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On dual model-free variable selection with two groups of variables

Ahmad Alothmana, Yuexiao Donga,∗, Andreas Artemioub
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Abstract

In the presence of two groups of variables, existing model-free variable selection methods only reduce the dimension-

ality of the predictors. We extend the popular marginal coordinate hypotheses [3] in the sufficient dimension reduction

literature and consider the dual marginal coordinate hypotheses, where the role of the predictor and the response is not

important. Motivated by canonical correlation analysis (CCA), we propose a CCA-based test for the dual marginal

coordinate hypotheses, and devise a joint backward selection algorithm for dual model-free variable selection. The

performances of the proposed test and the variable selection procedure are evaluated through synthetic examples and

a real data analysis.

Keywords: Canonical correlation analysis, Dual marginal coordinate hypotheses, Sliced inverse regression,

Trace test

1. Introduction

In this paper, we consider dual model-free variable selection with two groups of variables x ∈ Rp and y ∈ Rq. As

a popular tool for multivariate analysis, classical variable selection aims at identifying important variables among x

for the prediction of y. Most existing variable selection methods are model-based, and consider selecting important

predictors under a given parametric or semi-parametric model. Variable selection methods in linear regression include

LASSO [17], SCAD [5], the adaptive LASSO [22], and the Dantzig selector [1]. Variable selection in semi-parametric

models have been studied in [7, 14, 18]. In multivariate association studies with two sets of random vectors, popular

methods such as canonical correlation analysis (CCA) [6] focus on reducing the dimensionality for both sets of

variables, where the role of the predictor and the response is not important. This viewpoint motivates us to consider

dual variable selection, where the goal is to simultaneously identify the important variables among x for the prediction

of y and the important variables among y for the prediction of x.

Unlike model-based procedures in the literature, our proposal is model-free and does not require assuming specific

models between x and y. Existing model-free variable selection methods all focus on selecting important variables

among x for the prediction of y. See, for example, [9, 12, 13, 21]. The aforementioned model-free variable selection

methods are closely related to sufficient dimension reduction [2]. An important link between sufficient dimension re-

duction and model-free variable selection is elucidated in [21], where popular sufficient dimension reduction methods

such as sliced inverse regression (SIR) [11], sliced average variance estimation [4], and directional regression [10] are

used to construct corresponding model-free variable selection procedures.

To achieve dual model-free variable selection, we demonstrate that CCA can be viewed as a valid sufficient

dimension reduction procedure under suitable conditions. There is an important difference between CCA and popular

sufficient dimension reduction methods such as SIR: CCA maintains the symmetry between x and y while SIR does

not. We follow Yu et al. [21] and develop CCA-based model-free variable selection procedures. Unlike the procedures

proposed in Yu et al. [21] that select important variables among x, the symmetry in CCA provides a unique opportunity

to perform dual variable selection among both x and y simultaneously.
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The rest of the paper is organized as follows. We review SIR-based trace test for variable selection in Section 2.

The general framework for dual model-free variable selection is introduced in Section 3. CCA-based trace test for

dual variable selection is developed in Section 4. Numerical studies are performed in Section 5 and we conclude the

paper with some discussions in Section 6. All the proofs are relegated to the Appendix.

2. Review of SIR-based trace test

Let x = (X1, . . . , Xp)⊤ and y = (Y1, . . . ,Yq)⊤. Without loss of generality, assume E(x) = 0 and E(y) = 0. Denote

x−k = (X1, . . . , Xk−1, Xk+1, . . . , Xp)⊤ for k ∈ {1, . . . , p}. To test the importance of the kth predictor Xk, we may consider

the following hypotheses

H−k
0 : y⊥⊥x | x−k vs. H−k

a : y ⊥̸⊥ x | x−k, (1)

where ⊥⊥ means independence and ⊥̸⊥ means no independence. The hypothesis H−k
0

: y⊥⊥x | x−k above implies that

Xk is not important for the prediction of y in the presence of all the other predictors. Hypotheses (1) are known as

the marginal coordinate hypotheses [3]. Once we have a valid test for (1), sequential procedures such as forward

selection, backward selection and stepwise regression can be designed in parallel to the classical procedures in linear

regression. For example, Li et al. [13] consider backward selection through the marginal coordinate test proposed in

[3], while forward selection and stepwise regression through the trace test are discussed in [21].

Since [3], different tests for (1) have been proposed in the literature. Most tests have the same flavor as the original

marginal coordinate test in [3], such as [16, 19, 20]. Yu et al. [21] introduce a novel family of trace tests, which can

be combined with various sufficient dimension reduction methods. In the following, we first review SIR as a sufficient

dimension reduction method, and then we revisit the SIR-based trace test for (1).

Classical sufficient dimension reduction aims to find β ∈ Rp×d with the smallest possible column space such that

y⊥⊥x | β⊤x. The corresponding column space is known as the central space for the regression of y on x, and is denoted

by Sy|x. Let Σx = var(x) and let {J1, . . . , JH} denote a measurable partition of Θy, the sample space of y. Under the

linearity condition that E(x|β⊤x) is linear in β⊤x, we know from [11] that

E(z|y ∈ Jh) ∈ Σ1/2
x Sy|x, (2)

where z = Σ
−1/2
x x is the standardized version of x. Define z-scale SIR kernel matrix as MSIR

=
∑H

h=1 πhE(z|y ∈
Jh)E⊤(z|y ∈ Jh), where πh = Pr(y ∈ Jh). From (2), we know

Span(MSIR) ⊆ Σ1/2
x Sy|x, (3)

where Span denotes the column space.

Let Σx−k
= var(x−k) and z−k = Σ

−1/2
x−k

x−k. Similar to MSIR, we define MSIR
−k
=

∑H
h=1 πhE(z−k |y ∈ Jh)E⊤(z−k |y ∈ Jh).

Yu et al. [21] consider

δSIR
k = tr(MSIR) − tr(MSIR

−k ), (4)

where tr denotes the trace. Yu et al. [21] provide the asymptotic distribution of δ̂SIR
k

under H−k
0

, where δ̂SIR
k

is the

sample version of δSIR
k

. Because δSIR
k
= 0 underH−k

0
in (1),H−k

0
is rejected if δ̂SIR

k
is larger than a threshold determined

by its asymptotic distribution under null.

3. The principle of dual model-free variable selection

Denote Ix = {1, . . . , p} as the full index set for x. Define the active setA for the regression of y on x as

A = {k ∈ Ix : y depends on x through Xk}. (5)
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Similarly, let Iy = {1, . . . , q} denote the full index set for y, and the active set B for the regression of x on y be defined

as

B = { j ∈ Iy : x depends on y through Y j}. (6)

Let xA = {Xk : k ∈ A} and yB = {Y j : j ∈ B}. We have the following result.

Proposition 1. The following three conditions are equivalent, and all are implied from the definitions ofA in (5) and

B in (6).

(i) y⊥⊥x | xA and y⊥⊥x | yB;

(ii) y⊥⊥x | xA and y⊥⊥xA | yB;

(iii) yB⊥⊥x | xA and y⊥⊥x | yB.

Let ∅ denote the empty set. It follows from Proposition 1 that A = ∅ if and only if B = ∅. We remark that

Proposition 1 is parallel to Proposition 1 in [8], where the dual central spaces for sufficient dimension reduction are

studied.

The goal of dual model-free variable selection is to identify A and B without assuming specific models between

x and y. Let xF = {Xk : k ∈ F } and yG = {Y j : j ∈ G}, where F ⊆ Ix is the working active set for x and G ⊆ Iy is

the working active set for y. Motivated from part (i) in Proposition 1 and the marginal coordinate hypotheses (1) in

Section 2, we consider the following dual marginal coordinate hypotheses

HF ,[G]

0
: y⊥⊥x | xF and y⊥⊥x | yG vs. HF ,[G]

a : y ⊥̸⊥ x | xF or y ⊥̸⊥ x | yG. (7)

IfHF ,[G]

0
in (7) is true, then obviously we have A ⊆ F and B ⊆ G. We can then recover A and B by looking for the

combination of the smallest possible F and the smallest possible G such thatHF ,[G]

0
is not rejected.

4. CCA-based trace tests and dual model-free variable selection

We have reviewed in Section 2 that SIR-based trace test can be used to test the marginal coordinate hypotheses (1).

To test the dual marginal coordinate hypotheses (7), where the roles of x and y are symmetric, we need a dimension

reduction method that maintains the symmetry between x and y. In Section 4.1, we introduce CCA as a dual sufficient

dimension reduction method. In Section 4.2, we study CCA-based trace tests for selecting variables among either x

or y. In Section 4.3, CCA-based test for the dual marginal coordinate hypotheses (7) is developed. In Section 4.4, we

propose a sample level algorithm for dual model-free variable selection.

4.1. CCA for dual sufficient dimension reduction

Recall that z = Σ
−1/2
x x is the standardized version of x. Let w = Σ

−1/2
y y be the standardized version of y, where

Σy = var(y). Define kernel matrices

M = E(zw⊤)E(wz⊤) and M̃ = E(wz⊤)E(zw⊤). (8)

Given x ∈ Rp and y ∈ Rq, the ℓth pair of canonical covariates (uℓ, vℓ) is defined as uℓ = a⊤
ℓ

x and vℓ = b⊤
ℓ

y, such

that var(uℓ) = var(vℓ) = 1 and cov(uℓ, vℓ) is maximized. For ℓ > 1, uℓ and vℓ satisfy the additional constraints that

cov(uℓ, uk) = 0 and cov(vℓ, vk) = 0 for all k < ℓ. It is well-known that the aℓ = Σ
−1/2
x cℓ, where cℓ is the eigenvector

corresponding to the ℓth largest eigenvalue of M. Similarly, bℓ = Σ
−1/2
y dℓ, where dℓ is the ℓth eigenvector of M̃.

Denote Sy|x and Sx|y as the dual central spaces for the regression of y on x and the regression of x on y, respectively.

The next result states that matrices M and M̃ are closely related to sufficient dimension reduction.
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Proposition 2. Suppose E(x) = 0 and E(y) = 0. Assume β is the basis for Sy|x and η is the basis for Sx|y.

(i) If E(x|β⊤x) is linear in β⊤x, then Span(M) ⊆ Σ1/2
x Sy|x;

(ii) If E(y|η⊤y) is linear in η⊤y, then Span(M̃) ⊆ Σ1/2
y Sx|y.

The assumptions made in this proposition are common in the sufficient dimension reduction literature. Propo-

sition 2 implies that the column space of Σ
−1/2
x M can recover the central space for the regression of y on x, while

the column space of Σ
−1/2
y M̃ can recover the central space for the regression of x on y. It follows that aℓ ∈ Sy|x and

bℓ ∈ Sx|y. We remark that the conclusions in Proposition 2 bare close resemblance to (3) about the SIR-based kernel

matrix MSIR.

4.2. CCA-based trace tests for marginal coordinate hypotheses

We consider two sets of marginal coordinate hypotheses in this section, both of which are related to (7). The first

set is

HF
0

: y⊥⊥x | xF vs. HFa : y ⊥̸⊥ x | xF . (9)

Hypotheses (9) include (1) as a special case, as xF becomes x−k when we take F = {1, . . . , k − 1, k + 1, . . . , p}. The

second set is

H [G]

0
: y⊥⊥x | yG vs. H [G]

a : y ⊥̸⊥ x | yG. (10)

While hypotheses (9) can be used for selecting important variables among x, hypotheses (10) are useful for selecting

important variables among y.

First we focus on the CCA-based trace test for (9). Let ΣxF = var(xF ) and zF = Σ
−1/2
xF xF . Motivated by the

SIR-based trace test, we consider

δ−F = tr(M) − tr(MF ), (11)

where MF = E(zFw⊤)E(wz⊤F ). We remark that δ−F is constructed as the trace difference of two z-scale CCA kernel

matrices, which has the same flavor as δSIR
k

in (4).

Let F c be the complement of F in Ix and denote ΣxF c = var(xF c ). Define ΣxF c |xF = ΣxF c −E(xF c x⊤F )Σ−1
xF E(xF x⊤F c )

and γxF c |xF = xF c − E(xF c x⊤F )Σ−1
xF xF . Then we have

Proposition 3. Suppose E(xF c |xF ) is a linear function of xF . Then

(i) δ−F = tr{Σ−1
xF c |xF E(γxF c |xF y⊤)Σ−1

y E(yγ⊤
xF c |xF )}.

(ii) δ−F = 0 underHF
0

: y⊥⊥x | xF .

The assumption made in this proposition is common in the model-free variable selection literature, and it is

satisfied if x is normal. The first part of Proposition 3 provides the explicit formula to calculate δ−F . The second part

states that if xF c is unimportant for the prediction of y given xF , then δ−F becomes zero. Yu et al. [21] have shown

that δSIR
k
= 0 if Xk is unimportant for the prediction of y given x−k. Our result here is more general as F c can contain

more than one variable. Denote δ̂−F as the sample version of δ−F . We reject HF
0

if δ̂−F is too large. The asymptotic

distribution of δ̂−F underHF
0

is provided in Corollary 1 in the Appendix.

Next we introduce the CCA-based trace test for (10). Let ΣyG = var(yG) and wG = Σ
−1/2
yG yG. Denote M̃G =

E(wGz⊤)E(zw⊤G) and consider

δ−G = tr(M̃) − tr(M̃G). (12)

Let Gc be the complement of G in Iy and denote ΣyGc = var(yGc ). Define ΣyGc |yG = ΣyGc − E(yGc y⊤G)Σ−1
yGE(yGy⊤Gc ). Let

γyGc |yG = yGc − E(yGc y⊤G)Σ−1
yGyG. Parallel to Proposition 3, we have
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Proposition 4. Suppose E(yGc |yG) is a linear function of yG. Then

(i) δ−G = tr{Σ−1
yGc |yGE(γyGc |yGx⊤)Σ−1

x E(xγ⊤
yGc |yG)}.

(ii) δ−G = 0 underH [G]

0
: y⊥⊥x | yG.

Let δ̂−G be the sample version of δ−G. We rejectH [G]

0
if δ̂−G is too large.

The asymptotic distribution of δ̂−G underH [G]

0
is provided in Corollary 2 in the Appendix.

4.3. CCA-based trace test for dual marginal coordinate hypotheses

In this section, we develop a test for HF ,[G]

0
: y⊥⊥x | xF and y⊥⊥x | yG versus the alternative HF ,[G]

a : y ⊥̸⊥ x | xF
or y ⊥̸⊥ x | yG. From the definition of M = E(zw⊤)E(wz⊤) and M̃ = E(wz⊤)E(zw⊤) in (8), we have tr(M) = tr(M̃).

Recall MF = E(zFw⊤)E(wz⊤F ) and define MG
= E(zw⊤G)E(wGz⊤). It is easy to see that tr(MG) = tr(M̃G). Hence δ−G

in (12) becomes

δ−G = tr(M) − tr(MG). (13)

We have seen that δ−F = tr(M) − tr(MF ) in (11) can be used to test HF
0

: y⊥⊥x | xF , and δ−G in (13) can be used to

testH [G]

0
: y⊥⊥x | yG. This motivates us to consider

δ
−G
−F = tr(M) − tr(M

G
F ), (14)

where M
G
F = E(zFw⊤G)E(wGz⊤F ). Note that δ

−G
−F in (14) include δ−F and δ−G as special cases. If we take F = Ix, then

δ
−G
−F becomes δ−G. On the other hand, δ

−G
−F reduces to δ−F when we set G = Iy.

The symmetry between z and w in the definition of M and M̃ allows tr(M) to simultaneously capture the regression

information between y and x as well as the regression information between x and y. This is a unique feature of

the CCA-based trace test, as tr(MSIR) in (4) only captures the regression information between y and x. Parallel to

Proposition 3 and Proposition 4, we have

Proposition 5. Suppose E(xF c |xF ) is a linear function of xF and E(yGc |yG) is a linear function of yG. Then

(i) δ
−G
−F = tr{Σ−1

xF c |xF E(γxF c |xF y⊤)Σ−1
y E(yγ⊤

xF c |xF )} + tr{Σ−1
yGc |yGE(γyGc |yGx⊤F )Σ−1

xF E(xF γ
⊤
yGc |yG)}.

(ii) δ
−G
−F = 0 underHF ,[G]

0
: y⊥⊥x | xF and y⊥⊥x | yG.

Let {(x(1), y(1)), . . . , (x(n), y(n))} be an iid sample. Let x̄ = n−1
∑n

i=1 x(i), x̃(i)
= x(i) − x̄, and Σ̂x = n−1

∑n
i=1 x̃(i)(x̃(i))⊤.

Similarly let ȳ = n−1
∑n

i=1 y(i), ỹ(i)
= y(i) − ȳ, Σ̂y = n−1

∑n
i=1 ỹ(i)(ỹ(i))⊤, En(xy⊤) = n−1

∑n
i=1 x̃(i)(ỹ(i))⊤, and En(yx⊤) =

n−1
∑n

i=1 ỹ(i)(x̃(i))⊤. Then M̂ = Σ̂
−1/2

x En(xy⊤)Σ̂
−1

y En(yx⊤)Σ̂
−1/2

x . Similarly one can calculate

M̂
G
F = Σ̂

−1/2

xF En(xF y⊤G)Σ̂
−1

yGEn(yGx⊤F )Σ̂
−1/2

xF .

Then the sample version of δ
−G
−F in (14) becomes

δ̂
−G
−F = tr(M̂) − tr(M̂

G
F ).

We conclude this section with the asymptotic distribution of δ̂
−G
−F underHF ,[G]

0
. Assume |F | = p1 and |G| = q1, where

| · | denotes cardinality.

Theorem 1. Suppose E(x) = 0, E(y) = 0, E(xF c |xF ) is a linear function of xF and E(yGc |yG) is a linear function of

yG. Then underHF ,[G]

0
,

nδ̂
−G
−F  

L∑

ℓ=1

τℓχ
2
ℓ (1)
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as n → ∞, where  means convergence in distribution, L = pq − p1q1, χ2
ℓ
(1) is independent chi-square with one

degree of freedom for all ℓ ∈ {1, . . . , L} and τ1 ≥ · · · ≥ τL are the eigenvalues ofΩ, and the exact form ofΩ is provided

in the Appendix.

The asymptotic distribution in Theorem 1 needs to be estimated in practice. Specifically, let Ω̂ be the sample

estimators of Ω, and let τ̂1 ≥ · · · ≥ τ̂L be the eigenvalues of Ω̂. Denote ζ = (τ̂1, . . . , τ̂L)⊤ ∈ R
L and let Ξ ∈ R

N×L

consist of i.i.d. χ2(1) realizations. Then the N elements of Ξζ become realizations of the approximate asymptotic

distribution of nδ̂
−G
−F under null. The proportion of these N elements greater than nδ̂

−G
−F become the approximate p-

value. For a given significance level α, we reject HF ,[G]

0
if this p-value is smaller than α. We use N = 500 in our

numerical studies.

4.4. Algorithm for dual model-free variable selection

Let {(x(1), y(1)), . . . , (x(n), y(n))} be an iid sample of {x ∈ Rp, y ∈ Rq}. We devise a sample-level algorithm for dual

model-free variable selection in this section. From the development in Section 3, we have seen that the active sets A
and B can be recovered by the smallest possible F and the smallest possible G such that HF ,[G]

0
is not rejected. This

motivates us to consider the following joint backward selection procedure.

1. Initial step. Set F (0)
= {1, . . . , p} and G(0)

= {1, . . . , q}. Let α be the pre-specified significance level.

1.1 For each i ∈ {1, . . . , p}, denote F (0)

−i
as the index set where i is removed from F (0), and let ϱi,(0) be the

approximate p-value from testingHF
(0)

−i
,[G(0)]

0
against its alternative.

1.2 For each j ∈ {1, . . . , q}, denote G(0)

− j
as the index set where j is removed from G(0), and let ϱp+ j,(0) be the

approximate p-value from testingHF
(0),[G(0)

− j
]

0
against its alternative.

1.3 Let k(0) = arg max
ι∈{1,...,p+q}

ϱι,(0) and ϱ(0) = max
ι∈{1,...,p+q}

ϱι,(0). If ϱ(0) ≥ α and k(0) ≤ p, then set F (1)
= F (0)

−k(0)
,

G(1)
= G(0), and go to Step 2. If ϱ(0) ≥ α and k(0) > p, then set F (1)

= F (0), G(1)
= G(0)

−{k(0)−p}, and go to Step

2. If ϱ(0) < α, then stop the algorithm and return Â = F (0), B̂ = G(0).

2. Iteration step. At the beginning of the ℓth iteration, let F (ℓ) and G(ℓ) be the working index sets. Assume

|F (ℓ)| = p(ℓ) and |G(ℓ)| = q(ℓ).

2.1 For each i ∈ {1, . . . , p(ℓ)}, denote F (ℓ)

−i
as the index set where the ith element of F (ℓ) is removed from F (ℓ),

and let ϱi,(ℓ) be the approximate p-value from testingHF
(ℓ)

−i
,[G(ℓ)]

0
against its alternative.

2.2 For each j ∈ {1, . . . , q(ℓ)}, denote G(ℓ)

− j
as the index set where the jth element of G(ℓ) is removed from G(ℓ),

and let ϱp(ℓ)+ j,(ℓ) be the approximate p-value from testingHF
(ℓ),[G(ℓ)

− j
]

0
against its alternative.

2.3 Let k(ℓ) = arg max
ι∈{1,...,p(ℓ)+q(ℓ)}

ϱι,(ℓ) and ϱ(ℓ) = max
ι∈{1,...,p(ℓ)+q(ℓ)}

ϱι,(ℓ). If ϱ(ℓ) ≥ α and k(ℓ) ≤ p(ℓ), then set F (ℓ+1)
= F (ℓ)

−k(ℓ)
,

G(ℓ+1)
= G(ℓ), and repeat Step 2. If ϱ(ℓ) ≥ α and k(ℓ) > p(ℓ), then set F (ℓ+1)

= F (ℓ), G(ℓ+1)
= G(ℓ)

−{k(ℓ)−p(ℓ)}, and

repeat Step 2. If ϱ(ℓ) < α, then stop the iteration and return Â = F (ℓ), B̂ = G(ℓ).

In the initial step, we first test y⊥⊥x | x−i against its alternative for each i ∈ {1, . . . , p}. Then we test y⊥⊥x | y− j for

each j ∈ {1, . . . , q}. The corresponding p-values are denoted as ϱι,(0) for ι ∈ {1, . . . , p + q}. The maximum p-value ϱ(0)

is then compared to α. If ϱ(0) is smaller than α, then ϱι,(0) < α for any ι ∈ {1, . . . , p + q}. Thus we reject y⊥⊥x | x−i

for any i ∈ {1, . . . , p}, and we reject y⊥⊥x | y− j for any j ∈ {1, . . . , q}. Hence we estimate the active sets by F (0) and

G(0). In the case with ϱ(0) ≥ α, the least significant element, which is indexed by k(0), can be removed from the active

sets. For k(0) ≤ p, we update F by removing the least significant element, which corresponds to an element in x. For

k(0) > p, the least significant element corresponds to an element in y and we only update G.

In the ℓth iteration, we start from working index sets F (ℓ) and G(ℓ). Note that HF
(ℓ),[G(ℓ)]

0
is not rejected from the

last iteration, as we only go to the ℓth iteration if ϱ(ℓ−1) ≥ α. In another word, the ℓth iteration is needed only when
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Table 1: Frequencies of rejectingHF ,[G]
0

based on 1000 repetitions.

Model 1 Model 2

α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

F = {3, 4}, G = {1, 2} 1 1 1 0.007 0.033 0.085

F = {1, 2}, G = {3, 4} 0.007 0.044 0.093 1 1 1

F (ℓ−1) or G(ℓ−1) is updated. Parallel to the initial step, after removing one element at a time from either F (ℓ) or G(ℓ),

we test the dual marginal coordinate hypotheses (7) and get p-value ϱι,(ℓ) for ι ∈ {1, . . . , p(ℓ) + q(ℓ)}. The maximum

p-value ϱ(ℓ) is then compared to α. If ϱ(ℓ) < α, then F (ℓ) and G(ℓ) can not be further reduced. We stop the iteration and

estimate the active sets by F (ℓ) and G(ℓ). Otherwise we go to the next iteration, where either F (ℓ) or G(ℓ) is updated

by removing the least significant element. Note that in each iteration, we are testing the conditional independence

between x and y, and our procedure asymptotically controls the type-I error rate at the significance level α.

5. Numerical results

We use synthetic data in Section 5.1, and a real data analysis is considered in Section 5.2.

5.1. Simulation studies

Let x = (X1, . . . , Xp)⊤ be multivariate normal with mean 0 and covariance matrix Σx = (σi j), where σi j = σ
|i− j| for

1 ≤ i, j ≤ p. Similarly, let ϵ = (ϵ1, ϵ2, . . . , ϵq)⊤ be multivariate normal with mean 0 and covariance matrix Σϵ = (θi j),

where θi j = θ
|i− j| for all i, j ∈ {1, . . . , q}. The error ϵ is independent of x. Then we generate y = (Y1, . . . ,Yq)⊤ from the

following two models:

Model 1: Y1 = ϵ1,Y2 = ϵ2,Y3 = ϵ3,Y4 = X1 + X2 + ϵ4;

Model 2: Y1 = e0.5X3 + sin(X4) + ϵ1, Y2 = X3
3 + X4 + ϵ2,Y3 = ϵ3,Y4 = ϵ4.

In both models, we set p = 5 and q = 4. In Model 1, we set σ = 0 and θ = 0.5. The active set for the regression of y

on x is A = {1, 2}. Due to the nonzero correlation among the ϵ’s, we cannot determine B by evaluating the forward

regression between y and x. Instead we calculate E(x | y) = (0, 0, 0, 4Y4/11 − 2Y3/11, 4Y4/11 − 2Y3/11)⊤, and thus

the active set for the regression of x on y is B = {3, 4}. More details are provided in the Appendix. In Model 2, we set

σ = 0.5 and θ = 0. We haveA = {3, 4} and B = {1, 2} as the result of θ = 0.

First we evaluate the performance of the CCA-based trace test for the dual marginal coordinate hypotheses (7).

For user-specified F and G, we test HF ,[G]

0
: y⊥⊥x | xF and y⊥⊥x | yG versus the alternative HF ,[G]

a : y ⊥̸⊥ x | xF

or y ⊥̸⊥ x | yG. Based on 1000 repetitions, the frequencies of HF ,[G]

0
being rejected are reported in Table 1. Fix

sample size n = 300 and take α ∈ {0.01, 0.05, 0.1}. We consider two combinations of F and G. When F = {3, 4}
and G = {1, 2}, HF ,[G]

0
does not hold for Model 1. We see from Table 1 that HF ,[G]

0
is always rejected regardless of

the α value. When F = {1, 2} and G = {3, 4}, y⊥⊥x | xF and y⊥⊥x | yG for Model 1. We see that the frequencies

of rejecting HF ,[G]

0
are close to the corresponding nominal level. The results for Model 2 are reversed. The first

combination of F and G now corresponds to the Type-I error, and the frequencies are close to the nominal level. The

second combination of F and G corresponds to the estimated power, which is 1 for all α values.

Next we investigate the performance of the joint backward selection algorithm proposed in Section 4.4. For each

i ∈ {1, . . . , 1000}, denote the estimated active sets of the ith repetition as Âi and B̂i. We define the over-fitted frequency

(OF), the correctly-fitted frequency (CF), and the under-fitted frequency (UF) as

OF = 1000−1

1000∑

i=1

{
1(A ⊆ Âi)1(B ⊆ B̂i) − 1(A = Âi)1(B = B̂i)

}
, CF = 1000−1

1000∑

i=1

1(A = Âi)1(B = B̂i),

and UF = 1 − CF − OF, where 1 denotes the indicator function. The average model size is defined as MS =

1000−1
∑1000

i=1 (|Âi| + |B̂i|). Based on 1000 repetitions, we report UF, CF, OF, MS together with the frequencies of each

variable being selected.
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Table 2: Variable selection results for Model 1 based on 1000 repetitions.

n X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 UF CF OF MS

100 1 1 0.01 0.01 0.02 0.02 0.04 0.15 1 0.85 0.13 0.02 3.25

300 1 1 0.01 0.01 0.01 0.01 0.02 0.9 1 0.1 0.86 0.04 3.96

700 1 1 0.02 0.02 0.02 0.02 0.03 1 1 0 0.94 0.06 4.1

Table 3: Variable selection results for Model 2 based on 1000 repetitions.

α X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 UF CF OF MS

0.01 0 0 1 0.99 0 0.99 0.99 0 0 0.03 0.96 0.01 3.97

0.05 0.01 0.01 1 1 0.02 1 1 0.02 0.02 0 0.95 0.05 4.08

0.1 0.02 0.03 1 1 0.03 1 1 0.05 0.03 0 0.9 0.1 4.17

The variable selection results for Model 1 is summarized in Table 2. We fix α = 0.05 and take n ∈ {100, 300, 700}.
We see that the variable selection performance improves as n increases. For n = 300 and n = 700, the unimportant

variables X3, X4, X5, Y1 and Y2 are selected with very low frequencies; the important variables X1, X2, Y3 and Y4 are

selected with frequency 1 or frequency close to 1; and the average model size is close to 4. We also note that the

frequency of correctly-fitted model becomes close to 1 − α with n = 700.

Table 3 summarizes the variable selection results for Model 2. We fix n = 300 and consider α ∈ {0.01, 0.05, 0.1}.
Our backward algorithm works well at all nominal levels. The important variables X3, X4, Y1 and Y2 are selected with

high frequencies, the unimportant variables X1, X2, X5, Y3 and Y4 are selected with low frequencies, and the average

model size is close to 4. As expected, α = 0.01 leads to smaller models and α = 0.1 tend to result in larger models.

Again, the frequency of correctly-fitted model is close to 1 − α.

5.2. Real data analysis

Beta-carotene and retinol are well studied chemical compounds in the human plasma. Several studies suggest that

low levels of both compounds in plasma are associated with increased risk of an array of diseases such as cancer,

cardiovascular disease, and cataracts. To determine the role of dietary habits and other health related metrics in

plasma concentrations of beta-carotene and retinol, [15] did a cross-sectional study with 12 personal characteristics

and dietary metrics for 315 patients with nonmelanoma skin cancer. After removing three categorical variables, we

consider x = (X1, . . . , X9)⊤. The response variables are y = (Y1,Y2)⊤, where Y1 is the plasma concentration of beta-

carotene and Y2 is the plasma concentration of retinol. After exploratory data analysis, we remove six observations

with extreme values and get n = 309. We apply our proposed dual variable selection procedure from Section 4.4 with

significance level α = 0.05, and end up with Â = {1, 2, 6, 8} and B̂ = {1, 2}. This suggests that to further study the

multivariate associations between dietary habits and the plasma compound concentrations, we can focus only on six

variables X1, X2, X6, X8, Y1 and Y2 instead of the original x and y.

To demonstrate the effect of variable selection on canonical correlation analysis, we first calculate the first two

pairs of canonical covariates (u1, v1) and (u2, v2) based on the original data, where x ∈ R
9 and y ∈ R

2. Then we

calculate the first two pairs of canonical covariates (ũ1, ṽ1) and (ũ2, ṽ2) based on the reduced data, where xÂ ∈ R
4

and xB̂ ∈ R2. The plots of the canonical covariate from the original data versus the corresponding canonical covariate

from the reduced data are provided in Figure 1. The scatterplots are close to the dotted 45 degree line, suggesting

that the canonical covariates before and after the data reduction largely agree with each other. This implies that the

reduced data keeps the canonical information from the original data.

6. Concluding remarks

In this paper, we propose the CCA-based trace test for the dual marginal coordinate hypotheses and study the

asymptotic properties of the resulting test statistic. The validity of the asymptotic test is justified through simulation

studies. Based on this novel test, we design a joint backward selection algorithm for dual model-free variable selection.
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Figure 1. Scatterplots of the canonical covariates from the original data versus the canonical covariate from the

reduced data.

The finite-sample performance of the proposed test and the variable selection algorithm are very promising. The dual

variable selection and feature screening in the case of diverging p and q is worth future investigation.

Appendix

Proof of Proposition 1. The proof is similar to Proposition 1 in Iaci et al. [8], and is thus omitted. ✷

Proof of Proposition 2. For part (i), note that Span(M) = Span{E(zw⊤)}. Plug in z = Σ
−1/2
x x and w = Σ

−1/2
y y, and all

we need to prove becomes

Span{Σ−1
x E(xy⊤)} = Span{Σ−1/2

x E(zw⊤)} ⊆ Sy|x = Span(β). (A.1)

From the law of iterated expectations and the fact that y⊥⊥x | β⊤x, we have

E(xy⊤) = E{xE⊤(y|x)} = E{xE⊤(y|β⊤x)}. (A.2)

From the property of conditional expectation and the assumption that E(x|β⊤x) is linear in β⊤x, we have

E{xE⊤(y|β⊤x)} = E{E(x|β⊤x)y⊤} = Σxβ(β⊤Σxβ)−1β⊤E(xy⊤). (A.3)
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(A.2) and (A.3) together lead to

Σ
−1
x E(xy⊤) = β(β⊤Σxβ)−1β⊤E(xy⊤). (A.4)

(A.1) follows from (A.4) and proof of part (i) is done. Proof of part (ii) is similar to the proof of part (i), and is thus

omitted. ✷

Proof of Proposition 3. For part (i), assume xF ∈ Rp1 and xF c ∈ Rp2 with p1 + p2 = p. Let x = (x⊤F , x
⊤
F c )
⊤. Define C

and D as

C =

(
Ip1

0

−E(xF c x⊤F )Σ−1
xF Ip2

)
and D =

(
ΣxF 0

0 ΣxF c |xF

)
.

Then Cx = (x⊤F ,γ
⊤
xF c |xF )⊤, CΣxC⊤ = D and Σ−1

x = C⊤D−1C. It follows that

tr(M) = tr
{
Σ
−1
x E(xy⊤)Σ−1

y E(yx⊤)
}
= tr

{
C⊤D−1CE(xy⊤)Σ−1

y E(yx⊤)
}

= tr

{(
Σ
−1
xF 0

0 Σ
−1
xF c |xF

) (
E(xF y⊤)

E(γxF c |xF y⊤)

)
Σ
−1
y

(
E(yx⊤F ),E(yγ⊤xF c |xF )

)}

= tr



Σ
−1
xF E(xF y⊤)Σ−1

y E(yx⊤F ) Σ
−1
xF E(xF y⊤)Σ−1

y E(yγ⊤
xF c |xF )

Σ
−1
xF c |xF E(γxF c |xF y⊤)Σ−1

y E(yx⊤F ) Σ
−1
xF c |xF E(γxF c |xF y⊤)Σ−1

y E(yγ⊤
xF c |xF )




= tr{Σ−1
xF E(xF y⊤)Σ−1

y E(yx⊤F )} + tr{Σ−1
xF c |xF E(γxF c |xF y⊤)Σ−1

y E(yγ⊤xF c |xF )}.

Together with tr(MF ) = tr{Σ−1
xF E(xF y⊤)Σ−1

y E(yx⊤F )}, we get

δ−F = tr(M) − tr(MF ) = tr{Σ−1
xF c |xF E(γxF c |xF y⊤)}Σ−1

y E(yγ⊤xF c |xF )}. (A.5)

For part (ii), the assumption that E(xF c |xF ) is a linear function of xF implies E(xF c |xF ) = E(xF c x⊤F )Σ−1
xF xF . It follows

that

E{E(xF c x⊤F )Σ−1
xF xF y⊤} = E{E(xF c |xF )y⊤} = E{xF c E⊤(y|xF )}. (A.6)

UnderHF
0

: y⊥⊥x | xF , we have E(y|x) = E(y|xF ). Thus

E{xF c E⊤(y|xF )} = E{xF c E⊤(y|x)} = E(xF c y⊤). (A.7)

The definition γxF c |xF = xF c − E(xF c x⊤F )Σ−1
xF xF together with (A.6) and (A.7) leads to E(γxF c |xF y⊤) = 0. It follows

from part (i) that δ−F = 0 underHF
0

. ✷

Proof of Proposition 4. The proof is similar to the proof of Proposition 3, and is thus omitted. ✷

Proof of Proposition 5. For part (i), assume yG ∈ Rq1 and yGc ∈ Rq2 with q1 + q2 = q. Let y = (y⊤G, y
⊤
Gc )
⊤. Define K

and O as

K =

(
Iq1

0

−E(yGc y⊤G)Σ−1
yG Iq2

)
and O =

(
ΣyG 0

0 ΣyGc |yG

)
.
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Then Ky = (y⊤G,γ
⊤
yGc |yG)⊤, KΣyK⊤ = O and Σ−1

y = K⊤O−1K. Thus

tr(MF ) = tr
{
Σ
−1
xF E(xF y⊤)Σ−1

y E(yx⊤F )
}
= tr

{
Σ
−1
xF E(xy⊤)K⊤O−1KE(yx⊤)

}

= tr

{
Σ
−1
xF

(
E(xF y⊤G),E(xF γ

⊤
yGc |yG)

) (Σ−1
yG 0

0 Σ
−1
yGc |yG

) (
E(yGx⊤F )

E(γyGc |yGx⊤F )

)}

= tr{Σ−1
xF E(xF y⊤G)Σ−1

yGE(yGx⊤F )} + tr{Σ−1
xF E(xF γ

⊤
yGc |yG )Σ−1

yGc |yGE(γyGc |yGx⊤F )}

= tr(M
G
F ) + tr{Σ−1

yGc |yGE(γyGc |yGx⊤F )Σ−1
xF E(xF γ

⊤
yGc |yG)}.

Together with (A.5) from the proof of Proposition 3, we get the desired result in part (i).

For part (ii), we have seen that y⊥⊥x | xF leads to E(γxF c |xF y⊤) = 0 from the proof of Proposition 3. Following

similar steps, we can show that y⊥⊥x | yG leads to E(γyGc |yGx⊤F ) = 0. It follows from part (i) that δ
−G
−F = 0 under

HF ,[G]

0
: y⊥⊥x | xF and y⊥⊥x | yG. ✷

We need Lemma 1 and Lemma 2 before we prove Theorem 1. Let x̄F = n−1
∑n

i=1 x
(i)

F , x̃
(i)

F = x
(i)

F − x̄F , and

Σ̂xF = n−1
∑n

i=1 x̃
(i)

F (x̃
(i)

F )⊤. Similarly we define ỹ(i) and x̃
(i)

F c . Let En(xF x⊤F c ) = n−1
∑n

i=1 x̃
(i)

F (x̃
(i)

F c )
⊤, γ̂

(i)

xF c |xF = x̃
(i)

F c −
En(xF c x⊤F )Σ̂

−1

xF x̃
(i)

F , and En(yγ̂⊤xF c |xF ) = n−1
∑n

i=1 ỹ(i)(γ̂
(i)

xF c |xF )⊤. Define

Π
(i)
=

{
ỹ(i) − E(yx⊤F )Σ−1

xF x̃
(i)

F

} {
(x̃

(i)

F c )
⊤ − (x̃

(i)

F )⊤Σ−1
xF E(xF x⊤F c )

}

and we have the following result.

Lemma 1. Suppose E(x) = 0, E(y) = 0, and E(xF c |xF ) is a linear function of xF . If y⊥⊥x | xF , then

En(yγ̂⊤xF c |xF ) =
1

n

n∑

i=1

Π
(i)
+ Op(n−1),

where the first term on the right-hand side is of order Op(n−1/2).

Proof of Lemma 1. From the definition of γ̂xF c |xF and γxF c |xF , we have

En(yγ̂⊤xF c |xF ) − E(yγ⊤xF c |xF ) = {En(yx⊤F c ) − E(yx⊤F c )} − [En{yx⊤F Σ̂
−1

xF En(xF x⊤F c )} − E{yx⊤FΣ
−1
xF E(xF x⊤F c )}]. (A.8)

Because E(x) = 0 and E(y) = 0, it can be shown that

En(yx⊤F c ) − E(yx⊤F c ) =
1

n

n∑

i=1

{ỹ(i)(x̃
(i)

F c )
⊤ − E(yx⊤F c )} + Op(n−1). (A.9)

The asymptotic expansions of Σ̂
−1

xF and En(xF x⊤F c ) are, respectively,

Σ̂
−1

xF − Σ
−1
xF = −Σ

−1
xF


1

n

n∑

i=1

{
x̃

(i)

F (x̃
(i)

F )⊤ − ΣxF

}Σ−1
xF + Op(n−1) and (A.10)

En(xF x⊤F c ) − E(xF x⊤F c ) =
1

n

n∑

i=1

{
x̃

(i)

F (x̃
(i)

F c )
⊤ − E(xF x⊤F c )

}
+ Op(n−1). (A.11)

11



Eqs. (A.10) and (A.11) together lead to

Σ̂
−1

xF En(xF x⊤F c ) − Σ−1
xF E(xF x⊤F c ) =

1

n

n∑

i=1

Σ
−1
xF x̃

(i)

F

{
(x̃

(i)

F c )
⊤ − (x̃

(i)

F )⊤Σ−1
xF E(xF x⊤F c )

}
+ Op(n−1). (A.12)

It follows from (A.12) that

En{yx⊤F Σ̂
−1

xF En(xF x⊤F c )} − E{yx⊤FΣ
−1
xF E(xF x⊤F c )} =

1

n

n∑

i=1

E(yx⊤F )Σ−1
xF x̃

(i)

F

{
(x̃

(i)

F c )
⊤ − (x̃

(i)

F )⊤Σ−1
xF E(xF x⊤F c )

}

+
1

n

n∑

i=1

{ỹ(i)(x̃
(i)

F )⊤ − E(yx⊤F c )}Σ−1
xF E(xF x⊤F c ) + Op(n−1). (A.13)

Eqs. (A.8), (A.9) and (A.13) together lead to

En(yγ̂⊤xF c |xF ) = En(yx⊤F c ) − En{yx⊤F Σ̂
−1

xF En(xF x⊤F c )} =
1

n

n∑

i=1

[
ỹ(i)(x̃

(i)

F c )
⊤ − ỹ(i)(x̃

(i)

F )⊤Σ−1
xF E(xF x⊤F c )

−E(yx⊤F )Σ−1
xF x̃

(i)

F

{
(x̃

(i)

F c )
⊤ − (x̃

(i)

F )⊤Σ−1
xF E(xF x⊤F c )

}]
+ Op(n−1)

=
1

n

n∑

i=1

{
ỹ(i) − E(yx⊤F )Σ−1

xF x̃
(i)

F

} {
(x̃

(i)

F c )
⊤ − (x̃

(i)

F )⊤Σ−1
xF E(xF x⊤F c )

}
+ Op(n−1), (A.14)

which is the desired result. ✷

Similarly, let En(yGy⊤Gc ) = n−1
∑n

i=1 ỹ
(i)

G (ỹ
(i)

Gc )
⊤, γ̂

(i)

yGc |yG = ỹ
(i)

Gc−En(yGc y⊤G)Σ̂
−1

yG ỹ
(i)

G , and En(xF γ̂
⊤
yGc |yG ) = n−1

∑n
i=1 x̃

(i)

F (γ̂
(i)

yGc |yG)⊤.

Define

Λ
(i)
=

{
x̃

(i)

F − E(xF y⊤G)Σ−1
yG ỹ

(i)

G

} {
(ỹ

(i)

Gc )
⊤ − (ỹ

(i)

G )⊤Σ−1
yGE(yGy⊤Gc )

}

and we have

Lemma 2. Suppose E(x) = 0, E(y) = 0, and E(yGc |yG) is a linear function of yG. If y⊥⊥x | yG, then

En(xF γ̂
⊤
yGc |yG ) =

1

n

n∑

i=1

Λ
(i)
+ Op(n−1),

where the first term on the right-hand side is of order Op(n−1/2).

Proof of Lemma 2. The proof is similar to the proof of Lemma 1, and is thus omitted. ✷

Proof of Theorem 1. Recall that |F | = p1, |F c| = p2, |G| = q1, |Gc| = q2, p1 + p2 = p and q1 + q2 = q.

Let ϕ1 = vec{Σ−1/2
y E(yγ⊤

xF c |xF )Σ
−1/2

xF c |xF } ∈ R
qp2 , ϕ2 = vec{Σ−1/2

xF E(xF γ
⊤
yGc |yG)Σ

−1/2

yGc |yG } ∈ R
p1q2 , and ψ = (ϕ⊤1 ,ϕ

⊤
2 )⊤,

where vec denotes vectorization. Then we have δ
−G
−F = ψ⊤ψ. At the sample level, let ψ̂ = (ϕ̂

⊤
1 , ϕ̂

⊤
2 )⊤, where

ϕ̂1 = vec{Σ̂−1/2

y En(yγ̂⊤xF c |xF )Σ̂
−1/2

xF c |xF } and ϕ̂2 = vec{Σ̂−1/2

xF En(xF γ̂
⊤
yGc |yG)Σ̂

−1/2

yGc |yG }. Then we have

δ̂
−G
−F = ψ̂

⊤
ψ̂. (A.15)

UnderHF ,[G]

0
, we have y⊥⊥x | xF . It follows that E(yγ⊤

xF c |xF ) = 0 and ϕ1 = 0. Together with Lemma 1, we have

ϕ̂1 =
1

n

n∑

i=1

vec{Σ−1/2
y Π

(i)
Σ
−1/2

xF c |xF } + Op(n−1), (A.16)
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where the first term on the right-hand side is of order Op(n−1/2). Similarly, we have y⊥⊥x | yG underHF ,[G]

0
. It follows

that E(xF γ
⊤
yGc |yG ) = 0 and ϕ2 = 0. Together with Lemma 2, we have

ϕ̂2 =
1

n

n∑

i=1

vec{Σ−1/2
xF Λ

(i)
Σ
−1/2

yGc |yG } + Op(n−1), (A.17)

where the first term on the right-hand side is of order Op(n−1/2). It follows from (A.16) and (A.17) that

ψ̂ =
1

n

n∑

i=1

ϑ(i)
+ Op(n−1), (A.18)

where

ϑ(i)
=

{
vec⊤(Σ

−1/2
y Π

(i)
Σ
−1/2

xF c |xF ), vec⊤(Σ
−1/2
xF Λ

(i)
Σ
−1/2

yGc |yG)

}⊤
∈ RL

with E(ϑ(i)
) = 0 and L = qp2 + p1q2 = pq − p1q1. As a result of (A.18), we have

√
n ψ̂ N(0,Ω) (A.19)

as n→ ∞, where Ω = E{ϑ(i)
(ϑ(i)

)⊤}. Eqs. (A.19) and (A.15) lead to the desired result. ✷

As a special case, δ
−G
−F reduces to δ−F when we set G = Iy. Then δ−F = ϕ

⊤
1 ϕ1 and δ̂−F = ϕ̂

⊤
1 ϕ̂1. It follows from

(A.16) that ϕ̂1 = n−1
∑n

i=1 ϑ
(i)

1
+ Op(n−1), where ϑ

(i)

1
= vec{Σ−1/2

y Π
(i)
Σ
−1/2

xF c |xF } ∈ R
p2q. Thus

√
n ϕ̂1  N(0,Γ), where

Γ = E{ϑ(i)

1
(ϑ

(i)

1
)⊤}. The asymptotic distribution of δ̂−F is summarized in the next result.

Corollary 1. Suppose E(x) = 0, E(y) = 0, and E(xF c |xF ) is a linear function of xF . Then underHF
0

: y⊥⊥x | xF ,

nδ̂−F  

p2q∑

ℓ=1

ρℓχ
2
ℓ (1)

as n→ ∞, where χ2
ℓ
(1) is independent chi-square with one degree of freedom for ℓ ∈ {1, . . . , p2q}, and ρ1 ≥ · · · ≥ ρp2q

are the eigenvalues of Γ.

Similarly, δ
−G
−F becomes δ−G when we set F = Ix. Note that δ−G = ϕ⊤3 ϕ3 with ϕ3 = vec{Σ−1/2

x E(xγ⊤
yGc |yG)Σ

−1/2

yGc |yG } ∈
R

pq2 , and δ̂−G = ϕ̂
⊤
3 ϕ̂3 with ϕ̂3 = vec{Σ̂−1/2

x En(xγ̂⊤yGc |yG)Σ̂
−1/2

yGc |yG }. Similar to (A.17), it can be shown that ϕ̂3 =

n−1
∑n

i=1 ϑ
(i)

3
+ Op(n−1), where ϑ

(i)

3
= vec{Σ−1/2

x Λ
(i)
Σ
−1/2

yGc |yG }. Thus
√

n ϕ̂3  N(0,Υ), where Υ = E{ϑ(i)

3
(ϑ

(i)

3
)⊤}. The

asymptotic distribution of δ̂−G is summarized in the next result.

Corollary 2. Suppose E(x) = 0, E(y) = 0, and E(yGc |yG) is a linear function of yG. Then underH [G]

0
: y⊥⊥x | yG,

nδ̂−G  

pq2∑

ℓ=1

ωℓχ
2
ℓ (1)

as n→ ∞, where χ2
ℓ
(1) is independent chi-square with one degree of freedom for ℓ ∈ {1, . . . , pq2}, and ω1 ≥ · · · ≥ ωpq2

are the eigenvalues of Υ.

Derivation of B for Model 1. Let

Σϵ =



1 .5 .25 .125

.5 1 .5 .25

.25 .5 1 .5

.125 .25 .5 1


and H =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 1 0 0 0


.
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Because y = Hx + ϵ, we have

Σy = HΣxH⊤ + Σϵ =



1 .5 .25 .125

.5 1 .5 .25

.25 .5 1 .5

.125 .25 .5 3


and Σ

−1
y =



4/3 −2/3 0 0

−2/3 5/3 −2/3 0

0 −2/3 47/33 −2/11

0 0 −2/11 4/11


.

It follows that

E(x|y) = ΣxyΣ
−1
y y =



0 0 0 1

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0





4/3 −2/3 0 0

−2/3 5/3 −2/3 0

0 −2/3 47/33 −2/11

0 0 −2/11 4/11





Y1

Y2

Y3

Y4


=

2

11



2Y4 − Y3

2Y4 − Y3

0

0

0


.

Thus we have B = {3, 4} for Model 1. ✷
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