
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/11 2 5 1 2/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Yasee n, M u h a m m a d U s m a n, Anju m, Ashiq, Ra n a, O m e r a n d Antonopoulos, Nikolaos

2 0 1 9. Dee p lea r nin g hyp e r-p a r a m e t e r op ti miza tion for video a n aly tics in clou ds.

IEEE Tr a ns a c tions on Sys t e m s M a n a n d Cyb e r n e tics: Sys t e m s 4 9 (1) , p p. 2 5 3-2 6 4.

1 0.11 0 9/TSMC.20 1 8.28 4 0 3 4 1

P u blish e r s p a g e: h t t p://dx.doi.o rg/10.11 0 9/TSMC.20 1 8.28 4 0 3 4 1

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

1

Deep Learning Hyper-parameter Optimization for

Video Analytics in Clouds
Muhammad Usman Yaseen, Ashiq Anjum, Omer Rana and Nikolaos Antonopoulos

Abstract—A system to perform video analytics is proposed
using a dynamically tuned convolutional network. Videos are
fetched from cloud storage, pre-processed and a model for
supporting classification is developed on these video streams
using cloud-based infrastructure. A key focus in this work is
on tuning hyper-parameters associated with the deep learning
algorithm used to construct the model. We further propose
an automatic video object classification pipeline to validate
the system. The mathematical model used to support hyper-
parameter tuning improves performance of the proposed pipeline,
and outcomes of various parameters on system’s performance is
compared. Subsequently, the parameters that contribute towards
the most optimal performance are selected for the video object
classification pipeline. Our experiment-based validation reveals
an accuracy and precision of 97% and 96% respectively. The
system proved to be scalable, robust and customizable for a
variety of different applications.

Index Terms—Video Analytics, Cloud Computing, Automatic
Object Classification, Deep Learning

I. INTRODUCTION

V
IDEO analytics plays a vital role in detecting and

tracking temporal and spatial events in video streams.

A number of pre-installed cameras, as shown in figure 1,

produces video data. This data needs processing to generate

useful clusters such as classification and tracking of a marked

person. As shown in figure 2, video data captured from

different cameras can be used to locate a person of interest.

The mapping of the person is then associated with particular

locations visited along with the time spent at each location.

The large amounts of data makes it nearly impossible for

human operators to manually process this data.

Deep learning based Video analytics systems can involve

many hyper-parameters, including learning rate, activation

function and weight parameter initialization. A trial-and-error

approach is mostly followed in selecting these parameters,

which makes it time consuming and at times may provide

inaccurate results.

To overcome these challenges, we present a system for

object classification from multiple videos. We propose hyper-

parameter tuning through a mathematical model to achieve

higher object classification accuracy. The mathematical model

aids in observing the hyper-parameter outcomes on overall

performance of the learned model. Values of the hyper-

parameters are dynamically varied and appropriate parameters

are selected.

We have first performed object extraction which are then

scaled and normalized. Each video frame is scaled at a size of

150× 150. During our experiments, it was observed that deep

learning networks perform better when input data is provided

in the normalized form.

The system performs training of the model on multiple dis-

tributed processors by utilizing cloud infrastructure. Multiple

cloud nodes are used for partial model training. The results

from each partial model are then collected at the master.

This results in the reduction of the overall training time. The

selection of appropriate normalization scheme with gradient

descent approach and learning rate helps to move the model

score of the system towards stability during training.

We have adapted iterative reduce, an extended form of map-

reduce paradigm to perform training quickly and efficiently.

The parallel and distributed training also process data rapidly.

The apache spark cluster is tuned for maximum resource

utilization. The proposed system is customizable in terms

of scalability i.e. nodes can be added or removed with the

addition or deletion of videos.

The evaluation of system is performed on a 100GB video

dataset. We present a video object classification pipeline to

evaluate the proposed system in which objects of interest are

located. We have adopted the techniques from data augmen-

tation including rotation, flip and skew for training due to the

limited labeled data for application pipeline. More training

data leads to higher accuracy for the classifier by reducing

over-fitting and exposing the network to more training sam-

ples. Another advantage of applying these transformations is

that they make the classifier invariant to typical transforma-

tions in the target object which is being located in the video

streams.

We have shown that the proposed system performs object

classification with high accuracy and we demonstrate experi-

mentally that the distributed training with iterative reduce for

automatic video analytics is a promising way of speeding up

the training process. After training, the classifier can be stored

locally and uses a match probability to classify objects.

There are mainly three contributions in the paper. (i) we

devised a mathematical model to observe the outcomes of

various hyper-parameter values on system performance. A

comparison of different hyper-parameter values has been made

and the parameters which give the most optimal performance

are selected; (ii) we scaled and configured the (Apache Spark)

cluster for parallel model training; (iii) we propose an auto-

matic object classification pipeline to support large scale object

classification in video data.

The organization of the paper is as follows: Section II

details the related work. Section III explains approach used in

carrying out video analysis, using a CNN and hyper-parameter

tuning for such a network. Section IV explains the architecture

2

Person

Fig. 1: Video Capture Infrastructure Fig. 2: Mapping of Marked Person

and implementation used to realise our proposed system. Sec-

tion V describes experimental setup. Results and conclusions

are provided in Section VI and Section VII respectively.

II. RELATED WORK

Recent video analytics systems often use shallow net-

works and hand crafted features to perform object classifica-

tion[30][31]. These hand crafted features are combined to gen-

erate larger features. These larger features provide an estimate

of appearance and motion information of objects in the video.

These larger features are not suitable for object classification

from large video data. [1] proposed a system using GPUs to

reduce the computational complexity involved in video stream

decoding and processing. An operator could specify the video

file and search criteria to a client program, video analytics is

then performed on the cloud and results are returned back

to the operator after some time. However, this work also

involved the use of a shallow (learning) network and produced

high dimensional feature vectors. Deep learning networks have

emerged as influential tools for solving complex problems

such as medical imaging, speech recognition, classification and

recognition of objects [23][24][25][26][32]. These networks

are capable to perform classification and recognition on large

scale data as compared to shallow networks but require more

computational resources for training. It also poses many other

challenging tasks like hyper-parameter tuning and increasing

times for training.

Hyper-parameter optimization has been an area of discus-

sion over the years [17] and mainly included racing algorithms

[18] and gradient search [19]. It is now shown that random

search is better as compared to grid search. The Bayesian

optimization methods can perform even better than random or

grid search. Some of the researchers also proposed methods

to perform automatic hyper-parameter optimization. The most

common implementations of Automatic Bayesian optimization

are Spearmint [20], which uses a Gaussian process model (GP)

[21]. Also, Tree Parzen Estimator (TPE) [2], which generates a

density estimate of each hyper-parameter. These methods have

shown competitive results but their acceptance is hampered

because of high computational requirements and performs best

for problems with few numerical hyper-parameters. On the

other hand, the hyper-parameter optimization done manually

by human operators is less resource intensive and consumes

less time as compared to automated methods. The evaluation

of a poor hyper-parameter setting can be quickly detected by

human operators after a few steps of the stochastic gradient

descent algorithm. They can quickly judge that network is

performing bad and can terminate the evaluation.

A number of convolutional neural network models have

been proposed in the recent past. Szegedy et al. [3] proposed to

modify the CNN by changing the end layer of the network with

regression. This modification resulted in the average precision

of 0:305 over 20 classes. As opposed to Szegedy’s proposed

model, Girshick et al. [4] adopted a bottom-up region based

deep model called R-CNN. The proposed model generated two

thousand region proposals and a CNN was used for feature

extraction from each region which were then classified by

SVMs. An improvement of 30% in accuracy was observed

but it was slow as training was a multi-stage pipeline. Ross

Girshick further improved their method and proposed a method

called Fast R-CNN [5] to detect objects rapidly. This method

reported higher detection accuracy and performed training

in a single stage using a multi-task loss. Disk storage was

also not required as it was in the case of R-CNN. Shaoqing

Ren et al. [6] further improved Girshick’s work and proposed

Faster R-CNN and reduced the computation time. They also

combined Fast R-CNN and RPN by sharing their convolutional

features into a single network. This method outperformed

both R-CNN and Fast R-CNN on publicly available image

datasets. Joseph Redmon et al. [7] also presented YOLO,

which could detects objects in one evaluation of CNN. It

resizes the images to 448 x 448 and executes a single pass

of CNN on the image to detect the objects and outperformed

R-CNN. However, all these works have been proposed to

perform detection and classification tasks on still images. It

is more likely that leveraging these methods for videos can

be limited in scope because the objects cannot be in the good

position in all video frames. Especially under uncontrolled and

complex conditions, where we can have blurring of objects,

varying poses and illumination conditions, existing approaches

3

Fig. 3: Workflow of the Proposed Network

provide false positive detections, lack accuracy, and show less

resilience to these changing conditions.

Limited recent work has investigated video classification for

multimedia data using CNN. Approaches that do exist lack

automation and require human assistance to perform object

classification. The investigation of behavior that how it impacts

hyper-parameter selection is scarce in recent literature. We

provide an analysis of these parameters and present the optimal

tuning parameters.

Also, existing deep learning-based methods use CNNs

with some tweaked algorithms to perform multi-object de-

tection/classification, leading to their own limitations. Ap-

proaches for multiple object classification in an image often

use object detection algorithms and CNN is executed on top

of these – acting as a means to aggregate multiple filters. A

sliding window is often used to determine where the objects

of interest are in the form of a bounding box, which contain

the object of interest. A CNN is executed on top of these

object detectors and all the bounding boxes are passed to the

CNN to do object classification. This is extremely slow to

run on large sized images or video frames. Even algorithms

such as selective search, and faster variants are slow for video

sequences. R-CNN [3] generally proposes about 2k regions

and on each of these regions a CNN will run and extract

high level features to do classification. These region-based

proposals also tend to be extremely slow to execute. Also,

multi-stage training is required to run the model.

We perform multi-object detection (faces of different indi-

viduals) through a Haar cascade classifier. Detected objects

are treated as independent objects after extracting them from

video frames. The problem considered in this manuscript is to

process a large number of video streams in order to locate

objects of interest. We are therefore dealing with different

individuals captured at different locations, across different

intervals of time within a large number of video streams. We

therefore do not have intra-class variation (as we have same

class in terms of persons) but we have inter-class variation

(different individuals) in our dataset.

III. VIDEO ANALYSIS MODEL

We present a system using CNN to perform automatic

object classification. We present our approach in this section

and represent the system using a mathematical model. The

mathematical modeling of the system aids in tuning and

training of the system.

The proposed system for video analytics is based on

decoded video streams. Initially all the video streams are

encoded with H.264 encoding scheme to minimize the storage

space capacity. The video streams are decoded to split them

in video frames. For a stream of 120 seconds length, 3000

video frames will be generated. The analysis is performed on

these frames. This approach enables the independent analysis

of video frames from each other and leads to high throughput

and scalability on the cloud resources. The training set is given

by;

“Training DataSst X = x1, x2, . . . xn” (1)

where x1, x2 . . . are decoded frames. The detection of desired

object from whole frame and its extraction through cropping

is an important preprocessing step for video analysis as shown

in figure ??. This shortens the processing by eradicating those

areas from frames which do not contain objects. Haar cascade

classifier [8] is used for the detection of objects from video

frames. The haar cascade classifier uses haar features which

are generated from the objects in video frames to perform

detection. The detected objects are then extracted from frames.

These extracted objects are fed into the processing pipeline of

the deep network to perform object classification. A labeled

frame is given as (x; c). The region of interest is represented

as;

“R(x0, y0 xn, yn)” (2)

We extract the detected object patch which includes the

surroundings of the object. Each video frame is scaled at

a size of 150 × 150. This size has been selected according

to the hyper-parameter tuning of the deep network based on

the experimentation. The objects are further normalized as

the deep networks works better when input is provided in

normalized form. It is also to be noted that during the decoding

and detection step, only those video frames are retained which

contained the objects in them. All the video frames which do

not possess any object are discarded. The normalized extracted

objects are given as:

“Xnorm = f(K(x); K(y))|(x; y)” (3)

We have performed transformations including translation

and skew to increase the training data. The greater the training

data, the more will be the accuracy of the classifier. This tech-

nique proved to be very effective in feature learning algorithms

since the classifier is exposed to much more training data with

a variety of transformations[27][28][29][15]. This approach

also reduces over-fitting and helps improving accuracy of the

trained classifier.

Another advantage of applying these transformations is that

they make the classifier invariant to typical transformations in

the target object. These transformations in the target object

can present themselves as serious challenges during object

classification process and can drop the accuracy. So there is

no need to handle these challenges separately as done in many

4

previous works [9][10][11]. However, it should be noted that

the classifier will only be invariant to those variations in the

target object on which it has been trained. Handling all of

them such as occlusion is out of the scope of this paper.

Let ‘T’ denotes the transformations then the training dataset

is given by;

“TXnorm = TXnorm1, TXnorm2, . . . TXnormn” (4)

Now when we have the dataset generated, we train the convo-

lutional neural network. The convolutional and sub-sampling

layers of the convolutional neural network are represented as;

“Convk, p = g(xk, p ∗Wk, p+Bk, p)” (5)

“Subk, p = g(↓ xk, p ∗ wk, p+ bk, p)” (6)

here g(.) is the ReLU activation function. Weights are repre-

sented by ’W’and biases are represented by ’b’ respectively.

‘ * ‘ represents the two dimensional convolution operation.

The inputs are downsampled in case of sub-sampling layer.

The output from each layer represents a feature map. Multiple

feature maps are extracted from each layer which is helpful

in detecting multiple features of objects such as lines, edges

and contours.

Instead of using the standard hyperbolic tangent non-

linearity, we adopted ’ReLU’ as suggested by [12][16]. ReLU

is much more appropriate than tanh especially in case of

bigger datasets as the network trains much faster. Traditional

hyperbolic tangent non-linearity does not allow training the

system on bigger datasets. The ReLU function has a range

of [0,infinity], so it has the capability to model positive real

numbers. The advantage of using ReLU is that it does not

vanish as the value of ‘x’ increases as compared to sigmodal

function. The max function is;

“1 if x > 0; 0 if x < 0” (7)

In order to aid generalization we adopted Local Response

Normalization. This normalization scheme mimics the be-

havior of real neurons and creates a competition amongst

neuron outputs for big activities. Max pooling is used to

perform sample based discretization or downsampling of an

input representation (feature maps from convolutional layer in

our case). Max pooling reduces the dimensionality, decreases

the amount of parameters to learn and reduces the overall cost.

L2 regularization has been added to reduce over-fitting. It

tries to penalize network weights that are large. It is given by;

“λ2

∑

i

θ2i (8)

where theta represents the network weights and lambda is

lagrange multiplier which decides how significant this reg-

ularization should considered to be.

The deltas for the layers are;

“△Wt, l = LearningRate

F∑

i=1

(xi ∗D
h
i) +mn△W(t−1,l)”

(9)

Similarly;

“△Bt, l = LearningRate

F∑

i=1

Dh
i +mn△B(t−1,l)” (10)

Similarly;

“△Wt, l = LearningRate

F∑

i=1

(↓ xi ∗D
h
i) +mn△W(t−1,l)”

(11)

Also;

“△bt, l = LearningRate
F∑

i=1

Dh
i +mn△b(t−1,l)” (12)

The loss function is;

“L(x) = LearningRate
∑

xi−>X

∑

xi−>Ti

l(i, xiT)” (13)

here l(i,xT) is loss function for convolutional neural network

that we are trying to minimize.

SGD is represented as;

“Wt+1 = Wt − αδL(θt)” (14)

The momentum term is represented as;

“Vt+1 = ρvt − αδL(θt)” (15)

“Wt+1 = Wt + Vt+1” (16)

The softmax layer is given as;

“l(i, xiT) = M(ei, f(xiT))” (17)

IV. ARCHITECTURE AND IMPLEMENTATION

The proposed video analysis approach is compute intensive

and operates on large datasets. We have tackled this problem

by optimizing the code, tuning the hyper-parameters properly

and introducing parallelism [33] by using spark. Parallelism

is achieved by distributing the dataset into small subsets and

then passing over these subsets of data to separate neural

network models as shown in figure 4. The models are trained

in parallel and the resultant parameters for each model are

then iteratively averaged and collected at the master node. This

approach helped in speeding up the network training even on

larger datasets.

The training process starts by first loading the training

dataset into the memory. The master node which also acts as

the spark driver loads the initial parameters and the network

configuration. The network configuration of our spark cluster

and deep learning model is shown in Table 1: The dataset is

partitioned in a number of subsets. This division is dependent

on the configuration of the training master. These subsets

of data are distributed to various workers along with the

configuration parameters. Each worker then performs training

on its allocated dataset. Once the training by all the workers

is completed, the results are averaged and returned to master

which has a fully trained network which is used for classifi-

cation.

The master node of spark loads the initial network config-

uration and parameters. The master is termed as driver node

5

Fig. 4: Architecture of Distributed Cluster

TABLE I: Configuration of Spark Cluster and Deep Network

Spark.driver.cores 4 No. of layers 8

Spark.driver.memory 8GB Average Rate 1

Spark.executor.memory 8GB Optimization GD

Spark.executor.cores 4 Activation ReLu

Spark.memory.fraction 4 LearningRate 0.0001

Spark.serializer kryo Regularization L2

as well because it is responsible to drive other nodes of the

cluster by distributing parameters among them. It also contains

the knowledge that how data is to be divided. On the basis

of data division parameter, the dataset is partitioned into the

subsets. These subsets along with the configuration parameters

are then distributed among worker nodes. Each worker works

on a partial model and the results are averaged together with

the help of iterative averaging. The master node then contains

the trained classifier.

The separation of training data into subsets and then training

the model with these subsets of data by averaging parameters

is a feasible approach for our system because we operate with

limited worker nodes in our cloud and the parameters for

estimation are also small. We use the same model for each

worker node but train them on different data shards (mini-

batches). We then obtain the gradient for each split of the

mini-batch from each model and compute the overall average

using parameter averaging. This technique works faster for

small networks as in our proposed system and is ideal for

scenarios involving matrix computations which happens quite

often in convolutional neural networks.

The compute cluster consists of one master node and

eight worker nodes. The averaging frequency is set to 1

for all the experiments. The dataset comprising the size of

100GB is divided into various subsets of data. Each subset

is further divided into various minibatches depending upon

the configuration. Training is performed on each subset by

allocating each minibatch to each worker. Since the dataset is

large in size it was not possible to load the whole dataset into

memory at once. So we have first exported the minibatches

of datasets to disk (HDFS) known as dataset objects. The

datasets are exported in batched and serialized form. We

have used kryo serialization to perform serialization of our

dataset. This approach of saving the dataset to disk is much

more efficient and faster as compared to loading the whole

dataset in memory. This approach consumes less memory and

reduces split overhead. The dataset object has a number of

examples based on the size of dataset object. Kryo serialization

takes least amount of time to serialize objects and improves

performance. It can serialize objects much quickly and effi-

ciently and offers more compact serialization than Java. The

serialization framework provided by java has high CPU and

RAM consumption which makes it inefficient for large scale

data objects.

This is also quiet important to set the rate of parameter aver-

aging. If this is too low, this will create overhead in parameter

initialization and will cause delay in network communication.

Similarly, if it is high, it will degrade the performance. In

the proposed video analytics system, the good performance is

obtained with 16 mini-batches. These mini-batches are started

in an asynchronous fashion which reduces the delay. The data

6

repartitioning is also a critical parameter to be defined. It

defines when data is to be repartitioned and plays an important

role in utilizing all the resources of the cluster efficiently. A

value of 0.6 is chosen for this.

The locality configuration is also defined as the proposed

algorithm has high demand of computation, so single task per

executor is executed. It is therefore much suitable to shift

data to executor which is free. The default configuration of

spark waits for a free executor. This requires the data to be

copied across the network. Another important note is that we

have avoided the allocation of memory on JVM heap space by

passing pointers for various numerical tasks. It is not required

to load the data from JVM heap to execute operations on it;

neither has it required data transmission (processed results)

back to JVM. This helps to avoid the data transfer time and

a decrease in overall execution time of the system. This also

avoids memory overhead required for each task.

We have employed iterative mapreduce instead of simple

mapreduce for our proposed application. Iterative mapreduce

is an advanced form of mapreduce in which multiple passes

of the mapreduce operation are performed. Single pass does

quite well for the application which are not iterative. As our

application is built upon deep learning algorithm, it is highly

iterative and makes full use of the iterative map-reduce. A

sequence of map-reduce operations are performed in which

each mapreduce operation is performed in cascaded fashion.

In the implementation phase, the video dataset is first loaded

into the memory. It is preprocessed so that it can be further

used for training the deep multilayer network. The preprocess-

ing starts with frame decoding using FFMPEG library [13].

The objects of interest are then detected and extracted from

the video frames by using haar cascade classifier. Haar cascade

classifier is built on top of haar features which are generated

from the objects in video frames to perform detection.

The objects which are extracted necessitate the use of N-

dimensional arrays which could hold the pixel values. We have

made the use of nd4j for java [14]. It consumes minimum

memory and supports fast numerical computing for java.

The loading of data into the memory and training of the

network are handled by two separate processes. This makes

the data loading process simple and is supported by the nd4j

library. The data after loading into the memory is normalized.

This normalization of data helps to train the neural network

properly as it is based upon gradient descent optimization

approach for network training. The gradient descent approach

having their activation functions in this range helps to improve

the performance.

A dataset iterator is defined to iterate over the data present

in the memory. The iterator fetches the data from memory in a

vectorised format. The iterator moves on to the dataset objects

which contains multiple training examples along with their

labels. An n-dimensional array is created to store examples

and labels. The high volumes of data makes it infeasible to

load the data into the memory at once. So many minibatches

are created. These minibatches help to tackle the memory

requirements problem. A value of 12 for the minibatch is used

in our system.

The value of learning rate has been selected to be 0.0001.

We have selected this value carefully on the basis of exper-

imentation. We observed during the experiments that a high

value of learning rate can cause divergence and the divergence

can stop the learning. On the other hand, setting learning rate

to a small value causes slow convergence.

V. EXPERIMENTAL SETUP

The details of our experimental setup which is utilized to

implement the system is presented in this section. The main

focus of the results generated by using this experimental setup

is accuracy of the proposed algorithm, scalability, precision

and performance of the system. The accuracy of the system

is measured by precision, Recall and F1 score. The scalability

and performance is demonstrated by analyzing aspects of the

system including transfer time of data to cloud node and the

overall analysis time.

The proposed architecture for analysing video streams con-

sists of cloud resources. The compute nodes have multi-cores

for processing in which most of the video analytics operations

are performed. In order to execute the experiments, we con-

structed a cluster of eight nodes on the cloud infrastructure.

The multiple instances running on the cloud have OpenStack

[22] with ubuntu version of 15.04. This cluster is used to

deploy and evaluate the proposed system. The configuration of

the cluster is as follows: Each node in the cluster possesses a

secondary storage of 100 GB. There are 4 VCPUs running at

a frequency of 2.4 GHz. The total main memory has a size of

16 GB. The results generated by these experiments will help

to deploy the system on a much bigger infrastructure as per

requirements of an application.

The video dataset which is used to train and test the system

is generated in a constrained environment. The streams are

captured with individuals facing towards the camera. However,

it also contains frames which have individuals with side,

front and rear pose. Most of the video streams do not pose

illumination or other challenges. The test dataset comprises of

88,432 video frames.

The input video streams are H.264 format encoded. The

frame rate for each video stream in our database is 25 fps. The

data rate is 421 kbps and the bit rate of video streams is 461

kbps respectively. These video streams are decoded to produce

separate video frames. The video stream of one minute of

length generates a decoded frame set of 1500 frames. The

data size of each video frame is 371 kb.

"Apache Spark" is adopted for parallel and distributed

training of the deep network. The video dataset is loaded

in spark which executes executors to perform the network

training. The dataset objects are used by the executors to

execute training of the network. The iterative MapReduce

framework utilized in this work executes multiple analysis

tasks. These analysis tasks are executed in multiple stages.

The analysis tasks are rescheduled if a task failure occurs.

The spark context is utilized to load the video dataset

and is then stored into multi-dimensional arrays. The multi-

dimensional arrays represents the data in the form of tensors

which are then passed through multiple layers for training. The

starting layer of convolutional neural network has a dimension

7

Fig. 5: Schematic Diagram of the Proposed Network

of 150 x 150 x 1. It has 96 kernels in it. The stride of the

kernels is set to be 4 x 4 with the kernel size of 11 x 11 x

1. The layer following the first convolutional layer has 256

kernels in it with a stride of 2 and has a size of 1 x 1. The

remaining layers has a total of 284 kernels in them. These

convolutional layers operate on nonZeroBias.

There is a max-pooling layer next to the convolutional layers

with a size of 3 x 3 as shown in figure 5. The convolutional

layers and pooling layer are followed by the fully connected

layers. The fully connected layers have a total of 4096 neurons

in them. The kernels and neurons of the subsequent layers has

a connection with the previous layers. We have also added

local response normalization layers, max pooling layers and

added ReLU as non-linearity layer.

VI. EXPERIMENTAL RESULTS

In this section we present the results of the proposed

system using the experimental setup detailed in section V.

We first analyze the results generated by tuning the hyper-

parameters of deep model to various values and propose the

parameters which could potentially produce best results.The

trained system on the proposed parameters is then evaluated

with different performance characterization including accu-

racy, scalability and performance of the system. The Precision,

Recall and F1 score are also considered as the performance

characterization. The scalability of the system is analysed by

measuring the time to transfer data to cloud and overall time

of analysis of data. The results from the object classification

pipeline are presented at the end of the section.

A. Hyper-parameter Tuning

There are a number of parameters which can be tracked

during the training of a deep network. These parameters pro-

vide intuitions about the settings of different hyper-parameters

and help to make a decision that whether the setting should

be changed in order to have more efficient learning. The

parameters are tracked and represented in the form of graphs

over multiple time stamps in order to observe the trend in

the behavior of the system. The x-axis of the plot in figure

Fig. 6: Model Scores

6 represents iterations and the number of iterations depends

on the settings of batch size. While the loss function value

L(x) = LR
∑

xi−>X

∑
xi−>Ti

l(i, xiT) of current mini-

batch is depicted on the y-axis of the plot in figure 6. The

loss function value is evaluated during the forward pass of the

back-propagation on the individual batches. The grey line in

the graph represents the running average of the loss on each

iteration. It gives a better visualization to analyze the trend

in the graph of the loss function. The graph depicts that the

learning rate is tuned properly as a decreasing trend in the

graph is observed after each iteration over time. We kept on

changing the learning rate unless score became stable. The

learning rate has been varied to many different values and

three of them le-2, le-4 and le-6 are shown in the graph. Le-

2 proved to be good for the divergence of learning curve as

shown in figure 6.

The proper normalization of the data is a major factor in the

divergence of the learning curve. It is also an indication that

the L2 employed with SGD "Wt+1 = Wt −αδL(θt)" is good

adopted scheme. Here "α" varied to le-2, le-4 and le-6. The

initialization of weights has been made random. The bottom

two graphs with a learning rate of le-4 and le-6 remained

8

Fig. 7: Parameter Ratios

Fig. 8: Layer Activations

unable to show the decreasing trend and followed a stable

state over multiple iterations. Both the graphs remained above

1.0 on y-axis.

Another important parameter which can be used to track in

order to have an intuition about the efficient learning of the

system is the ratio of weights (updates). It is not beneficial

to track the raw gradients but the updates of the weights.

It can also be helpful to track this ratio for every set of

parameters. The parameter ratios are depicted in figure 7.

The trend in the graph indicates selection of a good learning

rate and proper initialization of network hyper-parameters. The

parameter weights are represented by different colored lines

in the graph. A high divergence of the parameters from -3 on

a log10 chart indicates that the parameters are not properly

initialized.

The layer activations of first layer utilized in our system

are depicted in figure 8. A stability in the layer activations

graph can be observed clearly which shows that the network

is stable. It is also an indication of the proper initialization of

weights of the layers. The regularization scheme i.e. λ2

∑
i θ

2
i

is well adopted. The convergence of ratio as seen in the graph

shows that the parameters are initialized correctly and are well

selected. The other lower graphs of figure 11 with lambda

ITERATIONS

M
O

D
E

L
 S

C
O

R
E

Model Score vs. Iteration

score

summary

3.0

2.5

2.0

1.5

1.0

0.5

0.0
10 20 30 40 50 60 70 80 90 100 110 120 130

Fig. 9: Model Scores at Various Iterations

values do not show a stability trend.

B. Training on Tuned parameter values

We have trained the system on the proposed hyper-

parameters for our video object classification pipeline and

evaluated the performance. Figure 9 shows the value of loss

function at various iterations on the current minibatch. The

graph is drawn against training scores of the network and

training iterations. It can be seen that the graph converges

which shows that the learning rate LR = 0.0001 is a well

selected learning rate. The decreasing trend of the graph is

also an indication that "L2 normalization scheme λ2

∑
i θ

2
i "

with "SGD Wt+1 = Wt − αδL(θt)" is a good approach for

the training of our network. A bit of a noise in the graph is

observed but it is very low variation in a small range and is

not an indicative of poor convergence of learning.

Figure 10(a), figure 10(b) and figure 10(c) show the standard

deviations of layer activations, gradients and updates of param-

eters. A stable trend is observed in this graph which shows that

the system is capable of coping with the problem of vanishing

or exploding activations. It also shows that the weights of the

layers have been well selected and regularization scheme is

properly adopted.

The histogram of layer parameters and layer updates are

depicted in Figure 11 Figure 12 respectively. The normalized

"Gaussian distribution" can be seen in graphs. It shows that the

weights are properly initialized with sufficient regularization

present in the system. The layer updates graph also shows that

the system is not exposed to vanishing gradient because of the

utilization of non-linearity h = max(0, a).

Figure 13(a), figure 13(b) and figure 13(c) show the stan-

dard deviations of layer activations, gradients and updates of

parameters for the first convolution layer of the network. The

proposed system made use of off heap memory and most of

the memory is not allocated on the JVM heap but outside

of the JVM. This helps to perform the numerical operations

faster as data needs not to be copied to and from the JVM

but pointers can be passed around for numerical computations

avoiding data copying issue.

9

ITERATIONS

S
T
A

N
D

A
R

D
 D

E
V

IA
T

IO
N

S

Standard Deviations: log10 Activations Standard Deviations: log10 Gradients Standard Deviations: log10 Updates

0

1

2

3

4

5

6

7

8

9

10

11

input

10_W

8_W

0_W

3_W

6_W

12_W

7_W

11_W

8_W

10_W

0_W

3_W

6_W

12_W

7_W

11_W

20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120

1.0

0.0

-1.0

-2.0

-3.0

1

0

-1

-2

-3

-4

-5

-6

Fig. 10: Standard Deviations of activations and Parameter Updates

Fig. 11: Histogram of Layer Parameters

C. Performance Characterization and Scalability of the Sys-

tem

The accuracy of the proposed system is measured by the

following performance characterization: recall, precision (pos-

itive prediction value) and F1 score. The test dataset comprises

of 88,432 video frames in total. The precision is turned out to

be 0.9708. The recall of the system is recorded to be 0.9636.

And the F1 score is found to be 0.9672. The recall and the

F1 score are calculated by the following equations:

′′Recall = TP/(TP + FN)′′ (18)

′′F1 = 2TP/(2TP + FP + FN)′′ (19)

It was observed from the results that there is also some

miss-classification of the video frames as well. Few objects are

Fig. 12: Histogram of Layer Updates

recorded as false positives in the system. There can be number

of things which could be the reason for the miss-classification.

Some miss-classifications could be due to the variance in the

pose, illumination conditions and blur effects. As the training

of the classifier was performed on the dataset which was

captured under strict controlled conditions, high variance could

lead to the miss-classification of various subjects.

The scalability is tested by executing it on distributed

infrastructure over multiple nodes. The system is evaluated

mainly on the following parameters: i) transfer time of data

to cloud nodes ii) total time of analysis iii) analysis time with

varying dataset sizes. Spark executes many executors and these

executors accesses a RDD object in each iteration. Spark has

a cache manager which handles the iterations outcomes in

memory. If the data is not required anymore, it is stored on

disk.

10

ITERATIONS

S
T
A

N
D

A
R

D
 D

E
V

IA
T

IO
N

S

Update:Parameter Ratios(Mean Magnitudes):log10 Layer ActivationsParam UpdatesUpdate:Parameter Ratios(Mean Magnitudes):log10

Mean

Mean+2*sd

Mean-2*sd

b

w

b

w

20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120

0.08

0.06

0.04

0.02

0.0020

0.0015

0.0010

0.0005

1.0

0.5

0.0

-0.5

Fig. 13: Standard Deviations for First Layer

0.36

0.68

1.13

1.63

2.18

0.3

0.57

1.05

1.43

2.1

20 40 60 80 100

D
a

ta
 T

ra
n

sf
e

r
T

im
e

 (
H

o
u

rs
)

DataSet Size (GB)

Data Transfer Time to Cloud Storage

128 MB 256 MB Expon. (256 MB)

Fig. 14: Total Transfer Time

1.458

2.316

3.475

4.833

7.291

1.43

2.2

3.1

4.5

6.8

20 40 60 80 100

A
v

e
ra

g
e

 E
x

e
c
u

ti
o

n
 T

im
e

 (
H

o
u

rs
)

DataSet Size (GB)

Average Execution Time

128 MB 256 MB 2 per. Mov. Avg. (256 MB)

Fig. 15: Average Time

Each video stream in our database has a frame per second

rate of 25. These videos are decoded to produce separate video

frames. The total number of decoded video frames is directly

proportional to the duration of video stream being analyzed.

The video stream of one minute of length generates a decoded

dataset of 1500 frames.

The size of the input dataset varies from five gigabytes

to hundred gigabytes. The large number of frames are bun-

dled with the help of a batch process. The bundled frames

are shifted to cloud infrastructure for processing. The time

required to bundle the frames is proportional to the input

video frames size. The dataset ranging from ten gigabytes

to hundred gigabytes requires a bundling time of 0.25 to 3.8

hours. Inclusion of larger data increases the data bundling time.

The bundled video frames are then transferred to cloud for

analysis. There are many factors on which the transfer time

to cloud depends including bandwidth of the network, block

size and also the amount of data which is to be transferred.

An estimated transfer time for different data sizes as shown in

Figure 14. It was observed that the transfer time for a dataset

size of twenty gigabytes to hundred gigabytes varied from 0.36

to 2.18 hours . The data transfer time has also been measured

with a block size of 256MB and its effect is shown in figure

14. In order to measure the time of network training, multiple

tests are carried out on multiple dataset sizes. We have then

calculated the average execution time of each dataset size and

plotted in Figure 15. It was seen from the results that the

increase in dataset size directly increases time of execution.

D. Video Object Classification Pipeline

The trained classifier from cloud is saved locally and is

further used to locate the objects of interest. The target object

which is to be located from the video streams is passed through

the trained classifier to perform classification. The target

object which is to be classified is passed through the same

11

Tr
ai

ne
d

N
et

w
or

k

M
od

el

Pr
e-

pr
oc

es
se

d

O
bj

ec
t)

Object 1 Object 2 Object 3 … Object N

0.005 0.03 9.60 … 0.10

OBJECT DETECTION

VIDEO DECODING

OBJECT EXTRACTION

GRAY-SCALE

OBJECT SCALING

32 *32

NORMALIZATION

Video

Streams

Database

Video Pre-processing

YARN (Cluster Resource Management)

In-memory Spark Resilient Distributed Data (RDD)

Hadoop Hadoop Hadoop

Spark

Worker
Spark

Worker

Spark

Worker

Spark

Master

...

Spark Workers

TasksTaskTaskTask

Average

Parameters
Partial

Model
Partial

Model
Partial

Models

Network Training

Fig. 16: Video Object Classification Pipeline

preprocessing steps to make it appropriate for the classifier. It

is also scaled and normalized to make it appropriate for the

classifier.

The classifier returns the probabilities of the possible labels

but not the labels itself. The labels of all the objects present

in all the video streams were already stored in the database

beforehand. The classification process ends up in generating

the probabilities of the matched objects. The object with the

highest probability indicates the classification of the desired

object which was being searched from the video streams.

Very low probabilities against all the objects indicate that the

target object is not present in all of the video streams present

in the database.Figure 16 depicts the phenomenon of object

classification.

Figure 17 depicts the probabilities of some of the objects

generated by the classifier. The marked objects which were

fed into the trained network are listed on the right hand side

of the graph. We have shown results from 8 different objects

for this set of experiments. The probabilities generated by the

classifier against each object are shown in different columns

of the table. The probabilities near to 1 depict a closer match

of marked object and the probabilities close to 0 depicts the

unavailability of objects in the video stream database.

It can be seen that the trained classifier generates a high

probability against the marked object if its training instances

are present in the database. The other labels of objects come up

with a low probability value. Figure 17 depicts the graphical

representation of classification procedure. The 10 experiments

are represented on each index of the x-axis. Different probabil-

ities generated by each experiment are represented on y-axis

Fig. 17: Classification of Marked Object

of the graph.

VII. CONCLUSION AND FUTURE WORK

An object classification system is developed and presented.

The system is built upon deep convolutional neural network

to perform object classification. The system learns different

features from many video streams and performs training on

an in-memory cluster. This makes the system more robust to

classification errors by rapidly incorporating diverse features

from training dataset.

12

The system is validated with the help of a case-study using

real-life scenario. Numerous experiments on the testing dataset

proved that the system is accurate with an accuracy of 0.97

as well as precise with a precision of 0.96 respectively. The

system is also capable of coping with varying number of nodes

or increased volumes of data. The time required to analyse

the video data depicted an increasing trend with the increasing

amount of video data to be analysed in the cloud. The analysis

time is directly reliant on the amount of data being analyzed.

The sheer volumes of video data necessitate additional time

to carry out object classification. The analysis time can be

decreased with the addition of nodes in the infrastructure.

We would like to leverage and optimize other deep learn-

ing models in future including reinforcement learning based

methods. The reinforcement learning will help to classify other

objects as well like vehicles without necessitating any metric

learning stage. The development of a toolkit which could

automate the process of hyper-parameter optimization will be

included as part of the improvements in the system.

We also intend to develop a rule based recommendation

system for cloud based video analytics which will provide

recommendations for hyper-parameter tuning on the basis of

input dataset and its characteristics. It will also take into

account the configurations of underlying in-memory compute

cluster and will suggest appropriate tuning parameters for both

deep learning model and in-memory cluster.

REFERENCES

[1] Anjum, A., Abdullah, T., Tariq, M., Baltaci, Y. and Antonopoulos, N.
Video stream analysis in clouds: An object detection and classification
framework for high performance video analytics. IEEE Transactions on
Cloud Computing. 1(1):1–14, 2016

[2] J. Bergstra, D. Yamins, and D.D. Cox. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vision
architectures. In Proc. of ICML, pages 115–123, 2013.

[3] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V. and Rabinovich, A., 2015. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (pp. 1-9).

[4] Girshick, R., Iandola, F., Darrell, T. and Malik, J., 2015. Deformable part
models are convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 437-446).

[5] R. Girshick, "Fast R-CNN", ICCV 2015

[6] S. Ren, K. He, R. Girshick, J. Sun, "Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks", IEEE Transactions on
Pattern Analysis and Machine Intelligence. 2016.

[7] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, "You Only Look Once:
Unified, Real-Time Object Detection". 2016, pp. 779-788

[8] Lienhart, R. and Maydt, J., 2002. An extended set of haar-like features
for rapid object detection. In Image Processing. 2002. Proceedings. 2002
International Conference on (Vol. 1, pp. I-I). IEEE.

[9] Erhan, D., Szegedy, C., Toshev, A. and Anguelov, D., 2014. Scalable
object detection using deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 2147-2154).

[10] Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classi-
fication with deep convolutional neural networks. In Advances in neural
information processing systems (pp. 1097-1105).

[11] Tang, J., Deng, C. and Huang, G.B., 2016. Extreme learning machine for
multilayer perceptron. IEEE transactions on neural networks and learning
systems, 27(4), pp.809-821.

[12] Dahl, G.E., Sainath, T.N. and Hinton, G.E., 2013, May. Improving deep
neural networks for LVCSR using rectified linear units and dropout.
In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on (pp. 8609-8613). IEEE.

[13] https://ffmpeg.org/ Last Accessed [03/01/2018]

[14] WWW.nd4j.org/ Last Accessed [03/01/2018]

[15] Yaseen, M.U., Anjum, A. and Antonopoulos, N., 2017. Modeling and
Analysis of a Deep Learning Pipeline for Cloud based Video Analytics.
In Proceedings of the fourth IEEE/ACM International Conference on Big
Data Computing, Applications and Technologies. ACM.

[16] G. Dahl, T. Sainath, and G. Hinton. Improving deep neural networks for
lvcsr using rectified linear units and dropout. In Proc. of ICASSP, pages
8609–8613. IEEE, 2013.

[17] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-
parameter optimization. In Proc. of NIPS, pages 2546–2554, 2011.

[18] Q. Wang, J. Gao and Y. Yuan, "Embedding Structured Contour and
Location Prior in Siamesed Fully Convolutional Networks for Road
Detection," in IEEE Transactions on Intelligent Transportation Sys-
tems.2017, DOI: 10.1109/TITS.2017.2749964

[19] Y. Yuan, Y. Lu and Q. Wang, "Tracking as a Whole: Multi-Target
Tracking by Modeling Group Behavior With Sequential Detection," in
IEEE Transactions on Intelligent Transportation Systems.2017, DOI:
10.1109/TITS.2017.2686871

[20] Bergstra, J., Yamins, D. and Cox, D.D., 2013. Hyperopt: A python li-
brary for optimizing the hyperparameters of machine learning algorithms.
In Proceedings of the 12th Python in Science Conference (pp. 13-20).

[21] Zhang, Q., Liu, W., Tsang, E. and Virginas, B., 2010. Expensive
multiobjective optimization by MOEA/D with Gaussian process model.
IEEE Transactions on Evolutionary Computation, 14(3), pp.456-474.

[22] https://www.openstack.org/ Last Accessed [03/01/2018]
[23] Wang, N. and Yeung, D.Y., 2013. Learning a deep compact image

representation for visual tracking. In Advances in neural information
processing systems (pp. 809-817).

[24] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. and Manzagol, P.A.,
2010. Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion. Journal of Machine
Learning Research, 11(Dec), pp.3371-3408.

[25] Boureau, Y.L. and Cun, Y.L., 2008. Sparse feature learning for deep
belief networks. In Advances in neural information processing systems
(pp. 1185-1192).

[26] Lee, H., Pham, P., Largman, Y. and Ng, A.Y., 2009. Unsupervised feature
learning for audio classification using convolutional deep belief networks.
In Advances in neural information processing systems (pp. 1096-1104).

[27] Van Dyk, D.A. and Meng, X.L., 2001. The art of data augmentation.
Journal of Computational and Graphical Statistics, 10(1), pp.1-50.

[28] Cui, X., Goel, V. and Kingsbury, B., 2015. Data augmentation for deep
neural network acoustic modeling. IEEE/ACM Transactions on Audio,
Speech and Language Processing (TASLP), 23(9), pp.1469-1477.

[29] Zhu, J., Chen, N., Perkins, H. and Zhang, B., 2014. Gibbs max-margin
topic models with data augmentation. Journal of Machine Learning
Research, 15(1), pp.1073-1110.

[30] Yaseen, M.U., Anjum, A. and Antonopoulos, N., 2016, December.
Spatial frequency based video stream analysis for object classification and
recognition in clouds. In Proceedings of the 3rd IEEE/ACM International
Conference on Big Data Computing, Applications and Technologies (pp.
18-26). ACM.

[31] Yaseen, M.U., Anjum, A., Rana, O. and Hill, R., 2017. Cloud-based
scalable object detection and classification in video streams. Future Gen-
eration Computer Systems. https://doi.org/10.1016/j.future.2017.02.003

[32] A. R. Zamani, M. Zou, J. Diaz-Montes, I. Petri, O. Rana, A. Anjum and
M. Parashar, 2017, Deadline Constrained Video Analysis via In-Transit
Computational Environments, IEEE Transactions on Services Computing.
DOI: 10.1109/TSC.2017.2653116

[33] McClatchey, R., Anjum, A., Stockinger, H. et al. J Grid Computing
(2007) 5: 43. https://doi.org/10.1007/s10723-006-9059-z

