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ABSTRACT 

Peritoneal membrane failure due to fibrosis limits the use of peritoneal dialysis (PD). Peritoneal 

fibrosis may be induced by sterile inflammation caused by ongoing cellular stress induced by 

prolonged exposure to PD solutions (PDS). Effective therapies to prevent this process remain to be 

developed. Toll-like receptors (TLRs) mediate sterile inflammation by recognising damage-

associated molecular patterns (DAMPs) released by cellular stress. We evaluated the involvement 

of TLRs and DAMPs in PDS-induced fibrosis and the therapeutic potential of TLR-DAMP 

targeting for fibrosis prevention. A range of PDS elicited pro-inflammatory and fibrotic responses 

(genes and proteins) from primary human uremic peritoneal leukocytes, mesothelial cells and 

mouse peritoneal leukocytes. TLR2/4 blockade in human peritoneal cells or TLR2/4 knockout 

inhibited these effects. PDS did not induce rapid ERK phosphorylation or IκB-α degradation, 

suggesting that they do not contain components capable of direct TLR activation. However, PDS 

increased the release of Hsp70 and hyaluronan - both TLR2/4 DAMP ligands - by human and 

mouse peritoneal cells and their blockade repressed PDS-driven inflammation. Soluble TLR2 

(sTLR2), a TLR inhibitor, reduced PDS-induced pro-inflammatory and fibrotic cytokine release ex 

vivo. Daily catheter infusion of PDS in mice led to robust peritoneal fibrosis. Co-administration of 

sTLR2, however, prevented fibrosis development, suppressing pro-fibrotic gene expression, pro-

inflammatory cytokine production, reducing leukocyte/neutrophil recruitment, recovering Treg cell 

levels and increasing the Treg:Th17 ratio. The study reveals a major role of TLR2/4, Hsp70 and 

hyaluronan in PDS-induced peritoneal inflammation and fibrosis and demonstrates the therapeutic 

potential of a TLR-DAMP targeting strategy to prevent PDS-induced fibrosis. 
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INTRODUCTION 

The success of peritoneal dialysis (PD) as a therapy depends on maintaining the structural and 

functional integrity of the peritoneal membrane. A major factor limiting the long-term use of PD 

remains peritoneal membrane failure, which is directly related to the progressive thickening of the 

sub-mesothelial compact zone, termed fibrosis, resulting in altered solute transport and dialysis 

failure. Fibrosis is driven by peritoneal inflammation, caused by recurrent infections and/or by 

ongoing cellular stress and tissue injury induced by the dialysis process (sterile inflammation).
1
 The 

mechanisms linking inflammation – either infection-induced or sterile – with the genesis and 

regulation of fibrosis are the focus of intense investigation.
2, 3

  

Prolonged exposure to PD solutions (PDS), particularly to those bio-incompatible (low pH 

and high glucose concentration), the concomitant formation of glucose degradation products and 

generation of advanced glycation end-products as well as uraemia and the presence of a catheter 

have all been reported to induce cellular stress and tissue injury resulting in sterile peritoneal 

inflammation. This in turn leads to local angiogenesis, vasculopathy, epithelial-to-mesenchymal 

transition in mesothelial cells, collagen deposition in the sub-mesothelial compact zone and 

subsequent peritoneal fibrosis and membrane failure.
1, 4-6

 The immune mechanisms underlying 

sterile peritoneal inflammation resulting from prolonged exposure to PDS and leading to fibrosis 

development are poorly defined. Consequently, effective therapies to prevent PDS-associated 

fibrosis remain to be developed. 

Cellular stress and tissue damage lead to the release of endogenous cellular components and 

to the generation of extracellular matrix degradation products which act as damage-associated 

molecular patterns (DAMPs), triggering pro-inflammatory and pro-fibrotic responses.
7
 

Toll-like receptors (TLRs), TLR2 and TLR4 in particular, are major DAMP receptors.
7, 8

 

They are expressed in various cell types, including peritoneal leukocytes and mesothelial cells.
3, 9

 

They recognise and respond to a wide range of DAMPs released following cellular stress (e.g., High 
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Mobility Group Box-1 [HMGB-1]; heat shock proteins [Hsp]) or generated as a consequence of 

matrix degradation during tissue injury (e.g., low and medium molecular mass hyaluronan [HA], 

fibronectin).
7, 10, 11

 TLR triggering leads to the release of inflammatory and fibrotic mediators (e.g., 

IL-6, TGF-β, TNF-α, IL-8).
2, 8

 

Given the damaging pro-inflammatory and pro-fibrotic effects that may result from a 

prolonged exposure to PDS (conventional or more bio-compatible) and the major role that TLRs 

play in DAMPs-induced pro-inflammatory and pro-fibrotic responses, we conducted in vitro, ex 

vivo and in vivo studies to: 1) evaluate the capacity of different PDS to elicit pro-inflammatory and 

fibrotic responses and induce DAMP generation by peritoneal cells; 2) identify the main PDS-

induced pro-inflammatory DAMPs; 3) assess the involvement of peritoneal TLR2 and TLR4 in 

PDS-induced DAMPs-mediated pro-fibrotic responses and 4) evaluate a TLR-based potential 

therapeutic strategy to prevent PDS-induced peritoneal fibrosis. The study reveals a major role of 

TLR2 and TLR4 in PDS-associated sterile peritoneal inflammation and fibrosis development, 

identifies Hsp70 and HA as main TLR activating pro-inflammatory DAMPs induced by peritoneal 

exposure to PDS and demonstrates the therapeutic potential of blunting peritoneal TLR activity to 

prevent PDS-induced fibrosis by using a TLR modulator, the soluble form of TLR2. 
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RESULTS 

Pro-inflammatory and pro-fibrotic effects of different PD solutions on primary human 

peritoneal leukocytes and mesothelial cells 

We first evaluated the capacity of a range of PDS to elicit pro-inflammatory and pro-fibrotic 

responses from the main peritoneal cell types involved in the initial response to danger: leukocytes 

and mesothelial cells (Figure 1, a and b). Widely used PDS either glucose-based (1.36% and 2.27% 

glucose Dianeal®, Physioneal®, Stay Safe®) or icodextrin-based (Extraneal®) (Supplementary 

Table S1), having low pH (Dianeal®, Extraneal®, Stay Safe®) or physiologic pH (Physioneal®), 

were tested. All PDS tested induced, to a varying extent, the release of inflammatory and fibrotic 

mediators by non-infected peritoneal dialysis effluent-isolated uremic leukocytes (Figure 1a) and 

mesothelial cells (HPMC, from greater omentum; Figure 1b). Physioneal® was the least stimulatory 

PDS tested, as it did not induce the release of any of the pro-fibrotic and/or pro-inflammatory 

cytokines tested: CXCL-8/IL-8, IL-6, TNF-α, TGF-β and IL-1β – the latter a prototypical 

inflammasome-derived cytokine – by HPMC, and it induced very low levels, or did not induce, 

CXCL-8/IL-8 and IL-1β by peritoneal leukocytes from half the patients tested.  The low response of 

HPMC to Physioneal® was maintained even after 24h exposure to uremic medium (Supplementary 

Figure S1). The results shown here are of one patient representative of all patients for each cytokine 

tested. The data in Supplementary Figure S2 demonstrates that the results are truly representative by 

using as an example the PDS induced IL-8 in leukocytes and HPMC for each patient (leukocytes, 

n=8; HPMC, n=6) as well as the combined data.  Of note, as a result of inter-patient variability, the 

combined data for HPMC (Supplementary Figure S2 b, inset) did not show statistical significance, 

although the results obtained for each individual donor were significant.    

To further evaluate the effect of PDS on peritoneal cells, we focused on the effect of low-

glucose Dianeal® (1.36% glucose, Dianeal/low), the most commonly used PDS in our Nephrology 

Unit, and used it as experimental model. We analyzed inflammatory and immunity-related gene 
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expression in uremic peritoneal leukocytes and HPMC exposed to Dianeal/low for 16h (Figure 1, c 

and d and Table 1 and 2; full list of genes tested in Supplementary Table S2 and S3). Fifteen genes 

were found significantly induced (P<0.05; fold change ≥2) in leukocytes by Dianeal/low at this time 

point and only 5 were down-modulated (P<0.05; fold change ≤ 0.5). Notably, among the transcripts 

induced by the PDS were those coding for inflammatory mediators (CXCL8/IL-8, TNF-α, IFN-γ, 

monocyte chemoattractant CCL2/MCP-1, the chemokine receptor CCR4, IL-1β) as well as for 

TLR2, its two signaling partners (TLR1 and TLR6), TLR3, and TLR signal intermediates (MAPK, 

TRAF-6, TICAM1).  HPMC exposure to Dianeal/low resulted in 8 genes being significantly 

induced and 6 down-modulated (Figure 1d; Table 2). Among the affected transcripts, those for the 

pro-inflammatory cytokines IL-α, IL-β and CXCL8/IL-8 were found strongly up-modulated, 

whereas that for the anti-inflammatory cytokine CXCL10/IL-10 was down-modulated. Additional 

fibrosis gene expression analysis in Dianeal/low-exposed HPMC – the cell type known to 

contribute to peritoneal fibrosis by acquiring a fibroblastic phenotype following epithelial-to-

mesenchymal transdifferentiation (EMT) – showed a 3-fold increase in the expression of VGEFA 

(main isoform of VGEF) and a reduction in E-cadherin (Supplementary  Figure S3), both effects 

indicating EMT. 
12, 13

   

Involvement of TLR2 and TLR4 in PD solution-induced peritoneal production of 

inflammatory and fibrotic mediators 

To test whether TLR2 and/or TLR4 – main TLRs involved in sterile inflammatory responses – were 

involved in the inflammatory and fibrotic responses of peritoneal cells exposed to PDS, TLR2 and 

TLR4 blocking experiments were conducted (Figure 2, a-c). mAb blocking of peritoneal leukocyte 

TLR2 or TLR4 inhibited Dianeal/low-induced pro-inflammatory cytokine release (IL-8), and the 

extent of the inhibition depended on the PD patient tested (Figure 2a). Simultaneous TLR2 and 

TLR4 blockade resulted in a stronger inhibition. These findings indicated that TLR2 and TLR4 

ligand(s) and/or ligands capable of being recognized by both TLR2 and TLR4 were involved. A 

significant reduction in the release of IL-8 was also observed when TLR2 was blocked in PDS-
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exposed HPMC (Figure 2b). Of note, mAb blocking of TLR4 was not tested in HPMC, as they do 

not express TLR4
3, 9

, and did not respond to LPS (TLR4 ligand) even after 24h exposure to uremic 

medium (Supplementary Figure S1). 

Analysis of the release of a range of pro-inflammatory and fibrotic cytokines by uremic 

peritoneal leukocytes exposed to PDS following TLR2+TLR4 blockade was also conducted (Figure 

2c). The release of most of the cytokines induced by Dianeal/low was significantly inhibited, to a 

varying extent, by TLR2/4 blocking. Collectively, these findings indicated that peritoneal TLR2 and 

TLR4 drive inflammatory and fibrotic responses to existing components of the PDS and/or to 

endogenous DAMPs that may be generated/released as a consequence of cellular stress resulting 

from exposure to PDS.  

To investigate whether the PDS contains components capable of direct TLR activation, the 

rapid phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) – a typical TLR 

signal intermediate
14

 – was evaluated following a short exposure to Dianeal/low (Figure 3a). 

Peritoneal leukocyte exposure to PDS for up to 60 min did not induce ERK1/2 phosphorylation. By 

contrast, leukocyte exposure to sterile (non-infected) PD effluent collected from PD patients 

induced rapid ERK1/2 phosphorylation, suggesting the presence of TLR DAMPs in the effluent. As 

expected, short exposure to the TLR agonists Pam3-Cys-Ser-(Lys)4 (Pam3Cys; a synthetic bacterial 

lipopeptide and TLR2 agonist) and lipopolysaccharide (LPS, endotoxin, a TLR4 agonist) resulted in 

strong ERK1/2 phosphorylation (Figure 3a). Control experiments (Figure 3b) confirmed that TLR 

activation induced ERK phosphorylation, as TLR2- and/or TLR4-specific mAb blocked Pam3Cys- 

(anti TLR2), LPS- (anti TLR4) and PD effluent- (anti TLR2 and anti TLR4) induced 

phosphorylation. We also tested the rapid degradation upon TLR activation of the nuclear factor 

kappa-B (NF-κB) inhibitory protein IκB-α, which inhibits the nuclear translocation of NF-κB and 

thus its transcription activator activity.
15

 Pam3Cys induced a rapid and progressive reduction over 

30 min in the expression of IκB-α in peritoneal leukocytes (Figure 3c), and by 60 min the level of 

IκB-α was recovering. By contrast, leukocyte exposure to Dianeal/low did not show variations over 
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time in IκB-α expression. Together, these findings indicated that peritoneal exposure to PDS leads 

to TLR2 and TLR4 activation by inducing DAMP generation, as the PDS does not appear to 

contain pre-existing components capable of direct TLR activation. 

Identification of Hsp70 and HA as main pro-inflammatory TLR activating DAMPs induced 

by peritoneal cell exposure to PD solutions 

To identify the main DAMPs generated by peritoneal cell exposure to PDS, the presence of a panel 

of well-described DAMPs, including endogenous proteins (Hsp60, Hsp70, HMGB-1, calprotectin), 

and extracellular matrix proteoglycans and glycosaminoglycans (decorin, fibronectin, versican, 

biglycan and HA) was first tested in non-infected PD effluent from PD patients (Figure 4a). 

Consistent with the rapid triggering of ERK1/2 phosphorylation, most DAMPs tested were present 

in PD effluents, to a varying extent depending on the patient, except for versican and biglycan 

which were not detected. To identify the DAMPs preferentially induced by exposure to PDS, 

uremic peritoneal leukocytes and HPMC were incubated overnight with Dianeal/low (Figure 4, b 

and c). Leukocytes (Figure 4b) showed constitutive release of the DAMPs tested, except for 

biglycan, which was not detected either before or upon exposure to Dianeal/low. Notably, exposure 

to PDS increased the release of only two DAMPs, Hsp60 and Hsp70, both known TLR2 and TLR4 

ligands
7
, whereas the others were either not affected (HMGB-1, fibronectin) or inhibited (decorin, 

calprotectin, HA, versican). HPMC also showed constitutive release of DAMPs, except for versican 

and biglycan, which were not detected either before or following exposure to the PDS (Figure 4c). 

In this case, PDS increased the release of Hsp60, Hsp70 and also HA, the latter also a TLR2 and 

TLR4 ligand,
7, 11

 whereas the remaining DAMPs were not significantly affected. This pattern of 

DAMP expression was also observed when peritoneal cells were exposed to Dianeal/high®, 

Physioneal®, Stay Safe® or Extraneal® (Supplementary Figure S4). Of note, the detected DAMPS 

may result from de novo synthesis and/or active or passive release – the latter as a consequence of 

cellular damage – induced by the PDS. 
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 We next tested whether the DAMPs released by peritoneal cells upon exposure to PDS were 

capable of inducing cell activation via TLRs (Figure 5a). Purified Hsp70 as well as low (~33 kDa) 

and medium (~289 kDa) molecular mass HA, but not Hsp60, induced a rapid increase in the 

percentage of uremic peritoneal macrophages expressing phosphorylated ERK1/2, increasing from 

15 min to 60 min (Figure 5a). A similar ERK1/2 phosphorylation profile was observed when non-

infected PD effluent from PD patients was tested, whereas the TLR2 agonist Pam3Cys induced an 

even stronger phosphorylation pattern (Figure 5a). Of note, Hsp70 and HA – identified here as 

capable of inducing ERK phosphorylation – are each recognised by both TLR2 and TLR4. These 

findings were consistent with those shown in Figure 2, demonstrating that the pro-

inflammatory/fibrotic effects exerted by PDS on peritoneal cells can be inhibited by TLR2/4 

blockade. Together, these findings indicated that peritoneal cell exposure to PDS increases the 

release of three DAMPs: Hsp60, Hsp70 and HA, and that, by a TLR2/TLR4-mediated pathway, 

Hsp70 and HA but not Hsp60, are capable of eliciting inflammatory responses from peritoneal cells. 

Consistent with this conclusion, pharmacologic inhibition of Hsp70 or HA blockade by an HA-

specific inhibitory peptide
16

 significantly inhibited peritoneal cell inflammatory responses to PDS 

(Figure 5b). These findings supported the potential of controlling DAMP-TLR interactions as a 

therapeutic strategy against peritoneal fibrosis. 

Capacity of the TLR inhibitor soluble TLR2 to modulate PDS-induced peritoneal leukocyte 

inflammatory and fibrotic responses in vitro 

The therapeutic potential of reducing peritoneal TLR activity by inhibiting DAMP-TLR interactions 

was next evaluated in vitro. We tested the inflammation regulatory capacity of the inhibitor of 

TLRs, soluble Toll-like receptor 2 (sTLR2), which we previously demonstrated to reduce infection-

induced TLR-mediated peritoneal inflammation and fibrosis by binding to TLR2 ligands and acting 

as a decoy receptor.
3, 17-19

 Given that the PDS-induced TLR activating DAMPs Hsp70 and HA are 

recognised by both TLR2 and TLR4, sTLR2 would be able to interfere with both TLR2 and TLR4 

triggering by interacting with these DAMPs. Figure 6 shows that most pro-inflammatory and 
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fibrotic cytokines released by PDS-exposed peritoneal uremic leukocytes were inhibited by sTLR2. 

These findings demonstrated that sTLR2 is a potent inhibitor of PDS-associated sterile 

inflammation, and may be of therapeutic value against subsequent fibrosis development in PD. 

Prevention of PDS-induced peritoneal fibrosis development in vivo by therapeutic 

administration of sTLR2 

To evaluate the therapeutic potential of sTLR2 against peritoneal inflammation and fibrosis 

resulting from prolonged exposure to PD solutions in vivo, a validated mouse model of sterile 

peritoneal fibrosis was used.
20

 In this model, the morphological and functional alterations of the 

peritoneal membrane observed in non-infected patients on PD are mimicked by twice daily 

peritoneal infusion (40 days) through a catheter of a standard PDS (Figure 7a and Refs
20, 21

). Similar 

to human uremic peritoneal cell exposure to PDS (Figure 4), in this model the daily infusion of PDS 

resulted in increased peritoneal release of Hsp60, Hsp70 and HA (Figure 7b). Furthermore, mouse 

peritoneal TLR2/4, like the humans’ (Figure 2), appear as major receptors recognising DAMPs 

induced by PDS, as exposure of TLR2 or TLR4 deficient mice-derived peritoneal leukocytes to 

PDS resulted in a marked reduction in pro-inflammatory and fibrotic cytokine induction when 

compared to leukocytes from wild type mice (Figure 7c). 

Daily infusion of PDS led to robust peritoneal fibrosis by day 40, as judged by the 

thickening of the sub-mesothelial compact zone observed in parietal membrane sections (Figure 

8a). This was accompanied by a not statistically significant trend to increase in the peritoneal levels 

of the inflammatory mediators TNF-α, IL-1β, KC (murine functional counterpart of human IL-8, a 

PMN chemoattractant), IL-6 (also a major driver of peritoneal fibrosis
2
), and the pro-inflammatory 

and fibrotic cytokine IFN-γ. No effect on MCP-1 (a monocyte chemoattractant) was observed 

(Figure 8b). The increase in inflammatory mediators resulted in an overall increase in peritoneal 

leukocyte numbers and percentage of recruited neutrophils in particular (Figure 8c). The unchanged 

percentage of monocytes – although the absolute number may be increased, as the total leukocyte 

number is increased – in the face of the increase in neutrophils in response to PDS may contribute 
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to the chronicity of the inflammatory process which leads to fibrosis by delaying normal resolution 

of inflammation. Fibrosis development was also accompanied by a slight reduction in regulatory T 

cells (Treg). This anti-inflammatory T cell subset controls T cell expansion, including of 

inflammatory Th17 cells, which are known to be involved in peritoneal damage and fibrosis 

development
22

. The percentage of Th17 cells, however, was not affected (Figure 8c). Consequently, 

the ratio Treg:Th17 in the PDS-instilled mice was reduced (Figure 8c).  

Co-administration of sTLR2 twice weekly with the PDS prevented peritoneal fibrosis 

development (Figure 8a). Consistent with this finding, sTLR2 suppressed the PDS-induced increase 

of all inflammatory and fibrotic mediators tested (Figure 8b), resulting in very low levels of 

cytokines, similar to those induced by the catheter infusion of PBS. sTLR2’s suppressive effect on 

inflammatory mediators was followed by a marked reduction in peritoneal leukocyte numbers and 

percentage of infiltrating neutrophils in particular, but no effect on monocytes (Figure 8c). Notably, 

sTLR2 administration recovered Treg cells to levels similar to those observed by PBS infusion, 

increasing albeit not significantly the Treg:Th17 ratio (Figure 8c). 

Analysis of fibrosis-related gene transcripts in mice peritoneal membranes conducted after 

the last PDS+sTLR2 infusion (day 40) (Figure 8d, Table 3) showed a marked inhibitory effect of 

sTLR2 on the capacity of PDS to induce mRNA coding for a number of inflammatory mediators 

and fibrosis markers (full list of genes in Supplementary Table S4). Twenty-nine of the 85 genes 

tested were significantly induced (P<0.05; fold change ≥2) by PDS at this time point, and sTLR2 

reduced this effect in 27 of them. Among the transcripts inhibited by sTLR2 was Fasl, which was 

strongly induced by PDS. FasL is central to apoptosis, a cell death mechanism that impairs bacterial 

clearance during PD, induces peritoneal macrophage death, and increases peritoneal inflammation 

and the production of PMN chemoattractants.
23, 24

 sTLR2 administration also inhibited the PDS-

induced transcription of signal transducer and activator of transcription 1 (STAT-1) (Table 3), a 

critical signal intermediate for fibrosis development.
2
 Together with STAT-1, IFN-γ has been 

demonstrated to mediate peritoneal fibrosis,
2
 and sTLR2 significantly reduced the strong PDS-
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induced transcription of IFN-γ (Table 3). A number of transcripts for matrix metalloproteinases 

(MMPs), which are involved in both augmenting and attenuating fibrosis,
25

 were induced by PDS 

and reduced by sTLR2, likewise a number of the negative regulators of MMPs, tissue inhibitor of 

metalloproteinases-1 to 3 (TIMP-1/3). Similarly, the PDS-induced transcription of the pro-fibrotic 

cytokine TGF-β and its receptor TGF-βR2, and that of the inflammatory mediators IL-1β and TNF-

α were strongly reduced by sTLR2 administration. Thus, the therapeutic administration of sTLR2 

can prevent peritoneal fibrosis development induced by prolonged exposure to PD fluids by acting 

on a number of pro-inflammatory and fibrotic mediators and controlling inflammatory cell 

expansion. 
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DISCUSSION 

The long-term PD-associated progressive peritoneal membrane injury resulting in sterile peritoneal 

inflammation and fibrosis has been well documented.
5, 6

 The prolonged exposure to conventional 

PDS has been demonstrated to substantially contribute to peritoneal membrane injury and chronic 

low-grade inflammation
26

 and a number of biomarkers have been evaluated in an attempt to help 

improve PD patient outcomes.
27

 Acidic pH, high glucose concentrations and high levels of glucose 

degradation products in PDS have all been reported to cause local inflammation with resultant 

adverse functional outcomes, such as higher peritoneal solute transport rate (PSTR) and membrane 

failure due to fibrosis. Therefore, more bio-compatible PDS were developed aimed at mitigating 

some of these adverse effects. They include, neutral pH, low or ultralow glucose degradation 

products containing solutions, solutions using alternative osmotic agents, low-sodium solutions and 

supplementation with the dipeptide alanyl-glutamine.
28-31

 The peritoneal administration of alanyl-

glutamine - a dipeptide with immunomodulatory effects - in uremic rat and mouse PD exposure 

models showed substantial promise, as it reduced PD-induced peritoneal fibrosis, reduced pro-

inflammatory/fibrotic markers and ameliorated damage, in part by modulating IL-17 expression.
31

 

At present, however, in spite of demonstrating some beneficial effects in maintaining stability of 

PSTR, there is no conclusive clinical evidence that the use of more bio-compatible PDS is 

associated with a lower burden of peritoneal inflammation or improved clinical outcomes.
32

 

Notably, data from the GLOBAL Fluid study have shown that the peritoneal levels of the pro-

inflammatory and fibrotic cytokine IL-6 are strongly associated with patients PSTR,
33

 confirming a 

link between local inflammation and membrane function. A number of intervention studies have not 

yet been able to define effective strategies to consistently lower the inflammatory burden in long-

term PD patients.
1
 This has highlighted the importance of defining the underlying processes that 

drive the chronic inflammatory state that develops upon prolonged exposure to PDS. Critically, 

studies to identify the main peritoneal receptors involved in triggering the initial pro-

inflammatory/fibrotic responses to PDS, and develop therapeutic strategies to reduce their 
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activation have not been conducted. In the present study, we identified Hsp70 and HA as main pro-

inflammatory and fibrotic DAMPs induced by exposure to PDS, and their receptors, TLR2 and 

TLR4, as major therapeutic targets against PDS-induced fibrosis development. We described a 

therapeutic strategy to prevent PDS-induced fibrosis that targets TLRs and DAMP-TLR interactions 

by using a decoy soluble receptor, sTLR2. 

The potential therapeutic benefit of targeting TLRs and their interaction with DAMPs upon 

peritoneal exposure to PDS was demonstrated by the pivotal role that TLR2 and TLR4 showed in 

mediating pro-inflammatory and fibrotic responses to Hsp70 and HA and to Dianeal ex vivo in 

patients’ uremic peritoneal leukocytes, and the conclusive demonstration that disrupting peritoneal 

TLR triggering in vivo with sTLR2 fully prevented PDS-induced fibrosis development. The 

protective effect of sTLR2 in vivo may result at least in part from neutralising the TLR2/4 activating 

DAMPs Hsp70 and HA that were found increased following daily peritoneal infusion of PDS. 

However, the involvement in mice of additional TLR2/4 DAMP ligands, also targeted by sTLR2, 

cannot be excluded. It has been reported that PDS-induced intracellular upregulation of Hsp may be 

anti-inflammatory by conferring cytoprotection, mediating cellular repair and improving the 

integrity of the cellular membrane, thus reducing pro-inflammatory DAMP leakage from stressed 

cells.
34-36

 It is not clear whether in the present study Hsp70 is being upregulated by PDS exposure, 

however, its increased release following PDS exposure may be associated with loss of cell 

membrane integrity and of Hsp cytoprotective effect. The mechanism underlying sTLR2’s anti-

fibrotic effect appears to be related to maintaining low levels of infiltrating leukocytes, rescuing 

Treg cell levels, as well as maintaining very low peritoneal levels of inflammatory mediators. This 

latter effect was not statistically significant when compared with that of PDS infusion alone, except 

for that on IL-6. However, sTLR2 administration did reduce inflammatory mediators to levels 

similar to those induced by the catheter infusion of PBS, which had no significant impact on 

fibrosis. The non-statistical significance of the sTLR2 effect on inflammatory mediators is most 

likely due to the fact that the exposure to PDS alone resulted in a non-statistically significant 
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increase in inflammatory mediators. This low-grade, chronic inflammation, when maintained over a 

long period of time (e.g., 40 days in this model) is sufficient to induce fibrosis, as demonstrated 

here and as has been previously documented.
37

 Thus, in the presence of sTLR2, the PDS-driven 

inflammatory response appears to be maintained very low, below the threshold for fibrogenesis. 

This supports our previous finding that the intensity of local inflammation is directly related to 

fibrosis development.
3
 Thus, controlling the intensity of the TLR-mediated inflammation with 

sTLR2 appears as an efficient therapeutic strategy against PDS-induced peritoneal fibrosis. The 

efficacy of sTLR2 to reverse ongoing fibrosis, as opposed to prevent it, however remains to be 

assessed.  

To date, a main target for therapeutic intervention has been the pro-fibrotic cytokine TGF-β. 

Inhibition of its synthesis (e.g., angiotensin-converting enzyme inhibitors [enalapril]; angiotensin 

receptor blockers [losartan]) or activity (e.g., anti TGF-β peptide; gene transfer of decorin – a TGF-

β inhibiting proteoglycan) showed promising effects in vitro and in some preclinical studies.
5, 21, 38-42

 

However, blocking TGF-β is potentially hazardous given its pleiotropic functions, including in 

normal embryonic development, tumorigenesis and tumour progression, as well as its pro- and anti-

inflammatory activity.
43, 44

 Furthermore, TGF-β is just one of many fibrosis mediators acting down-

stream of TLR activation. sTLR2 presents a clear advantage over these strategies, as it is capable of 

modulating the production of a range of inflammatory and fibrosis mediators by controlling the 

initial triggering of TLR2 and TLR4 by their common DAMP ligands. The efficacy of this strategy 

may extend to the control of inflammation/fibrosis resulting from TLR2/4 DAMP ligands released 

as a consequence of the uremic milieu and/or the peritoneal catheter.  

We have previously demonstrated the capacity of sTLR2 to inhibit peritoneal infection-

induced fibrosis without compromising bacterial clearance.
3
 This feature of sTLR2 would present 

an advantage over therapies based on a complete TLR blockade to achieve anti-inflammatory 

effects e.g., by combining anti-TLR2 and -TLR4 antibodies,
45

 considering that sTLR2 would be 

used in patients on PD, who are prone to infections. The sTLR2-based anti-fibrotic strategy 
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described here could thus prove to be a valuable adjunct to more bio-compatible PD solutions. 

Furthermore, the potential benefit of sTLR2 in other PD-associated inflammatory conditions 

deserves to be evaluated, for example, to help reduce the elevated risk of cardiovascular diseases or 

the occurrence of encapsulating peritoneal sclerosis; in kidney fibrosis, as well as to reduce sterile 

inflammation associated with acute kidney injury.  
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MATERIALS AND METHODS 

Cells and PD effluent 

Samples from healthy individuals (omentum) and PD patients (spent PD effluent) were obtained in 

accordance with the institutional review board of Cardiff University and the local National Health 

Service Research Ethics Committee. Written informed consent was obtained from all donors. 

Sampling was carried out within the UK Clinical Research Network under study portfolios ID 

#11838 (PERITPD) and ID #11839 (LEUKPD) and adhered to the Declaration of Helsinki. Spent 

PD effluents were obtained from continuous ambulatory PD patients following an overnight dwell. 

The sterility of the effluents used was confirmed by bacterial DNA testing by qPCR as previously 

described.
3
 Peritoneal leukocytes were obtained from non-infected PD effluents (PDE) by 

centrifugation as previously described
3
. Peritoneal lymphocytes were differentiated from 

monocytes/macrophages and neutrophils using flow cytometry on the basis of their forward and 

side scatter properties and CD14 staining (lymphocytes: CD14
-
; monocytes/macrophages: 

CD14
+high

; neutrophils: CD14
+low

). Monocytes/macrophages were the predominant cell population 

in PDE derived from non-infected (stable) patients, consistently accounting for 60-80% of 

leukocytes, which was in agreement with previous reports
3,46

, whereas the number of neutrophils 

was negligible. The main non-infected PDE-derived peritoneal cell type responding to TLR ligands 

were the monocytes/macrophages, not the lymphocytes, as we previously demonstrated.
3
 Additional 

CD45 staining was used to differentiate mesothelial cells (CD45
-
) from leukocytes (CD45

+
). 

Typically, mesothelial cells accounted for ≤ 5% of the PDE cell population (Supplementary Figure 

S5). Leukocytes were cultured in RPMI 1640 medium (Invitrogen, Carlsbad, CA) supplemented 

with 1% foetal calf serum (FCS, HyClone Laboratories, Logan, UT; < 0.06 U/mL endotoxin). All 

experiments were conducted with cells isolated from a single dwell/dialysate (not pooling) from 

each patient. The cell-free (centrifuged) PD effluents were aliquoted and kept frozen (-85°C) until 

further use. All effluents used were from uremic patients (urea > 7.8 mM; creatinine > 110 µM; 

U.K.-wide criteria defined by the National Health Service).  Of note, the expression of TLR2/4 in 
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uremic macrophages was not affected after a 16h culture in a non-uremic milieu (Supplementary 

Figure S6). HPMC were prepared by tryptic digest of omental biopsies of non-PD patients, as 

previously described
9
 and cultured in M199 medium (Invitrogen) supplemented with insulin (0.5 

μg/ml), transferrin (0.5 μg/ml), and 10% FCS. The viability of peritoneal leukocytes and 

mesothelial cells was routinely tested following their overnight (16h) exposure to PD solutions.  

Macrophage and lymphocyte viability was always 85-95% and mesothelial cells 70-90%, 

depending on the PDS solution (Supplementary Figure S7). 

Murine peritoneal leukocytes (Fig. 7c) were obtained by peritoneal lavage (2ml PBS) of 8 to 10-wk-

old C57BL/6 wild-type, TLR2
-/- 

and TLR4
-/-

 female mice (Charles River Laboratories, Wilmington, 

MS) 

Functional assays 

For activation experiments, triplicate aliquots of primary human/mouse peritoneal leukocytes (2.5 x 

10
4
 cells/well, in 96-well plates), or HPMC (4 x 10

4
 cells/well, in 48 well-plates), were cultured in 

the presence of the indicated PDS (1:2 dilution). For blocking experiments, cells were preincubated 

(30 min at 37°C) with functional grade anti-TLR2 (clone T2.5, Hycult Biotech, Uden, Netherlands), 

anti-TLR4 (clone3C3, Hycult), their corresponding isotype-matched control (5 μg/ml), the Hsp70 

inhibitor VER155008 (20μM, Tocris, Bio-Techne Ltd, Abingdon, U.K.), the HA inhibitory peptide 

Pep-1, the scrambled peptide control (250 μg/ml, Genscript, Oxon, U.K.), or human recombinant 

sTLR2 (250 ng/ml, low endotoxin, R&D Systems, Minneapolis, MN) before addition of PDS or the 

synthetic bacterial lipopeptide Pam3-Cys-Ser-(Lys)4 HCl (250 ng/ml, EMC microcollections, 

Tübingen, Germany). 

Culture supernatants were collected after 16h and cytokines and DAMPs quantified by single 

(R&D) or multiplex ELISA (Meso Scale Discovery, Rockville, MD). For TGF-β determinations, 

cells were washed after 48h stimulation and cultured for a further 24h in FCS-free medium before 

culture supernatant collection and ELISA. Following cell stimulations, cell viability was assessed 

https://www.google.co.uk/search?hl=en-GB&gbv=2&q=Wilmington+Massachusetts&stick=H4sIAAAAAAAAAOPgE-LSz9U3MC4wLLY0VuIEsQ1zjQoqtLSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFAFLbgtRFAAAA&sa=X&ved=0ahUKEwikl-STsfzWAhXFI1AKHUhfB7cQmxMIdCgAMA8
https://www.google.co.uk/search?hl=en-GB&gbv=2&q=Wilmington+Massachusetts&stick=H4sIAAAAAAAAAOPgE-LSz9U3MC4wLLY0VuIEsQ1zjQoqtLSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFAFLbgtRFAAAA&sa=X&ved=0ahUKEwikl-STsfzWAhXFI1AKHUhfB7cQmxMIdCgAMA8
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by flow cytometry using the eFluor viability dye (eBioscience, San Diego, CA) and was always 

≥75% and unaffected by exposure to PDS.  

To evaluate ERK1/2 phosphorylation and IκB-α degradation, cells (5 x 10
5
/condition) were 

stimulated or not with Dianeal/low (1:2 dilution), sterile PD effluent (1:2 dilution), Pam3Cys (250 

ng/ml), LPS (50 ng/ml, Invivogen, San Diego, CA), recombinant Hsp70 (500 ng/ml, Abcam, 

Cambridge, U.K.), recombinant Hsp60 (500 ng/ml, Enzo Life Sciences, Exeter, U.K.) and low (~33 

kDa) or medium (~289 kDa) molecular mass hyaluronan (both at 100 µg/ml, R&D) following 

preincubation or not with anti-TLR2 or anti-TLR4 blocking mAbs or an isotype control. At the 

indicated time points, activation was stopped by addition of paraformaldhehyde (5% final 

concentration, ERK1/2) or lysis buffer (IκB-α).  

Flow cytometry 

ERK1/2 phosphorylation was evaluated by flow cytometry
47

 following cell fixation using an Alexa-

Fluor 647-conjugated ERK1/2 phosphorylated-specific mAb according to the manufacturer's 

instructions (BioLegend).  

Western blotting  

IκB-α degradation was tested by Western Blot as previously described
47

. Cell lysates were diluted 

1:2 in Laemmli reducing sample buffer and subjected to 10% SDS-PAGE prior to Western blot 

analysis using an anti-IκB-α antibody (clone #417208, R&D) or an anti-α-tubulin antibody (clone 

#961216, R&D) as a loading control. Densitometric analysis was performed using the ImageJ 

software. 

Gene arrays 

Total RNA was isolated from peritoneal leukocytes, HPMC or mice peritoneal membranes using 

the RNeasy mini kit (Qiagen, Germantwon, MD). RT was performed on 200 ng RNA using the RT
2 

first strand kit (Qiagen, including a genomic DNA elimination step). qPCR was performed on the 

resulting cDNA using the human Innate and Adaptive Immune Response or the mouse Fibrosis RT
2
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Profiler PCR Array (84 genes; Qiagen) and the ABI QuantStudio 12K Flex PCR System (Thermo 

Fisher Scientific, U.K.). The results were analysed using Qiagen software. Changes in gene 

expression compared to control were considered statistically significant when P<0.05, and 

biologically relevant when the fold change was ≤ 0.5 or ≥ 2, as recommended by the manufacturer. 

The complete data sets are shown in Supplementary Table S2, S3 and S4. 

In Vivo experiments 

All procedures were carried out under a project license granted by the Spanish Consejo Superior de 

Investigaciones Científicas. Inbred 8 to 10-wk-old wild-type female mice (C57/BL6J) underwent 

peritoneal catheter (Access technologies, West Midlands, U.K.) implantation surgery, as previously 

reported
20

 (Supplementary Figure S8). Following recovery (7 days), mice were instilled twice daily 

for 40 days with 2 ml Fresenius Standard 4.25% glucose solution (n=8) or PBS (n=5) in the absence 

or presence of recombinant sTLR2 (100 ng/ml, added three times per week). After 40 days, mice 

were sacrificed, peritoneal lavages were obtained (2ml PBS), and two sets of parietal peritoneal 

membrane biopsies were taken. One set was used for membrane histology (below) and the second 

set was snap-frozen in liquid nitrogen for RNA extraction and gene expression studies (above). 

Leukocyte numbers in the lavages were determined by automated counting (Scepter automated cell 

counter, Merk Millipore, Leicester, U.K.), and cell populations were identified by differential 

staining (anti-CD11b, anti-Gr1, anti-F4/80, anti-CD3, anti-CD4, anti-CD8, anti-Foxp3, anti-IL-17, 

BD biosciences, Oxford, U.K.) and flow cytometric analysis. Cytokine levels were determined by 

multiplex ELISA.  

Peritoneal membrane histology 

Parietal peritoneal membrane biopsies obtained from the opposite side of the catheter were 

processed as previously described
22

. Briefly, membranes were fixed (Bouin solution), embedded in 

paraffin, cut into 5-µm sections, and stained (Masson’s Trichrome stain). The thickness of the SMC 

was determined using a Leica CTR6000 microscope and Leica Microsystems software (Milton 
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Keynes, U.K.). Pictures were obtained from one extreme of the biopsy to the other, and 

measurements taken every 50 µm. The mean of all measurements taken from one biopsy was used 

as the SMC thickness for each animal.  

Statistical analysis 

Statistical analysis of the data was performed by using an unpaired Student’s t test. P values <0.05 

were considered significant. 

 

DISCLOSURES 

The authors declare that they have no competing interests. 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

ACKNOWLEDGEMENTS  

We thank Professor A. O. Phillips (Department of Nephrology, University Hospital of Wales and 

Cardiff University, UK), and Dr. J. E. Rey Nores (Cardiff Metropolitan University, UK) for critical 

comments and reading of the manuscript.  

AUTHOR CONTRIBUTIONS 

A.-C.R. performed the experiments and contributed to the experimental design and writing of the 

manuscript. G.L.M. performed in vivo experiments, helped to develop the murine model of fibrosis 

and critically revised the manuscript. A.W. coordinated the collection and provision of tissue 

samples and revised the manuscript. N.T. facilitated access to patient samples and critically revised 

the manuscript. D.F. coordinated and facilitated access to patient samples and clinical database, and 

critically revised the manuscript. M.L.C. designed the in vivo model of fibrosis, gave input to the 

experimental design and critically revised the manuscript. M.O.L. designed most of the research 

project, provided oversight of experiments, and wrote most of the manuscript. 

SUPPLEMENTARY MATERIAL 

Figure S1. Uremia does not affect the response to TLR2/TLR4 ligands or Physioneal® by 

mesothelial cells. Human peritoneal mesothelial cells (from omentum) were exposed (Uremia) or 

not (No uremia) to uremic PD effluent for 24h. Subsequently, cultures were washed and 

immediately stimulated (16h) with a TLR4 ligand (LPS, indicated concentrations), a TLR2 ligand 

(Pam3Cys, 100 ng/ml) or Physioneal® (1:2). The histogram plot shows the mean (±SD) IL-8 

release after the corresponding background subtraction (exposure or not to PDE) from 1 experiment 

representative of 3 conducted with mesothelial cells from different donors. 

Figure S2. PD solutions (PDS) induce pro-inflammatory responses in human peritoneal cells. 

Levels of IL-8 in the culture supernatants of (a) non-infected PD effluent-isolated uremic 

leukocytes and (b) peritoneal mesothelial cells (from omentum) following exposure (16h) to the 
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indicated PDS (1:2 dilution). Each plot shows the results from one donor run in triplicates (±SD) 

and the framed insets show the average of all donors tested (±SEM). *P<0.05; **P<0.01; 

***P<0.005 (PDS vs control). 

Figure S3. Exposure of human peritoneal mesothelial cells to PDS induces EMT-associated gene 

expression changes. Gene expression levels of Vegfa and E-Cadherin in mesothelial cells (from 

omentum) were determined by RT-qPCR after 16h culture in the presence or absence of 

Dianeal/low (1:2 dilution). Histogram plots show the fold change in expression compared to the No 

PDS control. ***P<0.005 (Dianeal/low vs No PDS). Results are of one experiment representative 

of three. 

Figure S4. Human peritoneal cell exposure to PDS modulates the release of TLR DAMP ligands. 

Levels of TLR DAMP ligands in culture supernatants from (a) non-infected PD effluent-isolated 

uremic leukocytes and (b) human peritoneal mesothelial cells (from omentum) stimulated (16h) or 

not with the indicated PDS (1:2 dilution). Results are from one experiment (±SD) representative of 

8 (a) and 6 (b). **, P<0.01; ***, P<0.005 (PDS vs No PDS). 

 Figure S5. Cellular composition of non-infected PD effluent. Peritoneal cells were obtained by 

centrifugation of non-infected PD effluent and stained with CD14- and CD45-specific mAbs prior 

to flow cytometric analysis. Cell populations were identified on the basis of their forward and side 

scatter profiles and CD14 and CD45 staining. Mesothelial cells, CD45
-
; leukocytes, CD45

+
; 

lymphocytes, CD14
-
; monocytes/macrophages, CD14

+high
; neutrophils, CD14

+low
 (typically, 

negligible). 

Figure S6. Overnight culture in non-uremic milieu does not affect TLR2/4 expression by uremic 

macrophages. Uremic peritoneal leukocytes obtained from PD effluent were incubated (16h) in 

non-uremic conditions (RPMI), or in uremia-maintaining conditions (RPMI + own PD effluent 1:2). 

Expression levels of TLR2 (left panel) and TLR4 (right panel) on peritoneal macrophages (gated on 
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the basis of their forward and side scatter profiles and CD14 expression) were determined by flow 

cytometry. Results are representative of four independent experiments. 

Figure S7. Viability of peritoneal cells following overnight exposure to PDS. Viability of PD 

effluent-isolated peritoneal leukocytes and peritoneal mesothelial cells (from omentum) following 

exposure for 16h to the indicated PDS (1:2 dilution). Cell viability was routinely determined by 

flow cytometry following staining with the viability dye efluor 647.  

Figure S8. Surgical procedure of peritoneal catheter insertion in mice. Inbred 8 to 10-wk-old wild-

type female mice (C57/BL6J) underwent surgery under general anaesthesia. Animals were shaved 

and a large incision was made in the skin on the right flank of the mouse, followed by a small 

incision of the peritoneal muscle layer, through which the tip of the catheter was inserted into the 

peritoneal cavity (a). The muscle layer was sutured back, ensuring that the catheter would stay in 

position, and the injection port (b) was inserted under the skin in a dorsal position (c) before 

suturing the skin (d). The final position of the catheter and injection port is shown in (e). One week 

after surgery, a specially-designed blunt needle was used to pierce the skin and inject the PDS into 

the catheter through the injection port without damaging it. 

Table S1. Characteristics of the peritoneal dialysis solutions used. 

Table S2. Effect of Dianeal/low (PDS) on inflammation and immunity-related gene expression by 

human uremic peritoneal leukocytes (complete gene array). 

Table S3. Effect of Dianeal/low (PDS) on inflammation and immunity-related gene expression by 

human peritoneal mesothelial cells (complete gene array). 

Table S4. Effect of sTLR2 on fibrosis-related peritoneal gene expression in mice continuously 

exposed to PDS for 40 days (complete fibrosis gene array) 

 

Supplementary information is available at Kidney International’s website 
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FIGURE LEGENDS  

Figure 1. PD solutions (PDS) induce pro-inflammatory and -fibrotic responses in human 

peritoneal cells. (a, b) Levels of pro-inflammatory and -fibrotic cytokines in the culture 

supernatants of (a) non-infected PD effluent-isolated uremic leukocytes and (b) peritoneal 

mesothelial cells (from omentum) following exposure (16h) to the indicated PDS (1:2 dilution). 

Results are from one experiment (±SD) representative of 8 (a) and 6 (b) performed with cells from 

different donors. *P<0.05; **P<0.01; ***P<0.005 (PDS vs control). (c, d) Scatter plots show the 

effect of Dianeal/low (1.36% glucose Dianeal) on the expression of inflammation and immunity-

related genes, as assessed by quantitative RT-PCR on RNA extracted from peritoneal leukocytes (c) 

and peritoneal mesothelial cells (d) following a 16h stimulation. Dotted lines indicate the 0.5 and 2 

fold change thresholds.  

Figure 2. TLR2 and TLR4 are involved in PDS-induced pro-inflammatory and -fibrotic 

responses of peritoneal cells. Levels of pro-inflammatory and pro-fibrotic cytokines released by (a 

and c) non-infected PD effluent-isolated uremic leukocytes (n=3) and (b) human peritoneal 

mesothelial cells (from omentum, n=3) cultured overnight with or without Dianeal/low (1.36% 

glucose Dianeal; 1:2 dilution) in the presence of the indicated blocking mAbs or isotype-matched 

control (5 μg/ml). mAb blocking of TLR4 was not tested in HPMC, as they do not express TLR4
3,9

. 

Cytokine levels were determined by single (a, b) or multiplex (c) ELISA. Results are the mean 

(±SD) of triplicates after background subtraction (cells cultured in the absence of PDS, but presence 

of the blocking mAbs or isotype control, typically <30% of the Dianeal/low-induced signal and 

negligible effect of the mAbs on the background levels). Results in (c) are from one experiment 

representative of three, performed with cells from different donors. *P<0.05; **P<0.01; 

***P<0.005 (specific mAb(s) vs isotype control). 

Figure 3. PDS does not contain components capable of inducing direct TLR activation. (a-c) 

Non-infected PD effluent-isolated uremic leukocytes were cultured with Dianeal/low (PDS), sterile 

PD effluent collected from PD patients (1:2 dilution), Pam3Cys (250 ng/ml) or LPS (50 ng/ml) for 
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the indicated times. In (b), stimulation was performed in the presence of the indicated blocking 

mAbs or isotype-matched control (5 μg/ml). (a and b) Show the extent of ERK phosphorylation in 

gated macrophages as determined by flow cytometry, and (c) shows the levels of IκB-α and α-

tubulin (loading control) in leukocyte lysates detected by Western Blot followed by densitometry 

scanning. Results are from one experiment representative of three.  

Figure 4. Human peritoneal cell exposure to PDS modulates the release of TLR DAMP 

ligands. Levels of TLR DAMP ligands in (a) non-infected PD effluents (overnight dwell) collected 

from PD patients (n=8) or (b and c) in culture supernatants from (b) non-infected PD effluent-

isolated uremic leukocytes and (c) human peritoneal mesothelial cells (from omentum) stimulated 

(16h) or not with Dianeal/low (PDS,1:2 dilution). Results in (b) and (c) are from one experiment 

(±SD) representative of 8 (b) and 6 (c). **P<0.01; ***P<0.005 (PDS vs No PDS). 

Figure 5. Hsp70 and hyaluronan induce TLR-mediated pro-inflammatory responses to PDS 

by peritoneal leukocytes. (a) Percentage of phosphorylated ERK (pERK)-positive gated 

macrophages determined by flow cytometry following stimulation of non-infected PD effluent-

isolated uremic leukocytes for the indicated times with Hsp70 (500 ng/ml), low molecular mass HA 

(LMMHA, ~33 kDa, 100 µg/ml), medium molecular mass HA (MMMHA, ~289 kDa, 100 µg/ml), 

Hsp 60 (500 ng/ml), sterile PD effluent from PD patients (1:2 dilution) or Pam3Cys (250 ng/ml). 

Results are from one experiment representative of three. (b) IL-8 levels in the culture supernatants 

of non-infected PD effluent-isolated uremic leukocytes (6 different donors) stimulated (16h) with 

Dianeal/low (1:2 dilution) or Pam3Cys (250 ng/ml, inset) in the presence or absence of the Hsp70 

inhibitor, VER155008 (20 µM), the specific hyaluronan peptide inhibitor, Pep-1, (250 µg/ml) or the 

scrambled peptide control (250 µg/ml). Right inset shows an inhibition specificity control. 

Percentages on top of bars indicate the extent of inhibition of each donor’s peritoneal leukocyte 

response to PDS by the indicated inhibitory treatment. *P<0.05; **P <0.01; ***P <0.005 (inhibitor 

vs control).  
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Figure 6. Soluble TLR2 (sTLR2) inhibits PDS-induced pro-inflammatory and pro-fibrotic 

responses by human peritoneal cells. Cytokine levels (multiplex ELISA) in the culture 

supernatants of non-infected PD effluent-isolated uremic leukocytes (n=4) stimulated (16h) with 

Dianeal/low (1:2 dilution) in the presence or absence of human recombinant sTLR2 (250 ng/ml). 

**P <0.01; ***P <0.005 (sTLR2 vs No sTLR2).  

Figure 7. Involvement of TLR activating DAMPs, TLR2 and TLR4 in PDS-induced pro-

inflammatory and pro-fibrotic responses in mice. (a) Schematic representation of the mouse 

model of sterile peritoneal fibrosis induced by continuous exposure to PDS used here and for results 

shown in Figure 8. Following peritoneal catheter insertion and recovery from the surgery (7 days), 

mice were instilled twice daily for 40 days with Fresenius Standard glucose solution (PDS) or PBS 

(more details under Materials and Methods). Peritoneal lavages and peritoneal membrane samples 

were then collected. (b) Levels of Hsp60, Hsp70 and HA in peritoneal lavages from mice instilled 

with PDS (n=8) or PBS (n=5) (c) Cytokine levels (multiplex ELISA) in the culture supernatants of 

peritoneal macrophages from wild type (WT), TLR2-deficient (TLR2
-/-

) or TLR4-deficient (TLR4
-/-

) mice stimulated (16h) with Fresenius Standard solution (PDS) or PBS. Results are the mean of 

one experiment performed with cells from 3 mice.  *P<0.05; **P <0.01; ***P <0.005 (PDS vs 

PBS). 

Figure 8. Soluble TLR2 inhibits PDS-induced peritoneal fibrosis development in vivo. (a-d) 

The mouse model of sterile peritoneal fibrosis described in Figure 7 was used here. Mice were 

instilled twice daily with 2 ml of PBS (n=5) or Fresenius Standard glucose solution (PDS, n=8) for 

40 days before sacrifice and sample collection. (a) Histological analysis of the peritoneal membrane 

was conducted as described under Materials and Methods. Representative fields (x40 

magnification) are shown; bar plots show the mean (± SEM) of the sub-mesothelial compact zone 

(SMC) thickness for each group. (b) Cytokine levels in the peritoneal lavages were measured by 

multiplex ELISA and (c) peritoneal cell populations were quantified by flow cytometry. Results 

show the mean (± SEM) for each experimental group. (d) Scatter plots show the effect of PDS on 
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the expression of fibrosis-related genes in the absence and presence of sTLR2, as assessed by 

quantitative RT-PCR on RNA extracted from peritoneal membrane samples. Open circles outside 

the dotted lines correspond to genes modulated in a non-statistically significant manner. *P<0.05; 

**P<0.05. 
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Table 1. Changes in inflammation and immunity-related gene expression in human 

uremic peritoneal leukocytes exposed to Dianeal/low. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Only statistically significant (P<0.05) PDS-induced ≤ 0.50 or ≥ 2.00 fold changes were considered.  

**Compared to No PDS group. 

 

 

 

Table 2. Changes in inflammation and immunity-related gene expression in human 

peritoneal mesothelial cells exposed to Dianeal/low. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Only statistically significant (P<0.05) PDS-induced ≤ 0.50 or ≥ 2.00 fold changes were considered.  

**Compared to No PDS group. 

 

 

 

 

 

  

PDS* 
  

Gene 

symbol 
Description Fold Change** p value** 

Ccl2 Chemokine (C-C motif) ligand 2 2.20 0.0023 

Ccr4 Chemokine (C-C motif) receptor 4 2.14 0.0009 

Csf2 Colony stimulating factor 2 (granulocyte-macrophage) 0.49 0.0119 

Ifnαr1 Interferon (alpha, beta and omega) receptor 1 2.15 0.0001 

Ifnγ Interferon, gamma 2.35 0.0420 

Il1β Interleukin 1, beta 2.94 0.0001 

Cxcl8 Interleukin 8 24.25 0.0001 

ItgαM Integrin, alpha M (complement component 3 receptor 3 subunit) 0.23 0.0001 

Mapk1 Mitogen-activated protein kinase 1 2.16 0.0001 

Mapk8 Mitogen-activated protein kinase 8 2.20 0.0003 

Nlrp3 NLR family, pyrin domain containing 3 0.46 0.0003 

Ticam1 Toll-like receptor adaptor molecule 1 2.84 0.0014 

Tlr1 Toll-like receptor 1 3.93 0.0006 

Tlr2 Toll-like receptor 2 4.34 0.0001 

Tlr3 Toll-like receptor 3 3.69 0.0372 

Tlr5 Toll-like receptor 5 0.04 0.0185 

Tlr6 Toll-like receptor 6 2.03 0.0001 

Tlr8 Toll-like receptor 8 0.03 0.0001 

Tnf Tumor necrosis factor 5.16 0.0001 

Traf6 TNF receptor-associated factor 6 2.67 0.0028 

  

PDS* 
  

Gene 

symbol 
Description Fold Change** p value** 

Ccl2 Chemokine (C-C motif) ligand 2 2.56 0.0052 

Csf2 Colony stimulating factor 2 (granulocyte-macrophage) 6.34 0.0001 

Cxcl10 Interleukin 10 0.46 0.0131 

Icam1 Intercellular adhesion molecule 1 4.24 0.0001 

Il18 Interleukin 18 0.44 0.0028 

Il1α Interleukin 1, alpha 10.71 0.0001 

Il1β Interleukin 1, beta 11.13 0.0001 

Il5 Interleukin 5 4.77 0.0001 

Il6 Interleukin 6 4.97 0.0001 

Cxcl8 Interleukin 8 40.04 0.0001 

Lyz Lyzosyme 0.39 0.0441 

Mx1 Myxovirus (influenza virus) resistance 1 0.45 0.0004 

Nlrp3 NLR family, pyrin domain containing 3 0.24 0.0438 

Tlr7 Toll-like receptor 7 0.43 0.0023 
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Table 3. Changes in fibrosis-related peritoneal gene expression at day 40 in mice instilled daily with PDS or PDS + 

sTLR2. 

*Only statistically significant (P<0.05) PDS-induced ≤ 0.5 or ≥ 2 fold changes were considered.  

**Compared to PBS group. 

***Compared to exposure to PDS alone. 

 

 

  

PDS* 
  

PDS + sTLR2 
  

PDS + sTLR2 
  

Gene 

symbol 
Description Fold Change** p value** Fold Change** p value** 

sTLR2 

Inhibition 

(%)*** 

p value*** 

Bcl2 B-cell leukemia/lymphoma 2 2.01 0.0167 0.52 0.0070 147 0.0045 

Bmp7 Bone morphogenetic protein 7 2.04 0.0041 0.94 0.5143 105 0.0035 

Cav1 Caveolin 1, caveolae protein 2.27 0.0001 0.97 0.0467 102 0.0001 

Ccl11 Chemokine (C-C motif) ligand 11 2.42 0.0001 2.26 0.0078 11 0.3599 

Ccl12 Chemokine (C-C motif) ligand 12 8.13 0.0485 2.09 0.2993 85 0.0365 

Ccl3 Chemokine (C-C motif) ligand 3 25.13 0.0001 4.13 0.0013 87 0.0001 

Ccr2 Chemokine (C-C motif) receptor 2 6.14 0.0019 1.08 0.7569 98 0.0020 

Col3a1 Collagen, type III, alpha 1 3.07 0.0001 0.67 0.0049 116 0.0000 

Cxcr4 Chemokine (C-X-C motif) receptor 4 5.52 0.0001 0.91 0.6275 102 0.0001 

Fasl Fas ligand (TNF superfamily, member 6) 57.50 0.0001 3.59 0.1695 95 0.0001 

Hgf Hepatocyte growth factor 6.18 0.0008 1.72 0.1965 86 0.0031 

Ifng Interferon gamma 20.85 0.0028 4.73 0.0895 81 0.0096 

Il10 Interleukin 10 13.81 0.0090 3.51 0.1299 80 0.0020 

Il1b Interleukin 1 beta 26.54 0.0001 1.71 0.0302 97 0.0001 

Il4 Interleukin 4 8.47 0.0010 2.24 0.4024 83 0.0004 

Itgb3 Integrin alpha 3 3.49 0.0217 0.91 0.2912 103 0.0153 

Itgb8 Integrin beta 8 11.11 0.0008 1.09 0.4915 99 0.0009 

Lox Lysyl oxidase 3.01 0.0006 1.07 0.2165 96 0.0008 

Mmp14 Matrix metallopeptidase 14 (membrane-inserted) 2.20 0.0023 0.43 0.0108 147 0.0007 

Mmp8 Matrix metallopeptidase 8 10.54 0.0001 1.83 0.1712 91 0.0002 

Mmp9 Matrix metallopeptidase 9 3.97 0.0001 1.31 0.0105 89 0.0001 

Stat1 Signal transducer and activator of transcription 1 7.55 0.0012 1.53 0.0138 92 0.0015 

Tgfb1 Transforming growth factor, beta 1 4.04 0.0001 1.39 0.0661 87 0.0003 

Tgfbr2 Transforming growth factor, beta receptor II 2.33 0.0002 0.91 0.6121 107 0.0006 

Timp1 Tissue inhibitor of metalloproteinase 1 26.88 0.0019 1.50 0.0414 98 0.0021 

Timp2 Tissue inhibitor of metalloproteinase 2 2.12 0.0001 1.00 0.9520 100 0.0001 

Timp3 Tissue inhibitor of metalloproteinase 3 2.58 0.0008 1.25 0.0761 84 0.0029 

Timp4 Tissue inhibitor of metalloproteinase 4 2.76 0.0005 1.44 0.0205 75 0.1763 
Tnf Tumor necrosis factor 44.83 0.0045 1.27 0.1213 99 0.0047 
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Supplementary Figure S1. Uremia does not affect 

the response to TLR2/TLR4 ligands or 

Physioneal® by mesothelial cells. Human peritoneal 

mesothelial cells (from omentum) were exposed 

(Uremia) or not (No uremia) to uremic PD effluent for 

24h. Subsequently, cultures were washed and 

immediately stimulated (16h) with a TLR4 ligand 

(LPS, indicated concentrations), a TLR2 ligand 

(Pam3Cys, 100 ng/ml) or Physioneal® (1:2). The 

histogram plot shows the mean (±SD) IL-8 release 

after the corresponding background subtraction 

(exposure or not to PDE) from 1 experiment 

representative of 3  conducted with mesothelial cells 

from different donors. 
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b 

Supplementary Figure S2. PD solutions (PDS) induce pro-

inflammatory responses in human peritoneal cells. Levels 

of IL-8 in the culture supernatants of (a) non-infected PD 

effluent-isolated uremic leukocytes and (b) peritoneal 

mesothelial cells (from omentum) following exposure (16h) to 

the indicated PDS (1:2 dilution). Each plot shows the results 

from one donor run in triplicates (±SD) and the insets show 

the average of all donors tested (±SEM). *P<0.05; **P<0.01; 

***P<0.005 (PDS vs control).  



Supplementary Figure S3. Exposure of 

human peritoneal mesothelial cells to PDS 

induces EMT-associated gene expression 

changes. Gene expression levels of Vegfa 

and E-Cadherin in mesothelial cells (from 

omentum) were determined by RT-qPCR 

after 16h culture in the presence or absence 

of Dianeal/low (1:2 dilution). Histogram 

plots show the fold change in expression 

compared to the No PDS control. 

***P<0.005 (Dianeal/low vs No PDS). 

Results are of one  experiment representative 

of three.  

*** 
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Supplementary Figure S4. Human 

peritoneal cell exposure to PDS modulates 

the release of TLR DAMP ligands. Levels of 

TLR DAMP ligands in culture supernatants 

from (a) non-infected PD effluent-isolated 

uremic leukocytes and (b) human peritoneal 

mesothelial cells (from omentum) stimulated 

(16h) or not with the indicated PDS (1:2 

dilution). Results are from one experiment 

(±SD) representative of 8 (a) and 6 (b). **, 

P<0.01; ***, P<0.005 (PDS vs No PDS ). 

 



Supplementary Figure S5. Cellular composition of non-infected PD effluent. Peritoneal cells were 

obtained by centrifugation of non-infected PD effluent and stained with CD14- and CD45-specific mAbs 

prior to flow cytometric analysis. Cell populations were identified on the basis of their forward and side 

scatter profiles and CD14 and CD45 staining. Mesothelial cells, CD45-; leukocytes, CD45+; lymphocytes, 

CD14-; monocytes/macrophages, CD14+high; neutrophils, CD14+low (typically negligible).  
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Supplementary Figure S6. Overnight culture in a non-uremic milieu does not affect TLR2/4 

expression by uremic macrophages. Uremic peritoneal leukocytes obtained from PD effluent were 

incubated (16h) in non-uremic conditions (RPMI), or in uremia-maintaining conditions (RPMI + own PD 

effluent 1:2). Expression levels of TLR2 (left panel) and TLR4 (right panel) on peritoneal macrophages 

(gated on the basis of their forward and side scatter profiles and CD14 expression) were determined by 

flow cytometry. Results  are  representative of four independent experiments. 
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Supplementary Figure S7. Viability of peritoneal cells following overnight exposure to PDS. 

Viability of PD effluent-isolated peritoneal leukocytes and peritoneal mesothelial cells (from omentum) 

following exposure for 16h to the indicated PDS (1:2 dilution). Cell viability was routinely determined 

by flow cytometry following staining with the viability dye efluor 647.  



Subcutaneous 
injection port 

Supplementary Figure S8. Surgical procedure of peritoneal catheter insertion in mice. Inbred 8 to 10-

wk-old wild-type female mice (C57/BL6J) underwent surgery under general anaesthesia. Animals were 

shaved and a large incision was made in the skin on the right flank of the mouse, followed by a small incision 

of the peritoneal muscle layer, through which the tip of the catheter was inserted into the peritoneal cavity (A). 

The muscle layer was sutured back, ensuring that the catheter would stay in position, and the injection port (B) 

was inserted under the skin in a dorsal position (C) before suturing the skin (D). The final position of the 

catheter and injection port is shown in (E). One week after surgery, a specially-designed blunt needle was 

used to pierce the skin and inject the PDS into the catheter through the injection port without damaging it. 

(A) End of  
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inserted into 
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(C) I.p. inserted catheter 
(1), and insertion of the 
injection port (2) in a 
dorsal subcutaneous 
position 

(D) Suturing (E) Catheter and injection 
port in final position 

(B) Injection port 
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Supplementary Table S1. Characteristics of the peritoneal dialysis solutions used 

* PDS used in the experiments described in Figures 7 and 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

PD solution Manufacturer pH Osmotic agent Osmotic agent 
concentration Buffer 

Dianeal PD4 1.36% Baxter 5.5 Glucose 1.36% Lactate 

Dianeal PD4 2.27% Baxter 5.5 Glucose 2.27% Lactate 

Stay Safe 1.5% Fresenius 5.5 Glucose 1.5% Lactate 

Stay Safe 4.25% * Fresenius 5.5 Glucose 4.25% Lactate 

Extraneal Baxter 5.5 Icodextrin 7.5% Lactate 

Physioneal  Baxter 7.4 Glucose 1.36% Lactate/bicarbonate 



Supplementary Table S2. Effect of Dianeal/low (PDS) on inflammation and immunity-related gene expression by 
human uremic peritoneal leukocytes (complete gene array).* 
 

  

PDS  
  

Gene symbol Description Fold Change** P Value** 

Apcs Amyloid P component, serum 1.52 0.0058 

C3 Complement component 3 1.09 0.1174 

Casp1 Caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta, convertase) 1.11 0.1513 

Ccl2 Chemokine (C-C motif) ligand 2 2.20 0.0023 

ccl5 Chemokine (C-C motif) ligand 5 0.78 0.0005 

Ccr4 Chemokine (C-C motif) receptor 4 2.14 0.0009 

Ccr5 Chemokine (C-C motif) receptor 5 0.73 0.0001 

Ccr6 Chemokine (C-C motif) receptor 6 1.16 0.0030 

Ccr8 Chemokine (C-C motif) receptor 8 0.70 0.3316 

Cd14 CD14 molecule 1.93 0.0001 

Cd4 CD4 molecule 0.82 0.0240 

Cd40 CD40 molecule, TNF receptor superfamily member 5 0.62 0.0056 

Cd40lg CD40 ligand 1.15 0.0866 

Cd80 CD80 molecule 0.70 0.3521 

Cd86 CD86 molecule 1.63 0.0733 

Cd8a CD8a molecule 0.80 0.0398 

Crp C-reactive protein, pentraxin-related 830.98*** 0.3739 

Csf2 Colony stimulating factor 2 (granulocyte-macrophage) 0.49 0.0119 

Cxcl10 Chemokine (C-X-C motif) ligand 10 63.62*** 0.3739 

Cxcr3 Chemokine (C-X-C motif) receptor 3 0.86 0.1522 

Ddx58 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 1.30 0.0025 

Faslg Fas ligand (TNF superfamily, member 6) 1.90 0.0117 

Foxp3 Forkhead box P3 1.13 0.3339 

Gata3 GATA binding protein 3 1.00 0.9585 

Hla-A Major histocompatibility complex, class I, A 1.18 0.0063 

Hla-E Major histocompatibility complex, class I, E 1.05 0.2719 

Icam1 Intercellular adhesion molecule 1 1.70 0.0001 

Ifna1 Interferon, alpha 1 1.31 0.0001 

Ifnαr1 Interferon (alpha, beta and omega) receptor 1 2.15 0.0001 

Ifnb1 Interferon, beta 1, fibroblast 583.85*** 0.3739 

Ifng Interferon, gamma 2.35 0.0420 

Ifngr1 Interferon gamma receptor 1 1.87 0.0001 

Il10 Interleukin 10 0.80 0.8484 

Il13 Interleukin 13 2.29 0.1312 

Il17a Interleukin 17A 830.98*** 0.3739 

Il18 Interleukin 18 (interferon-gamma-inducing factor) 0.68 0.3947 

Il1a Interleukin 1, alpha 0.68 0.3221 

Il1b Interleukin 1, beta 2.94 0.0001 

Il1r1 Interleukin 1 receptor, type I 1.31 0.4271 

Il2 Interleukin 2 0.67 0.6658 

Il23a Interleukin 23, alpha subunit p19 1.14 0.5232 

Il4 Interleukin 4 2.78 0.1670 

Il5 Interleukin 5 (colony-stimulating factor, eosinophil) 1.52 0.4658 

Il6 Interleukin 6 (interferon, beta 2) 0.90 0.0595 

Cxcl8 Interleukin 8 24.25 0.0001 

Irak1 Interleukin-1 receptor-associated kinase 1 1.85 0.0001 

Irf3 Interferon regulatory factor 3 1.65 0.0003 

Irf7 Interferon regulatory factor 7 1.71 0.0022 

ItgαM Integrin, alpha M (complement component 3 receptor 3 subunit) 0.23 0.0001 

Jak2 Janus kinase 2 0.98 0.7506 

Ly96 Lymphocyte antigen 96 1.26 0.0001 

Lyz Lysozyme 0.63 0.0001 

Mapk1 Mitogen-activated protein kinase 1 2.16 0.0001 

Mapk8 Mitogen-activated protein kinase 8 2.20 0.0003 

Mbl2 Mannose-binding lectin (protein C) 2, soluble 1.29 0.0004 

Mpo Myeloperoxidase 1.97 0.0010 



Mx1 Myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (mouse) 0.92 0.4822 

Myd88 Myeloid differentiation primary response gene (88) 1.20 0.0532 

Nfkb1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 1.55 0.0005 

Nfkbia Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha 1.58 0.0001 

Nlrp3 NLR family, pyrin domain containing 3 0.46 0.0003 

Nod1 Nucleotide-binding oligomerization domain containing 1 0.87 0.3762 

Nod2 Nucleotide-binding oligomerization domain containing 2 0.87 0.5863 

Rag1 Recombination activating gene 1 0.60 0.0089 

Rorc RAR-related orphan receptor C 1.33 0.0899 

Slc11a1 Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 1.83 0.4652 

Stat1 Signal transducer and activator of transcription 1, 91kDa 1.37 0.0168 

Stat3 Signal transducer and activator of transcription 3 (acute-phase response factor) 2.00 0.0059 

Stat4 Signal transducer and activator of transcription 4 1.35 0.0047 

Stat6 Signal transducer and activator of transcription 6, interleukin-4 induced 1.67 0.0001 

Tbx21 T-box 21 1.99 0.0007 

Ticam1 Toll-like receptor adaptor molecule 1 2.84 0.0014 

Tlr1 Toll-like receptor 1 3.93 0.0006 

Tlr2 Toll-like receptor 2 4.34 0.0001 

Tlr3 Toll-like receptor 3 3.69 0.0372 

Tlr4 Toll-like receptor 4 1.63 0.0013 

Tlr5 Toll-like receptor 5 0.04 0.0185 

Tlr6 Toll-like receptor 6 2.03 0.0001 

Tlr7 Toll-like receptor 7 0.98 0.6832 

Tlr8 Toll-like receptor 8 0.03 0.0001 

Tlr9 Toll-like receptor 9 1.25 0.1429 

Tnf Tumor necrosis factor 5.16 0.0001 

Traf6 TNF receptor-associated factor 6 2.67 0.0028 

Tyk2 Tyrosine kinase 2 1.23 0.0124 

* Statistically significant (P<0.05) and biologically relevant (≤ 0.5, bold green; ≥ 2, bold red) PDS-induced fold changes are analysed in  

Results, Table 1. 

**Compared to No PDS group. 

***These transcripts were excluded from Figure 1C, as their Cts were below the detection limits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table S3. Effect of Dianeal/low (PDS) on inflammation and immunity-related gene expression by 
human peritoneal mesothelial cells (complete gene array).* 
 

  

PDS  
  

Gene symbol Description Fold Change** P Value** 

Apcs Amyloid P component, serum 1.03 0.3791 

C3 Complement component 3 0.97 0.7335 

Casp1 Caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta, convertase) 0.82 0.0004 

Ccl2 Chemokine (C-C motif) ligand 2 2.56 0.0052 

ccl5 Chemokine (C-C motif) ligand 5 0.57 0.0405 

Ccr4 Chemokine (C-C motif) receptor 4 1.02 0.8180 

Ccr5 Chemokine (C-C motif) receptor 5 0.99 0.8691 

Ccr6 Chemokine (C-C motif) receptor 6 0.71 0.3929 

Ccr8 Chemokine (C-C motif) receptor 8 0.68 0.4335 

Cd14 CD14 molecule 0.54 0.0004 

Cd4 CD4 molecule 1.16 0.0539 

Cd40 CD40 molecule, TNF receptor superfamily member 5 0.99 0.7655 

Cd40lg CD40 ligand 1.22 0.2682 

Cd80 CD80 molecule 1.05 0.8617 

Cd86 CD86 molecule 1.03 0.3791 

Cd8a CD8a molecule 1.02 0.6862 

Crp C-reactive protein, pentraxin-related 1.08 0.0419 

Csf2 Colony stimulating factor 2 (granulocyte-macrophage) 6.34 0.0001 

Cxcl10 Chemokine (C-X-C motif) ligand 10 0.46 0.0131 

Cxcr3 Chemokine (C-X-C motif) receptor 3 0.93 0.0261 

Ddx58 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 0.52 0.0001 

Faslg Fas ligand (TNF superfamily, member 6) 0.60 0.0006 

Foxp3 Forkhead box P3 1.11 0.0509 

Gata3 GATA binding protein 3 0.79 0.0214 

Hla-A Major histocompatibility complex, class I, A 0.94 0.2607 

Hla-E Major histocompatibility complex, class I, E 0.86 0.0155 

Icam1 Intercellular adhesion molecule 1 4.24 0.0001 

Ifna1 Interferon, alpha 1 1.78 0.0061 

Ifnαr1 Interferon (alpha, beta and omega) receptor 1 1.00 0.9511 

Ifnb1 Interferon, beta 1, fibroblast 2.41 0.2846 

Ifng Interferon, gamma 0.86 0.4236 

Ifngr1 Interferon gamma receptor 1 1.03 0.6816 

Il10 Interleukin 10 0.55 0.0194 

Il13 Interleukin 13 0.99 0.8921 

Il17a Interleukin 17A 1.03 0.3791 

Il18 Interleukin 18 (interferon-gamma-inducing factor) 0.44 0.0028 

Il1a Interleukin 1, alpha 10.71 0.0001 

Il1b Interleukin 1, beta 11.13 0.0001 

Il1r1 Interleukin 1 receptor, type I 1.05 0.1596 

Il2 Interleukin 2 1.02 0.5357 

Il23a Interleukin 23, alpha subunit p19 0.64 0.0352 

Il4 Interleukin 4 1.55 0.3937 

Il5 Interleukin 5 (colony-stimulating factor, eosinophil) 4.77 0.0001 

Il6 Interleukin 6 (interferon, beta 2) 4.97 0.0001 

Cxcl8 Interleukin 8 40.04 0.0001 

Irak1 Interleukin-1 receptor-associated kinase 1 0.98 0.8693 

Irf3 Interferon regulatory factor 3 1.09 0.1220 

Irf7 Interferon regulatory factor 7 0.73 0.0546 

ItgαM Integrin, alpha M (complement component 3 receptor 3 subunit) 0.61 0.0011 

Jak2 Janus kinase 2 0.52 0.0006 

Ly96 Lymphocyte antigen 96 0.87 0.0176 

Lyz Lysozyme 0.39 0.0441 

Mapk1 Mitogen-activated protein kinase 1 0.93 0.0065 

Mapk8 Mitogen-activated protein kinase 8 0.90 0.0943 

Mbl2 Mannose-binding lectin (protein C) 2, soluble 1.03 0.3791 

Mpo Myeloperoxidase 1.29 0.0858 



Mx1 Myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (mouse) 0.45 0.0004 

Myd88 Myeloid differentiation primary response gene (88) 0.70 0.0019 

Nfkb1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 1.24 0.0062 

Nfkbia Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha 1.55 0.0002 

Nlrp3 NLR family, pyrin domain containing 3 0.24 0.0438 

Nod1 Nucleotide-binding oligomerization domain containing 1 0.60 0.0046 

Nod2 Nucleotide-binding oligomerization domain containing 2 1.65 0.0090 

Rag1 Recombination activating gene 1 0.60 0.0704 

Rorc RAR-related orphan receptor C 2.42 0.0911 

Slc11a1 Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 2.14 0.0880 

Stat1 Signal transducer and activator of transcription 1, 91kDa 0.56 0.0001 

Stat3 Signal transducer and activator of transcription 3 (acute-phase response factor) 0.64 0.0059 

Stat4 Signal transducer and activator of transcription 4 0.62 0.0797 

Stat6 Signal transducer and activator of transcription 6, interleukin-4 induced 0.73 0.0030 

Tbx21 T-box 21 0.58 0.0126 

Ticam1 Toll-like receptor adaptor molecule 1 1.57 0.0116 

Tlr1 Toll-like receptor 1 0.80 0.0642 

Tlr2 Toll-like receptor 2 1.24 0.1403 

Tlr3 Toll-like receptor 3 0.75 0.0153 

Tlr4 Toll-like receptor 4 0.70 0.0319 

Tlr5 Toll-like receptor 5 0.95 0.7062 

Tlr6 Toll-like receptor 6 1.09 0.1873 

Tlr7 Toll-like receptor 7 0.43 0.0023 

Tlr8 Toll-like receptor 8 1.03 0.3791 

Tlr9 Toll-like receptor 9 0.95 0.6628 

Tnf Tumor necrosis factor 2.08 0.0888 

Traf6 TNF receptor-associated factor 6 1.04 0.2515 

Tyk2 Tyrosine kinase 2 0.65 0.0104 

* Statistically significant (P<0.05) and biologically relevant (≤ 0.50, bold green; ≥ 2.00, bold red) PDS-induced fold changes are analysed in  

Results, Table 2. 

**Compared to No PDS group. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



Supplementary Table S4. Effect of sTLR2 on fibrosis-related peritoneal gene expression in mice continuously exposed to 
PDS for 40 days (complete fibrosis gene array)* 

  

PDS  
  

PDS + sTLR2 
  

PBS + sTLR2 
  

Gene 

symbol 
Description 

Fold 

Change** 
P Value** 

Fold 

Change** 
P Value** 

Fold 

Change** 
P Value** 

Acta2 Actin, alpha 2, smooth muscle, aorta 1.35 0.0001 0.98 0.6982 0.72 0.0002 

Agt Angiotensinogen (serpin peptidase inhibitor, clade A, member 8) 1.70 0.0025 0.65 0.2185 0.96 0.9649 

Akt1 Thymoma viral proto-oncogene 1 1.87 0.0011 0.85 0.5971 1.00 0.9376 

Bcl2 B-cell leukemia/lymphoma 2 2.01 0.0167 0.52 0.0070 1.21 0.4206 

Bmp7 Bone morphogenetic protein 7 2.04 0.0041 0.94 0.5143 0.70 0.0041 

Cav1 Caveolin 1, caveolae protein 2.27 0.0001 0.97 0.0467 1.25 0.0001 

Ccl11 Chemokine (C-C motif) ligand 11 2.42 0.0001 2.26 0.0078 2.60 0.0027 

Ccl12 Chemokine (C-C motif) ligand 12 8.13 0.0485 2.09 0.2993 1.08 0.9399 

Ccl3 Chemokine (C-C motif) ligand 3 25.13 0.0001 4.13 0.0013 0.44 0.3477 

Ccr2 Chemokine (C-C motif) receptor 2 6.14 0.0019 1.08 0.7569 1.68 0.0621 

Cebpb CCAAT/enhancer binding protein (C/EBP), beta 1.15 0.2951 0.86 0.9190 1.39 0.0293 

Col1a2 Collagen, type I, alpha 2 1.77 0.0001 0.63 0.0001 1.05 0.5104 

Col3a1 Collagen, type III, alpha 1 3.07 0.0001 0.67 0.0049 1.90 0.0003 

Ctgf Connective tissue growth factor 0.57 0.0001 0.73 0.2066 2.27 0.0001 

Cxcr4 Chemokine (C-X-C motif) receptor 4 5.52 0.0001 0.91 0.6275 2.04 0.0001 

Dcn Decorin 1.97 0.0001 1.07 0.5290 1.78 0.0001 

Edn1 Endothelin 1 1.40 0.1995 1.15 0.0191 1.54 0.0002 

Egf Epidermal growth factor 1.11 0.1765 1.08 0.5749 0.83 0.0398 

Eng Endoglin 1.86 0.0002 0.79 0.1424 1.32 0.0004 

Fasl Fas ligand (TNF superfamily, member 6) 57.50 0.0001 3.59 0.1695 1.25 0.2799 

Grem1 Gremlin 1 3.88 0.0918 2.66 0.2253 1.17 0.3519 

Hgf Hepatocyte growth factor 6.18 0.0008 1.72 0.1965 1.54 0.1233 

Ifng Interferon gamma 20.85 0.0028 4.73 0.0895 0.32 0.1279 

Il10 Interleukin 10 13.81 0.0090 3.51 0.1299 0.24 0.1229 

Il13 Interleukin 13 3.28 0.0836 2.42 0.1917 1.17 0.3519 

Il13ra2 Interleukin 13 receptor, alpha 2 1.42 0.0245 2.14 0.0220 1.50 0.0149 

Il1a Interleukin 1 alpha 5.00 0.0559 1.55 0.7881 0.49 0.2222 

Il1b Interleukin 1 beta 26.54 0.0001 1.71 0.0302 0.69 0.1491 

Il4 Interleukin 4 8.47 0.0010 2.24 0.4024 2.66 0.2944 

Il5 Interleukin 5 2.42 0.4883 1.30 0.8130 0.18 0.1238 

Ilk Integrin linked kinase 1.25 0.1698 1.09 0.2925 1.09 0.0817 

Inhbe Inhibin beta E 1.26 0.0244 1.27 0.1213 1.17 0.3519 

Itga1 Integrin alpha 1 1.19 0.3027 0.73 0.0247 0.92 0.6005 

Itga2 Integrin alpha 2 1.75 0.1607 1.31 0.3369 1.61 0.0185 

Itga3 Integrin alpha 3 1.58 0.0217 0.78 0.2912 1.19 0.2878 

Itgav Integrin alpha V 2.00 0.0098 1.15 0.4113 1.25 0.1851 

Itgb1 Integrin beta 1 (fibronectin receptor beta) 1.72 0.0006 1.30 0.0016 1.43 0.0001 

Itgb3 Integrin beta 3 3.49 0.0001 0.91 0.5891 1.11 0.5334 

Itgb5 Integrin beta 5 1.30 0.0107 1.08 0.6065 1.24 0.0115 

Itgb6 Integrin beta 6 1.24 0.0348 1.81 0.0047 0.93 0.5935 

Itgb8 Integrin beta 8 11.11 0.0008 1.09 0.4915 1.45 0.2101 

Jun Jun oncogene 1.26 0.0412 0.75 0.0069 1.90 0.0013 

Lox Lysyl oxidase 3.01 0.0006 1.07 0.2165 2.28 0.0002 

Ltbp1 Latent transforming growth factor beta binding protein 1 0.67 0.0067 0.85 0.0709 1.43 0.0193 

Mmp13 Matrix metallopeptidase 13 10.44 0.1116 5.97 0.1013 3.20 0.0764 

Mmp14 Matrix metallopeptidase 14 (membrane-inserted) 2.20 0.0023 0.43 0.0108 0.82 0.2338 

Mmp1a Matrix metallopeptidase 1a (interstitial collagenase) 1.18 0.1877 1.14 0.1777 0.97 0.9760 

Mmp2 Matrix metallopeptidase 2 1.37 0.0120 0.70 0.1395 0.96 0.5941 

Mmp3 Matrix metallopeptidase 3 1.36 0.0074 0.52 0.0001 1.05 0.5740 

Mmp8 Matrix metallopeptidase 8 10.54 0.0001 1.83 0.1712 1.00 0.9650 

Mmp9 Matrix metallopeptidase 9 3.97 0.0001 1.31 0.0105 0.86 0.6841 

Myc Myelocytomatosis oncogene 1.61 0.0092 1.16 0.5384 1.43 0.0666 

Nfkb1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 
1, p105 

1.58 0.0001 1.03 0.6386 1.15 0.0097 

Pdgfa Platelet derived growth factor, alpha 1.14 0.2020 0.91 0.3141 1.32 0.0757 

Pdgfb Platelet derived growth factor, B polypeptide 1.16 0.0350 0.65 0.1169 0.88 0.0169 

Plat Plasminogen activator, tissue 1.52 0.0109 0.67 0.0218 1.19 0.1442 



Plau Plasminogen activator, urokinase 1.48 0.0352 0.81 0.0544 0.95 0.4442 

Plg Plasminogen 1.26 0.0244 1.65 0.0806 1.17 0.3519 

Serpina1a Serine (or cysteine) peptidase inhibitor, clade A, member 1a 1.26 0.0244 1.27 0.1213 1.17 0.3519 

Serpine1 Serine (or cysteine) peptidase inhibitor, clade E, member 1 1.32 0.2383 0.98 0.9831 0.51 0.0060 

Serpinh1 Serine (or cysteine) peptidase inhibitor, clade H, member 1 1.72 0.0001 0.71 0.0395 1.08 0.0609 

Smad2 MAD homolog 2 (Drosophila) 1.77 0.0055 1.22 0.0577 1.21 0.1645 

Smad3 MAD homolog 3 (Drosophila) 1.14 0.1476 0.88 0.6035 0.95 0.5169 

Smad4 MAD homolog 4 (Drosophila) 1.44 0.0362 1.41 0.0001 1.30 0.0127 

Smad6 MAD homolog 6 (Drosophila) 1.44 0.0493 0.75 0.8606 1.37 0.2312 

Smad7 MAD homolog 7 (Drosophila) 1.30 0.0249 1.02 0.7460 1.12 0.1189 

Snai1 Snail homolog 1 (Drosophila) 2.54 0.0890 1.50 0.4944 0.89 0.6134 

Sp1 Trans-acting transcription factor 1 1.61 0.0019 1.21 0.0688 1.37 0.0033 

Stat1 Signal transducer and activator of transcription 1 7.55 0.0012 1.53 0.0138 1.16 0.3066 

Stat6 Signal transducer and activator of transcription 6 1.69 0.0009 0.85 0.6429 0.78 0.0539 

Tgfb1 Transforming growth factor, beta 1 4.04 0.0001 1.39 0.0661 1.35 0.0437 

Tgfb2 Transforming growth factor, beta 2 1.48 0.0046 1.05 0.4255 0.95 0.4302 

Tgfb3 Transforming growth factor, beta 3 1.10 0.0001 1.09 0.4448 1.44 0.0024 

Tgfbr1 Transforming growth factor, beta receptor I 1.64 0.0019 1.59 0.0043 1.28 0.0835 

Tgfbr2 Transforming growth factor, beta receptor II 2.33 0.0002 0.91 0.6121 1.35 0.0516 

Tgif1 TGFB-induced factor homeobox 1 1.79 0.0032 0.88 0.7533 1.55 0.0007 

Thbs1 Thrombospondin 1 1.61 0.0021 0.68 0.0190 1.30 0.0016 

Thbs2 Thrombospondin 2 1.12 0.4463 1.29 0.0671 1.76 0.0023 

Timp1 Tissue inhibitor of metalloproteinase 1 26.88 0.0019 1.50 0.0414 3.75 0.0033 

Timp2 Tissue inhibitor of metalloproteinase 2 2.12 0.0001 1.00 0.9520 1.44 0.0092 

Timp3 Tissue inhibitor of metalloproteinase 3 2.58 0.0008 1.25 0.0761 1.38 0.0042 

Timp4 Tissue inhibitor of metalloproteinase 4 2.76 0.0005 1.44 0.0205 2.76 0.0274 

Tnf Tumor necrosis factor 44.83 0.0045 1.27 0.1213 14.84 0.0048 

Vegfa Vascular endothelial growth factor A 1.43 0.0039 0.90 0.3244 0.90 0.0086 

* Statistically significant (P<0.05) and biologically relevant (≥ 2.00, bold red) PDS-induced fold changes are analysed in Results, Table 3. 

**Compared to PBS group. 


