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Abstract  

Objectives: Dietary stains can be adsorbed into the dentin of teeth.  Using Orange II as a 

model dietary stain, this study investigated the strength of its interaction with the mineral and 

protein components of dentin matrix and how hydrogen peroxide (H2O2) treatment influences 

this interaction.  

Methods: Dentin slices were prepared from human teeth and were either deproteinized (5.6% 

sodium hypochlorite, 12 days), demineralised (0.5M EDTA, 3 days) or left as intact control 

samples.  Samples were stained with Orange II for 1-168h, during which staining intensity 

was quantified by image analysis.  Similarly, uptake of stain by deproteinized / demineralized 

samples treated with 10 or 30% H2O2 was investigated.  Using surface plasmon resonance 

technology, real-time binding kinetics were determined assessing the interaction of orange II 

with the dentin matrix protein constituents, collagen type I, biglycan, decorin, dentin 

sialoprotein and osteopontin.  

Results: Deproteinization of dentin matrix reduced the uptake of the orange II compared to 

the intact control.  Conversely, demineralization of dentin samples increased the uptake of the 

dye.  Treatment of samples for 48h with H2O2 reduced subsequent uptake of the orange II.  

Real-time kinetic analysis indicated moderate strength of binding for Orange II with collagen 

type I, weak binding with decorin and biglycan and negligible binding with dentine 

sialoprotein and osteopontin.   

Conclusion:  These results indicate a predominant role for collagen type I, which accounts for 

90% of the organic protein matrix of teeth, for attracting dietary stains. Binding analyses 

indicate that the interaction is highly dissociable, and further binding is reduced following 

H2O2 treatment.   
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Clinical significance  

This study provides new information regarding adsorption of dietary stains into tooth dentin, 

suggesting that they are attracted and moderately bound to the collagen type I matrix.  This 

study also contributes valuable information for discussion for considering the effect of H2O2

on bleaching teeth and its influence on subsequent uptake of dietary stains following 

whitening treatments.    
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1. Introduction

 Teeth inherently uptake small dietary components which contain chromogenic 

organic compounds which can lead to tooth discolouration [1,2]. Such extrinsic staining is 

due to the porosity of the enamel, which the chromogens can penetrate and be taken up by the 

dentin [2]. Clinically, the natural tooth colour can be restored by several methods that focus 

on external bleaching of the teeth. Hydrogen peroxide (H2O2) is the most common agent used 

in tooth whitening and can be applied in different concentrations based on its intended 

method of application and use.  Consequently, treatment formulations intended for use in the 

dental clinic have higher H2O2 (~35%) concentration and have shorter application period, 

whilst products for use over-the-counter, which have lower H2O2 concentration (2-10%) and 

longer application period [3-5]. 

How externally presented chromogenic substances interact with the tooth matrix is 

still not fully elucidated. Proposed mechanisms suggest that the attraction of chromogens to 

the tooth surface could be due to several types of attractive forces that include electrostatic 

van der Waals and hydration forces [1]. Although it is not fully established what part of the 

tooth matrix is responsible for staining, the dentin matrix is highly likely to play a key role in 

defining the colour of the tooth [6]. Natural micro-faults within the enamel layer are suitable 

to allow small dietary chromogens to enter and interact with the underlying dentin matrix [7]. 

Whilst it is accepted that tooth enamel could contain very small levels protein components 

residual from the processing of the enamel matrix [8,9], mature enamel is composed of more 

than 98% hydroxyapatite.  In contrast, dentin has a significantly higher organic content at 

30% of which consists 90% collagen and 10% non-collagenous proteins (NCPs) (reviewed by

[10]). Collagen type I has a triple helix structure of two alpha 1 and one alpha 2 chains [10], 

which are cross linked by prolyl hydroxylase enzyme to form the collagen fibrils [11]. Within 
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dentin, collagen fibrilogenesis and subsequent regulation of hydroxyapatite formation 

associated with the mineralisation of the collagen fibrils is orchestrated by several NCPs 

which are highly negatively charged, including osteonectin, osteocalcin, dentin 

phosphoprotein, dentin sialoprotein, decorin and biglycan [10-13]. Due to these negative 

charges such proteins have been speculated to be involved in the attraction of dietary 

chromogens into the dentine matrix, causing tooth staining.   

 In order for H2O2 to bleach the tooth structure, the H2O2 needs to penetrate the tooth 

surface to reach deep to the staining site in the tooth dentin.  Several studies have indicated an 

ability for H2O2 to be able to pass through the highly mineralised enamel tissue, through the 

porous tubular structure of the dentin and into the pulp chamber although mechanisms of 

passage are unclear [14-17].  Additionally, the penetration rate will vary depending on the 

concentration and time of H2O2 application, and other minor defects to the tooth structure, 

especially if it involves a restored tooth [17]. H2O2 is proposed to remove stain via the 

production of short-lived free radicals such as hydroxyl radical (OH
-
) [18,19] which acts as 

strong oxidising agents that breaks carbon double bonds often found in the colour staining 

chromophore, such as heteroatoms, carbonyl, or phenyl rings [19].  However, as highly 

chemically unstable molecules, these peroxide derived free radicals are able to react 

indiscriminately with other organic molecules, including proteins, lipids, carbohydrates and 

nucleic acids (reviewed in [20]).  Indeed, studies have also suggested that H2O2 also bleach 

the tooth by oxidation of the organic matrices of the tooth, thereby releasing chromogen 

interaction with the protein matrix [21]. Continued degradation of the tooth structure, due 

either to the production of the free radicals degrading the dentin matrix or due to the acidic 

nature of H2O2 causing erosion, could lead to thinning of the dentin and widening of the 

dentinal tubules.  This can produce medical implications such as tooth sensitivity and could 

ultimately lead to pulp damage as H2O2 diffuses through enamel and dentin [15,22,23].  
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There are thus increasing concerns regarding safety levels for the use of H2O2 in tooth 

whitening products. In order to identify effective un-harmful treatments for tooth staining, a 

better understanding is required of how the biological properties of dentin structure 

influences inherent tooth colour.  Against this background the present study investigates the 

physiochemical nature of the interaction of staining chromophores with the protein 

components of dentin and the influence of H2O2 on this interaction.  Due to the complex 

nature of dietary stain we have selected to study one potential chromogen, Orange II sodium 

salts.  This chromogen has a small molecular weight that can penetrate the tooth’s structure, 

and contains a carbon phenol ring structure that contains H2O2 susceptible double carbon 

bonds [24] and similar to phenol chromogens of dietary sources such as tea and coffee that 

cause extrinsic discoloration of teeth [6,24].  Our study first identifies the attraction of 

Orange II predominantly with dentin proteins in situ within the tooth and assesses the effect 

of re-staining following treatment with H2O2.  Studies then continue to use surface plasmon 

resonance technology to investigate the real-time biomolecular interactions of Orange II with 

collagen type I and non-collagenous dentin proteins, extracted from the dentin matrix. 

2. Materials and Methods 

2.1. Teeth Preparation 

Twenty extracted human teeth were collected from the Cardiff University Tooth Bank 

with patient consent and ethical approval by the South East Wales Research Ethics 

Committee of the National Research Ethics Service (NRES), UK (reference number: 

12/WA/0289). The outer surface of the teeth were sterilised with 70% ethanol and then all 

enamel, cementum, caries, restoration and tooth discolouration (i.e. any abnormal tooth 

colour or translucency) where removed using dental burs with slow speed handpiece (Kavo 

EWL K9). Longitudinal sections of dentin of 100µm thickness were prepared using an 

Isomet bone saw (Buehler, USA). 
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2.2. Sample Treatments and Colour Evaluation

Fifteen longitudinal dentin sections, prepared from five teeth, were randomly divided 

into 3 groups; deproteinized, demineralised and untreated control groups. Each section was 

placed in one well of a 6-well plate and treated with either deproteinising solution (sodium 

hypochlorite, 5.6%, Sigma-Aldrich, Poole, UK) for 12 days or demineralising solution (0.5M 

EDTA, pH 8, Sigma- Aldrich) for 3 days. Samples in the intact control group were incubated 

in phosphate buffered saline (PBS) for 12 days. All groups were stained with Orange II 

sodium salts dye (0.15mM), during which the uptake of the Orange II into the dentin slices 

was digitally quantified at 0, 1, 6, 24, 48, 168h as follows.  Images of the whole dentine 

section were taken using a digital camera (Panasonic, DMC-G1) attached to a stereo 

microscope (Zeiss, stemi 2000) at low magnification (x1.25) under cold light (Labophot-2, 

Nikon Digital, Japan) to achieve standard conditions. The intensity of the dye uptake was 

calculated after converting the digital data from the colour images to 8-bit black and white 

image and quantifying the grayscale measurement using ImageJ
®
 Software, 

(http://rsb.info.nih.gov/ij/). Within the programme, the grayscale value of intensity was 

measured and represented as a value were zero is taken to be black, and 255 is taken to be 

white. Values were then converted to a % greyscale of increasing staining intensity of Orange 

II stain.  Means and standard deviations were calculated (n=3) and analysed using one-way 

analysis of variance (ANOVA), with Tukey post-test for multiple comparison, using 

GraphPad InStat3 (GraphPad Software, La Jolla, USA) to determine statistically relevant 

differences between the deproteinized, demineralised and control groups. A value of p<0.05 

was considered significant. 

After staining, teeth were treated with 10% or 30% H2O2 and colour loss was 

similarly monitored 0, 1, 3, 6, 24, 48h using digitised image analysis described above. Teeth 
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were then re-stained with Orange II sodium salts and re-incorporation of the stain was 

monitored at 1, 24 and 168h, as above. 

2.3. Effects of H2O2 on Collagen Type I 

Purified collagen type I (from human placenta, Sigma- Aldrich) was dissolved in 

0.5M acetic acid at 1mg/ml and then mixed with either 25%, 12.5%, 6% and 3% H2O2 (final 

concentration) for 1, 12 or 24h at room temperature.  Samples were mixed with equal volume 

of sample buffer (0.062M Tris-HCl, pH 6.8, 10% glycerol, 2% SDS, 5% 2-â-

mercapthoethanol, 0.002% bromophenol blue; final concentration) and 30µL samples were 

separated by SDS-PAGE using 4-15% mini Protein TGX Precast gels (Bio-Rad, Hemel 

Hempstead, UK), 0.025M Tris, 0.192M glycine, 0.1% SDS, pH 8.3 running buffer, 200v for 

40 min.  Evidence of degradation was visualised using a silver stain plus kit (Bio-Rad) 

following manufacturer’s instructions. Gels were scanned using a Gel-Doc
TM

 EZ Imager 

(Bio-Rad). 

2.4. Dentin Matrix Protein Extraction

The dentine matrix prepared from fifteen teeth (as described above) was powdered, 

using a percussion mill (SPEX CertiPrep, USA) cooled with liquid nitrogen. Dentin matrix 

proteins were extracted from powdered dentin into 10% EDTA (pH 7.2) containing protease 

inhibitors (0.1mM n-ethylmaleimide, 0.5mM Iodoacetic acid and 0.5mM Benzamidine, 

Sigma- Aldrich) as previously described [25]. Extraction was performed for 6 days at 4
o
C 

with constant agitation, with the EDTA solution changed and retained daily. Retained dentine 

matrix extracts were pooled over the 6-day period, transferred to dialysis tubing (Scientific 

Laboratory Supplies, Nottingham, UK) and dialyzed exhaustively for 10 days against 
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repeated changes of deionized distilled water. Dialyzed extracts were lyophilized and stored 

at –20
o
C prior to use. 

2.5. Immunoprecipitation of Biglycan, Decorin, Osteopontin and Dentin Sialoprotein from 

Dentin Matrix Protein Extract

Immunoprecipitation of dentin associated proteins were performed using the Pierce® 

Crosslink Immunoprecipitation Kit (Thermo Fisher scientific, Loughborough, UK),. Briefly, 

20µg antibodies against the target proteins of biglycan (PR8A4) and decorin (70.6; both a 

kind gift from Prof. Bruce Caterson, Cardiff University), osteopontin (OPN, sc-10593, Santa 

Cruz Biotechnology Inc, Texas, USA) and dentin sialoprotein (DSP, sc-33586; Santa Cruz 

Biotechnology Inc) were cross-linked to Protein A/G Plus Agarose contained within a spin 

column supplied, according to manufacturer’s instructions. Lyophilized dentin matrix protein 

extract was reconstituted in lysis buffer (0.025M Tris, 0.15M NaCl, 0.001M EDTA, 1% NP-

40, 5% glycerol; pH 7.4, supplied within the kit) to a concentration of 2mg/mL. The dentin 

matrix protein extract was added to the antibody-cross-linked resin in the column which was 

closed-off and incubated with gentle shaking overnight at 4°C. After incubation, the column 

was centrifuged, washed with lysis buffer to remove unbound material and washed with 

conditioning buffer prior to incubation with elution buffer (pH2.8) for 5min at room 

temperature.  Eluting immuno-precipitated proteins were recovered by centrifugation and 

stored before use for kinetic analysis to determine interaction with orange II. 

2.6. Surface Plasmon Resonance Interactions

Real-time biomolecular interactions between dentin matrix proteins and Orange II 

were performed using a BIAcore T100 system (GE Healthcare, Hatfield, UK). Human 

collagen type I (Sigma- Aldrich; dissolved at 1mg/ml in 0.5M acetic acid to obtain individual 
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collagen molecules), and immuno-precipitated decorin, biglycan, OPN and DSP (obtained as 

described above) were dissolved in sodium acetate buffer, pH4.5 (1 in 5) and immobilised 

onto a series S CM5 sensorchip (GE Healthcare) following the manufacturer’s instructions. 

Briefly, the sensorchip was first treated with 70% (w/w) glycerol in water to normalize the 

flow cell surfaces and then activated by treatment with 0.05M N-hydroxysuccinimide and 

0.2M N-ethlyl-N’-(dimethylaminopropyl)-carbodimide. Each protein was injected into a 

different flow cell, where the active ester groups on the surface on the chip surface 

spontaneously reacted with amines or other nucleophilic groups on the proteins molecules to 

form covalent links. Ethanolamine (1M) was injected over the flow cell surfaces after 

coupling, to deactivate any remaining esters. Flow cell 1 acted as a reference cell, exposed 

only to the amine coupling (control surface). An increasing series of Orange II dye 

concentrations (0–200 µg/mL) were prepared in HBS-EP buffer. Samples were injected over 

the immobilised proteins and control surfaces for 500s at a flow rate of 30µL/min. 

Sensorgrams were obtained for each Orange II dye concentration examined (n=4). Biacore 

T100 GxP Evaluation Software was used to evaluate the sensorgrams and calculate the mean 

equilibrium dissociation constant (KD; M) based on the association rate constant (ka; M
- 1

s
-1

]) 

and dissociation rate constant (kd; s
-1

) data.   

3. Results 

3.1. Tooth Stain Development and Bleaching of Stained Tooth

The uptake of Orange II into the dentin samples was imaged using a stereoscopic 

microscope (Fig. 1A).  Following conversion of images to a grayscale format, the percentage 

intensity of staining was calculated (Fig. 1B).  Demineralised dentin samples demonstrated 

the greatest increase in orange II staining capacity.  Intact dentin samples adsorbed less stain 
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compared with the demineralised samples (p<0.001 for all time points analysed).  Intact 

dentine samples, however, adsorbed more stain compared to the deproteinized samples 

(p<0.001 for all time points analysed).   

Dentin slices that had been stained for 168h (7 days) were subsequently treated with 

either 10% or 30% H2O2 for up to 48h (Fig. 2A) and the percentage grayscale as a measure of 

staining intensity was similarly calculated (Fig. 2B).  Deproteinized samples lost their orange 

staining completely after 6h following treatment with either 10% or 30% H2O2 treatment.  

Loss of stain was slower for the demineralised samples, with significantly higher levels of 

orange II present in these samples at 3 and 6 h compared with deproteinized samples 

(p<0.001).  For demineralised samples, complete loss of stain was only evident after 6h 

following 30% H2O2 treatment and 24h after 10% H2O2 treatment.  The intact control dentin 

samples retained the orange II stain the longest, and had failed to return to pre-stained 

greyscale intensity values after 48h treatment with either 10% or 30% H2O2.  

Following destaining with H2O2 for 48h, deproteinized (Fig. 3A) and demineralised 

samples (Fig. 3B) were then re-stained with Orange II dye for 168 h (7 days).  Both tissue 

preparations indicated a significant reduction in the secondary Orange II uptake compared 

with the equivalent sample following 168h initial staining (p<0.001). 

3.2. Effect of H2O2 on Collagen Type I

The effect of H2O2 on collagen fibrils was examined by SDS PAGE where the control 

untreated sample of collagen demonstrates the electrophoretic separation of the two á1 and 

the one á2 chains contained within the triple helix of the collagen molecules (Fig. 4). Samples 

were exposed to H2O2 at pH 3 and H2O2 adjusted to pH 8 to reduce the effects of an acidic 

environment. Following treatment with 3% and 6% H2O2 up to 24h no degradation of 
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collagen type I was observed at either pH (Fig. 4A, B and C). Treatment with 12% and 30% 

H2O2, at both pH, resulted in degradation of both of the collagen á chains, with increased 

presence of small molecular weight degradation products evident. Compared with H2O2 at pH 

8, H2O2 treatment at pH 3 caused increased degradation of collagen type I at 1, 12 and 24h, 

for both 12% and 30% H2O2 concentrations (figures 4.A, B and C). 

3.3. Kinetic evaluation of binding of dentin proteins with Orange II 

Collagen type I, biglycan, decorin, OPN and DSP was immobilised to a S CM5 

sensorchip at 8300RU, 351RU, 1500RU, 1014RU, 259RU, respectively, indicating good 

binding of the protein to the sensor chip. Orange II was passed over the immobilised protein 

and sensorgrams were obtained over an increasing concentration of Orange II (Fig. 5).  For 

collagen type I, decorin and biglycan response units indicating interaction between the 

protein and the orange II increased with increasing concentration of the stain applied.  From 

these sensograms mean equilibrium dissociation constant, KD, was calculated, representing 

the ratio of the rate of dissociation of the dye from the protein (koff; measured following inject 

stop of dye), / the rate of association of the dye with the protein (kon; measured during 

injection of dye), providing an indication of the affinity of the dye for the respective protein.  

Collagen type I demonstrated a moderate affinity for Orange II with mean equilibrium 

dissociation constants (KD) of 46 ìM.  KD for decorin and biglycan were calculated to be 

~1000 ìM and ~1900 ìM respectively, indicating weak affinity for the Orange II. OPN and 

DSP bound poorly to Orange II, with any interaction too weak to accurately measure (KD = > 

2000 ìM). 

4. Discussion 
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This study has investigated the interaction of Orange II with the dentin matrix, and been 

successful in providing an in vitro model to give greater insight and understanding of the 

internalisation of dietary stains within the dentine matrix.  This discussion will expand on 

how the results lead us to hypothesise a major role for chromagen-binding sites on collagen 

type I in the adsorption process.  

Within this study the uptake of Orange II was assessed on human dentin that had been 

prepared to a standardised thickness of 100µm to enable image analysis over a defined area 

for the quantification of dye uptake through a defined volume of tissue.  The protocol was 

adapted from previous detailed studies that have compared the uptake of a range of potential 

chromophores including Rhodamine B, Orange II, Fe(III) phthalocyanine, and tea and which 

identified Orange II as idea for ease of measurement for tooth discolouration following 

uptake and subsequent total loss of the colour following treatment with hydrogen peroxide

[24]. Our own results indicate a good ability of dentin sections to uptake the Orange II.  

However, following deproteinisation of the dentin sample with sodium hydroxide, staining 

was significantly reduced compared with the intact control.  Sodium hydroxide has a well-

established ability to extract proteins from mineralized matrices [26,27], which likely 

includes the non-collagenous components and potential for small soluble collagen molecules.  

Since samples remained relatively intact after treatment with sodium hydroxide, fibrillar 

collagen, representing the bulk of the matrix, is likely to still remain, although collagen fibrils 

have been shown to swell in sodium hydroxide [28], thus blocking potential chromagen 

binding sites.  Demineralisation of dentin sections with EDTA increase staining with Orange 

II compare to the intact control, presumably due to the removal of hydroxyapatite crystals 

unmasking the protein-chromogen binding sites.  As a consequence, removal of the stain 

following treatment with 10% H2O2 took longer for the highly stained demineralized sections 

(24h), whist deproteinized sections were beached within 6 h.  The decreased staining of the 
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intact control group compared to the demineralised dentin samples, is likely due to reduced 

accessibility of the stain to the protein in the tooth structure.  For a similar reason, these intact 

dentin samples required more time to completely bleach the chromagen with H2O2 treatment.

The strength of binding of the chromogen with the protein component is very 

pertinent when considering the permanency of the stain.  Within this study, real-time kinetic 

analyses were performed making an assumption that although multiple sites are available on 

the protein molecules for binding of orange II, binding sites are independent of one another.  

The mean equilibrium dissociation constant, KD, was provided for collagen type I, decorin 

and biglycan, representing the molar concentration of the ligand (orange II) concentration at 

which half the binding sites are occupied at a steady state equilibrium.  KD values for dentin 

sialoprotein and osteopontin were >2000M indicating that this steady state equilibrium was 

not achievable due to very poor attraction and interaction of the orange II with binding sites.  

However, while KD values for decorin and biglycan were obtained, these were in the high 

molar concentrations, suggesting a weak affinity for the orange II.  The mean equilibrium 

dissociation constant, KD, for collagen type I was measured to be 46M, suggesting a mildly 

moderate binding affinity for the orange II. Orange II dye is characterized by the presence of 

multiple phenol units, which are common with most tannin containing products such as wine, 

which stain teeth [24]. Previous studies investigating the interaction of phenolic polymers 

within tannins have notably demonstrated their selective interaction with proline-rich proteins 

such as collagen type I [29] and salivary proline rich proteins [30], which would support our 

observations for indicating a prominent role for dentine collagen type I in the adsorption of 

dietary stains.  These previous studies have suggested that association is brought about 

through the hydrophobic stacking of the polyphenol rings against the pro-S face of the 

proline [30], which is then in turn predicted to be stabilised by hydrogen bonding between the 

phenolic hydroxyl and carbonyl oxygens within the peptide bond adjacent to the phenol 
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functional grouping on the protein chain [29].  The presence of proline results in a more 

extended structure, apparent in collagen type I, for hydrogen bond stabilisation, where 

globular proteins, existing as random coils, have been shown to bind less to polyphenolic 

tannins [29]. This observation may also aid in the further explanation of the above results 

assessing the reduced staining potential of deproteinized dentin samples. Whilst collagen was 

not fully extracted from deproteinized samples, the swelling of the collagen fibrils in the 

presence of sodium hydroxide may have blocked the penetration of the orange II to proline 

residues located in the interior regions of the collagen fibrils.  The reconciliation of these 

results leads to a tempting hypothesis that dietary stains are attracted to and subsequently 

become incorporated within the collagen fibrils. Here, they are not necessarily strongly bound 

to the collagen fibrils but, following this initial hydrophobic attraction with proline groups 

and stabilisation with the adjacent peptide bond, dietary chromogens become entrapped in the 

dense mineralised collagenous matrix. 

The underlying mechanism by which H2O2 results in bleaching of the chromogen is complex.  

In solution H2O2 decomposes to form hydrogen ions (H
+
) and perhydroxyl ions (HOO

−
) 

resulting in a weak acidic solution [18,19].  The perhydroxl ion interacts with further H2O2 to 

produce highly reactive oxygen species such as hydroxyl radicals perhydroxyl radicals.  As 

strong oxidising bleaching agents, the free radicals are able to break chemical bonds within 

the phenyl structure of the chromogen.  Raising the pH has been shown to increases the 

production of perhydroxyl ions which has been attributed to increasing its effectiveness as a 

tooth whitening product [18,19].   In addition through the Fenton reaction, H2O2 can react 

with exogenous ferrous ions (Fe
2+

) to produce hydroxyl radicals.  However, the activity of 

free radicals is indiscriminate resulting in the potential degradation of protein components or 

amino acid functional groups [20]. Against this background, it is of note that within the 

current study the subsequent ability to re-stain the H2O2 bleached deproteinized and 
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demineralized dentin samples over a 7 day period was reduced.   In vitro studies performed 

herein, also indicate the ability of 10% and 30% H2O2 to depolymerize collagen fibrils, which 

would lead to the loss of the proline binding sites attracting the orange II stain.  In addition, 

whilst depolymerization may not be evident, free radicals may also lead to the loss of 

functional groups of the amino acids which would reduce the stabilizing effect of the adjacent 

peptide bond [29].  Although not confirmed within this present study, previous studies have 

shown that proline, leucine, tyrosine and phenylalanine are particularly susceptible to 

degradation by free radicals [20]. This data suggests that controlled H2O2 treatment could 

help to reduce the uptake of external staining, although it is acknowledged that continuous 

exposure to H2O2 can lead to tooth erosion and tooth sensitivity.  Of note, adjusting the pH of 

the H2O2 to pH 8 reduced the degradation of the collagen molecules, suggesting that collagen 

depolymerisation and bleaching of the phenyl structures in chromogens act via different 

mechanisms.     

5. Conclusion 

The results of this study suggest a major role for the protein constituents of teeth, particularly 

the proline-rich collagen type I, in attracting and moderately stabilising the interaction of 

dietary chromogenic substances with dentin matrix.  Additionally, we have demonstrated 

how H2O2 can result in tooth whitening by bleaching of the stain, but also able to reduce re-

staining, presumably due to the loss of these chromagen binding functional groups and 

peptide bonds on the collagen molecules which are known to be susceptible to degradation by 

H2O2 [20].  Within this study we investigated the effect of 30% and 10% H2O2, as a 

representation of H2O2 concentrations used in products used in dental clinics and over-the 

counter formulations.  It is worth noting that numerous studies have investigated the effect of 

these concentrations of H2O2 on the mechanical properties (microhardness testing) and 
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ultrastuctural surface morphology (scanning electron microscopy, quantitiative profilometry) 

and gross chemical composition (X-ray diffraction, Raman spectroscopy) of dentine and 

found little effect of H2O2 containing products, even at the highest concentrations and 

following prolonged repeated exposure up to 7 days (review by [31]).   This would suggest 

that although H2O2 may bring about subtle chemical changes reducing the attraction of the 

chromagen, non-excessive use of tooth whitening products may not be overly detrimental to 

the integrity of the dentine matrix and may contribute to reducing the re-staining of teeth.  
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Figure legends 

Fig. 1: Comparison of colour changes between demineralized, deproteinized and intact dentin 

samples after  staining with Orange I sodium salt for 1, 6, 24, 48, 168h and then viewed using 

a stereoscopic microscope (A). Using image analysis the intensity of the stain, was converted 

into a greyscale (B).  Orange II adsorbed by the demineralized samples was significantly 

higher (p<0.001) compared with deproteinized samples at all-time points. After only 1 h, the 

intensity of Orange II dye into the demineralized samples was significantly higher compared 

with pre-stain samples (p<0.001); deproteinized samples took up to 24h for Orange II dye to 

become significantly higher than pre-stain samples. The intact control group at all-time points 

had less intensity compared with demineralized group and higher intensity compared to 

deproteinized group. 

Fig. 2: The effect of H2O2 treatment (10% and 30% concentrations) on the discolouration of 

dentin slices stained with Orange II dye (A).  Staining intensity was calculated using image 

analysis and is also presented (B).   Stain was completely lost from deproteinized dentin 

samples after 3h using 30% H2O2 and by 6 h using 10% H2O2, although differences in 

staining intensity at 3h was determined not to be significant.  Demineralized dentin samples 

took 24h to be completely bleached and there were no significant differences in bleaching 

efficacy between 10% and 30% H2O2 treatments. Significant differences between 

deproteinized and demineralized samples treated with both 10% and 30% 

H2O2 concentrations were identified at all time points examined up to 24h.   Dentin samples 

in the intact control group, indicated that complete bleaching had not been achieved after 48h.  

Measurement of the grayscale intensity of Orange II showed significant differences between 

the intact control group compared to both demineralized and deproteinized groups. 
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Fig. 3: The effect of Orange II staining before and after H2O2 treatment for 48h. Using either 

10% or 30% H2O2 concentrations, deproteinized samples (A) and demineralized samples (B), 

showed reduced secondary Orange II uptake. The intensity of Orange II measured following 

analysis of grayscale images, before and after H2O2 treatment, showed significant differences 

(p<0.001) in all demineralized samples, and in deproteinized samples after 168h. 

Fig. 4: The effect of H2O2 treatment on collagen type I protein examined following separation 

of collagen á-chains by SDS PAGE and silver staining. In the presence of 6% H2O2 there was 

no degradation of collagen type I even following 24h treatment (C). Compared with H2O2 at 

pH 8, H2O2 treatment at pH 3 caused increased degradation of collagen type I at 1, 12 and 

24h, in the presence of both 12% and 30% concentrations (A, B, C). 

Fig. 5:  Representative sensograms for Orange II dye interacting with Collagen (A), Decorin 

(B), Biglycan (C), Dentin sialoprotein (D) and Osteopontin (E).  Orange II was injected over 

the immobilised proteins at different concentrations over the time period indicated between 

the two arrows (injection on and injection off).  From these profiles, BiaCore software 

calculated the Equilibrium Dissociation constant (KD) which is shown for each protein.  

Values obtained indicate weak binding of orange II for the proteins decorin and biglycan.  

Binding with dentine sialoprotein and osteopontin was so weak that KD values could not be 

calculated.  Moderate binding was observed between Orange II and collagen type I. 
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Figure 3 
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Figure 4 
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Figure 5 


