
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/11 2 2 4 6/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Luo, Jingjing, S u n, Xianfan g , Yiu, M a n Lung, Jin, Longc u n a n d Pen g, Xinyi 2 0 1 8.

Piec e wis e line a r r e g r e s sion-b a s e d single im a g e s u p e r-r e solu tion via H a d a m a r d

t r a n sfo r m. Info r m a tion Scie nc e s 4 6 2 , p p. 3 1 5-3 3 0. 1 0.10 1 6/j.ins.201 8.06.03 0

P u blish e r s p a g e: h t t p://dx.doi.or g/10.10 1 6/j.ins.201 8.0 6.0 30

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

Piecewise Linear Regression-Based Single Image

Super-Resolution via Hadamard Transform

Jingjing Luoa,1, Xianfang Sunb,1, Man Lung Yiuc, Longcun Jina,∗, Xinyi Penga

aSchool of Software Engineering, South China University of Technology, Guangzhou 510006, China
bSchool of Computer Science and Informatics, Cardiff University, Cardiff, UK

cDepartment of Computing, Hong Kong Polytechnic University, Hong Kong, China

Abstract

Image super-resolution (SR) has extensive applications in surveillance systems, satel-

lite imaging, medical imaging, and ultra-high definition display devices. The state-of-

the-art methods for SR still incur considerable running time. In this paper, we pro-

pose a novel approach based on Hadamard pattern and tree search structure in order

to reduce the running time significantly. In this approach, LR (low-resolution)-HR

(high-resolution) training patch pairs are classified into different classes based on the

Hadamard patterns generated from the LR training patches. The mapping relationship

between the LR space and the HR space for each class is then learned and used for SR.

Experimental results show that the proposed method can achieve comparable accuracy

as state-of-the-art methods with much faster running speed. The dataset, pretrained

models and source code can be accessed at this URL †.

Keywords: Single image super-resolution, Hadamard transform, Decision tree

2010 MSC: 00-01, 99-00

1. Introduction

Image super-resolution (SR) is the process of recovering a visually pleasing high-

resolution (HR) image from a low-resolution (LR) image. SR finds many real appli-

cations, e.g., face recognition [26, 42, 45, 63, 71], visual question answering [69], vi-

∗Corresponding author. Tel.:+86 13825158906.

Email address: lcjin@scut.edu.cn (Longcun Jin)
1Equal contribution.
†https : //github.com/youyouyimu/PLRBSISRvHT

Preprint submitted to Journal of LATEX Templates May 25, 2018

sual speaker identification and authentication [35], object understanding [39], activity5

recognition [43], surveillance systems, satellite imaging, medical imaging, and ultra-

high definition display devices. Most of existing methods use certain prior information

to address the SR problem, especially learned priors. The interpolation-based methods

[5, 20, 32, 38, 73], the reconstruction-based methods [8, 10, 16, 28, 55, 72] and the

learning-based methods [7, 9, 11–15, 17, 18, 21–25, 27, 33, 34, 36, 37, 40, 41, 44, 46–10

48, 51–53, 56, 58–60, 62, 64–66, 70, 74–76] are three classical types of methods for

single-image SR. These SR methods aim to solve natural image SR problem. There are

a kind of SR methods that only deal with face images, which are called face SR (face

hallucination) [29, 54]. In this paper, the former is our concern.

Learning-based SR methods divide the input LR image into patches and predict15

their corresponding HR patches using the mapping models that are learned from a

dataset of LR-HR patch pairs. These LR-HR patch pairs are cropped from a database

composed of LR-HR image pairs. Many learning algorithms have been proposed to

learn the mapping models, including dictionary learning [17, 18, 22, 40, 41, 46, 56, 58–

60, 65, 66, 70, 76], regression [11, 47, 48, 58, 59, 64], decision tree [24, 62], random20

forest [23, 25, 53] and convolutional neural network (CNN) [13, 14, 33, 34, 36, 37, 52,

57].

The advantages and limitations of the above methods are summarized below. Most

of dictionary learning methods are sparse coding (SC) based, where the sparse prior

can well regularize the ill-posed SR problem. However, constructing sparse dictio-25

naries requires expensive computation. Regression-based methods can solve the SR

problem by several piecewise linear regression models or a global regression model.

Both of the decision tree based methods and the random forest based methods are an

ensemble of piecewise linear regression models. However, the complex tree structure

and a large number of trees (forest) can slow down the retrieving speed of regression30

models. CNN-based methods train a global non-linear regression model to describe the

mapping relationship between the LR space and the HR space more accurately. The

global non-linear regression model consists of a large amount of parameters, whose

computating process involves heavy computational load.

More recently, regression-based methods have achieved great improvements in SR.35

2

Linear regression models [31] have higher prediction speed than non-linear regressions

models. These methods [11, 13, 14, 33, 34, 36, 37, 47, 48, 52, 58, 59, 64] learn the

relationship between the LR space and the HR space, and use it to solve SR problem.

Timofte et al.[58, 59] assumed that the mapping relationship between the LR space

and the HR space is locally linear and therefore lots of linear regressors are learned and40

anchored to the feature space as a piecewise linearization. The methods [47, 48] divide

the feature space into many subspaces based on antipodally invariant metrics and learn

a linear regressor for each subspace. In the papers [13, 14, 33, 34, 36, 37, 52], the

mapping from the LR space to the HR space is described as a deep CNN that takes an

LR image as the input and outputs an HR image, which is an end to end mapping (i.e.45

a global non-linear regressor). The method [37] uses a generative adversarial network

(GAN) for image SR, in which a perceptual loss function [30] is adopted.

SR methods based on CNN require significant amount of training time, rendering

them not suitable in certain application scenarios. Some SR methods that are based on

SC [58, 59] and simple functions [64] use the gradients of the LR image patches and50

normalized image patches, respectively, to represent image features, which also adds

to the computational complexity of the training phase. In order to tackle the above

limitations, we propose a Hadamard pattern-based SR method, using decision tree [24]

for single-image SR.

A Hadamard matrix [3] is a square matrix that consists of +1 and -1. It is symmet-55

ric with respect to leading diagonal. Its rows (columns) are orthogonal to one another.

The Hadamard transform uses a Hadamard matrix as its operator and is useful in signal-

image processing [49], including signal/image coding/decoding [1, 50] and compres-

sive sensing [67]. It could also be useful in image filtering and pattern recognition.

In our paper, we perform Hadamard transform to code the LR training image patches.60

The coding results (called Hadamard patterns) are bases of classifying training data.

The contributions of this paper can be summarized into three aspects.

1) We propose to implement Hadamard transform on LR image patches and use the

obtained Hadamard patterns to represent image features. Hadamard transform is fast

because it just needs addition and subtraction without multiplication or division. This65

property makes feature extraction efficient.

3

2) We employ a variant of decision tree, a ternary decision tree, to conduct fast

classification and regression.

3) The experimental results show that the proposed method can achieve comparable

accuracy with much lower running time when compared to state-of-the-art methods.70

The rest of this paper is organized as follows. Section 2 defines the problem and

briefly describes the related work. Section 3 presents our solution to the single-image

SR problem. Section 4 analyzes the experimental results, and Section 5 concludes this

paper.

2. Related Work75

2.1. Problem Statement

Single image SR aims to reconstruct an HR image with high definition and fidelity

from an LR image that has unsatisfactory resolution, which can be formulated as

X̂ = ↑ Y, s.t. X̂ ≈ X (1)

where Y is the LR input image, X̂ is the upscaled output image, X is the original HR

image and ↑ is an upsampling operator. In the training phase, X is known. This formula80

implies that the upsampling mapping models are trained to describe the relationship

between the LR space and the HR space as accurately as possible. In the testing phase,

X is unknown. This formula implies that the learned mapping models generate an HR

output from an LR input. The predicted HR output and the HR image generated from

the same imaging model are as similar as possible.85

In the literature, the following transformation is usually used to describe the real

imaging process of LR images

Y = ↓ BX + n (2)

where ↓ is the downsampling operator, B is the blurring operator, and n is the additive

noise. Most SR methods solve this problem at a patch level.

4

2.2. State of the Art90

Recently, the single-image SR problem has been investigated extensively. Interpolation-

based methods [5, 20, 32, 38, 73], reconstruction-based methods [8, 10, 16, 28, 55, 72]

and learning-based methods [7, 9, 11–15, 17, 18, 21–25, 27, 33, 34, 36, 37, 40, 41,

44, 46–48, 51–53, 56, 58–60, 62, 64–66, 70, 74–76] are three common types of sin-

gle image SR methods. Interpolation-based methods produce blurry edges in the re-95

constructed images. Reconstruction-based methods fail to restore the novel details of

HR images, especially when a large upsampling factor is employed. Learning-based

single-image SR methods have attracted much research interests. In the following sub-

sections, we will first introduce the SR problem and then focus on the related work of

learning-based methods.100

SC based methods [46, 58, 59, 65, 70] decompose an input LR image patch into a

sparse linear combination of the atoms in the LR dictionary. The target HR patch is

generated by corresponding atoms in the HR dictionary with the same representation

weights. Zeyde et al. [70] applied the orthogonal matching pursuit (OMP) and reduced

the dimensionality of feature vectors by principal component analysis (PCA), which105

improves both the running time and the accuracy. Peleg and Elad [46] suggested data

clustering and cascading several levels of their proposed SR model, which is like a sim-

ple feedforward neural network and reduces the algorithm complexity. Timofteet et al.

[58] proposed the anchored neighbor regression (ANR) method. The ANR method is

much faster than Zeyde’s method [70]. The same researchers proposed an A+ method110

[59], which is an improved version of ANR. The A+ method uses the neighborhood

LR-HR patch pairs to learn the regression model rather than the neighborhood dic-

tionary atoms. The ANR and A+ methods change the way sparse-coded dictionaries

are used, where they search the nearest neighbors for each dictionary atom and learn

the regression model for each atom using its nearest neighbors. Dong et al. [13, 14]115

proposed an SR method based on convolutional neural network (SRCNN). SRCNN

consists of three layers. Training SRCNN [13] takes roughly 3 days to converge. Lai et

al. [36] proposed the Laplacian Pyramid Super-Resolution Network (LapSRN) based

on a cascade of CNNs. LapSRN progressively generates the sub-band residuals of HR

output images in a coarse-to-fine scheme. The generated residuals at each level are120

5

used to reconstruct the target HR output by upsampling and addition operations. The

training time of LapSRN on a Titan X GPU is about 3 days.

Decision tree can be used to support classification and regression. Huang et al. [24]

presented a decision tree-based method for single image SR, which uses all the train-

ing data to initialize the root node and generates the hierarchical decision trees. This125

algorithm fuses regression models that come from the same tree to improve accuracy.

Random forest-based SR methods [23, 25, 53] divide a training dataset into many sub-

sets, each of which is used to train a decision tree. When the training is done, each

leaf node of a decision tree corresponds to a learned regression model. In the testing

stage, the input LR patch is passed to a leaf node and converted to an HR patch using130

the corresponding regression model. The learned decision trees form the SR random

forest. Huang et al. [25] grouped a training dataset into four subsets depending on the

structure of pixels in the interpolated images. An SR decision tree is learned for each

subset.

The ANR and A+ methods search nearest neighbors for each dictionary atom,135

which is equivalent to grouping dictionary atoms into different classes. The num-

ber of classes equals the number of dictionary atoms. So aforementioned learning-

based SR methods [9, 23–25, 47, 48, 58, 59, 64] divide the training data into different

classes and learn a regression model for each class. The searching time of the methods

[9, 58, 59, 64] is linear to the number of classes, and that of methods [23–25, 53] is140

approximately linear to the depth of the tree, i.e., the logarithm of the number of leaf

nodes. This property of decision tree makes it possible to achieve fast SR. Two other

methods [47, 48] use a Spherical Hashing (SpH) [19] algorithm to search a regressor.

They rely on a parallel implementation to deal with the sparse dictionaries with a large

amount of atoms. Besides Spherical Hashing algorithm, the emerging cross-media145

hashing algorithm [68] may be used to search a proper regressor in a learning-based

SR method.

In addition, the way that learning-based methods [46, 58, 59, 64, 65, 70] extract

image feature can add to computational complexity, and the CNN-based methods take

significant training time.150

We propose to use Hadamard patterns as image features for SR because it can

6

Generation of

LR images

HR Images

LR-HR Patch

Pairs

...
...

...

Generation of

Hadamard

patterns

Patch

Extraction

Clustering

&

Training

SR decision

tree

non-leaf node

leaf node (a regressor)

Figure 1: The flowchart explaining the steps used to construct a training dataset of LR-HR patch pairs and

learn the SR decision tree from this training dataset. We divide the training data into different groups based

on the generated Hadamard patterns of LR patches using a coarse-to-fine strategy, and then learn a mapping

model for each group. We cluster the training data and at the same time learn a SR decision tree.

represent typical LR image patterns. Also, Hadamard pattern is simpler to compute

than image gradient [58, 59], which is not computationally demanding and only needs

small memory. Decision tree is used in our method to achieve fast classification and

regression.155

3. The Proposed Method

In this section we present our method for fast regression-based SR. Our proposed

method is based on the idea of piecewise linear regression presented in [47, 48]. It

employs an ensemble of piecewise linear mapping models (piecewise linear regressors)

anchored to certain leaf nodes and searches the appropriate mapping model through a160

ternary search algorithm. We train and select the mapping models similarly, as shown

in the upcoming sections.

An overview of our algorithm is shown in Fig. 1. It explains how to construct

a training dataset of LR-HR image patch pairs. Based on the generated Hadamard

patterns of the LR training image patches, an SR decision tree is learned, where the165

7

LR-HR image patch pairs cluster into different classes on the leaf nodes. A linear

mapping model is learned for each leaf node using the training data arriving at this

node. Since all the data are classified into different classes based on the SR decision

tree, and each class is modelled by a linear mapping model, the decision tree represents

a piecewise linear system.170

3.1. Linear Regression Framework

Some CNN-based SR methods [13, 14, 33, 34, 36, 37, 52] choose a non-linear

regression scheme, which leads to prohibitive complexity in training. In testing phase,

the complicated and deep network structure (a global regression model) may affect

running time.175

In our method, we choose a simple regression scheme, i.e. piecewise linear regres-

sion. Considering one linear regressor (mapping model), we just need to compute the

linear weighted sum of the input LR pixels (they compose an LR image patch) for a

desired output HR patch. We split the feature space into many subspaces and obtain a

better piecewise linear regression system that consists of many linear mapping models.180

In the training phase, the training data are grouped, and during the testing phase the

proper mapping model is selected for each input LR patch.

For the SR problem discussed in this paper, regression is used to reconstruct HR

patches from the LR input patches using a set of linear mapping models that conform

a piecewise linear regression system. The process can be formulated as:185

hr = lMq (3)

where l is a row vector, representing a vectorized input LR image patch. The recon-

structed HR image patch of l is represented by a row vector hr. Mq (q=1,2,...,D) is a

coefficient matrix, representing the qth mapping model and D is the total number of

the learned mapping models.

3.2. Learning the SR decision tree190

In this paper, we propose an SR method using Hadamard patterns. The Hadamard

patterns are obtained by Hadamard transform that uses Hadamard matrix as the trans-

8

formational matrix. The calculation of Hadamard pattern is simple because it just in-

volves addition and subtraction. Our method uses the Hadamard patterns of LR image

patches to describe their image features, and clusters training data based on them. For195

each class, we train the mapping model Mq from the LR space to the HR space using

the training data that belong to it.

The concept of decision tree is first proposed by Breiman et al. [6], which is often

used in data mining. The decision tree has a tree structure, where a node with two or

more child nodes is called a non-leaf node and a node without a child node is called a200

leaf node.

In this paper, we employ the ternary decision tree for image SR, where each non-

leaf node has three child nodes. We have conducted experiments on both the traditional

binary decision tree and the ternary decision tree. Experimental results show that the

ternary decision tree can result in better accuracy than the binary decision tree.205

In the training stage, the root node of the SR decision tree is initialized with all

the training data. Then threshold parameters are learnt to determine how each non-leaf

node with sufficient training data splits the training data into its left, middle and right

child nodes. Finally, each leaf node holds some training data, which are used to learn

a mapping model.210

3.2.1. The Extraction of Training Data

We extract LR-HR patch pairs from the training image dataset, which consists of

LR-HR image pairs. The HR training images Ih are directly downsampled by bicubic

interpolation to generate corresponding LR training images Il. The extracted LR-HR

patch pairs (lj , hj) are used for training, where lj ∈ R1×16 is a vectorized LR image215

patch and hj is a vectorized HR image patch.

3.2.2. Feature Representation

The selection and extraction of LR image feature will affect the quality of HR

output and the running time. The simple function method [64] uses the normalized LR

patch as image feature. The methods [58, 59, 70] use the first-order and second-order220

gradients of an LR image patch as its image features, which adds to computational

9

complexity. In this paper, we perform Hadamard transform on vectorized LR image

patches to calculate their Hadamard patterns. The implementation of transform is fast,

which saves the running time. Eq. (4) shows how to calculate the Hadamard pattern pi

for a vectorized LR image patch li.225

pi = liQ15 (4)

where Q15 is the reduced Hadamard matrix described below.

Q16 =

























































































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1

1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1

1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1

1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1

























































































(5)

A 16-order Hadamard matrix Q16 is used in our paper. The Eq. (5) shows the

Hadamard matrix Q16. Q16 has all its rows (columns) orthogonal to each other and any

two rows (columns) of Q16 differ in half their elements. The Hadamard matrix with

order of a power of 2 (e.g. Q16) can be constructed through the following recursive230

method (6). It can be realized by a built-in MATLAB function (i.e. hadamard()).

Q2 =





1 1

1 −1



 , Q2k+1 =





Q2k Q2k

Q2k −Q2k



 (k ≥ 1) (6)

In our method, we extract square patches and vectorize them. Each patch is rep-

resented by a row vector. According to Eq. (6), the order of Hadamard matrix is 2,

4, 8, 16, 32, 64, ..., 2k(k ≥ 1). In order to perform Hadamard transform on vector-

10

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o)

Figure 2: The visualization of Hadamard matrix Q15. Each column of the Hadamard matrix Q15 is treated

as a convolution filter of 4× 4.

ized square patches (see Eq. (4)), the side length of square patches needs to be an even235

number.

We set the size of an LR image patch to 4× 4 and use a 16-order Hadamard matrix

Q16 (see Eq. (5)) in our method. When the size of an LR image patch is 2 × 2, its

corresponding Hadamard matrix is Q4. The small patch size will result in capturing

less image information. When the size of an LR image patch is 8×8, its corresponding240

Hadamard matrix is Q64. The accuracy of adopting Q64 is worse than that of adopting

Q16. Besides, the order of Q64 is bigger. We need to compute more parameters in our

method, which adds to the computation load and may cause over-fitting.

Each column of Q16 is equivalent to a convolution filter, which can be used to

obtain different statistics of the image features of an LR image patch. The first column245

of the Q16 is all 1. This filter just calculates the sum of all pixels in an LR image patch.

It can not reflect the texture characteristics (texture diversity) of an LR image patch.

So we delete the first column of Q16 to get a new matrix Q15. Later, the so-called

Hadamard matrix refers to the new matrix Q15 ∈ R16×15.

Each column of Q15 can be reshaped as a 4 × 4 matrix and visualized. Fig. 2 is250

the visualization of Hadamard matrix Q15, where the white pixel represents +1 and the

black -1. The subgraph (a)-(o) represents the 1st − 15th column of Q15 respectively.

The big block of black (white) blocks implies low frequency signal and small size

implies high frequency signal. Small size is more likely related to noise. In considera-

tion of this, we set the sequence Seq = [2 8 3 12 10 1 4 11 14 6 9 15 7 13 5]. Following255

11

this determined sequence, we perform 15 round of splittings to group training data into

different classes using the corresponding column of Hadamard patterns of LR training

data.

3.2.3. Clustering and Training

All the extracted LR image patches form a matrix L ∈ RN×16 by stacking the row260

vectors li(i = 1, ..., N), where N is the number of extracted pairs, and the correspond-

ing HR image patches form a matrix H ∈ RN×s2 (s is the upscaling factor). The

Hadamard pattern P ∈ RN×15 can be calculated by the following Eq. (7).

P = LQ15 (7)

In the process of learning an SR decision tree, the training data are split from non-

leaf nodes into leaf nodes to perform clustering on training data. Once the clustering265

is done, each cluster is used to learn a mapping model. We initiate the root node with

all the training data. According to the determined sequence Seq, in the first round of

splitting, we use the 2nd (Seq[1]) column of the generated Hadamard patterns to group

training data into three classes based on two learnt thresholds described below. By now,

the SR decision tree has one root node and three child nodes. Then the three classes270

go on the second round of splitting separately. During the second round of splitting,

we use the 8th column (Seq[2]) of the Hadamard patterns corresponding to each class

to perform further classification. The splitting goes on round after round and there are

at most 15 round of splittings. In the kth(k = 1, ..., 15) round of splitting, how many

times we perform classification depends on the current number of non-leaf nodes. For275

each non-leaf node, its training data are partitioned according to the Seq[k]th column

of its Hadamard patterns. The SR decision tree is progressively constructed by parti-

tioning the training data from non-leaf nodes into leaf nodes. When we are performing

the kth round of splitting, we are constructing the kth layer of the SR decision tree.

The depth of the learned SR decision tree is at most 16 because Q15 has 15 columns280

and so the generated Hadamard patterns has 15 columns. Here, we consider that the

root node has depth 1. When we have finished the 15th round of splitting, we mark the

12

generated child nodes as leaf nodes.

In the splitting at the non-leaf node j with Nj training patch pairs (i.e., Lj and

Hj), we assume that it has sufficient training data. We generate Hadamard patterns Pj285

(see Eq. (7)) for training data in current node j. We assume that this splitting is in the

kth(k = 1, ..., 15) round of splitting. We use the Seq[k]th column of Pj to group Lj

and Hj . First we sort the Seq[k]th column of Pj in ascending order to get P s as shown

in Eq. (8). Then the threshold values v1 and v2 are obtained from P s ∈ RNj by Eq. (9)

P s = Sort(Pj(:, Seq[k]
th)) (8)

v1 = P s(⌈(1− v)Nj/2⌉, 1), v2 = P s(⌊(1 + v)Nj/2⌋, 1) (9)

where v ∈ (0, 1) controls the position we select threshold values. It is the constraint290

we employ to restrict the relative training data size of three child nodes.

The training data that their Hadamard pattern values in the Seq[k]th column are

smaller than v1 will be passed to the left child node, and greater than v2 to the right

child node. The rest of the training data will be passed to the middle child node. Then

a set of parameters βj = [k, indl, indm, indr, v1, v2] are stored in this non-leaf node.295

The parameter k is the depth of this node (i.e. this node’s training data are classified in

which round of splitting). indl, indm and indr are indices that point to this node’s left,

middle and right child node respectively. v1 and v2 are the learned threshold values. v1

is the smaller one.

The ternary splitting should fulfill Eq. (10).300

min(Nl, Nm, Nr) ≥ min num (10)

where Nl, Nm and Nr are the training data sizes of the left, middle and right child

node respectively, and min num represents the minimum size of training samples in

one leaf node.

After one splitting, if the number of training samples in one child node is less than

the minimum min num we have determined, then this splitting is invalid, and the305

13

current node is marked as a leaf node. Before we begin a new splitting, we also check

whether the number of training samples in current node is less than 3 ∗min num.

If it is, then the current node is marked as a leaf node because splitting this node

will result in at least one child node whose training samples are less than min num.

For each leaf node, we learn a mapping model from the LR space to the HR space using310

the training data arrived here and just store the index to this mapping model in this leaf

node.

A non-leaf node in the learned SR decision tree stores its depth (i.e. this node’s

training data are classified in which round of splitting) in the tree, the learned threshold

values and the indices that point to its child nodes. The learned threshold values are315

used for classification. The training and testing data are partitioned into this non-leaf

node’s left, middle or right child node according to a comparison result between the

learned threshold values and their Hadamard patterns. A leaf node in the learned SR

decision tree stores the index that points to a mapping model. Let Mq be the mapping

model that is learned using training data arrived at leaf node q.320

For each leaf node q, a mapping model is calculated using the least squares method

to solve Eq. (11) with the constraint that the sum of each column of Mq is 1.

Hq = LqMq (11)

where Mq is the regression matrix of the qth leaf node, Hq and Lq are the training

data pairs arriving at leaf node q. The clustering and training scheme is summarized in

Algorithm 1.325

3.3. Time Complexity Analysis

Let N be the total number of the LR-HR patch pairs in the training dataset, and

L be the number of layers in the decision tree. The time complexity of training the

decision tree is O(N · L), because N Hadamard patterns need to be computed in each

layer. In the proposed method a constant (at most 15) layers exist in the decision tree,330

so the time complexity of training is O(N).

14

non-leaf node

leaf node (a regressor)
patch extraction

compute Hadamard pattern

Figure 3: The flowchart explaining the searching process. Each time we extract one LR patch form the input

LR image and compute its Hadamard pattern. Then this generated Hadamard pattern is compared with the

learned thresholds in the obtained SR decision tree until arrives at a leaf node. The proper mapping model is

found.

LR image HR image

Figure 4: The position relationship between an input LR patch and its predicted HR patch. In this figure,

each small square represents a pixel. The black squares in the LR image are padding and the yellow squares

are LR pixels. The right one is the predicted HR image with the upscaling factor s = 2. Obtaining all the

predicted HR patches, we crop the border to get the final HR output.

15

3.4. SR Scheme

For regression-based SR methods, searching proper mapping models in the stage

of performing SR is time-critical. In our method, we perform a ternary search, which

yields state-of-the-art running time. The searching process is shown in Fig. 3. When335

we search a mapping model for an input LR image patch, we need to go through at

most 15 (a constant) number of layers of the decision tree. Each layer involves only

one Hadamard pattern computation and two comparisons, so the time complexity of

traversing the decision tree is O(1).

We use a sliding window of 4 × 4 to extract a patch from the input LR image in340

a raster-scan order and calculate its Hadamard pattern. Each time the sliding window

moves one pixel. According to the current depth, we compare the Seq[depth]th column

of the generated Hadamard pattern with the thresholds corresponding to current node

and pass this test patch to next node until it arrives at a leaf node. The corresponding

mapping model is then used to map the LR image patch to the target HR output. All345

the mapped HR patches form the predicted HR output. The extracted patches from

input LR image have overlapping regions, and the predicted HR image patches have no

overlapping regions. So we need not to average the overlapping regions for the target

output in the testing stage. As seen in Fig. 4, when the upscaling factor is 2, the sliding

window in input LR image moves one pixel and the sliding window in predicted HR350

image moves two pixels.

4. Experimental Results and Analysis

In this section, we show experimental results and analyse them. In order to demon-

strate effectiveness and efficiency of the proposed algorithm, we employ a common

training image dataset and two testing datasets. We use the training image dataset [65]355

that contains 91 natural images. For testing image datasets, we use Set5 [4] (5 images)

and Set 14 [70] (14 images). The testing images are not included in the training im-

age dataset. We adopt peak signal-to-noise ratio (PSNR), structural similarity index

(SSIM) [61] and running time to measure the performance for all methods.

16

Following the experimental setting of other papers [14, 24, 36, 53, 58, 59], we360

extract LR training data from the standard image dataset without Gaussian blurring on

these training images. For generating the testing images, however, to imitate the real

imaging process, all the images in Set5 and Set14 are first blurred by a 5× 5 Gaussian

filter with standard deviation 1.6 and then downsampled by bicubic interpolation with

scaling factor of 2 to generate the corresponding LR testing images. The size of an LR365

image patch is 4×4 and the size of an HR image patch is s×s (s is the upscaling factor).

The proposed method only deals with the luminance channel in YCrCb color space and

the chromatic components are enlarged to the desired size with bicubic interpolation.

We use the LR testing images in the aforementioned conditions to measure all meth-

ods [14, 24, 36, 53, 58, 59].370

4.1. Experimental Settings

The quality of the proposed method is related to the quality of the mapping mod-

els. It is obvious that the quality of mapping models can be improved by using more

training data. More training data can make the relationship between LR and HR image

patches be described more accurately. Fig. 5 (a) illustrates the relationship between375

the minimum size of training data in a leaf node min num and the average PSNR

of the reconstructed images in Set5 when the upscaling factor is 2 and v is 0.4. We

vary min num from 16 to 2048 and each time min num doubles. It can be seen

from Fig. 5 (a) that the average PSNR of these testing images is improved by more

than 2.0dB. As min num is larger than 512, the accuracy converges. In the following380

experiments, min num is set to 512.

In our proposed method, we use the v value to restrict the relative training data

size of three child nodes, as stated in Eq. (9) and Eq. (10). The average PSNR of the

reconstructed images in Set5 with respect to different v are shown in Fig. 5 (b). A

larger or smaller v gives a more tight constraint on the training data size of child nodes,385

which results in longer training time. Considering both the training effectiveness and

the training time, in the following experiments, we set v to 0.5.

Our computing platform is an Intel Core i7-4790 CPU 3.60 GHZ 4 core processor

with 16GB RAM.

17

min_num

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

P
S

N
R

(d
B

)

28

28.5

29

29.5

30

30.5

31

(a)

v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
S

N
R

(d
B

)

30.75

30.77

30.79

30.81

30.83

30.85

30.87

30.89

30.9

(b)

Figure 5: Upscaling factor=2:(a) the relationship between min num and the average PSNR of the recon-

structed images in Set5 when upscaling factor is 2, with v =0.4; (b) the relationship between v and the

average PSNR of the reconstructed images in Set5 with min num=512.

18

Slower<-- Time(s) -->Faster

10
-2

10
-1

10
0

10
1

P
S

N
R

(d
B

)

30.55

30.6

30.65

30.7

30.75

30.8

30.85

30.9

SRCNN

LapSRN
SRHDT_f*

A+

ANR

RFL

The Proposed Method

(a)

Slower<-- Time(s) -->Faster

10
-2

10
-1

10
0

10
1

P
S

N
R

(d
B

)

27.8

27.85

27.9

27.95

28

LapSRN

SRCNN

ANR

A+

RFL

SRHDT_f*

The Proposed Method

(b)

Figure 6: Speed and accuracy trade-off. The results of (a) and (b) are evaluated on Set5 and Set14 respec-

tively with the upscaling factor 2. The proposed method generates SR images efficiently and accurately.

19

ANR A+ SRHDT_f* RFL SRCNN LapSRN OUR

A
v
e
ra

g
e
 N

o
rm

a
liz

e
d
 P

S
N

R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

ANR A+ SRHDT_f* RFL SRCNN LapSRN OUR

A
v
e
ra

g
e
 N

o
rm

a
liz

e
d
 S

S
IM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

ANR A+ SRHDT_f* RFL SRCNN LapSRN OUR

A
v
e
ra

g
e
 N

o
rm

a
liz

e
d
 T

IM
E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

Figure 7: The normalized average PSNR, SSIM and running time by different methods for scaling factor 2

on Set5.

4.2. Comparison With State-of-the-Art Methods390

We compare our method with some well-known single image SR methods, such

as ANR [58], A+ [59] ,SRHDT f* [24], RFL [53], SRCNN [14] and LapSRN [36]

methods. We have used their published implementations. Fig. 6 shows the trade-off

between running time and accuracy clearly. The proposed method performs best.

In Fig. 7, we show the normalized average PSNR, SSIM and running time by dif-395

ferent methods on Set5. In Table 1, we provide a detailed quantitative evaluation on

Set14. Among them, the Bicubic, ANR, A+, SRCNN, LapSRN methods are imple-

mented in MATLAB 2015a. The RFL and the proposed methods are implemented

based on mixed programming of C++ and MATLAB. For the SR method in [24], we

20

use their proposed hierarchical framework with fused regression models (SRHDT f)400

for comparison. SRHDT f* is implemented in C++ and applies the standard 91 train-

ing images for training, but its running time is still slower than ours as shown in Fig. 7

and Table 1. For SRCNN method, its published code is slower than the one used in

their paper. However their reported times for SRCNN are slower than those of A+ in

their benchmark [14] and our running times are faster than those of A+ as shown in405

Fig. 7 and Table 1. For LapSRN method, we only test its accuracy and running time on

a CPU platform. They applied GPU acceleration in their published paper [36].

As can be seen in Fig. 7 and Table 1, comparing with the state-of-the-arts, our

method can achieve comparable accuracy with much less running time. In addition,

visual comparison in Fig. 8 - 9 shows that our method can better preserve sharp edges410

and restore more detailed information.

4.2.1. SR methods based on sparse coding

The proposed method, ANR method and A+ method use the same training image

dataset [65]. As shown in Fig. 7, the average PSNR of our method is higher than both

the average PSNR achieved by ANR method and the average PSNR of A+ method.415

Besides, our method leads in the average running time. In addition, our method can

obtain higher average SSIM. The A+ method improves ANR method. As shown in

Fig. 7 and Table 1, our method outperforms ANR and A+ in running time while being

competitive in quality.

When searching the nearest neighbor dictionary atom for an input LR feature, the420

ANR and A+ methods calculate the correlation between the input LR feature and all

dictionary atoms to find the dictionary atom with maximum correlation. The searching

time is linear to the size of this dictionary. The searching process of our method is

a ternary search. In our method, the learned SR decision tree has at most 16 layers

(the depth of the root node is 1). So we only need at most 15 comparisons until the425

desired leaf node is found. In the ANR and A+ methods, there are 1024 atoms in the

dictionary. They need to find the nearest neighbor atom from them. Obviously, we are

the best-performer in the trade-off between quality and running time, confirming the

best appropriateness of practical application.

21

Table 1

The PSNR, SSIM and running time by different methods for scaling factor 2 on Set14.

Images Measures Methods

Bicubic(M) ANR [58] A+ [59] SRHDT f* [24] RFL [53] SRCNN [13] LapSRN [36] OUR

baboon PSNR 23.17 23.47 23.48 23.48 23.47 23.48 23.48 23.44

SSIM 0.5299 0.5624 0.5628 0.5625 0.5618 0.5626 0.5639 0.5621

TIME 0 1.11 1.20 1.13 1.24 8.14 1.10 0.03

barbara PSNR 26.11 26.46 26.47 26.47 26.45 26.46 26.44 26.40

SSIM 0.7485 0.7691 0.7698 0.7637 0.7679 0.7687 0.7695 0.7672

TIME 0 1.86 2.03 1.29 1.93 14.53 2.00 0.05

bridge PSNR 24.27 24.74 24.77 24.79 24.78 24.77 24.74 24.79

SSIM 0.6322 0.6685 0.6695 0.6713 0.6678 0.6700 0.6699 0.6686

TIME 0 1.18 1.32 1.38 1.35 9.06 1.25 0.03

coastguard PSNR 26.49 27.04 27.08 27.04 27.05 27.04 27.06 27.09

SSIM 0.6180 0.6557 0.6581 0.6398 0.6523 0.6566 0.6596 0.6422

TIME 0 0.51 0.55 0.37 0.56 2.41 0.51 0.01

comic PSNR 23.00 23.59 23.60 23.67 23.59 23.57 23.56 23.50

SSIM 0.6943 0.7335 0.7356 0.7335 0.7342 0.7314 0.7343 0.7288

TIME 0 0.46 0.49 0.47 0.55 2.43 0.58 0.01

face PSNR 32.65 33.10 33.11 33.02 33.04 33.06 33.11 33.04

SSIM 0.7920 0.8063 0.8071 0.8033 0.8073 0.8088 0.8115 0.8085

TIME 0 0.40 0.42 0.21 0.45 1.97 0.44 0.01

flowers PSNR 27.04 27.71 27.73 27.78 27.70 27.68 27.63 27.64

SSIM 0.7994 0.8246 0.8257 0.8221 0.8253 0.8235 0.8252 0.8218

TIME 0 0.93 1.00 0.76 0.94 6.16 0.91 0.02

foreman PSNR 30.25 31.30 31.33 31.38 31.59 31.17 31.21 32.29

SSIM 0.8921 0.9071 0.9096 0.9127 0.9099 0.9051 0.9093 0.9160

TIME 0 0.52 0.56 0.29 0.54 2.41 0.49 0.01

lenna PSNR 31.33 32.01 32.00 31.98 31.99 31.92 31.92 32.02

SSIM 0.8531 0.8671 0.8685 0.8639 0.8667 0.8654 0.8686 0.8678

TIME 0 1.43 1.52 0.68 1.22 9.16 1.26 0.03

man PSNR 26.87 27.38 27.40 27.41 27.39 27.35 27.32 27.36

SSIM 0.7429 0.7671 0.7678 0.7644 0.7661 0.7667 0.7674 0.7663

TIME 0 1.43 1.53 1.08 1.34 9.03 1.26 0.03

monarch PSNR 29.07 29.87 29.90 29.97 29.95 29.81 29.71 29.95

SSIM 0.9174 0.9294 0.9309 0.9291 0.9298 0.9277 0.9304 0.9311

TIME 0 2.12 2.27 1.07 1.80 13.77 1.86 0.05

pepper PSNR 31.95 32.66 32.70 32.70 32.79 32.54 32.53 32.91

SSIM 0.8629 0.8741 0.8763 0.8744 0.8764 0.8728 0.8765 0.8786

TIME 0 1.43 1.51 0.66 1.24 9.08 1.26 0.03

ppt3 PSNR 23.64 24.36 24.43 24.52 24.51 24.32 24.20 24.35

SSIM 0.8772 0.8994 0.9058 0.9055 0.9066 0.9012 0.9019 0.9037

TIME 0 1.87 2.00 0.85 1.54 12.49 1.63 0.04

zebra PSNR 26.15 27.07 27.06 27.08 27.09 26.96 26.89 27.13

SSIM 0.7812 0.8140 0.8150 0.8133 0.8151 0.8125 0.8146 0.8161

TIME 0 1.23 1.31 1.12 1.16 7.70 1.11 0.02

Average PSNR 27.30 27.91 27.93 27.95 27.96 27.87 27.84 27.99

SSIM 0.7673 0.7913 0.7930 0.7900 0.7919 0.7909 0.7930 0.7913

TIME 0 1.18 1.27 0.81 1.13 7.74 1.12 0.03

4.2.2. SR methods based on decision tree and random forest430

For upscaling factor of 2, the average PSNR of our method is higher than that of

SRHDT f* and our average running time is faster as shown in Fig. 7. The average re-

sults of Table 1 show that we are consistently better than SRHDT f* in average PSNR.

Besides, our method has a faster running speed. The speed-up with respect it is ×27.

The hierarchical structure and fusing relevant predicted results within the same deci-435

sion tree result in its longer running time.

The RFL method learns multiple trees. During inference, RFL has to average pre-

22

dictions over all trees. The proposed method just has one SR decision tree and has no

averaging operations. We are competitive in terms of PSNR and SSIM when compared

with RFL. Beyond that, we are much faster.440

The tree structure in SRHDT f* is more complex than that of ours and RFL method

has more trees than the proposed method. They fail to balance the accuracy and running

time due to higher computational complexity.

4.2.3. SR methods based on CNN

The SRCNN method [14] is trained on two different training image datasets respec-445

tively, one is the training dataset contains 91 images and another is the ILSVRC 2013

ImageNet training dataset contains 395, 909 images. The SRCNN performs better on

the second training dataset. So the SRCNN method used in this paper is trained on the

ImageNet.

As shown in Fig. 7 and Table 1, the average PSNR obtained with our method is450

higher than that of SRCNN. Besides, our method is highly competitive in terms of

running time. Compared with SRCNN method, our method clearly outperforms it in

both running time and average quality (PSNR). Furthermore, our training time is less

than 15 seconds and the training time of the SRCNN method is roughly 3 days. It can

be seen from Table 1, the speed-up with regard to SRCNN is ×258.455

The LapSRN method constructs its network based on the Laplacian pyramind frame-

work. The HR output image is reconstructed progressively. The LapSRN method uses

the 91 images from [65] and 200 images from the training dataset of Berkeley Segmen-

tation Dataset [2] to train its model. We show the objective evaluation in Fig. 7 and

Table 1. The PSNR obtained with our method is higher than that of LapSRN and our460

running speed is much faster. As shown in Table 1, the speed up by using our method

is ×37.33.

The structure of our decision tree with Hadamard patterns is much simpler than

that of a deep CNN, but it resulted in similar or even better accuracy. The reason is

that Hadamard patterns cover almost all the possible patterns an LR image patch can465

have and division of the whole feature space into piecewise linear subspaces based on

Hadamard patterns can effectively approximate the non-linear feature space. So, our

23

approach can reach the results a complex deep CNN may produce.

Therefore, when quality of image with a fast processing speed is the priority, our

proposed method can be a better candidate than aforementioned methods in real appli-470

cations.

5. Conclusion

This paper proposed a Hadamard pattern-based SR method for single-image SR

problem, which focuses on reducing the running time dramatically while preserving

the accuracy. Our method performs Hadamard transform on LR image patches and use475

the generated Hadamard patterns to describe their image features. The calculation of

Hadamard pattern is simple because it just involves addition and subtraction. Moreover,

the use of ternary decision tree speeds up our method further.

6. Acknowledgments

This work was partly supported by National Science Foundation of China Grant480

61300135, Pearl River Technology Nova Project Grant 201710010020, the Funda-

mental Research Funds for the Central Universities Grant x2rjD2153900, Hong Kong

Scholars Program Grant XJ2014058, the Open Project Program of the State Key Lab

of CAD&CG Grant A1619.

The authors would like to thank the editors and anonymous reviewers for their485

comments and suggestions.

References

[1] Anshi, C., Di, L., Renzhong, Z., 1993. A research on fast hadamard trans-

form digital systems, in: IEEE Region 10 Conference on TENCON’93. Proceed-

ings. Computer, Communication, Control and Power Engineering, pp. 541–545.490

doi:10.1109/TENCON.1993.328044.

[2] Arbelaez, P., Maire, M., Fowlkes, C., Malik, J., 2011. Contour detection and

hierarchical image segmentation. IEEE Transactions on Pattern Analysis and

Machine Intelligence 33, 898–916. doi:10.1109/TPAMI.2010.161.

24

[3] Bell, D., 1966. Walsh functions and hadamard matrixes. Electronics Letters 2,495

340–341. doi:10.1049/el:19660286.

[4] Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L., 2012. Low-

complexity single-image super-resolution based on nonnegative neighbor embed-

ding, in: British Machine Vision Conference (BMVC), BMVA press. doi:10.

5244/C.26.135.500

[5] Blu, T., Thévenaz, P., Unser, M., 2004. Linear interpolation revitalized. IEEE

Transactions on Image Processing 13, 710–719. doi:10.1109/TIP.2004.

826093.

[6] Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A., 1984. Classification and

regression trees. CRC press. doi:10.1007/978-3-319-03629-8_10.505

[7] Cao, F., Li, K., 2018. A new method for image super-resolution with multi-

channel constraints. Knowledge-Based Systems 146, 118 – 128. doi:10.1016/

j.knosys.2018.01.034.

[8] Chan, T.F., Ng, M.K., Yau, A.C., Yip, A.M., 2007. Superresolution image recon-

struction using fast inpainting algorithms. Applied and Computational Harmonic510

Analysis 23, 3–24. doi:10.1016/j.acha.2006.09.005.

[9] Chang, H., Yeung, D.Y., Xiong, Y., 2004. Super-resolution through neighbor em-

bedding, in: IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 275–282. doi:10.1109/CVPR.2004.1315043.

[10] Chang, K., Ding, P.L.K., Li, B., 2018. Single image super-resolution using col-515

laborative representation and non-local self-similarity. Signal Processing 149, 49

– 61. doi:10.1016/j.sigpro.2018.02.031.

[11] Deng, C., Xu, J., Zhang, K., Tao, D., Gao, X., Li, X., 2016a. Similarity

constraints-based structured output regression machine: An approach to image

super-resolution. IEEE Transactions on Neural Networks and Learning Systems520

27, 2472–2485. doi:10.1109/TNNLS.2015.2468069.

25

[12] Deng, L.J., Guo, W., Huang, T.Z., 2016b. Single image super-resolution

by approximated heaviside functions. Information Sciences 348, 107 – 123.

doi:10.1016/j.ins.2016.02.015.

[13] Dong, C., Loy, C.C., He, K., Tang, X., 2014. Learning a deep convolutional net-525

work for image super-resolution, in: European Conference on Computer Vision

(ECCV), pp. 184–199. doi:10.1007/978-3-319-10593-2_13.

[14] Dong, C., Loy, C.C., He, K., Tang, X., 2016. Image super-resolution using deep

convolutional networks. IEEE Transactions on Pattern Analysis and Machine

Intelligence 38, 295–307. doi:10.1109/TPAMI.2015.2439281.530

[15] Fan, X., Yang, Y., Deng, C., Xu, J., Gao, X., 2018. Compressed multi-scale

feature fusion network for single image super-resolution. Signal Processing 146,

50 – 60. doi:10.1016/j.sigpro.2017.12.017.

[16] Fattal, R., 2007. Image upsampling via imposed edge statistics, in: ACM Trans-

actions on Graphics (TOG), p. 95. doi:10.1145/1275808.1276496.535

[17] Glasner, D., Bagon, S., Irani, M., 2009. Super-resolution from a single image,

in: IEEE International Conference on Computer Vision (ICCV), pp. 349–356.

doi:10.1109/ICCV.2009.5459271.

[18] Gong, W., Hu, L., Li, J., Li, W., 2015. Combining sparse representation and local

rank constraint for single image super resolution. Information Sciences 325, 1–540

19. doi:10.1016/j.ins.2015.07.004.

[19] Heo, J.P., Lee, Y., He, J., Chang, S.F., Yoon, S.E., 2012. Spherical hashing,

in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.

2957–2964. doi:10.1109/CVPR.2012.6248024.

[20] Hou, H., Andrews, H., 1978. Cubic splines for image interpolation and digital545

filtering. IEEE Transactions on Acoustics, Speech, and Signal Processing 26,

508–517. doi:10.1109/TASSP.1978.1163154.

26

[21] Hu, J., Wu, X., Zhou, J., 2018. Noise robust single image super-resolution using

a multiscale image pyramid. Signal Processing 148, 157 – 171. doi:10.1016/

j.sigpro.2018.02.020.550

[22] Huang, J.B., Singh, A., Ahuja, N., 2015a. Single image super-resolution from

transformed self-exemplars, in: IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 5197–5206. doi:10.1109/CVPR.2015.

7299156.

[23] Huang, J.J., Siu, W.C., 2015. Practical application of random forests for super-555

resolution imaging, in: IEEE International Symposium on Circuits and Systems

(ISCAS), pp. 2161–2164. doi:10.1109/ISCAS.2015.7169108.

[24] Huang, J.J., Siu, W.C., 2017. Learning hierarchical decision trees for single-

image super-resolution. IEEE Transactions on Circuits and Systems for Video

Technology 27, 937–950. doi:10.1109/TCSVT.2015.2513661.560

[25] Huang, J.J., Siu, W.C., Liu, T.R., 2015b. Fast image interpolation via random

forests. IEEE Transactions on Image Processing 24, 3232–3245. doi:10.1109/

TIP.2015.2440751.

[26] Huang, P., Li, T., Shu, Z., Gao, G., Yang, G., Qian, C., 2018a. Locality-

regularized linear regression discriminant analysis for feature extraction. Infor-565

mation Sciences 429, 164 – 176. doi:10.1016/j.ins.2017.11.001.

[27] Huang, S., Sun, J., Yang, Y., Fang, Y., Lin, P., Que, Y., 2018b. Robust single-

image super-resolution based on adaptive edge-preserving smoothing regulariza-

tion. IEEE Transactions on Image Processing 27, 2650–2663. doi:10.1109/

TIP.2018.2809472.570

[28] Hung, K.W., Siu, W.C., 2012. Single image super-resolution using iterative

wiener filter, in: IEEE International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP), pp. 1269–1272. doi:10.1109/ICASSP.2012.

6288120.

27

[29] Jiang, J., Chen, C., Huang, K., Cai, Z., Hu, R., 2016. Noise robust position-patch575

based face super-resolution via tikhonov regularized neighbor representation. In-

formation Sciences 367-368, 354 – 372. doi:10.1016/j.ins.2016.05.

032.

[30] Johnson, J., Alahi, A., Fei-Fei, L., 2016. Perceptual losses for real-time style

transfer and super-resolution, in: European Conference on Computer Vision580

(ECCV), pp. 694–711. doi:10.1007/978-3-319-46475-6_43.

[31] Kang, S., Kang, P., 2018. Locally linear ensemble for regression. Information

Sciences 432, 199 – 209. doi:10.1016/j.ins.2017.12.022.

[32] Keys, R., 1981. Cubic convolution interpolation for digital image processing.

IEEE Transactions on Acoustics, Speech, and Signal Processing 29, 1153–1160.585

doi:10.1109/TASSP.1981.1163711.

[33] Kim, J., Kwon Lee, J., Mu Lee, K., 2016a. Accurate image super-resolution us-

ing very deep convolutional networks, in: IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 1646–1654. doi:10.1109/CVPR.2016.

182.590

[34] Kim, J., Kwon Lee, J., Mu Lee, K., 2016b. Deeply-recursive convolutional

network for image super-resolution, in: IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 1637–1645. doi:10.1109/CVPR.2016.

181.

[35] Lai, J.Y., Wang, S.L., Liew, A.W.C., Shi, X.J., 2016. Visual speaker identification595

and authentication by joint spatiotemporal sparse coding and hierarchical pooling.

Information Sciences 373, 219 – 232. doi:10.1016/j.ins.2016.09.015.

[36] Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H., 2017. Deep laplacian pyramid

networks for fast and accurate super-resolution, in: IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pp. 5835–5843. doi:10.1109/600

CVPR.2017.618.

28

[37] Ledig, C., Theis, L., Huszr, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,

A., Tejani, A., Totz, J., Wang, Z., Shi, W., 2017. Photo-realistic single image

super-resolution using a generative adversarial network, in: IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 105–114. doi:10.1109/605

CVPR.2017.19.

[38] Lehmann, T.M., Gonner, C., Spitzer, K., 2001. Addendum: B-spline interpolation

in medical image processing. IEEE Transactions on Medical Imaging 20, 660–

665. doi:10.1109/42.932749.

[39] Leng, B., Liu, Y., Yu, K., Zhang, X., Xiong, Z., 2016. 3d object understanding610

with 3d convolutional neural networks. Information Sciences 366, 188 – 201.

doi:10.1016/j.ins.2015.08.007.

[40] Li, J., Gong, W., Li, W., 2015. Dual-sparsity regularized sparse representation

for single image super-resolution. Information Sciences 298, 257–273. doi:10.

1016/j.ins.2014.11.032.615

[41] Li, Y., Wang, Y., Li, Y., Jiao, L., Zhang, X., Stolkin, R., 2016. Single im-

age super-resolution reconstruction based on genetic algorithm and regulariza-

tion prior model. Information Sciences 372, 196–207. doi:10.1016/j.ins.

2016.08.049.

[42] Liu, F., Tang, J., Song, Y., Bi, Y., Yang, S., 2016a. Local structure based multi-620

phase collaborative representation for face recognition with single sample per per-

son. Information Sciences 346-347, 198 – 215. doi:10.1016/j.ins.2016.

02.001.

[43] Liu, L., Peng, Y., Wang, S., Liu, M., Huang, Z., 2016b. Complex activity recog-

nition using time series pattern dictionary learned from ubiquitous sensors. Infor-625

mation Sciences 340-341, 41 – 57. doi:10.1016/j.ins.2016.01.020.

[44] Nayak, R., Patra, D., 2018. New single-image super-resolution reconstruction

using mrf model. Neurocomputing 293, 108 – 129. doi:10.1016/j.neucom.

2018.02.090.

29

[45] Oh, B.S., Toh, K.A., Teoh, A.B.J., Lin, Z., 2018. An analytic gabor feed-630

forward network for single-sample and pose-invariant face recognition. IEEE

Transactions on Image Processing 27, 2791–2805. doi:10.1109/TIP.2018.

2809040.

[46] Peleg, T., Elad, M., 2014. A statistical prediction model based on sparse represen-

tations for single image super-resolution. IEEE Transactions on Image Processing635

23, 2569–2582. doi:10.1109/TIP.2014.2305844.

[47] Pérez-Pellitero, E., Salvador, J., Ruiz-Hidalgo, J., Rosenhahn, B., 2016a. An-

tipodally invariant metrics for fast regression-based super-resolution. IEEE

Transactions on Image Processing 25, 2456–2468. doi:10.1109/TIP.2016.

2549362.640

[48] Pérez-Pellitero, E., Salvador, J., Ruiz-Hidalgo, J., Rosenhahn, B., 2016b. Half

hypersphere confinement for piecewise linear regression, in: IEEE Winter Con-

ference on Applications of Computer Vision (WACV), pp. 1–9. doi:10.1109/

WACV.2016.7477651.

[49] Petrosian, A., 2002. New classes of hybrid hadamard-wavelet transforms for645

signal-image processing, in: Engineering in Medicine and Biology, 24th Annual

Conference and the Annual Fall Meeting of the Biomedical Engineering Soci-

ety EMBS/BMES Conference, pp. 153–154. doi:10.1109/IEMBS.2002.

1134432.

[50] Pratt, W.K., Kane, J., Andrews, H.C., 1969. Hadamard transform image coding.650

Proceedings of the IEEE 57, 58–68. doi:10.1109/PROC.1969.6869.

[51] Purkait, P., Pal, N.R., Chanda, B., 2014. A fuzzy-rule-based approach for single

frame super resolution. IEEE Transactions on Image Processing 23, 2277–2290.

doi:10.1109/TIP.2014.2312289.

[52] Romano, Y., Isidoro, J., Milanfar, P., 2017. Raisr: Rapid and accurate image super655

resolution. IEEE Transactions on Computational Imaging 3, 110–125. doi:10.

1109/TCI.2016.2629284.

30

[53] Schulter, S., Leistner, C., Bischof, H., 2015. Fast and accurate image upscal-

ing with super-resolution forests, in: IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 3791–3799. doi:10.1109/CVPR.2015.660

7299003.

[54] Shi, J., Liu, X., Zong, Y., Qi, C., Zhao, G., 2018. Hallucinating face image

by regularization models in high-resolution feature space. IEEE Transactions on

Image Processing 27, 2980–2995. doi:10.1109/TIP.2018.2813163.

[55] Sun, J., Xu, Z., Shum, H.Y., 2008. Image super-resolution using gradient profile665

prior, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 1–8. doi:10.1109/CVPR.2008.4587659.

[56] Tang, Y., Gong, W., Yi, Q., Li, W., 2018. Combining sparse coding with struc-

tured output regression machine for single image super-resolution. Information

Sciences 430-431, 577 – 598. doi:10.1016/j.ins.2017.12.001.670

[57] Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L., Lim, B., Son,

S., Kim, H., Nah, S., Lee, K.M., et al., 2017. Ntire 2017 challenge on single

image super-resolution: Methods and results, in: IEEE Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), pp. 1110–1121. doi:10.

1109/CVPRW.2017.149.675

[58] Timofte, R., De Smet, V., Van Gool, L., 2013. Anchored neighborhood regression

for fast example-based super-resolution, in: IEEE International Conference on

Computer Vision (ICCV), pp. 1920–1927. doi:10.1109/ICCV.2013.241.

[59] Timofte, R., De Smet, V., Van Gool, L., 2014. A+: Adjusted anchored neigh-

borhood regression for fast super-resolution, in: Asian Conference on Computer680

Vision (ACCV), pp. 111–126. doi:10.1007/978-3-319-16817-3_8.

[60] Wang, H., Gao, X., Zhang, K., Li, J., 2017. Single image super-resolution using

gaussian process regression with dictionary-based sampling and student- t likeli-

hood. IEEE Transactions on Image Processing 26, 3556–3568. doi:10.1109/

TIP.2017.2700725.685

31

[61] Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., 2004. Image quality as-

sessment: from error visibility to structural similarity. IEEE Transactions on

Image Processing 13, 600–612. doi:10.1109/TIP.2003.819861.

[62] Xiong, D., Gui, Q., Hou, W., Ding, M., 2018. Gradient boosting for single image

super-resolution. Information Sciences 454-455, 328 – 343. doi:10.1016/j.690

ins.2018.04.075.

[63] Xu, Y., Li, Z., Zhang, B., Yang, J., You, J., 2017. Sample diversity, representation

effectiveness and robust dictionary learning for face recognition. Information

Sciences 375, 171 – 182. doi:10.1016/j.ins.2016.09.059.

[64] Yang, C.Y., Yang, M.H., 2013. Fast direct super-resolution by simple functions,695

in: IEEE International Conference on Computer Vision (ICCV), pp. 561–568.

doi:10.1109/ICCV.2013.75.

[65] Yang, J., Wright, J., Huang, T.S., Ma, Y., 2010. Image super-resolution via sparse

representation. IEEE Transactions on Image Processing 19, 2861–2873. doi:10.

1109/TIP.2010.2050625.700

[66] Yang, W., Yuan, T., Wang, W., Zhou, F., Liao, Q., 2017. Single-image super-

resolution by subdictionary coding and kernel regression. IEEE Transactions

on Systems, Man, and Cybernetics: Systems 47, 2478–2488. doi:10.1109/

TSMC.2016.2523947.

[67] Ye, M., Ye, H., Yan, G., 2017. HADAMARD Transform Sample Matrix Used in705

Compressed Sensing Super-Resolution Imaging. Springer International Publish-

ing, Cham. pp. 796–807. doi:10.1007/978-3-319-65298-6_71.

[68] Yu, Z., Wu, F., Yang, Y., Tian, Q., Luo, J., Zhuang, Y., 2014. Discriminative

coupled dictionary hashing for fast cross-media retrieval, in: Proceedings of the

37th International ACM SIGIR Conference on Research & Development in In-710

formation Retrieval, pp. 395–404. doi:10.1145/2600428.2609563.

[69] Yu, Z., Yu, J., Fan, J., Tao, D., 2017. Multi-modal factorized bilinear pooling

with co-attention learning for visual question answering, in: IEEE International

32

Conference on Computer Vision (ICCV), pp. 1839–1848. doi:10.1109/ICCV.

2017.202.715

[70] Zeyde, R., Elad, M., Protter, M., 2010. On single image scale-up using sparse-

representations, in: International Conference on Curves and Surfaces, pp. 711–

730. doi:10.1007/978-3-642-27413-8_47.

[71] Zhang, H., Yang, J., Xie, J., Qian, J., Zhang, B., 2017. Weighted sparse coding

regularized nonconvex matrix regression for robust face recognition. Information720

Sciences 394-395, 1 – 17. doi:10.1016/j.ins.2017.02.020.

[72] Zhang, H., Yang, J., Zhang, Y., Huang, T.S., 2010. Non-local kernel regression

for image and video restoration, in: European Conference on Computer Vision

(ECCV), pp. 566–579. doi:10.1007/978-3-642-15558-1_41.

[73] Zhang, Y., Fan, Q., Bao, F., Liu, Y., Zhang, C., 2018. Single-image super-725

resolution based on rational fractal interpolation. IEEE Transactions on Image

Processing 27, 3782–3797. doi:10.1109/TIP.2018.2826139.

[74] Zhao, Y., Wang, R., Jia, W., Yang, J., Wang, W., Gao, W., 2018. Local patch

encoding-based method for single image super-resolution. Information Sciences

433-434, 292–305. doi:10.1016/j.ins.2017.12.032.730

[75] Zhou, F., Li, X., Li, Z., 2018. High-frequency details enhancing densenet for

super-resolution. Neurocomputing 290, 34 – 42. doi:10.1016/j.neucom.

2018.02.027.

[76] Zhou, Y., Kwong, S., Gao, W., Wang, X., 2016. A phase congruency based patch

evaluator for complexity reduction in multi-dictionary based single-image super-735

resolution. Information Sciences 367-368, 337–353. doi:10.1016/j.ins.

2016.05.024.

33

Algorithm 1 The Algorithm of Clustering and Training

Input: The HR training images Ih and LR training images Il. The Hadamard matrix

Q15. The determined sequence Seq.

Output: The learned SR decision tree dt and the mapping models M .

1: Extract LR-HR patch pairs from Ih and Il and initiate the root node with all the

training data. Initiate the number of leaf nodes q with 1.

2: for i = 1; i ≤ length(Seq); i++ do

3: for each unprocessed non-leaf node j do

4: if Nj < 3 ∗min num then

5: Mark this node as a leaf node and learn the mapping model Mq . The

index q is stored in this leaf node; q++.

6: else

7: Generate Hadamard patterns Pj for this node as (7).

8: Sort the Seq[i]th column of Pj in ascending order and find threshold

values v1 and v2 as (8, 9).

9: Split the training data at node j into its left, middle and right child node

by comparing the learned threshold values (v1 and v2) and the generated Hadamard

patterns Pj .

10: if min(Nl,Nm,Nr)<min num then

11: Mark this node as a leaf node and learn the mapping model Mq .

The index q is stored in this leaf node; q++.

12: else

13: Mark this node as a non-leaf node and store the set of parameters

βj in this node.

14: end if

15: end if

16: end for

17: end for

18: for each unprocessed non-leaf node j do

19: Mark this node as a leaf node and learn the mapping model Mq . The index q
is stored in this leaf node; q++.

20: end for

34

(a) Ground Truth (b) Bicubic (c) ANR[58]

(d) A+[59] (e) SRHDT f*[24] (f) RFL[53]

(g) SRCNN[13] (h) LapSRN[36] (i) OUR

Figure 8: Comparison of super-resolution on butterfly by different methods for scaling factor 2. The proposed

method can better preserve sharp edges.

35

(a) Ground Truth (b) Bicubic (c) ANR[58]

(d) A+[59] (e) SRHDT f*[24] (f) RFL[53]

(g) SRCNN[13] (h) LapSRN[36] (i) OUR

Figure 9: Comparison of super-resolution on foreman by different methods for scaling factor 2. The proposed

method obtains highest PSNR and can better restore more detailed information.

36

	Introduction
	Related Work
	Problem Statement
	State of the Art

	The Proposed Method
	Linear Regression Framework
	Learning the SR decision tree
	The Extraction of Training Data
	Feature Representation
	Clustering and Training

	Time Complexity Analysis
	SR Scheme

	Experimental Results and Analysis
	Experimental Settings
	Comparison With State-of-the-Art Methods
	SR methods based on sparse coding
	SR methods based on decision tree and random forest
	SR methods based on CNN

	Conclusion
	Acknowledgments

