing temperature;

this could be similar to that for the phosphorus donor states in [45], where the 2P±1

state exhibits a stronger positive temperature dependence than the 2P0, although

both do to some extent. This is, however, only measured here for the 2P0 state, and

could be erroneous.

5.6. Alternative Possible Decay Pathways and

Complicating Factors

The measured decay lifetimes discussed have so far been assumed to be purely due

to radiative emission, however, this is only one of several possible decay pathways

for the excited donor electrons; of course, all transition rates calculated via Fermi’s

golden rule are purely dipole interaction caused radiative emission. Not only are

there alternate decay pathways, but it is possible that the effect of things such as

the recombination from the conduction band may take longer than believed.
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To see some of the possible alternate decay pathways, along with complications

to the simple radiative decay picture, refer to figure 5.16. The possible alternate

relaxation pathways are listed, roughly in the order that they can occur in the

experiment.

These pathway complications include:

1. Speed of phonon assisted relaxation, or cascade, to conduction band minimum.

2. Recombination speed from the conduction band to excited donor states.

3. Cascades between excited states causing delay.

4. Relaxation to intermediate states, and subsequent re-excitation or decay.

5. Re-ionisation by photon, or phonon, absorption.

6. Trapping of electrons in silicon defects, or other impurities.

7. Multiple donor atom complexes complicating things.

The first issue to consider is the speed of phonon assisted relaxation to the con-

duction band minima. If the excited donor electrons take a significant amount of

time to fall to the conduction band minima, then any capture of those electrons

by excited donor states is delayed. This relaxation to the conduction band minima

is mediated by phonon emission and interaction. If the excited electrons are near

the conduction band minima, then a recent ultrafast carrier relaxation study [158]

suggests that the relaxation may be as fast as ≈ 240 fs; if the electrons are excited

to a different valley in the conduction band, then the relaxation to the conduction

band minima may take only an additional ≈ 100 fs.

The next issue is the capture rate, or recombination speed, for electrons transitio-

ning from the conduction band minima to excited donor states. This has a markedly
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different characteristic shape, reciprocal linear [159, eq 1.20], to the exponential form

of radiative decay. The present author could not find any experimental information

on the carrier capture rate. On a log intensity scale both an exponential and reci-

procal decay will appear linear, however, they will not have the same linear trend.

Therefore, the lack of two clear linear trends indicates that the capture rate is not

dominant, or significant, on the scale of the total emission decay lifetime.

Cascades and relaxation to intermediate states are similar, and linked together.

Cascades between excited states refers to an excited electron decaying through, one

by one, a plethora of the excited states (that asymptotically approach the conduction

band minima, eg. 3p,3f,4d, 5f etc). If the excited electrons are captured by one of

these states, that has greater energy than the 2P states, then any additional time

taken to decay to the 2P state will contribute to the measurement of that specific

radiative decay rate. This will have the effect of spreading out the measured 2P to

1S(A1) decay lifetime. Assuming that a decay to the 2P states is even possible, for

example if the excited donor electron cascades to the 3P state then any transition

to the 2P state is incredibly unlikely as the dipole matrix element is zero.

Relaxation to intermediate states refers to states such as the 2S, 1S(E), and 1S(T ),

from which there is no dipole interaction caused transition to the ground state.

While there is measured emission corresponding to the energies of these states tran-

sitioning to the ground 1S(A1) state, such transitions can be expected to be slow as a

direct consequence of their zero strength di-polar interaction. The excited electron

is susceptible to re-excitation, presumably by phonon absorption as it is unlikely

that there will be a large amount of photons of sufficient energy; at least, those not

emitted by other excited donor electrons decaying into such a trapping intermediate

state, as these will be the only photons to cause a net removal of a donor electron

from the intermediate state. These re-excited electrons will then interfere with the
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measurement of the radiative decay lifetime in the same way that cascading elec-

trons captured by higher excited states can. That is, by slowly repopulating the 2P

states and having the effect of spreading out the measured emission decay.

Any of the electrons that have decayed, whether they are in the ground, or an

intermediate, state are then susceptible to re-excitation. For electrons in the ground

state, any re-excitation is probably from photon absorption. This is due to the

lack of phonons in silicon, of sufficient energy, and the low probability of a multiple

phonon absorption. However, for intermediate states the re-excitation could come

from either photon or phonon, as no state except the ground is deep enough to

require multiple phonons to be excited to a higher energy state. If the electron is

excited back to the conduction band then this re-excitation becomes re-ionisation.

This can interfere with the measurement of the radiative decay rate for various

reasons: the electron is susceptible to the delays of cascading back to the 2P states;

the absorption of a photon prevents measurement of that photon; any subsequent

re-emission of a photon gives the appearance of a long decay time, where there has

been a decay, photon absorption, and then a second decay. All of these have the

effect of spreading out the measured exponential emission decay.

It is also possible that excited electrons in the conduction band are not recaptured

by the donor atoms, but are instead trapped in a defect or other impurity state. This

can have an affect on the measured lifetime if the impurity is ionised, such that the

electron re-enters the conduction band and then is susceptible to the other problems

listed above in addition to the time spent in the impurity, and ”wandering” in the

conduction band, artificially inflating the measured radiative decay lifetime.

Finally, it is possible for multiple donor substitutional complexes to further interfere.

If several Se atoms are in close proximity, not only do they affect each others energy
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levels, but they could affect the radiative recombination rates (in addition to all the

other listed problems). This is because one atoms excited state wavefunctions may

overlap the lower energy wavefunctions of another atom. As an example consider

the 2P0 to 1S(A1) transition, except where the initial and final states are of separate

but close atoms. In this case the dipole matrix element will be much less, due to the

presumably smaller total wavefunction overlap (it is plausible that for some states

the overlap is greater for certain relative atom positions). Thus altering the decay

rate.

Many of the above problems can be overcome by the use of direct, resonant, stimula-

tion of the desired transition. For example, by the use of a pump probe experiment.

In this case, the sample would be illuminated by some broad band source, while

the transmission through the sample was measured as a function of time and wa-

velength. At some known duration, and pulse shape, laser pulse, of much greater

intensity than the broad band source, would stimulate the transition in question.

The transmission through the sample, following the end of the laser pulse, could then

be measured at the transition energy, giving the decay lifetime. Of course, this does

not solve the donor complex, re-ionisation/excitation, or trapping in another defect,

problems. However, it does remove the phonon assisted relaxation, recombination

from conduction band to donor, cascades between excited states, and relaxation to

intermediate state problems.

5.7. Conclusions

In order to appropriately conclude this chapter, the results must be placed back

into context. To do so, the questions this thesis seeks to assist in answering are

recalled: “Are there are optical transitions with long radiative lifetimes in chalcogen

deep double donor silicon systems?”, and “Do simple scaled hydrogen wavefunctions
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from EMT provide a good description of reality for chalcogen deep double donor

electrons in silicon?”.

The first question is motivated by the knowledge that similar pnictogen donor sy-

stems in silicon have radiative lifetimes of ≈ 200ps[104][45][105], and a coherence

lifetime of 160± 20ps[101]; for the 2P0 state of a phosphorus donor electron. It ap-

pears that both 2P states of selenium donors in silicon have longer radiative lifetimes

than phosphorus; all selenium lifetimes are tens of nanoseconds, by a factor of at

least 200 to phosphorus. The 10K 2P0 state has approximately 80ns for both atomic

and diatomic complex donor electrons; correspondingly, the 2P±1 state has lifetimes

of approximately 60ns and 70ns, for atomic and diatomic complexes respectively.

Selenium donor complexes have a longer 2P state radiative lifetimes than phospho-

rus.

However, there are possible flaws with this experimental data. Firstly, the decay

time could be dominated by a recombination time from the conduction band to the

excited donor states. This could be an explanation as to why the lifetime appears to

be similar across such broad emission bands. However, sources such as [45] propose

that recombination from the conduction band should take no more than 16ps from

complete ionisation, for phosphorus. This could be similar for chalcogen donors, as

it is presumed that recombination occurs with excited donor states, not the ground;

the excited states both have a binding energy of 11.49meV for the 2P0 state.

A possible experiment to resolve this is a direct pump prove measurement. Instead

of pumping non-resonantly into the conduction band, a pump pulse is tuned to

a transition energy. This pulse is split by a 50/50 BS, and one half of the pulse

is directed down a variable optical delay line or pathway. The non-delayed pulse
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then resonantly pumps the sample, electrons are excited to higher states, and then

begin to decay. After some time the delayed pulse is directed at the sample; the

transmission of the second pulse will depend upon how many electrons have decayed

back into their ground state. Thus by repeatedly varying the delay line, the direct

transition lifetime can be measured.

A second flaw is that the lifetimes are on the threshold of the detector response

time, 40ns, with a 45ns lifetime, for the 2P±1 diatomic state at 10K, being on this

edge. A repeat of the conduction band pumping, time resolved emission, experiment

with a faster detector would resolve this problem; although a faster detector would

require a smaller element, thus making the collected emission light, and detector

signal, weaker. However, a faster detector is not required for a direct pump probe

experiment.

If the long lifetime is not due to recombination, then the next logical step is to

cause controlled Rabi oscillations between the 2P and ground states. This, along

with the application of precise π pulses and the optical “Hann” echo, could allow the

measurement of the T2 coherence lifetime of the states; this would be a selenium copy

of the experiments peformed for phosphorus in [101]. Further work on fulfilling the

DiVincenzo requirements of quantum computing, using chalcogen donor systems,

can only proceed if the recombination lifetime is not found to be dominant over the

radiative, and if the coherence lifetime is sufficient.

Now the calculated lifetimes are considered for summary. The second question of

the thesis is motivated by the need to understand the donor electron wavefunction,

if the system is to be used for quantum technological applications; with the primary

envisigened apllication being for Qbitinteraction, as in the Stoneham proposal for

a quantum computer [1]. Agreement within an order of magnitude between expe-
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riment and calculation is obtained. The method of calculated transition rates ex-

pected to be most accurate is that between EMT excited, and Mott transition scaled

ground, states. This is because the excited state wavefunctions already give accurate

agreement with measured spectra [8][115][107][94]; the wavefunction must be simi-

larly accurate. The Mott transition is also a well known phenomenon[123][124][2].

Such calculated lifetimes are then between 9 and 17 ns for the 2P0, and 12 and 20

ns for the 2P±1, states.

The calculated lifetime values expected to be most accurate only differ by a factor

of between 4 to 8 from those experimentally measured. The central cell problem is

presumed to be the cause of this discrepancy, with the 1S(A1) ground state the most

vulnerable to error. An investigation of the literature surrounding the theoretical

correction to the central cell problem may provide additional insight. Combined

with more precise Mott transition studies, it may be possible to improve the 1S(A1)

ground state accuracy.

In summary, time-resolved emission lifetimes, for the 2P0 to 1s(A1) ground state of

selenium donor electrons in silicon, have been measured to be as long as ≈80ns for

atomic donor complexes at 10K. The 2P±1 transition has a lifetime as short as ≈

45ns at 300K, this is on the edge of the detector decay times, and could merely be

an upper bound.

The corresponding diatomic transitions are ≈80ns for the 2P0 state, and ≈65ns for

the 2P±1.

EMT, and simply scaling wavefunctions, provide a wide range of lifetime estimates.

The Mott transition scaled ground state, along with the 2P states, both presumed

to be reasonably accurate, give lifetime estimates of ≈10ns. Accuracy between
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experiment and calculation is then an order of magnitude. This is not validation

of the theory, but neither is it complete dismissal; more work is needed for both

experiment and theory.
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FWHM cm−1(meV) Lifetime (10−12s)
Peak cm−1(meV) 4K 14K 80K 4K 14K 80K

Si:Se2 From Part A figure 5.4.
1572.09 (194.914) 1.687 (0.209) 1.687 (0.209) 5.062 (0.628) 9.884 9.884 3.295
1599.88 (198.360) 1.687 (0.209) 1.687 (0.209) 2.652 (0.329) 9.884 9.884 6.290
1613.73 (200.077) 1.687 (0.209) 1.687 (0.209) 4.580 (0.568) 9.884 9.884 3.641
1620.9 (200.966) 1.687 (0.209) 1.687 (0.209) 15.910 (1.973) 9.884 9.884 1.048
1640.1 (203.346) 1.687 (0.209) 1.928 (0.239) 4.821 (0.598) 9.884 8.648 3.459
1647.67 (204.285) 1.928 (0.239) 2.170 (0.269) 6.026 (0.747) 8.648 7.687 2.767
1653.34 (204.988) 6.509 (0.807) 15.669 (1.943) 15.910 (1.973) 2.562 1.064 1.048

Si:Se From Part B figure 5.4.
2380.7 (295.169) 1.446 (0.179) 1.446 (0.179) 7.473 (0.927) 11.531 11.531 2.232
2398.73 (297.405) 2.170 (0.269) 2.411 (0.299) 33.266 (4.124) 7.687 6.919 0.501
2421.89 (300.276) 1.446 (0.179) 1.446 (0.179) 7.232 (0.897) 11.531 11.531 2.306
2429.25 (301.189) 1.446 (0.179) 1.446 (0.179) 16.633 (2.062) 11.531 11.531 1.003
2448.23 (303.542) 1.446 (0.179) 1.446 (0.179) 7.714 (0.956) 11.531 11.531 2.162
2455.87 (304.489) 1.687 (0.209) 1.687 (0.209) 50.622 (6.276) 9.884 9.884 0.329
2461.71 (305.213) 28.445 (3.527) 36.641 (4.543) 53.274 (6.605) 0.586 0.455 0.313

Si:Se+ From Part C figure 5.4.
4761.65 (590.369) 2.411 (0.299) 2.652 (0.329) 12.053 (1.494) 6.919 6.290 1.384
4844.02 (600.582) 2.411 (0.299) 2.652 (0.329) 15.187 (1.883) 6.919 6.290 1.098
4858.69 (602.401) 2.411 (0.299) 2.652 (0.329) 33.266 (4.124) 6.919 6.290 0.501
4896.83 (607.130) 2.411 (0.299) 2.411 (0.299) 9.401 (1.166) 6.919 6.919 1.774
4911.5 (608.948) 5.062 (0.628) 5.062 (0.628) 2.411 (0.299) 3.295 3.295 6.919

Table 5.2.: The peak position, FWHM, and lower bound of the associated lifetime of
peaks from figures 5.4 and 5.3; see table 5.3 for comparisons with literature
sources. The peak position and FWHM are given in wavenumbers, with
the meV value in square brackets alongside. The lifetimes are calculated by
using the FWHM linewidth to estimate the uncertainty in the energy and
then using Heisenburgs uncertainty principle to estimate the corresponding
lifetime.
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Transition[94] Energy (cm−1)[mev] [94] Absorbance Peak(cm−1)[mev] ∆E (cm−1)[mev]
Conduc. → 1S(A1) 2473.1 [306.63] na na

2P0 → 1S(A1) 2380.5 [295.14] 2380.7 (295.169) 0.2 [0.029]
2P1 → 1S(A1) 2421.6 [300.24] 2421.89 (300.276) 0.29 [0.036]
3P0 → 1S(A1) 2428.9 [301.15] 2429.25 (301.189) 0.35 [0.039]
3P1 → 1S(A1) 2448 [303.51] 2448.23 (303.542) 0.23 [0.032]
4P0 → 1S(A1) 2446.6 [303.34] 2448.23 (303.542) 1.63 [0.208]
4P1 → 1S(A1) 2455.4 [304.43] 2455.87 (304.489) 0.47 [0.208]
4F1 → 1S(A1) 2457.8 [304.73] 2455.87 (304.489) 2.07 [0.241]
5F0 → 1S(A1) 2460 [305.00] 2461.71 (305.213) 1.71 [0.213]
5F1 → 1S(A1) 2463 [305.37] 2461.71 (305.213) 1.29 [0.157]
5P1 → 1S(A1) 2461.4 [305.17] 2461.71 (305.213) 0.31 [0.043]
6P1 → 1S(A1) 2464.4 [305.55] 2461.71 (305.213) 2.69 [0.337]
7P1 → 1S(A1) 2466.3 [305.78] 2461.71 (305.213) 4.39 [0.567]

Table 5.3.: Comparison of transition energies of atomic selenium states in silicon from
[94], with measured peaks in the absorbance spectra. Conduc. : Conduction
band.

Transition[94] Energy (cm−1)[mev][94] Absorbance Peak (cm−1)[mev] ∆E
CdBnd → 1S(A1) 1665.1 [206.44] na na

2P0 → 1S(A1) 1571.7 [194.86] 1572.09 (194.914) 0.39 [0.054]
2P1 → 1S(A1) 1613.5 [200.05] 1613.73 (200.077) 0.39 [0.054]
3P0 → 1S(A1) 1620.6 [200.93] 1620.9 (200.966) 0.3 [0.036]
3P1 → 1S(A1) 1639.9 [203.32] 1640.1 (203.346) 0.02 [0.026]
4P0 → 1S(A1) 1638.4 [203.13] 1640.1 (203.346) 1.7 [0.216]
4P1 → 1S(A1) 1647.4 [204.25] 1647.67 (204.285) 0.27 [0.035]
4F1 → 1S(A1) 1649.8 [204.55] 1647.67 (204.285) 2.13 [0.27]
5F0 → 1S(A1) 1651.8 [204.8] 1653.34 (204.988) 1.54 [0.1882]
5F1 → 1S(A1) 1654.8 [205.17] 1653.34 (204.988) 1.46 [0.029]
5P1 → 1S(A1) 1653.3 [204.98] 1653.34 (204.988) 0.04 [0.008]
6P1 → 1S(A1) 1656.3 [205.36] 1653.34 (204.988) 3.04 [0.372]
7P1 → 1S(A1) 1658.4 [205.62] 1653.34 (204.988) 5.06 [0.74]

Table 5.4.: Comparison of transition energies of diatomic selenium states in silicon from
[94] with measured peaks in the absorbance spectra.
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Upper Method 1S(A1) Method OS 2P0 OS 2P±1

Hydrogenic Hydrogenic 0.254 0.0352
Hydrogenic Mott 1 109 124
Hydrogenic Mott 2 174 176

EMT EMT 9.76 3.44
EMT Mott 1 7.09 23.6
EMT Mott 2 13.2 39.6

Table 5.5.: Different methods of calculating wavefunctions and their associated oscillator
strengths for both 2P0 and 2P±1 to 1S(A1) dipole interaction transitions,
given to 3sf. OS: Oscillator Strengths. Hydrogen: Using fully spherical
scaled hydrogen wavefunctions to match the energy. EMT: Effective mass
theory variationally scaled prolate ellipsoid hydrogenic wavefunctions. Mott:
Mott transition scaled 1S(A1) states, with 1 and 2 corresponding to the donor
concentrations of 1.8 and 4.3× 1020cm−3 respectively.

Donor Complex OS 2P0 OS 2P±1

Atomic 41.3 105
Diatomic 119 334

Singly Ionised 13.8 38.5

Table 5.6.: Oscillator strengths obtained from integrating the area under absorption cur-
ves in figure 5.9, donor impurity concentration data from table 5.1, and cal-
culated using equation 5.5. OS: Oscillator Strengths

Lit Source OS 2P0 OS 2P±1

c 58.6 28.8
b 57.9 28.7

Table 5.7.: Oscillator strengths for both 2P0 and 2P±1 to 1S(A1) dipole interaction tran-
sitions, given to 3sf. OS: Oscillator Strengths Lit Source: Literature source,
from [156, table 5.20]with the same labels; c refers to those from [155] (these
values are quoted in the other, more recent, source [156, table 5.20]).
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Source OS 2P0 OS 2P±1

Literature
c 58.6 28.8
b 57.9 28.7

EMT Calculation
Hydro - Hydro 0.254 0.0352
Hydro - Mott 1 109 124
Hydro - Mott 2 174 176

EMT - EMT 9.76 3.44
EMT - Mott 1 7.09 23.6
EMT - Mott 2 13.2 39.6

Absorption Spectra
Atomic 41.3 105

Diatomic 119 334
Singly Ionised 13.8 38.5

Table 5.8.: Collation of the different oscillator strengths from different sources. Only the
2P0 and 2P±1 to 1S(A1) dipole interaction strengths, from the area under me-
asured absorption spectra, literature values, and EMT based calculations of
the author are shown here. OS: Oscillator Strengths, given to 3sf. Source:
Labels correspond to the source of the OS. Literature: OS’s from literature
sources, [156, table 5.20]with the same labels as given there; c refers to those
from [155] (these values are quoted in the other, more recent, source [156,
table 5.20]). EMT Calculation: Calculated OS’s for different methods of
estimating the wavefunctions of the states, given as: excited state-ground
state calculation method. The different methods are: Hydro- Using fully sp-
herical scaled hydrogen wavefunctions to match the energy; EMT - Effective
mass theory variationally scaled prolate ellipsoid hydrogenic wavefunctions;
Mott- Mott transition scaled 1S(A1) states, with 1 and 2 corresponding to
the donor impurity concentrations of 1.8 and 4.3 × 1020cm−3 respectively.
Absorption Spectra: OS obtained from integrating the area under ab-
sorption curves in figure 5.9, donor impurity concentration data from table
5.1, and calculated using equation 5.5. Atomic, diatomic, and ionised refers
to a single, pair of, or singly ionised impurity atom or atoms.
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Method τ1S(A1),2P0 ( ns ) τ1S(A1),2P±1 ( ns )
Expt Atomic 10 K 82.4 63.1
Expt Atomic 80 K 74.6 63.1
Expt Atomic 300 K 52.3 44.5
Expt Diatomic 10 K 73.7 72.8
Expt Diatomic 80 K 73.3 74.9
Expt Diatomic 300 K 80.4 65.5

Hydrogen → Hydrogen 2680 74700
Hydrogen → Mott 1 6.27 21.4
Hydrogen → Mott 2 3.94 15.0

EMT → EMT 12.3 135
EMT → Mott 1 16.9 19.6
EMT → Mott 2 9.09 11.7

Table 5.9.: Comparison of the experimentally measured, and estimated lifetimes of the
2P0 and 2P±1 → 1S(A1) radiative transitions in selenium doped silicon.
The estimated values are for the wavefunctions most closesly matching the
atomic state energies, while those scaled by the Mott transition are ato-
mic or diatomic independent. Expt: Fits to the experimentally measured
emission data. Hydrogen: Scaled hydrogen. EMT: Effective mass theory
variationally scaled prolate wavefunctions. Mott: Mott transition Bohr ra-
dii scaled 1S(A1) states; 1 and 2 corresponding to donor concentrations of
1.8cm−3 to 4.3× 1020cm−3 respectively.
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Firstly, a summary of the work in this thesis. The importance of quantum compu-

ting is reviewed, with emphasis on donor impurity systems in silicon. Donors are

discussed, with the potential benefits of chalcogens highlighted.

Effective mass theory is reviewed, and it’s applicability to chalcogen donors in silicon

discussed. Using effective mass theory, prolate spheroid wavefunctions of the 1S,

2P0, and 2P±1 states are found using a variational method. Simple, uniformly

spatially scaled hydrogen like wavefunctions are also calculated. Effective mass

theory gives good energy agreement to absorbance data and the literature for the

2P states, but not for the 1S(A1) ground state; the hydrogen scaled wavefunctions

are scaled by the energy and therefore always fit it well. Mott semiconductor to

conductor transition data from the literature is then used to scale the ground state.

Fermi’s golden rule is, with the previously calculated wavefunctions, used to estimate

dipole radiative transition lifetimes. Estimates are between ≈ 10ns and 20ns for

effective mass theory prolate spheroid 2P to Mott scaled 1S(A1) wavefunctions.

A time resolved Fourier transform spectroscopy experiment is described, where a

1220 nm laser pulse excites selenium donor electrons, present in a sample cooled to

10k, 80k and 300k, into the conduction band of silicon, and the resulting emission

from the electrons cascade back to the ground state is measured as a function of

energy and time. Absorption spectra are used to match selenium donor in silicon
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sample features to the literature and the prior effective mass calculations. Oscillator

strengths for these features are compared to those obtained by the dipole matrix

elements of the effective mass theory calculated, and Mott scaled ground state, wa-

vefunctions and those of effective mass theory oscillator strengths in the literature.

Phenomenological fits are carried out to the selenium sample emission data, model-

ling it as an exponential decay in radiative intensity. Lifetimes of between ≈ 60ns

and 80ns are found.

The primary finding of this thesis are then:

• Oscillator strengths determined from absorption spectra of singly ionised sele-

nium donors in silicon, determined from integrating the area under absorption

curves, are 13.8 and 38.5 for 2P0 and 2P±1 to 1S(A1) states. Calculated di-

pole oscillator strengths, using effective mass 2P , and Mott transition data

scaled 1S(A1), states estimates oscillator strengths of 13.2 and 39.6 for the

same transitions.

• The radiative emission of a selenium doped silicon sample, with the properties

given for sample 71-8 in table 5.1 cooled to 10K and following pumping by an

approximately 7.5mJ laser pulse at 1220nm, can be fit to an exponential decay.

For atomic selenium complexes, this gives characteristic lifetimes of 63.1ns

and 82.4ns for the 2P±1 and 2P0 to 1S(A1) transitions, while the effective

mass theory scaled excited, and Mott transition scaled 1S(A1), states predict

lifetimes of 11.7ns and 9.09ns. For diatomic complexes, 72.8ns and 73.7ns are

measured for the 2P±1 and 2P0 to 1S(A1) transitions, while the effective mass

predictions are lifetimes of 19.6ns and 16.9 ns. Emission from singly ionised

selenium complexes is too weak to be detected.

Based on this, using Mott transition data to scale the 1S(A1) ground state is more
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accurate than effective mass theory in predicting the correct dipole matrix elements.

Singly ionised donors in selenium are likely to be the closest fit to effective mass

theory predictions. There is long lived emission from selenium donors in silicon, of

which the intrinsic radiative lifetime may be a significant component.

It was expected that the effective mass and Mott scaled ground state lifetime pre-

dictions would be most accurate for singly ionised selenium as shown by oscillator

strength comparisons, rather than atomic or diatomic, complexes. However, within

order of magnitude agreement is found for atomic and diatomic complexes at 10K,

indicated by radiative emission data. Much further work remains to: improve model-

ling of the donor wavefunctions to predict matrix elements and radiative transition

rates; clarify whether selenium, or other chalcogen, donor impurities in silicon are

suitable for quantum information purposes.
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A. Review of Quantum Mechanics

This appendix contains the minimum necessary quantum mechanics background to

understand and interpret both the measured phenomenon in this thesis, and the

suitability of the physical system for quantum computing.

A.1. Postulates of Quantum Mechanics

Quantum mechanics is based upon a set of axioms, or postulates. These postulates

form a probabilistic framework, where the main unintuitive consequence is negative

and positive probability interference in a vector space describing all possible states

of a system. The postulates were historically proposed intermittently, one by one

throughout the 20th century, and have proven to be experimentally verified so far.

Below the postulates are listed, roughly following [23, p10-12].

The postulates are:

1. Every system can be represented by a probability vector with a phase; this

is also a wavefunction Ψ(x, y, z, t), or in Dirac notation |Ψ〉, which exhibits

amplitude interference. This wavefunction is then a ray that comprises all

possible directions of the probability vector.

2. All physically observable quantities of the system are fully described by her-

mitian linear operators that act upon the wavefunction of the system. The

measured value is then an eigenvalue of the operator, and the wavefunction is
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an eigenvector; only the eigenvalues corresponding to the basis vectors of the

space can be observed, superpositions are lost to any individual observer.

3. The probability of measuring a specific eigenvalue is the integration over all

space of the dot product of the complex conjugate of the wavefunction before

the measurement, with the result of applying the measurement operator to the

pre-measurement wavefunction; the probability magnitude is normalised to 1.

4. The wavefunction of a non-relativistic physical system evolves as prescribed

by the time dependent Schrödinger equation.

A.1.1. Expanding the Postulates

A physical system is described by a ray in a vector space of all possible states of

the system. A Vector corresponding to a wavefunction of the system is such a ray,

and the Hilbert space is the vector space. Measured quantities are the eigenvalues

of operators that act upon the wavefunction, which is itself an eigenfunction of the

operator. The operator corresponding to the energy of the physical system is known

as the Hamiltonian H, and describes the time evolution of the system with the time

dependent Schrödinger equation; the time independent Schrödinger equation is then

simply the eigenvalue equation of the energy operator.

A.1.1.1. The Hilbert Space and Wavefunction

The Hilbert space is a vector space over the set of complex numbers C, i.e. this

is a set of vectors in which each magnitude along a specific basis direction is, in

general, a complex number. The Hilbert space has a defined dot product, and all

the properties associated with vector spaces such as commutativity, associativity,

the existence of the inverse, etc, of the vectors.[160][161]

As a Hilbert space is the vector space of the possible states of the Hamiltonian, this
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includes not only the basis states but all their possible linear combinations. For

the purposes of quantum mechanics, a complete Hilbert space is then one where it

is possible to construct a pair of state vectors, out of some linear combination of

basis states, with an energy difference between them that is convergent upon an

arbitrarily small value as more terms are added to the linear combinations. This

also applies to other measurable operators and their eigenvalues.

Each dimension, or basis vector in the Hilbert space, corresponds to a possible state,

although not all possible states are basis vectors. The Hilbert space is a vector space,

and any addition of two vectors results in another vector within the space, therefore

any linear combination or superposition of the basis vectors is itself then a possible

state of the system. The basis vectors in the Hilbert space are commonly chosen to

be orthogonal; there must be some set of basis vectors that are orthogonal although

it is possible to arbitrarily construct a basis that doesn’t follow this pattern. The

linear superposition or combination of states forming another valid state, or the

wavefunction of the system that is in general a linear combination of states is written

as:

|ψj〉 =
∑
i

Ci |φi〉 (A.1)

The weighting coefficients of the different basis states is then:

Ci = 〈ψj|φi〉 (A.2)

The orthogonality of the wavefunction basis states, where φi is the basis state in the
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ith direction and is the same as the basis vector ei but with undefined magnitude,

is then:

∑
i,j

〈φi|φj〉 = δi,j (A.3)

The wavefunction |Ψ〉 is a vector in the space of possible states, this can be written,

where N the number of dimensions of the space, ei the ith basis vector, and ai is

the complex amplitude coefficient in the ith direction, as:

|Ψ〉 =
N∑
i

ai |ei〉 (A.4)

However, the wavefunction is actually a ray, because the result of any operator acting

upon the wavefunction multiplied by a scalar constant is the same regardless of the

scalar constant. A ray is the same as a vector but with an undefined magnitude, a

ray can be seen to be the set of all possible magnitudes for the same direction. The

amplitude coefficients are any complex number, or ai ∈ C, this complex number

factor gives rise to the quantum phase of the wavefunction, and allows interference

to occur. This is also the reason why the Hilbert space is over the set of complex

number C, and not just the real numbers R.

The inner product of two wavefunctions involves the complex conjugate of the first

ray, and the non-conjugated second ray, and it must be noted that this complex

conjugate then also involves the coefficients in each basis direction, ai, because

these are, in general, complex quantities. This results in the dot product always

giving a real number. The inner product of the wavefunction with itself can then be
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interpreted as the probability of finding the physical system in the state specified

by the wavefunction. As the coefficients are in general complex quantities, this

forces the wavefunction coefficients to be normalised in such a way that the sum of

their squared magnitudes always equals 1 for any system.[23]. The normalisation

condition of the wavefunctions, where ai are the coefficients of the wavefunction for

the ith basis vector, is written as:

N∑
i

a∗i ai = X

1

X

N∑
i

a∗i ai = 1

(A.5)

As the normalised coefficients are still complex quantities, they can be represented,

where ωk is the complex phase angle of the kth coefficient, according to:

ak =
eiωk

X
(A.6)

The dot product of the wavefunctions is defined, where Ψi is a wavefunction or

vector, as:

〈Ψ1(x, y, z) |Ψ2(x, y, z)〉 =

∫ ∞
∞

∫ ∞
∞

∫ ∞
∞

φ∗1(x, y, z)φ2(x, y, z)dxdydz (A.7)

Multiple particle state spaces

When considering multiple particles, with their possible states all being vectors in

the Hilbert state space, the resulting Hilbert space of possible states of the composite

system is the tensor product of the two individual Hilbert spaces of the individual
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particles. Writing H1 and H2 as the Hilbert spaces of the first and second particles

repetitively, and H as the total Hilbert space of the composite system, with ⊗

denotes the tensor product, the new space becomes:

H = H1 ⊗H2 (A.8)

If each of the individual particles has N dimensions, corresponding to discrete states,

in their Hilbert space, then the number of possible states in the composite system

becomes N2; particle 1 in state 1 now becomes particle 1 in state 1 while particle 2

is in states 1, 2, 3, ....N . An individual state in the new composite state space, with

particle 1 in state a and particle 2 in b is a⊗ b.

A.1.1.2. Linear Hermitian Operators and Measurement

All measurable, observable quantities are represented by linear hermitian operators.

These operators map the initial state vector of the system to another such state

vector multiplied by a scalar constant, just as an eigenvalue equation.

Oφk = λkφk (A.9)

Where in equation A.9 O is the operator, φk the wavefunction comprising of the

the kth basis state out of a set of orthonormal basis states {φ}, and λk is the kth

eigenvalue. The operators are linear because O acting on 2φ maps to 2λφ; linear

mapping preserves addition and multiplication. The operator must also be hermitian

so that the measured eigenvalues are real, hermitian operators also always have a

set of basis vectors ei that are orthonormal. Because the convention is to choose the
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basis states of the Hilbert space to be orthogonal, there is a 1 to 1 correspondence

between the eigenvectors and eigenvalues.

When a physical system is measured, and because of the interpretation of the wa-

vefunction as a probability wave forcing normalisation, the average or expected

value measured is given by the integral over all space of the operator applied to

the wavefunction multiplied by the complex conjugate of the wavefunction. The

measurement, where λavg is the averages expected value, and Ψ(x, y, z) is the linear

superposition of the basis states of O, similarly to equation A.4, is written as:

|Ψ〉 =
N∑
k

ak |φk〉

λavg =

∫ ∞
∞

∫ ∞
∞

∫ ∞
∞

Ψ∗(x, y, z)OΨ(x, y, z)dxdydz

= 〈Ψ |O |Ψ〉

=
N∑
n

a∗n 〈φn|O
N∑
k

ak |φk〉

=
N∑
n

( N∑
k

{
aka

∗
n 〈φn |O |φk〉

)}
O |φk〉 = λk |φk〉

〈Ψ |O |Ψ〉 =
N∑
n

( N∑
k

{
aka

∗
nλk 〈φn |φk〉

})

=
N∑
n

( N∑
k

{
aka

∗
nλkδk,n

})

=
N∑
n

ana
∗
nλn

(A.10)

However, equation A.10 only gives the average value, any actual single measured

value must be a single λk. Therefore, measurement not only involves the opera-

tor acting on the wavefunction, which results in a scalar multiplied by the original

242



A. Review of Quantum Mechanics

wavefunction, but a second projection operator. In the case of a wavefunction com-

prising multiple basis states, the result of the first operator is a summation of eigen-

values each multiplied by the relevant eigenvalue. The second measurement operator

projects the wavefunction into the eigenspace of the measured eigenvalue.[23]

The eigenspace is the the section of the Hilbert space that contains all the eigen-

vectors that have the same eigenvalue as that measured. The projection operator

then projects the pre-measurement wavefunction onto the linear combination of

the vectors in the eigenspace. If the eigenspaces each contain only the one state,

corresponding to an orthogonal basis in the original full Hilbert space, then the

measurement and projection operator act as:

|Ψ〉 =
N∑
k

ak |φk〉

O |Ψ〉 =
N∑
k

akλk |φk〉

M
(
O |Ψ〉

)
= λr |φr〉

N∑
k

a∗kak = 1

F (r) = P (r = x)forx ∈ [N ]

F (r) = a∗rar

(A.11)

Where in equation A.11 Ψ is the full wavefunction before measurement, φk the kth

basis state, N the total number of basis states, O the measurement operator, λk the

kth eigenvalue, M the projection operator, and F (r) the discrete probability density

function for the probability of the index r to be a value in the set of integer values

up to N . The operators, corresponding to any measurement, can be represented as

a matrix acting on a column vector that represents the wavefunction. This is simply

243



A. Review of Quantum Mechanics

writing a system of independent linear equations as a matrix. The operator O, in

the orthonormal basis {φi} corresponding to normalised orthogonal basis vectors ei

for i ∈ [N ], acting on the wavefunction |Ψ〉 , is written as:

〈Ψ|O |Ψ〉 =
N∑
n

( N∑
k

〈φn| a∗nOak |φk〉
)

=
N∑
n

( N∑
k

On,k

) (A.12)

The operator matrix elements, from equation A.12, are defined by:

On,k = 〈φn |O |φk〉 (A.13)

A.1.2. The Time Dependent Schrödinger Equation

The universal wave nature of reality has its expression in the Schrödinger equation,

a time dependent wave equation, with the original equation obtained from [162],

and the modern form, where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian operator, ~

is the reduced Planck constant, m is the mass of the thing with the wavefunction

Ψ(x, y, z, t), and V (x, y, z, t) is the potential energy operator, shown below:

(
− ~2

2m
∇2 + V (x, y, z, t)

)
Ψ(x, y, z, t) = i~

∂

∂t
Ψ(x, y, z, t) (A.14)

Taking the postulate that any observable has a corresponding hermitian operator,

the energy operator or Hamiltonian can be written as H.
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H = − ~2

2m
∇2 + V (x, y, z, t) (A.15)

The Schrödinger equation is then given in its most widely recognised form.

HΨ(x, y, z, t) = i~
∂

∂t
Ψ(x, y, z, t) (A.16)

A.1.2.1. Time Independent Schrödinger Equation

The time dependent Schrödinger equation is by its own definition time dependent,

but for steady states that are not changing with respect to time, a time independent

version of the equation can be found. The time independent form of the Schrödinger

equation can be obtained by following the procedure outlined by Eisberg and Resnick

in [163, p151]. This is shown below:

Hψ = Eψ (A.17)

This highlights the vector like nature of the wavefunction, The time independent

and dependant wavefunctions are related by:

ψ(x, y, z, t) = ψ(x, y, z)e−
iEt
~ (A.18)

This shows the time independent wavefunction vector processing about the complex

plane, perpendicular to that vector (to all possible vectors in x, y, z). It is this
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which gives rise to interference, explicitly stating the amplitude interference that is

fundamental to quantum phenomenon.

A.2. Describing a Quantum system

To describe a non relativistic time independent physical system using quantum

mechanics the time independent Schröedinger equation A.17 must be used. This

describes the eigenfunctions and eigenstates, or wavefunctions and energies, of the

quantum system with the Hamiltonian operator H.

Dirac Notation

The properties of the Dirac wavefunction notation that is used throughout are

stated here. The wavefunction has the properties and can be written as shown

in equation A.19; where * denotes the complex conjugate, and O is an arbitrary

operator.

Ψ(x, y, z) = |Ψ〉(
|Ψ〉

)∗
= 〈Ψ| = Ψ∗(x, y, z, t)

〈Ψ|O|Ψ〉 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Ψ∗(x, y, z)OΨ(x, y, z)dxdydz

(A.19)

Describing the System

An arbitrary system can be described by a Hamiltonian H, and it is possible to find

a set of orthonormal basis eigenfunctions {φ}, where each index i corresponds to a

separate orthogonal dimension.

Hφi = Eiφi (A.20)

as in equation A.20; In general the states of such a system would be linear super-

positions of the basis states, with the jth such state given in equation A.21. Some
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of the properties of the eigenstates are shown in equation A.22.

|ψ〉 =
∑
i

ai |φi〉 (A.21)

∑
i,j

〈φi|φj〉 = δi,j

ai = 〈ψ|φi〉∑
i

|ai|2 = 1

(A.22)

The energy of the system is then given by equation A.23. Where the braket 〈x|y|z〉

represents the integration over all space of the complex conjugate of x multiplied by

y applied to z, ∗ represents the complex conjugate.

〈φi|H|φi〉 = 〈φi|Ei|φi〉 =

∫
φ∗iHφidV

= Ei| 〈φi|φi〉

〈φi|H|φi〉 = Ei

(A.23)

A.2.1. Hamiltonian Matrices

If a physical system is described by the Hamiltonian operator H, then the energies of

single basis states are the Schrödinger equation, equation A.20. A matrix equation

can then be assembled that describes an arbitrary number of the eigenstates of the

Hamiltonian.

Equations A.12 and A.13 are used to assemble the Hamiltonian matrix. The basis

states of this Hamiltonian matrix are the same as its right eigenvectors, thus if

we have the correct orthogonal basis states the Hamiltonian matrix is diagonal.

Consequentially, each eigenvalue will be correspond to only a single basis state, and
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only the correct eigenvalues need be found to fully specify the system.

Taking an arbitrary number of the N basis states of H, we can lay out the informa-

tion to be assembled into our matrix A.24; using the states {φ} as the eigenfuncti-

ons of the the hamiltonian operator H. This uses unmixed eigenvectors, in that

the resulting eigenvectors of the hamiltonian matrix comprise a single, unmixed,

eigenvector from the basis set {φ}.

〈φ0|H|φ0〉 = E0

〈φ1|H|φ1〉 = E1

...

〈φn|H|φn〉 = En

(A.24)

In the Hamiltonian matrix, column corresponds to the first state’s index x and row

to the second state’s index y, this is shown in equation A.25. Because the set of

basis states {φ} are orthonormal, the non-diagonal elements,(x 6= y), of equation

A.25 are zero. The full Hamiltonian matrix is then shown in equation A.26.

〈φx|H|φy〉 (A.25)

H =



〈φ0|H|φ0〉 〈φ1|H|φ0〉 ... 〈φn|H|φ0〉

〈φ0|H|φ1〉 〈φ1|H|φ1〉 ... ...

... ... 〈φ2|H|φ2〉 ...

〈φ0|H|φn〉 ... ... 〈φn|H|φn〉


(A.26)

The eigenfunctions of the Hamiltonian matrix are given by equation A.27 for the
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first and second states and so on. This results in an eigenvector matrix V as in

equation A.28. It can be seen that for this case, for an orthonormal basis, the

eigenvector matrix is the unit identity matrix I.



1

0

...

...

0





0

1

...

...

0


(A.27)

V =



1 0 ... ...

0 1 0 ...

... 0 1 0

... ... 0 1


= I (A.28)

The energy eigenvalue matrix E is then given by equation A.29.

E =



E0 0 ... ...

0 E1 0 ...

... 0 E2 0

... ... 0 En


(A.29)

The Schrödinger equation gives us the Hamiltonian matrix multiplied by the eigen-

vector matrix equal to the energy eigenvalue matrix multiplied by the eigenvector

matrix, shown in equation A.30. Condensed into matrix equation form this beco-

mes equation A.31. Given the basis functions, this then allows the calculation of

an arbitrary number of states in matrix form. However, representing the states as

a matrix does not give any benefit over individual consideration in this case.
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〈φ0|H|φ0〉 ... ... 〈φn|H|φ0〉

... 〈φ1|H|φ1〉 ... ...

... ... 〈φ2|H|φ2〉 ...

〈φ0|H|φn〉 ... ... 〈φn|H|φn〉





1 0 ... ...

0 1 0 ...

... 0 1 0

... ... 0 1


=



E0 0 ... ...

0 E1 0 ...

... 0 E2 0

... ... 0 En





1 0 ... ...

0 1 0 ...

... 0 1 0

... ... 0 1



(A.30)

HV = EV (A.31)

A.2.2. Unknown Wavefunctions

Despite the representation of a physical system as a set of matrix equations via the

Schrödinger equation, if the exact set of basis functions is not known, then the H

matrix cannot be exactly calculated, nor can the eigenvalues of the system be found.

It is, however, in general, possible to experimentally measure the eigenvalues of the

system, perhaps optically using spectroscopy, or with other means.

There are several possible reasons for not knowing the basis functions of the system.

For any multi-body situation, for example atomic systems more complex than hyd-

rogen, exact closed form analytical basis functions are not known; they may even

not exist at all. The hamiltonian itself may also be an approximation, causing the

basis states themselves to only be an approximation to the true states of the sy-

stem, even if the eigenvalues are experimentally measured. Regardless of the reason,

if unknown, the true eigenfunctions of the system may be guessed. A set of trial

functions is used for the basis states, these functions then, in general, depend upon
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some variational parameters. These parameters scale the basis states, and allow the

calculated eigenvalues to be tuned until they match those measured.

This variational tuning of a set of trial basis functions can be done for unmixed

or mixed eigenvectors. For the unmixed case this means that a single trial basis

state corresponds to each measured eigenvalue; the trial H matrix calculated will

be diagonal, the set of trial basis functions selected must then form an orthogonal

basis. This will look exactly as outlined above in the hamiltonian matrixes section

A.2.1.

A.2.2.1. Mixed Eigenvectors: The Variational Rayleigh-Ritz Method

The Rayleigh-Ritz method is simply assembling a trial wavefunction out of another

set of trial basis functions. The idea being that an ever closer approximation to

reality can be obtained by both adding more trial basis function terms to the trial

wavefunction, and by fine tuning some set of variational parameters that the set of

trial basis functions depends upon.

The physical system has the wavefunction |Ψ〉, which is a linear superposition of

|Φ〉 states, and by extension of |φ〉 states. However, any interaction with the system

will cause the wavefunction to be projected onto one of the |Φ〉 states.

|Φj〉 =
∑
i

Ci |φi〉

|Ψk〉 =
∑
j

aj |Φj〉

|Ψk〉 =
∑
j

∑
i

ajCi |φi〉

(A.32)

For the variational method, each |φ〉 state function has one or more parameters {α}
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that can be varied to obtain the desired eigenvalues of the H matrix. Varying these

parameters changes the orthogonality of the {φ} functions, and thus also changes

the orthogonality of the new set of basis states {Φ}. Thus when calculating the H

matrix elements 〈φx|H|φy〉 for each set of values for the variational parameters, the

resulting matrix can, and most probably will, be non-diagonal. By diagonalising the

H matrix the eigenfunctions, {Φ}, which are linear superpositions of the {φ} basis

states with the current values of the variational parameters {α}, are weighted in

such a manner that the new eigenfunctions are orthogonal.

This new orthogonal basis may then be used to find the eigenvalues of the cor-

responding diagonalised H matrix. If the eigenvalues are known, perhaps due to

experiment, then the variational parameters can be tuned and the H matrix redia-

gonalised until the calculated eigenvalues are as close as possible to those measured.

However, this is a complex multi-dimensional global optimization problem, and it is

not, in general, possible to be certain if the optimal set of variational parameters has

been found. This is a variational form of the Rayleigh-Ritz method, first developed

independently by both Rayleigh [121, Lord Rayleigh was J.W. Strutt before the

title] and Ritz[120]; as a historical note Rayleigh used this to construct basis states

for the resonance of an open ended church organ.

Representation of the Variational Rayleigh-Ritz Method

To show the Rayleigh-Ritz method, the matrix Schrödinger equation is used. Let us

consider the Schröedinger equation for states Φi, assembled from the variationally

dependent basis described earlier {φ}:

H |Φi〉 = Ei |Φi〉 (A.33)
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A new matrix equation for the trial wavefunction Φk must be constructed:

H |Φk〉 = Ek |Φk〉

H
∑
i

Ci,k |φi〉 = Ek
∑
i

Ci,k |φi〉

〈φj|H|
∑
i

Ci,kφi〉 = 〈φj|Ek
∑
i

Ci,kφi〉

∑
i

Ci,k 〈φj|H|φi〉 = Ek
∑
i

Ci,k 〈φj|φi〉

∑
i

Ci,k 〈φj|H|φi〉 = Ek
∑
i

Ci,kδi,j

∑
i

Ci,k 〈φj|H|φi〉 = EkCj,k

(A.34)

The Hamiltonian elements are defined as:

hj,i = 〈φj|H|φi〉 (A.35)

Using the Hamiltonian elements definition from equation A.35, the result of equation

A.34 becomes:

∑
i

Ci,khj,i = EkCj,k (A.36)

Equation A.36 can be written with n basis states representing the single Φk state.

Here the trial wavefunctions have multiple components, and as such their eigen-

vectors are no longer simple (1, 0, 0, ..., 0) vectors but instead, for the kth state,

become:
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C1,k

C2,k

...

Cn,k


(A.37)

The matrix equation version of equation A.36 is then:



h11 h12 ... h1n

h21 h22 ... ...

... ... h33 ...

hn1 ... ... hnn





C1,k

C2,k

...

Cn,k


= Ek



C1,k

C2,k

...

Cn,k


(A.38)

The H matrix from equation A.38 describes a single eigenfunction in the new linear

superposition of variational parameter basis states, when diagonalised. This can be

expanded to multiple Φk states by expanding the eigenvector matrix to include up

to n eigenvectors, corresponding to the same number of energy eigenvalues;



h11 h12 ... h1n

h21 h22 ... ...

... ... h33 ...

hn1 ... ... hnn





C1,1 ... ... C1,n

C2,1 C2,2 ... ...

... ... C3,3 Cn−1,n

Cn,1 ... ... Cn,n



=



C1,1 ... ... C1,n

C2,1 C2,2 ... ...

... ... C3,3 Cn−1,n

Cn,1 ... ... Cn,n





E1 0 ... 0

0 E2 0 ...

... 0 E3 0

0 ... 0 En



(A.39)
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Matrixes are defined as:

H =



h11 h12 ... h1n

h21 h22 ... ...

... ... h33 ...

hn1 ... ... hnn



V =



C1,1 ... ... C1,n

C2,1 C2,2 ... ...

... ... C3,3 Cn−1,n

Cn,1 ... ... Cn,n



E =



E1 0 ... 0

0 E2 0 ...

... 0 E3 0

0 ... 0 En



(A.40)

Then equation A.39 can be written in matrix shorthand as:

HV = V E (A.41)

Then all that is required is to calculate the Hamiltonian matrix H, then use linear

algebra techniques to find the right eigenvectors V and their associated eigenvalues

E. This then changes the problem from one of finding eigenvalues to finding eigen-

vectors. While each of the basis states used is itself an eigenstate of the Hamiltonian

operator, any possible linear combination of such states is also a valid eigenstate of

the operator, they are then not necessarily orthogonal due to the variational para-

meters.
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There are two additional points that must be considered. Firstly, only in the com-

binations of the eigenstates that give the same energy as measured are of interest;

some sets of basis functions will of course be a closer approximation to reality than

others. Secondly, the Hamiltonian operator is often itself an approximation, and as

such any eigenstates and energies are also approximations.

A.2.2.2. Considering the Ground State

To justify finding the variational parameters by matching the calculated energy

eigenvalues to those experimentally measured, the following argument is used.

Consider the wavefunction of the ground state of the Hamiltonian |Ψg〉. This wa-

vefunction is a linear superposition of the trial basis {φ}, and of the calculated

orthogonal basis {Φ}. If the ground state has been calculated correctly it will be

entirely made up of the |Φg〉 state, and if incorrectly then there will be other com-

ponents. If the wavefunction is assumed to comprise arbitrary components.

|Ψg〉 =
n∑
j

aj |Φj〉 (A.42)

Because the energy eigenvalue Eg is by definition the lowest energy value, and as the

sum of the a∗jaj coefficients must be 1 due to normalisation conditions, the energy

of the wavefunction must then be equal to or greater than that of the true ground

wavefunction of the Hamiltonian. This is shown explicitly below

256



A. Review of Quantum Mechanics

〈Ψg|H|Ψg〉 =
∑
x,y

〈ψg|Φx〉 〈Φx|H|Φy〉 〈Φy|ψg〉

=
∑
x,y

〈ψg|Φx〉 δx,yEy 〈Φy|ψg〉

=
∑
y

Ey 〈ψg|Φy〉 〈Φy|ψg〉

=
∑
y

Ey| 〈Φy|ψg〉 |2

|Ψg〉 =
n∑
j

aj |Φj〉

〈ψg|H|ψg〉 =
∑
y

Ey|
∑
i

ai 〈Φy|Φi〉 |2

〈ψg|H|ψg〉 =
∑
y

Ey|
∑
i

aiδi,y|2

〈ψg|H|ψg〉 =
∑
y

Ey|ay|2

(A.43)

Thus by minimising the ground state energy, the closest approximation to the true

ground state wavefunction in the variational trial basis {φ} is found. This ground

state wavefunction is then the same as the new ground state basis function calculated

by diagonalising the Hamiltonian matrix, |Ψg〉 = |Φg〉. The same result can be

obtained by subtracting the measured energy ground state from that calculated, then

the difference is variationally minimised. Minimising the variationally calculated

ground state energy forces the weighting of the lowest energy new basis state term

to be dominant, ideally 1.

The rest of the Φ state energies will then be the ground energy plus some additional

energy; by minimising this additional energy, the closest approximation to the second

lowest energy state using the same trial basis is found. It must be noted that this

energy is minimised by varying the variational parameters and that the resulting

state functions are orthogonal due to being found by the diagonalisation of the H
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matrix, thus each state function is found simultaneously to the others.

Non Ground states

The conclusion of this section is also applicable when only using a single variational

state to approximate the ground, or any other, state. That is, the variationally

found parameters of a single trial wavefunction that minimises the energy are the

parameters that most closely match the true ground state. This can then be exten-

ded to the non-ground states, although depending on the parity of the Hamiltonian

the variationally found minimum energy wavefunction of these non ground states

will not in general just be the closest to the correct “true” state, but mixed with

states of the same parity (i.e. finding the 2S state will be mixed with the 1S, 3S,

3D, etc). If the variational basis has been appropriately chosen, such that the wa-

vefunction is a realistic approximation of the “true” wavefunction, then this mixing

should be reduced; the further away the chosen wavefunction is from reality, the less

this is so.

Mathematically, this is choosing the variational wavefunction so that one of the aj

weighting terms is dominant, from equation A.42. The variational function with

respect to the measured energy of the state in question can also be minimised, this

reduces the effective weighting of the ground Φ state in the calculation.

A.3. Fermi’s Golden Rule

Fermi’s golden rule, so named after the famous Italian physicist Enrico Fermi, is an

equation for calculating the transition rate between two states of a system. It is

only necessary to know both the wavefunctions of the initial and final states, and

the density of the final state at the energy of the energy difference between the two

states. Fermi’s golden rule is shown in equation A.44 [164, p552][31, p51]; where

i and f index the initial and final states respectively, and Hp is the Hamiltonian
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of the perturbation to the system that can cause the system to transition between

states.

Γi,f =
2π

~
| 〈f |Hp|i〉 |2ρ(Ef ) (A.44)

A.3.0.1. Derivation

Fermi’s golden rule is calculated by considering a small perturbation to the Hamil-

tonian of the system. The derivation of Fermi’s golden rule that is given here follows

that given in [164, p552], and is the present authors preferred derivation; this de-

rivation does not require the consideration of absorption stimulated by a driving

wave, the subsequent application of the rotating wave approximation and then the

use of Einstein rate equations and thermodynamic equilibrium arguments to relate

the stimulated absorption rate to the spontaneous emission rate. The interested

reader may look at the many available texts with such derivations, e.g. chapters

four and nine of [31], or chapter two of [165].

Consider a system described by the time dependent Schrödinger equation, with

Hamiltonian H0, with a wavefunction that is in general a linear superposition of

possible eigenstates of that Hamiltonian. Such a system has the properties outlined

in equation A.45, these are also outlined in section A.1, but are repeated here to

clarify the derivation to follow.

H0 |Ψ0(x, y, z, t)〉 = i~
∂

∂t
|Ψ0(x, y, z, t)〉

|Ψ0(x, y, z, t)〉 =
∑
n

C0
n |φ0

n(x, y, z)〉 e−
itE0

n
~

H0 |φ0
n(x, y, z)〉 = E0

n |φ0
n(x, y, z)〉

〈φ0
n(x, y, z)|φ0

k(x, y, z)〉 = δn,k

(A.45)
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A small, time dependant, perturbation is then introduced to the system, described by

Hamiltonian Hp(t). The Schrödinger equation and the wavefunctions of the system,

now with time dependent amplitude coefficients C0
n(t) due to the perturbation to

the system, becomes :

(
H0 +Hp(t)

)
|Ψ(x, y, z, t)〉 = i~

∂

∂t
|Ψ(x, y, z, t)〉

|Ψ(x, y, z, t)〉 =
∑
n

C0
n(t) |φ0

n(x, y, z)〉 e−
itE0

n
~

(A.46)

The wavefunction Ψ(x, y, z, t) is then inserted into the Schrödinger equation(
H0+Hp(t)

)
Ψ(x, y, z, t) = i~ ∂

∂t
Ψ(x, y, z, t). The left side of the Schrödinger equation

is:

(
H0 +Hp(t)

)
|Ψ(t)〉 =

(
H0 +Hp(t)

)∑
n

C0
n(t) |φ0

n〉 e−
itE0

n
~

=
∑
n

(
H0 +Hp(t)

)
C0
n(t) |φ0

n〉 e−
itE0

n
~

=
∑
n

(
E0
n +Hp(t)

)
C0
n(t) |φ0

n〉 e−
itE0

n
~

(A.47)

The right hand side is:

i~
∂

∂t
|Ψ(t)〉 = i~

∂

∂t

∑
n

C0
n(t) |φ0

n〉 e−
itE0

n
~

= i~
(∑

n

∂C0
n(t)

∂t
|φ0
n〉 e−

itE0
n

~ − i

~
∑
n

E0
nC

0
n(t) |φ0

n〉 e−
itE0

n
~

)
= i~

∑
n

∂C0
n(t)

∂t
|φ0
n〉 e−

itE0
n

~ +
∑
n

E0
nC

0
n(t) |φ0

n〉 e−
itE0

n
~

(A.48)
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To calculate the transition rate between two states it must first be assumed that,

before the perturbation, the system is in one state j and the final state to be con-

sidered is k. Both sides of the Schrödinger equation are then multiplied by 〈φ0
k|.

Left.

〈φ0
k|
∑
n

(
E0
n +Hp(t)

)
C0
n(t) |φ0

n〉 e−
itE0

n
~

=
∑
n

(
E0
n 〈φ0

k|φ0
n〉+ 〈φ0

k|Hp(t)|φ0
n〉
)
C0
n(t)e−

itE0
n

~

= E0
kC

0
k(t)e−

itE0
k

~ +
∑
n

〈φ0
k|Hp(t)|φ0

n〉C0
n(t)e−

itE0
n

~

(A.49)

And right.

〈φ0
k|
(
i~
∑
n

∂C0
n(t)

∂t
|φ0
n〉 e−

itE0
n

~ +
∑
n

E0
nC

0
n(t) |φ0

n〉 e−
itE0

n
~

)
= i~

∑
n

∂C0
n(t)

∂t
〈φ0

k|φ0
n〉 e−

itE0
n

~ +
∑
n

E0
nC

0
n(t) 〈φ0

k|φ0
n〉 e−

itE0
n

~

= i~
∂C0

k(t)

∂t
e−

itE0
k

~ + E0
kC

0
k(t)e−

itE0
k

~

(A.50)

Equating the left, equation A.49, and right, equation A.50, sides of the Schrödinger

equation is written below. This shows the rate of change of the final states proba-

bility C0
k(t) as a function of time, and the perturbation Hp(t).
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E0
kC

0
k(t)e−

itE0
k

~ +
∑
n

〈φ0
k|Hp(t)|φ0

n〉C0
n(t)e−

itE0
n

~ = i~
∂C0

k(t)

∂t
e−

itE0
k

~ + E0
kC

0
k(t)e−

itE0
k

~

∑
n

〈φ0
k|Hp(t)|φ0

n〉C0
n(t)e−

itE0
n

~ = i~
∂C0

k(t)

∂t
e−

itE0
k

~

− i
~
∑
n

〈φ0
k|Hp(t)|φ0

n〉C0
n(t)e−

it

[
E0
n−E

0
k

]
~ =

∂C0
k(t)

∂t

(A.51)

A set of assumptions and operations are then applied to equation A.51. Firstly, be-

cause the transition rate is the rate of change of the probability, i.e. the magnitude

of the C0
n(t) coefficients squared, and not the amplitude or the coefficients themsel-

ves, the coefficients must first be found. To do this equation A.52 is integrated with

respect to time, between the start of the perturbation at t = 0 and some arbitrary

time later t = T .

− i
~
∑
n

∫ T

0

〈φ0
k|Hp(t)|φ0

n〉C0
n(t)e−

it

[
E0
n−E

0
k

]
~ dt =

∫ T

0

∂C0
k(t)

∂t
dt

− i
~
∑
n

∫ T

0

〈φ0
k|Hp(t)|φ0

n〉C0
n(t)e−

it

[
E0
n−E

0
k

]
~ dt = C0

k(T )− C0
k(0)

(A.52)

The assumption is then made that the system is initially in a single state j, with

C0
j (0) = 1, and all other coefficients at t = 0 being zero. Applying this to equation

A.52 results in :

− i
~

∫ T

0

〈φ0
k|Hp(t)|φ0

j〉C0
j (t)e−

it

[
E0
j−E

0
k

]
~ dt = C0

k(T ) (A.53)
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It is then assumed over the time period t = 0 to t = T that the perturbation is

approximately constant, Hp(0 ≤ t ≤ T ) ≈ Hp, and the system is slow to respond

to the perturbation such that C0
j (0 ≤ t ≤ T ) ≈ 1. Applied to equation A.53, this

results in:

− i
~
〈φ0

k|Hp|φ0
j〉
∫ T

0

e−
it

[
E0
j−E

0
k

]
~ dt = C0

k(T ) (A.54)

Relabelling the energy difference between the initial and final states,
E0
k−E

0
j

~ = ωj,k,

and solving the time integral gives:

C0
k(T ) = − i

~
〈φ0

k|Hp|φ0
j〉
∫ T

0

eitωj,kdt

= −〈φ0
k|Hp |φ0

j〉
(
eiTωj,k − 1

)
~ωj,k

= −〈φ0
k|Hp |φ0

j〉 e
iTωj,k

2

(
e
iTωj,k

2 − e−
iTωj,k

2

)
~ωj,k

= −2i 〈φ0
k|Hp |φ0

j〉 e
iTωj,k

2

(
e
iTωj,k

2 − e−
iTωj,k

2

)
2i~ωj,k

= −2i 〈φ0
k|Hp |φ0

j〉 e
iTωj,k

2
sin(

Tωj,k
2

)

~ωj,k

(A.55)

Squaring the amplitude coefficient of the final state, C0
k(T ) , of equation A.55 then

gives:

|C0
k(T )|2 = 4| 〈φ0

k|Hp |φ0
j〉 |2

sin2(
Tωj,k

2
)

~2ω2
j,k

(A.56)

263



A. Review of Quantum Mechanics

In the limit of large T the sin2 term becomes a delta function.

lim
α→∞

sin2(αx)

αx2
= πδ(x)

δ(βx) =
1

|β|
δ(x)

(A.57)

Incorporating the large T limit of equation A.57 into equation A.56 results in:

lim
T→∞

(
|C0

k(T )|2
)

= | 〈φ0
k|Hp |φ0

j〉 |2
T

~2
lim
T→∞

(
sin2(

Tωj,k
2

)

T
(
ωj,k

2

)2

)

= | 〈φ0
k|Hp |φ0

j〉 |2
Tπ

~2
δ(
ωj,k
2

)

=
2πT

~2
| 〈φ0

k|Hp |φ0
j〉 |2δ(ωj,k)

(A.58)

The delta function in equation A.54 does not refer to the energy of any photon

emission, but to the energy difference between final and initial states. That is, if

considering an atomic electron transition with corresponding photon emission it is

the total energy of the final electron energy, and photon states, minus the initial

that is considered. Therefore, it can be seen as no more than a statement of the

uncertainty principle, e.g. as the time tends to infinity the total energy difference

of the transitions initial and final states must be zero. At any single non-infinite

time point the delta function is actually a sinc function, with a central peak and

series of smaller side-lobes in energy, that is, a transition occurring has a non zero

probability for energies of initial and final states that do not sum to zero.

As the squared magnitude of the probability coefficient C is the probability of the

system being in the final state k, the rate of transition to that state is given by the

derivative with respect to the time T .
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∂
(
|C0

k(T )|2
)

∂T
=

∂

∂T

2πT

~2
| 〈φ0

k|Hp |φ0
j〉 |2δ(ωj,k)

=
2π

~2
| 〈φ0

k|Hp |φ0
j〉 |2δ(ωj,k)

(A.59)

The ωj,k term is then converted back into the energy of the initial and final states.

∂
(
|C0

k(T )|2
)

∂T
=

2π

~2
| 〈φ0

k|Hp |φ0
j〉 |2δ(

E0
k − E0

j

~
)

=
2π

~
| 〈φ0

k|Hp |φ0
j〉 |2δ(E0

k − E0
j )

(A.60)

Equation A.60 shows the transition rate for a single state |φ0
j〉 transitioning to anot-

her single state |φ0
k〉. To obtain the total transition rate Γj,k between all states of the

same initial, E0
j , and final, E0

k , energies requires inclusion of their degeneracies into

equation A.56. Each part of the multiply degenerate final state |φ0
k〉 has an equal

chance of being transitioned to from the initial state |φ0
j〉; the total probability of a

transition is the sum of the transition probabilities for each final state. Therefore,

the transition rate must be multiplied by the degeneracy of the final states gk.

If the initial state of the system, |φ0
j〉 has a degeneracy of gj, then there is an equal

probability of it being in each of the identical degenerate initial states, that is, there

is a probability of 1
gj

for each.

This can be verified by considering a number of systems, equal to the degeneracy of

the initial state gj, that do not interact with each other. Because they do not inte-

ract, the total transition rate must only be gj times that of each individual system.

Therefore, the total transition rate must be the same as that of a single system; if
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A is the modification to the transition rate due to the initial state degeneracy, then

gjA = 1 and it is then clear that A = 1
gj

.

Including both the probability of the system being in each degenerate initial state,

and that of the degenerate final states, gives Fermi’s golden rule, where Γj,k is the

total transition rate between the initial, |φ0
j〉, and final, |φ0

k〉, states with degeneracies

gj and gk.

Γj,k =
2π

~
gk
gj
| 〈φ0

k|Hp |φ0
j〉 |2δ(E0

k − E0
j ) (A.61)

A.3.1. Obtaining the Spontaneous Emission Rate from Fermi’s

Golden Rule

Fermi’s golden rule, equation A.61, can then be used to obtain the spontaneous

emission rate for a two level atom emitting photons as an electron decays from an

excited to ground energy state. This is now explicitly considered to be the interaction

of the electric field of a free space vacuum with an atom-electron system with two

levels of separate degeneracies.

For Fermi’s golden rule to be applicable the wavefunctions in the matrix element,

| 〈φ0
k|Hp |φ0

j〉 |2, must also include the wavefunctions of a quantised EM field. This

can be explicitly seen in the delta function that arises in Fermi’s golden rule, equation

A.61, where the transition rate is non zero only when the energy of the initial and

final states are the same. The initial and final state energies then include that of

the EM field and the electron, such that the final energy of the EM field is plus one

photon for the final state energy.

This leaves a few points that must be considered before the transition rate calculation
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can proceed:

• Firstly, for spontaneous emission and assuming that the perturbation that

causes this is an electric field, what that electric field is, and where it comes

from.

• Secondly, what the states are for the atom and electromagnetic field system,

and how they affect the Fermi’s golden rule transition rate derived so far.

• Thirdly, what the perturbing Hamiltonian for the electric field interacting with

the atom-electron system is.

• Fourthly, when using the wavefunctions, electric field, and correct Hamiltonian

approximations obtained so far, what the appropriate degeneracies for the

system are.

A.3.1.1. Vacuum Field

For spontaneous emission, the perturbation to the 2 level atomic system is assumed

to be the electric field present in a vacuum with no photons. This is the vacuum

field.

The quantised radiation field can be treated as a quantum harmonic oscillator [165].

For N photons, at frequency ω, the energy of the quantised radiation field is given

below [31, eq 7.31][165, eq 4.3.26]:

Eω = ~ω
(
N +

1

2

)
(A.62)

The vacuum field has the energy of zero photons, that is, ~ω
2

. To find the electric

field strength, E0, for the perturbing dipole moment, in terms of a classical field, the
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energy of the quantised radiation field and a classical field can be equated. Because

the zero photon energy has no preferential direction, this energy is assumed to be

equally divided amongst the three Cartesian axis. Conveniently, it is the magnitude

that is found by the comparison between the N = 0 quantum harmonic oscillator

and energy in a classical electromagnetic field.

Thus the state of the vacuum EM field is approximated in a semi-classical fashion,

being found from comparison to the zeroth energy level of a quantised harmonic

oscillator. The energy of the classical EM wave is evaluated over a finite volume

V , because in the final Fermi’s golden rule calculation a compensating factor of 1
V

cancels it out. This compensating factor comes from the density of states of photon

modes at the frequency corresponding to the energy of the transition of the two level

atom-electron system.

The initial and final state energies of the electron are Ea
j and Ea

k respectively, with

the frequency corresponding to this transition taken to be ωj,k.

ωj,k =
Ea
j − Ea

k

~
(A.63)

From equation A.62 the energy of the quantised radiation field, at angular frequency

ωj,k with zero photons is then:

~ωj,k
2

(A.64)

The energy density in an oscillating, classical, electromagnetic field is the sum of the

268



A. Review of Quantum Mechanics

energy density in both an electric, ~E, and magnetic, ~B, field, both fields are time

and space dependant, with the energy evenly divided amongst them. If the dielectric

permittivity and magnetic susceptibilities of free space are ε0 and µ0 respectively,

then adjusting [166, eq 6.86, p191] from Gaussian to SI units gives the average

spatial energy density of an electromagnetic field in a volume V as:

1

2

∫
V

(
ε0 ~E

2 +
~B2

µ0

)
dV (A.65)

Because the randomly fluctuating electric field is not a spatially propagating trans-

verse wave, the energy is assumed to only be in the electric field. As the energy

density in an EM wave is evenly divided amongst the electric and magnetic fields,

the prior assumption introduces a factor of two, the energy in the electric field is

given as:

∫
V

ε0 ~E
2dV = ε0 ~E

2V (A.66)

Equating the energy in a classical electromagnetic field and a quantised radiation

field at frequency ωj,k allows the electric field strength to be found.

ε0 ~E
2V =

~ωj,k
2

| ~E| =
√

~ωj,k
2ε0V

(A.67)

However, equation A.67 only finds the magnitude of the vacuum electric field, while
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the dipole matrix element for Fermi’s golden rule requires the field amplitude.

Because the vacuum field is randomly fluctuating the average field amplitude must

be used. That is, the magnitude found by considering the energy is the average

and so the amplitude obtained must also be an average. The average electric field

vector is then ~E0 = (a, b, c), where the magnitude is fixed and is | ~E|2 = a2 + b2 + c2.

There are then three methods to find the average field amplitude in each direction,

based on knowing the magnitude. While the average amplitude may be positive or

negative, because the magnitude requires the square of the amplitude this is used,

and the sign of the amplitude does not matter as it may be positive or negative (in

equal measure over a sufficiently long time).

Firstly, it can be assumed that the average amplitude in each spatial direction is the

same, as there is no preferred direction, therefore choosing the x, y, z spatial basis

the average amplitude in each direction will be the same. The average electric field

vector is then ~E0, with the average amplitude in each direction being E0 as they are

each the same. Therefore the average electric field vector can be written where each

spatial component is the average amplitude in that direction.

~E0 = E0(~i+~j + ~k) (A.68)

The magnitude of the electric field vector from equation A.68 is then:
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| ~E0| = |E0
~i+ E0

~j + E0
~k|

= (E2
0 + E2

0 + E2
0)

1
2 = (3E2

0)
1
2

=
√

3E0

(A.69)

The average electric field vector, in terms of the magnitude, is then given by:

~E0 =
| ~E0|√

3
(1, 1, 1) (A.70)

Secondly, the average amplitude squared in each direction can be considered. Each

of the a, b, c parts can vary from 0 to | ~E0|, and so these can be averaged. However,

it is the squared value that must be averaged, as the amplitude average will be zero,

while the intensity average will not be zero. Each spatial part will have the same

average, with that of the x component a2 considered below, where ā2 denotes the

average.

ā2 =

∫ | ~E0|

0

a2

| ~E0|2
da

=
[ a3

3| ~E0|2
]| ~E0|

0
=
| ~E0|2

3

ā =
| ~E0|√

3

(A.71)

The exact same integral can be carried out for the y and z components, giving the

average field in terms of the magnitude of the vector as:
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~E0 =
| ~E0|√

3
(1, 1, 1) (A.72)

Thirdly, the x, y, and z components of the field vector can be considered in polar

coordinates and averaged over all possible orientations. Again, because the average

is zero, the average of the components squared must be considered. The average x

component squared, ā2, is given by:

a = | ~E0| cos(φ) sin(θ)

ā2 =

∫ 2π

0

∫ π

0

a2

4π
sin(θ)dθdφ

= | ~E0|2
∫ 2π

0

∫ π

0

cos2(φ) sin3(θ)

4π
dθdφ

= | ~E0|2
4

3

∫ 2π

0

cos2(φ)

4π
dφ = | ~E0|2

4

3

π

4π

=
| ~E0|2

3

ā =
| ~E0|√

3

(A.73)

The average y component squared, b̄2, is given by:
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b = | ~E0| sin(φ) sin(θ)

b̄2 =

∫ 2π

0

∫ π

0

b2

4π
sin(θ)dθdφ

= | ~E0|2
∫ 2π

0

∫ π

0

sin2(φ) sin3(θ)

4π
dθdφ

= | ~E0|2
4

3

∫ 2π

0

sin2(φ)

4π
dφ = | ~E0|2

4

3

π

4π

=
| ~E0|2

3

b̄ =
| ~E0|√

3

(A.74)

The average y component squared, b̄2, is given by:

c = | ~E0| cos(θ)

c̄2 =

∫ 2π

0

∫ π

0

c2

4π
sin(θ)dθdφ

= | ~E0|2
∫ 2π

0

∫ π

0

cos2(θ) sin(θ)

4π
dθdφ

= | ~E0|22π

∫ π

0

cos2(θ) sin(θ)

4π
dθ = | ~E0|2

2π

4π

2

3

=
| ~E0|2

3

c̄ =
| ~E0|√

3

(A.75)

Therefore, the average field vector in terms of the magnitude of the vector is given

by:

~E0 = (ā, b̄c̄)

=
| ~E0|√

3
(1, 1, 1)

(A.76)
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Each of equations A.70, A.72, and A.76 give the same average electric field vector.

The methods used to obtain them are directly equivalent.

Equating the magnitude of the electric field vector from equation A.67 with the

magnitude obtained by summing the squared of the amplitudes from equations A.70,

A.72, and A.76, gives the electric field amplitude in terms of the frequency ωj,k,

and the volume of the space is considered to be V (which will be cancelled out later

on by a compensating factor in the free space density of states for the electric field).

The expression of the magnitude in terms of equal amplitudes is given in equation

A.69. The equating of this with the energy obtained magnitude is shown below.

√
3E0 =

√
~ωj,k
2ε0V

E0 =
1√
3

√
~ωj,k
2ε0V

(A.77)

Final Vacuum Electric Field

There are then two final additions before the final electric field is obtained.

Firstly, the electric field must be oscillatory, otherwise no transition can be stimu-

lated (even for the zero photon spontaneous emission), this introduces a factor of

eiωj,kt to each polarisation direction.

Secondly, as the electric field is that of the zero photon vacuum it is assumed to be

randomly varying. Therefore a time varying random phase term, dependant upon

spatial polarisation, is added to the oscillatory term, i.e eiφx,y,z(t). The final electric

field perturbation to the donor electron is then:
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~E0(t) =
1√
3

√
~ωj,k
2ε0V

(
~ieiφx(t) +~jeiφx(t) + ~keiφx(t)

)
eiωj,kt (A.78)

It should be noted that while the above, equation A.78 electric field amplitudes are

averages, the electric field will still be oscillating at the frequency of the transition,

ωj,k, in order to stimulate the “spontaneous” emission. Also, while the field is the

average of the randomly varying vacuum field, the phases of the x, y, and z parts

are different and incoherent with respect to each other and therefore do not exhibit

amplitude interference.

A.3.1.2. Note on Wavefunctions

Pre-empting the form of the perturbation Hamiltonian being an electric dipole, the

initial and final radiation field must be part of the initial and final wavefunctions in

the dipole matrix element. Because the energy is conserved if the emitted photons

are included in the final and initial states - a quantised dipole Hamiltonian is also

necessary. This can be done as is shown in [165, chapter 4]. This includes 0 and 1

photon states in the wavefunctions, and writes the interaction of light and matter in

terms of the EMvector potential, which itself is written in terms of photon creation

and annihilation operators. The result of this is that only the atomic wavefunctions

need be considered in Fermi’s golden rule, and this is all that is considered in the

following treatment of spontaneous emission.

A.3.1.3. The Interaction Hamiltonian: Obtaining the Dipole

Following [167, appendix B.2], in order to obtain the interaction Hamiltonian cou-

pling an electromagnetic field to an electron, the Hamiltonian can be written as:
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H =
1

2m

(
~p+ e ~A

)2
+ V (~r) (A.79)

Where m is the mass of the electron being interacted with, e is the electron charge,

~A is the electromagnetic vector potential. The vector potential, along with the

scalar electric potential (or voltage) φ, specifies the EMfield; ~B is the magnetic field

vector, and E the electric, both are in general space and time dependant, but this

is dropped here for convenience.

~B = ∇× ~A

~E = −∇φ− ∂ ~A

∂t

(A.80)

It should be noted that all following is chosen to be in such a gauge that there is no

divergence of the electric vector potential, i.e the coulomb gauge, where:

∇. ~A = 0 (A.81)

By writing the non interacting part of the hamiltonian as H0, equation A.79 then

becomes:
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H =
1

2m

(
~p2 + e2 ~A2 + e~p. ~A+ e ~A.~p

)
+ V (~r)

= H0 +
e

2m

(
~p. ~A+ ~A.~p

)
+
e2A2

2m

= H0 +Hp

(A.82)

Because e is a small value, the e2A2 term is much smaller than the eA terms.

Additionally, due to the selection of the coulomb gauge the ~p and ~A vector commute,

because they are part of an operator which must be applied to something else (some

wavefunction of a state), which is not immediately obvious. To show this, firstly

recall ~p = −i~∇. It must then be kept in mind that the parts of the Hamiltonian

are operators. That is, they must be considered applied to something else:

~p. ~A |ψ〉 = −i~∇. ~A |ψ〉

= −i~
[(
∇. ~A

)
|ψ〉+ ~A.

(
∇ |ψ〉

)]
= −i~

[
∇. ~A+ ~A.∇

]
|ψ〉

(A.83)

As ~A has been chosen to be in the coulomb gauge, equation A.81 gives ∇. ~A = 0.

Therefore the first term on the right of equation A.83 is zero:

~p. ~A |ψ〉 = −i~
[
∇. ~A+ ~A.∇

]
|ψ〉

= −i~
[
0 + ~A.∇

]
|ψ〉

= −i~ ~A.∇ |ψ〉

(A.84)

Considering only the operators, and not the state they are to be applied to, from

equation A.84 ,and rearranging, gives the commutation of ~p and ~A:
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~p. ~A = −i~ ~A.∇

~p. ~A = ~A.~p

~p. ~A− ~A.~p = [~p, ~A] = 0

(A.85)

This then accounts for the factor of two in the Hamiltonian.

Hp ≈
e

m
~p. ~A (A.86)

It can then be assumed that the vector potential is some travelling wave solution of

Maxwell’s equations.

~A ≈ ~A0e
i[~k.~r−ωt] (A.87)

If the Taylor expansion of equation A.87 is taken it yields:

~A ≈ ~A0e
−iωt(1 + i~k.~r +

i

2
[~k.~r]2 + ...

)
(A.88)

Taking equation A.88 to the first order term only gives an interaction Hamiltonian.

Hp ≈
e−e−iωt

m
~p. ~A0 (A.89)
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For equation A.89, e− denotes the charge of a single electron. The ultimate pur-

pose of this is to obtain the interaction Hamiltonian and use that the evaluate the

dipole element squared. Because of this the explicit time dependence e−iωt becomes

irrelevant, as in the final dipole element squared this becomes eiωte−iωt = 1. The-

refore the time dependence part of the electromagnetic vector potential is dropped

for convenience and clarity in all following steps. The commutation relation of H0

and the position operator ~r is then:

[~r,H0] =
i~
m
~p (A.90)

Equation A.90, can then be exploited to rearrange the interaction Hamiltonian:

Hp ≈
e

m
~p. ~A0

=
e

i~
[~r,H0]. ~A0

(A.91)

Taking the matrix element from the Fermi’s golden rule transition rate in equation

A.61, but now because of the point in section A.3.1.2the states φ0
k are no longer

those of the whole system including the radiation field, but only of the electron-atom

system and are relabelled φak. As a result of this, and incorporating the perturbation

Hamiltonian from equation A.91, the Fermi’s golden rule transition rate becomes:
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〈φak|Hp |φaj 〉 =
e

i~
〈φak| [~r,H0]. ~A0 |φaj 〉

=
e

i~
〈φak|~r. ~A0H0 −H0~r.vecA0 |φaj 〉

=
e

i~

[
〈φak|~r. ~A0H0 |φaj 〉 − 〈φak|H0~r. ~A0 |φaj 〉

]
=

e

i~

[
〈φak|~r. ~A0E

a
j |φaj 〉 − 〈φak|Ea

k~r.vecA0 |φaj 〉
]

=
e

i~
(
Ea
j − Ea

k

)
〈φ0

k|~r. ~A0 |φ0
j〉

(A.92)

The relation of the electric field and magnetic vector potential then allows the matrix

element to be rewritten.

~E0 =

(
Ej − Ek

)
i~

~A0

e

i~
(
Ej − Ek

)
〈φ0

k|~r. ~A0 |φ0
j〉 = 〈φ0

k| e~r. ~E0 |φ0
j〉

(A.93)

~E0 is the electric field vector. As a final result, the interaction Hamiltonian is then:

Hp ≈ e~r. ~E0 (A.94)

Where ~r = x~i+ y~y+ z~k is a radial vector, ~E0 = Ex0
~i+Ey0

~j +Ez0~k, e is the electric

charge of a single electron, and ~i,~j,~k are unit vectors in each spatial direction.

A.3.1.4. Degeneracies

For transition rates calculated by Fermi’s golden rule in equation A.61 the degenera-

cies of the states must be included. Despite it being possible to only have to consider

the electron wavefunctions ( section A.3.1.2) the degeneracies include both those of
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the electron and the electric field(photon state). Taking a t index the electron-atom

system and p for the photons then gives the degeneracies.

gj = gaj g
p
j

gk = gakg
p
k

(A.95)

The electron degeneracies, a, are then just those the electron states. Conveniently,

there is then only a single way for the number of photons to be zero.

gpj = 1 (A.96)

However, because the photon states are in a continuum with respect to energy,

because ω can vary continuously, gpk must be replaced with the density of states at

the corresponding energy. That is, we must consider the total number of final states

in the infinitesimal interval E0
k to E0

k +dE0
k . The density of final states for the whole

system is ρ(E0
k). Taking the transition rate from equation A.61, and accounting for

the density of states results in:

Γj,k =

∫ ∞
−∞

2π

~
1

gaj
| 〈φ0

k|Hp |φ0
j〉 |2δ(E0

k − E0
j )ρ(E0

k)dE
0
k

=
2π

~
1

gaj
| 〈φ0

k|Hp |φ0
j〉 |2ρ(E0

j )

(A.97)

Because the initial and final state energies are the same, the initial state energy can

be replaced with that of the final energy, i.e E0
k = E0

j , this is no more than a labelling

convenience, as the density of states is the density of final states irrespective of the
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energy it is at.

Γj,k =
2π

~
1

gaj
| 〈φ0

k|Hp |φ0
j〉 |2ρ(E0

k) (A.98)

The relationship between the density of total final states and the density of photon

states and degeneracy of final electron states is given by:

ρ(E0
k) = gakρ(~ωj,k) (A.99)

Where ρ(~ωj,k) is the density of states for photons at the frequency ωj,k, that corre-

sponding to the energy of the electron state transition. Taking into account that only

the electron wavefunctions are necessary for the matrix element (section A.3.1.2),

along with equation A.99, results in the transition rate.

Γj,k =
2π

~
gak
gaj
| 〈φak|Hp |φaj 〉 |2ρ(~ωj,k) (A.100)

A.3.1.5. Photon Density of States

Equation A.100 requires that the density of final photon states be known. The

density of photon states in a vacuum is reproduced here following [31, Appendix

C]hl. The general form of the electromagnetic wave is taken to be:

~E(~r, t) =
∑
~k

E~ke
i(~k.~r−ωt)

(A.101)
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Maxwell’s equations in free space specify:

∇.E = 0 (A.102)

This is fulfilled if:

~k. ~E(~r, t) = 0 (A.103)

Thus the electric field wave must be transverse. This gives a factor of two that

must be considered in the density of states, the two different polarisations. If, for a

vacuum, we consider the light to be in an arbitrarily large cubed space of volume V ,

of side length L, the electric field must be zero at the boundaries. Where nx,y,z ∈ Z,

this gives the conditions:

kx =
2πnx
L

ky =
2πny
L

kz =
2πnz
L

(A.104)

It is clear that each state occupies a volume in momentium space of
(

2π
L

)3
. The

number of states, ρ(k)dk, in the space k → k+ dk is then the volume of a spherical

shell of thickness dk divided by the volume per unit state and then multiplied by

two to account for the different polarisations. If ρ(k) is the density of states this
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can be shown by:

ρ(k)dk = 2
4πk2(

2π
L

)3dk

=
L3k2

π2

(A.105)

Therefore the density of states is:

ρ(k) =
V k2

π2
(A.106)

The density of states in frequency is then related to that in wavevector by:

ρ(ω)dω = ρ(k)dk

ρ(ω)dω =
V k2

π2

dω

dk

ω = ck

dω

dk
= c

ρ(ω)dω =
V ω2

c3π2

(A.107)

And then the relation of the density of states in frequency becomes that in energy:
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ρ(ω)dω = g(E)dE

ρ(ω) = g(E)
dE

dω

E = ~ω
dE

dω
= ~

ρ(E) =
V ω2

~c3π2

(A.108)

A.3.1.6. Final Dipole Interaction Emission Rate

The final transition rate is then obtained from the arguments outlined above. Firstly

the transition rate from equation A.100 is:

Γj,k =
2π

~
gak
gaj
| 〈φ0

k|Hp |φ0
j〉 |2ρ(~ωj,k) (A.109)

The density of photon states at the appropriate frequency from equation A.107 make

the transition rate:

Γj,k =
2π

~
gak
gaj
| 〈φ0

k|Hp |φ0
j〉 |2

V ω2
j,k

~c3π2
(A.110)

Taking the perturbation Hamiltonian to be the dipole from equation A.94 then gives:

Γj,k =
2π

~
gak
gaj
| 〈φ0

k| e~r. ~E0 |φ0
j〉 |2

V ω2
j,k

~c3π2
(A.111)
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Setting the electric field to that of the vacuum electric field from equation A.78 and

using the identity ~r = x~i+ y~j + z~k results in:

Γj,k =
2π

~
gak
gaj
| 〈φak| e

(
x~i+ y~j + z~k

)
.

1√
3

√
~ωj,k
2ε0V

(
eiφx(t)~i+ eiφy(t)~j + eiφz(t)~k

)
eiωj,kt |φaj 〉 |2

V ω2
j,k

~c3π2

=
2π

~
1

3

~ωj,k
2ε0V

V ω2
j,k

~c3π2

gak
gaj
| 〈φak| e

(
x~i+ y~j + z~k

)
.
(
eiφx(t)~i+ eiφy(t)~j + eiφz(t)~k

)
|φaj 〉 |2

=
e2ω3

j,k

3~ε0c3π

gak
gaj
| 〈φak|

(
x~i+ y~j + z~k

)
.
(
eiφx(t)~i+ eiφy(t)~j + eiφz(t)~k

)
|φaj 〉 |2

(A.112)

Because of the randomly varying phases eiφx,y,z(t), each component must be squa-

red and summed, rather than summed and squared. That is, for the spontaneous

emission case the components must be summed as intensities rather than amplitu-

des. This is in contrast to the result for a coherent electric field where the different

components are to be summed as amplitudes, rather than intensities. Therefore,

the individual matrix element components in equation A.112 , when the magnitude

squared is taken, becomes:

| 〈φak|xeiφx(t) |φaj 〉 |2 = eiφx(t) 〈φak|x |φaj 〉 e−iφx(t) 〈φak|x |φaj 〉

= | 〈φak|x |φaj 〉 |2
(A.113)

Therefore, using equation A.113 , equation A.112 becomes:

Γj,k =
e2ω3

j,k

3~ε0c3π

gak
gaj

(
| 〈φak|x |φaj 〉 |2 + | 〈φak| y |φaj 〉 |2 + | 〈φak| z |φaj 〉 |2

)
(A.114)
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Equation A.114 gives the final transition rate. where φakORj is the electron state

wavefunction, k indexes the final state, j the initial, ga is the electron state degene-

racy, ωj,k the angular frequency of the electron transition, ε0 the dielectric constant

in free space, ~ Planck’s constant, c the speed of light in a vacuum, and x, y, and z

are then the coordinates for the three spatial axes. This result is identical to that

obtained if considering the stimulated absorption rate of a two level system, relating

that to the spontaneous emission rate via Einstein’s rate equations, and applying a

thermodynamic equilibrium condition.
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Theory Wavefunction Equations

Following are the various derivations of the equations presented in chapter 3, the

introduction to effective mass theory. These are the derivations and necessary wor-

king that is either not given in the literature, or in the case of the dipole elements

has not been obtained before.

B.1. The Unitless Effective Mass Hamiltonian

Begin with the effective mass Hamiltonian, equation B.1.

H1 = − ~2

2m⊥

( ∂2

∂x2
i

+
∂2

∂y2
i

)
− ~2

2m‖

∂2

∂z2
i

− e2

4πεrε0r
(B.1)

Take the units of length and energy to be aB and E0 respectively, while setting γ

to be the ratio of perpendicular to longitudinal effective masses, defined in equation

B.2; where εr is the relative dielectric permittivity and ε0 is that in vacuum.
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γ =
m⊥
m‖

aB =
4π~2εrε0
m⊥e2

E0 =
m⊥e

4

32~2(πεrε0)2

(B.2)

As the Hamiltonian H1 has units of energy, divide H1 from equation B.1 by E0 from

equation B.2, resulting in equation B.3.

H1 = − ~2

2m⊥

( ∂2

∂x2
+

∂2

∂y2

)
− ~2

2m‖

∂2

∂z2
− e2

4πεrε0r

H1

E0

= − ~2

2m⊥

2~2(4πεrε0)2

m⊥e4

( ∂2

∂x2
+

∂2

∂y2

)
− ~2

2m‖

2~2(4πεrε0)2

m⊥e4

∂2

∂z2
− 2~2(4πεrε0)2

m⊥e4

e2

4πεrε0r

H1

E0

= −2~4(4πεrε0)2

2m2
⊥e

4

( ∂2

∂x2
+

∂2

∂y2

)
− 2~4(4πεrε0)2

2m‖m⊥e4

∂2

∂z2
− 2~2(4πεrε0)

m⊥e2r

(B.3)

Then consider the second order differentials with respect to distance units. If ca-

pitalised coordinates,X,Y,Z are now the unit-less coordinates then their relation to

the non unit-less x, y, and z is given below:
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{X, Y, Z} = { x
aB
,
y

aB
,
z

aB
}

R = (X2 + Y 2 + Z2)
1
2 =

1

aB
(x2 + y2 + z2)

1
2 =

r

aB

∂2

∂{x, y, z}2
=
(∂{X, Y, Z}
∂{x, y, z}

)2 ∂2

∂{X, Y, Z}2
=
( 1

aB

)2 ∂2

∂{X, Y, Z}2

(B.4)

Therefore equation B.4 shows that to convert into unit-less form, the second order

differential terms must be preceded by a factor of
(

1
aB

)2

. Now taking the unit-less

coordinates to be written as x,y,z for the sake of convenience, and dividing the second

order differential terms from equation B.3 by the relevant factors from equation B.4,

results in the dimensionless effective mass Hamiltonian:
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H1 = −2~4(4πεrε0)2

2m2
⊥e

4

( 1

aB

)2( ∂2

∂x2
+

∂2

∂y2

)
− 2~4(4πεrε0)2

2m‖m⊥e4

( 1

aB

)2 ∂2

∂z2
−
( 1

aB

)2~2(4πεrε0)

m⊥e2r

H1 = −2~4(4πεrε0)2

2m2
⊥e

4

m2
⊥e

4

~4(4πεrε0)2

( ∂2

∂x2
+

∂2

∂y2

)
− 2~4(4πεrε0)2

2m‖m⊥e4

m2
⊥e

4

~4(4πεrε0)2

∂2

∂z2

− m⊥e
2

~2(4πεrε0)

2~2(4πεrε0)

m⊥e2r

H1 = −
( ∂2

∂x2
+

∂2

∂y2

)
− m⊥
m‖

∂2

∂z2
− 2

r

H1 = −
( ∂2

∂x2
+

∂2

∂y2

)
− γ ∂

2

∂z2
− 2

r

(B.5)

It must be noted that the x, y, and z in equation B.5 are unit-less, despite the same

coordinate labels as for the non unit-less form in the preceding equations.

B.2. Scaled Cartesian Coordinates for the Effective

Mass Hamiltonian

The Hamiltonian can be rescaled into a transformed Cartesian coordinate system,

(x, y, z) → (x, y, g). This is primarily for our convenience, as it allows the use of

scaled hydrogenic wavefunctions that appear as hydrogen wavefunctions in the new

coordinates.

Begin by choosing a new coordinate system (x, y, g), with g scaled to z. The relati-

onship between the two sets of coordinates is then:
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g = (
β

γ
)

1
2 z

z = (
γ

β
)

1
2 g

z2 = (
γ

β
)g2

(B.6)

The partial differentials of the two coordinate systems from equation B.6 are then:

∂z = (
γ

β
)

1
2∂g

∂g

∂z
=
(β
γ

) 1
2

(∂g
∂z

)2

=
β

γ

(B.7)

The first and second order differential operators are written as:

∂

∂z
=
∂g

∂z

∂

∂g

∂2

∂z2
=
(∂g
∂z

)2 ∂2

∂g2

=
β

γ

∂2

∂g2

(B.8)

Inserting the operators from equation B.8 into equation B.5 then changes the ef-

fective mass Hamiltonian.
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H1 = −
( ∂2

∂x2
+

∂2

∂y2

)
− γ ∂

2

∂z2
− 2

r

= −
( ∂2

∂x2
+

∂2

∂y2

)
− γβ

γ

∂2

∂g2
− 2

r

= −
( ∂2

∂x2
+

∂2

∂y2

)
− β ∂2

∂g2
− 2

r

(B.9)

The Laplacian operator is well known, and can be written as:

∇2
g =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂g2
(B.10)

The Hamiltonian from equation B.9 can then be reorganized.

H1 = −
( ∂2

∂x2
+

∂2

∂y2

)
− β ∂2

∂g2
− 2

r

= −
( ∂2

∂x2
+

∂2

∂y2

)
− ∂2

∂g2
+

∂2

∂g2
− β ∂2

∂g2
− 2

r

= −
( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂g2

)
+
(

1− β
) ∂2

∂g2
− 2

r

= −∇2
g +

(
1− β

) ∂2

∂g2
− 2

r

(B.11)

The final stage is to find the new radial coordinate rg for the spherical coordinate

system.

r = (x2 + y2 + z2)
1
2

= (x2 + y2 + (
γ

β
)g2)

1
2

(B.12)
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The Hamiltonian from equation B.11 is then fully transformed to the (x, y, g) coor-

dinates by substitution from equation B.12.

H1 = −∇2
g +

(
1− β

) ∂2

∂g2
− 2

rg(x2 + y2 + ( γ
β
)g2)

1
2

(B.13)

B.2.1. Spherical Coordinates

The (x, y, g) Hamiltonian can be easily transformed into a spherical coordinate sy-

stem. The spherical coordinates are {rg, θg, φg}.

The spherical and Cartesian coordinates are related, where subscript g indicates the

new scaled coordinates.

x = rg sin(θg) cos(φ)

y = rg sin(θg) sin(φ)

g = rg cos(θg)

rg = (x2 + y2 + g2)
1
2

r = (x2 + y2 + z2)
1
2

= (x2 + y2 + (
γ

β
)g2)

1
2

= rg

(
1− (1− γ

β
) cos2(θ)

) 1
2

θg = arccos(
g

rg
)

θ = arccos(
z

r
)

φ = φg = arctan(
y

x
)

(B.14)
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For completeness, the Laplacian operator is written here in spherical coordinates as:

[168].

∇2
g =

1

r2
g

∂

∂rg
(r2
g

∂

∂rg
) +

1

r2
g sin(θg)

∂

∂θg
(sin(θg)

∂

∂θg
) +

1

r2
g sin2(θg)

∂2

∂φ2
g

(B.15)

The second order differential operator, with respect to g, in the Hamiltonian must

then be considered.

B.2.1.1. Changing a Second Order Differential Operator to Spherical

Coordinates

By application of the chain rule the second order g differential can be expanded in

terms of spherical coordinates.

∂

∂g
=
∂θg
∂g

∂

∂θg
+
∂rg
∂g

∂

∂rg

∂2

∂g2
=

∂

∂g

(
∂θg
∂g

∂

∂θg
+
∂rg
∂g

∂

∂rg

)
∂2

∂g2
=
∂2θg
∂g2

∂

∂θg
+
∂θg
∂g

∂

∂g

∂

∂θg
+
∂2rg
∂g2

∂

∂rg
+
∂rg
∂g

∂

∂g

∂

∂rg

=
∂2θg
∂g2

∂

∂θg
+
∂θg
∂g

[
∂θg
∂g

∂

∂θg
+
∂rg
∂g

∂

∂rg

]
∂

∂θg
+
∂2rg
∂g2

∂

∂rg
+
∂rg
∂g

[
∂θg
∂g

∂

∂θg
+
∂rg
∂g

∂

∂rg

]
∂

∂rg

=
∂2θg
∂g2

∂

∂θg
+

(
∂θg
∂g

)2
∂2

∂θ2
g

+
∂θg
∂g

∂rg
∂g

∂

∂rg

∂

∂θg
+
∂2rg
∂g2

∂

∂rg
+
∂rg
∂g

∂θg
∂g

∂

∂θg

∂

∂rg
+

(
∂rg
∂g

)2
∂2

∂r2
g

=
∂2θg
∂g2

∂

∂θg
+
∂2rg
∂g2

∂

∂rg
+

(
∂θg
∂g

)2
∂2

∂θ2
g

+

(
∂rg
∂g

)2
∂2

∂r2
g

+ 2
∂θg
∂g

∂rg
∂g

∂

∂rg

∂

∂θg

(B.16)
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The 5 different terms can then be addressed. Firstly, the first order differentials of

θg with respect to g are shown below.

θg = arccos(
g

rg
) = arccos(

g

(x2 + y2 + g2)
1
2

)

∂θg
∂g

=

(
1(

x2 + y2 + g2
) 1

2

+
−1

2

2g2(
x2 + y2 + g2

) 3
2

)
−1√

1− g2

(x2+y2+g2)

=

(
1

rg
− g2

r3
g

)
−1√
1− g2

r2
g

=
−1

rg

(
1− g2

r2
g

)
1√

1− g2

r2
g

=
−1

rg

√
1− g2

r2
g

=
−1

rg

√
1−

r2
g cos(θg)2

r2
g

=
−1

rg

√
1− cos(θg)2

=
−1

rg

√
sin2(θg) + cos2(θg)− cos2(θg)

=
−1

rg

√
sin2(θg)

= −sin(θg)

rg(
∂θg
∂g

)2

=
sin2(θg)

r2
g

(B.17)

Secondly, the second order differentials of θg with respect to g are:
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∂2θg
∂g2

=
∂

∂g

(∂θg
∂g

)
=

∂

∂θg

∂θg
∂g

(∂θg
∂g

)
=
( ∂

∂θg

∂θg
∂g

)(∂θg
∂g

)
+
(∂θg
∂g

)( ∂

∂θg

∂θg
∂g

)
= 2

∂θg
∂g

∂

∂θg

(∂θg
∂g

)
= −2

sin(θg)

rg

∂

∂θg

(
− sin(θg)

rg

)
=
(
− 2

sin(θg)

rg

)(
− cos(θg)

rg

)
= 2

sin(θg) cos(θg)

r2
g

(B.18)

Thirdly, the first order derivative of rg with respect to g is:

rg =
(
x2 + y2 + g2

) 1
2

∂rg
∂g

=
g(

x2 + y2 + g2
) 1

2

=
g

rg

=
rg cos(θg)

rg

= cos(θg)(
∂rg
∂g

)2

= cos2(θg)

(B.19)

Fourthly, the second order derivative of rg with respect to g is:
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∂2rg
∂g2

=
∂

∂g

(
g(

x2 + y2 + g2
) 1

2

)

=
1(

x2 + y2 + g2
) 1

2

− g2(
x2 + y2 + g2

) 3
2

=
1

rg
− g2

r3
g

=
1

rg

(
1−

r2
g cos2(θg)

r2
g

)
=

1

rg

(
1− cos2(θg)

)
=

1

rg

(
sin2(θg) + cos2(θg)− cos2(θg)

)
=

sin2(θg)

rg

(B.20)

The differential operator has then been converted into spherical coordinates. Col-

lecting the five expressions from equations B.17, B.18, B.19, and B.20 results in the

full expression.

∂2

∂g2
=
∂2θg
∂g2

∂

∂θg
+
∂2rg
∂g2

∂

∂rg
+

(
∂θg
∂g

)2
∂2

∂θ2
g

+

(
∂rg
∂g

)2
∂2

∂r2
g

+ 2
∂θg
∂g

∂rg
∂g

∂

∂rg

∂

∂θg

= 2
sin(θg) cos(θg)

r2
g

∂

∂θg

+
sin2(θg)

rg

∂

∂rg
+

sin2(θg)

r2
g

∂2

∂θ2
g

+ cos2(θg)
∂2

∂r2
g

− 2
sin(θg)

rg
cos(θg)

∂

∂rg

∂

∂θg

(B.21)

Incorporating the terms from equation B.21 into the effective mass Hamiltonian

from equation B.11, results gives:
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H1 = −∇2
g +

(
1− β

)[
2

sin(θg) cos(θg)

r2
g

∂

∂θg

+
sin2(θg)

rg

∂

∂rg
+

sin2(θg)

r2
g

∂2

∂θ2
g

+ cos2(θg)
∂2

∂r2
g

− 2
sin(θg)

rg
cos(θg)

∂

∂rg

∂

∂θg

]

− 2

rg

(
1− (1− γ

β
) cos2(θ)

) 1
2

(B.22)

B.3. Applying the Effective Mass Hamiltonian to

Single Hydrogenic Basis States

The application of the unitless effective mass Hamiltonian to single hydrogenic basis

state wavefunctions, followed by multiplication by the complex conjugate of the

wavefunction and integration over all space.

The energy expectation integrals are of the form specified below.

Ej = 〈Fj|H1|Fj〉

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

F ∗j (x, y,
(β
γ

) 1
2 z)H1Fj(x, y,

(β
γ

) 1
2 z)dxdydz

(B.23)

Taking into account the change of the integration from (x, y, z) to (x, y, g) coordi-

nates, defined above in equation B.6 and the partial differentials in equation B.7,

changes equation B.23 to become:

Ej =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

F ∗j (x, y, g)H1Fj(x, y, g)dxdy
(γ
β

) 1
2
dg (B.24)
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Changing to spherical coordinates, equation B.24 becomes the same as equation 3.33

of the main body text.

Ej =
(γ
β

) 1
2

∫ ∞
0

∫ π

0

∫ 2π

0

r2
g sin(θg)F

∗
j (rg, θg, φg)H1Fj(rg, θg, φg)drgdθgdφg (B.25)

B.3.1. 1S

The 1S wavefunction is taken to be as in equation 3.34. This is the hydrogen

wavefunction, but in unitless form, where ab the Bohr radius has been replaced by

1
α0,0

, and is now in the spherical g coordinate system rather than z.

F1S(A1)(rg) =
(β
γ

) 1
4
α

3
2
0,0√
π
e−α0,0rg (B.26)

To evaluate the energy expectation overlap integral the Hamiltonian operator, equa-

tion B.22, must be applied to the wavefunction, equation B.26. Because the 1S

wavefunction has no dependence upon θg, all such terms in the Hamiltonian will be

zero, the Hamiltonian then becomes:

H1 = −∇2
g +

(
1− β

)[sin2(θg)

rg

∂

∂rg
+ cos2(θg)

∂2

∂r2
g

]

− 2

rg

(
1− (1− γ

β
) cos2(θ)

) 1
2

(B.27)

Calculating the energy of the 1S state in terms of the variational parameters α

and β gives equation B.28, which can then be split into three terms and evaluated
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separately.

Ej =
(γ
β

) 1
2

∫ ∞
0

∫ π

0

∫ 2π

0

r2
g sin(θg)

(β
γ

) 1
4
α

3
2
0,0√
π
e−α0,0rg

(
−∇2

g

+
(

1− β
)[sin2(θg)

rg

∂

∂rg
+ cos2(θg)

∂2

∂r2
g

]

− 2

rg

(
1− (1− γ

β
) cos2(θ)

) 1
2

)(β
γ

) 1
4
α

3
2
0,0√
π
e−α0,0rgdrgdθgdφg

=
α3

0,0

π

∫ ∞
0

∫ π

0

∫ 2π

0

r2
g sin(θg)e

−α0,0rg

(
−∇2

g

+
(

1− β
)[sin2(θg)

rg

∂

∂rg
+ cos2(θg)

∂2

∂r2
g

]

− 2

rg

(
1− (1− γ

β
) cos2(θ)

) 1
2

)
e−α0,0rgdrgdθgdφg

(B.28)

First term for 1S energy

The first part of the 1S energy expression from equation B.28 is then evaluated for

the φg integral.

−α3
0,0

π

∫ ∞
0

∫ π

0

∫ 2π

0

(
r2
g sin(θg)e

−α0,0rg∇2
ge
−α0,0rg

)
drgdθgdφg

= −2α3
0,0

∫ ∞
0

∫ π

0

(
r2
g sin(θg)e

−α0,0rg∇2
ge
−α0,0rg

)
drgdθg

(B.29)

The application of the Laplacian operator, equation B.15, to the exponential term

in equation B.29, is:
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∇2
ge
−α0,0rg = −

(
1

r2
g

∂

∂rg
(r2
g

∂

∂rg
) +

1

r2
g sin(θg)

∂

∂θg
(sin(θg)

∂

∂θg
) +

1

r2
g sin2(θg)

∂2

∂φ2
g

)
e−α0,0rg

=

(
1

r2
g

∂

∂rg
(r2
g

∂

∂rg
)

)
e−α0,0rg

=
1

r2
g

∂

∂rg
(−α0,0r

2
ge
−α0,0rg)

=
1

r2
g

(
− 2α0,0rg + α2

0,0r
2
g

)
e−α0,0rg

=
(
− 2

α0,0

rg
+ α2

0,0

)
e−α0,0rg

(B.30)

Substituting the result from equation B.30 back into equation B.29, and making use

of the integration identity shown in equation B.31 yields:

∫ ∞
0

rXe−rY dr ∫
udv = uv −

∫
vdu

u = rX |du = XrX−1

dv = e−rY |v = −e
−rY

Y

=
[
− rX

Y
e−rY

]∞
0

+

∫ ∞
0

X

Y
rX−1e−rY dr

=

∫ ∞
0

X!

Y X
e−rY dr

∫ ∞
0

rXe−rY dr =
X!

Y X+1

(B.31)
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− 2α3
0,0

∫ ∞
0

∫ π

0

(
r2
g sin(θg)e

−α0,0rg∇2
ge
−α0,0rg

)
drgdθg

= −2α3
0,0

∫ ∞
0

∫ π

0

(
r2
g sin(θg)e

−α0,0rg
(
− 2

α0,0

rg
+ α2

0,0

)
e−α0,0rg

)
drgdθg

= −2α4
0,0

∫ ∞
0

∫ π

0

(
sin(θg)

(
− 2rg + α0,0r

2
g

)
e−2α0,0rg

)
drgdθg

= −2α4
0,0[− cos(θg)]

π
0

∫ ∞
0

((
− 2rg + α0,0r

2
g

)
e−2α0,0rg

)
drg

= −4α4
0,0

∫ ∞
0

((
− 2rg + α0,0r

2
g

)
e−2α0,0rg

)
drg

= −4α4
0,0

(
−2

4α2
0,0

+
2α0,0

8α3
0,0

)
= 2α2

0,0 − α2
0,0

= α2
0,0

(B.32)

Second term for 1S energy

The second term of the 1S energy expression from equation B.28 is then evaluated.

α3
0,0

π

∫ ∞
0

∫ π

0

∫ 2π

0

r2
g sin(θg)

(
e−α0,0rg

(
1− β

)[sin2(θg)

rg

∂

∂rg

+ cos2(θg)
∂2

∂r2
g

]
e−α0,0rgdrgdθgdφg

= 2α3
0,0

∫ ∞
0

∫ π

0

r2
g sin(θg)

(
e−α0,0rg

(
1− β

)[sin2(θg)

rg

∂

∂rg

+ cos2(θg)
∂2

∂r2
g

]
e−α0,0rgdrgdθg

(B.33)

The application of the differential with respect to rg operators from equation B.33

is then evaluated.
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∂

∂rg
e−α0,0rg = −α0,0e

−α0,0rg

∂2

∂r2
g

e−α0,0rg = α2
0,0e
−α0,0rg

(B.34)

Substituting the expression from equation B.34 back into equation B.33 then gives:

2α3
0,0

∫ ∞
0

∫ π

0

r2
g sin(θg)

(
e−α0,0rg

(
1− β

)[−α0,0 sin2(θg)

rg

+ cos2(θg)α
2
0,0

]
e−α0,0rgdrgdθg

= 2α3
0,0

(
1− β

)∫ ∞
0

∫ π

0

r2
g sin(θg)

[
−α0,0 sin2(θg)

rg

+ cos2(θg)α
2
0,0

]
e−2α0,0rgdrgdθg

= 2α4
0,0

(
1− β

)∫ ∞
0

∫ 2π

0

[
− rg sin3(θg)

+ r2
g cos2(θg) sin(θg)α0,0

]
e−2α0,0rgdrgdθg

(B.35)

Again making use of the integral identity from equation B.31, equation B.35 then

becomes:

2α4
0,0

(
1− β

)∫ π

0

[
− 1

4α2
0,0

sin3(θg)

+
1

4α3
0,0

cos2(θg) sin(θg)α0,0

]
dθg

=
α2

0,0

2

(
1− β

)∫ π

0

[
− sin3(θg) + cos2(θg) sin(θg)

]
dθg

(B.36)
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The angular integrals from equation B.36 are evaluated:

∫ π

0

cos2(θg) sin(θg)dθg =
[
− 1

3
cos3(θg)

]π
0

= −
(−1− 1

3

)
=

2

3∫ π

0

sin3(θg)dθg =

∫ π

0

sin(θg) sin2(θg)dθg

=

∫ π

0

sin(θg)
(

1− cos2(θg)
)
dθg

=

∫ π

0

(
sin(θg)− cos2(θg) sin(θg)

)
dθg∫ π

0

sin(θg)dθg =
[
− cos(θg)

]π
0

= −(−1− 1) = 2

(B.37)

The angular integrals from equation B.37 are put together, as in equation B.36, to

give:

∫ π

0

[
− sin3(θg) + cos2(θg) sin(θg)

]
dθg = −

∫ π

0

sin(θg)dθg + 2

∫ π

0

cos2(θg) sin(θg)dθg

= −2 + 2(
2

3
) = −2 +

4

3

= −2

3

(B.38)

Substituting equation B.38 back into equation B.36 yields the second 1S energy

term.

α2
0,0

2

(
1− β

)[
− 2

3

]

= −1

3
α2

0,0

(
1− β

) (B.39)
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Third term for 1S energy

The third term of the 1S energy expression from equation B.28 is then evaluated.

α3
0,0

π

∫ ∞
0

∫ π

0

∫ 2π

0

(
r2
g sin(θg)

(
e−α0,0rg

[
− 2

rg

(
1− (1− γ

β
) cos2(θ)

) 1
2

]
e−α0,0rg

))

drgdθgdφg

=
−2α3

0,0

π

∫ ∞
0

∫ π

0

∫ 2π

0

(
r2
g sin(θg)

([ e−2α0,0rg

rg

(
1− (1− γ

β
) cos2(θ)

) 1
2

]))
drgdθgdφg

= −4α3
0,0

∫ ∞
0

∫ π

0

(
rg sin(θg)

e−2α0,0rg(
1− (1− γ

β
) cos2(θ)

) 1
2

)
drgdθg

= −4α3
0,0

∫ ∞
0

(
rge
−2α0,0rg

)
drg

∫ π

0

sin(θg)(
1− (1− γ

β
) cos2(θ)

) 1
2

dθg

= −4α3
0,0

1

4α2
0,0

∫ π

0

sin(θg)(
1− (1− γ

β
) cos2(θ)

) 1
2

dθg

= −α0,0

∫ π

0

sin(θg)(
1− (1− γ

β
) cos2(θ)

) 1
2

dθg

(B.40)

The θg angular integral from equation B.40 can then be simplified with the substi-

tution in equation B.41.

u =
(

1− γ

β

) 1
2

cos(θg)

du = −
(

1− γ

β

) 1
2

sin(θg)dθg

θg = 0, u =
(

1− γ

β

) 1
2

θg = π, u = −
(

1− γ

β

) 1
2

(B.41)
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The angular integral is then shown as:

− 1(
1− γ

β

) 1
2

∫ −(1− γ
β

) 1
2

(
1− γ

β

) 1
2

1(
1− u2

) 1
2

du (B.42)

The integral in equation B.42 can then be compared with the well known integral

shown in equation B.43.

∫
1(

1− u2
) 1

2

du = arcsin(u)
(B.43)

− 1(
1− γ

β

) 1
2

∫ −(1− γ
β

) 1
2

(
1− γ

β

) 1
2

1(
1− u2

) 1
2

du

= − 1(
1− γ

β

) 1
2

[
arcsin(−

(
1− γ

β

) 1
2
)− arcsin(

(
1− γ

β

) 1
2
)
]

= − 1(
1− γ

β

) 1
2

[
− 2 arcsin(

(
1− γ

β

) 1
2
)
]

=
2(

1− γ
β

) 1
2

arcsin(
(

1− γ

β

) 1
2
)

(B.44)

Reinserting the angular expression from equation B.44, back into equation B.40

gives the third term.

− 2α0,0(
1− γ

β

) 1
2

arcsin(
(

1− γ

β

) 1
2
)

(B.45)
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1S complete energy function

The three 1S energy terms from equations B.32, B.39, and B.45 can be assembled

together to give the final energy expression.

E1S(α0,0, β, γ) =

(
α2

0,0 −
1

3
α2

0,0

(
1− β

)
− 2α0,0(

1− γ
β

) 1
2

arcsin(
(

1− γ

β

) 1
2
)

)

=
1

3
α2

0,0

(
β + 2

)
− 2α0,0(

1− γ
β

) 1
2

arcsin
((

1− γ

β

) 1
2

) (B.46)

B.3.2. 2P0

The 2p0 wavefunction is taken to be as in equation B.47. This is the hydrogen

wavefunction, but in unitless form, where ab the Bohr radius has been replaced by

1
α1,0

, and is now in the spherical g rather then the z coordinate system.

F2p0(rg) =
(β
γ

) 1
4
α

5
2
1,0

4
√

2π
rg cos(θg)e

−
α1,0rg

2 (B.47)

Evaluating the energy expectation value, with Hamiltonian operator from equation

B.27, and the 2p0 wavefunction from equation B.47, results in:
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Ej =
(γ
β

) 1
2

∫ ∞
0

∫ π

0

∫ 2π

0

r2
g sin(θg)

(β
γ

) 1
4
α

5
2
1,0

4
√

2π
rg cos(θg)e

−
α1,0rg

2

(
−∇2

g

+
(

1− β
)[

2
sin(θg) cos(θg)

r2
g

∂

∂θg

+
sin2(θg)

rg

∂

∂rg
+

sin2(θg)

r2
g

∂2

∂θ2
g

+ cos2(θg)
∂2

∂r2
g

− 2
sin(θg)

rg
cos(θg)

∂

∂rg

∂

∂θg

]

− 2

rg

(
1− (1− γ

β
) cos2(θ)

) 1
2

)(β
γ

) 1
4
α

5
2
1,0

4
√

2π
rg cos(θg)e

−
α1,0rg

2 drgdθgdφg

=
α5

1,0

32π

∫ ∞
0

∫ π

0

∫ 2π

0

r2
g sin(θg)rg cos(θg)e

−
α1,0rg

2

(
−∇2

g

+
(

1− β
)[

2
sin(θg) cos(θg)

r2
g

∂

∂θg

+
sin2(θg)

rg

∂

∂rg
+

sin2(θg)

r2
g

∂2

∂θ2
g

+ cos2(θg)
∂2

∂r2
g

− 2
sin(θg)

rg
cos(θg)

∂

∂rg

∂

∂θg

]

− 2

rg

(
1− (1− γ

β
) cos2(θ)

) 1
2

)
rg cos(θg)e

−
α1,0rg

2 drgdθgdφg

(B.48)

Equation B.48 can then, as for the 1S wavefunction, be split into three parts.

First term for 2p0 energy expression

The first 2P0 energy term from equation B.48 is evaluated by the application of the

Laplacian operator to the 2P0 wavefunction.
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α5
1,0

32π

∫ ∞
0

∫ π

0

∫ 2π

0

(
r2
g sin(θg)rg cos(θg)e

−
α1,0rg

2

×
(
−∇2

g

)
rg cos(θg)e

−
α1,0rg

2 drgdθgdφg

) (B.49)

The ∇2 operator is applied to the 2p0 wavefunction.

∇2
g

(
rg cos(θg)e

−
α1,0rg

2

)
=

(
1

r2
g

∂

∂rg

(
r2
g

∂

∂rg

)
+

1

r2
g sin(θg)

∂

∂θg

(
sin(θg)

∂

∂θg

)
+

1

r2
g sin2(θg)

∂2

∂φ2
g

)(
rg cos(θg)e

−
α1,0rg

2

)

=

(
1

r2
g

∂

∂rg

(
r2
g

∂

∂rg

)
+

1

r2
g sin(θg)

∂

∂θg

(
sin(θg)

∂

∂θg

))(
rg cos(θg)e

−
α1,0rg

2

)
(B.50)

The first part of the Laplacian operator applied to the 2P0 wavefunction, equation

B.50, is then:
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(
1

r2
g

∂

∂rg

(
r2
g

∂

∂rg

))
rg cos(θg)e

−
α1,0rg

2

= cos(θg)
1

r2
g

∂

∂rg

(
r2
g

[
e−

α1,0rg

2 − α1,0rg
2

e−
α1,0rg

2

])
= cos(θg)

1

r2
g

∂

∂rg

(
r2
ge
−
α1,0rg

2 −
α1,0r

3
g

2
e−

α1,0rg

2

)
= cos(θg)

1

r2
g

(
2rge

−
α1,0rg

2 −
α1,0r

2
g

2
e−

α1,0rg

2 −
3α1,0r

2
g

2
e−

α1,0rg

2 +
α2

1,0r
3
g

4
e−

α1,0rg

2

)
= cos(θg)e

−
α1,0rg

2
1

r2
g

(
2rg −

α1,0r
2
g

2
−

3α1,0r
2
g

2
+
α2

1,0r
3
g

4

)
= cos(θg)e

−
α1,0rg

2

(
2

rg
− α1,0

2
− 3α1,0

2
+
α2

1,0rg

4

)
= cos(θg)e

−
α1,0rg

2

(
2

rg
− 2α1,0 +

α2
1,0rg

4

)
(B.51)

The second part of the Laplacian operator applied to the 2P0 wavefunction, equation

B.50, is then:

1

r2
g sin(θg)

∂

∂θg

(
sin(θg)

∂

∂θg

)
rg cos(θg)e

−
α1,0rg

2

= − 1

r2
g sin(θg)

∂

∂θg

(
sin(θg)rg sin(θg)e

−
α1,0rg

2

)
= − 1

rg sin(θg)

∂

∂θg

(
sin2(θg)e

−
α1,0rg

2

)
= − 1

rg sin(θg)

(
2 sin(θg) cos(θg)e

−
α1,0rg

2

)
= −2 cos(θg)

rg
e−

α1,0rg

2

(B.52)

Assembling the results from equations B.51 and B.52 gives the result of the Laplacian

in total.
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∇2
g

(
rg cos(θg

)
e−

α1,0rg

2 ) = cos(θg)e
−
α1,0rg

2

(
2

rg
− 2α1,0 +

α2
1,0rg

4

)
− 2 cos(θg)

rg
e−

α1,0rg

2

= cos(θg)e
−
α1,0rg

2

(
2

rg
− 2α1,0 +

α2
1,0rg

4
− 2

rg

)
= cos(θg)e

−
α1,0rg

2

(
− 2α1,0 +

α2
1,0rg

4

)
(B.53)

The result from equation B.53 is then substituted into equation B.49 to then give

the first energy term.

−
α5

1,0

32π

∫ ∞
0

∫ π

0

∫ 2π

0

r2
g sin(θg)rg cos(θg)e

−
α1,0rg

2

(
−∇2

g)
rg cos(θg)e

−
α1,0rg

2 drgdθgdφg

= −
α5

1,0

32π

∫ ∞
0

∫ π

0

∫ 2π

0

r2
g sin(θg)rg cos(θg)e

−
α1,0rg

2 cos(θg)e
−
α1,0rg

2(
− 2α1,0 +

α2
1,0rg

4

)
drgdθgdφg

= −
α5

1,0

32π

∫ ∞
0

∫ π

0

∫ 2π

0

r2
g sin(θg)rg cos2(θg)e

−α1,0rg(
− 2α1,0 +

α2
1,0rg

4

)
drgdθgdφg

= −
α5

1,0

32π

∫ ∞
0

∫ π

0

∫ 2π

0

sin(θg)rg cos2(θg)e
−α1,0rg(

− 2α1,0r
2
g +

α2
1,0r

3
g

4

)
drgdθgdφg

= −
α5

1,0

16

∫ ∞
0

∫ π

0

sin(θg) cos2(θg)e
−α1,0rg(

− 2α1,0r
3
g +

α2
1,0r

4
g

4

)
drgdθg

= −
α5

1,0

16

∫ ∞
0

e−α1,0rg

(
− 2α1,0r

3
g +

α2
1,0r

4
g

4

)
drg

∫ π

0

sin(θg) cos2(θg)dθg

(B.54)
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The integrals from equation B.54 are then evaluated, with the radial integral yet

again solved with the use of the identity in equation B.31, below:

−
α5

1,0

16

∫ ∞
0

e−α1,0rg

(
− 2α1,0r

3
g +

α2
1,0r

4
g

4

)
drg

∫ π

0

sin(θg) cos2(θg)dθg

= −
α5

1,0

16

(
− 2

6α1,0

α4
1,0

+
24α2

1,0

4α5
1,0

)[
− 1

3
cos(θg)

3

]π
0

= −
α5

1,0

16

(
− 12

α3(1, 0)
+

6

α3(1, 0)

)
2

3

= − 1

24

(
− 12α2

1,0 + 6α2
1,0

)
=
α2

1,0

4

(B.55)

Second term for 2P0 energy expression

The second 2p0 energy term from equation B.48, where the (1− β) set of terms is

applied to the 2P0 wavefunction, is evaluated as:

α5
1,0

32π

∫ ∞
0

∫ π

0

∫ 2π

0

r2
g sin(θg)rg cos(θg)e

−
α1,0rg

2

×
(

1− β
)[

2
sin(θg) cos(θg)

r2
g

∂

∂θg

+
sin2(θg)

rg

∂

∂rg
+

sin2(θg)

r2
g

∂2

∂θ2
g

+ cos2(θg)
∂2

∂r2
g

− 2
sin(θg)

rg
cos(θg)

∂

∂rg

∂

∂θg

]
rg cos(θg)e

−
α1,0rg

2 drgdθgdφg

(B.56)

The first, and second, order differentials of the 2P0 wavefunction, from equation

B.56, are then evaluated:
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∂

∂rg
rg cos(θg)e

−
α1,0rg

2 = cos(θg)e
−
α1,0rg

2 − α1,0

2
rg cos(θg)e

−
α1,0rg

2

=
[
1− α1,0

2
rg
]

cos(θg)e
−
α1,0rg

2

∂2

∂r2
g

rg cos(θg)e
−
α1,0rg

2 =
[
− α1,0

2
− α1,0

2
+
α2

1,0rg

4

]
cos(θg)e

−
α1,0rg

2

=
[
− α1,0 +

α2
1,0rg

4

]
cos(θg)e

−
α1,0rg

2

∂

∂θg
rg cos(θg)e

−
α1,0rg

2 = −rg sin(θg)e
−
α1,0rg

2

∂2

∂θ2
g

rg cos(θg)e
−
α1,0rg

2 = −rg cos(θg)e
−
α1,0rg

2

(B.57)

The values from equation B.57 are then substituted into the parts of equation B.56.

2
sin(θg) cos(θg)

r2
g

∂

∂θg
rg cos(θg)e

−
α1,0rg

2 = −2
sin(θg) cos(θg)

r2
g

rg sin(θg)e
−
α1,0rg

2

= −2
sin2(θg) cos(θg)

rg
e−

α1,0rg

2

(B.58)

sin2(θg)

rg

∂

∂rg
rg cos(θg)e

−
α1,0rg

2 =
sin2(θg)

rg

[
1− α1,0

2
rg
]

cos(θg)e
−
α1,0rg

2

=
sin2(θg) cos(θg)

rg

[
1− α1,0

2
rg
]
e−

α1,0rg

2

(B.59)
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sin2(θg)

r2
g

∂2

∂θ2
g

rg cos(θg)e
−
α1,0rg

2 = −sin2(θg)

r2
g

rg cos(θg)e
−
α1,0rg

2

= −sin2(θg) cos(θg)

rg
e−

α1,0rg

2

(B.60)

cos2(θg)
∂2

∂r2
g

rg cos(θg)e
−
α1,0rg

2 = cos2(θg)
[
− α1,0 +

α2
1,0rg

4

]
cos(θg)e

−
α1,0rg

2

= cos3(θg)
[
− α1,0 +

α2
1,0rg

4

]
e−

α1,0rg

2

(B.61)

−2
sin(θg)

rg
cos(θg)

∂

∂rg

∂

∂θg
rg cos(θg)e

−
α1,0rg

2 = 2
sin(θg)

rg
cos(θg)

[
1− α1,0

2
rg
]

sin(θg)e
−
α1,0rg

2

= 2
sin2(θg) cos(θg)

rg

[
1− α1,0

2
rg
]
e−

α1,0rg

2

(B.62)

The set of terms from equations B.58,B.59, B.60, B.61, and B.62 are then collected

together:

− 2
sin2(θg) cos(θg)

rg
e−

α1,0rg

2 +
sin2(θg) cos(θg)

rg

[
1− α1,0

2
rg
]
e−

α1,0rg

2

− sin2(θg) cos(θg)

rg
e−

α1,0rg

2 + cos3(θg)
[
− α1,0 +

α2
1,0rg

4

]
e−

α1,0rg

2

+ 2
sin2(θg) cos(θg)

rg

[
1− α1,0

2
rg
]
e−

α1,0rg

2

=

{
sin2(θg) cos(θg)

rg

[
1− α1,0

2
rg
]

− sin2(θg) cos(θg)

rg
+ cos3(θg)

[
− α1,0 +

α2
1,0rg

4

]
+ 2

sin2(θg) cos(θg)

rg

[
1− α1,0

2
rg
]
− 2

sin2(θg) cos(θg)

rg

}
e−

α1,0rg

2

=

{
− 3α1,0

2
rg

sin2(θg) cos(θg)

rg
+ cos3(θg)

[
− α1,0 +

α2
1,0rg

4

]}
e−

α1,0rg

2

(B.63)
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Substituting the result from equation B.63 back into the energy integral from equa-

tion B.56 then gives:

α5
1,0

32π

∫ ∞
0

∫ π

0

∫ 2π

0

r2
g sin(θg)rg cos(θg)e

−
α1,0rg

2

×
(

1− β
){
− 3α1,0

2
rg

sin2(θg) cos(θg)

rg

+ cos3(θg)
[
− α1,0 +

α2
1,0rg

4

]}
e−

α1,0rg

2 drgdθgdφg

=
(

1− β
)α5

1,0

16

∫ ∞
0

∫ π

0

{
− 3α1,0

2
rg sin3(θg) cos2(θg)r

2
g

+ r3
g sin(θg) cos4(θg)

[
− α1,0 +

α2
1,0rg

4

]}
e−α1,0rgdrgdθg

(B.64)

The evaluation of the angular expressions from equation B.64 are then:

∫ π

0

sin3(θg) cos2(θg)dθg =

∫ π

0

sin(θg)
(
1− cos2(θg)

)
cos2(θg)dθg

=

∫ π

0

(
sin(θg) cos2(θg)− sin(θg) cos4(θg)

)
dθg

=
[
− 1

3
cos3(θg)

]π
0
−
[
− 1

5
cos5(θg)

]π
0

= −1

3

[
− 1− 1

]π
0

+
1

5

[
− 1− 1

]π
0

=
2

3
− 2

5
=

4

15∫ π

0

sin(θg) cos4(θg)dθg =
[
− 1

5
cos5(θg)

]π
0

= −1

5

[
− 1− 1

]π
0

=
2

5

(B.65)

Substituting the results from the angular integral, equation B.65, into the energy
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expression in equation B.64, making use of the identity from equation B.31 to allow

the evaluation of the radial integral, this then gives us:

(
1− β

)α5
1,0

16

∫ ∞
0

∫ π

0

{
− 3α1,0

2
rg sin3(θg) cos2(θg)r

2
g

+ r3
g sin(θg) cos4(θg)

[
− α1,0 +

α2
1,0rg

4

]}
e−α1,0rgdrgdθg

=
(

1− β
)α5

1,0

16

∫ ∞
0

{
− 3α1,0

2
rg

4

15
r2
g

+
2

5
r3
g

[
− α1,0 +

α2
1,0rg

4

]}
e−α1,0rgdrg

=
(

1− β
)α5

1,0

16

∫ ∞
0

{
−

2α1,0r
3
g

5
+
[
− 2

5
α1,0r

3
g +

α2
1,0r

4
g

10

]}
e−α1,0rgdrg

=
(

1− β
)α5

1,0

16

{
− 12α1,0

5α4
1,0

+
[
− 12

5α4
1,0

α1,0 +
24α2

1,0

10α5
1,0

]}

=
(

1− β
)α5

1,0

16

{
− 12

5α3(1, 0)
+
[
− 12

5α3(1, 0)
+

24

10α3(1, 0)

]}

=
(

1− β
) 1

16

{
−

12α2
1,0

5
+
[
−

12α2
1,0

5
+

24α2
1,0

10

]}

=
(

1− β
)
α2

1,0

{
− 3

20
− 3

20
+

3

20

}

= − 3

20

(
1− β

)
α2

1,0

(B.66)

Third term for 2P0 energy expression

The third 2p0 energy term from equation B.48 is then evaluated:
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=
α5

1,0

32π

∫ ∞
0

∫ π

0

∫ 2π

0

r2
g sin(θg)rg cos(θg)e

−
α1,0rg

2

×
(
− 2

rg

(
1− (1− γ

β
) cos2(θ)

) 1
2

)
rg cos(θg)e

−
α1,0rg

2 drgdθgdφg

= −2
α5

1,0

16

∫ ∞
0

∫ π

0

r3
g sin(θg) cos2(θg)e

−α1,0rg(
1− (1− γ

β
) cos2(θ)

) 1
2

drgdθg

= −
α5

1,0

8

∫ ∞
0

r3
ge
−α1,0rgdrg

∫ π

0

sin(θg) cos2(θg)(
1− (1− γ

β
) cos2(θ)

) 1
2

dθg

= −
α5

1,0

8

6

α4
1,0

∫ π

0

sin(θg) cos2(θg)(
1− (1− γ

β
) cos2(θ)

) 1
2

dθg

= −3α1,0

4

∫ π

0

sin(θg) cos2(θg)(
1− (1− γ

β
) cos2(θ)

) 1
2

dθg

(B.67)

The integral from equation B.67 can be solved by the use of the following substi-

tutions:

cos(θg) =
sin(y)

(1− γ
β
)

1
2

(1− γ

β
) cos2(θg) = sin2(y)

y = arcsin
(
(1− γ

β
) cos(θg)

)
− sin(θg)dθg =

cos(y)dy

(1− γ
β
)

1
2

y0 = arcsin
(
(1− γ

β
)

1
2

)
y1 = −y0 = arcsin

(
− (1− γ

β
)
)

(B.68)

The angular integral from equation B.67 can then be evaluated by the use of the

substitutions in equation B.68.
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∫ π

0

sin(θg) cos2(θg)(
1− (1− γ

β
) cos2(θ)

) 1
2

dθg

=

∫ −y0

y0

cos2(θg) sin(θg)(
1− sin2(y)

) 1
2

(
− cos(y)

(1− γ
β
)

1
2 sin(θg)

)
dy

=
−1

(1− γ
β
)

1
2

∫ −y0

y0

cos2(θg)dy

=
−1

(1− γ
β
)

1
2

∫ −y0

y0

sin2(y)

(1− γ
β
)
dy

=
−1

(1− γ
β
)

3
2

∫ −y0

y0

(
1− cos(2y)

)
2

dy

=
1

2(1− γ
β
)

3
2

[sin(2y)

2
− y
]−y0

y0

=
1

2(1− γ
β
)

3
2

[sin(−2y0)− sin(2y0)

2
− (−y0 − y0)

]
=

1

2(1− γ
β
)

3
2

[
2y0 − sin(2y0)

]
=

1

2(1− γ
β
)

3
2

[
2 arcsin

(
(1− γ

β
)

1
2

)
− sin(2 arcsin

(
(1− γ

β
)

1
2

)
)
]

=
1

2(1− γ
β
)

3
2

[
2 arcsin

(
(1− γ

β
)

1
2

)
− 2(1− γ

β
)

1
2

√
1− (1− γ

β
)
]

=
1

(1− γ
β
)

3
2

[
arcsin

(
(1− γ

β
)

1
2

)
− (1− γ

β
)

1
2

(γ
β

) 1
2 )
]

(B.69)

Putting the angular integral result from equation B.69 back into equation B.67 then

gives the final third term:

− 3α1,0

4(1− γ
β
)

3
2

[
arcsin

(
(1− γ

β
)

1
2

)
− (1− γ

β
)

1
2

(γ
β

) 1
2 )
]

(B.70)

2P0 complete energy function

Assembling the three 2P0 energy terms from equations B.55, B.66, and B.70 gives
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the final energy expression:

E2P0(α1,0, β, γ) =
α2

1,0

4
− 3

20

(
1− β

)
α2

1,0

− 3α1,0

4(1− γ
β
)

3
2

[
arcsin

(
(1− γ

β
)

1
2

)
− (1− γ

β
)

1
2

(γ
β

) 1
2 )
]

=
1

20

(
3β + 2

)
α2

1,0 −
3α1,0

4(1− γ
β
)

3
2

[
arcsin

(
(1− γ

β
)

1
2

)
− (1− γ

β
)

1
2

(γ
β

) 1
2 )
]

(B.71)

B.3.3. Sufficient Brute Force Application of the EMT

Hamiltonian

The EMT Hamiltonian, in spherical coordinates, includes terms with each coordi-

nate. Consequently, the application of this to 1S and 2P0 states must include energy

expectation terms corresponding to both the radial rg and polar angle θg coordina-

tes. The 2P±1 state is then the only additional state beyond 1S and 2P0 that is of

any interest. The azimuthal (φg) component of 2P±1 is acted upon by the relevant

part of the Laplacian operator, which then evaluates to zero in the energy expecta-

tion integral. Thus it can be concluded that the above “brute force” evaluation of

the effective mass energy functions for the 1S and 2P0 states includes terms for all

coordinate components; at least all those states relevant to the emitting of radiation

via transitions to the ground state in chalcogen doped silicon, as experimentally

measured in this thesis (see chapter 5).

As will be discussed below in further detail, Faulkner [107] determined a formula

for energy expectation functions. Armed with energy functions for all coordinate

components of the Hamiltonian, a comparison between them and those resulting

from the Faulkner equation [107, eq 2.19] is possible. Good (in this case identical)

agreement is found, justifying confidence in the accuracy of both, and also that the
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further state energy functions(2P±1) can be found by the Faulkner equations.

B.3.4. Faulkner Hamiltonian Matrix Elements

Faulkner [107] determined the elements of a multi-basis state representation Hamil-

tonian matrix; this is in effect the Rayleigh-Ritz approach. However, Faulkner does

not show the derivations of his matrix elements, which for the diagonal elements also

give the functions that Kohn [8] must have found, despite this a derivation does not

appear in the literature. A prudent approach is to use the Faulkner matrix elements

as a check, to compare to the energy expression obtained for the 1S and 2P0 states.

The Faulkner [107, eq 2.19] diagonal matrix elements are reproduced below:

〈n, `|H1|n′, `〉 = H(n, `, n′, `) = −2I(`, `,m)J1(n′, `, n, `)

+

{
1− (1− β)

1

3

[
1 +

2`(`+ 1)− 6m2

(2`− 1)(2`+ 3)

]}
×
[
− δn,n′

α2
`,m

n2
+ 2α`,mJ

1(n′, `, n, `)

] (B.72)

For the sake of convenience, Faulkner writes his matrix elements in terms of addi-

tional basis functions I and J0, J1..., such basis functions from equation B.3.4 are

then defined:

I(`′, `,m) =

∫ π

0

∫ 2π

0

Y ∗`′,m(θg, φg)Y`,m(θg, φg)
sin(θg)dθgdφg

[1− (1− γ
β
) cos(θg)2]

1
2

(B.73)

J1(n′, `′, n, `) =

∫ ∞
0

rRn′,`′(α`′,m, r)Rn,`(α`,m, r)dr (B.74)
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B.3.4.1. Faulkner Matrix Element for the 1S State

Evaluating the 〈1S|H1|1S〉 Faulkner matrix element then gives equation B.75.

〈1S|H1|1S〉 = 〈1, 0|H1|1, 0〉 = −2I(1, 0, 0)J1(1, 0, 1, 0) +

{
1− (1− β)

1

3

}
×
[
−
α2

0,0

12
+ 2α0,0J

1(1, 0, 1, 0)

]
= −2I(1, 0, 0)J1(1, 0, 1, 0) +

(2 + β)

3

[
−
α2

0,0

12
+ 2α0,0J

1(1, 0, 1, 0)

] (B.75)

These matrix elements are also valid for some non-diagonal elements with the same `

angular momentium quantum number but differing n numbers, while the two states

must have the same m due to the non mixing of the angular momentium projection

by the effective mass Hamiltonian operator.

All values are unitless, as per the unitless effective mass Hamiltonian, and `, m,n

are the well known quantum numbers for the hydrogenic wavefunctions.

It should be noted that evaluating the Faulkner Matrix elements allows the multiple

basis state expression of the effective mass hydrogenic representation, and involves

more basis functions (J (0), J (2)...) that are not given here for off diagonal elements(

see [107] for the full matrix).

The 1S wavefunction is given by:
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R1,0(α1,0, rg) = 2α
3
2
0,0e
−α0,0rg

Y0,0(θg, φg) =
1

2
√
π

(B.76)

The J1 function is then evaluated:

J1(1, 0, 1, 0) =

∫ ∞
0

rgRn′,`′(α(`′), rg)Rn,`(α`,m, rg)drg

= 4α3
0,0

∫ ∞
0

rge
−2α0,0rgdrg

= 4α3
0,0

1

(2α0,0)2

= α0,0

(B.77)

Finally the I function is then evaluated:

I(0, 0, 0) =

∫ π

0

∫ 2π

0

Y ∗`′,m(θg, φg)Y`,m(θg, φg)
sin(θg)dφgdθg

[1− (1− γ
β
) cos(θg)2]

1
2

=

∫ π

0

∫ 2π

0

1

4π

sin(θg)dφgdθg

[1− (1− γ
β
) cos(θg)2]

1
2

=
1

2

∫ π

0

fracsin(θg)dθg[1− (1− γ

β
) cos(θg)

2]
1
2

(B.78)

By using the result of equation B.44, the angular integral in equation B.78 is deter-

mined to be:
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I(0, 0, 0) =
1

2

∫ π

0

sin(θg)dθg

[1− (1− γ
β
) cos(θg)2]

1
2

=
1(

1− γ
β

) 1
2

arcsin(
(

1− γ

β

) 1
2
)

(B.79)

Thus the final 1S energy function is:

〈1S|H1|1S〉 = −2I(1, 0, 0)J1(1, 0, 1, 0) +
(2 + β)

3

[
−
α2

0,0

12
+ 2α0,0J

1(1, 0, 1, 0)

]
= −2I(1, 0, 0)α0,0 +

(2 + β)

3

[
− α2

0,0 + 2α0,0α0,0

]
= −2α0,0I(1, 0, 0) +

(2 + β)

3
α2

0,0

= − 2α0,0(
1− γ

β

) 1
2

arcsin(
(

1− γ

β

) 1
2
) +

(2 + β)

3
α2

0,0

(B.80)

B.3.4.2. Minimisation Condition for α0,0 for 1S

The α and β parameters can be related by taking the differential of the 1S energy

expression.

0 =
∂

∂α0,0

(
− 2α0,0I(1, 0, 0) +

(2 + β)

3
α2

0,0

)
= −2I(1, 0, 0) +

2(2 + β)

3
α0,0

I(1, 0, 0) =
(2 + β)

3
α0,0

I(1, 0, 0)
3

(2 + β)
= α0,0

(B.81)

This finds the values of α and β that give the minimum energy.
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B.3.4.3. Faulkner Matrix Element for the 2P0 State

Evaluating the 〈2P0|H1|2P0〉 Faulkner matrix element then gives:

〈2P0|H1|2P0〉 = 〈2, 1|H1|2, 1〉 = −2I(1, 1, 0)J1(2, 1, 2, 1)

+

{
1− (1− β)

1

3

[
1 +

2(1 + 1)− 6(0)2

(2− 1)(2 + 3)

]}
×
[
−
α2

1,0

22
+ 2α1,0J

1(2, 1, 2, 1)

]
= −2I(1, 1, 0)J1(2, 1, 2, 1) +

{
1− (1− β)

1

3

[
1 +

4

(1)(5)

]}
×
[
−
α2

1,0

4
+ 2α1,0J

1(2, 1, 2, 1)

]
= −2I(1, 1, 0)J1(2, 1, 2, 1) +

{
1− (1− β)

3

5

}
×
[
−
α2

1,0

4
+ 2α1,0J

1(2, 1, 2, 1)

]

= −2I(1, 1, 0)J1(2, 1, 2, 1) +
(2 + 3β)

5

×
[
−
α2

1,0

4
+ 2α1,0J

1(2, 1, 2, 1)

]

(B.82)

The 2P0 radial and spherical components are then given by:

R2,1(α1,0, rg) =
α

5
2
1,0

2
√

6
rge
−
α1,0rg

2

Y1,0(θg, φg) =

√
3

2
√
π

cos(θg)

(B.83)

The I function for the 2P0 energy is then given by:
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I(1, 1, 0) =

∫ π

0

∫ 2π

0

Y ∗`′,m(θg, φg)Y`,m(θg, φg)
sin(θg)dφgdθg

[1− (1− γ
β
) cos(θg)2]

1
2

=

∫ π

0

∫ 2π

0

√
3

2
√
π

cos(θg)

√
3

2
√
π

cos(θg)
sin(θg)dφgdθg

[1− (1− γ
β
) cos(θg)2]

1
2

=
3

4π

∫ π

0

∫ 2π

0

cos2(θg) sin(θg)dφgdθg

[1− (1− γ
β
)cos(θg)2]

1
2

=
3

2

∫ π

0

cos2(θg) sin(θg)dθg

[1− (1− γ
β
) cos(θg)2]

1
2

(B.84)

The result from equation B.69 is used to evaluate equation B.84 , thus resulting in

the I function integral of:

3

2

∫ π

0

cos2(θg) sin(θg)dθg

[1− (1− γ
β
) cos(θg)2]

1
2

=
3

2(1− γ
β
)

3
2

[
arcsin

(
(1− γ

β
)

1
2

)
− (1− γ

β
)

1
2

(γ
β

) 1
2 )
] (B.85)

The J functions for the 2P0 energy are then evaluated to be:

J1(2, 1, 2, 1) =

∫ ∞
0

rgRn′,`′(α`′,m, rg)Rn,`(α`,m, rg)drg

=

∫ ∞
0

rg
α

5
2
1,0

2
√

6
rge
−
α1,0rg

2
α

5
2
1,0

2
√

6
rge
−
α1,0rg

2 drg

=
α5

1,0

24

∫ ∞
0

r3
ge
−α1,0rgdrg

=
α5

1,0

24

( 3!

α4
1,0

)
=
α1,0

4

(B.86)

The I and J functions for the 2P0 state, equations B.85 and B.86 respectively,

are substituted into the matrix element from equation B.82 below:
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〈2P0|H1|2P0〉 = −2I(1, 1, 0)J1(2, 1, 2, 1) +
(2 + 3β)

5

×
[
−
α2

1,0

4
+ 2α1,0J

1(2, 1, 2, 1)

]
= −2I(1, 1, 0)

α1,0

4
+

(2 + 3β)

5

×
[
−
α2

1,0

4
+ 2α1,0

α1,0

4

]
= −I(1, 1, 0)

α1,0

2
+
α2

1,0(2 + 3β)

20

=
α2

1,0(2 + 3β)

20
− 3α1,0

4(1− γ
β
)

3
2

[
arcsin

(
(1− γ

β
)

1
2

)
− (1− γ

β
)

1
2

(γ
β

) 1
2 )
]

(B.87)

Thus the Faulkner Hamiltonian matrix energy function, equation B.71, is the same as

that obtained by brute force application of the Hamiltonian to the 2P0 wavefunction,

equation B.87.

B.3.4.4. Minimisation Condition for α1,0 for 2P0

The α and β parameters can be related by taking the differential of the 2P0 energy

expression:

0 =
∂

∂α0,0

(
− I(1, 1, 0)

α1,0

2
+
α2

1,0(2 + 3β)

20

)
= −I(1, 1, 0)

2
+
α1,0(2 + 3β)

10
I(1, 1, 0)

2
=
α1,0(2 + 3β)

10
5I(1, 1, 0)

(2 + 3β)
= α1,0

(B.88)

This finds the values of α and β that give the minimum energy.
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B.3.4.5. Faulkner Matrix Element for the 2p±1 State

Evaluating the 〈2P±1|H1|2P±1〉 Faulkner matrix element then results in:

〈2P±1|H1|2P±1〉 = 〈2, 1|H1|2, 1〉 = −2I(1, 1, 1)J1(2, 1, 2, 1){
1− (1− β)

1

3

[
1 +

2(1 + 1)− 6(1)2

(2− 1)(2 + 3)

]}
×
[
−
α2

1,1

22
+ 2α1,1J

1(2, 1, 2, 1)

]

= −2I(1, 1, 1)J1(2, 1, 2, 1) +

{
1− (1− β)

1

3

[
1− 2

5

]}
×
[
−
α2

1,0

22
+ 2α1,1J

1(2, 1, 2, 1)

]

= −2I(1, 1, 1)J1(2, 1, 2, 1) +

{
1− 3

5
(1− β)

1

3

}
×
[
−
α2

1,1

22
+ 2α1,1J

1(2, 1, 2, 1)

]

= −2I(1, 1, 1)J1(2, 1, 2, 1) +
1

5
(4 + β)

[
−
α2

1,1

22
+ 2α1,1J

1(2, 1, 2, 1)

]

(B.89)

The 2P±1 radial and spherical components are given by:

R2,1(α1,1, rg) =
α

5
2
1,0

2
√

6
rge
−
α1,1rg

2

Y1,1(θg, φg) =

√
3

2
√

2π
sin(θg)e

±iφg

(B.90)
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The radial components of the 2P±1 and 2P0 states are the same and are not evaluated

again here. This leaves only the evaluation of the I integral, shown below:

I(1, 1, 1) =

∫ π

0

∫ 2π

0

√
3

2
√

2π
sin(θg)e

∓iφg

√
3

2
√

2π
sin(θg)e

±iφg sin(θg)dφgdθg

[1− (1− γ
β
) cos(θg)2]

1
2

=
3

8π

∫ π

0

∫ 2π

0

sin(θg) sin(θg)
sin(θg)dφgdθg

[1− (1− γ
β
) cos(θg)2]

1
2

=
3

4

∫ π

0

sin3(θg)dθg

[1− (1− γ
β
) cos(θg)2]

1
2

(B.91)

The substitution below can then be made:

cos(θg) =
sin(y)

(1− γ
β
)

1
2

− sin(θg)dθg =
cos(y)

(1− γ
β
)

1
2

sin2(θg) = 1− cos2(θg) = 1− sin2(y)

1− γ
β

y0 = arcsin((1− γ

β
)

1
2 )

y1 = arcsin(−(1− γ

β
)

1
2 ) = −y0

(B.92)

The angular integral from equation B.91 is then evaluated using the substitutions

from equation B.93 below:
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3

4

∫ π

0

sin3(θg)dθg

[1− (1− γ
β
) cos(θg)2]

1
2

= −3

4

∫ π

0

sin3(θg) cos(y)

sin(θg)(1− γ
β
)

1
2

dy

[1− sin2(y)]
1
2

= −3

4

∫ π

0

sin2(θg)

(1− γ
β
)

1
2

dy

= − 3

4(1− γ
β
)

1
2

∫ π

0

(
1− sin2(y)

(1− γ
β
)

)
dy

= − 3

4(1− γ
β
)

1
2

∫ π

0

(
1−

[
1− cos(2y)

]
2(1− γ

β
)

)
dy

= − 3

4(1− γ
β
)

1
2

∫ π

0

(
1− 1

2(1− γ
β
)

+
cos(2y)

2(1− γ
β
)

)
dy

= − 3

4(1− γ
β
)

1
2

[
y

(
1− 1

2(1− γ
β
)

)
+

sin(2y)

4(1− γ
β
)

]−y0

y0

= − 3

4(1− γ
β
)

1
2

[
− 2y0

(
1− 1

2(1− γ
β
)

)
− sin(2y0)

2(1− γ
β
)

]

= − 3

4(1− γ
β
)

1
2

[
− 2 arcsin((1− γ

β
)

1
2 )

(
1− 1

2(1− γ
β
)

)
−

sin(2 arcsin((1− γ
β
)

1
2 ))

2(1− γ
β
)

]

= − 3

4(1− γ
β
)

1
2

[
− 2 arcsin((1− γ

β
)

1
2 )

(
1− 1

2(1− γ
β
)

)
−

(1− γ
β
)

1
2 )
√

1− (1− γ
β
)

(1− γ
β
)

]

=
3

4(1− γ
β
)

1
2

[
2 arcsin((1− γ

β
)

1
2 )

(
1− 1

2(1− γ
β
)

)
+

√
γ
β
)

(1− γ
β
)

1
2

]
(B.93)

Putting the result from the angular integral, equation B.91, and the radial function

J1, equation B.86 but with α1,0 replaced with α1,1, back into the energy expression,

equation B.89 then yields the final energy function for the 2P±1 state, shown below:
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− 2I(1, 1, 1)J1(2, 1, 2, 1) +
1

5
(4 + β)

[
−
α2

1,0

22
+ 2α1,1J

1(2, 1, 2, 1)

]

= −2I(1, 1, 1)
α1,1

4
+

1

5
(4 + β)

[
−
α2

1,0

4
+ 2α1,1

α1,1

4

]

= −α1,1

2
I(1, 1, 1) +

1

20
(4 + β)α2

1,1

= − 3α1,1

8(1− γ
β
)

1
2

[
2 arcsin((1− γ

β
)

1
2 )

(
1− 1

2(1− γ
β
)

)
+

√
γ
β
)

(1− γ
β
)

1
2

]
+

1

20
(4 + β)α2

1,1

(B.94)

B.3.4.6. Minimisation Condition for α1,1 for 2P±1

The α and β parameters can be related by taking the differential of the 2P±1 energy

expression, finding the values of that give the minimum energy, shown below:

0 =
∂

∂α1,1

(
− α1,1

2
I(1, 1, 1) +

1

20
(4 + β)α2

1,1

)
= −I(1, 1, 1)

2
+

1

10
(4 + β)α1,1

5I(1, 1, 1) = (4 + β)α1,1

5I(1, 1, 1)

(4 + β)
= α1,1

(B.95)
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B.3.5. Verifying the State Energies in the Free Space Hydrogen

Limit

B.3.5.1. The 1S State

When all parameters,α0,0, β, γ are equal to 1 the energy of the EMT1 state should

reduce to giving the energy of the 1S state of a hydrogen atom in free space. The

energy of the 1S state is that of equation B.46 or B.80, from the direct application

of the effective mass Hamiltonian to the hydrogenic basis state or From Faulkners

matrix elements, it is regardless which one is taken as they are both the same. As

the equation breaks down at the exact point all parameters are equal to 1, the energy

can be checked by taking the limit as the parameters tend towards 1.

lim
α0,0,β,γ→1

(
E1S(α0,0, β, γ)

)
= lim

α0,0,β,γ→1

(
1

3
α2

0,0

(
β + 2

)
− 2α0,0(

1− γ
β

) 1
2

arcsin
((

1− γ

β

) 1
2

)) (B.96)

Due to the additive properties of limits, equation B.96 can be evaluated as:

lim
α0,0,β→1

(
1

3
α2

0,0

(
β + 2

))
− lim

α0,0,β,γ→1

(
2α0,0(

1− γ
β

) 1
2

arcsin
((

1− γ

β

) 1
2

)) (B.97)

The first limit term from equation B.97 for the energy of the 1S state can then be

evaluated as below.
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lim
α0,0,β→1

(
1

3
α2

0,0

(
β + 2

))
=

1

3
(1)2

(
1 + 2

)
= 1

(B.98)

The multiplicative properties of limits then allows the second part of equation B.97

to itself be split into two parts, with the final limit being the product of the two

multiplied together. This is shown below:

lim
α0,0,β,γ→1

(
− 2α0,0(

1− γ
β

) 1
2

arcsin
((

1− γ

β

) 1
2

))

= lim
α0,0→1

(
− 2α0,0

)
lim
β,γ→1

(arcsin
((

1− γ
β

) 1
2

)
(
1− γ

β

) 1
2

) (B.99)

The first limit, from equation B.99 is then:

lim
α0,0→1

(
2α0,0

)
= 2 (B.100)

The second limit, from equation B.99 is then evaluated by making the substitution:

u =
(
1− γ

β

) 1
2

γ, β = 1

u = 0

(B.101)

The substitution from equation B.101 can be applied to the second limit from
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equation B.99 . Applying L’Hospitals rule then allows the limit to be found.

lim
β,γ→1

(arcsin
((

1− γ
β

) 1
2

)
(
1− γ

β

) 1
2

)

= lim
u→0

(arcsin
(
u
)

u

)
= lim

u→0

( ∂
∂u

arcsin
(
u
)

∂
∂u
u

)

= lim
u→0

( 1

(1−u2)
1
2

1

)
=

1

1
= 1

(B.102)

Bringing the results of the limits from equations B.98, B.100, and B.102 and com-

bining them into the total limit of the 1S energy function, equation 3.35, results in

the final limit:

lim
α0,0,β,γ→1

(
E1S(α0,0, β, γ)

)
= 1− 2(1) = −1 (B.103)

This is in unitless form, where the unit of energy is that of the 1S state of a hydrogen

atom in free space therefore the original energy equation B.46 is deemed to give the

correct value in the hydrogen limit. The value is negative because it is the energy

of a bound state.

B.3.5.2. The 2P0 State

When all parameters,α1,0, β, γ are equal to 1 the energy of the 2P0 state should

reduce to giving the energy of the 2P state of a hydrogen atom in free space. The

energy of the 2P0 state is that of equation B.71 or B.87, again, as for the 1S state,

these are from the direct application of the effective mass hamiltonian to the hyd-

rogenic basis state or From Faulkners matrix elements respectively; it is irrelevant
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which energy function is taken as they are both the same. As the 2P0 state energy

equation breaks down at the exact point all parameters are equal to 1 the limit must

be taken.

lim
α1,0,β,γ→1

(
E2P0(α1,0, β, γ)

)
= lim

α1,0,β,γ→1

(
1

20

(
3β + 2

)
α2

1,0 −
3α1,0

4(1− γ
β
)

3
2

[
arcsin

(
(1− γ

β
)

1
2

)
− (1− γ

β
)

1
2

(γ
β

) 1
2 )
])

(B.104)

Exploiting the additive properties of limits again, equation B.104 becomes:

lim
α1,0,β→1

(
1

20

(
3β + 2

)
α2

1,0

)
− lim

α1,0,β,γ→1

(
3α1,0

4(1− γ
β
)

3
2

[
arcsin

(
(1− γ

β
)

1
2

)
− (1− γ

β
)

1
2

(γ
β

) 1
2 )
]) (B.105)

The first limit from equation B.105, is:

lim
α1,0,β→1

(
1

20

(
3β + 2

)
α2

1,0

)
=

1

20

(
3 + 2

)
=

5

20
=

1

4

(B.106)

The second limit from equation B.105 can then be further broken down:
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− lim
α1,0,β,γ→1

(
3α1,0

4(1− γ
β
)

3
2

[
arcsin

(
(1− γ

β
)

1
2

)
− (1− γ

β
)

1
2

(γ
β

) 1
2 )
])

= − lim
α1,0→1

(
3α1,0

4

)[
lim
β,γ→1

(
arcsin

(
(1− γ

β
)

1
2

)
(1− γ

β
)

3
2

)

− lim
β,γ→1

(
( γ
β
)

1
2

(1− γ
β
)

)]
(B.107)

The limit outside the square brackets in equation B.107 is then:

− lim
α1,0→1

(
3α1,0

4

)
=

3

4
(B.108)

The first term within the square brackets of equation B.107 can be evaluated with

the substitution below:

(1− γ

β
)

1
2 = Z

γ, β → 1

Z → 0

(B.109)

The evaluation of the first limit in the square brackets of equation B.107 with the

substitution of equation B.109 is shown below.

lim
β,γ→1

(
arcsin

(
(1− γ

β
)

1
2

)
(1− γ

β
)

3
2

)
= lim

Z→0

(
arcsin

(
Z
)

Z3

) (B.110)
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L’Hospitals rule is then applied to equation B.110:

lim
Z→0

( ∂
∂Z

arcsin
(
Z
)

∂
∂Z
Z3

)
= lim

Z→0

( 1

(1−Z2)
1
2

3Z2

)
(B.111)

The limit from equation B.111 can then be found by the use of the further substi-

tution:

Z2 = X

Z → 0

X → 0

(B.112)

The substitution from equation B.112 can be applied to equation B.111:

lim
Z→0

( 1

(1−Z2)
1
2

3Z2

)
= lim

X→0

( 1

(1−X)
1
2

3X

)
(B.113)

Again applying L’Hospitals rule allows the limit from equation B.113 to finally be

evaluated.
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lim
X→0

( ∂
∂X

1

(1−X)
1
2

∂
∂X

3X

)

= lim
X→0

((−1
2
)(−1) 1

(1−X)
3
2

3

)

= lim
X→0

( 1

2(1−X)
3
2

3

)
=

1
2

3

=
1

6

(B.114)

The second limit from within the square brackets of equation B.107 must then be

evaluated. This can be done via the use of the substitution:

U =
γ

β

γ, β → 1

U → 1

(B.115)

Using the substitution from equation B.115 on the second limit in equation B.107

is shown below:

lim
β,γ→1

(
( γ
β
)

1
2

(1− γ
β
)

)
= lim

U→1

(
U

1
2

(1− U)

)
(B.116)

Applying L’Hospitals rule to the limit in equation B.116 gives:
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lim
U→1

( ∂
∂U
U

1
2

∂
∂U

(1− U)

)
= lim

U→1

( 1
2
U
−1
2

−1

)
= −1

2

(B.117)

Finally brining in the limits from equations B.106, B.108,B.114 and B.117 and put-

ting them back into equation B.105 gives:

lim
α1,0,β→1

(
1

20

(
3β + 2

)
α2

1,0

)
− lim

α1,0,β,γ→1

(
3α1,0

4(1− γ
β
)

3
2

[
arcsin

(
(1− γ

β
)

1
2

)
− (1− γ

β
)

1
2

(γ
β

) 1
2 )
])

=
1

4
− 3

4

[1

6
− −1

2

]
=

1

4
− 3

4

[1

6
+

1

2

]
= −1

4

(B.118)

As this final energy is again unitless, and the unit of energy is the 1S ground state

energy of hydrogen, it is clear that the energy equation B.71gives the correct energy.

This is because of the E1S

n2 energy of the hydrogen atom, and for the 2P0 state n = 2,

thus a unitless energy of one quarter is to be expected in in the limit of α1,0, β, γ all

tending towards 1. Again the energy is negative because it is that of a bound state.

B.3.5.3. The 2P±1 State

As for the 1S and 2P0 states before, when all parameters α1,1, β, γ are equal to 1 the

effective mass energy of the 2P±1 state should reduce to that of a hydrogen atom

in free space. This 2P±1 state energy is given by the Faulkner matrix element in

equation B.94. However, again as for the 1S and 2P0 states, the energy equation

breaks down at the exact point all parameters are equal to 1. Therefore the limit is

taken as all parameters tend towards 1.
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Conveniently all the required limits have been calculated for the 1S and 2P0 states.

The limit of equation B.94, as all parameters tend towards 1, is:

lim
α1,1,β,γ→1

(
E2P±1(α1,1, β, γ)

)

= lim
α1,1,β,γ→1

(
− 3α1,1
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1
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[
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1
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)
+

√
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β
)
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β
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1
2

]
+

1

20
(4 + β)α2

1,1

)
(B.119)

Exploiting the additive and multiplicative properties of limits allows equation B.119

to be broken down into:

lim
α1,1,β→1

(
1

20
(4 + β)α2

1,1

)
− lim

α1,1→1

(
3α1,1

8

)[
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(
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(
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(1− γ

β
)

1
2

)

− lim
β,γ→1

(
arcsin

(
(1− γ
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)
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)
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)
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γ
β
)

(1− γ
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(B.120)

The first limit from equation B.120 is then:

lim
α1,1,β→1

(
1

20
(4 + β)α2

1,1

)
=

5

20

=
1

4

(B.121)

The second limit from equation B.120 is then:
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lim
α1,1→1

(
3α1,1

8

)
=

3

8
(B.122)

The third limit from equation B.120 is the same as that in equation B.102, this is:

lim
β,γ→1

(
arcsin

(
(1− γ

β
)

1
2

)
(1− γ

β
)

1
2

)
= 1 (B.123)

The fourth limit from equation B.120 has also already been evaluated earlier, and

is the same as that in equation B.110.

lim
β,γ→1

(
arcsin

(
(1− γ

β
)

1
2

)
(1− γ

β
)

3
2

)
=

1

6
(B.124)

The fifth, and final, limit from equation B.120 has also already been evaluated

earlier, and is the same as that in equation B.116.

lim
β,γ→1

( √
γ
β
)

(1− γ
β
)

)
=
−1

2
(B.125)

Assembling the limits from equations B.121 B.122 B.123 B.124 B.125, and putting

them back into equation B.120, yields:
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1

4
− 3

8

[
2(1)− 1

6
+ (
−1

2
)

]
=

1

4
− 3

8

[
2− 4

6

]
=

1

4
− 3

8

[
8

6

]

= −1

4

(B.126)

As this final energy is again unitless, and the unit of energy is the 1S ground state

energy of hydrogen, it is clear that the energy equation B.126gives the correct energy,

−1
n2 ; where n = 2 for the 2P±1 state. This is the same as that for the 2P0 state, and

the energy is again negative because it is that of a bound state.

B.4. Uniformly Scaled Hydrogen Model

The energy of a hydrogen atom Eh, and the Bohr radius ab,h modified to account

for the effective mass, m∗, and relative dielectric permittivity, εr, are given by: [95]

E = − e4m∗

32π2ε20ε
2
r~2n2

ab =
4πε0εr~2

m∗e2

E =
~2

2m∗a2
bn

2

(B.127)

In the same manner as for the scaled hydrogenic EMT basis states an α`,m scaling

factor for the Bohr Radius can be introduced.
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ab →
ab
α`,m

E =
α2
`,m~2

2m∗a2
bn

2

E =
α2
`,mm

∗e4

32π2~2ε20ε
2
rn

2

α0,0 =

√
32Eπ2~2ε20ε

2
rn

2

m∗e4
=

4π~ε0εrn
e2

√
2E

m∗

(B.128)

B.5. Dipole Element Derivations

Transition rates are calculated by the use of Fermi’s golden rule require dipole matrix

elements. The derivations of these for both the 2P0 and 2P±1 to 1S elements are

presented here. Using the result of equation 3.53, only the donor envelope functions

and the symmetry determined weighting coefficients of the six effective mass basis

states are required. In the absence of the weighting factors, the state can be assumed

to be weighted to a value of 1. For all but the ground state, where the states of

differing symmetry are not degenerate, both weighted and un-weighted states should

be treated as having a degeneracy factor of six; this degeneracy is due to the six

effective mass basis states, themselves due to the six conduction band minima in

Silicon.

~Ck∗. ~Ck 〈F k
0 |(xeiφx(t) + yeiφy(t) + zeiφz(t))|F j

0 〉 (B.129)

In each of the dipole elements it should be noted that the
(
β
γ

) 1
4 factors present in

each of the wavefunctions are cancelled out by an inverse factor due to the change

from (x, y, z) to (x, y, g), and then to (rg, θg, φg) coordinates.
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For the sake of convenience the randomly varying phase factors of eiφx,y,z(t) are omit-

ted in the derivations below, as they disappear in the final summing of intensities.

B.5.0.1. 2p0 to 1S(A1) Dipole Element

The 2p0 to 1S dipole matrix element is derived. The wavefunctions used are those

given in equations B.76 and B.83 above.

〈F1S|(xeiφx(t) + yeiφy(t) + zeiφz(t))|F2P0〉 =

∫ ∞
0

∫ 2π

0

∫ π

0

r2
g sin(θg)F

∗
1S(rg, θg, φg)(xe

iφx(t)

+ yeiφy(t) + zeiφz(t))× F2P0(rg, θg, φg)drgdθgdφg

=

∫ ∞
0

∫ 2π

0

∫ π

0

r2
g sin(θg)

1√
π
α

3
2
0,0e
−α0,0rg(x+ y + z)

×
α

5
2
1,0

4
√

2π
rg cos(θg)e

−
α1,0rg

2 drgdθgdφg

=
α

5
2
1,0

4π
√

2
α

3
2
0,0

∫ ∞
0

∫ 2π

0

∫ π

0

e−
[
α0,0+

α1,0
2

]
rg cos(θg) sin(θg)r

3
g(xe

iφx(t) + yeiφy(t) + zeiφz(t))drgdθgdφg

(B.130)

The x, y, and z coordinate parts of the dipole are given by:

z =
(β
γ

) 1
2 rg cos(θg)

x = rg sin(θg) cos(φg)

y = rg sin(θg) sin(φg)

(B.131)

From this it can be seen that each part of the dipole element will have the same

radial rg component, makings use of equation B.31, this is given by:
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∫ ∞
0

r4
ge
−
[
α0,0+

α1,0
2

]
rgdrg

=
4![

α0,0 + α1,0

2

]5 (B.132)

The angular parts for both x, and y, are then zero.

∫ 2π

0

∫ π

0

sin(θg) cos(φg) cos(θg) sin(θg)dθgdφg

=

∫ 2π

0

∫ π

0

sin2(θg) cos(φg) cos(θg)dθgdφg

=

∫ π

0

sin2(θg) cos(θg)dθg
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=
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]2π
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=
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0− 0

]2π

0
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(B.133)

∫ 2π

0

∫ π

0

sin(θg) sin(φg) cos(θg) sin(θg)dθgdφg

=

∫ 2π

0
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0

sin2(θg) cos(θg) sin(φg)dθgdφg

=
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sin2(θg) cos(θg)dθg
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sin(φg)dφg

=
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− cos(θg)

]2π

0

=

∫ π

0

sin2(θg) cos(θg)dθg

[
− 1 + 1

]2π

0

= 0

(B.134)

The z, and only, component is then given by:
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∫ 2π

0

∫ π
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(B.135)

Assembling the radial and angular integral results from equations B.132 and B.135

back into equation B.130 then gives the total dipole element.

eiφz(t)
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2
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2
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(B.136)

The dipole element squared, the actual factor of importance in the Fermi’s golden

rule transition rate, is given by:
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215
(β
γ

) α3
0,0α

5
1,0[

2α0,0 + α1,0

]10 (B.137)

Reintroducing the appropriate factor, aB, to make the dipole matrix elements no

longer unitless.

215
(β
γ

) α3
0,0

a3
B

α5
1,0

a5
B[

2α0,0

aB
+ α1,0

aB

]10

= 215a
10
B

a8
B

(β
γ

) α3
0,0α

5
1,0[

2α0,0 + α1,0

]10

= 215a2
B

(β
γ

) α3
0,0α

5
1,0[

2α0,0 + α1,0

]10

(B.138)

To obtain equation B.138 α`,m is simply replaced with
α`,m
aB

, where aB is defined

in equation B.2.

The Bohr radius is:

aB =
4π~2εrε0
m⊥e2

(B.139)

Using the Bohr radius from equation B.139, the final dipole element becomes:

219π
2~4ε2rε

2
0

m2
⊥e

4

(β
γ

) α3
0,0α

5
1,0[

2α0,0 + α1,0

]10 (B.140)
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B.5.1. 2p±1 to 1S(A1) Dipole Element

Using the wavefunctions given above in equations B.76, and B.90, the 2p±1 to 1S

dipole matrix element is derived.

〈F1S|(xeiφx(t) + yeiφy(t) + zeiφz(t))|F2P±1〉 =

∫ ∞
0

∫ 2π

0

∫ π

0

r2
g sin(θg)F

∗
1S(rg, θg, φg)(xe

iφx(t)

+ yeiφy(t) + zeiφz(t))× F2P±1(rg, θg, φg)drgdθgdφg

=

∫ ∞
0

∫ 2π

0

∫ π

0

r2
g sin(θg)

1√
π
α

3
2
0,0e
−α0,0rg(xeiφx(t) + yeiφy(t) + zeiφz(t))

×
α

5
2
1,1

8
√
π
rg sin(θg)e

−
α1,1

2
rge±iφgdrgdθgdφg

=
α

3
2
0,0α

5
2
1,1

8π

∫ ∞
0

∫ 2π

0

∫ π

0

r3
g sin2(θg)e

−
[
α1,1

2
+α0,0

]
rg(xeiφx(t) + yeiφy(t) + zeiφz(t))e±iφgdrgdθgdφg

(B.141)

The radial component of the integral is then the same as for the 2P0 to 1S dipole,

except with α1,0 replaced with α1,1. Using the same x, y, and z as in equation B.131,

the angular parts of the integral are evaluated below.
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∫ 2π

0

∫ π

0

sin2(θg) sin(θg) cos(φg)e
±iφgdθgdφg

=

∫ π
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sin3(θg)dθg
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=
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(B.142)

∫ π

0

sin3(θg)dθg =

∫ π

0

sin(θg)
(

1− cos2(θg)
)
dθg

=
[cos3(θg)

3
− cos(θg)

]π
0

=
[−1− 1

3
− (−1− 1)

]
=
[−2

3
+ (2)

]

=
4

3

(B.143)
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∫ 2π
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(β
γ

) 1
2

∫ 2π

0

∫ π

0

sin2(θg) cos(θg)e
±iφgdθgdφg

=
(β
γ

) 1
2

∫ π

0

sin2(θg) cos(θg)dθg

∫ 2π

0

e±iφgdφg

=
(β
γ

) 1
2

∫ π

0

sin2(θg) cos(θg)dθg

[e±iφg
±i

]2π

0

= 0
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Assembling the angular parts from equations B.142 and B.144, along with the suit-

able α altered radial part from equation B.132, into equation B.141, then yields the

final dipole moment.
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α
3
2
0,0α

5
2
1,1

8π

4![
α0,0 + α1,1

2

]5(4π

3
eiφx(t) ∓ i4π

3
eiφy(t)

)
=

α
3
2
0,0α

5
2
1,1[

α0,0 + α1,1

2

]5(4eiφx(t) ∓ i4eiφy(t)
) (B.146)

The dipole element (magnitude) squared is given by:
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]10

= 215
α3
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5
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Taking into account the reintroduction of the aB factor, as for the 1S dipole element,

gives the non unitless 2P±1 dipole element squared.

215a2
B

α3
0,0α

5
1,1[

2α0,0 + α1,1

]10 (B.148)

Thus again using the Bohr radius defined in equation B.139, the final dipole element

is:
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219π
2~4ε2rε
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m2
⊥e

4

α3
0,0α

5
1,1[

2α0,0 + α1,1

]10 (B.149)

Of course, this is for a single one of the two degenerate m = ±1 2P states, so the

complete transition rate will be twice that given by this dipole element.

B.5.2. Derivation of the Effective Mass Dipole Matrix Elements

in the Isotropic Hydrogen Limit

To check the veracity of the EMT dipole transition matrix elements, their values

in the limit of all parameters tending towards those of an isolated hydrogen atom

in free space are taken. The EMT wavefunction scaling parameters α0,0, α1,0, α1,1,

the hamiltonian z axis scaling factor β, the ratio of the perpendicular and parallel

(to the z axis) effective masses γ, and the relative dielectric permittivity εr all tend

towards their isotropic free space values of 1; the effective mass of the electron m⊥

tends towards the mass of an electron in free space me.

B.5.2.1. 2P0 to 1S

The transition rate matrix element squared is taken from equation B.138, and it’s

isotropic free space limit is given below; here and for the 2P±1 case the 0 subscript on

the EMT envelope functions F is dropped, as it is unnecessary here, and replaced

with EMT for clarity.
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lim
α0,0,α1,0,β,γ,εr→1
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The scaled Bohr radius, aB, in equation B.151 , and the unscaled Bohr radius, a0,

are given by:

aB =
4π~2ε0εr
m⊥e2

a0 =
4π~2ε0
mee2

(B.151)

The scaled Bohr radius in the isotropic free space limit is:

lim
m⊥→me
εr→1

(
aB

)
= lim

m⊥→me
εr→1

(
4π~2ε0εr
m⊥e2

)
=

4π~2ε0
mee2

= a0

(B.152)

Therefore using the Bohr radius limit of equation B.152 , the EMT limit from

equation B.150 becomes:

215

310
a2

0
(B.153)
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B.5.2.2. 2P±1 to 1S

The free space isotropic limit of the EMT2P pm1 → 1S transition rate, from equation

3.58 is taken below; the Bohr radius limits from equation B.152 are used along with

the same limits (except that now α1,0 is replaced by α1,1).

lim
α1,0,α1,1,β,γ,εr→1

m⊥→me

(
| 〈F 1S

EMT |x|F
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EMT 〉 |
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)
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310
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0
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B.5.3. Derivation of the Free Space Hydrogen Dipole Matrix

Elements

The dipole matrix elements for the 2P0 and 2P±1 to 1S transitions of a hydrogen

atom in a vacuum, or free space, must be derived for comparison to those of EMT

donor states. For this, where the Bohr radius a0 is defined in equation B.151 the

hydrogen wavefunctions are:

ψ1S =
e
−r
a0

√
πa

3
2
0

ψ2P0 =
r cos(θ)e

−r
2a0

4
√

2πa
5
2
0

ψ2P1 =
r sin(θ)e

−r
2a0

8
√
πa

5
2
0

e±iφ

(B.155)

B.5.3.1. 2P0 to 1S

The total dipole matrix element can be split into x,y, and z polarisation parts; each
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is converted into spherical coordinates so as to fit with the same coordinates that

the hydrogen wavefunctions are in.

x Polarisation

The x = r sin(θ) cos(φ) polarisation dipole matrix element is given by:

∫ ∞
0

∫ π

0

∫ 2π

0

e
−r
a0

√
πa

3
2
0

r sin(θ) cos(φ)
r cos(θ)e

−r
2a0

4
√

2πa
5
2
0

r2 sin(θ)drdθdφ (B.156)

The φ angular term of equation B.156 is:

∫ 2π

0

cos(φ)dφ = 0 (B.157)

Therefore the entire x polarisation term is zero.

y Polarisation

The y = r sin(θ) sin(φ) polarisation dipole matrix element is given by:

∫ ∞
0

∫ π

0

∫ 2π

0

e
−r
a0

√
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3
2
0

r sin(θ) sin(φ)
r cos(θ)e

−r
2a0

4
√

2πa
5
2
0

r2 sin(θ)drdθdφ (B.158)

Just as for the x polarisation, the φ angular term of equation B.158 is zero:

∫ 2π

0

sin(φ)dφ = 0 (B.159)
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As the x, the entire y polarisation term is zero.

z Polarisation

The z = r cos(θ) polarisation dipole matrix element is given by:

∫ ∞
0

∫ π

0

∫ 2π

0

e
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√
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1dφ

(B.160)

The radial component of equation B.160 can be evaluated with the assistance of

equation B.31. Meanwhile, the θ angular term can be evaluated by the result of

equation B.38 ; the φ angular term is then trivial. This results in:
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Total Matrix Element

Therefore the total dipole matrix element, for the 2P0 to 1S transition, squared is:

| 〈ψ1S
hydrogen|x|ψ

2P0
hydrogen〉 |

2 + | 〈ψ1S
hydrogen|y|ψ

2P0
hydrogen〉 |

2 + | 〈ψ1S
hydrogen|z|ψ

2P0
hydrogen〉 |

2 = |0|2

+ |0|2 + |
√

2
27

35
a0|2

=
215

310
a2

0

(B.162)
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B.5.3.2. 2P±1 to 1S

Following the same procedure as for the 2P0 state, the dipole matrix elements are

evaluated for each of the x, y, and z polarisation independently, summed, and then

squared.

x Polarisation

The x = r sin(θ) cos(φ) polarisation dipole matrix element is given by:

∫ ∞
0

∫ π

0
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cos(φ)e±iφdφ
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The radial component of equation B.163 can be evaluated with the assistance of

equation B.31, and the θ and φ angular terms can be evaluated by the result of

equation B.142 . This results in:
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y Polarisation

The y = r sin(θ) sin(φ) polarisation dipole matrix element is:

∫ ∞
0

∫ π

0

∫ 2π
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e
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2
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(B.165)
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The radial component of equation B.165 can be evaluated with the assistance of

equation B.31, the θ and φ angular terms can be evaluated by the result of equation

B.144 .

1
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8
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( 24
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z Polarisation

The z = r cos(θ) polarisation dipole matrix element is given by:

∫ ∞
0

∫ π

0

∫ 2π
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e
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3
2
0

r cos(θ)
r sin(θ)e

−r
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8
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e±iφr2 sin(θ)drdθdφ (B.167)

The phi angular component of equation B.167 can then be trivially found to be

zero:

∫ 2π

0

e±iφdφ = 0 (B.168)

Total Matrix Element

Therefore, the total dipole matrix element for the 2P±1 to 1S transition squared is:
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| 〈ψ1S
hydrogen|x|ψ

2P±1
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2 + | 〈ψ1S
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C. Spectroscopy Methods

The goal of this appendix is to describe the time resolved FTS technique used in

the acquisition of the data presented in the main thesis (chapter 5). To that end an

illustrative structure is adopted, to fully justify the choice of spectroscopy method.

Firstly, DS is introduced, as this is the most experimentally simple and historically

the earliest form of spectroscopy, this provides the necessary contrast with the later

and more complete description of FTS; without knowledge of DS the advantages of

FTS do not fully reveal themselves.

Secondly, FTS is then described in detail, about both the general method and the

specific technique used to obtain time resolution. The rapid scan and step scan

FTS techniques are described, and the limitations imposed by the methods upon

practical experiment are either explored or stated.

Third and finally, the specific hardware limitations as present for the capture of the

data in this thesis are given, with reference to the theoretical limitations discussed

previously.
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C.1. Dispersive Spectroscopy

While there are multiple methods of DS, a monochromator is a typical DS instru-

ment. This is ideal for comparison with an FT spectrometer. Irrespective of the

exact implementation, monochromators exploit interference or dispersion to sepa-

rate light of differing wavelengths. This is achieved by the use of either a dispersive

element such as a prism, or by a diffraction grating. In both cases light is separated

in intensity as a function of wavelength by wave interactions.

For example purposes a common monochromator design is the Czerny Turner

design, shown in figure C.1.

The light that leaves the dispersive or diffractive element d, in figure C.1, is spatially

separated as a function of wavelength, once focused upon the exit aperture f the light

is then angularly separated. The monochromator then functions by moving the exit

aperture f between different horizontal positions. These positions then correspond

to the first order diffraction maxima for the different wavelengths; of course moving

the exit aperture far enough will cause it to encounter second, and third maxima

and so on until either the light intensity is too weak to detect or the aperture cannot

be moved any further due to physical limitations of the monochromator. The exact

distance moved then depends on the diffraction grating or dispersive element used,

the wavelengths of the light, and the distance between the focusing mirror and the

exit aperture. This is as given by the well known diffraction equation, where d is

the distance from point d to e and then to the exit aperture f in figure C.1.

d sin(θ) = mλ (C.1)
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C.1.1. Limitations of DS

The main limitation of DS is the reduced SNR, compared to FTS, from only mea-

suring one wavelength at a time. There is also the practical limitation of obtaining

diffraction gratings of the appropriate size. To obtain high spectral resolutions a

large number of gratings is required, this means that the size of the grating must

also be larger.

C.2. FTS

While dispersive spectroscopy can rely on interference phenomena and a FT of the

light intensity performed by the geometry of far field diffraction to function, FTS

has by convention a different meaning. Some form of FT is necessary to obtain

the light spectrum from a measured function of light intensity. However, the key

difference is that in FTS the FT is mathematically applied by the spectroscopist to

the measured data. This is in contrast to DS, where the FT is performed physically.

The FT relates functions dependent upon conjugate variable pairs, and the aim

of spectroscopy is to distinguish light photons of different energy, light intensity

must be measured as a function of a variable that is conjugate to an energy scale

parameter. The energy of light photons is given by the famous relation:

E = hf

=
hc

λ

∝ 1

λ

∝ ν

(C.2)

Equation C.2 allows us to know that we must measure the conjugate variable to
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either frequency, wavelength λ, or one over the wavelength which is the wavenumber

ν.

As the units of wavelength are those of distance, it can be seen that measuring light

intensity is a way that the intensity is a function of distance. Then taking the FT

will yield a function of a parameter linearly proportional to energy. Measuring as

a function of time is the same as a function of distance, that is the two are related

linearly. If a detector responded to all wavelengths equally, could not be saturated,

and had a set of digitization electronics that were able to measure the light intensity

at an arbitrarily large rate, then there would be no interferometry.

However, to fulfil the Shannon-Nyquist sampling criteria, the light intensity must

be measured twice each full wavelength. For an example IR wave take a wavelength

of 1000nm, which gives a sample rate of ≈ 1.5 × 1015 measurements per second.

Modern electronics cannot operate at this speed.

Instead interference can be exploited to measure a standing wave, thus removing

the ridiculous time sampling rates required and instead imposing spatial sampling

rate requirements. If there is an optical cavity with size 1000nm then the light

intensity must be measured at two or more points to be certain that it is the 1000nm

standing wave and not one of its harmonics; a measurement of the light intensity

must occur every 500nm. This is an ≈ 2 × 106 spatial sample rate, or 3 × 109 less

than what is required in time. Thus with a sufficiently large set of optical cavities,

and a reproducible optical signal, it can be seen with a measurement of any optical

spectrum; of course this is with no components of shorter wavelength than 1000nm,

but even gross changes in the wavelength require 9 orders of magnitude before this

is comparable with the time sample rate.
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This brings us immediately to the use of an interferometer. Interfering two light

beams that have a phase difference is the same as measuring the light intensity at

different spatial points in an optical resonant cavity. The phase difference is then

related to the difference in physical distance that the two light beams have travelled.

Extending the physical distance the light travels is then the same as changing the

size of the resonant optical cavity. This leads to the simplest form of interferometer,

the Michelson interferometer.

C.2.1. The Michelson Interferometer

The Michelson interferometer is so named because the same design was used in the

work by Albert A. Michelson and Edward W. Morley to measure the velocity of

the earth in the “luminiferous ether” in 1887. While the “luminiferous ether” was

disproved, the wave nature of light means that the design is valid for spectroscopy.

It is vital to state the assumptions essential to the operation of the interferometer.

That is, the light being measured must have a coherence length equal to or greater

than the physical distance travelled by the light. The intensity, phase evolution, and

frequency make up must be constant over a minimum distance or time range. Waves

with random phases do no exhibit interference. This fundamental assumption is even

more so for transient time resolved spectroscopy, as discussed in section C.4.1.1.

The Michelson interferometer design is shown in fig C.2, reproduced from [170, fig

1, p335]. The operation of the interferometer is explained below with reference to

this figure.

• Light enters the interferometer at point A.

• Beamsplitter B directs half of the incident light to mirrors M1 and M2, via

reflection and transmission respectively.
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• The now separate light beams are reflected by mirrors M1 and M2.

• Beamsplitter B directs half of each reflected beam towards detector D. The

other half is directed back out towards the source A and is not used in this

interferometer geometry.

• The two light beams propagating towards ‘D’ will then interfere with each

other. The light is the same except for a phase factor φ, which dependent

upon the different optical path length between the beamsplitter ‘B’ and the

mirrors ‘M1’ and ‘M2’.

• The intensity, as measured at D, then depends upon φ.

A

B
M1

M2

D

Figure C.2.: Simplified schematic of Michelson interferometer. Black lines are interfero-
meter components, blue are light paths. A) Light input B) Beamsplitter
M1) Mirror 1 M2) Mirror 2 D) Detector.

C.2.1.1. Analysis of the Light Amplitude

It is illustrative to consider the amplitude of a monochromatic light wave at the de-

tector point in a Michelson interferometer. Zero transmission and reflection losses,

and a perfectly coherent and collimated input beam are assumed here. The two be-

ams interfering at the detector are then described as the cosine waves, where A0 and
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ω are the amplitude and angular frequency of the light entering the interferometer,

t is time, E1(t) and E2(t) are the two beams at the detector, and φ is the phase

difference caused by the two beams’ unequal optical paths.

E1(t) =
A0√

2
cos(ωt)

E2(t) =
A0√

2
cos(ωt+ φ)

(C.3)

The intensity of of the light at the detector, I(t, φ), is then:

I(t, φ) = E1 + E2

=

(
A0√

2
cos(ωt+ φ) +

A0√
2

cos(ωt)

)2

=
A2

0

2

(
cos(ωt+ φ)2 + cos(ωt)2 + 2 cos(ωt+ φ) cos(ωt)

)
cos(ωt+ φ) cos(ωt) =

cos(2ωt+ φ) + cos(φ)

2

I(t, φ) =
A2

0

2

(
cos(ωt+ φ)2 + cos(ωt)2 + cos(2ωt+ φ) + cos(φ)

)
(C.4)

Of course, the detector will not instantaneously respond to the light, but rather

integrate and average. Factors affecting this include the responsivity of the detector

and related detection electronics to that particular frequency, quantum efficiency of

the detector, and also the response time of the detector.

The integration of the detector signal, D(∆t, φ), is then the averaging of the light

intensity over many optical oscillations. Here the time over which this integration

occurs, ∆t, is assumed to be at least one period of oscillation if not much longer.

The phase difference, and OPD between the two beam paths are then φ and 2∆x,
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where the difference in mirror to BS distances is ∆x. These quantities are related,

where c is the speed of light, k = 2π
λ

is then the wavevector, and n is the refractive

index of the interferometer interior.

φ =
2ωδx

nc
= kδx (C.5)

The consideration of the detector signal, integrated and averaged over the minimum

time ∆t, is shown below.

D(∆t, φ) ∝ A2
0

2

∫ ∆t

0

(
cos(ωt+ φ)2 + cos(ωt)2 + cos(2ωt+ φ) + cos(φ)

)
dt

cos(ωt)2 =
1 + cos(2ωt)

2

D(∆t, φ) ∝ A2
0

2

∫ ∆t

0

(
1 + cos(2ωt+ 2φ)

2
+

1 + cos(2ωt)

2
+ cos(2ωt+ φ) + cos(φ)

)
dt

∝ A2
0

2

∫ ∆t

0

(
1 +

cos(2ωt+ 2φ)

2
+

cos(2ωt)

2
+ cos(2ωt+ φ) + cos(φ)

)
dt

∝ A2
0

2

{(
1 + cos(φ)

)
∆t+

[
− sin(2ωt+ 2φ)

4ω
− sin(2ωt)

4ω
− sin(2ωt+ φ)

2ω

]∆t

0

}
∆t corresponds to much longer than full oscillation period,

thus oscillating terms are averaged zero.

∝ A2
0

2

(
1 + cos(φ)

)
∆t

D(δt, φ) ∝ A2
0

2

(
1 + cos(

2ω∆x

cn
)

)
∆t

(C.6)

The result from equation C.6 can be followed with two further points. Firstly, that

2ω
cn

= k, where k is the wavevector. Secondly, that the time ∆t is the integration,

or signal averaging time of the detector used, is constant and thus it can be ignored
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as the detector signal will still be proportional to the other factors. The detector

signal is then:

D(δt, φ) ∝
(

1 + cos(kδx)
)

(C.7)

Equation C.7 then tells us what the intensity of light, or ideal detector signal,

is at the detector point of the Michelson interferometer as a function of δx for

a monochromatic wave. Thus it is seen that the detector signal has a constant

component, and a cosine component dependent upon the OPD δx added. As this

has a constant component and a varying component, an interferogram is built up

out of the varying component by changing δx. This interferogram result is:

I(δx) =
A2

0

2
cos(kδx) (C.8)

Based upon equation C.8 it is possible to determine the frequency, ω, of the light

input to the interferometer.

The above section arrives at the same result as an FT. The cosine FT and the result

from equation C.6 are compared.
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I(∆x) =
A2

0

2
cos(2πν0∆x)

IFT(∆x) =

∫ ∞
−∞

S(ν)cos(2πν∆x)dν

IFT(∆x) = S(ν0)cos(2πν0∆x)

IFT(∆x) = I(∆x)

(C.9)

Because the FT integral over frequency space is zero, apart from a single frequency

for a monochromatic wave, it can be seen that the cosine FT is then the same as

the result from equation C.6. If the initial waves are considered as complex waves

of form Aeiωt, the final result would be the same as the complex FT.

The light intensity as a function of OPD in an interferometer is an interferogram.

It can be seen that the FT of the interferogram is the same as the spectrum.

C.2.2. The Spectrum

The total intensity of the interferogram is then just the FT of the spectrum and vice

versa. Equation C.10 makes this explicit.

I(δx) =

∫ ∞
−∞

S(ν)e2πiνδxdν

S(ν) =

∫ ∞
−∞

I(δx)e2πiνδxdδx

(C.10)

A measured interferogram contains all the information that is in a spectrum. To

measure the spectrum fully the interferogram must be measured over an infinite

range of OPD between the two interferometer mirror paths. However, this is impos-

sible, imposing limits on the measurement and resulting spectrum. Conveniently
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the limits imposed by finite mirror movements are easily dealt with by basic FT

theory. Details on FTs are shown in appendix D. The effect of the FT limits upon

the real spectrum are then discussed in section C.2.3.3 as one of the fundamental

limitations of FTS.

C.2.3. Fundamental Limitations of FTS

Once it has been established that a spectrum is obtainable by taking the FT of an

interferogram, the limitations of such a method must be considered. While they

are many, several are not only present in FTS. The limits of optical components

and beam divergence, ect as discussed below are not limited to FTS and themselves

directly, or in a slightly altered form, present in any conceivable form of spectroscopy.

Here limits that are impossible to avoid, and are significant for FTS, are discussed.

One of the minor disadvantages is that unlike DS, where a single wavelength may

be measured in isolation, because the spectrum in FTS is obtained via a Fourier

transform the entire spectrum must be measured. By itself this can increase the

necessary measurement time.

C.2.3.1. Optical Components and Environment

The quality and type of optical components used in FTS can affect the performance

in both relative spectral sensitivity, and the time necessary to obtain sufficient SNR.

To show how the selection of these optical components can affect a spectrum, consi-

der the simplest case of the Michelson interferometer. Measurements made using a

Michelson interferometer will be forced to include at least two mirrors and a BS, al-

ong with the atmosphere that the light beam must travel through. Write the power

reflectivity and transmittance as Rm(ν) and TBS(ν) for the mirrors and the beam

splitter respectively. Assuming that the two mirrors are identical and in a perfect
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vacuum, then the final light at the detector from mirror one is Rm1(ν)TBS(ν)RBS(ν),

and mirror two Rm2(ν)RBS(ν)RBS(ν) Moving from a vacuum to an atmosphere, it

can be assumed that the power losses of the light due to travelling through the

atmosphere can be treated by the Lambert part of the well known Beer-Lambert

law [171]. This results in an additional factor of e−µ(ν)L, where L is the optical path

distance and µ(ν) is the absorption coefficient at wavenumber ν. Ignoring phase

factors by assuming that OPD between the two mirrors is zero, the total intensity

is:

I(ν) ∝ 2Rm(ν)TBS(ν)RBS(ν)e−µ(ν)L (C.11)

Thus it is made clear that deviances in the reflectivity or transmission of the com-

ponents with respect to ν, differences between the two mirrors, or deviations from

a 50:50 BS can all affect the relative spectral sensitivity. The intensity at specific ν

is affected, and thus the SNR is also.

C.2.3.2. Beam Divergence, Vibrations, and Mirror Misalignment

All interferometors rely on interference between two light beams to determine spectra,

and in order for two light beams to interfere they must overlap spatially. This al-

lows two practical problems to arise, the divergence of the light beam entering the

interferometer, and misalignment of the mirrors. There is also a third problem that

arises due to the need to move the interferometer mirrors, vibration of those mirrors.

Beam Divergence

Firstly, for an ideal measurement only perfectly collimated light enters the interfe-

rometer. This can only occur for light emitted from an infinitesimal point, whereas

the light in the interferometer must enter by passing through an aperture of finite
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size. It is observed that any light will not be perfectly collimated and thus will

diverge while travelling through the interferometer. For these diverging light beams

the extreme divergent light paths will have different OPDs to the central, and these

differences only increase as the two mirror distances do.

Figure C.3 shows an example of beam divergence. Using trigonometry it can be seen

that at the point that the two beams coincide the additional optical path length past

M1 of the beam that is reflected from M1 is 2∆X tan(θ) sin(θ) = 2∆X sin2(θ)
cos(θ)

. The

additional optical path length of the beam that is reflected from M2 is then 2∆X
cos(θ)

.

The total OPD is given by:

OPD =
2∆X

cos(θ)
− 2∆X

sin2(θ)

cos(θ)

= 2∆X

(
1− sin2(θ)

cos(θ)

)
= 2∆X

(
cos2(θ)

cos(θ)

)
= 2∆X cos(θ)

(C.12)

It can thus be seen that for ever increasing mirror movement, ∆X, the phase diffe-

rence between the divergent beams will increase. The phase of the divergent beams

will also differ from the central beams, leading to a loss of coherence. This argument

is paraphrased from [172, p42-43].
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θ

θ

ΔX

M2 M1

A

S

Figure C.3.: Illustration of the effect of beam divergence on a Michelson type interfe-
rometer. M1 is the fixed mirror, M2 the moving mirror at position ∆X
relative to M1. A is an aperture for light source S. The light divergence
angle θ causes the light reflected from M1 and M2 to have different optical
path lengths. This figure is a reproduction of figure 2.14 in [172, p42]

Mirror Misalignment

Secondly, the mirrors used to reflect the two light beams may not be aligned cor-

rectly. For a misaligned mirror the OPD is no longer linearly related to the mirror

position, instead including trigonometric terms. If the mirror is sufficiently misa-

ligned then interference is prevented from occurring. Even more problematic is the
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possibility of the reflected misaligned light interfering with different parts of the

beam from the other mirror; at sufficient levels this has the effect of rendering the

light incoherent as the phase relationship to OPD is no longer predictable.

The deviance due to mirror misalignment is even greater than that of beam diver-

gence. Figure C.4 shows an example of a misaligned mirror. Using trigonometry

it can be seen that the OPD of the beam reflected from M1 is ∆XX
cos(2θ)

. The total

OPD between the central beam reflected from M2 and the beam reflected by M1

is then as in equation C.13. Note that it is the electric and magnetic fields which

interfere, it is then the projection of the beam along the central path that interferes

with the undeviating beam. The projection of the deviating beam along the central

path is then cos(2θ), and assumes linear polarisation; for rotating polarisation this

interference becomes more complex. The conclusion is that any mirror misalignment

greatly reduces both the strength and coherence of the measurement.

OPD = ∆XX + 2∆X − ∆XX

cos(2θ)

= 2∆X + ∆XX

(
1− 1

cos(2θ)

) (C.13)
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θ

ΔX

M2
M1

θ

ΔXX
Figure C.4.: Illustration of the effect of beam misalignment on a Michelson type inter-

ferometer. M1 is the misaligned mirror, M2 the other moved mirror. ∆X
is the extra mirror movement distance, ∆XX the distance that the inter-
ference of the beams is considered at, and θ is the angle of misalignment.

Vibrations

Vibrations of the mirrors in the interferometer can cause the same negative effects

that are associated with mirror misalignment. Figure C.5 shows an example of

the effect of vibrations upon the light beam. To mitigate vibrations it is typical

for the moving mirror to be “floating’ on an air bed of compressed gas. Nitrogen is

commonly used as it is found in diatomic N2 molecular form, and in such a state has

no asymmetry and thus no molecular dipole element, and thus should not strongly

interact with light. This is ideally suited to IR spectroscopy as the energy range of

such light is usually similar to the molecular vibration energies; of course, higher

energy light can interact, via electronic transitions, with the molecular nitrogen.
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M

a

b

Figure C.5.: Illustration of the effect of vibrations upon the interferometer mirror. M is
the mirror, a and b show the diverging effect upon the collimated incident
light.

Conclusions

These three problems all disrupt the coherent interference of the light, which in turn

causes two problems. The SNR of the measurement is reduced because of lower

light intensity, either because the two beams are not parallel and thus it is only a

projection of their magnitude that can interfere, or because the angular deviation is

so great that the light hits the walls of the interferometer. Then the OPD of some

of the light is changed; if this changed and unknown OPD, or incoherent light is

then the greater part of the light, the entire measurement is invalid.

The mirrors may also be rough or dirty, enough to cause diffuse rather than spe-

cular reflection; this will always be true on some scale, but for IR spectroscopy the

wavelength is large enough to minimise this problem.
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C.2.3.3. Mirror Movement Distance: Spectrum Resolution

In any spectrum how close can two peaks be before they cannot be distinguished is

a vitally important metric. This is the spectral resolution. For FTS the resolution

limit arises due to the restriction of the mirror movement, and thus the OPD of the

interferogram. This is mathematically equivalent to imposing a boxcar apodization

function upon the FT of the interferogram. As a direct consequence this introdu-

ces what is known as spectral leakage. The FT, spectral leakage and apodization

functions are discussed in more detail in appendix D.

The mirror movement distance affects the spectral resolution in the same way that

the size of a diffraction grating does for a dispersive spectroscopy system.

The effect of the apodization is given by equation C.14, where S(ν) is the spectrum,

A(∆x) is the apodization function, and I(∆x) is the interferogram. Note that

F{A(t)} indicates the FT of the function A(t) while ∗ denotes convolution. Observe

that the resulting spectrum, S(ν), is a smeared out version of the “true” spectrum

F{I(∆x)}.

S(ν) = F{A(∆x)} ∗ F{I(∆x)} (C.14)

The restriction of the mirror movement is the same as applying a boxcar apodiza-

tion to the interferogram, and the FT of a boxcar function is a sinc function (section

D.3.3.2). The sinc function here is as given in equation C.15, this is different by 2π

to that in section D.3.3.2 due to simple variable change of x = 2πν.

A monochromatic light wave, represented by a delta function like spike in the

spectrum, will be manifest in the apodized spectrum as a sinc function. If a measu-
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rement is taken of a pair of monochromatic waves at wavenumbers ν1 and ν2 then

their resulting spectrum will consist of a pair of sinc functions, as shown in equation

C.16; where 2W is the spectrometer mirror movement distance, from − to + W

about the zero OPD point.

sinc(2πνW ) =
sin(2πνW )

2πνW
(C.15)

I(∆x) = cos(2πν1∆x) + cos(2πν2∆x)

S(ν) = sinc(2π[ν − ν1]W ) + sinc(2π[ν − ν2]W )

(C.16)

The assessment of the possible resolution then depends upon arbitrary criteria,

and in reality the noise level. At what point are the two sinc functions too close to

separate? There are several commonly used criteria for this, including the Rayleigh

criteria, the FWHM point and the first zero crossing of the sinc functions.[172]

First Zero Crossing

Griffiths and de Haseth consider the theoretical minimum resolution to be determi-

ned by the coincidence of the first zero crossings of the two sinc functions[172].

sinc(2πνW ) =
sin(2πνW )

2πνW
= 0

sin(2πνW ) = 0

2πνW = nπ(n ∈ Z)

ν =
1

2W

(C.17)

Thus for two sinc functions to have their first zero crossing points at the same point,
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their centre point separation must be twice this, giving a spectral resolution of 1
W

.

Rayleigh Criterion

The Rayleigh criterion is another possible resolution benchmark, and indicates an

increase in the effective resolution of the system. It is named after John William

Strutt (1842-1919), the 3rd Baron Rayleigh, and was originally used to specify dif-

fraction limits of resolution in circular apertured telescopes [173]. Because of its

origin in light intensity diffraction pattern which cannot be below zero, the Ray-

leigh criterion is applicable to sinc squared functions. When the first zero point of

a sinc squared function coincides with the central peak position of the other, and

vice versa, the Rayleigh criterion has been met[173]. Lord Rayleigh’s resolution

criterion appears to double the effective resolution over the theoretical minimum of

the first zero crossing, giving a spectral resolution of 1
2W

. However, it is not possible

to resolve the separate peaks of the two sinc functions because the negative lobes in

each sinc function obscure the peak of the other.

For a pair of sinc2 functions the composite curve drops by ≈ 19% in-between them,

seen in section b of figure C.6. Instead, taking approximately this percentage drop

as the Rayleigh criterion, a peak center separation of ≈ 0.736
W

is obtained for a 19%

percentage drop relative to each sinc functions peak. This is then resolvable.

FWHM

The FWHM resolution is defined where the central peak positions of the two sinc

functions are at each other’s FWHM point. A closed form analytical solution does

not exist, essentially because of the mixing of polynomial and trigonometric functi-

ons. Iterative numerical methods must be used to find the FWHM of the sinc

function, which is approximately 3.79
2πW

= 0.605
W

.
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sinc(2πνW ) =
1

2
sin(2πνW )

2πνW
=

1

2

sin(2πνW ) = πνW

(C.18)

Summary of Resolution Criteria

The three resolution criteria and their effective resolutions are collected in table

C.1, and shown in figure C.6. It should be noted that the various resolution criteria

are for the ideal zero noise case, and that the ultimate resolvability limits of two

frequencies depends upon many other factors; relative signal strengths, SNR in each

signal, absolute noise in each signal, and the baseline and its noise level that the

two signals are superimposed upon.

Criteria Resolution
Zero crossing 1

W

Rayleigh sinc2 (0.5
W

)
Rayleigh sinc (0.736

W
)

FWHM 0.605
W

Table C.1.: Different Resolution limits in terms of W , half the total mirror movement
distance.
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Figure C.6.: Different resolution criteria. a First zero crossing. b Rayleigh criteria
for sinc2. c FWHM. d Rayleigh criteria for sinc. The relative drop in
magnitude from the peaks is highlighted for b and d to show the Rayleigh
criteria.

Different resolution regimes show that features at less than the minimum reso-

lution can be resolved by a human observer, but there are limits to this that will

ultimately depend on relative signal strengths. Imagine two sinc functions of wildly

differing amplitude that cannot be resolved at the supposed minimum resolution,

where the larger dominates and the weaker appears as a small addition to the larger

sidelobes, so to be pedantic resolution limits cannot be set without knowing the

minimum and maximum possible signal strengths and the noise levels.

C.2.4. Fundamental Advantages of FTS

There are several well known fundamental advantages to FTS, all of which increase

the SNR of the measurement compared to an equivalent dispersive measurement.

[172] These are all historically named after the early pioneers of FTS, who were
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either members of the Jacquinot research group at the Aimé -Cotton Laboratory or

Peter Fellgett who independantly developed many of the same techniques.[174]

C.2.4.1. Throughput or Jacquinot advantage

The throughput, or “Jacquinot” advantage, is named after Piere Jacquinot (1910-

2002), who in the 1960’s was one of the independent driving forces behind the

development of FTS.[174]

The Jacquinot advantage arises from having a signal beam of greater size, assuming

uniform intensity then the total light is thus greater, causing a greater SNR than

that of a dispersive measurement. This occurs because DS requires the use of colli-

mated light, or as close to this as can be obtained in practice. To obtain perfectly

collimated light it must be emitted from an infinitesimally small point source, which

cannot be achieved in reality. As a compromise a small aperture is placed at the

entrance, which is known as a Jacquinot stop, another aperture is then placed at

the exit of the dispersive spectrometer for wavelength selection (section C.1). In

principle the aperture size used in FTS is restricted, this is due to a larger aper-

ture allowing greater angular beam divergence than a smaller one, and the effect of

beam divergence in the interferometer as the mirror is moved can adversely affect

the measured spectrum (section C.2.3.2). However, this restriction is typically less

than that of the entrance slit of a dispersive spectrometer. Additionally there is no

need for an exit slit in FTS. For both noise sources that are and are not dependent

upon signal magnitude, a larger aperture will give a greater signal and thus a greater

SNR.

C.2.4.2. Multiplexing or Fellgett advantage

The multiplex, or “Fellgett” advantage, is named after Peter Fellgett (1922-2008),

who was one of the early pioneers of FTS.[175] The advantage only arises when
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compared to a dispersive spectrometer measuring at a fixed resolution for a fixed

time, with the same optical throughput and detector responsivity. Because the

interferometer measures the entire spectrum at once, in the time taken to measure

the full spectrum with the dispersive spectrometer, the interferometer would have

taken n measurements; the number of spectral elements n, resolution ∆ν, maximum

and minimum spectrum points νmin νmax are related by equation C.19. Thus by co-

adding the spectra the SNR is increased.

n∆ν = νmax − νmin (C.19)

Limits of Fellgett’s Advantage There are limits to Fellgetts advantage. Spectra

cannot be co-added to average away a non-random noise source, such as a detector

dark current. Additionally the SNR can be affected by the shape of the spectrum

and the apodization function used.

As is shown in section C.2.5.1, the SNR is improved relative to a dispersive measure-

ment from co-adding multiple spectra. This co-addition SNR increase is proportional

to
√
n, where n is the number of spectra. However, a second effect is present, ori-

ginating from the variance in the photon flux affecting the interferogram intensity;

the variance in intensity at each point then propagates into the final spectrum.[172]

This extra noise ultimately depends upon the apodization function selected, and

the incident spectral shape. This gives two conflicting mechanisms for effecting the

SNR. Thus the multiplexing advantage is limited by the dominant noise source, if

Poissonian photon flux variations dominate and a boxcar apodization is used then

[172] claim the advantage is completely removed.
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C.2.4.3. Accuracy and Averaging or Connes advantage

The accuracy, or Connes advantage, is named after Janine Connes (1932-), who

was initially involved with the Jacquinot group in the 1950s and created some of

the mathmatical foundations of early FTS theory in her thesis. [174][176] This

advantage is not necessarily inherent to interferomic FTS, but to the typical way

the OPD is measured when measuring an interferogram.

Measurement depends upon accurately knowing the OPD of the two interfering light

beams at the point the interferogram is sampled. A common method of determining

the mirror position is by having a reference laser beam through the interferometer.

This reference beam passes through the interferometer, and is incident upon a sepa-

rate detector than the measured spectrum. As the reference laser is very close to a

monochromatic source, its intensity as a function of mirror movement is cosinusoi-

dal. Counting the times that this reference signal peaks, or how many interference

fringes have been passed through, allows the distance moved to be known in terms

of the reference beam wavelength. This is limited by a few factors, the intensity

and frequency stability of the reference beam, and the divergence of the beam which

imposes limits on the maximum mirror movement (see section C.2.3.2).

A typical reference beam used is a Helium Neon laser, with red light of wavelength

632.8 nm. There are typically four steps of discrimination in the reference beam

intensity; fully in phase where OPD is an integer multiple of the wavelength with

maximum signal, fully out of phase where OPD is an integer multiple plus one half of

the wavelength with minimum signal, and one or three quarters out of phase where

OPD is an integer multiple plus one or three quarters of the wavelength with half

of the maximum signal. This imposes limits on the maximum sampling rate and

thus the bandwidth that can be measured. For quarter reference beam wavelength

discrimination this gives a maximum measurable bandwidth of zero to the frequency
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corresponding to half the wavelength.

The greater accuracy in the OPD corresponds to greater wavenumber accuracy in

the spectrum. This also facilitates the co-addition of interferograms, or spectra,

thus allowing an increase in SNR.

C.2.5. Obtaining the Real Final Spectrum

Once an interferogram has been measured, yet before the application of the FT,

there are several necessary and some unnecessary but useful procedures that can be

performed in order to improve the quality of the final FT spectrum.

Apodization must be applied to the interferogram, because even if no additional

apodization is applied the finite nature of the real interferogram is itself an apodiza-

tion. Co-addition can be applied to either the interferogram or spectrum to increase

SNR, while phase correction can only be applied to a spectrum; if the interferogram

is double sided and symmetric then phase correction is not necessary. The neces-

sity of zero filling depends upon the sample rate and size of the interferogram; Fast

Fourier Transform (FFT) algorithms require a power of two number of data points

to function and thus if this condition is not met then zero filling is required. Zero

filling may also be a purely cosmetic procedure, one that makes the final spectrum

look clearer to a human observer, and adds no information to the spectrum.

Once zero filling, and or co-addition of interferograms, has been carried out the FT is

applied. Finally any spectrum co-addition can be carried out, and phase correction

is applied to the spectrum, thus the final spectrum is obtained. The spectrum from

FTS typically uses wavenumbers S(ν) as the energy scale, with units of cm−1; where

the interferometer mirror movement in specified in cm.
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C.2.5.1. Co-addition of Spectra

Multiple interferograms can be co-added together in order to increase the SNR

and average away random noise fluctuations. This is made possible because of the

Connes advantage (section C.2.4.3), which states that the OPD 2∆x is known to

a high degree of accuracy. It should be noted that co-addition of interferograms

or spectra is identical, the same SNR improvement will occur in either domain

assuming that the OPD positions have no error. Co-addition is not necessary to

obtain a spectrum, but does increase the SNR of the final spectrum.

The co-addition increase in the SNR can be shown by considering a measurement

with signal strength S and variance σ2
S, with noise then equal to the standard

deviation σS and S being the mean average S value. We must also assume that the

noise in each measurement is the same, and that each measurement is uncorrelated.

If we take n measurements then the total signal and total variance is as shown in

equation C.20.

Stotal = nS

σ2
total = nσ2

σtotal =
√
nσ

SNRn =
nS√
nσ

=

√
nS

σ

=
√
nSNR1

(C.20)

The result from equation C.20 gives the same increase in SNR as considering the

SNR of the mean average of the signal.
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S =
1

n

N∑
i=1

Si

σ2
mean = V ar[S]

V ar[S] = V ar[
1

n

n∑
i=1

Si] =
1

n2
V ar[

n∑
i=1

Si]

=
1

n2

n∑
i=1

var[Si]

=
1

n2
nvar[S]

σ2
mean =

var[S]

n

σmean =
σS√
n

SNRmean =
S

σmean
= S

√
n

σS

SNRmean =
√
n
S

σS

(C.21)

C.2.5.2. Zero Filling

In any real measurement the interferogram is discrete, thus the FT becomes the

DFT (section D.3.2). While the discrete spectrum contains all of the information

that is present in the interferogram, it can often appear to be a poor spectrum due

to jagged jumps and single point peaks that may appear to be noise. There is also

the issue with the DFT being computed with FFT algorithms, these are faster and

in the case of the Cooley-Turkey algorithm only function on interferogram arrays

that have a power of 2 number of points.[177] To overcome a lack of data points

for the FFT, interpolation can find the values of extra points in-between currently

existing ones; however, this interpolation can be time consuming and lead to errors

in the resulting spectrum. A common and simple interpolation method that avoids

costly computation, and that is used in the interferogram domain, is known as zero

filling. [172, p227]

387



C. Spectroscopy Methods

To zero fill an interferogram merely append extra data points to the end of the

interferogram. This appending should result in the same final spectrum regardless

of which end or ends the zero points are appended to. The lack of effect upon the

final spectrum is illustrated by considering the DFT. If a discrete interferogram is

measured, In = I(n∆X), of N discrete uniformly spaced points with spacing ∆X

or sampling rate 1
∆X

, this gives the discrete spectrum Sk = S(k∆ν), again of N

discrete uniformly spaced points with spacing ∆ν = 1
N∆X

, or sample rate N∆X.

Sk =
N−1∑
n=0

Ine
i2πk n

N

In =
1

N

N−1∑
k=0

Ske
−i2πk n

N

(C.22)

In order to smooth the spectrum by adding data points, data points containing

zero can be added to the end of the interferogram. As an example double the

size of the interferogram by adding N additional data points, so that the prior

interferogram data is contained in the first N points. Now the interferogram I0
n, has

2N uniformly spaced points, with the same spacing and sampling rate as the non-

zero-filled interferogram; the sampling rate of the measured interferogram cannot be

changed by data manipulations. However, the new spectrum ,S0
k , will have a new

spacing ∆ν0 = 1
2N∆X

and sample rate 2N∆X, thus doubling the amount of data

points in the spectrum. This occurs because the number of points in the spectrum

has to double, yet the maximum frequency in the spectrum cannot increase because

the interferogram sample rate has not increased and thus the spectral sampling

rate must then double. As the physical measurement is unaffected, this additional

spectral sample rate does not give any increased spectral accuracy, as the Shannon-

Nyquist criterion may indicate (section D.3.1.1), nor does it represent a real increase
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in resolution. The zero filled interferogram and spectrum are shown in equation C.23.

I0
n =

1

2N

2N−1∑
k=0

S0
ke
−iπk n

N

S0
k =

2N−1∑
n=0

I0
ne

iπk n
N

=
N−1∑
n=0

I0
ne

iπk n
N + 0

=
N−1∑
n=0

Ine
iπk n

N

=
N−1∑
n=0

Ine
i2πk n

N e−iπk
n
N

(C.23)

To mathematically explain the DFT result in equation C.23, consider the convolution

theorem which is as valid for the DFT as it is for the FT. The full DFT of the

interferogram is shown as Sck while the measured spectrum is Smk ; gn is then the

discrete apodization function of the measurement, with FT Gk.

Sck =
∞∑

n=−∞

Ine
iπkn

Smk =
∞∑

n=−∞

gnIne
iπkn

Smk =
∞∑

p=−∞

GpS
c
p−k

Smk = Scp ∗Gp

(C.24)

It can be seen that the point limited DFT from equation C.23 is the convolution

of the DFT of the e−iπk
n
N factor with the prior spectrum. This is convenient, as

it is widely known that the FT of an exponential of this form is a Dirac delta
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function, thus the DFT of the exponential factor is a discrete Dirac delta function.

The additional discrete spectrum points are just the sampled values of the spectrum

without additional distortion; the spectrum is not affected by the zero filling.

S0
k =

(N−1∑
n=0

Ine
i2πk n

N

)
∗
( ∞∑
n=−∞

e−iπk
n
N eiπkn

)
∞∑

p=−∞

e−iπk
n
N eiπkp = δ(k − 2

N
)

S0
k = Sp ∗ δ(p−

2

N
)

(C.25)

The interpolated spectrum resulting from the zero filling can then be seen as the

same as fitting a sinc function to each point in the non-zero-filled spectrum, so that

the sum of all the fitted sinc functions gives the same values as all the discrete points

sampled. The sum of these fitted sinc functions is then sampled when adding data

points to the spectrum by zero filling. It should be noted that the sinc function is

only valid for boxcar apodization, it is in general the FT of whatever apodization

function is used on the interferogram.

C.2.5.3. Phase Correction

The intensity of light is always a real value, however, the result of a complex FT is

in general complex. This complex spectrum results from measuring a spectrum with

an interferometer because it is possible for phase errors to occur. These errors, which

have a multitude of causes, can be corrected in either the spectral or inteferogram

domains.

Phase errors manifest in the spectrum and inteferogram, where Spe(ν) is the spectrum

with the phase error, S(ν) that without, and φ(ν) the phase error, are shown as:
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Spe(ν) = S(ν)eiφ(ν)

Ipe(∆x) =

∫ ∞
−∞

Spe(ν)e2πiνδxdν
(C.26)

The phase error spectrum contains complex modulations with respect to ν. The

convolution theorem can be used to express this differently, so that the interferogram

with phase errors present is the convolution of the interferogram, with the FT of

the phase error function g(ν) = eiφ(ν). This is then shown in equation C.27; where

Ipe(∆x) is the interferogram with the phase error, I(∆x) that without, and G(ν)

the FT of g(ν).

Ipe(∆x) =

∫ ∞
−∞

Spe(ν)e2πiνδxdν

=

∫ ∞
−∞

S(ν)eiφ(ν)e2πiνδxdν

I(∆x) =

∫ ∞
−∞

S(ν)e2πiνδxdν

G(∆x) =

∫ ∞
−∞

eiφ(ν)e2πiνδxdν

Ipe(∆x) = I(∆x) ∗G(∆x)

=

∫ ∞
−∞

I(∆x− ω)G(ω)dω

(C.27)

It should be noted that the phase error can arise due to discrete sampling pro-

blems, but the same final problem can arise due to other causes. The mathematical

correction to both the spectrum and interferogram is discrete blind, that is the equa-

tions shown here all use the integral form of the FT but the conclusions reached are

identical if the DFT is used. As a second note all quantities in this phase correction

section, such as S(ν), are actually the average expected values S(ν).
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Causes of Phase Errors

There are various root causes of phase errors, however, there is only one fundamental

reason, a lack of symmetry. Phase errors are caused by a lack of symmetry about

the zero OPD point of the interferogram. This can be seen by inspection of the

complex FT, equation C.28; where the e2iπν∆x factor is split into symmetric and

non-symmetric cos and sin components respectively. The symmetric components of

F (∆x) will be non-zero in the cosine term, and the non-symmetric components in

the sine term.

f(ν) =

∫ ∞
−∞

F (∆x)e2iπ∆xνd∆x

f(ν) =

∫ ∞
−∞

F (∆x) cos(2π∆xν)d∆x+

∫ ∞
−∞

F (∆x) sin(2π∆xν)d∆x

(C.28)

The first cause is mis-attributing the zero OPD point in the interferogram when

taking the FT, this causes an offset in the ∆x position and immediately makes the

interferogram non-symmetric. If the zero OPD position is offset by −Y from the

true position, the spectrum becomes as shown in equation C.29; this phase error

is then constant for all ν. In any real measurement the interferogram is discretely

sampled, the same phase shift occurs if the zero OPD point is missed due to finite

sampling error.

392



C. Spectroscopy Methods

S(ν) =

∫ ∞
−∞

I(∆x)e2iπ∆xνd∆x

∆x→ ∆X + Y

d∆x = d∆X

SOPDerror(ν) =

∫ ∞
−∞

I(∆X + Y )e2iπ(∆X+Y )νd∆X

SOPDerror(ν) = e2iπY ν

∫ ∞
−∞

I(∆X + Y )e2iπ∆Xνd∆X

SOPDerror(ν) = e2iπY νS(ν)

(C.29)

The second cause of phase errors is dispersion of light as it passes through a medium.

As most spectra are not taken in a perfect vacuum, and indeed often FTS is used

to measure the transmission of light through some material sample, the light in

the interferometer must travel through some medium. The frequency dependent

refractive index of the medium, and the air itself in the interferometer, causes the

OPD that each wavelength travels through to differ.

In any normal measurement the primary cause of dispersive phase errors is the

different optical distance travelled through the beam splitter. One of the two optical

pathways must pass completely through twice, and the other only once. As the

dispersion and thickness of the beam splitter is known, in order to be designed

in the first place, a compensating optical plate can be placed into the single pass

through spectrometer arm. This compensating plate will then have the same optical

distances as that of theBS; a different compensator plate is then likely to be required

for each different BS.

The differing, wavelength dependant, optical distances cause the ∆x factor to also

include a wavenumber dependant term, θ(ν),.
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∆x→ ∆x+ θ(ν)

SDispersionerror(ν) =

∫ ∞
−∞

I(∆x)e2iπ(∆x+θ(ν))νd∆x

SDispersionerror(ν) = e2iπνθ(ν)

∫ ∞
−∞

I(∆x)e2iπ∆xνd∆x

SDispersionerror(ν) = e2iπνθ(ν)S(ν)

(C.30)

It is not immediately obvious how dispersion caused phase errors make the inter-

ferogram non-symmetric, but by considering the e2iπνθ(ν) factor in equation C.30 it

becomes clear. As the FT of a symmetric function is symmetric and vice versa for

non-symmetric functions, if e2iπνθ(ν) is symmetric then there will be no phase error

as the spectra will be purely real and vice versa. This highlights a problem that

would be extremely worrying if it were not so easily solvable, that is, the dispersion

phase error is symmetric then no phase error is detectable. The spectrum that resul-

ted from a symmetric phase error would be incorrectly scaled along the wavenumber

scale. However, this can be completely avoided by the inclusion of a known reference

light beam, which is typically present and used to determine the mirror position in

an interferometer as per the Connes advantage, as described in section C.2.4.3. It

is also very unlikely that a symmetric phase error spectrum would occur, the first

two causes listed here cannot cause this.

A third cause of phase errors is due to mirror misalignment and optical beam diver-

gence within the interferometer. As the OPD between the mirrors is increased, the

mirror position increases, and thus the deviation of the light path increases. In the

case of beam divergence it is only the extreme light paths that are affected; the cen-

tral light path can be assumed to remain unaffected. This is not as simple to show

as the prior two causes of phase error, as it depends on the mirror angle, beam diver-

gence and mirror distance. This clearly affects the symmetry of the interferogram,
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as the OPD deviance increases with mirror movement and thus is non-symmetric.

A fourth cause is the phase shift caused by the detection electronics, which regardless

of design (e.g. parasitic capacitance, inductance will always occur to some extent),

will act to shift the phase of different frequency signals a differing amount. Electrical

caused phase shift imposes a lack of symmetry in the same way that dispersion does.

A fifth cause is the selection of a non-symmetric apodization function, which by

definition imposes a lack of symmetry upon the interferogram.

All the induced phase shifts can be corrected by the same techniques.

Non-Symmetric Interferograms

It can sometimes be assumed that phase errors vary slowly, allowing a deliberate

measurement of non-symmetric interferograms[178] The key reason for this is that

the resolution in the spectral domain is inversely proportional to the length of the

interferogram. If there is a practical limitation for the distance that the mirror

can move, a lopsided interferogram can be measured, which can then be used to

compute a low resolution phase spectrum and this can be used to correct the hig-

her resolution spectrum. Using a non-symmetric interferogram requires the use of

targeted apodization functions, as the additional signal components from the extra

length of interferogram on one side, will be disproportionately weighted in the final

spectrum compared to those only present in the symmetric part. Thus the apodi-

zation function must weight the symmetric part of the interferogram so that the

average weighting factor is one half. As discontinuities are to be avoided in apo-

dization functions, the most simple example of this is shown by using a trapezoid

connecting to a rectangle, where the trapezoid slope passes through half at the zero

OPD point.

395



C. Spectroscopy Methods

Correcting the Spectrum Phase: The Mertz Method

To correct the phase error in the spectrum there is a very simple and effective

method, developed by Mertz [179]. Calculate the phase of the complex number at

each point in the spectrum Spe(ν) , and then multiply the spectrum by the inverse

phase at that point. This is multiplicative phase correction.

Spe(ν) = S(ν)eiφ(ν)

Spe(ν) = S(ν)

(
cos(φ(ν)) + i sin(φ(ν))

)
φ(ν) = arctan(

<(Spe(ν))

=(Spe(ν))
)

SMertz(ν) = S(ν) = Spe(ν)e−iφ(ν)

(C.31)

For comparison purposes with the power spectrum, the propagation of variance

in the Mertz phase corrected spectrum must be considered. For this purpose only

Poissonian intensity noise is considered. It can be shown how the variance in the light

intensity should propagate into the complex phase error spectrum Spe(ν), assuming

that ∆x, ν, and φ(ν) are all ideal and have no error or variance associated with

them. If there is no variance associated with the phase angle φ, then the variance

of the phase error spectrum Spe(ν) is the same as that of the power spectrum, thus

I split the real and imaginary parts and consider their variance individually.
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Spe(ν) = eiφ(ν)

∫ ∞
−∞

I(∆x)ei2πν∆xd∆x

Spe(ν) = eiφ(ν)S(ν)

<{Spe(ν)} = cos
(
φ(ν)

)
S(ν)

={Spe(ν)} = sin
(
φ(ν)

)
S(ν)

V ar[<{Spe(ν)}] = cos2
(
φ(ν)

)
V ar[S(ν)]

V ar[={Spe(ν)}] = sin2
(
φ(ν)

)
V ar[S(ν)]

(C.32)

The Mertz phase corrected spectrum is expressed:

SMertz(ν) =
(
<{Spe(ν)}+ i={Spe(ν)}

)
e−iφ(ν)

=
(
<{Spe(ν)}+ i={Spe(ν)}

)(
cos
(
− φ(ν)

)
+ i sin

(
− φ(ν)

))
=
(
<{Spe(ν)}+ i={Spe(ν)}

)(
cos
(
φ(ν)

)
− i sin

(
φ(ν)

))
= <{Spe(ν)} cos

(
φ(ν)

)
+ i={Spe(ν)} cos

(
φ(ν)

)
−<{Spe(ν)}i sin

(
φ(ν)

)
− i={Spe(ν)}i sin

(
φ(ν)

)
= <{Spe(ν)} cos

(
φ(ν)

)
+ ={Spe(ν)} sin

(
φ(ν)

)
− i<{Spe(ν)} sin

(
φ(ν)

)
+ i={Spe(ν)} cos

(
φ(ν)

)

(C.33)

As the Mertz corrected phase spectrum must be purely real, the complex components

must cancel.

<{Spe(ν)} sin
(
φ(ν)

)
= ={Spe(ν)} cos

(
φ(ν)

)
SMertz(ν) = <{Spe(ν)} cos

(
φ(ν)

)
+ ={Spe(ν)} sin

(
φ(ν)

) (C.34)
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The variance in the Mertz phase corrected spectrum is then the sum of the square

of the coefficients times the variances of the real and imaginary components, plus a

covariance term, because the real and imaginary components are not independent.

Evaluating this and neglecting the covariance term gives equations C.35 and C.36.

The covariance term is neglected here because this is only used to compare to the

same result for the power spectrum method. While both have covariance terms

the ultimate point is that the power spectrum results in a nosier spectrum, not to

specify the exact noise which has multiple other contributing factors that have been

neglected here.

V ar[SMertz(ν)] = V ar[<{Spe(ν)}] cos2
(
φ(ν)

)
+ V ar[={Spe(ν)}] sin2

(
φ(ν)

)
= cos2

(
φ(ν)

)
V ar[S(ν)] cos2

(
φ(ν)

)
+ sin2

(
φ(ν)

)
V ar[S(ν)] sin2

(
φ(ν)

)
= V ar[S(ν)] cos4

(
φ(ν)

)
+ V ar[S(ν)] sin4

(
φ(ν)

)
= V ar[S(ν)]

(
cos4

(
φ(ν)

)
+ sin4

(
φ(ν)

))
(C.35)

V ar[SMertz(ν)] = V ar[S(ν)]

(
cos4

(
φ(ν)

)
+ sin4

(
φ(ν)

))
(C.36)

Mertz phase correction results in a spectrum with greater noise than one without

phase correction.

Correcting the Interferogram Phase: the Forman Method

Just as multiplication and convolution are linked via the convolution theorem, phase

correction can be applied by a convolution method rather than the multiplicative

Mertz method. Forman is widely credited with creating this method.[180] This is
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achieved by taking the FT of the Mertz phase spectrum eiφ(ν), and then convolving

this with the interferogram, and is mathematically identical to the Mertz method,

and yet also more computationally demanding.

Spe(ν) =

∫ ∞
−∞

Ipe(∆x)e2iπ∆xνd∆x

Spe(ν) =

∫ ∞
−∞

I(∆x)eiφ(ν)e2iπ∆xνd∆x

G(∆x) =

∫ ∞
−∞

e−iφ(ν)e2iπ∆xνdν

S(ν) = Spe(ν) ∗G(∆x)

S(ν) =

∫ ∞
−∞

Spe(ν − τ)G(τ)dτ

(C.37)

Power Spectrum

The simplest method for correcting phase errors is by calculating the power spectrum.

This is achieved by squaring the magnitude of both the real and imaginary compo-

nents of the FT spectrum, adding them, and then taking the square root. The final

spectrum must then be real, and this is shown in equation C.38.

Spower(ν) = S(ν) = |Spe(ν)e−iφ(ν)| =
√
|<(Spe(ν))|2 + |=(Spe(ν))|2 (C.38)

However, it is widely claimed that the power spectrum increases noise in a non-

linear manner compared to the other methods. [178] To attempt to show this in

comparison to Mertz phase correction, the first order expansion of the variance using

the delta method can be taken:
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Spower(ν) =
√
|<(Spe(ν))|2 + |=(Spe(ν))|2

V ar[Spower(ν)] ≈
(
|<(Spe(ν))|
Spower(ν)

)2

V ar[|<(Spe(ν))|] +

(
|=(Spe(ν))|
Spower(ν)

)2

V ar[|=(Spe(ν))|]

≈
( | cos

(
φ(ν)

)
S(ν)|

Spower(ν)

)2

cos2
(
φ(ν)

)
V ar[S(ν)]

+

( | sin (φ(ν)
)
S(ν)|

Spower(ν)

)2

sin2
(
φ(ν)

)
V ar[S(ν)]

≈
( | cos

(
φ(ν)

)
S(ν)|

S(ν)

)2

cos2
(
φ(ν)

)
V ar[S(ν)]

+

( | sin (φ(ν)
)
S(ν)|

S(ν)

)2

sin2
(
φ(ν)

)
V ar[S(ν)]

≈
(

cos
(
φ(ν)

))2

cos2
(
φ(ν)

)
V ar[S(ν)]

+

(
sin
(
φ(ν)

))2

sin2
(
φ(ν)

)
V ar[S(ν)]

≈
(

cos4
(
φ(ν)

)
+ sin4

(
φ(ν)

))
V ar[S(ν)]

(C.39)

This shows that the first order approximation to the variance in the power spectrum

is the same as the variance in the Mertz corrected spectrum. In addition to the

first order terms, the power spectrum has second, third, etc terms; each of the

additional terms must be positive and real, thus the total variance in the power

spectrum is greater than that of the Mertz. A similar comparison can be made for

the covariance term that has been neglected in both the Mertz and power spectrum

variance analyses.

C.3. Rapid Scan Fourier Transform Spectroscopy

Rapid scan FTS is the most widely used form of FTS. In Rapid Scan Fourier

Transform Spectroscopy (RSFTS), the OPD between the two split light beams is
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varied by scanning one of the mirrors through a set of positions at ideally constant

speed. Hence the name rapid scan, as the mirror rapidly moves through the OPD

positions.

If the speed of the mirror movement is V then the OPD, δx, varies as 2V t. This

gives the measured interferogram, I(δx). The interferogram is:

I(t) =
A2

0

2
cos(k2V t) (C.40)

There are several points that must be considered when performing a rapid scan

measurement, which are described in the following sections.

C.3.1. Electronic Coupling: AC for Rapid Scan

Alternating Current (AC) coupling allows changes in the measured intensity to

be recorded, removing any baseline offset in the measurement and increasing the

effective signal discrimination for the same number of bits in the Analogue to Digital

Converter (ADC). This occurs because the mirror is rapidly scanned and thus the

measured intensity at the detector rapidly changes. This change in the interferogram

intensity is about a non-zero point, as there is a non-zero baseline in a interferomic

measurement as shown earlier in equation C.7.

The detector in the interferometer is typically connected to an amplification and

digitization electronic circuit comprised of amplifiers, filters and an ADC, with AC

coupling . That circuit will have an inductance, and a capacitance, which gives the

electronic component of the detector a characteristic frequency dependent response

time. The effect of OPD differences on the signal measured is relative to the wave-
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length and the mirror movement speed, the electronic response time must be fast

enough that the measured signal has reached approximately the correct value before

the mirror has moved too far.

The detector will also be sensitive to light of a specific wavenumber range, klower <

k < kupper , with mirror movements also having a set of rapid scanning speeds.

This allows the tuning of the detection electronic circuits to have a capacitive low

frequency cut-off point below or near k2V (from equation C.40). As a result of

this, non interferogram related signals can be attenuated out, increasing SNR. As a

contrast, Direct Current (DC) coupled connections allow all frequency components

detected to pass, and include the constant offset that AC coupling avoids.

The measured signal is digitized by an ADC with a certain number of bits to a

signal range, consequently there is a minimum signal discrimination. Using DC

coupling for rapid scan measurements includes the constant offset and thus reduces

the dynamic range or signal discrimination precision of the ADC. In turn the SNR

is also reduced.

C.3.2. Fundamental Advantages of Rapid Scan FTS

C.3.2.1. Mirror Movement Speed: Greater SNR

The primary advantage of rapid scan spectroscopy is the measurement speed, ty-

pically allowing a greater SNR in the same time as could result from any other

measurement in the same time under the same conditions.

Interferogram intensity depends upon OPD alone in the simple wave picture, but

when viewed as photon states we obtain Poissonian noise in the measured inter-

ferogram intensity at any OPD point. However, as the OPD is constantly varied,

repeated measurements can quickly be obtained. Without considering digitization
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electronics, and assuming that the measurement is taken in a gas or vacuum not

optically active in the spectral range measured, the interferogram is symmetrical

with respect to mirror movement direction.

The moving mirror can move from −W to +W and then back to −W , with data

having been collected continuously, resulting in two sets of data in a short time.

Adding multiple interferograms or spectra together, the noise in the interferogram

is reduced by
√
N ; where N is the number of full interferograms measured. This

leads to a noise reduction of
√

2 relative to one measurement just to reposition the

interferometer mirror in its original starting position. They key of this advantage is

that rapid scan spectroscopy allows for many interferogram measurements in a set

time.

The faster the scanning speed the more interferograms that can be obtained, ho-

wever, other factors then become important. Detector and digitzation electronics

response times, wavelength of the interferometer position reference beam, physically

moving the mirror at high speed, obtaining a significant amount of light on the de-

tector to average, and having the light from one OPD point averaged on the detector

long enough that the oscillations at the lights frequency are averaged over, are all

important effects limiting the possible rapid scan speeds.

C.3.3. Fundamental Limitations of Rapid Scan FTS

There are several limitations imposed by the rapid mirror movement in RSFTS.

Indeed these faults are present to some extent no matter what the mirror speed,

as long as the mirror is moving while the interferogram is being measured they can

only be reduced and not removed.
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C.3.3.1. Mirror Movement: Vibrations

Rapid scan spectroscopy requires that the orientation of the mirrors in the interfe-

rometer does not change. As discussed in section C.2.3.2, a misaligned mirror or

divergent light beam restricts the resolution and efficacy of an interferometer. At

any instant in time a mirror that is vibrating is essentially a deformed surface, thus

the different regions of the mirror are misaligned. This will change the interference

conditions at the detection point, and reduce the effective signal, or render the me-

asurement useless. These effects will depend upon the size of the vibration relative

to the wavelength of the light measured, the distance of the mirror movement, and

the angular divergence of the light beam.

C.3.3.2. Mirror Movement: Speed

In what may initially appear to contradict section C.3.2.1, the rapid movement of the

scanning mirror may cause a low SNR. In an ideal detector system this disadvantage

would never become apparent. Any detector will integrate or average the light signal

over time, rather than responding instantaneously to the electric field. The detector

and related electronics will also have a certain amount of noise, both from acting

as antennae, the Poissonian shot noise of electrical current variations and thermally

generated noise (dark current). As the mirror scanning velocity V is increased, it is

clear that the averaging time at each OPD point will decrease. If the averaging time

is too low then certain optical frequencies will not be averaged and the measured

signal will not be representative of the true spectrum.

C.3.3.3. Time Evolving Spectrum

The final limitation of the rapid scan technique arises if a spectrum that is changing

in time must be measured. Taking the mirror movement speed to be V the interfe-

rogram is then I(V t), which upon FT is only going to lead to a valid spectrum if the

measured light is not changing significantly in the time scale of the measurement.
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The distortion of a time changing spectrum by a rapid scan measurement can be

seen by a simple thought experiment, consider a perfectly flat incident spectrum of

intensity A0 that is decaying exponentially with form e
− t
τ0 . The interferogram and

the spectrum would then evolve in time.

I(V t) = A0e
− t
τ1

S(ν) =

∫ ∞
−∞

A0e
− t
τ0 e2iπν∆xd∆x

(C.41)

Substituting t as:

∆x = V t

t =
∆x

V

(C.42)

It is recognised that the FT of an exponential is a Dirac delta function.

∫ ∞
−∞

δ(ν − p)e−2iπν∆xdν = e−2iπp∆x (C.43)

The final spectrum is then:
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e
− ∆x
V τ0 = e−2iπp∆x

−∆x

V τ0

= −2iπp∆x

− i

2πV τ0

= p

S(ν) =

∫ ∞
−∞

e
− t
τ0 e2iπν∆xd∆x

= A0

∫ ∞
−∞

e
− ∆x
V τ0 e2iπν∆xd∆x

S(ν) = A0δ(ν +− i

2πV τ0

)

(C.44)

There are two key points here; attempting to measure a significantly time evolving

spectrum with the rapid scan technique leads to the distortion of the spectrum,

and the resulting spectrum is complex, not in intensity as in phase errors, but in

frequency (wavenumber or energy scale). The time change of the spectrum results

in a phase offset in frequency.

If the light is changing significantly during the whole rapid scan measurement, the

resulting measurements are not correct.

C.4. Time Resolved Step Scan FTS

While rapid scan spectroscopy allows the fast acquisition of high SNR spectra, it is

not the optimum technique for measuring a time evolving spectrum. The simplest

FT based technique for measuring time evolving spectra is know as the step scan

technique. SSFTS modifies the rapid scan technique to allow for the measurement

of transient spectra, however, there are some limitations to the time resolution

possible. The key factor in determining whether the step scan method can be used

at all, is whether the spectrum in energy and temporal dimensions is repeatable on
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demand. The time evolution of the spectrum must be able to be triggered to begin

on demand, for as many times as the interferogram intensity would be measured to

obtain a non time evolving spectrum.

Firstly, the modification to go from rapid scan to step scan is simple. Recall the key

detail of the FTS interferometer as used for rapid scan, a Michelson interferometer

with two optical paths, one of variable length, and each ending in a mirror. For step

scan instead of the interferometer mirror constantly moving and the interferogram

intensity being measured discretely during that movement, the mirror is moved

between discrete positions, and then stopped, the measurement is then triggered

and then the interferogram intensity at that OPD position is measured every ∆t

for total Tmax time. The mirror is then moved, or “stepped”, to the next discrete

position and the time evolution of the interferogram at this OPD is then measured

as before. This allows the building up of a 2D grid of interferogram data points,

I(nx∆x, nt∆t); where nx and nt are the OPD and time indexes. The 2D grid of

data is then a set of ∆t time separated interferograms, shown in figure C.7 which

when Fourier transformed will be a set of ∆t time separated spectra.
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Δt

Δx

11 12 13

21 22 23

Figure C.7.: 2D grid showing the data capture of a step scan measurement. Each block
represents the intensity of the light as measured by a detector at one nx∆x
and nt∆t position. For a sample step scan measurement; the interferometer
mirror is in position 1, the experiment or other cause of the spectrum to
be measured is triggered and the signal intensity is measured and stored
in as block 11, then ∆t time elapses the signal is measured again and this
time stored as block 12, the mirror is then “stepped” to position 2 and the
spectrum is triggered again, the signal is measured and stored as block 21,
∆t time elapses and the signal is measured and stored as block 22, and so
on until the grid is fully filled. In this representation each row is a time
separated interferogram.

The relationship between the interferograms and spectra, and how the time change

of the spectra is measured, shown in figure C.8.
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Figure C.8.: Plotted here are the interferograms and resulting FT spectra of a time de-
caying optical signal at several times. The purple, green, and yellow curves
correspond to each other and are the first second and third measurements
respectively. The time decay of the various peak intensities is also plotted.
Top Left) Interferograms Top Right) Spectra Bottom Left) Spectrum
peak Intensities as a function of time.

The separation of the discrete mirror positions is, of course, determined by the

Shannon-Nyquist criteria, section D.3.1.1, thus the points are separated by at most

half the wavelength of the shortest wavelength expected to be measured. It is typical

to allow for some settling time after the mirror has moved, this is because vibrations

will be caused by the mirror movement which may reduce the coherence of the light

being measured (see section C.2.3.2); depending on the optical intensity and shape

of the spectrum and apodization function used, a reduction in optical coherence or

a coherence loss caused reduction in intensity may adversely affect the SNR of the

measurement.
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Thus using the step scan technique with appropriate detectors, digitization elec-

tronics, sufficient mirror stabilization time and mirror movement length, and an

experiment of sufficient repeatability, leads to a measured spectrum with time evo-

lution information.

C.4.1. Fundamental Limitations of SSFTS

The limits of the step scan technique are exactly the same as for rapid scan, or any

other form of FTS, in the spectral or energy domain. The SNR improvements of

rapid scan over dispersive spectroscopy, however, are also lessened. Finally, time

resolution of any step scan measurement, or any other time resolved spectroscopic

measurement, is limited by two factors.

Step scan measurements take longer to complete than rapid scan measurements.

The causes for this are multiple, firstly the extra time required to step and stop the

mirror along with any stabilization waiting time rather than the continous mirror

movement as in rapid scan. Secondly, while at each mirror position the full time

Tmax of the time measurement must pass before the mirror can be stepped. These

two factors greatly extend the measurement time, although compared to a dispersive

measurement that also had time resolution the FTS advantages remain. Thus the

SNR improvement over a comparable DS measurement remains.

C.4.1.1. Optical Time Limits

The step scan technique is physically limited in its time resolution. This originates

from the fundamental interference between the two light beams in an interferometer,

and the assumption in FTS that any detector is integrating or averaging over at

least one full period of the longest wavelength light measured. Focusing on this

fundamental optical interference limit, a simple consideration of the limit of time

resolution in an interferometric spectrometer is shown here.
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To begin, consider a two mirror interferometer, with one fixed and one moving

mirror. Some light of arbitrary frequency distribution is emitted into the entrance

aperture of the interferometer; this light then follows the same path as is standard,

resulting in interference at a detector of light with some phase difference φ. If the

time t refers to the time of the signal from the stationary mirror, then t+ δt is the

time of the signal from the moving mirror. These quantities, where c is the speed

of light in a vacuum, n the refractive index of the interferometer interior, ω is the

angular frequency, and δx the moving mirror displacement from the zero point, are

related below.

∆t = 2δx
n

c

φ = 2δx
2π

λ

= 2δx
nω

c

(C.45)

Taking the maximum mirror displacement to be ∆L, then the spectrometer will

interfere light emitted at the times t and t + 2∆Ln
c

. If the time resolution is then

∆t then light from between t − ∆t
2

to t + ∆t
2

cannot be distinguished. Therefore it

might naively be expected that any light emitted at time t > 2∆Ln
c

is just barely

distinguishable from that emitted at time t. However, the light interfered is averaged

over one full wavelength, thus the light must be incident upon the detector for the

time λ
c
n

= nλ
c

= 1
f

to be averaged. Combining these factors, it is found that the time

resolution ∆t must be as:
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∆t ≥ 2
∆Ln

c
+

1

f

≥ 2
∆Ln

c
+
nλ

c

≥ n

c

(
2∆L+ λ

) (C.46)

Using the first zero crossing minimum resolution criteria for spectral resolution.

∆L =
1

∆ν

∆t ≥ n

c

(
2

∆ν
+ λ

) (C.47)

Thus for any desired spectral resolution the corresponding best time resolution pos-

sible can be found. In reality this gives approximately ns resolution limits. If the

spectral resolution is 0.075 cm−1, and the longest wavelength measured is 1mm (the

limits of IR), then the best time resolution possible is 4.7× 10−10s.
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a
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d
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g

θ

Figure C.1.: Generalisation of the Czerny-Turner monochromator design. a)Light
Source b) Entrance Aperture c) Collimating Mirror d) Diffraction Gra-
ting OR Dispersive Element (prism) e) Focusing Mirror f) Exit Aperture
g) Detection Point. θ) The angle of each wavelength at the exit aperture,
with respect to the line of normal incidence. This is a modified reproduction
from [169, p 793, figure 2]
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D.1. Introduction

Fourier analysis is a method of expressing a function in terms of sine and cosine

basis functions. This chapter contains a discussion of the FT, FS and the various

limiting factors which are applicable to practical use. Beginning with the FS, I

then proceed onto the FT as the generalised limiting case of an FS of a function

with indefinite period. The discrete FT is then discussed, along with the limitations

of popular methods to compute this quickly. Common artefacts in the FT are

discussed, including aliasing, convolution, apodization and the behaviour of Dirac

delta functions. This provides a solid foundation upon which to base later discussions

of FTS in other chapters of this thesis.

D.2. The Fourier Series

Named after Joseph Fourier (1768-1830), the FS is a method of expressing any

periodic function as a discrete sum of sine and cosine functions, each with differing

amplitude and frequency. If we have an abstract function f(x), with a finite period

such that it has frequency 1
T

, where T is the period, A0 is the average value of the

periodic function f(x), while An and Bn are the amplitudes of the cosine and sine

basis functions with frequency index n respectively, then it can be represented by:
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f(x) =
1

2
A0 +

∞∑
n=1

An cos(nx) +
∞∑
n=1

Bn sin(nx) (D.1)

The amplitudes of the , An and Bn, can be found by consideration of the orthogo-

nality properties of sine and cosine functions.

δi,j =


0, i 6= j

1, i = j∫ π

−π
cos(ix) cos(jx)dx = πδij∫ π

−π
sin(ix) sin(jx)dx = πδij∫ π

−π
cos(ix) sin(jx)dx = 0∫ π

−π
cos(ix)dx = 0∫ π

−π
sin(ix)dx = 0

(D.2)

From the orthogonality relations of sine and cosine we can see that for x ∈ [−π, π],

only the integration of a sine or cosine multiplied by a sine or cosine of the same

frequency results in a non-zero value; sine and cosine functions are not only ortho-

gonal to each other, but to all other sine and cosine functions of differing frequency.

The nth amplitude of the Fourier components are given by:

A0 =
1

π

∫ π

−π
f(x)dx

An =
1

π

∫ π

−π
f(x) cos(nx)dx

Bn =
1

π

∫ π

−π
f(x) sin(nx)dx

(D.3)
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This is only valid for the interval [−π, π]. To apply the Fourier series to the interval

[−S, S], where S is an arbitrary limit, requires a change of variable.

x =
πy

S

dx =
πdy

S

(D.4)

The Fourier series can then be written as:

f(y) =
A0

2
+
∞∑
n=1

An cos(
nπy

S
) +

∞∑
n=1

Bn sin(
nπy

S
)

A0 =
1

S

∫ S

−S
f(y)dy

An =
1

S

∫ S

−S
f(y) cos(

nπy

S
)dy

Bn =
1

S

∫ S

−S
f(y) sin(

nπy

S
)dy

(D.5)

While implied by the above, [−S, S], any interval [z0, z0 + 2S] for the function f(z)

with frequency 1
S

, is valid. All the information about the periodic function f(x)

is contained within one period of that function. Introducing Euler’s formula for

complex numbers allows the above to be written as:

eix = cos(x) + i sin(x)

f(x) =
∞∑

n=−∞

Cne
i2πn x

2S

Cn =
1

2S

∫ S

−S
f(x)e2iπn x

2S dx

(D.6)
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D.2.1. FS to Transform

The FS and FT are applicable to functions comprised of discretely spaced harmonics

and a continuum of all frequencies respectively. Starting with:

f(x) =
∞∑
−∞

Cne
i2πn x

2S (D.7)

The FS can only be applied to periodic functions, but if we have a function that has

no defined period or has a period extending into infinity then we can take the limit

as S →∞.

L = π
n

S

f(x) =
∞∑

n=−∞

Cne
ixL

Cn → Cndn

f(x)→
∞∑

n=−∞

Cndne
ixL

(D.8)

The interval between the harmonics in the FSbecomes an infinitesimal interval dL.

dn = dL
S

π
(D.9)

Using equation D.9 the FS becomes:

f(x) =
∞∑

n=−∞

CndL
S

π
eixL (D.10)

Taking the limit as S tends to infinity. As S → ∞ , L → infintisimal. Thus the
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FS becomes the FT

f(x) =

∫ ∞
n=−∞

Cn
S

π
eixLdL (D.11)

To reach the conventional form of theFT, the coefficients Cn must be changed to

CL. Rearranging and substituting equation D.8 into, Cn
S
π

, gives:

CL = Cn
S

π
=
S

π

1

2S

∫ S

−S
f(x)e−ixLdx (D.12)

But in equation D.12 we must also take into account that, S →∞.

CL =
1

2π

∫ ∞
−∞

f(x)e−ixLdx

f(x) =

∫ ∞
−∞

CLe
ixLdL

(D.13)

Thus we obtain the FT.

D.3. The Fourier Transform

The minimum necessary information to understand the FT. Replace CL from above

with the continuous function F (L). Thus we obtain the familiar FT; alternatively

the FT can be expressed with a variable has been changed , L = 2πX.
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f(x) =

∫ ∞
−∞

F (L)eixLdL

f(x) =

∫ ∞
−∞

F (X)e2πixXdX

F (L) =
1

2π

∫ ∞
−∞

f(x)e−ixLdx

F (L) =

∫ ∞
−∞

f(x)e−2πixXdx

(D.14)

The FT is a transformation that expresses an abstract function dependant on vari-

able x, f(x), as a function of the variable conjugate to x; for example both energy

and time, and position and momentium are pairs of conjugate variables. The FT

does this by integrating over the overlap of the function multiplied a set of sine and

cosine basis functions; i.e. projecting the function onto the set of basis functions.

D.3.1. FT Theorems

In order to fully understand the limits of the FT, the origins of areftects and how

to overcome them, two theorems are necessary. The Shannon sampling, and the

convolution theorems.

D.3.1.1. The Shannon sampling theorem

The Shannon sampling theorem, also called the Nyquist-Shannon theorem, tells us

exactly what sampling rate to use. Sampling a function at this rate allows perfect

reconstruction of the function, as long as it is a band-limited function. A band-

limited function is a function, f(t) with FT F (ω), such that it has no ω components

past a certain cut off value ωmax. ω is used instead of frequency f to avoid confusion

with function f(t).

ω = 2πf (D.15)
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Shannon’s original phrasing of the theorem is presented below.

‘THEOREM 1: If a function f(t) contains no frequencies higher than W cps, it is

completely determined by giving its ordinates at a series of points spaced 1/2W

seconds apart.’ [181]

I follow the derivation of Shannon [181] below. Firstly, let F (ω) be the FT of f(t);

f(t) =
1

2π

∫ ∞
−∞

F (ω)eiωtdω (D.16)

If the signal F (ω) does not contain any frequencies above W , and thus no angular

frequencies ω above 2πW , then the FT becomes:

f(t) =
1

2π

∫ 2πW

−2πW

F (ω)eiωtdω (D.17)

Because there are assumed to be no frequencies above W , then the smallest time

period of any frequency in the signal is 1
W

. It might be intuitively expected that

to be able to tell the signal with period 1
W

apart from its harmonics, 1
2W
, 1

3W
...,

the signal must be measured at frequency 2
W

, that is double the frequency of the

desired signal. If the time dependant function f(t), with period 1
W

, is measured at

the frequency 2W , we sample the function at the intervals given by:

tn =
n

2W

n ∈ Z
(D.18)

We can then express the bandwidth limited FT from equation D.17 as:
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f(
n

2W
) =

1

2π

∫ 2πW

−2πW

F (ω)eiω
n

2W dω (D.19)

‘The integral on the right will be recognized as essentially the nth coefficient in a

Fourier-series expansion of the function F(w), taking the interval − W to + W as

a fundamental period.’ [181]

Thus we can conclude that the sampling of the function f(t), at rate 1
2W

, gives

all the information required to determine the spectrum. As long at the function is

perfectly band-limited. This vital to the later understanding of the phenomenon

know as “aliasing”, discussed in section D.3.3.1.

D.3.1.2. The Convolution Theorem

The convolution theorem is vital to understanding the “spectral leakage” artefact

of the FT, discussed in section D.3.3.2.

The convolution theorem is simply a relation between the FT of a pair of functions,

and their overlap integral. Firstly, we must define a pair of functions, f(t) and g(x),

and their Fourier transforms F (ω) and G(ω). The point-wise multiplication of F (ω)

by G(ω) is the same as the Fourier transform of the convolution of their Fourier

transforms,f(t) and g(x). Convolution is the shifting or “running” overlap integral;

an overlap integral where one function is fixed in place while the other is run across

the integration domain, thus the integration sums each point of each function with

each point of the other. The convolution theorem, where ∗ is the convolution symbol

and F{d} is shorthand for the FT of d, can be expressed as:
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f(t) ∗ g(t) =

∫ ∞
∞

f(τ)g(t− τ)dτ

F(ω)G(ω) =

∫ ∞
−∞

(∫ ∞
∞

f(τ)g(t− τ)dτ

)
eiωtdt

=

∫ ∞
−∞

f(t) ∗ g(t)eiωtdt

F(ω)G(ω) = F{f(t) ∗ g(t)}

(D.20)

D.3.2. The DFT

An inspection of the FT, equations D.14 and D.8, will reveal that to determine the

arbitrarily long f(x) the continuous function F (L) is needed at all L from −∞ to

+∞. There are two problems with this. Firstly, the measured function F (L) will

never be measured continuously over an infinite set of data-points infinitesimally

separated. Secondly, such a function, f(x), will also not extend infinitely stret-

ching from −∞to +∞. For any function f(x) that is sampled in reality, we must

determine at what rate to sample the function ∆x , and over what range of L, if

we are to correctly reconstruct f(x) from our measurement. The DFT is a way of

expressing the FT in a discrete way, such that we can overcome the first of these

problems. The DFT is closely related to the FS. Discretisingthe FT requires the

several substitutions, along with the replacement of the integral with a finite sum

over L. The sampling rate must be defined, thus we measure f(x) for total xT with

N sampled data points. The Shannon sampling theorem gives the minimum sam-

pling rate, 2Lmax, with point separation 1
2Lmax

, for the band-limited function F (L)

with bandwidth Lmax. Then the sampling rate becomes:

∆x =
xT
N

=
1

2Lmax

∆L =
2Lmax
N

=
1

∆x

(D.21)
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The discretisation changes are then:

Continuous Discrete

L→ n∆L

x→ k∆x

F (L)→ Fn

f(x)→ fk∫ ∞
−∞
→

N−1∑
n=0

(D.22)

The DFT, and its inverse, become:

fk =
N−1∑
n=0

Fne
ik n
N

Fn =
1

2πN

N−1∑
n=0

fxe
−ik n

N

(D.23)

D.3.3. FT Artefacts

There is one artefact that plagues the FT with two separate causes, aliasing and

spectral leakage. The artefact is obtaining the incorrect component or components

at F (f) from the FT of f(t). In the subsequent sections, D.3.3.1 and D.3.3.2, I

briefly present the cause of these artefacts along with a discussion of their effects

and how we can correct or avoid them.

D.3.3.1. Aliasing

Aliasing arises because of overstepping the limits imposed by the Shannon sampling

theorem, section D.3.1.1. Vital to the understanding of aliasing is the convolution
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theorem, discussed previously in section D.3.1.2. To illustrate the origin of alia-

sing, we begin by considering the discrete sampling of the function, f(x), to be a

multiplication with a Dirac comb. The FT of this is then:

∫ ∞
∞

δ(a− x)f(a)da = f(x) (D.24)

The Dirac delta function, δ(x), is defined by its action upon another, as in eq

D.24,while the Dirac comb is then defined as:

X(x,∆x) =
∞∑

n=−∞

δ(x− n∆x)

F (L) =
1

2π

∫ ∞
−∞

X(x,∆x)f(x)e−ixLdx

(D.25)

From the convolution theorem we know that a multiplication in one domain, x, is

the same as convolution in the other, L.

F (L) =

∫ ∞
−∞

X(x,∆x)e−ixLdx ∗ 1

2π

∫ ∞
−∞

f(x)e−2πixLdx (D.26)

We can then evaluate the FT of X(x,∆x), F{X(x,∆x)}.
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∫ ∞
−∞

X(x,∆x)e2πixLdx

=

∫ ∞
−∞

∆x
∞∑

n=−∞

δ(x− n∆x)e2πixLdx

=
∞∑

n=−∞

∫ ∞
−∞

δ(x− n∆x)e2πixLdx

=
∞∑

n=−∞

e2πin∆xL

(D.27)

We find that the FT of a Dirac comb is another Dirac comb with its ∆x inverted to

1
∆x

.

X(x,∆x) =
∞∑

k=−∞

δ(x− k∆x) =
∞∑

n=−∞

Cne
i2πn x

∆x

Cn =
1

∆x

∫ ∆x

0

X(x,∆x)e2iπn x
∆xdx

=
1

∆x

∫ ∆x

0

∞∑
k=−∞

δ(x− k∆x)e2iπn x
∆xdx

=
1

∆x

1∑
k=1

∫ ∆x

0

δ(x− k∆x)e2iπn x
∆xdx

=
1

∆x
e2iπn∆x

∆x

Cn =
1

∆x
e2iπn =

1

∆x

X(x,∆x) =
1

∆x

∞∑
n=−∞

ei2πn
x

∆x

(D.28)

The FT of the Dirac comb X(x,∆x) is the same as another scaled Dirac comb

∆xX(L, 1
∆x

).
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X(x,∆x) =
1

∆x

∞∑
n=−∞

ei2πn
x

∆x

F{X(x,∆x)} =
∞∑

n=−∞

e2πin∆xL

X(L,
1

∆x
) =

1

∆x

∞∑
n=−∞

ei2πnL∆x

F{X(x,∆x)} = ∆xX(L,∆x)

(D.29)

The Dirac comb X(x,∆x) is shown below as a figure.

0 ∆x 2∆x 3∆x 4∆x 5∆x

 a)  

0

1

F(
L)

0 ∆x 2∆x 3∆x 4∆x 5∆x
L 
b)  

0

1

0 ∆x 2∆x 3∆x 4∆x 5∆x
 

 c)  

0

1

Figure D.1.: a) The Dirac comb X(x,∆x). b) An example function F (L) = sin(2πL
∆x

)2 c)
Convolution of a and b. It is then clear how discrete sampling in one Fourier
domain leads to copying, or aliasing, the spectrum in the other domain.

However, aliasing is not only the copying of the function F (L), but also the mirror

inversion about each copying point. This can been seen explicitly, where for the

DFT n, k are discrete point indexes of the conjugate variable pair, N is the total

number of points of fk sampled, in the DFT.
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F (L) =

∫ W

−W
f(x)e−2πixXdx

Fn =
1

N

N−1∑
n=0

fxe
−i2πk n

N

(D.30)

Replacing the DFT index n with N − n gives:

Fn =
1

N

N−1∑
n=0

fxe
−i2πnk 1

N

k → N − k|FN−n =
1

N

N−1∑
n=0

fxe
−i2π[N−n]k 1

N

=
1

N

N−1∑
n=0

fxe
−i2πkei2πnk

1
N

=
1

N

N−1∑
n=0

fxe
−i2π(−n)k 1

N

FN−n =
1

N

N−1∑
n=0

fxe
i2πnk 1

N

(D.31)

Thus is can be seen that FN−n is the same as F−n. This mirror symmetry confirms

the Shannon sampling theorem, section D.3.1.1, as we must measure at rate equal

to twice the desired minimum n. The mirror reflection of the repeated spectrum is

then made clear , where the spectrum at position N−n is the same as at −n, which

is mirror reflection about zero and then N
2

. This then shows that there is folding

about 0,N
2

,3N
2

,ect.

FN−n = F−n = Fn (D.32)
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D.3.3.2. Spectral Leakage

Spectral leakage is a direct consequence of the finite duration of any FT and the

convolution theorem. This can be easily seen from inspection of the FT, equation

D.14. The FT depends on the measured function, F (L), being defined from minus

to plus infinity. No real measurement can occur infinitely, thus we must replace

equation D.14, where 2W is the total L that F (L) is measured for.

f(x) =

∫ W

−W
F (L)eixLdL (D.33)

Equation D.33 can be re-written as:

f(x) =

∫ ∞
−∞

A(L)F (L)eixLdL (D.34)

The FT of A(L), equation D.36, is convolved with the FT of F (L). The window

function A(L), is a boxcar function.

A(L) =


1, if −W ≥ L ≤ W.

0, otherwise.

(D.35)
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F{A(L)} =

∫ ∞
−∞

A(L)eixLdL

=

∫ W

−W
eixLdL

=
[ 1

ix
eixL

]W
−W

=
1

ix

[
eixW − e−ixW

]
=

1

x

[eixW − e−ixW
i

]
=

1

x
2 sin(xW )

= 2W
sin(xW )

xW

= 2W sinc(xW )

(D.36)

It can be seen that each component of F (L) is spread out over a central peak, and

some “spectral leakage” occurs due to the side-lobes of the central peak. The raw

sinc function results from a boxcar A(L) function. By changing the exact nature of

the A(L) function, the width of the central peak, and size of the side-lobes relative

to the central peak,can be changed. In general, the more suppressed the side-lobes,

the wider the central peak and vice-versa. This is called apodization, from the Greek

root for “removing the foot”, where the foot removed is the interferogram altered

by the application of the apodization function.

Spectral leakage is caused by the discontinuity in the FT function A(L)F (L). By

minimising this discontinuity, we can reduce the spectral leakage. The boxcar apodi-

zation function has a large discontinuity, jumping from finite values to zero instantly,

thus also possessing an infinite second order derivative. By using a function that

minimises these, we can minimise the spectral leakage.
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The Blackman-Harris functions are such a group of multiple term functions, with

varying coefficients for each term. Adjusting the coefficients, and the number of

terms, allows fine tuning of the desired central peak width and sidelobe leakage.[182]

The Blackman-Harris 4 term function is:

B(L) =



(
a0 − a1 cos(2π[L+W ]

2W
) + a2 cos(4π[L+W ]

2W
)− a3 cos(6π[L+W ]

2W
)

= a0 − a1 cos(π[L+W ]
W

) + a2 cos(2π[L+W ]
W

)− a3 cos(3π[L+W ]
W

)

)
, if −W ≥ L ≤ W.

0, otherwise.

a0 = 0.35875

a1 = 0.48829

a2 = 0.14128

a3 = 0.01168

(D.37)
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The Blackman-Harris 4 term function FT is:

∫ W

−W
cos(

nπ[L+W ]

W
)eixLdL =

∫ W

−W

(
ei
nπ[L+W ]

W + e−i
nπ[L+W ]

W

2

)
eixLdL

=

∫ W

−W

(
eiL[nπ

W
+x]+inπ + e−iL[nπ

W
−x]−inπ

2

)
dL

=

[
eiL[nπ

W
+x]+inπ

2i[nπ
W

+ x]
− e−iL[nπ

W
−x]−inπ

2i[nπ
W
− x]

]W
−W

=

(
eiW [nπ

W
+x]+inπ − e−iW [nπ

W
+x]+inπ

)
2i[nπ

W
+ x]

+

(
eiW [nπ

W
−x]−inπ − e−iW [nπ

W
−x]−inπ)

2i[nπ
W
− x]

=

(
ei[2nπ+Wx] − e−iWx

)
2i[nπ

W
+ x]

+

(
e−iWx − e−i[2nπ−xW ]

)
2i[nπ

W
− x]

=

(
eiWx − e−iWx

)
2i[nπ

W
+ x]

+

(
e−iWx − eixW

)
2i[nπ

W
− x]

=
sin(Wx)

[nπ
W

+ x]
− sin(Wx)

[nπ
W
− x]

=
W sin(Wx)

[nπ +Wx]
− W sin(Wx)

[nπ −Wx]

(D.38)

The cosine term arguments in the Blackman-Harris function are offset by W , this

exploits their periodicity to bring the function and it’s derivatives, with respect to

the position at −W,W , close to zero; omission of the offset would bring the function

to zero at 0, 2W , etc. The Blackman-Harris function is a highly effective apodisation

function for the suppression of sidelobes.[182] The convolution of both a sinc and

the FT of the 4 term Blacman-Harris function with a Dirac delta function is shown

as an example in figure D.2.
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F{B(L)} =

∫ ∞
−∞

B(L)eixLdL =

∫ W

−W
B(L)eixLdL

=

∫ W

−W

(
a0 − a1 cos(

π[L+W ]

W
) + a2 cos(

2π[L+W ]

W
)− a3 cos(

3π[L+W ]

W
)

)
eixLdL

= a0W sinc(xW )

− a1W

(
sin(Wx)

[π +Wx]
− sin(Wx)

[π −Wx]

)
+ a2W

(
sin(Wx)

[2π +Wx]
− sin(Wx)

[2π −Wx]

)
− a3W

(
sin(Wx)

[3π +Wx]
− sin(Wx)

[3π −Wx]

)
(D.39)
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Figure D.2.: a)Boxcar function A(L) b)a(x) = F{A(L)} c)Blackman-Harris function
B(L) d)b(x) = F{B(L)}. Examples of two different apodization functions
and their respective FTs. The boxcar is zero outside of the [−W,W ] domain
shown, and has the narrowest central peak of all apodization functions. The
Blackman-Harris 4 term function has suppressed sidelobes, at the cost of a
greatly widened central peak.
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