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ABSTRACT 

OBJECTIVE. NAFLD, i.e. increased intrahepatic triglycerides (IHTG), predisposes to type 2 

diabetes and cardiovascular disease. Adipose tissue lipolysis and hepatic de novo lipogenesis 

(DNL) are the main pathways contributing to IHTG. We hypothesized that dietary macronutri-

ent composition influences the pathways, mediators and magnitude of weight gain-induced 

changes in IHTG..  

RESEARCH DESIGN AND METHODS. We overfed 38 overweight subjects (age 48±2, 

BMI 31±1 kg/m2, liver fat 4.7±0.9%) 1000 extra kilocalories/day of either saturated (SAT) or 

unsaturated (UNSAT) fat or simple sugars (CARB) for 3 weeks. We measured IHTG (1H-

MRS), pathways contributing to IHTG (lipolysis ([2H5]glycerol) and DNL (2H2O) basally and 

during euglycemic hyperinsulinemia), insulin resistance, endotoxemia, plasma ceramides and 

adipose tissue gene expression at 0 and 3 weeks. 

RESULTS. Overfeeding SAT increased IHTG more (+55%) than UNSAT (+15%, p<0.05). 

CARB increased IHTG (+33%) by stimulating DNL (+98%). SAT significantly increased whilst 

UNSAT decreased lipolysis. SAT induced insulin resistance, endotoxemia and significantly 

increased multiple plasma ceramides. The diets had distinct effects on adipose tissue gene 

expression. 

CONCLUSIONS. Macronutrient composition of excess energy influences pathways of IHTG: 

CARB increases DNL, whilst SAT increases and UNSAT decreases lipolysis. SAT induced 

greatest increase in IHTG, insulin resistance and harmful ceramides. Decreased intakes of SAT 

could be beneficial in reducing IHTG and the associated risk of diabetes. 

 

Keywords: non-alcoholic fatty liver disease, diet, overfeeding, insulin resistance, adipose tissue, 

lipolysis, de novo lipogenesis, ceramides, endotoxemia 
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INTRODUCTION 

The rapid increase in the prevalence of obesity has led to a co-epidemic of non-alcoholic fatty 

liver disease (NAFLD) (1). NAFLD is strongly associated with insulin resistance (IR) and 

predicts the development of type 2 diabetes and cardiovascular disease (CVD) (1). Whilst 

obesity is its primary acquired cause, some subjects who gain weight do not develop NAFLD 

(1,2). Whether composition of the diet contributes to susceptibility of NAFLD is unclear. 

Saturated but not polyunsaturated fat has been reported to increase intrahepatic triglycerides 

(IHTG) in young non-obese adults, despite similar weight gain (2). The epidemic of obesity has 

been attributed to an increased intake of simple sugars (3). However, there are no studies 

comparing the effects of overfeeding simple sugars, saturated or unsaturated fat diets on IHTG.  

 

Fatty acids (FAs) in IHTG can originate from adipose tissue lipolysis, hepatic de novo 

lipogenesis (DNL) and dietary fat (4). Lipolysis provides most of the FAs used for synthesis of 

IHTG (4). DNL produces exclusively saturated fatty acids (SFA) from substrates such as simple 

sugars (4,5). Excess sugar intakes increase DNL and IHTG content in humans (5). In mice, a 

high-fat diet increases adipose tissue lipolysis (6). The pathway via which IHTG are synthesized 

in response to overconsuming fat has not been studied in humans.  

 

While IHTG are commonly associated with IR, triglycerides (TG) themselves are inert and do 

not confer IR (7). We have previously shown in humans that IR co-segregates with hepatic 

ceramides, independent of IHTG and obesity (7). Ceramides are synthesized de novo from SFA 

such as palmitate, and interfere glucose metabolism by inhibiting insulin signaling (8) and by 

stimulating hepatic gluconeogenesis (9). Inflammatory mediators such as endotoxins derived 

from gut bacteria may induce IR by upregulating ceramide synthesis (10). In mice, saturated but 

not unsaturated fat feeding increases the proportion of endotoxin-containing bacteria in the gut, 

plasma concentrations of endotoxin, and induces IR (11,12). To our knowledge, there are no 
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human data comparing the effects of hypercaloric diets enriched with either saturated or 

unsaturated fat or simple sugars on IR, plasma ceramides, endotoxemia and gut microbiota. 

 

In the present study, we hypothesized that the metabolic effects of a hypercaloric diet depend on 

the macronutrient composition. Specifically, we hypothesized that (a) overconsumption of 

simple sugars stimulates DNL whilst saturated fat increases lipolysis, (b) overconsumption of 

simple sugars and saturated fat increases availability of SFA and thereby ceramide synthesis, (c) 

saturated but not unsaturated fat or simple sugar diets induce endotoxemia which may further 

increase ceramide synthesis. Accordingly, we compared the effects of three hypercaloric (1000 

extra kilocalories/day for 3 weeks) diets on (i) IHTG content, (ii) rates of DNL, (iii) rates of 

lipolysis, (iv) adipose tissue transcriptome, (v) plasma concentrations of ceramides, (vi) gut 

microbiota and a circulating marker of endotoxemia (Figure 1A). 
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RESEARCH DESIGN AND METHODS 

Subjects. Subjects in this study (ClinicalTrials.gov, NCT02133144) were recruited by 

newspaper advertisements or by contacting subjects who previously had participated in 

metabolic studies. Exclusion criteria included i) type 1 or 2 diabetes, ii) pre-existing 

autoimmune, viral or drug-induced liver disease, iii) excessive use of alcohol (over 20g/day for 

women and over 30g/day for men), iv) evidence of any other acute or chronic disease, v) 

extreme obesity (BMI≥40 kg/m2), vi) use of drugs influencing glucose or lipid metabolism, vii) 

pregnancy or lactation. All subjects suitable for the study based on a telephone interview were 

invited for a screening visit. The flow chart of study subjects is shown in Figure S1. The nature 

and potential risks of the study were explained to volunteers prior to obtaining written informed 

consent.  The ethics committee of the Helsinki University Hospital approved the study protocol. 

 

Study design (Figure 1A). The day before the metabolic study, a blood sample was taken for 

measurement of background enrichment of 2H in plasma water and VLDL-TG palmitate for 

measurement of DNL. Subjects then underwent measurement of IHTG by proton magnetic 

resonance spectroscopy (1H-MRS). The following morning subjects arrived at the clinical 

research unit after an overnight fast and after consuming deuterated water (2H2O) (3 g/kg body 

water) the evening prior to the study day, to achieve a plasma water enrichment of 0.3% for the 

measurement of DNL. Fecal samples were self-collected and stored immediately at −20°C and 

within 24 h at -80°C until analysis. Body composition (InBody 720, Biospace, Seoul, Korea), 

weight and height were measured and blood samples taken for measurement of DNL and for 

liver function tests, fasting glucose, FFA, insulin, total, HDL and LDL cholesterol and TG 

concentrations. Thereafter, a euglycemic hyperinsulinemic clamp combined with infusion of 

[2H5]glycerol for measurement of lipolysis was performed.  
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After the baseline visit, the subjects were randomized to one of three groups to consume a 

hypercaloric (1000 excess kcal/day) diet for 3 weeks with excess energy originating 

predominantly from either saturated fat (SAT, 76% from SFA, 21% from MUFA and 3% from 

PUFA), unsaturated fat (UNSAT, 57% from monounsaturated fatty acids (MUFA), 22% from 

polyunsaturated fatty acids (PUFA), 21% from saturated fatty acids (SFA)), or from simple 

sugars (CARB, 100% simple sugars). The overfeeding diets were provided to participants, and 

consisted in the SAT group of 30g coconut oil, 40g butter and 100g of 40% fat containing blue 

cheese as extra energy per day, in the UNSAT group of 36g olive oil, 26g pesto, 54g pecan nuts 

and 20g of butter, and in the CARB group of 2.8dL orange juice, 4.3dL of a sugar-sweetened 

beverage, and 200g of candy. Of the overfeeding energy, 2%, 91% and 7% came from 

carbohydrate, fat and protein in the UNSAT group and 1%, 86% and 13% from these sources in 

the SAT group, respectively and 100% from simple sugars in the CARB group. After 3 weeks of 

consuming the hypercaloric diets, baseline measurements were repeated.  

 

Adherence to the diets was reinforced by weekly contacts with the study dietician, and verified 

by 3-day dietary records, which were performed before and after 3 weeks on the diet, and by 

measuring the FA composition of fasting VLDL-TG as an objective biomarker of recent dietary 

FA intake (13). The food records were analyzed using the AivoDiet software (version 2.0.2.3, 

Aivo Finland, Turku, Finland). 

 

Methods. The FA composition of VLDL-TG was assessed as described in Supplementary Mate-

rial. Respiratory gas exchange and rates of resting energy expenditure and substrate oxidation 

were recorded by indirect calorimetry as described (14). IHTG content was determined by 1H-

MRS and visceral and subcutaneous fat by magnetic resonance imaging using 1.5T Siemens 

Avantofit as described (5). Fasting DNL was assessed based on the incorporation of deuterium 

from 2H2O in plasma water (Finnigan GasBench-II, ThermoFisher Scientific, UK) into VLDL-
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TG palmitate using gas chromatography/mass spectrometry (GC/MS). Further details of DNL 

methodology are given in Supplementary Material. Insulin action on serum FFA and glycerol 

rate of appearance (Ra) were determined using the euglycemic hyperinsulinemic clamp tech-

nique as previously described (5). The duration of the insulin infusion was 120 min (120-240 

min) and rate of the continuous insulin infusion was 0.4 mU/kg·min. Adipose tissue transcrip-

tome and gut microbiota were analyzed as detailed in Supplement Material. Plasma ceramide 

analyses were performed as described (15). Serum lipopolysaccharide-binding protein (LBP) 

and soluble cluster of differentiation 14 (sCD14) were measured by quantitative enzyme-linked 

immunosorbent assay using human LBP DuoSet® and human CD14 DuoSet® kits (R&D Sys-

tems, Minneapolis, MN, USA). Plasma adiponectin (7) and other analytical procedures were 

assessed as described (15) 

 

Power calculation. IHTG was the primary outcome. Based on a previous study (2), 12 subjects 

per group were needed to detect a 1.4% difference in change in liver fat between the three 

groups with an alpha of 0.05, beta of 0.2 and standard deviation of 1.0.  

 

Statistics. Continuous variables were tested for normality using the Kolmogorov-Smirnov 

method. Changes between groups were compared using one-way analysis of variance followed 

by a Fisher’s least significant differences test to analyze the differences between groups. 

Nonparametric variables were log-transformed for analysis and back-transformed for 

presentation, or analyzed nonparametrically with the Kruskal-Wallis test. The paired Student’s 

t-test was used to explore within-group effects of overfeeding. Categorical variables were 

analyzed with Fisher’s exact test. Data are presented as the means with SDs for normally 

distributed variables and as medians (quartiles 1-3) for non-normally distributed variables unless 

otherwise specified. P<0.05 were considered statistically significant. 
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RESULTS 

Baseline characteristics 

Baseline studies were performed in 39 subjects, of which 38 completed the study. The SAT, 

UNSAT and CARB groups were comparable with respect to age, gender, BMI, IHTG, body 

composition and biochemical characteristics such as glucose, insulin, lipids and liver enzymes 

(Table 1). Baseline composition of the diet (Table S1) and the FA composition of VLDL-TG 

(Table S2) were also comparable between the groups.  

 

Compliance 

Macronutrient composition. At the end of the overfeeding period, fat comprised 60 [54–64] and 

59 [53–61]% of total energy intake in the SAT and UNSAT groups, respectively. These 

percentages were 2-fold higher than in the CARB group (24 [20–26]%, Table S1). Saturated fat 

intake was 2-fold higher in the SAT (33 [28–36]%) than the UNSAT (14 [14–18]% group 

(p<0.001). Monounsaturated (28 [23–30] vs. 13 [12–15]%, UNSAT vs. SAT, p<0.001) and 

polyunsaturated (11 [10–14] vs. 5 [4–5]%, respectively, p<0.001) fat intakes were 2-fold higher 

in the UNSAT than the SAT group. The % total energy intake from carbohydrate was 2.8-fold 

higher in the CARB (64 [58–68]%) than in the UNSAT (23 [19–29]%, p<0.001) or the SAT (26 

[23–32]%, p<0.001) group. 

 

FA composition of VLDL-TG. The FA composition of fasting plasma VLDL-TG, was used to 

monitor compliance (Figure 1B). During the SAT diet, the abundance of SFA in VLDL-TG 

increased significantly: 16:0 by 17% (26.2±3.6 vs. 30.7±3.6 mol% (p<0.001)), 18:0 (3.1±1.2 vs. 

4.1±1.2 mol% (p<0.01)) and 14:0 (1.8±0.7 vs. 4.8±1.7 mol% (p<0.001)). The abundance of 18:2 

decreased significantly during the SAT diet. During the UNSAT diet, 18:2 increased 

significantly (p<0.01). During the CARB diet, the abundance of 16:0, 14:0 and 16:1 increased 

and 18:2 decreased significantly (p<0.05) (Figure 1B).    
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Body weight and composition 

In all subjects, body weight increased by 1.4±1.5 % from 92.1±17.0 to 93.3±17.2 kg (p<0.001). 

Changes in body weight averaged 1.4±1.2 kg in the SAT, 0.9±1.1 kg in the UNSAT and 1.4±1.6 

kg in the CARB groups (p=NS). Visceral (1940±1605 vs. 2072±1674 cm3; 2019±1328 vs. 

2080±1361 cm3; 2014±1217 vs. 2115±1351 cm3, before vs. after, respectively in the SAT, 

UNSAT and CARB groups) and subcutaneous (4770±2152 vs. 4906±2090 cm3; 4732±2350 vs. 

4805±2473 cm3; 5133±2154 vs. 5204±2157 cm3, respectively) fat volumes tended to increase 

but did not change significantly during overfeeding.  

 

Energy expenditure and substrate oxidation rates 

All subjects. As expected, overfeeding increased resting energy expenditure significantly from 

7.49±1.36 to 7.61±1.48 MJ/day (p<0.05) in all subjects. Rates of energy expenditure and 

substrate oxidation rates expressed per kg body weight or fat free mass remained unchanged in 

all subjects, within and between groups (data not shown). Non-protein respiratory quotient 

(NPRQ) did not change with overfeeding (data not shown). 

 

Intrahepatic triglycerides  

IHTG increased by 55% (4.9±6.6 vs. 7.6±8.8% (p<0.001)) in the SAT group, by 15% (4.8±4.9 

vs. 5.5±4.8% (p<0.02)) in the UNSAT group, and by 33% (4.3±4.7 vs. 5.7±5.4% (p<0.02)) in 

the CARB group (Figure 1C). The increase was significantly greater in the SAT than the UN-

SAT (p<0.01) group (Figure 1D).  This difference was independent of changes in body weight 

as determined by the significantly different intercepts of the linear regression lines between 

change in IHTG and change in body weight in the SAT vs. the UNSAT group (p<0.05, Figure 

S2). 

 

De novo lipogenesis  
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Hepatic DNL, as determined by the amount of newly synthesized palmitate in VLDL-TG, in-

creased significantly during the CARB diet (96 [47–116] vs. 190 [61–303] µmol/L, p<0.05) but 

not other diets (Figure 2A).  

 

Lipolysis  

Basal state. Fasting serum insulin increased significantly with overfeeding in the SAT group 

(8.1 [5.8–11.9] vs. 9.5 [5.9–11.9] mU/L, p<0.05) but remained unchanged in the UNSAT (9.1 

[6.5–14.6] vs. 9.5 [7.8–11.1] mU/L, NS) and CARB (10.3 [6.2–19.2] vs. 11.1 [6.9–23.8] mU/L, 

NS) groups. Basal whole-body glycerol Ra remained unchanged in all groups (Figure 2B).  

 

Euglycemic hyperinsulinemia. During hyperinsulinemia, increases in serum insulin 

concentrations were similar before and after the diets (22±7 vs. 22±6 mU/L, p=NS) with no 

differences between the SAT, UNSAT and CARB groups (data not shown). Whole-body 

glycerol Ra during euglycemic hyperinsulinemia compared to baseline increased in SAT 

(2.08±0.46 vs. 2.31±0.59 µmol/kg·min, p<0.05), decreased in the UNSAT (2.59±0.87 vs. 

2.14±0.77 µmol/kg·min, p<0.05), and remained unchanged in the CARB (2.15±0.74 vs. 

2.27±0.64 µmol/kg·min, NS) group after overfeeding (Figure 2C). Insulin-induced suppression 

of whole-body glycerol Ra increased significantly more in the SAT compared to the UNSAT 

(p<0.001) and the CARB compared to the UNSAT (p<0.01) group (Figure 2C).   

 

Serum FFA. Serum FFA concentrations, which reflect the net effects of lipolysis and lipogene-

sis, remained unchanged in the SAT group but decreased significantly during hyperinsulinemia 

by overfeeding in the UNSAT and CARB groups (Figure S3). 

 

Adipose tissue transcriptome 
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Gene set analysis identified 28 reporter pathways out of 134 curated KEGG pathways at a 5% 

FDR. The SAT and CARB diets changed 18, while the UNSAT diet changed 5 pathways, which 

were highly distinctive between the diets. Only 3 pathways overlapped between all diets (Figure 

2D). The pathways upregulated by the SAT diet included those related to inflammation, such as 

genes related to E. coli infection, natural killer cell-mediated cytotoxicity, NOD-like receptor 

signaling and leukocyte transendothelial migration, and to glycerolipid metabolism. The SAT 

and CARB diets shared some pathways related to inflammation, such as genes related to antigen 

processing, chemokine signaling, and hematopoietic cell lineage. In addition, CARB induced 

pathways related to carbohydrate metabolism such as fructose and mannose metabolism, pen-

tose phosphate pathway and glycolysis/gluconeogenesis. The UNSAT diet upregulated path-

ways related to oxidative phosphorylation and extracellular matrix.  

 

Insulin resistance and plasma ceramides  

In the SAT group, HOMA-IR increased significantly by 23% (1.9 [1.3–3.2] vs. 2.2 [1.4–3.3], 

p<0.05). In addition, total plasma ceramide concentration increased significantly by 49% 

(p<0.001) in the SAT group. In contrast, there were no changes in plasma ceramides in the UN-

SAT or CARB groups. The increase in total plasma ceramides was significantly higher in the 

SAT as compared to the UNSAT (p<0.05) and the CARB (p<0.001) groups. This difference was 

independent of changes in body weight as determined by the significantly different intercepts of 

the linear regression lines between change in total plasma ceramides and change in body weight 

in the SAT vs. the UNSAT (p<0.05) and in the SAT vs. the CARB (p<0.001) groups. 

 

The increase in total plasma ceramide concentration in the SAT group was due to increases in 

several long-chain ceramides (Figure 3, Table S3). Plasma concentrations of dihydroceramides 

(i.e. the precursors of ceramides in the de novo ceramide synthetic pathway, the species with 
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18:0 sphingoid base) were also increased in the SAT but not the other groups (Figure 3, Table 

S3). 

 

Gut microbiota and LBP/sCD14 

Serum LBP/sCD14, a marker of endotoxemia (16), increased significantly (4.3±1.0 vs. 4.7±1.1 

(p<0.01)) in the SAT group but not in the other groups. The increase in LBP/sCD14 was 

significantly higher in the SAT as compared to UNSAT (p<0.05) and CARB (p<0.001) groups. 

Regarding gut microbiota, most (79%) of between-sample microbiota variation was explained 

by the subject (p<0.001, Figure S4), highlighting overall resilience of the individual-specific 

microbiota during overfeeding. We next analyzed individual taxa that were affected by 

overfeeding (Figure S5). The abundance of gram-negative Proteobacteria increased 3.6-fold 

during the SAT (p=0.038) but not the other diets (Figure S6). Other bacterial families remained 

unchanged.  

 

Plasma lipids, adiponectin and liver enzymes 

Baseline concentrations are shown in Table 1. Plasma HDL cholesterol increased significantly 

by 17% in the SAT (+0.3±0.3 mmol/l, p<0.01 for after vs. before) but not in the UNSAT 

(+0.1±0.3 mmol/l) or CARB (-0.1±0.2 mmol/l) groups. The increase in HDL cholesterol was 

significantly greater in the SAT than the CARB group (p<0.001). Plasma LDL cholesterol in-

creased by 10% in the SAT group (+0.3±0.4 mmol/l, p<0.01) but remained unchanged in the 

UNSAT and CARB groups. There were no significant changes in plasma triglycerides or adi-

ponectin in the groups. Plasma ALT increased significantly in the SAT (28±15 vs. 35±18 IU/L, 

p<0.05) but not in the UNSAT (26±9 vs. 27±5 IU/L) or CARB (24±11 vs. 28±18 IU/L) groups. 

Plasma AST increased in the SAT (26±5 vs. 29±6 IU/L, p<0.05) but remained unchanged in the 

UNSAT and CARB groups. 
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DISCUSSION  

NAFLD has been shown to predict type 2 diabetes and cardiovascular disease in multiple 

studies even independent of obesity (1). It also increases the risk of progressive liver disease 

(17). It is therefore interesting to compare effects of different diets on liver fat content and 

understand the underlying mechanisms. We examined whether provision of excess calories as 

saturated (SAT) or unsaturated (UNSAT) fats or simple sugars (CARB) influences the 

metabolic response to overfeeding in overweight subjects. All overfeeding diets increased 

IHTG. The SAT diet induced a greater increase in IHTG than the UNSAT diet. The composition 

of the diet altered sources of excess IHTG. The SAT diet increased lipolysis, while the CARB 

diet stimulated DNL. The SAT but not the other diets increased multiple plasma ceramides, 

which increase the risk of cardiovascular disease independent of LDL cholesterol (18). 

 

Compliance. The FA composition of liver TG is similar to that in VLDL (4). We monitored 

compliance by analyzing changes in FA composition of VLDL-TG. The SAT diet increased 

SFA while the UNSAT diet increased polyunsaturated FA (Figure 1B). The CARB diet also 

increased SFA, which are exclusive products of DNL (5). These data demonstrate that subjects 

were compliant, and are novel in showing that different diets have distinct effects on hepatic FA 

composition as determined from that in VLDL-TG. Weight gain averaged 1.2 kg in all subjects 

overeating 1000 kcal for 3 weeks. This weight gain is consistent with that (1.6 kg) observed by 

Riserus et al. in healthy subjects overeating 600 kcal/day for 7 weeks (2) but less than that 

observed by Harris et al. (2.3 kg) during the first 3 weeks of overfeeding 1000 kcal/day (19). As 

in the present study, inter-individual variation in the latter study was large and ranged from 1 to 

7 kg after 8 weeks (19). We also observed slightly but not significantly less weight gain in 

subjects fed the UNSAT compared to the other diets. However, importantly the key findings, i.e. 

the greater increase in liver fat, lipolysis and ceramides by the SAT as compared to the UNSAT 

diet were independent of changes in body weight.  
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IHTG. Overfeeding increases IHTG (2,5,20). The SAT diet increased IHTG significantly more 

than the UNSAT diet in the face of similar energy excess and independent of changes in body 

weight. This is consistent with a previous study showing a greater increase in IHTG after 

overfeeding saturated than polyunsaturated fat (2). Similarly, an isocaloric saturated fat-enriched 

diet increases IHTG compared to polyunsaturated fat (21). High saturated fat intakes 

characterize subjects with NAFLD (22-23). Thus, diet composition influences IHTG and that 

saturated fat induces greater accumulation of IHTG than unsaturated fat.  

 

Pathways of IHTG. Regarding the mechanisms underlying increased IHTG during overfeeding, 

direct quantification of sources of FAs in IHTG using stable isotopes and liver biopsies in 

subjects with elevated IHTG have shown that the majority of IHTG are derived from adipose 

tissue lipolysis (59%) and DNL (26%) (4). We found SAT to increase and UNSAT to decrease 

adipose tissue lipolysis. Lipolysis was traced using deuterated glycerol, which is not re-

esterified in adipose tissue due to a lack of glycerol kinase. This contrasts S-FFA which 

concentration reflects net effects of lipolysis and lipogenesis. Overfeeding decreased S-FFA, as 

reported previously (20). There are no studies measuring overfeeding effects on lipolysis in 

humans. In mice high-saturated fat feeding stimulates lipolysis via inflammatory mediators (6). 

In keeping with such data, we found upregulation of multiple inflammation-related pathways in 

adipose tissue transcriptome. Polyunsaturated fatty acids inhibit lipolysis via activation of G-

protein coupled receptor 120, which mediates anti-inflammatory and insulin-sensitizing effects 

(24-25). The opposite effects of the SAT and UNSAT diets on lipolysis, the major contributor to 

IHTG, could explain why SAT increased IHTG to a greater extent than the UNSAT diet.   

 

Overfeeding simple sugars stimulates DNL, which produces exclusively SFA in humans and 

occurs mainly in the liver (5). Consistent with these data, the CARB diet increased hepatic DNL 
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and SFAs in VLDL-TG (Figures 1B and 2A). The CARB diet also induced multiple pathways 

related to carbohydrate metabolism in the adipose tissue transcriptome (Figure 2D). 

 

IR and its mediators. The SAT diet induced IR. This is consistent with several studies showing 

that isocaloric substitution of saturated for monounsaturated (26-27) or polyunsaturated fat (28), 

or carbohydrates (27) ameliorates IR. Recently, a large prospective study reported intake of 

foods rich in SFA such as butter and cheese to increase the risk of type 2 diabetes (29).  

 

SAT but not the other diets increased multiple plasma ceramides. TGs themselves are inert and 

do not confer IR (7). In mice, ceramides are key mediators of saturated fat-induced IR (8-10,30-

33) and the most upregulated lipid species in inflamed adipose tissue in human NAFLD (34). 

SFAs and ceramides originating from de novo ceramide synthesis co-segregate with IR in 

human NAFLD (7). Saturated palmitoyl-CoA is an obligate precursor for the de novo pathway 

(8,30). The SAT diet thus may have induced IR via stimulating the de novo ceramide synthetic 

pathway in the liver. The SAT but not the other diets also increased markers of endotoxemia and 

upregulated genes related to gram-negative bacterial infection in adipose tissue.  These changes 

could have contributed to SAT-induced lipolysis and de novo ceramide synthesis since in mice 

endotoxin induces both adipose tissue inflammation (11) and ceramide-dependent IR (10).   

 

Limitations of our study include small sample size although largest of its kind (35). Another 

limitation is that we did not assess physical activity objectively during the study. It might also 

have been helpful to include a control group being overfed their habitual diet.  

 

In conclusion, overfeeding either saturated or unsaturated fat or simple sugars for 3 weeks 

increases IHTG but its magnitude and the associated metabolic changes depend on the diet. 

Saturated fat induced highest increase in IHTG by stimulating adipose tissue lipolysis, the major 



 17 

pathway of IHTG. Moreover, saturated fat induced insulin resistance and increased circulating 

concentrations of ceramides. In contrast to saturated fat, overfeeding of unsaturated fat led to a 

smaller increase in IHTG, decreased lipolysis and no change in ceramides. Simple sugars 

increased IHTG by stimulating DNL. Consistent with current dietary recommendations (36-38), 

the present study shows that saturated fat is the most harmful dietary constituent regarding 

IHTG accumulation. Since NAFLD increases the risk of type 2 diabetes, avoidance of foods rich 

in saturated fats might also help in prevention of diabetes. 
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Figure Legends 

Figure 1.  (A) Design of the study, (B) overfeeding-induced changes in fatty acid (FA) 

composition of VLDL-TG in the groups, (C) intrahepatic triglyceride (IHTG) before and 

after overfeeding, and (D) changes in IHTG between the groups. The subjects were 

randomized into overfeeding either saturated fat (SAT), unsaturated fat (UNSAT), or simple 

sugars (CARB). All subjects underwent metabolic studies at baseline and after 3 weeks of 

overfeeding. At these visits, intrahepatic triglyceride content was determined by proton 

magnetic resonance spectroscopy (1H-MRS), hepatic de novo lipogenesis from 2H2O enrichment 

in VLDL-TG palmitate, adipose tissue lipolysis by 2H5-glycerol in the basal state and during 

euglycemic hyperinsulinemia, plasma ceramides by UHPLC-MS, and endotoxemia by fecal 16S 

rRNA and serum LBP/sCD14 ELISA. In addition, adipose tissue transcriptome was determined 

by microarray. Black bars denote the SAT group, white bars the UNSAT, and hatched bars the 

CARB group. In (B), the x-axis shows the change in % FA in VLDL-TG after versus before 

overfeeding and the y-axis the specific fatty acids in VLDL-TG. Data are shown as mean ± 

SEM. * p<0.05, ** p<0.01, *** p<0.001 within groups. † = p<0.05 between groups. B = before, 

A = after. 

 

Figure 2. Overfeeding-induced changes in (A) hepatic de novo lipogenesis, (B) basal glyc-

erol rate of appearance (Ra), (C) glycerol Ra during euglycemic hyperinsulinemia, and (D) 

adipose tissue transcriptome. Black bars denote the saturated fat (SAT), white bars the unsatu-

rated fat (UNSAT), and hatched bars the simple sugar (CARB) group. The y-axes indicate the 

change of mean values after versus before overfeeding within groups. Data are reported as mean 

± SEM or in medians (interquartile ranges), as appropriate. *p<0.05, ** p<0.01, *** p<0.001. † 

= p<0.05 between groups, † † = p<0.01 between groups. The bubble grid shows the reporter test 

statistics (proportional to size and color intensity) comparing post- relative to pre-overfeeding 
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gene expression. Only pathways significant in at least one diet are shown (<5% false discovery 

rate).  

 

Figure 3. Overfeeding-induced changes in individual plasma ceramides in the groups. In 

the heatmaps, each square indicates the log2 of the ratio between mean concentrations after ver-

sus before for an individual ceramide. The color key denotes the relationship between the color 

of the heatmap and log2 of the ratio between the means with 0 indicating no change. The y-axis 

denotes the fatty acyl chain structure (number of carbon atoms:number of double bonds) and the 

x-axis the sphingoid base species. *p<0.05, ** p<0.01, *** p<0.001.  
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Table 1. Baseline clinical characteristics of the study subjects according to diet group. 

 
SAT UNSAT CARB 

Group size (n) 14 12 12 

Age (years) 48 ± 8 52 ± 10 45 ± 10 

Gender (n, women/men) 8/6 7/5 6/6 

BMI (kg/m2) 30 ± 6 31 ± 6 33 ± 6 

Fat free mass (kg) 58.6 ± 9.7 60.2 ± 13.3 61.9 ± 12.3 

Liver fat (1H-MRS, %) 4.9 ± 6.6 4.8 ± 4.9 4.3 ± 4.7 
Visceral adipose tissue 
(MRI, cm3) 1940 ± 1605 2019 ± 1328 2014 ± 1217 

Subcutaneous adipose tis-
sue (MRI, cm3) 4770 ± 2152 4732 ± 2350 5133 ± 2154 

Waist circumference (cm) 97 ± 17 98 ± 13 102 ± 12 

Waist to hip ratio 0.90 ± 0.10 0.90 ± 0.07 0.92 ± 0.06 

LBP/sCD14 4.3 ± 1.0 4.6 ± 0.9 4.9 ± 1.6 

fP-Glucose (mmol/l) 5.6 ± 0.6 5.7 ± 0.6 5.9 ± 0.7 

Impaired fasting glucose 
(>5.6 mmol/l) 

8 6 8 

fS-Insulin (mU/l) 8.1 (5.8 – 11.9) 9.1 (6.5 – 14.6) 10.3 (6.2 – 19.2) 

HOMA-IR 1.9 (1.3 – 3.2) 2.3 (1.6 – 4.0) 2.8 (1.7 – 5.0) 

Systolic BP (mmHg) 133 ± 15 134 ± 17 139 ± 20 

Diastolic BP (mmHg) 80 ± 11 83 ± 7 85 ± 13 

fP-Triglycerides (mmol/l) 1.1 ± 1.0 1.1 ± 0.4 1.4 ± 0.6 
fP-HDL cholesterol 
(mmol/l) 1.62 ± 0.39 1.61 ± 0.47 1.53 ± 0.37 

fP-LDL cholesterol 
(mmol/l) 3.2 ± 1.0 3.4 ± 0.8 3.5 ± 0.8 

fS-FFA (µmol/l) 556 ± 217 610 ± 181 639 ± 225 

fP-Adiponectin (µg/ml) 11.0 ± 4.3 10.5 ± 5.7 10.3 ± 5.8 

fP-ALT (IU/l) 28 ± 15 26 ± 9 24 ± 11 

fP-AST (IU/l) 26 ± 5 27 ± 7 26 ± 6 

PNPLA3 (CC/CG/GG) (n) 9/5/0 7/4/1 5/4/2 
Data are in n (%), means ± SD or median (25th-75th percentile), as appropriate. There were no 
significant differences in any variable between the groups using ANOVA, Kruskal-Wallis and 
Fisher’s exact test, as appropriate.   
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Adipose tissue transcriptome  

 

In the beginning of the study, after indirect calorimetry, a needle aspiration biopsy from 

abdominal subcutaneous adipose tissue was obtained under 1% lidocaine anesthesia and 

immediately frozen in liquid nitrogen and stored at −80°C until analysis. Total RNA was 

isolated using the RNeasy Lipid Tissue Mini Kit (Qiagen, Valencia, CA). 

 

Bioinformatics. The Illumina HumanHT12v4 microarray chips (Illumina, San Diego, CA) 

were annotated using the IlluminaHumanv4.db from Bioconductor. A standard non-specific 

filtering approach was used to extract genes most likely to be expressed in the tissue and to 

ultimately limit the number of tests to genes of interest. Specifically, probes without 

annotation to a gene were removed, and if multiple probes matched to a gene, only the probe 

with the highest interquartile range across samples was included. Finally, only genes with 

inter-quartile range greater than the median of all genes were included. KEGG pathways were 

downloaded from the Molecular Signatures Database 

(http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C2). To limit the number of 

tests to pathways of interest, unrelated pathways were removed e.g. Huntington’s disease. 

 

Statistical analysis. The pre/post comparisons within each diet were computated using 

LIMMA (1). Specifically, the two factors (time and diet) were converted into a single factor 

with 6 levels, and after running the full model, contrast tests between levels of interest were 

performed (e.g. Diet 1-Pre vs Diet 1-Post). The model was analyzed as a multi-level model to 

account for repeated measures. Array-quality weights were estimated and included in the 

model. Details of the LIMMA procedure can be found in the comprehensive manual (2).  

 

For the reporter features analysis (3), log2 fold-change and unadjusted p-values from the 

LIMMA analysis were used as input.  Statistical significance was determined from the null 

distribution and gene sets were limited to those with more than 3 genes and no more than 200. 

Otherwise, default parameters were used. Distinctly up- and down-regulated pathways were 

used to determine pathway enrichment in the specific direction. P-values were adjusted to the 

Benjamini-Hochberg false discovery rate. 
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Gut microbiota  

 

Bacterial DNA was extracted from fecal samples using mechanical cell lysis that efficiently 

extracts bacterial community DNA as previously described (4). Illumina MiSeq paired-end 

sequencing of the hypervariable V3-V4 regions of the 16S rRNA gene was performed 

according to the manual from Illumina except that the libraries were prepared with single-step 

PCR, i.e. by amplifying the 16S rRNA gene fragment together with barcoded primers, the 

latter adapted from Kozich et al (5).  The multiplex PCR reaction is comprised of 1 ng/ul 

template, 1X Phusion® Master Mix (ThermoFisher, F-531L), 0.25 uM V3-V4 locus specific 

primers and 0.375 uM dual-index barcodes. The PCR was run under the following settings: 98 

°C for 30 s, 27 cycles of 98 °C for 10 s, 62 °C for 30 s, 72 °C for 15 s and finally 10 min at 72 

°C, where after the samples were stored at 4 °C. The size of the PCR product was expected to 

be ~640 base pairs (bp) and verified on a Bioanalyzer DNA 1000 chip (Agilent Technology, 

Santa Clara, CA, USA). The PCR clean-up was performed with AMPure XP beads (Beckman 

Coulter, Copenhagen, Denmark) and confirmation of the right size of the target was 

performed on a Bioanalyzer DNA 1000 chip (Agilent Technology, CA, USA). The pooled 

libraries were sequenced at the sequencing unit of the Institute for Molecular Medicine 

Finland (FIMM), Helsinki, Finland with an Illumina MiSeq instrument using paired end 2 × 

300 bp reads and a MiSeq v3 reagent kit with 5% PhiX as spike-in.  

 

Sequencing data preprocessing, analysis and statistics  

The forward reads were truncated to length of 150 bases with mare’s “ProcessReads” 

command. We used default settings for minimum quality score and maximum expected errors. 

Reads with prevalence below 0.01% were removed. Chimera removal and dereplication of the 

reads was done using USEARCH8 (6). Truncated, filtered and dereplicated reads were 

annotated using the Silva database (7). The median read count per sample after preprocessing 

was 68797 (range 296 –148 604). The data analysis was done without rarefaction or 

transformations utilizing statistical and visualization tools included in the mare-package (8). 

The number of reads was used as an offset in all statistical models. Community dissimilarity 

was estimated with principal coordinates analysis (PCoA) using Bray-Curtis dissimilarity as 

the distance measure. PCoA was calculated with capscale function of R package vegan and 

Bray-Curtis dissimilarities with function vegdist of the same package (9). Permutational 

multivariate analysis of variance using distance matrices was performed with adonis function 

in package vegan to calculate the relative contribution of different factors in the microbiota 
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variation. Taxonomic richness was estimated as the number of observed OTUs after clustering 

the reads to operational taxonomic units (OTUs) using USEARCH8. Comparison of the 

abundance of bacterial genera between two time points in each intervention group was 

performed using generalized linear mixed models within “GroupTest” function of the mare 

package using subject as the random factor. This function uses the glmmADMB package 

(generalized linear mixed models built on AD Model Builder) of R software on background 

and assumes negative binomial distribution of abundance. 

 

DNL methodology 

Fasting DNL was assessed based on the incorporation of deuterium from 2H2O in plasma 

water (Finnigan GasBench-II, ThermoFisher Scientific, UK) into VLDL-TG palmitate using 

gas chromatography/mass spectrometry (GC/MS) with monitoring ions with mass-to-charge 

ratios (m/z) of 270 (M+0) and 271 (M+1) (10). 

For the calculation of DNL in VLDL-TG using the mass isotopomer distributions, the 

maximum number of deuterium molecules synthesized from plasma palmitate was assumed to 

be 22 (11). When constant enrichment in the precursor pool (plasma water) was obtained, F 

was the enrichment of palmitate synthesized during the time between the loading dose of 2H2O 

and the collection time. When isotopic equilibrium in the product pool (palmitate) was 

obtained, F was constant. F = plasma palmitate enrichment/(22 × plasma deuterium 

enrichment). The percentage of de novo lipogenesis (%DNL) was calculated by multiplying F 

by 100%. Absolute DNL was calculated by multiplying %DNL and the concentration of TG 

in VLDL (12).   

Consistently with a number of previous studies (10, 12-18), we used deuterated water with 

less than 24 hour loading for measurements of DNL. If the labelling period was longer, it is 

likely that we would have found higher rates of DNL. However, then it would have been also 

more challenging to account for differences in the recirculation of labeled fatty acids.  A 

limitation of measuring DNL after an overnight fast only, is that we were unable to assess the 

synthesis of other fatty acids from DNL such as C16:1n-7 and C18:0 as done by Wilke et al. 

(Diabetologia 2009) as the labeling period (~12 h) was not long enough. 

 

Although we have anecdotal evidence that 3 weeks is long enough to clear the majority of 

labeled lipid products from the first study on the day before each of the metabolic study days, 
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a blood sample was taken for measurement of background enrichment of 2H in plasma water 

and VLDL-TG palmitate for measurement of DNL. Therefore we were able to account for any 

differences in plasma water and VLDL-TG for the second visit.  Regarding other labeled 

precursors that may have been generated from the 2H2O administered at baseline, we did not 

measure labeling of 2H-FFA palmitate in this study, as we have in previous studies found it to 

be minimal.  

 

FA composition of VLDL-TG 

VLDL was isolated by ultracentrifugation as described (19). Total lipids were extracted (20) 

and FA methyl esters (FAMEs) prepared from TG as described (21). Separation and 

quantification (expressed as mol%) of FAMEs was achieved on a HP6890 GC (Agilent 

Technologies, Stockport, UK) with flame ionisation detection. 
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Supplementary Figures 

 

Figure S1. Study flow chart. A total of 54 subjects were assessed for eligibility, 39 of whom 

were considered eligible. One subject withdrew from the study. Data were collected and 

analyzed on 14 subjects enrolled to the SAT diet, 12 subjects enrolled to the UNSAT diet, and 

12 subjects enrolled to the CARB diet. 
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Figure S2. Linear regression between change in intrahepatic triglycerides (IHTG) and 

change in weight in the diet groups. The y-axis denotes the change in IHTG after versus 

before overfeeding as %-units determined by proton magnetic resonance spectroscopy (1H-

MRS). The x-axis denotes the change in body weight in kilograms after versus before 

overfeeding. Red symbols and line = saturated fat (SAT) group; green symbols and line = 

unsaturated fat (UNSAT) group; blue symbols and line = simple sugar (CARB) group. 
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Figure S3. Serum free fatty acid (FFA) concentrations during euglycemic 

hyperinsulinemic clamp before and after the overfeeding. SAT = saturated fat (panel on 

the top), UNSAT = unsaturated fat (panel in the middle), CARB = simple sugar group (panel 

on the bottom). The x-axes denote serum FFA concentration and the y-axes time from the 

beginning of the study (euglycemic hyperinsulinemic clamp was started at 120 minutes).  

*p<0.05, **p<0.01.   
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Figure S4. Principal coordinates analysis (PCoA) plot based on Bray-Curtis dissimilarity 

of all the microbiota samples, coloured according to the subject. The background colour 

indicates microbiota richness. Permutational multivariate analysis of variance was used to 

calculate the explanatory power of the subject.  
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Figure S5. Microbiota composition in the study subjects at baseline. 

 



	 14	

 

Figure S6. Mean log2 fold-changes (± standard error) of the bacterial phyla in the 

groups. The fold-changes and their statistical significance before and after overfeeding are 

based on negative binomial models. Significant difference is indicated by the asterisk 

(p<0.05). 
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Table S1. Dietary profiles of the groups before and after the overfeeding based on 
food records. 

 
SAT  

(n=14) 
UNSAT 
(n=12) 

CARB 
(n=12) 

 Before After Before After Before After 
Energy 
intake 
(MJ/day) 

7.61 
(6.02 – 
9.18) 

11.67 
(9.87 – 
13.41)* 

8.88 
(7.99 – 
10.89) 

12.07 
(11.05 – 
13.54)* 

8.20 
(7.36 – 
10.49) 

12.15 
(11.14 – 
15.79)* 

Protein 
intake 
(E%) 

19.8  
(15.2 – 
21.7) 

15.0 
(11.5 – 
15.5)* 

18.8  
(16.2 – 
20.9) 

13.2 
(11.9 – 
15.3)* 

19.5 
(16.1 – 
22.0) 

11.4 
(9.4 – 
14.5)* 

Carbohydr
ate intake 
(E%) 

38.4 
(32.2 – 
41.3) 

25.9 
(23.0 – 
32.2)* 

34.5  
(31.6 – 
39.7) 

22.7 
(19.3 – 
28.9)* 

40.0 
(36.9 – 
47.8) 

63.7 
(58.1 – 
67.5)* 

Fat intake 
(E%) 

39.4  
(36.5 – 
42.1) 

58.9 
(53.1 – 
61.1)* 

38.8  
(32.0 – 
43.5) 

59.7 
(53.6 – 
63.6)* 

35.6 
(31.5 – 
42.4) 

23.8 
(19.6 – 
25.8)* 

Saturated 
fat intake 
(E%) 

12.9 
(11.7 – 
14.6) 

32.7 
(27.6 – 
35.5)* 

12.9 
(11.0 – 
16.0) 

14.3 
(13.5 – 
18.3) 

13.1 
(11.7 – 
15.2) 

8.3 
(6.5 – 
9.7)* 

Monounsa
turated fat 
intake 
(E%) 

13.9 
(11.9 – 
16.8) 

12.8 
(11.9 – 
14.9) 

13.2 
(11.2 – 
15.9) 

27.7 
(23.1 – 
30.4)* 

12.1 
(10.8 – 
14.4) 

8.5 
(6.4 – 
9.4)* 

Polyunsat
urated fat 
intake 
(E%) 

6.7 
(6.4 – 8.5) 

4.5 
(4.0 – 5.2)* 

5.1 
(4.9 – 9.2) 

11.4 
(9.5 – 
13.5)* 

5.6 
(5.1 – 
7.0) 

3.4 
(3.2 – 
4.0)* 

Data are in median (25th-75th percentile). No differences between groups at baseline 
(Kruskal-Wallis test).  * p<0.05 in Wilcoxon Signed Rank test between Before and After 
within a group.  
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Table S2. Baseline fatty acid compositions of VLDL-TG according to groups. 

Total SAT  
(n=14) 

UNSAT  
(n=12) 

CARB 
(n=12) 

C14:0 (%) 1.8 ± 0.2 2.0 ± 0.2 2.3 ± 0.2 

C16:0 (%) 26.2 ± 1.0 27.0 ± 0.9 27.8 ± 0.8 

C16:1 n-7 (%) 4.6 ± 0.5 4.4 ± 0.3 5.2 ± 0.5 

C18:0 (%) 3.1 ± 0.3 3.3 ± 0.3 3.1 ± 0.3 

C18:1 n-9 (%) 37.6 ± 0.9 37.8 ± 0.9 36.9 ± 0.9 

C18:2 n-6 (%) 14.8 ± 1.0 13.7 ± 0.7 13.0 ± 0.9 
Data are in means ± SEM. There were no significant differences in any variable between the 
groups.   
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Table S3. Plasma ceramide concentrations before and after overfeeding in the groups. 
 

 SAT   UNSAT   CARB   
Lipid name Mean 

Before 
Mean 
After 

Q 
value 

Mean 
Before 

Mean 
After 

Q 
value 

Mean 
Before 

Mean 
After 

Q 
value 

Cer(d16:2(4E,6
E)/22:1(13Z)(2
OH)) 

6.78643 
+/- 
0.96342 

9.11274 
+/- 
1.33409 

0.36 7.71353 
+/- 
0.87035 

9.27031 
+/- 
1.25029 

0.96 9.89585 
+/- 
1.71856 

9.68906 
+/- 
1.3074 

0.74 

Cer(d18:0/24:0) 4.10406 
+/- 
0.38621 

6.50034 
+/- 
0.57013 

0.0052 3.99065 
+/- 
0.48144 

4.35705 
+/- 
0.47258 

0.97 4.52223 
+/- 
0.48002 

4.28191 
+/- 
0.52112 

0.88 

Cer(d18:0/h24:
0) 

1.06967 
+/- 
0.06491 

1.56036 
+/- 
0.09943 

0.011 1.19847 
+/- 
0.08729 

1.18781 
+/- 
0.103 

0.99 1.36244 
+/- 
0.10395 

1.32872 
+/- 
0.17257 

0.72 

Cer(d18:0/h26:
0) 

0.76885 
+/- 
0.0358 

0.88989 
+/- 
0.09756 

0.59 0.78448 
+/- 
0.04429 

0.81856 
+/- 
0.07748 

0.99 0.84401 
+/- 
0.05797 

0.85801 
+/- 
0.09246 

0.98 

Cer(d18:1/24:0
) 

2.84316 
+/- 
0.31666 

4.15985 
+/- 
0.34251 

0.046 3.25284 
+/- 
0.35171 

2.86855 
+/- 
0.39869 

1 3.72058 
+/- 
0.40393 

3.50024 
+/- 
0.48568 

0.59 

Cer(d18:1/24:1
(15Z)) 

1.07751 
+/- 
0.10154 

1.54825 
+/- 
0.14089 

0.0026 1.27397 
+/- 
0.11128 

1.25989 
+/- 
0.13142 

0.96 1.37157 
+/- 
0.13407 

1.16452 
+/- 
0.11646 

0.59 

Cer(d18:1/26:0
) 

2.07704 
+/- 
0.17362 

3.1566 
+/- 
0.33601 

0.53 2.45716 
+/- 
0.2555 

2.53512 
+/- 
0.33441 

0.97 2.40496 
+/- 
0.14202 

2.15873 
+/- 
0.18681 

0.72 

Cer(d18:1/26:1
(17Z)) 

0.45668 
+/- 
0.02678 

0.59172 
+/- 
0.07791 

0.29 0.46159 
+/- 
0.03213 

0.50701 
+/- 
0.05571 

0.97 0.54902 
+/- 
0.04149 

0.52781 
+/- 
0.04814 

0.7 

Cer(d18:2/23:0
) 

0.86491 
+/- 
0.10664 

1.31764 
+/- 
0.09732 

0.0076 1.08901 
+/- 
0.10233 

1.09294 
+/- 
0.12264 

0.99 1.28808 
+/- 
0.18622 

1.1395 
+/- 
0.1233 

0.83 

Cer(m18:0/24:
0) 

1.28955 
+/- 
0.18757 

2.09629 
+/- 
0.21783 

0.0018 1.43542 
+/- 
0.24432 

1.46197 
+/- 
0.20338 

0.99 1.61955 
+/- 
0.14476 

1.56872 
+/- 
0.17573 

0.93 

Cer(m18:1(4E)
/24:0) 

1.02325 
+/- 
0.12517 

1.60998 
+/- 
0.1801 

0.034 1.25439 
+/- 
0.22107 

1.27772 
+/- 
0.20404 

0.99 1.38289 
+/- 
0.1927 

1.4231 
+/- 
0.19509 

0.92 

Cer(m18:1(4E)
/24:1(15Z)) 

1.96867 
+/- 
0.13806 

2.60291 
+/- 
0.17806 

0.011 1.99667 
+/- 
0.21621 

1.89242 
+/- 
0.16879 

0.97 2.96021 
+/- 
0.46321 

2.20154 
+/- 
0.2227 

0.7 

Cer(m18:1(4E)
/26:1(17Z)) 

2.69515 
+/- 
0.29105 

4.29115 
+/- 
0.37047 

0.02 3.31751 
+/- 
0.42431 

3.34588 
+/- 
0.42823 

0.97 3.42067 
+/- 
0.24066 

3.05406 
+/- 
0.29993 

0.72 

 
 


