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Low and Variable Correlation Between Reaction Time Costs and Accuracy
Costs Explained by Accumulation Models: Meta-Analysis and Simulations

Craig Hedge, Georgina Powell, Aline Bompas, Solveiga Vivian-Griffiths, and Petroc Sumner
Cardiff University

The underpinning assumption of much research on cognitive individual differences (or group differences) is
that task performance indexes cognitive ability in that domain. In many tasks performance is measured by
differences (costs) between conditions, which are widely assumed to index a psychological process of interest
rather than extraneous factors such as speed–accuracy trade-offs (e.g., Stroop, implicit association task, lexical
decision, antisaccade, Simon, Navon, flanker, and task switching). Relatedly, reaction time (RT) costs or error
costs are interpreted similarly and used interchangeably in the literature. All of this assumes a strong
correlation between RT-costs and error-costs from the same psychological effect. We conducted a meta-
analysis to test this, with 114 effects across a range of well-known tasks. Counterintuitively, we found a
general pattern of weak, and often no, association between RT and error costs (mean r � .17, range �.45 to
.78). This general problem is accounted for by the theoretical framework of evidence accumulation models,
which capture individual differences in (at least) 2 distinct ways. Differences affecting accumulation rate
produce positive correlation. But this is cancelled out if individuals also differ in response threshold, which
produces negative correlations. In the models, subtractions between conditions do not isolate processing costs
from caution. To demonstrate the explanatory power of synthesizing the traditional subtraction method within
a broader decision model framework, we confirm 2 predictions with new data. Thus, using error costs or RT
costs is more than a pragmatic choice; the decision carries theoretical consequence that can be understood
through the accumulation model framework.

Public Significance Statement
Our meta-analysis reveals that RT costs and error costs from the same psychological effects do not
correlate, contrary to widespread assumption. This is explained if people vary in both caution and
cognitive abilities. We demonstrate this by simulating data from 4 models in the broad family of
evidence accumulation models. Individual differences in behavior should not be assumed to solely
reflect individual differences in ability in a cognitive domain.

Keywords: Reaction time costs, error costs, individual differences, accumulation models, sequential
sampling models
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Sixty years ago prominent psychologists worried about an in-
evitable parting of ways between two disciplines of psychology, as
eloquently highlighted by Cronbach (1957):

No man can be acquainted with all of psychology today. . . [There is]
plentiful evidence that psychology is going places. But Whither? . . .
The personality, social and child psychologists went one way; the

perception and learning psychologists went the other; and the country
between turned into desert. (pp. 671–673)

The different sides across the desert followed different ap-
proaches: on one side, differences between individuals were the
very focus of study, while on the experimental side “individual
variation is cast into that outer darkness known as ‘error variance’”
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(Cronbach, 1957, p. 674). It might therefore please Cronbach that
experimental tasks are now increasingly employed in the study of
individual differences. This bridge is occurring across several
fields, for example in cognitive neuroscience in the search for
neural correlates of performance (e.g., Kanai & Rees, 2011; Sum-
ner, Edden, Bompas, Evans, & Singh, 2010), in mental health
research in the search for cognitive predictors for disease or
endophenotypes of genetic risk factors (Carter & Barch, 2007), or
in the search for cognitive mechanisms underlying personality
dimensions such as impulsivity (Cyders & Coskunpinar, 2011,
2012; Sharma, Kohl, Morgan, & Clark, 2013; Sharma, Markon, &
Clark, 2014). However, the interpretation of individual variation in
cognitive tasks turns out to be less straightforward than is often
assumed; counterintuitive phenomena occur in the “outer darkness.”

One of the cornerstones of experimental psychology is the
subtraction method (Donders, 1969), in which performance in one
experimental condition is subtracted from another condition in-
volving additional processes, to calculate a performance “cost” or
“effect” assumed to largely isolate the processes of interest from
more general factors such as arousal or speed–accuracy trade-offs
(Broota, 1989, p. 396; Gravetter & Forzano, 2015, p. 266; Green-
wald, 1976, p. 315). Examples include well-known effects in
widely used tasks across multiple domains, such as the Eriksen
flanker effect (Eriksen & Eriksen, 1974), Stroop effect (Stroop,
1935), Simon effect (Simon & Wolf, 1967), antisaccade cost
(Hallett, 1978), remote distractor effect (Walker, Kentridge, &
Findlay, 1995), SNARC effect (SNARC; Dehaene, Dupoux, &
Mehler, 1990), Navon global and local effects (Navon, 1977),
task-switching cost (Jersild, 1927; Monsell, 2003), implicit asso-
ciation effect (IAT; Greenwald, McGhee, & Schwartz, 1998),
attentional effects (Fan, McCandliss, Sommer, Raz, & Posner,
2002), and lexical decision costs (Meyer & Schvaneveldt, 1971).

These kinds of performance costs typically occur in both reac-
tion times (RT) and error rates, and terms such as “Stroop effect,”
“implicit association effect,” “attentional cost,” or “switch cost”
can refer to either RT costs or error costs interchangeably. As such
researchers tend to assume that both reflect the same underlying
mechanisms, and whether to use error or RT costs is seen as a
pragmatic choice rather than one with theoretical consequence. For
some paradigms it is traditional to focus on one measure, for
example, RT costs in task switching or the IAT, but it is never-
theless expected that effects of interest will also be reflected in
error rates (Draheim, Hicks, & Engle, 2016; Nosek, Bar-Anan,
Sriram, Axt, & Greenwald, 2014).

When moving from group effects to individual differences or
group differences, the theoretical basis of many conclusions de-
pends on the assumption that differences in performance costs
reflect variance in processing ability in that cognitive domain.
More able participants should have smaller costs in both RT and
errors, once speed-accuracy trades-offs are subtracted out. In other
words, RT and error costs should correlate. Empirical studies and
meta-analyses tend to draw upon both error costs and RT costs and
use either to support the same conclusions. To take just two
examples, if we dissect a recent meta-analysis of response control
in autism spectrum disorders, which included 16 data sets from
flanker, Simon, and Stroop tasks (Geurts, van den Bergh, &
Ruzzano, 2014), we find five showed effects for RT costs while
three showed effects for error costs (see Supplementary Material
A). Similarly, in a meta-analysis of 12 studies examining flanker

and Simon effects in children with attention-deficit/hyperactivity
disorder (Mullane, Corkum, Klein, & McLaughlin, 2009), three
studies observed larger RT costs and two observed increased error
costs. None of the data sets in either meta-analysis showed effects
for RT costs and error costs simultaneously, hinting that the
assumption of equivalence might not hold.

Using performance costs (subtraction between conditions) has
been so successful and ubiquitous in experimental research, that
when moving to study individual differences, it is rarely ques-
tioned whether individual differences in RT costs or error costs
primarily reflect processing ability, or whether they might in fact
reflect other factors such as differences in strategy. When not using
costs, but rather absolute accuracy or RT in tasks, it is appreciated
that strategy, cautiousness, and other factors may contaminate
individual differences. For example, in numeracy tasks it has been
illustrated how absent correlations between tasks can be explained
by dissociating information processing and caution using a quan-
titative model (Ratcliff, Thompson, & McKoon, 2015). For most
researchers, such complications with absolute RT or accuracy are
exactly the reason why they subtract between conditions—the
resulting cost score is supposed to be immune from contamination.

However, across the literature are many hints implying all is not
well with the assumptions underlying correlational research with
cognitive performance costs. Draheim, Hicks, and Engle (2016)
have recently questioned why RT task switch costs show incon-
sistent or no relationship with measures of working memory ca-
pacity even though theorists generally agree that working memory
is implicated in task switching (cf. Monsell, 2003). Similarly, it is
often assumed that different response conflict tasks tap common
underlying control mechanisms (cf. Friedman & Miyake, 2004;
Miyake et al., 2000), but correlations between tasks are often low
or absent (Aichert et al., 2012; Fan, Flombaum, McCandliss,
Thomas, & Posner, 2003; Khng & Lee, 2014; Scheres et al., 2004;
Wager et al., 2005). For the IAT task, recent meta-analyses of the
extent to which attitudes or behavior can be predicted by task
scores have reached mixed conclusions (Greenwald, Poehlman,
Uhlmann, & Banaji, 2009; Oswald, Mitchell, Blanton, Jaccard, &
Tetlock, 2013; though see, Greenwald, Banaji, & Nosek, 2015).
The absence of theoretically predicted relationships between sup-
posedly related tasks is a challenge for these theories, and has led
researchers to question the selection of measures.

The contamination of RT costs by processes not specific to the
domain of interest has been discussed previously (Faust, Balota,
Spieler, & Ferraro, 1999; Miller & Ulrich, 2013). Miller and
Ulrich (2013) propose a broad stage-based framework for individ-
ual differences in RT (IDRT), wherein RT arises from the sum of
processing durations across perceptual input, response selection
and motor output stages. Although this framework treats only RT
and is agnostic about the mechanisms within these stages and the
sources of general and specific variance in terms of psychological
process, Miller and Ulrich (2013) highlight two important things
for our discussion: RT costs are not a pure index of individual
differences in the theoretical mechanisms that they are frequently
used to represent; and if variance between individuals arises from
both task-specific and general processing factors, it can become
difficult to interpret correlations.

In order to obtain a more complete representation of behavioral
performance, some authors have used composite measures of RT
and accuracy (Draheim et al., 2016; Hughes, Linck, Bowles,
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Koeth, & Bunting, 2014; Khng & Lee, 2014; Mullane et al., 2009;
Stahl et al., 2014; Townsend & Ashby, 1978, 1983). However,
such methods still generally assume that RT costs and error costs
reflect the same mechanisms—at least in part—and thus will
positively correlate. In contrast, absent correlation between RT
costs and error costs within the same Stroop task led Kane and
Engle (2003) to suggest the two measures actually reflect different
mechanisms (conflict resolution and goal maintenance).

Overview of the Article

In Part 1 of this article, we perform a meta-analysis to test the
widespread theoretical assumption underpinning the use of perfor-
mance costs as indexes of ability in specific cognitive domains.
This assumption predicts a positive correlation between perfor-
mance measures—error costs and RT costs—within the same task.
This assumed correlation supplies an implicit justification to
choose either measure on pragmatic grounds without theoretical
consequence (or to combine them into a single metric). We test the
correlation for 114 experimental effects taken from 43 different
studies, encompassing 13 prominent paradigms across experimen-
tal psychology, using both new data and reanalysis of previously
published data from many labs (originally addressing many dif-
ferent questions). To anticipate, we find little or no correlation in
the majority of cases; for example, an individual’s Stroop effect
measured by errors is clearly not interchangeable with their Stroop
effect measured by RT, and likewise for nearly all the other
common effects we analyze.

Should we be alarmed by this? From most theoretical stand-
points, this general pattern seems surprising and potentially under-
mines the conclusions of many studies, reviews and meta-analyses.
But from one family of theoretical perspectives is it not alarming,
as we illustrate in Part 2 of the article using four different models
(Bompas & Sumner, 2011; Brown & Heathcote, 2008; Ratcliff &
Rouder, 1998; Ulrich, Schröter, Leuthold, & Birngruber, 2015)
drawn as exemplars from a wider family of models that employ an
evidence accumulation framework (Bogacz, Usher, Zhang, & Mc-
Clelland, 2007; Carpenter & Williams, 1995; Hübner, Steinhauser,
& Lehle, 2010; Logan, Cowan, & Davis, 1984; Teodorescu &
Usher, 2013; Usher & McClelland, 2001; White, Ratcliff, &
Starns, 2011). It turns out that within this framework, absent or
inconsistent correlation between RT costs and error costs should
be expected. This theoretical prediction emerges from the same
model features that explain why absolute accuracy and RT did not
correlate in numeracy tasks (Ratcliff et al., 2015).

The models capture individual differences in (at least) two
distinct ways. The first corresponds to differences in accumulation
rates (processing or selection efficiency). When individuals vary
only in their selection efficiency, this produces a positive correla-
tion between RT costs and error costs, as commonly assumed. The
second corresponds to response threshold (caution), where differ-
ences would produce a negative correlation between error costs
and RT costs. Note that because we are dealing with costs calcu-
lated through subtraction, not absolute RT and error rates, this
negative correlation is not a simple speed–accuracy trade-off.
However, a key theoretical consequence of these models is that
threshold and processing efficiency interact, and a subtraction
between conditions does not control for caution differences be-
tween individuals.

If participants vary in both accumulation rate (selection effi-
ciency) and threshold, then an overall correlation between error
and RT costs is not expected, despite both being outcomes of the
same decision and control mechanisms. We illustrate that this is
not a feature of any specific model, but a property the family
shares. Thus, the framework of accumulator models appears fruit-
ful for understanding individual differences in performance on
choice decision tasks.

In Part 3 of the article we test with new data two predictions
arising from the modeling framework. First, reducing variance in
response caution by emphasizing speed (cf. Ratcliff et al., 2015)
should mean the correlation between RT costs and error costs
becomes more positive. We test this with meta-analysis of recent
unpublished studies using a speed–accuracy trade-off design. Sec-
ond, reducing the opportunity for participants to adopt strategic
caution differences by randomly intermixing trial conditions
within blocks should also lead to more positive correlations, com-
pared with when trial conditions are performed in separate blocks,
which allows more variability in strategy. We test this with new
data directly comparing the same task with intermixed or blocked
conditions. Both of these predictions were corroborated, leading us
to accept the accumulation model family as a suitable theoretical
framework for understanding individual differences in perfor-
mance costs in cognitive tasks.

Part 1: No Consistent Correlation Between RT Costs
and Error Costs in Cognitive Tasks

Method

Search strategy. We identified a list of widely used and cited
speeded choice tasks for which performance can be measured with
either RT costs or error costs (i.e., a subtraction between two types
of condition), and for which we were able to access at least one
suitable dataset from open science resources, our own studies, or
from colleagues.

We used the following strategies to search for relevant litera-
ture: (a) PsycINFO and Web of Science. Our search terms were
any of the task names: “flanker,” “Stroop,” “Simon,” “antisac-
cade,” “remote distractor,” “snarc,” “Navon,” “task-switch,” “im-
plicit association test,” “attention network test,” and “lexical de-
cision;” in combination with any of the terms: “RT cost,” “RT
cost,” “error cost,” “accuracy cost,” “latency cost,” and “cost.” We
supplemented this search by manually searching Google and
Google Scholar with the same terms, and scanning the reference
lists of eligible articles. We included unpublished research disser-
tations in our search. (b) Then, we searched for additional data sets
from which RT costs and error costs could be calculated. We
searched within the Open Science Framework (https://osf.io/) for
each task by name, as well as searching Google for “(task name)
dataset.” We required data sets to have an associated article or
preprint, in order to identify necessary study information. (c) A
further 12 correlations from eight different tasks were collected in
our own lab. Six of these correlations come from a previously
published article (Hedge, Powell, & Sumner, 2017), the others are
unpublished data collected in part to address this question. The
descriptions, and a figure summarizing the format of these tasks is
included in Supplementary Material B. (d) Data from five studies
was made available to us by colleagues. See Table 1 for sample
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sizes and trial numbers. See Supplementary Material C for addi-
tional details on how the data were extracted. See Figure 1 for our
PRISMA flow diagram (Moher et al., 2009).

Our inclusion criteria were that the study should either report the
correlation between the RT cost and error cost, or the data should
be made available such that we could calculate the correlation
ourselves. For tasks that contained both a congruent and neutral
condition, we use the congruent condition as a baseline, as we
believed it to be more comparable with tasks that do not have a
neutral condition (e.g., the IAT), and it is not always clear what
constitutes a neutral stimulus (cf. Jonides & Mack, 1984; Ma-
cLeod, 1991). We did not exclude studies on the basis of age or
clinical conditions, though eligible data sets from samples other
than healthy adults were rare. Though we focused our search on
particular paradigms that are widely used in individual differences
research, eligible data sets often included other common manipu-
lations and effects that we did not explicitly search for (e.g.,
comparing single task blocks with mixed task blocks in task-
switching studies). We calculated the correlation between RT costs
and error costs for these manipulations where appropriate. Our
search produced 114 correlations in total (see Table 1).

Where the raw trial by trial data were available (k � 75,
including our data), we applied a common preprocessing and

outlier removal pipeline (see Data Analysis section below). Where
we only obtained summary data for each participant (k � 25), the
calculation of individual’s RT costs and error costs reflect the
authors’ original outlier removal strategy. From each dataset,
we extracted the sample size and trial number, which are reported
in Table 1 along with each effect size. See Supplementary Table
C1 for additional information for each study. Only five of these
articles discussed the relationship between RT costs and error costs
in any way, and we outline the content of such discussion in the
Discussion section of Part 1 and the General Discussion section.

Data analysis. Where studies involved data collection over
multiple sessions, we collapsed across sessions if possible. In some
cases (e.g., Saunders, He, & Inzlicht, 2015) some participants did
not have data for all sessions so we entered the sessions separately.
We combined data from different experiments within the same
article if the same protocol was replicated in multiple samples. The
calculation of mean RTs excluded RTs below 100 ms (75 ms in
eye movement tasks) and greater than three times each individual’s
median absolute deviation from their median in each condition
(Hampel, 1974; Leys, Ley, Klein, Bernard, & Licata, 2013). When
only summary data were available, we removed individuals whose
mean RTs were below 100 ms or their average accuracy across
conditions was below 60%.

Figure 1. PRISMA flow diagram illustrating our process for identifying eligible articles and datasets. N refers
to records (articles or records on data repositories), K refers to correlations identified. Manual searches refers to
records obtained through reference lists, Google, and manually searching data repositories (e.g. OSF.io). See the
online article for the color version of this figure.
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Effect sizes (Pearson’s r and Spearman’s rho) were calculated
for the correlation between RT costs and error costs for each effect.
Initially, we used Pearson’s r estimates in the meta-analysis be-
cause they were more common in existing reports. We then reran
the analysis using Spearman’s rho estimates to minimize the
impact of outliers in some data sets. In the conventional interpre-
tation of these effect sizes, 0.1 is considered small, 0.3 is a medium
effect size, and 0.5 is a large effect size (Cohen, 1988).

Meta-analyses were conducted using Hedges and colleagues’
method assuming a random-effects model (Hedges & Olkin, 1985;
Hedges & Vevea, 1998). We assessed heterogeneity using the I2

statistic, which estimates the variance of the true effect sizes as a
percentage of total variance (including sampling error). I2 values
of 25%, 50%, and 75% are interpreted as low, moderate, and high
levels of heterogeneity, respectively (Higgins, Thompson, Deeks,
& Altman, 2003). We also conducted a metaregression analysis to
assess whether effect size was moderated by the number of trials
administered, which we centered on the mean. We did not include
task/effect as a moderator due to the low number of data sets
(sometimes one) obtained for some, though we conducted a post
hoc sensitivity analysis to assess the impact of influential data
points. All analyses were conducted using the metafor package
(Viechtbauer, 2010) in R (R Core Team, 2016).

Results and Discussion

Table 1 shows the correlations between RT costs and error costs
observed for each experimental effect, grouped by their source,
along with sample size and trial numbers.

The meta-analysis using Pearson’s r coefficients (k � 114)
indicated that overall there was a small correlation between RT
costs and error costs (r � .17, 95% CI [.13, .20], z � 8.54, p �
.001), with a very high degree of between study heterogeneity
(I2 � 99.9%). As can be seen in Figure 2, the observed Pearson’s
r values ranged between �.45 and .78, with 79% of the absolute
values falling below what is typically considered to be a moderate
effect size (.3; Cohen, 1988). Rerunning the analysis using Spear-
man’s rho coefficients gave a slightly higher, but still small,
estimate of the average effect (r � .19, 95% CI [.16, .23], z �
10.66, p � .001). Clearly individual differences in RT costs and
error costs are not behaving as expected if they were interchange-
able measures of the same cognitive processes.

Publication bias. To assess and control for potential biases,
we conducted Egger’s test (Egger, Davey Smith, Schneider, &
Minder, 1997), followed by a trim and fill analysis (Duval &
Tweedie, 2000a, 2000b). Egger’s test assesses funnel plot asym-
metry. When no bias exists, the effects observed in individual
studies should be symmetrically distributed around the average
effect. Alternatively, a tendency for studies with small sample
sizes to show stronger effects is typically interpreted as an indi-
cation of publication bias, as small studies with nonsignificant
effects are less likely to be published. A trim and fill analysis
corrects for funnel plot asymmetry by simulating “missing” studies
to make the funnel plot symmetrical. Egger’s test indicated a
significant asymmetry (z � �2.62, p � .009). Inspection of Figure
2 indicates that this is not driven by a trend for smaller samples to
show larger effects, rather, it is influenced by their relative absence
(the middle- and lower-right section of the plot is relatively
sparse). This is also influenced by the lexical-decision task data

sets, which had relatively large positive correlations and sample
sizes. The trim and fill analysis simulated studies with positive
correlations to correct for this asymmetry, though the corrected
estimate was still small (r � .25).

None of the published data sets we included were collected for
the purpose of examining the correlation between RT costs and
error costs, and it is unlikely that the size of that correlation formed
any part of the publication decision process or the choice to make
the data sets available (the correlation was not reported in most
cases). Publication decisions in some studies would have depended
on within-subject effects and hence favored low between-
participants variance (and thus lower possibility for correlation,
see Hedge et al., 2017; Miller & Ulrich, 2013; Paap & Sawi, 2016).
However, the original research questions across the 114 data sets
were neither predominantly within-subject (favoring low variance)
nor correlational (favoring high variance) by nature, so the data
sets should not be systematically biased toward either high or low
between subject variability.

Trial number. Metaregression analysis indicated that the
number of trials administered significantly predicted the size of the
effect, with more trials associated with larger effects (b � .00004,
z � 5.12, p � .001). However, examination of Table 1 indicates
that this may be strongly influenced by the lexical decision studies,
which are arguably outliers in their trial numbers, and also pro-
duced the highest correlations (see Discussion section below). To
assess this, we reran the meta-analysis and moderator analysis with
the four lexical decision studies excluded. In the remaining data
sets (k � 110), the average effect was r � .15 (95% CI [.11, .18],
z � 8.27, p � .001). A high degree of heterogeneity was again
observed (I2 � 99.9%), though trial number no longer significantly
predicted effect size (b � 0.00005, z � �.32, p � .75).

Figure 2. Funnel plot of observed effect sizes (Pearson’s r) for correla-
tions between RT costs and error costs with associated standard errors.
Larger values on the y-axis reflect larger sample sizes. Solid black line
indicates weighted mean effect from a random effects model. Grey area
indicates 95% confidence region. Dashed black lines show 95% confidence
intervals of the mean effect estimated from a random-effects model. Red
line indicates an effect size of zero. The lexical decision task effects are
shown in black circles, all other tasks are shown in gray (see text for
details). See the online article for the color version of this figure.
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Specific task patterns. Though we did not conduct a formal
moderator analysis for task, some trends are noteworthy from the
examination of Table 1. The four lexical-decision task data sets
show a range of moderate to strong positive correlations (R � .34
to .78). One possible reason for this is the large number of trials
used in these studies, which may serve to minimize measurement
error that would otherwise attenuate correlations (Hedge et al.,
2017; Paap & Sawi, 2016). Alternatively, it may reflect different
patterns of behavior produced by responses to words compared
with nonwords. Most of the tasks we examine consist of a com-
parison between relatively easy trials and relatively hard trials
(e.g., congruent vs. incongruent, task repetitions vs. task switches).
The latter are expected to produce longer RTs and an increased
error rate. This is often not the case in the lexical-decision task,
where RTs are longer to nonwords but error rates are comparable
or lower than for words (see Keuleers, Lacey, Rastle, & Brysbaert,
2012; Table 2). Keuleers, Lacey, Rastle, and Brysbaert (2012)
suggest that high error rates to words may reflect other properties
of the stimuli, for example, individuals may mistakenly identify
low-frequency words as nonwords. The correlations we report may
be strongly influenced by individual differences in factors that
influence this behavior (for a recent discussion of nonword prop-
erties, see Yap, Sibley, Balota, Ratcliff, & Rueckl, 2015). How-
ever, it is important to note that studies utilizing the lexical-
decision task for individual differences often employ controls on
confounding stimulus properties such as frequency. We would not
conclude on the basis of the strong correlations in Table 1 that the
lexical-decision task is immune to the general issues raised by our
analysis.

In the IDRT framework, Miller and Ulrich (2013) suggest that
RT costs can be distinguished by whether they reflect common or
opposing task-specific processes. In mental rotation, for example,
rotating an object 180° draws upon the same mental process as
rotating an object by 90°, but in a greater amount. In Stroop tasks,
by contrast, reading automaticity is helpful in congruent conditions
but unhelpful in incongruent conditions. RT costs derived from
such opposing task-specific processes would be expected to have
higher reliability, whereas RT costs derived from common-task
specific processes would be expected to show stronger correlation
with external measures. Most of the effects we include in our
meta-analysis rely on opposing-processes, though lexical decision
effects could be interpreted to rely on common processes. Models
of lexical decision performance often specify a serial search of the
mental lexicon (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler,
2001), where a word response is given if a matching entry is found,
and a nonword response is given if no match is found by some
point at which the search is terminated. Though Miller and Ul-
rich’s (2013) IDRT model does not address error costs, one could
interpret the stronger correlations between RT costs and error costs
in lexical decision as compatible with task-common processes.
However, this extrapolation from Miller and Ulrich (2013) treats
error costs as an “external measure” just like RT costs in different
tasks.

The flanker task showed a wide range of correlations across 17
data sets (r � �.45 to .58). Notably, the two moderate negative
correlations we observed in the flanker task were in Parkinson’s
patients (r � �.39; Wylie et al., 2009) and older adults aged 65-
to 80-years-old, respectively (r � �.45; Guye & Von Bastian,
2017). The latter correlation was influenced by an outlier, as

indicated by the smaller Spearman’s correlation (� � �.08).
Nevertheless, the same participants showed moderate positive
correlations in the Simon (r � .38) and Stroop (r � .46) tasks in
Guye and Von Bastian (2017) study, suggesting that negative
correlations are not a general consequence of particular samples.

Reliability. How can the absence of a strong correlation be-
tween two indices of performance from the same task be recon-
ciled with a (typically) robust effect on both metrics at a group
level? One possibility is that the use of difference scores obscures
a “true” underlying relationship. For statistical reasons, difference
scores typically show less reliable individual differences than their
component measures, and this will attenuate the correlations be-
tween them and other variables (Cronbach & Furby, 1970; Lord,
1956; Spearman, 1910). Previous authors have noted that this may
be a reason why different tasks do not correlate as well as often
expected (Draheim et al., 2016; Hedge et al., 2017; Khng & Lee,
2014; Miller & Ulrich, 2013; Paap & Sawi, 2016). The same issue
would also affect the correlation between RT and error costs
within tasks.

However, as a sole explanation, poor reliabilities do not account
for the low magnitude of the correlations that we observe. Psy-
chometricians have suggested formulae that use the reliabilities of
two measures to “disattenuate” the observed correlation between
them (Nunnally, 1970; Spearman, 1910). This procedure is in-
tended to estimate what the relationship between two variables
might be if not obscured by measurement error. For example, we
previously found 3-week retest reliabilities ranging between .46
and .66 for Stroop and flanker effects (Hedge et al., 2017). Using
these values would raise correlations of �.3 between error and RT
costs to estimated disattenuated correlations of r � .5. Similar
levels of reliability are reported for other tasks (e.g., an average of
.5 for the IAT; Lane, Banaji, Nosek, & Greenwald, 2007), and
most of our measured correlations were below .3. Thus, most tasks
would produce lower disattenuated estimates than .5. Although .5
is nominally considered to be a strong correlation between two
separate factors (Cohen, 1988), 75% of the variance in one measure
is not accounted for by the other and in this case we are correlating
two measures supposed to reflect the same thing. Therefore, the
assumption that RT and error costs are interchangeable measures is
not justified even if reliability could be accounted for in this way.

Interim Summary

Overall then, our analysis illustrates that widely used and robust
effects in RTs and their corresponding effects in errors show
inconsistent, and often very little, correlation. This challenges the
theoretical framework in which we traditionally interpret and as-
sess cognitive differences. For example, how does one interpret a
deficit in response inhibition that specifically affects RT costs but
not error costs? The production of two uncorrelated measures from
each task also increases the likelihood of false positives if not
statistically controlled (John, Loewenstein, & Prelec, 2012). This
could be exacerbated by selective reporting in tasks where it is
common to examine either RT or error costs without explicit
justification for the choice.

Only five studies discussed the correlation between RT and
error costs. Two studies (Cherkasoava et al., 2002; Manoach et al.,
2002) report a negligible correlation in task switching in order to
rule out the presence of a speed–accuracy trade-off. While the
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authors do not further interpret the absence of a positive correla-
tion, the implication of their brief discussion is that they do not
assume RT costs and error costs control for strategic changes. We
return to the three other discussions for task switching (Draheim et
al., 2016; Hughes et al., 2014) and the Stroop task (Kane & Engle,
2003) in the General Discussion section. First, in Part 2, we discuss
how RTs and errors in cognitive tasks can be understood in the
framework of evidence accumulation models.

Part 2. Evidence Accumulation Models Explain
Low Correlations

Evidence accumulation models are a method of analyzing and
simulating RT and error rates in choice RT tasks, which have seen
increasing use in recent years (for reviews and discussion, see
Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Donkin,
Brown, Heathcote, & Wagenmakers, 2011; Forstmann, Ratcliff, &
Wagenmakers, 2016; Forstmann & Wagenmakers, 2015; Forst-
mann, Wagenmakers, Eichele, Brown, & Serences, 2011; Ratcliff
& Smith, 2004; Ratcliff, Smith, Brown, & McKoon, 2016; Teo-
dorescu & Usher, 2013). The assumptions and architecture of these
models vary, but all broadly assume an underlying process
whereby evidence for the response alternatives is sampled sequen-
tially over time, until a threshold is reached for one of the re-
sponses. A period of nondecision time is added to account for

processes of stimulus encoding and motor initiation, but this part
of the models is not relevant for our discussion here. These models
are popular because their parameters can be linked to underlying
cognitive and neurophysiological processes, and because they cap-
ture both error rates and RTs well in a unified framework.

For illustration, we focus on four models here: the drift-
diffusion model (DDM; Ratcliff, 1978; Ratcliff & McKoon, 2008),
the linear ballistic accumulator (LBA) model (Brown & Heathcote,
2008), the diffusion model for conflict tasks (DMC; Ulrich et al.,
2015), and the approximately linear rise to threshold with ergodic
rate (ALIGATER; Bompas & Sumner, 2011). There is ongoing
debate about the precise nature of the modeled mechanisms and
the assumptions each model makes in their implementation. This
debate also extends to models not covered in detail here (for
discussions, see Carpenter & Reddi, 2001; Donkin, Brown, Heath-
cote et al., 2011; Donkin, Heathcote, & Brown, 2009; Ratcliff,
2001; Ratcliff & Smith, 2004; Teodorescu & Usher, 2013; for a
diagramatic overview of the relationship between the models, see
Ratcliff et al., 2016). The four models were chosen to encompass
the range of tasks analyzed in the first part of this article, and
because they represent different ways of implementing the mech-
anisms we are interested in.

Schematics of the DDM and LBA can be seen in Figure 3. These
models assume a constant average rate of evidence accumulation,

Figure 3. Schematic of two sequential sampling models. i) The drift-diffusion model (Ratcliff, 1978; Ratcliff
& McKoon, 2008) consists of a single accumulator accruing evidence from a starting point (z) to one or the other
response threshold (a and 0). The drift rate on each simulated trial is taken from a distribution that has a mean
(v) and standard deviation (�) across trials, and is subject to within-trial noise (s). ii) The LBA model consists
of an accumulator for each response option, accruing evidence to a common response threshold (b). On each
simulated trial, drift rates are taken from distributions which have a mean (vc, ve) and standard deviation (s), and
begin accumulating evidence from a starting point selected from a uniform distribution (A-0). The models also
normally add non-decision time to capture sensory and motor delays, but here we simply assume this is a
constant, as variance in non-decision time is not needed for our discussion.
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or drift rate, within each trial. Both also typically assume that drift
rates vary between trials, which produces variability in RTs and
error rates. A key difference is that drift rates in the DDM are also
subject to moment-to-moment noise, which further contributes to
variability in performance. In contrast, drift rates are ballistic in the
LBA, omitting within-trial noise. A second key difference is that in
the DDM, evidence for one response is direct evidence against the
alternative, whereas in the LBA the alternative responses have
independent accumulators. Though they differ in their structure,
both models successfully capture behavioral performance in many
cognitive tasks, and broadly lead to the same conclusions about
underlying psychological processes (for discussions of issues of
complexity and model mimicry, see Donkin, Brown, Heathcote et
al., 2011; Donkin et al., 2009; Ratcliff, 2001). The DDM has been
employed to explain why individual differences in absolute RT
and accuracy did not correlate in numeracy tasks (Ratcliff et al.,
2015) and our illustrations below for RT costs and error costs
emerge from the same fundamental model properties.

Though the DDM and LBA have been applied to a wide range
of tasks, the assumption of constant average drift rate is problem-
atic for many tasks in Table 1, such as the flanker, antisaccade, and
Simon, where errors occur mostly on incongruent trials and tend to
have short RTs (Gratton, Coles, & Donchin, 1992; Ridderinkhof,
2002). Errors produced by DDM and LBA are normally slow, and
although fast errors can be simulated if accumulation start point is
given high variability (Heathcote & Love, 2012; Ratcliff &
Rouder, 1998), this produces errors on congruent trials as well,
because starting point parameters should not vary between inter-
mixed conditions.

Fast errors for incongruent stimuli are taken as evidence for
initial automatic activation favoring the prepotent response, which
is then inhibited or filtered out on correct trials (Ridderinkhof,
2002; Ridderinkhof, Van den Wildenberg, Wijnen, & Burle,
2004). To capture such dynamics, extensions of the general models
have been suggested, such as the DMC and ALIGATER (see
Figure 4). The DMC is an extension of the DDM, in which the
accumulation rate on each trial combines the normal linear process
and a short-lived initial activation for the prepotent response
option. ALIGATER is an extension of the LBA and Carpenter and
Williams’ (1995) LATER model (linear approach to threshold
with ergodic rate). LATER is similar to the LBA, in that it consists
of a linear ballistic rise to threshold. ALIGATER extends this by
including two types of inhibition: lateral inhibition between accu-
mulators (cf. Usher & McClelland, 2001) and late-starting reactive
inhibition to inhibit the incorrect response accumulator. Several
other model variants have been proposed and these broadly pro-
duce similar patterns of data to the models selected here (see, e.g.,
Dillon et al., 2015; Hübner et al., 2010; Noorani & Carpenter,
2013; Usher & McClelland, 2001; White et al., 2011).

Response Selection and Response Caution in the
Decision Model Framework

In the decision portion of all of the models outlined above, there
are two general factors that influence the nature and the speed of
the response. The first is the strength of the evidence or the rate at
which the accumulation processes differentiate between correct
and incorrect options. This corresponds to the drift rate in DDM,
the composite drift rate in DMC, the difference between accumu-

lators’ rates in LBA, and the net effects of accumulation rate,
mutual inhibition and reactive inhibition in ALIGATER. This net
rate of differentiation can be characterized as processing efficiency
or selection. Differentiation rate clearly changes with the nature
of the stimuli: For example, evidence for the “left” response can
be more quickly extracted from the flanker congruent stim-
uli ����� than from the incongruent stimuli �����.

In most individual differences research, “processing efficiency”
maps onto the main construct of interest: the ability to rapidly
select the appropriate answer, or the extent to which correct
selection is impeded by irrelevant information or prepotent re-
sponses. In DDM this would be reflected by different mean drift
rates between individuals, in LBA by a larger or smaller difference
in accumulation rate for correct and incorrect responses, in DMC
by different amplitude in the transient component of drift, and in
ALIGATER by reactive inhibition (because this model does not
typically include goal-directed bias in underlying accumulation
rates for each response option).

The second factor affecting decision speed is how much evi-
dence is required before a decision is made; the threshold or
boundary, which has also been described as “response caution”
(Donkin, Brown, Heathcote et al., 2011). The height of the thresh-
old is thought to be partially under the individual’s control (Rat-
cliff & Rouder, 1998). In the speed–accuracy trade-off paradigm
(Garrett, 1922; Hale, 1969; Wickelgren, 1977; Woodworth, 1899),
participants are assumed to set their threshold lower under speed
instructions, creating faster responses with a higher risk of errors
due to noise or the prepotent signal. Though thresholds can be
strategically adjusted, we also assume that individuals vary on
their “default” level (Ratcliff et al., 2015). Differences in response
caution have been shown to account for group differences that
were previously attributed to deficits in processing, for example, in
the aging literature (Ratcliff, Thapar, Gomez, & McKoon, 2004;
Ratcliff, Thapar, & McKoon, 2006).

Note that models can allow different thresholds for each re-
sponse, reflecting a bias toward one choice when it is incentivized
or more frequent, for example. However, in situations where trials
and responses are randomized, unpredictable and equally moti-
vated, no bias is typically assumed, and this is what we assume
here.

Subtracting Performance in a Baseline Condition Does
Not Control for Caution

The potential contribution of caution to differences in absolute
RT and accuracy (Ratcliff et al., 2015; Thompson, Ratcliff, &
McKoon, 2016) is one of the key reasons why many tasks employ
a within-subject subtraction between conditions (i.e., the RT cost
or error cost). It is commonly assumed that such subtraction
controls for speed–accuracy trade-offs, but in accumulation mod-
els it does not (see also Ratcliff, Spieler, & McKoon, 2000; White,
Curl, & Sloane, 2016). This is in essence the most important
difference between the accumulation model framework and tradi-
tional conceptualizations of these tasks. In the models, individual
differences in threshold will contaminate (or be part of the inter-
esting variance in) RT costs and error costs when attempting to
measure individual differences in selection or any other aspect of
task performance. Higher levels of selection efficiency lead to both
smaller RT costs and smaller error costs. In contrast, higher levels
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of response caution lead to larger RT costs and smaller error costs.
The mechanisms of this are illustrated for the drift diffusion model
in Figure 5 (see Supplementary Material D for other models).

Simulated Examples

To illustrate the effects of individual variation in response
caution and selection efficiency, we simulated the patterns of RT
costs and error costs produced by the DDM, the LBA, the DMC,
and ALIGATER. Each simulation consisted of 50,000 trials per
condition. The ranges of parameters used in our simulations were
informed by previous simulations using these models where avail-
able, as well as our own simulations. For brevity, we use the terms
“congruent” and “incongruent” to refer to all tasks, thus encom-
passing congruent/baseline/target/valid and incongruent/alternate/
distractor/invalid conditions respectively. The general results of
our simulations are not dependent on the choice of either a con-

gruent or neutral condition as a baseline (cf. Jonides & Mack,
1984), as the difference between conditions in both cases would
typically be captured by differences in processing efficiency.

Drift-diffusion model (DDM). In this model, basic congru-
ency effects are captured by differences between mean drift rates
for congruent and incongruent trials (v1, v2). To simulate individ-
ual differences in caution, we let boundary separation (a) vary
between 0.07 and 0.16 in increments of 0.015. To simulate indi-
vidual differences in selection efficiency, mean drift rates for
incongruent trials varied from 0.1 to 0.4 in increments of 0.05
(while mean drift rates for congruent trials were constant at 0.45).
Parameters describing between-trial variability in drift rates (�),
mean start point bias (z), and within trial-noise (s) were held
constant across simulations (see Table 2 for values used). The
DDM was simulated using the DMAT toolbox (Vandekerckhove
& Tuerlinckx, 2008) in Matlab, 2014 (The MathWorks Inc.

Figure 4. Schematic of two sequential sample models for conflict tasks. i) The diffusion model for conflict
tasks, DMC (Ulrich et al., 2015), an extension of the drift-diffusion model to accommodate the flanker and
Simon tasks. The DMC adds a transient input for the irrelevant competing information (black gamma function
in the lower panel) to the sustained linear process for the correct information (	c: grey line in the lower panel).
The gamma function, defined by the parameters A, a and 
, provides an impulse function, so that the irrelevant
features (e.g. the flankers) initially have a large input, which diminishes rapidly within the trial. ii) ALIGATER
is an extension of LATER (Carpenter and Williams, 1995) originally tested in the context of saccadic
interference effects (Bompas & Sumner, 2011). Two LATER units, one for the target and one for the distractor,
attempt to rise to threshold while mutually inhibiting each other. To produce goal-directed selectivity
ALIGATER includes reactive inhibition instead of altering drift rates. This inhibition attenuates the activation
in the distractor node by a specified amount (Iendo) after a delay (�endo) (lower right panel).
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Natick, MA, USA). Parameter ranges were informed by Donkin,
Brown, Heathcote, and Wagenmakers (2011).

Linear ballistic accumulator model (LBA). In this model,
congruency effects are captured by differences between mean drift
rates on congruent and incongruent trials (v1, v2). To simulate
individual differences in caution, we varied the response boundary
parameter (b) from 250 to 550 in increments of 50. To simulate
individual differences in response selection, mean drift rates for
incongruent trials varied between 0.95 and 0.65 in increments of
0.05 (mean drift rates for the correct response accumulator on
congruent trials were fixed to 1). The drift rates for the incorrect
response accumulators were fixed to 1 minus the drift rate for the
correct response. Parameters describing start point variability (A)
and between trial variability in drift rates (s) were held constant for
all simulations (see Table 2). The LBA model was simulated using
code provided in R (Donkin, Averell, Brown, & Heathcote, 2009;
Donkin, Brown, & Heathcote, 2011), using parameter ranges de-
rived from Donkin, Brown, and Heathcote (2011).

Diffusion model for conflict tasks (DMC). In this model,
congruency effects are captured by the amplitude of automatic
activation (A for congruent trials, 0–A for incongruent trials). To
simulate differences in caution, we varied boundary separation (b)
between 35 and 65 in increments of 5. To simulate differences in

selection efficiency, we varied the amplitude of automatic activa-
tion between 10 and 28 in increments of three. Parameters describ-
ing the drift rate for the controlled process (	c), time to peak
automatic activation (
), the shape parameter of the starting point
distribution (�), the shape parameter of the automatic activation
function (a), and within-trial noise () were fixed for all simula-
tions (see Table 2). The DMC (Ulrich et al., 2015) was imple-
mented in Matlab, using parameter ranges reported by Ulrich et al.
(2015) as well as informed by our own simulations.

Approximately linear inhibition-governed approach to
threshold with ergodic rate (ALIGATER). In ALIGATER,
congruency effects are captured by mutual inhibition and reactive
inhibition that selectively inhibits the accumulator for the incorrect
response on incongruent trials. Congruent trials consist of a single
accumulator with a linear rise to threshold, making the model in
these trials equivalent to LATER (Carpenter & Williams, 1995) or
LBA without start-point variability. Drift rate for the single accu-
mulator in congruent trials, and for the correct and error accumu-
lators in incongruent trials, are fixed to the same value. To simu-
late differences in caution, we varied the threshold (Th) between
0.7 and 1.3 in increments of 0.1. To simulate differences in
selection efficiency, we varied the strength of reactive (endoge-
nous) inhibition (Iendo) from 0.01 to 0.022 in increments of .002.

Figure 5. Pattern of RT costs and Error costs produced by variation in response caution and selection in the
drift diffusion model. Straight, solid lines show condition averages, faint lines show example individual trials.
Black lines show drift rates in congruent/baseline condition, coloured lines show incongruent condition. A.
Response caution: Individuals who are low in response caution will set a lower threshold (e.g. grey dotted line)
than highly cautious individuals (black dotted line). This means not only that their RTs will be faster, but also
the difference between conditions will be smaller, leading to smaller RT costs, noted by grey arrows compared
to black arrows. However, the lower threshold will lead to more errors due to noise in the accumulation process,
which can be overcome with higher thresholds (example trial in purple reaches the grey error threshold, but not
the black error threshold). Note that this will predominantly affect the incongruent or more difficult condition,
as errors are rare in congruent/baseline conditions, leading to higher relative error costs. B. Response selection:
Individuals who have high selection efficiency will have relatively higher drift rates in incongruent conditions
(red solid lines) compared to individuals with lower selection efficiency (blue solid lines), leading to smaller RT
costs (noted by red arrows compared to blue arrows). Moreover, the higher drift rate means noise is less likely
to cause the incorrect response (illustrated with blue example trial that reaches the error threshold). Note that
individuals could also vary in their average drift rates in congruent conditions, and the conclusions would remain
the same, since the same difference in drift rate between conditions creates larger costs if average drift rates are
lower. For simplicity we keep average congruent drift rates constant in our simulations. See the online article for
the color version of this figure.
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Parameters describing the mean drift rates (	c, 	i), between trial
variability in rise rates (�), reactive inhibition delay (�endo), mutual
inhibition strength (w), and mutual inhibition delay (�w) were
fixed across all simulations (see Table 2). ALIGATER (Bompas &
Sumner, 2011) was implemented in Matlab, with parameter ranges
informed by Bompas and Sumner (2011), as well as our own
simulations.

Simulation Results

The relationships between RT cost and error cost from the
simulated data are shown in Figure 6. The first column shows the
effect of variations in selection efficiency and caution (as concep-
tualized by each model) on error costs from each model. The
second column shows the corresponding effects on RT costs. The
third column shows the expected correlation between RT costs and
error costs as either caution or selection varies between individu-
als. For example, the gray line and circle markers in the top right
panel shows the effect of varying incongruent drift rates (selection
efficiency) in the drift diffusion model while holding boundary
separation constant is a positive correlation. These are the data
points highlighted by circle markers in columns 1 and 2 (note that
individual points also keep their colors when replotted in column
3). The purple line in the top right panel shows the effect of
varying boundary (threshold) separation while holding drift rates
constant is a negative correlation (drawn from the purple data
points marked by crosses in columns 1 and 2).

The critical point to be taken from Figure 6 is that all of the
models can account for positive, negative, or absent correlations
between RT costs and error costs, depending on whether variance
in selection efficiency or in caution dominates (and the ranges of
that variance), or whether both vary such that no overall correla-
tion appears. In practice, variance in both caution and selection
efficiency is expected in all studies, and the extent to which one or
the other dominates may be influenced by population, sampling
variance, task, or task instructions (see Part 3). As such, the data in
Table 1 is to be expected in this framework. This conclusion is
independent of the specific model used.

Though all the models produce similar behavior with respect
to the patterns of RT and error costs there are notable differ-
ences between models worth explaining. First, as noted when
introducing the models, errors are typically fast for ALIGATER
and the DMC, while errors tend to be relatively slow in the
DDM and LBA. Second, the data are nonlinear to different
degrees. For example, the strong nonlinearity in ALIGATER
occurs partly because the cost of successfully saving a would-be
error is to produce a relatively long correct RT. On a trial with
an initially strong level of distractor activation, an individual
with low response selection efficiency will make an error. In
contrast, an individual with higher levels of response selection
efficiency may save the error, but this correct response will be
slow due to mutual inhibition from the distractor. Thus, despite
high selection efficiency, slow RTs get added to this individuals
RT distribution that are absent for the individual with low
selection efficiency. Analogous behavior can occur in other
models. For example, individuals with higher drift rates in the
DDM and LBA are less likely to make errors on trials where
start point variation favors the error response, though these
trials will produce relatively long RTs (cf. Ratcliff & Rouder,T
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1998). However, as the average drift rates typically differ
between conditions in the LBA and DDM, this behavior has less
of an influence on the overall RT distribution.

Alternative Sources of Slowing and Errors Within
the Models

Our simulations focus on the dimensions of response selection
and response caution, as they are implemented across many evi-
dence accumulation models. As shown above, these two concepts
are sufficient to explain the results of the meta-analysis. However,
other parameters in the models also influence RTs and error rates.
We conduct additional simulations in Supplementary Material G to
illustrate these relationships, and we give an overview of com-
monly discussed parameters below. For the interested reader, we
also examine the influence of varying the time-to-peak parameter

in the diffusion model for conflict tasks in Supplementary
Material G.

Average drift rates or general processing efficiency. We
characterize response selection as the difference between evidence
accumulation rates in two conditions. This represents an individ-
ual’s ability in a particular cognitive domain, for example, in the
Stroop task. For two individuals with equivalent drift rates for
congruent stimuli, an individual with low selection ability will
show lower drift rates for incongruent stimuli relative to an indi-
vidual with high selection ability. In reality individuals are also
likely to vary in their general ability to process information, such
that drift rates to congruent and incongruent stimuli would be
correlated. The impact of this is that an individual with a lower
average drift rate will show larger RT costs and error costs relative
to an individual with a higher average drift rate even if they have

Figure 6. Simulated error costs and RT costs produced by four decision models. DDM � Drift-diffusion
model, LBA � Linear ballistic accumulator model, DMC � Diffusion model for conflict tasks,
ALIGATER � Approximately linear rise to threshold with ergodic rate. The first and second columns show
the patterns of error costs and RT costs, respectively, as a function of variation in both caution and response
selection as implemented in the different models (see main text for details). The third column shows the
correlation between RT costs and error costs that arise from holding response selection constant and
allowing caution to vary (purple line and crosses), and for allowing response selection to vary while caution
is held constant (grey line and circles). Though the simulated data are often non-linear, linear trend lines
are plotted for illustrative purposes since most studies of individual differences would calculate linear
correlations. Note some changes of scale between plots, due to the range of parameters used, as guided by
previous literature (see text). Trials with decision times longer than 2000 ms were excluded from the plots.
See the online article for the color version of this figure.
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the same response selection ability (i.e., relative difference be-
tween drift rates). This would create correlation between measures.
In other words, general slowing can “look like” domain specific
deficits in traditional measures.

This also means that traditional analyses of RT costs are
difficult to interpret when comparing populations with different
mean RTs (see also Faust et al., 1999). But if we assume
accumulation models are a meaningful framework, and one has
sufficient data to estimate the parameters, individual differ-
ences in average processing rates are not distinctly problematic. Drift
rates are typically freely estimated for each condition, such that one
can formulate hypotheses about the difference between drift rates
without confounding or constraining average drift rates.

Nondecision time. Nondecision time reflects the total duration
of perceptual and motor processes, which often represent a sizable
proportion of RTs. Individual differences in nondecision time are
therefore highly relevant to attempts to link individual differences in
mean RT to constructs such as general intelligence (e.g., Der &
Deary, 2017) or mental health (e.g., Gale, Harris, & Deary, 2016; see
also Miller & Ulrich, 2013). In most of the paradigms we discuss it is
common to assume that nondecision time does not vary between
conditions. This reflects an assumption that, for example, early visual
processes do not take longer for an incongruent flanker stimulus
(�����) relative to a congruent stimulus (�����). This sim-
plifying assumption is also made in other models of RT (e.g., Miller
& Ulrich, 2013).

As increasing nondecision time is assumed to slow RTs in both
conditions equally it would not affect the RT cost. It is also assumed
the nondecisional processes do not affect accuracy, so it would not
affect the correlation between RT costs and error costs. However, the
assumption very much a simplification, and depends on the definition
of what is visual processing and what is goal-directed information
accumulation. Indeed, this distinction has no clear mapping onto
visual information flow through the brain, which is sensitive to
attention/relevance from the earliest stages. There are some paradigms
where differences in nondecision time between conditions have been
explicitly implicated (e.g., masked vs. unmasked priming; Gomez,
Perea, & Ratcliff, 2013). In these cases, variation in nondecision time
in the slower condition would affect the size of the RT cost without
affecting the error cost, diminishing the correlation between RT costs
and error costs.

Variation in starting points. Another common simplifying
assumption in the DDM is to constrain the starting point of the
accumulation process to be equidistant between the two response
boundaries on every trial. This assumption is typically not made in
the LBA, where starting point variability contributes to variation in
RTs in the absence of within-trial (diffusion) noise. Starting point
variability is often invoked to account for fast errors, which would
be likely if the accumulation process sometimes begins close to the
boundary for the incorrect response (Heathcote & Love, 2012;
Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002). This en-
tails that on some trials the accumulation process begins close to
the boundary for the correct response, such that a fast correct
response is given. As such, it impacts on the RT and error rate of
both conditions. Our simulations in Supplementary material G
indicate that it has relatively little impact on the RT cost and error
cost.

Part 3: Testing Predictions of the Accumulation
Model Framework

Prediction 1: Speed Instructions Increase Correlation
Between RT Costs and Error Costs

In our simulations, variation in response caution led to negative
correlations between RT and error costs, whereas variation in
selection efficiency led to more positive correlations. Therefore,
the model framework predicts that reducing variability in response
caution—and thus increasing the proportion of variance accounted
for by selection efficiency—would lead to more positive correla-
tions.

In their examination of the relationship between average accu-
racy and average RT in numerical cognition, Ratcliff, Thompson,
and McKoon (2015) reasoned that, if levels of response caution are
flexible, then emphasizing speed in their instructions should re-
duce variance in response caution relative to encouraging partici-
pants to be both fast and accurate (which is often the standard task
instruction). If we apply the same logic to the examination of RT
and error costs, then we should observe that the correlation be-
tween costs is more positive under speed instructions than under
standard task instructions. To test this prediction, we draw upon
data from two studies recently conducted in our lab for the purpose
of examining the reliability and generality of adjustments to cau-
tion. In the first study, participants completed the flanker and
Stroop tasks in two sessions. In the second, participants completed
the flanker and a random-dot motion discrimination task in a single
session. Both studies consisted of speed, accuracy, and both speed
and accuracy (standard) instruction conditions. Here, we examine
whether the correlation between RT and error costs is higher under
speed instructions relative to standard instructions. We also report
the correlations under accuracy instructions for completeness, but
this was not directly compared with the other conditions (see
below).

Detailed methods for these experiments are in Supplementary
Material E. For brevity, we give an overview here. In the first
study, 57 participants performed both the flanker and a manual
Stroop task in two sessions taking place 4 weeks apart. In the
second study, 81 participants performed the flanker task and a
random dot motion discrimination task in a single session. At the
beginning of speed-emphasis blocks, participants were asked to
“Please try to respond as quickly as possible, without guessing the
response.” For accuracy blocks, participants were told “Please
ensure that your responses are accurate, without losing too much
speed.” For standard instruction blocks, participants were in-
structed “Please try to be both fast and accurate in your responses.”
Feedback was also manipulated to encourage speed and/or accu-
racy in accordance with the instructions.

Data Analysis

The same inclusion criteria and RT cut-offs described in Part 1
were applied; the number of participants included in the analysis
for each task, session, and study is shown in Table 3.

To test whether the correlation between RT and error costs is
more positive under speed instructions relative to standard instruc-
tions, we adopted a meta-analytic approach. First, for each dataset,
we calculated the Pearson correlation between the RT costs and
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error costs in speed and standard instruction conditions separately.
We then applied the Fisher’s z-transform (Fisher, 1914) to the
coefficients, and transformed these back into R values. Treating
the differences in R values between instructions as the effects of
interest, we then calculated a weighted average effect using
Hedges and colleagues’ method assuming a random-effects model
(Field & Gillett, 2010; Hedges & Olkin, 1985; Hedges & Vevea,
1998). Note that more complex methods could take into account
the nested structure of our data, but we opt for the simpler
approach given the small number of data sets.

Results and Discussion

We limit our coverage of the results to the correlations between
RT and error costs. Table 3 summarizes the correlations in each
condition, and the difference between the correlations in the stan-
dard and speed-instruction conditions. We report the correlation
under accuracy instructions for completeness, though following
Ratcliff et al. (2015), we restrict our analysis to the comparison of
speed emphasis to standard instructions. The weighted average
effect size was R � .19 (95% CI [.09, .29], z � 3.57, p � .001),
indicating that the correlation between RT and error cost is indeed
more positive under speed instructions. Note that this effect was
fairly consistent, with none of the data sets showing a more
positive correlation under standard instructions. This is consistent
with the accumulation model framework.

The size of the effect that we observe (.19) is small by com-
monly used criteria (Cohen, 1988), though we consider it to be
meaningful given that the unweighted average correlation under
standard instructions in Table 3 was R � .17 (note that this is
similar to the average of R � .17 observed in Table 1). Neverthe-
less, at R � .36, the average correlation under speed instructions
was still far from unity. While speed instructions may lessen the
impact of variation in response caution, RT and error costs cannot
be considered interchangeable.

The enhanced correlations under speed instructions do not
arise simply from expanding the variance of the constituent
variables; the standard deviation of the RT cost decreased from
30 ms to 18 ms on average, while it increased from 5% to 7%
for the error cost (see Supplementary Material E). Note that
while our hypothesis was derived from comparing speed with
standard instructions as in Ratcliff et al. (2015), performance
under standard instructions is often similar to that under accu-
racy instructions, such that theorists have suggested that the

typical default strategy is to minimize errors (Forstmann et al.,
2008; van Maanen et al., 2011; van Veen, Krug, & Carter,
2008). There is inconsistent evidence for this in Table 3, but it
is not our focus here.

In our logic we assumed that speed instructions both lower
thresholds (response caution) and reduce its variance across par-
ticipants (see Ratcliff et al., 2015). That is not to say that threshold
is the only parameter affected by speed–accuracy trade-offs. Sev-
eral studies suggest that speed instructions may additionally lower
drift rates and reduce nondecision time (e.g., Rae, Heathcote,
Donkin, Averell, & Brown, 2014; though see Arnold, Bröder, &
Bayen, 2015; Starns & Ratcliff, 2014). A reduction in nondecision
time should not affect the correlation between RT costs and error
costs assuming that it affects both congruent and incongruent
conditions equally. A reduction in drift rates with an accompany-
ing increase in drift rate variance would additionally shift the
proportion of variance from threshold to drift rate and might be a
factor behind the increased correlation.

One might also ask whether these findings are consistent with
alternative models of the speed–accuracy trade-off. Two promi-
nent explanations are the fast-guess model (Ollman, 1966, 1970)
and the deadline model (Yellott, 1971). The fast-guess model
assumes that on some proportion of trials participants do not
process the stimulus and instead make a fast guess with a short RT
and chance accuracy. This proportion increases under speed in-
structions. In contrast, the deadline model contains late guesses,
whereby participants respond with chance accuracy if a stimulus
has not been categorized before some internal cut-off. The dead-
line model assumes that participants reduce this time limit under
speed instructions.

Both models have fallen out of favor in recent years due to their
inability to capture data from a range of speed-accuracy experi-
ments (see Heitz, 2014 for a review). Nevertheless, we include
simulations of predictions from both models in Supplementary
Material I. Briefly, increased correlation between RT costs and
error costs under speed emphasis is compatible with a deadline
model. Reduced deadline variance acts like reduced threshold
variance, limiting the ability of participants to trade errors for
longer RTs in the more difficult condition. A fast guess account
does not predict a more positive correlation, as an equal number of
fast guesses are added to both conditions irrespective of their
difficulty.

Table 3
Sample Sizes and Pearson’s r Correlations Between RT and Error Costs from Studies 1 and 2

Dataset N

Instruction condition

Speed-standardSpeed Standard Accuracy

Flanker 1 Session 1 55 .56 .36 .31 .24
Flanker 1 Session 2 47 .40 .34 �.01 .07
Stroop 1 Session 1 52 .19 .19 .21 .00
Stroop 1 Session 2 46 .33 .15 .21 .19
Flanker 2 81 .46 .23 .01 .26
Dot-motion 2 73 .22 �.07 �.04 .28

Note. Standard-speed instruction coefficients are the difference between the Fisher’s z-transformed coeffi-
cients. See Supplementary Material I for scatter plots.
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Prediction 2: Intermixed Conditions Increase
Correlation Between RT Costs and Error Costs

A second prediction of the framework is that tasks with inter-
mixed trial conditions should produce more positive correlations
than blocked conditions in the same task. Again, this prediction
arises from reducing the contribution of threshold variance to
performance variance. Accumulation models generally assume
that boundary cannot be changed midway through a trial—and
thus unpredictably intermixing trials forces participants to have the
same boundary for every trial. On the other hand, explicitly block-
ing different conditions allows participants more freedom in adopt-
ing different levels of caution. The introduction of more freedom
translates into more variance between participants.

Anecdotal support for this hypothesis can be found in Table 1,
with negative correlations observed in the Navon global prece-
dence and antisaccade tasks, which used blocked conditions.
Blocked designs are common in these tasks, where intermixed
trials would introduce a rule switching component (blocked de-
signs also occur in IAT tasks, but here participants would not be
aware of the blocked arrangement, so the prediction does not
apply). To test this prediction, we ran a new study (N � 102) using
the Simon task. In the same subjects, we compared the correlation
between RT costs and error costs when trials are randomly inter-
mixed (as is typical with the Simon task), compared with blocks of
congruent and incongruent trials administered separately (e.g., as
is common with the antisaccade task). We predicted that the
correlation between RT and error costs would be more positive in
intermixed trials. Detailed methods are reported in Supplementary
Material F. The data are available at https://osf.io/btsrw/.

Results and Discussion

The correlations between RT and error cost measures can be
seen in Table 4, along with the descriptive statistics. Spearman’s
correlations are reported due to the presence of an outlier in the
blocked condition. The correlations between RT and error costs
within blocked and mixed version of the task are highlighted.

As predicted, a modified Pearson-Filon test (Raghunathan,
Rosenthal, & Rubin, 1996) showed that the correlation between
RT and error costs for mixed trials (� � .61) was significantly
more positive than that for blocked trials (� � �.20), Z � 6.49,
p � .001. Note that both were significantly different from zero,
with a significant negative correlation observed in blocked trials.

Note that the overall error rates and RTs were larger for mixed
trials (congruent: 7.9%, 408 ms; incongruent: 11.2%, 429 ms)
compared with blocked trials (congruent: 3.2%, 308 ms; incon-
gruent: 6.8%, 354 ms), while RT costs and variance in the RT costs
was greater for blocked trials. Therefore, the higher correlation in
mixed trials does not arise simply from an increase in variance.
This pattern is consistent with participants decreasing their caution
(to a variable extent) when they anticipate there will be no difficult
trials. The degree to which they do this then drives the correlation
between error costs and RT costs. In contrast, where trials are
intermixed within blocks, caution cannot be adjusted between trial
types, and the correlation between RT costs and error costs are
driven more by variation in response selection.

A second notable observation from Table 4 is that neither RT
costs nor error costs from the blocked trials correlate significantly
with their counterparts from mixed trial blocks. This is highly
problematic from the theoretical standpoint that performance in the
Simon task simply reflects ability to inhibit a prepotent response.
However, it is to be expected if variation in the costs derived from
the blocked format are driven more by individual differences in
response caution, whereas differences in response selection are
more influential in mixed blocks. Note that this could also explain
absent correlations between tasks thought to measure the same
cognitive ability, but that differ in their blocking structure (e.g.,
such as between antisaccade and flanker paradigms).

General Discussion

As psychologists explore what Cronbach (1957) called the
“outer darkness” of error variance, it is becoming clear that the
relationship between individual differences and experimental re-
search is not always straightforward. Between-subjects variance
can arise from different mechanisms to within-subject variance
(Borsboom, Kievit, Cervone, & Hood, 2009; Boy & Sumner,
2014), and the average behavior of a group can misrepresent
underlying patterns of individuals’ responses (Liew, Howe, &
Little, 2016). Here, we demonstrate another counterintuitive find-
ing across psychological paradigms. It is often assumed that sub-
tracting between conditions controls for factors such as speed–
accuracy trade-offs. In turn this leads to the widespread
assumption that variance between individuals in performance in-
dexes cognitive ability (processing efficiency) in that domain. This
is the underpinning of nearly all theory built on individual differ-
ences in such tasks—such as the relationships between cognitive

Table 4
Spearman’s Correlations Between RT Costs and Error Costs in the Simon Task in Study 3
(N � 102)

Measure/condition RT cost–mixed Error cost–mixed RT cost–blocked Error cost–blocked

RT cost–mixed .61 .10 .10
Error cost–mixed �.02 .14
RT cost–blocked �.20

Mean 20 ms��� 3.4%��� 46 ms��� 3.6%���

Std. dev 17 ms 5.0% 24 ms 5.0%

Note. “Mixed” refers to the costs calculated from blocks in which congruent and incongruent trials are
intermixed. “Blocked” refers to costs calculated from separate blocks of congruent and incongruent trials. The
bold cells contain the correlations central to our hypothesis.
� p � .05. ��� p � .001.
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domains or with psychiatric disorders. If this were true, alternate
measures of performance from the same task should always cor-
relate. Our meta-analysis shows this assumption does not hold
across a wide range or tasks.

In the second part of this article, we illustrated how subtractions
do not control for threshold (caution) differences within the frame-
work of decision models. In turn, this means such models predict
that RT costs or error costs are rarely interchangeable as perfor-
mance measures—they would only be strongly correlated when
threshold variance is very low. Evidence accumulation models
provide a theoretical framework across cognitive psychology and
cognitive neuroscience (cf., Forstmann & Wagenmakers, 2015;
Forstmann et al., 2011; Ratcliff et al., 2016). They have been
applied to a wide range of cognitive domains, including memory
(Ratcliff, 1978), perceptual decision making (Brown & Heathcote,
2008; Ratcliff & Rouder, 1998; Usher & McClelland, 2001),
choice preference (Tsetsos, Usher, & Chater, 2010), language
(Brown & Heathcote, 2008; Ratcliff, Gomez, & McKoon, 2004;
Wagenmakers, Ratcliff, Gomez, & McKoon, 2008), numeracy
(Ratcliff et al., 2015; Thompson et al., 2016), and response control
(Gomez, Ratcliff, & Perea, 2007; Ulrich et al., 2015; White et al.,
2011). A strength of these models is that they can account for the
patterns of behavioral speed and accuracy in conjunction (for a
review, see Ratcliff et al., 2016). Increasingly, the models are now
being used to understand group differences in clinical contexts
(Metin et al., 2013; White, Ratcliff, Vasey, & McKoon, 2010;
Zhang et al., 2016). Such an approach seems fruitful for correla-
tional research (e.g., Ratcliff et al., 2015), given evidence pre-
sented here and elsewhere that thresholds (or speed–accuracy
trade-offs) cannot be equated between individuals through instruc-
tion alone (Lohman, 1989; Ratcliff et al., 2015; Wickelgren, 1977).

Linking Measures to Mechanisms

The decomposition of speeded decisions into (at least) two
components does come at a cost of increasing the complexity of
interpretations. However, this complexity may be a necessity
rather than a handicap. Theorists have noted that there is a ten-
dency in the literature to attribute variation on a given task almost
directly to variation in a single cognitive function, such as exec-
utive control, numeracy, or inhibition (Monsell & Driver, 2000;
Ratcliff et al., 2015; Verbruggen, McLaren, & Chambers, 2014).
Verbruggen, McLaren, and Chambers (2014) argue that this often
results in a redescription of tasks or manipulations, rather than an
explanation of the mechanisms underlying performance. Similarly,
Ratcliff et al. (2015) argued that the absence of a theoretical model
of decision making in numeracy judgments made accounting for
inconsistent relationships between RT and accuracy measures
problematic. Ratcliff et al. (2015) further proposed that the DDM
provided such a theory, within which performance on numerical
tasks can be understood. Evidence accumulation models explicitly
remind us that manipulations are rarely process-pure (Forstmann et
al., 2016; Forstmann & Wagenmakers, 2015). As with any formal
model, one can quantitatively test whether an experimental ma-
nipulation taps selectively into an underlying parameter of interest.
Where a manipulation is not process pure, one can dissociate the
effects on the underlying processes, for example, by examining
differences in fitted drift rates rather than raw RT or error mea-
sures.

We expand upon these recommendations in three key ways.
First, we focus on the common practice of subtracting one condi-
tion from another, which is often assumed to control for differ-
ences in caution. Second, we demonstrate that inconsistent rela-
tionships between effects in RTs and effects in accuracy are
widespread. These inconsistencies permeate domains of psychol-
ogy that are at the forefront of initiatives focused on understanding
cognitive deficits in clinical conditions, such as executive control,
attention and response inhibition (e.g., Barch, Braver, Carter,
Poldrack, & Robbins, 2009; Nuechterlein, Luck, Lustig, & Sarter,
2009).

Third, we demonstrate that interpreting correlations between RT
costs and error costs with respect to mechanisms of response
selection and response caution is not specific to a given model. It
has been noted that there is a high level of mimicry between the
LBA and DDM, and that despite different architectures, often one
would interpret effects with respect to the same underlying pro-
cesses (Donkin, Brown, Heathcote et al., 2011). The DMC (Ulrich
et al., 2015) and ALIGATER (Bompas & Sumner, 2011) models
are nonlinear departures from these general frameworks. The
DMC and ALIGATER contain mechanisms such as transient
excitation or inhibitory control, and produce different patterns of
behavior compared with the DDM and LBA. Nevertheless, in
terms of the fundamental issue at stake here, parameters reflecting
response caution and selection efficiency influence performance
similarly across all these models.

Decision models also allow for other mechanisms to be incor-
porated. For example, biases due to stimulus probabilities or
incentives (e.g., Leite & Ratcliff, 2011) can be captured by relative
starting point bias in the DDM, or equivalents in other models.
However, while models may account well for phenomena at a
behavioral level, they may not map directly on to functioning at a
neurophysiological level (Heitz & Schall, 2012). Neurophysiolog-
ical measures can provide useful tests of model assumptions (see,
e.g., Bompas, Sumner, Muthumumaraswamy, Singh, & Gilchrist,
2015; Burle, Spieser, Servant, & Hasbroucq, 2014; Servant, Mon-
tagnini, & Burle, 2014), and therefore may be useful in guiding
and constraining cognitive models (Forstmann & Wagenmakers,
2015).

Response Caution and the Speed–Accuracy Trade-Off

Considering speed and accuracy in conjunction has a long
history in psychology in the context of the speed–accuracy trade-
off (SAT; Garrett, 1922; Hick, 1952; Pachella, 1974; Wickelgren,
1977; Woodworth, 1899). Pachella (1974) noted that the assump-
tion behind many RT measures, that RTs reflect the minimum
duration required by participants to perform the task at maximum
accuracy, is often untested and likely untrue. Wickelgren (1977)
argued “. . . the case for speed-accuracy tradeoff as against reaction
time is so strong that this case needs to be presented as forcefully
as possible to all cognitive psychologists” (p. 68). He went on to
acknowledge that the requirement for additional trials over stan-
dard designs limited the appeal of trade-off designs, and noted that
when considering mean differences between conditions: “When
both errors and reaction times go in the ‘same’ direction, then it is
reasonably safe to conclude that the condition which is slower and
has more errors is more difficult than the condition that is faster
and has fewer errors” (p. 79). Our analysis demonstrates that
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establishing the same directionality of effects at the group level
does not entail that both RT costs and error costs will rank
individuals equivalently. Indeed, as we show in Part 3, a com-
monly used design practice (blocking conditions) can create a
negative correlation between them. As such, researchers should
not assume that RT costs and error costs derived from blocked
methods predominantly reflect response selection mechanisms.
We recommend that the correlation between RT and error costs be
reported, and that explicit consideration be given where effects are
examined/observed in one measure and not the other.

For many research questions, response caution might be con-
sidered a nuisance parameter that confounds the effect of interest.
For example, if a researcher is interested in individual differences
in attention, then they are likely interested in the efficiency of
information processing, either on average or with respect to some
stimulus manipulation. This is the very logic behind subtracting
between conditions, which was assumed to allow such processes to
be examined in isolation. But caution is an interesting and funda-
mental component of decision-making. A wealth of literature
exists examining the cognitive and neurological mechanisms un-
derlying response caution, in both clinical and nonclinical popu-
lations (Dutilh, Forstmann, Vandekerckhove, & Wagenmakers,
2013; Dutilh et al., 2012; Metin et al., 2013; Moustafa et al., 2015;
Starns & Ratcliff, 2010, 2012; van Maanen et al., 2011; Zhang &
Rowe, 2014). For some research areas, such as the study of
impulsive behaviors, the extent to which individuals are willing to
commit errors for the sake of faster RTs is of distinct theoretical
interest.

For decision models themselves, there is an ongoing debate
whether caution is adequately captured by a simple threshold that
does not vary within trials. For example, mechanisms by which the
level of required evidence decreases over time have been proposed
(Bowman, Kording, & Gottfried, 2012; Cisek, Puskas, & El-Murr,
2009; Ditterich, 2006; Drugowitsch, Moreno-Bote, Churchland,
Shadlen, & Pouget, 2012; Thura, Beauregard-Racine, Fradet, &
Cisek, 2012). These proposals take the form of either a collapsing
boundary, or an urgency signal that increases the rate of evidence
accumulation. A recent review found that most human data was
best accounted for with fixed thresholds, though evidence for
dynamic thresholds was observed in nonhuman primates (Hawk-
ins, Forstmann, Wagenmakers, Ratcliff, & Brown, 2015). In many
(but not all) of the tasks we discuss, trials are typically randomly
presented within blocks, and thus it is assumed that caution does
not change between congruent and incongruent trials. Therefore, at
a within-subject level, both RT costs and error costs in response
control tasks arise from differences in drift rates (or parameters
that affect relative accumulation rate) between conditions. How-
ever, at a between subject level, the magnitude of an individual’s
RT cost and error cost is a reflection of both their level of response
caution and of response selection.

Model Similarities and Differences

Our simulations cover only a selection of evidence accumula-
tion models used in the literature, though most models implement
mechanisms of response selection and response caution in com-
parable ways. For example, the leaky competing accumulator
(LCA; Usher & McClelland, 2001), implements response selection
via a relative difference between the inputs (thus drift rates) in a

similar approach to the DDM and LBA. The LCA also has a
criterion parameter, which is equivalent to the implementation of
response caution in the models simulated here. White, Ratcliff, and
Starns (2011) recently proposed a modified diffusion model of the
flanker task, in which the drift rate varies over time according to
a narrowing “attentional spotlight.” The shrinking spotlight, im-
plemented as a Gaussian weighting centered on the central arrow
and initially encompassing the flankers, allows the model to cap-
ture the fast errors typically observed in the flanker task. Though
conceptually different, the resultant dynamics of the model are
similar to the DMC, presented here. Therefore, our conclusions
extend beyond the models featured in our simulations.

We selected four distinct models to illustrate common behavior,
not to emphasize any differences. It is also worth noting that some
apparent differences between models are just different ways of
achieving a similar goal. For example, ALIGATER contains an
explicit selective inhibition mechanism, whereas inhibition is im-
plicit in the DMC. Both amendments to the basic models were
introduced to ensure nonlinear dynamics—that initial strong sup-
port for irrelevant information diminishes while support for rele-
vant information is maintained. The DMC is thus compatible with
an explicit mechanism of top-down inhibition (Ulrich et al., 2015).

Some model differences reflect the task or modality in which the
model is typically applied. For example, ALIGATER simulations
assume equal mean initial rise rates for both target and distractor;
an assumption also made by other models of eye movement tasks
(e.g., Noorani & Carpenter, 2013), where accumulation is concep-
tualized as stimulus-driven. This assumption in turn creates the
need for an additional mechanism to select target from distractor.
In contrast, the DDM, LBA, and DMC implement a difference in
the mean drift rates for correct and incorrect responses. This
corresponds to conceptualizing evidence accumulation at the level
of relevant information for response selection, rather than direct
sensory drive (cf. Sternberg, 2001).

The distinction between these models and their applications is
not always clear cut, however (Carpenter & Reddi, 2001; Ratcliff,
2001), and neither do we believe the distinction between percep-
tion and response selection is clear cut in the brain. Processes such
as attention act at multiple stages of processing, for example (Awh,
Belopolsky, & Theeuwes, 2012). Further, not only the stimuli
used, but also the requirements of information extraction across
different task conditions will differentially draw on different visual
pathways—all of which have different delay times (Bompas &
Sumner, 2009, 2011).

The assumptions made about perceptual (i.e., nondecision) pro-
cesses have theoretical implications. For example, the distribu-
tional shape of nondecision time variability has recently been
questioned (Verdonck & Tuerlinckx, 2016). Whereas nondecision
time is typically fixed, or assumed to follow a normal or uniform
distribution, Verdonck and Tuerlinckx (2016) suggest that nonde-
cision time may often be right-skewed. This misspecification can
impact on the estimates of other parameters (e.g., individual dif-
ferences in response caution).

Even more counterintuitively for cognitive scientists, using dif-
ferent response modalities (e.g., hands, eyes, or speech) changes
the sensory part of nondecision time, with knock-on consequences
for response selection phenomena (Bompas, Hedge, & Sumner,
2017). This is because different motor selection areas receive
different connections from the various perceptual pathways. In
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turn, this provides an avenue for linking cognitive process models
to neurophysiological models (e.g., Nunez, Vandekerckhove, &
Srinivasan, 2017). Though it is clear that there is much to be
understood about the properties of decisional and nondecisional
time, the pursuit of these questions is aided by theoretical frame-
works within which to consider them.

Alternative Explanations: RT and Error Costs Reflect
Different Mechanisms?

Absent correlation between RT costs and error costs in the
Stroop task was previously noted by Kane and Engle (2003), who
attributed the two effects to different mechanisms. In line with the
traditional account of Stroop interference, they argued that RT
costs arose from the time taken for conflict resolution, but that
errors arose from a failure of goal maintenance. In a series of
experiments, they manipulated the proportion of congruent trials in
the Stroop task, and additionally measured participants’ working
memory (WM) span. When the Stroop task was made up of 75%
or 80% congruent trials, low WM span participants made a greater
number of errors compared with high WM span participants. When
0% or 20% of trials were congruent, low WM span individuals did
not make more errors, but showed increased RT costs. The authors
argued that when the proportion of congruent trials was high, low
WM span participants would sometimes fail to maintain the rele-
vant task goal (naming the color). The interpretation that errors
reflect a failure of goal maintenance has been influential in inter-
preting differences in clinical groups, for example, where it has
been observed that errors and error costs in the Stroop task are
predictive of conversion to Alzheimer’s disease in older adults
(Balota et al., 2010; Hutchison, Balota, & Duchek, 2010).

These effects could also be described within a decision model
framework, given that we would expect individuals to adopt dif-
ferent levels of caution in blocks of different congruency propor-
tions (e.g., Part 3 above). A previous study examining the rela-
tionship between diffusion model parameters measured from
choice RT tasks and a latent WM factor observed a positive
correlation between WM and drift rate, and a negative correlation
between WM and boundary separation (Schmiedek, Oberauer,
Wilhelm, Süss, & Wittmann, 2007). Thus, individuals with a high
WM may have high selection efficiency, and can set a relatively
low threshold even when incongruent trials are frequent. In con-
trast, individuals with low WM span may have low selection
efficiency, and would need to be more cautious when incongruent
trials are frequent (increasing RT costs). More broadly, an inter-
pretation that errors reflect attention lapses is compatible with
decision model frameworks if one applies this interpretation to
individual trials in which the drift rate is low (McVay & Kane,
2012).

Combining RT and Error Measures:
Alternatives to Modeling

In the domain of task switching, the reliability and validity of
the traditionally used RT costs has also been questioned (Draheim
et al., 2016; Hughes et al., 2014). These discussions are based on
the explicit assumption that speed–accuracy trade-offs can con-
taminate RT costs, which are traditionally used in task-switching,
and may mask correlations with theoretically related constructs. In

two experiments, Hughes et al. (2014) assessed three alternative
scoring measures that combine effects in RT and accuracy into a
single metric. The alternative scoring methods were: a rate residual
scoring method (Was & Woltz, 2007; Woltz & Was, 2006), a
binning procedure, and inverse efficiency scores (IES; Townsend
& Ashby, 1978, 1983). In Hughes et al.’s (2014) first comparison
all three metrics showed similar reliability to the RT cost, with the
error cost performing poorly. In Experiment 2, the alternative
metrics were superior to the traditional measures. The authors
argued that the rate residual and binning methods also showed
increased validity because they showed larger associations with
other executive functioning tasks than did the traditional measures.
Other studies have also observed increased correlations between
tasks when using the binning procedure (Draheim et al., 2016) or
IES (Khng & Lee, 2014) compared with traditional scoring meth-
ods (see Vandierendonck, 2017 for a recent comparison of differ-
ent composite measures).

These methods are not without their criticisms, however. The
use of residual scores as an alternative to difference scores have a
long history (Cronbach, 1957; DuBois, 1957), though their prac-
tical advantages are not uniform, and their validity and interpre-
tation has been questioned (for a review, see Willet, 1988). Po-
tential inconsistencies and limitations of the binning method
(Draheim et al., 2016) and the IES (Bruyer & Brysbaert, 2011)
have also been discussed. As noted by Draheim et al. (2016), the
binning method requires a somewhat arbitrary decision about the
extent to which errors are penalized relative to RTs. It has been
argued that the IES should only be used where strong, positive
correlations are observed in RTs and errors (Bruyer & Brysbaert,
2011; Townsend & Ashby, 1978, 1983), which our analysis illus-
trates is not usually the case.

Perhaps the largest advantage the decision model framework has
over these alternative scoring methods is that the composite scores
lack a theoretical justification for their respective methods of
combing accuracy and RT into a single metric (Lohman & Ippel,
1993; Rach, Diederich, & Colonius, 2011). Lohman and Ippel
(1993) suggest that there are at least three types of errors—those
due to ability, those due to the SAT, and those due to extraneous
factors such as lapses of attention. Therefore, it may not be
appropriate to treat all errors as equal for the purpose of combining
them with RTs. In the decision model framework whether errors
are fast or slow has important implications, and thus fitting takes
into account not only the error rate but also the RT of each error.
Further, increased correlations obtained from composite scores
may in fact reflect commonalities in strategy (i.e., response cau-
tion) across different tasks, rather than the construct of interest. In
summary, we see value in easy to calculate metrics that take both
RT and error rates into account, however, we recommend caution
in their interpretation in the absence of a specified theoretical
framework. Decision models provide such a framework, within
which we can account for error rates, as well as the RTs of both
correct and incorrect responses.

Relationship Between Models of Response Selection
and Other Models of RT

We have discussed the correlation between RT costs and error
costs in the context of evidence accumulation models, though
theorists have raised concerns about the interpretation of RT
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measures outside of this framework (e.g., Faust et al., 1999; Miller
& Ulrich, 2013; Sriram, Greenwald, & Nosek, 2010). Further, theo-
rists may not wish to commit to the assumptions underlying any
particular formal model of the processes underlying RT and accuracy.
However, the principles of evidence accumulation and threshold are
compatible with general models of RT. Miller and Ulrich’s (2013)
IDRT model proposes that an individual’s average RT and RT
costs arise from processing across perceptual input, response se-
lection, and motor output stages. These stages correspond to the
nondecision (perceptual � motor time) and decision components
in models such as the DDM. Indeed, Miller and Ulrich (2013) note
that the response selection stage could be realized as a diffusion or
linear accumulation process, but their framework is agnostic to the
nature of the processes underlying response selection.

Where Miller and Ulrich’s (2013) work and ours overlap is that
they note that an RT cost cannot be simply interpreted as an index
of response selection ability, and that it is influenced by other
properties such as general processing speed (as we discuss above).
A similar point is made by Faust, Balota, Spieler, and Ferraro
(1999), who propose a rate and amount model (RAM) of RTs.
Here, again, the concepts of rate and amount are comparable to the
accumulation of evidence to a threshold, though the RAM does not
explicitly model these processes. Faust et al. (1999) propose a
method for correcting RT costs for overall RT in the context of
aging studies, where the issue of RT costs being positively corre-
lated with average RT has been discussed frequently (Ratcliff et
al., 2000; Salthouse, 1996; Verhaeghen, 2014). Again, they make
the point that a raw RT cost cannot be simply interpreted as an
index of ability in a given cognitive domain.

While both the IDRT and RAM frameworks broadly capture
how the latencies of different stages contribute to RT measures,
they are agnostic to the nature of the cognitive processes
underlying response selection. Further, they do not discuss the
relationship between RT and accuracy. This is because both
frameworks assume tasks are performed with minimal errors.
Miller and Ulrich (2013) note that in order to consider the
relationship with accuracy one needs an explicit model of
response selection, such as those we discuss here (p. 844). More
broadly, our discussion focuses on the assumption that individ-
uals with higher levels of ability in a given domain should be
both relatively faster and more accurate (see also Ratcliff et al.,
2015). The results of our meta-analysis in Part 1 are at odds
with this assumption and theories of response selection provide
one way in which these inconsistencies can be understood.

Conclusions

In reflecting on the divide between individual differences and
experimental research, Borsboom, Kievit, Cervone, and Hood
(2009) suggest the two approaches are inevitably looking at dif-
ferent levels of explanation. At first glance, this appears to hold
true for the data we discuss, where interpretations of behavior at a
within-subject level do not easily translate to interpreting between-
subjects variation. However, we believe that our findings show one
way in which this “outer darkness” can be illuminated. The deci-
sion model framework allows the counterintuitive patterns of
within- and between-subjects variances to be reconciled.
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