
The Interactions of Optoelectronically Active Molecules and 

Complexes with (Bio) macromolecules for Applications in 

Biosensors and Directed Assembly 

 

Ammar Al-azzawi 

 

A thesis submitted for the Degree of Doctor of Philosophy 

School of Chemistry 

Cardiff University 

 

 

 

 

 

 

 

 

 

December 2017 

 

 

 

  



II 
 

DECLARATION 

This work has not been submitted in substance for any other degree or award at this or any other 

degree or other award. 

Signed…………………………………….. (candidate) Date ...………………….… 

STATEMENT 1 

This thesis is being submitted in partial fulfilment of the requirements for the degree of Doctor 

of philosophy. 

Signed……………………………………… (candidate) Date ...………………….… 

 

STATEMENT 2 

This thesis is the result of my own independent work/investigation, except where otherwise 

stated, and the thesis has not been edited by a third party beyond what is permitted by Cardiff 

University’s Policy on the Use of Third Party Editors by Research Degree Students. Other 

sources are acknowledged by explicit references. 

The views expressed are my own. 

Signed……………………………………... (candidate) Date ...………………….… 

 

STATEMENT 3 

I hereby give consent for my thesis, if accepted, to be available online in the University’s Open 

Access repository and for inter-library loan, and for the title and summary to be made available 

to outside organisations. 

Signed……………………………………... (candidate) Date ...………………….… 

 

STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS 

I hereby give consent for my thesis, if accepted, to be available online in the University’s Open 

Access repository and for inter-library loans after expiry of a bar on access previously approved 

by the Academic Standards & Quality Committee. 

Signed……………………………………... (candidate) Date...………………….… 



III 
 

Acknowledgements 

I take this opportunity to thank Almighty Allah for helping me to undertake and complete 

this research.  

Now, I express my sincere gratitude to everyone who helped me and supported me during 

this thesis. First and foremost, I am immensely indebted to my Supervisor, and I would like to 

express my sincere appreciation to my supervisor Dr Niek Buurma for all the support and 

encouragement, for his patience and immense knowledge he gave me during my PhD study. 

Without his guidance and constant feedback, this PhD would not have been accomplishable. It 

has been pleasuring to be part of his Research Group. 

I am also very thankful to my supervisor Dr Simon Pope and Dr James Redman for their 

continual support and help, for providing most of the ligands during my research. Many thanks 

also go to our collaborators (Emily Langdon-Jones, Nick Fletcher, Alaa El-Betany, Richard 

Wheelhouse, Lara), who provided me with a variety of compounds. I am also very grateful to 

Prof Angela Casini and Prof. Thomas Wirth for acting as my mentor and internal examiner for 

all events and progress examinations. 

I would like to acknowledge and thank the essential financial support from the ministry of 

higher education and scientific research in Iraq and the Iraqi cultural attaché in London for 

being my sponsor. 

Special thanks also go to the best friends who help me a lot: Hiwa Ahmad, Ibrahim Qadur, 

for all the help they kindly offered to me in the Laboratory during my study. I thank my fellow 

lab mates in the POC, for the help and for all the fun we have had during my research. I greatly 

appreciate the support and help received throughout my study from Dr. Mohammed 

ALsharbini, Dan, Hider, Abbas, Mohammed, and Raid from Cardiff. Out of the lab, and for 

making my time in Cardiff enjoyable, I would like to thank: Ivan Karomi, Ali Al-zughabi, who 

deserve special mention for their attempts to keep me sane, Warren for our good-humoured 

arguments. 

I am truly holy and grateful to my loving parents especially my mother for her emotional 

support and prayers for me in the hard times, and to all of my brothers, sisters and members of 

my wider family for their encouragement throughout my PhD studies. Especial and Huge thanks 

go to my adopted Welsh family, Carol and Bryn Kesiny for their love, prayers, calls, advice, 



IV 
 

and being there whenever I needed. also, I would like to thank Sandra and John for their 

kindness and engagement. 

Finally, and more importantly I offer my deepest, heartfelt thanks to my beloved wife 

Baydaa 

For the love and care 

For the value, you have taught 

For the support, you have always given 

And my wonderful kids: Mohammed, Zainab, Almustafa and my adorable baby Anwar, for 

their patience and immeasurable love, which encouraged me to finish this thesis.  

 

 

 

 

 

 

 

 

 

 

 

  



V 
 

List of abbreviations 

°C Degree Celsius 

A Absorbance 

a.u. Arbitrary unit 

AA Alginic acid 

BBC Berberine chloride 

Bp Base pairs 

BSA Bovine serum albumin 

CD Circular Dichroism 

CTAB Cetyltrimethylammonium bromide 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DNA Fish sperm deoxyribonucleic acid 

ds DNA double-stranded deoxyribonucleic acid 

HA Hyaluronic acid 

ITC isothermal titration calorimetry 

Kcal Kilocalorie 

MB Methylene blue 

Ml Millilitre 

MOPS 3-(N-morpholino) propane sulfonic acid 

N.P. Natural polymer 

NaCl Sodium Chloride 

PAA Polyacrylic acid 

POSA Polystyrene sulfonic acid 

RNA Ribonucleic Acid 

S.P. Synthetic polymer 

SA Serum albumin 

SDS Sodium dodecyl sulphate 

ss DNA single-stranded deoxyribonucleic acid 

TF Transferrin 

 

  



VI 
 

Summary 

This thesis explores the effect of biopolymers (serum albumin, transferrin, hyaluronic acid and 

alginic acid), synthetic polymers (sodium polystyrenesulfonic acid and polyacrylic acid), and 

surfactants (CTAB, SDS, Tween-20) on DNA binding, in support of the development of 

biosensors using optoelectronically active DNA binders as sensitisers. Such biosensors have 

become essential in the field of biochemistry and medicine.   

Chapter one introduces the central dogma, nucleic acids, proteins and properties of selected 

proteins serum albumin and transferrin. This chapter presents DNA biosensors and the modes 

of interactions of molecules with DNA. It introduces self-assembled nanostructured materials.  

Chapter two shows that 2.1-2.15, except negatively charged 2.9 bind to DNA. 

Chapter three reports that 3.1, 3.2, 3.3, 3.7, and 3.9 bind to serum albumin while 3.1, 3.2, 3.8 

and 3.10 bind to transferrin. Ligands 3.1, 3.5, 3.7, 3.8, 3.10 and 3.11 do not show a change in 

affinity for DNA in the presence of SA, but the affinity of 3.2, 3.4, 3.6 and 3.12 for DNA 

decreases. The apparent affinity of 3.3 for DNA increases in the presence of SA. TF had no 

effect on DNA binding of 3.1, but 3.2 increase in affinity for DNA in the presence of TF. 

Chapter four shows that 4.1 and 4.2 bind to HA and AA but 4.7 and 4.8 interact only with HA. 

Ligands 4.4, 4.5, 4.6, 4.10, 4.11 and 4.12 do not show any change in affinity for DNA, but 4.2, 

4.7 and 4.8 do. An increase in affinity of 4.1 for DNA was observed.  

Chapter five describes that 5.1, 5.2, 5.7 and 5.8 bind to PAA and POSA, while 5.4, 5.5, 5.10 

and 5.12 bind to POSA only. Ligands 5.1 and 5.7 bind to DNA in the presence of PAA and 

POSA. Moreover, 5.2 interacts with DNA in the presence of PAA with precipitation and 5.8 

binds to DNA with precipitation in the presence of POSA. All compounds decreased in affinity 

for DNA in the presence of POSA. Compounds 5.4, 5.10, 5.11 and 5.12 do not change affinity 

for DNA in the presence of PAA. An increased apparent affinity of 5.1 for DNA in the presence 

of PAA was attributed to sensitisers binding to PAA instead of the DNA backbone, increasing 

the apparent Kbinding.  

Chapter six reveals that cationic 6.1, 6.2, 6.4, 6.5, 6.7, 6.8 and 6.12 bind to SDS. Anionic 6.4, 

6.9 and 6.14 bind to CTAB. In the presence of Tween 20, 6.12 and 6.15 decrease in affinity for 

DNA while 6.13 shows no change in affinity.  

Chapter seven outlines the conclusion from previous chapters and finishes with suggestions for 

future work. 
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Abstract 

Since the discovery of DNA as the template for protein synthesis, great effort has been made 

by researchers to develop DNA as a target for drugs and biosensors. For biosensors small 

molecules DNA-binder are required that change chemical and physical properties (such as 

absorbance spectra, redox properties) on binding. 

Proteins and enzymes are still a predominant target for disease therapy. However, DNA can 

also be a target for medicine.1 In fact,small molecules which bind to DNA  function  as drugs 

or as sensitisers in biosensors. This chapter gives a general overview of the DNA structure. 

Chapter one starts by introducing some important concepts of development of biosensors. The 

chapter discusses DNA functions and the mode of interaction of small molecules with double-

stranded DNA as well as the types of binding, such as electrostatic, intercalation and groove 

interactions. Moreover, the chapter briefly describes supramolecular and self-assembled 

nanostructured materials based on natural and synthetic   polymers. The chapter finishes with 

the biophysical techniques which can be used to quantify the interaction between molecules 

and duplex DNA, such as UV-visible spectroscopy, circular dichroism (CD) and isothermal 

titration calorimetry (ITC).  
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1.1 General introduction to the thesis 

These days, there is great interest in molecules that bind to nucleic acids.2 Some ligands bind 

to proteins and DNA with high selectivity, affinity, stability and great resistance to enzymatic 

degradation.3,2 Information about the binding mode and affinity between DNA, proteins and 

ligands can help us understand the functions of nucleic acid, design effective medicines and 

understand the effects of the presence of various biomacromolecules on DNA biosensor 

readings.4 The determination of ligand-binding sites on DNA and proteins is also necessary for 

docking studies in drug design.4,5 Compounds binding to plasma proteins are an interesting 

study area in several fields such as medicinal chemistry, biochemistry, pharmacy, clinical 

medicine, life science, etc.6-8 The interaction between the small molecules and DNA is vital for 

developing effective therapeutic agents. 9-10  

DNA has been studied widely in order to understand the cause of diseases and to develop 

specific molecular drug targets. Within biological systems, DNA is known to function through 

interacting with ligands  that activate or block the function of specific genes. Compounds that 

interact with DNA are classed as DNA-binding molecules in this study. One of the most 

interesting examples of noncovalent interactions of compounds are those that give rise to 

systems with different optoelectronic properties.  

This thesis focusses on developing biosensors by using small molecules that target DNA11-12 

and that act as sensitisers. Understanding the interactions of sensitisers with other components, 

for instance, selected proteins, polymers and surfactant are crucial in the development of 

biosensors.13 For example, whole blood contains serum albumin, transferrin, etc. If the 

sensitiser binds to these other components of serum14, then biosensors may be affected by 

stopping target binding or causing a false positive signal. It is also important to know how 

sensitisers in genosensors interact with (for example) natural biomacromolecules (HA and AA) 

and synthetic polymers (PAA and POSA) because this affects assay design. Therefore, it is 

imperative to study the interactions of biomolecules with optoelectronically active molecules. 

 

1.2 Central Dogma 

DNA is the principle component of the cell which stores the hereditary information in a living 

organism. DNA serves as the instructions for protein generation. This is molecular biology’s 

central dogma, which explains the essential processes of information transfer between 

macromolecules: DNA is transcribed to RNA, RNA is translated to protein15-17 (Figure 1.1). 
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Figure 1.1: Central dogma of molecular biology.15 

Every amino acid in the protein is encoded on the DNA by three consecutive bases, a so-called 

codon. 

1.3 Structure and Function of Nucleic Acids 

DNA (Deoxyribose Nucleic Acid) is a long double-stranded, right‐handed, helical structure 

according to Watson and Crick’s model DNA18. It is composed of two antiparallel 

complementary strands that are joined together by hydrogen bonding.19  

 

Figure 1.2: Schematic structure of a polymer double helix DNA.18, 20 
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DNA strands are polymers of nucleotides. The nucleotide consists of a phosphate group, a 

pentose sugar and a nitrogenous heterocyclic base, which is either a purine or a pyrimidine.  

A nucleoside consists of a purine or pyrimidine base bonded to sugar, the N-9 of a purine or the 

N-1 of a pyrimidine is attached to the C-1 of the sugar as shown in Figure 1.3.19, 21 

 

Figure 1.3: purine and pyrimidine to DNA base pairs 

The chains of nucleotides are joined by phosphodiester bonds crossing from the 5' position  

of one nucleoside to the 3' position of the adjacent nucleoside. The nitrogenous bases are  

the purines adenine (A), and guanine (G) and the pyrimidines thymine(T) and Cytosine (C)  

(Figure 1.4). The sugar in a deoxyribonucleic acid is deoxyribose.22-23 

 

Figure 1.4: The structures of the four nucleosides, deoxythymidine, deoxycytidine, 

deoxyguanosine and deoxyadenosine from (left to right). 

DNA typically forms a double helix, although other structures can also form. Double helix 

dsDNA can exist in three different conformations viz.the right-handed helical  

A-form, the Watson & Crick B-form and the left-handed helical Z-form.24 Two grooves, viz. 

minor and major, are present in the double-stranded DNA in both A and B-form25. The Z-form 

is a left-handed structure without major and minor grooves.26  
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Figure 1.5: The main double helix DNA conformations (from left to right): (a) A-DNA (NDB 

ID: AD0003), (b) B-DNA (NDB ID: BD0003) and (c) Z-DNA (NDB ID: ZD0008). 

 

1.4 Proteins 

1.4.1 General structure of proteins  

Proteins are built from the 20 amino acids. In proteins, amino acids are covalently linked 

together by amide links known as peptide bonds formed as result of dehydration reaction 

between carboxyl group (C-terminus) of one amino acid which reacts with the amino group  

(N-terminus) of another amino acid as shown in (Figure 1.6).  

 

Figure 1.6: Peptide bond demonstrated as dipeptide Ala-Leu 

Proteins have many functions in the cell, such as signalling, regulation, transportation, catalysis, 

structure and movement. There are many types of proteins, such as structural proteins like 

keratin, which is found in hair and nails, or globular proteins such as haemoglobin, which 

transports oxygen in the bloodstream. Another group of globular proteins are enzymes, which 

catalyse chemical processes by reducing the activation energy.27,28  Proteins may be source of 
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the damage of the cells which may cause a diseases or death of the organism.16 The main drug 

targets for new therapeutical agents are proteins.29 Interactions involving globular proteins are 

critical in many biological processes. The interactions between proteins and ligands occur in a 

so-called ligand-binding site.30-31  

 

1.4.2 Properties of selected proteins  

Serum albumin (SA) is one of the most abundant proteins in blood plasma with a normal 

concentration of 50 g / L, i.e. around 0.6 mM. SA functions as a transporting agent for numerous 

endogenous and exogenous substances like hormones, amino acids, drugs and so on. SA also 

plays a major role in regulating the osmotic pressure of blood.32 SA is also responsible for the   

pH maintenance in blood by acting as buffer due to the presence of -COOH and−NH2 residues. 

Therefore, understanding the functions and properties of serum albumins is important in 

knowing their interactions with molecules. Examples of albumins are human serum albumin 

(HSA) and bovine serum albumin (BSA), which perform similar biological functions but in 

different organisms.33,34 The most interesting property of serum albums is the high affinity for 

various kinds of ligands which are located in different binding regions in serum albumins35. 

Albumin binding to molecule has been reserached more than half decade, serum albumin has 

higher affinity for small negativily charged of hydrophobic molecules.  

A single chain of BSA consists of 583 amino acids, 17 disulphide bonds, with no 

carbohydrates.36 BSA contains three homologous domains (I, II and III) connected by peptide 

chain which forms a heart-shaped molecule. 

Every domain contains two subdomains which are referred to as (IA, IB), (IIA, II B) & (IIIA, 

IIIB). The hydrophobic pockets in subdomain IIA and IIIA are the main binding sites for ligands 

to serum albumin37 as shown in (Figure 1.7). Under physiological conditions. SA typically 

binds with two moles of ligand, viz in the bidning sites in domain IIA and IIIA, whereas it could 

bind up to six moles of ligand under certain disease states.38 
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Figure 1.7: Crystal structure of bovine serum albumin (PDB: 4F5S) 

Transferrin TF is a glycoprotein that binds strongly and reversibly to iron, TF consists of a 

polypeptide chain containing 679 amino acids and 19 intrachain disulphides, with two 

homologous N-terminal (residues 1-336) and C-terminal (residues 337-678). It has a molecular 

weight of 80 KD.  The binding of iron to the TF depends on carbonate anions, viz. two Tyr, a 

His, and Asp  (Figure 1.8).39-40 Transferrin is a crucial biomacromolecule for normal cell growth 

and maintenance.41 The crystal structure of TF has  two binding sites in the N lobe and one in 

the C lobe of hTF.42  

 

Figure 1.8: Apo-human serum transferrin non-glycosylated (PDB:2HAU) 

 

1.5 Other biopolymers. 

A lot of research has been done on synthetic polymers as well as on natural polymers, which 

are also called biopolymers. Natural polymers are produced by organisms, and include proteins 

and nucleic acids as mentioned above, but also polysaccharides. An example of a biopolymer 

is cellulose (Figure 1.9). 
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Figure 1.9: Natural polymer cellulose.43 

1.6 Synthetic polymers. 

Synthetic polymers include nylon, polyacrylic acid and polystyrene sulfonic acid .44 

 

Figure 1.10: The structures of synthetic polymers POSA and PAA 

A polymer is a high molecular weight macromolecule made up of multiple repeating units of 

chemical units (monomer). A homopolymer is made of only one kind of monomer, for example, 

polyacrylic acid (PAA).If a homopolymer (A) is linked to another homopolymer (B), we obtain 

a block copolymer for example if polyacrylic acid (PAA) and polystyrene sulfonic acid (POSA) 

are joined through covalent bonds to form single macromolecules45 (Figure 1.11). 

Homopolymer (A): PAA-PAA-PAA-PAA-PAA 

Block copolymer (AB): PAA-PAA-PAA-PAA-PAA-POSA-POSA-POSA-POSA-POSA 

Figure 1.11: Schematic representation of various types of synthetic polymer structures 

Homopolymer (A) involves monomers of acrylic acid A while block copolymer AB involves 

both acrylic acid and styrene sulfonate. 
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Figure 1.12: Linear AB diblock copolymer consist of the A (black) and B (red) blocks 

Block copolymers can be assembled in aqueous media46-47 In fact, many structures can be 

formed by manipulating different factors such as block length, temperature, concentration and 

preparation method of the sample.48-49 For example, incompatible   blocks can be used to drive 

the self-assembly behaviour of block copolymers. For example , the structural specificity of 

these molecules permits the hydrophobic aggregation of fragments in a particular polar solvent, 

while the hydrophilic groups have high affinity for polar (aqueous) media.50 

 

1.6.1 Conjugated Polymers and Oligomers 

Polymers consist of a high but finite number of repeated monomer units linked by covalent 

bonds, while oligomers contain low numbers of repeated monomer units.51 In 2000, the 

chemistry Noble Prize was awarded to Alan Heeger, Alan G. MacDiarmid and Hideki 

Shirakawa for their discovery and development of conductive polymers.52 

The delocalized π-system and low band gap give  polyacetylenes semi-conducting properties.53 

The electronic structure of conducting polymers needs to be manipulated by doping the 

polymers by oxidation or reduction to increase the conductivity.54 Conjugated polymers can be 

used in a wide range of applications, such as fuel cells and biosensors.55 Many conjugated 

oligomeric and polymeric systems can bind to DNA and give a high response because of high 

sensitivity to the changing environment due to alteration in the chain as a consequence of the 

interaction between π-conjugated oligomeric and polymers and DNA.56-57 Optical and 

electronic properties can be optimised by adding different functional groups to  the backbone 

of the polymers.56, 58 Some structures of conjugated polymers are shown in Figure 1.13. 
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Figure 1.13: The structures of some conjugated polymers polyacetylene, polythiophene, 

polypyrrole, poly (p-phenylene) and poly (p-phenylene vinylene). 

π-conjugated molecules are often rigid molecules, and interchain forces occur that typically 

lead to conjugated polymers being insoluble in many organic solvents and in an aqueous 

medium. As a result, positive or negative charges  are often introduced on the backbone of the 

polymers to increase their solubility.53, 59 When cationic functional groups are  added to in some 

of these π-conjugated oligomer systems an increased driving force for these compounds to bind 

to DNA has been shown.60 It is crucial to understand the specificity of the binding of these 

compounds to DNA to design useful biosensors. By understanding the mechanism of specific 

interaction with DNA, it is possible to check whether or not the compound behaves in a specific 

manner.61  

1.7 Biosensors 

Biosensors are systems that are able to detect biochemical species such as nucleic acid and 

protein. Biosensor applications range from health care, medicine, biotechnology and 

environmental science.62 A biosensor contains a biotransducer that is attached to the bioreceptor 

element. The bioreceptor is the sensing element that recognises target analyte which links to a 

physical element that transduces the recognition event into a measurable physical change.63  

In a biosensor, the bioreceptor may be a polysaccharide, nucleic acid (RNA, DNA), antibody, 

enzyme and living cell which interfaces with the analyte, and the biotransducer converts this 

binding into an electronic signal.64 Biosensors that use nucleic acid (DNA or RNA) binding 

 are also called genosensors.65-66 The procedure depends on base pairing adenine−thymine  

(A-T) and cytosine−guanine (C-G) in DNA. Single-stranded DNA probe  based bioreceptors 

are immobilised on the surface of the sensors to capture single−strand target DNA by a 

hybridization reactions.67 As a result of the interaction, a transducer response is generated  as 

shown in Figure1.14.63, 67 
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Figure 1.14: General DNA biosensor design.63 

DNA biosensors (genosensors) open the door for faster, cheaper, sensitive and simpler nucleic 

acid detection in mixtures.68,69 Professor Leland C. Clark70 was the first researcher that 

developed the biosensor in 1956; an enzyme electrode to measure glucose.71 After that, many 

modifications were made to promote sensor sensitivity, selectivity, and specificity.72 

Kongsuphol, Ng et al73 introduced a new method to develop the biosensors which deal with the 

serum background, which is an essential issue for biosensor development because components 

of serum may interfere with the determination of the analyte interest and could give rise to the 

false positive signal. The process involves detecting tumour necrosis factor (TNF) or TNF-α 

from human serum in three steps. Firstly, Abundant protein backgrounds are depleted from 

serum using albumin combined with magnetic beads and IgG antibodies. Secondly, following 

background depletion, TNF-α is captured using a magnetic bead-coupled TNF-α antibody. 

Finally, the captured TNF, is eluted from the magnetic beads and detected utilize the EIS 

method which is used to improve the sensitivity of detection. They found that the depletion of 

serum background decreases the effect of background interference.73 

The challenges in our thesis are to develop and improve biosensors detecting DNA in mixtures, 

for example in serum from whole blood, without further work, and also to increase the 

sensitivity with reduced nonspecific interactions that may lead to false positive or negative 

signal. We introduce a new method that it is easy to use, involves cheap compounds and is fast. 

The Figure 1.16 explains how the bioreceptor binds to an interesting analyte and how the 

sensitisers interact in both specific and nonspecific interaction. In addition, nonspecific binding 

to 6-mercapto-1-hexanol (6.M.1.H) might lead to negative or positive false.  
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Figure 1.15: General design of the biosensors proposed 

 

Figure 1.16: Overview of the interactions leading to false positives and false negatives as 

affected by the additives such as selected proteins SA and TF, biopolymers HA and AA, 

synthetic polymers POSA and PAA and surfactant Tween -20. The interaction between target 

strand and probe DNA forms duplex DNA (1). Binding occurs between double−stranded DNA 

and sensitisers (2). Specific and non-specific interaction may occur (3). The potential sensitisers 

stay in equilibrium between binding with DNA or binding with additives (4). The transducer 

detects the biological event (5). The data analysis generates a measurable output (6). 
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Figure 1.16 shows how nonspecific binding to the (6.M.1.H) can lead to high baseline signal  

(e.g. current) and / or a false positive. We need the sensitisers to bind just to DNA and minimise 

any nonspecific binding between ligands and electrode surface which lead to the false positive 

signal. This also minimises the baseline. 

 

1.8 Detection Methods for genosensors. 

1.8.1 Optical detection of DNA 

The optical detection in biosensors involves an optical transducer and a bioreceptor. The 

biorecognition event is registered in a non-destructive manner by the optical transduction 

method. In addition, high selectivity is possible in optical detection in biosensors by 

wavelengths selection. Optical detection in biosensors uses absorbance, fluorescence and / or 

phosphorescence.74 

It is vital in biological samples to detect and quantify small amounts of DNA.62, 75 Leclerc  

and co-workers reported how cationic polythiophenes can be used to study DNA-

hybridisation,56, 76 some structures used for the detection of DNA are shown in Scheme  1.1. 

 

Scheme 1.1 

Detection of ssDNA using a capture strand together with cationic polythiophenes is very 

flexible due to several points. First, a maximum absorption around 397 nm associated with 

yellow colour was observed for water-soluble cationic polythiophene in aqueous solution in the 

absence of DNA. Second, it is possible to produce a strong red-shift, which has been attributed 

to an increase in effective conjugation length resulting from an increase in the planarity of 

polythiophenes, upon addition a single−stranded DNA. Third, upon addition of a 

complementary single-stranded DNA, a complex of double-stranded DNA with cationic 

polythiophene will be formed  which causes the UV-visible spectrum   to shift to the blue region 
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relative to the single strand of DNA–polythiophene complex. The final absorption is still red-

shifted in comparison with the absorption of free cationic polythiophene. The colour changes 

can be seen by naked eye. After adding of the single strand of DNA, the colour of the cationic 

polythiophene moves from yellow to red, and then back to yellow upon adding the 

complementary single strand of DNA76-77 (Figure 1.17 and Figure 1.18). 

 

Figure 1.17: Conformations and corresponding UV-visible absorption spectra of 

polythiophene.77 

 
Figure 1.18 Optical detection of double-stranded DNA using polythiophenes taken from 

reference.56, 76 
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1.8.2 Electrochemical detection DNA technique. 

The binding of a biological molecule, i.e. a target analyte of interest, with the bioreceptor is 

translated into an electrical signal by an electrochemical process which can be observed and 

converted into a signal by the transducer system.78 

Electrochemical detection of DNA has been studied intensively by many researchers, and these 

methods are easy-to-use, fast, inexpensive, have high sensitivity, and allow miniaturisation of 

sensors.79-82 The first introduced work in this field was by  Garnier and co-workers to detect 

DNA hybridization electrochemically.61 In their design, a polypyrrole backbone was covalently 

connected to a single-stranded of DNA (ssDNA) probe. Upon hybridization with a target strand, 

a decline in the current and a move to more positive redox potential could be detected in the 

electronic system.83 These electronic changes were attributed to the modification of the 

structure of polypyrrole that occurs upon interacting of the polymer-ssDNA probe with the 

target strand leading to formation of DNA duplex.84 

Moreover,  functionalized polythiophenes were also used to determine DNA hybridization 

electrochemically according to the method suggested by Garnier and  

Co-Workers.85 For example, a terthiophene that has a carboxyl group COOH may be 

electropolymerized on a glass carbon electrode as described by Lee et al   Lee,et al..86 

 

Scheme 1.285 

The hybridization of the complementary analyte target oligonucleotide with the probe 

immobilized on the sensing surface causes a reduction in values of resistance because the 

double-stranded DNA has higher impedance than single-stranded DNA. The hybridization 
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process can, therefore, be easily confirmed based on the variation of the resistance values before 

and after hybridization. 

In addition, Lee, et al. studied the response of the polythiophene-oligonucleotide probe to 

mismatched oligonucleotides, such as one-base mismatch and two-base mismatch. They found 

a limited difference in impedance before and after hybridization.  

The polythiophene-oligonucleotide probe formed in this study therefore especially 

distinguishes matched and mismatched oligonucleotide sequences.85  

An electrochemical biosensor normally comprises of an electrode surface which   is attached to 

a bioreceptor sensing element. An electrical change in either current transfer (amperometric), 

voltage (potentiometric and field effect devices), impedance (impedimetric) or conductivity 

(conductometric) across the electrode can be quantified upon binding of an analyte with probe 

bioreceptor.87-88 

 

 

Figure 1.19: Biosensor Scheme.88 

Figure 1.19 shows an electrochemical biosensing system. A suitable bio-recognition layer that 

exploits a physical or chemical process is used to modify the electrode surface.89 Research 

usually concentrates on finding the most appropriate recognition element and optimising the 

interaction to support the binding efficiency besides the signal produced.90 
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1.9 Reversible interactions of small molecules with DNA  

There are three categories of non-covalent interaction modes of small molecules with DNA: 

electrostatic interaction, intercalation and groove binding.91 

 

1.9.1 Electrostatic interactions 

 DNA exists as a polyanionic species which attracts positively charged groups of compounds 

by electrostatic interactions.92-93 The interactions can occur between cations (Na+ , Ca2+ and 

NH4
+) and the polyanionic backbone of DNA94. Changing salt concentration (ionic strength), 

changing the amount of water present, and binding between DNA and molecules can lead to a 

change of conformation of DNA.95-96 Electrostatic interactions may be modulated by both size 

and charge of ligand, as well as the hydrophobicity of ligand.97-99 The stability of the DNA 

conformation normally depends upon this interaction. In aqueous solutions, small inorganic 

cations, for example, Na+ or Ca2+, bind with DNA which results in partial neutralisation of the 

phosphate backbone’s charge. Hence, the binding of small molecules with DNA is influenced 

by the ionic strength of the solution.94 

 

1.9.2 Intercalation and Intercalators 

Intercalation simply means the insertion of a rigid planar aromatic ring system between DNA 

base pairs. Intercalation is typically enthalpically driven and leads to considerable changes in 

nucleic acid structure.100 We can find many examples of intercalators, such as 9-amino acridine, 

ellipticine, and chlorpheniramine (Scheme 1.3). Intercalators are often flat aromatic and rigid. 

 

 
 

Scheme 1.3 

In fact, the major binding force in intercalation are π-π stacking interactions as well as Van der 

Waals interactions between the aromatic DNA binder and the base pairs of DNA.101-102 
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Figure 1.20: Binding of ellipticine intercalator in complex with a 6-base pair of DNA  

(NDB D: DD0070). 

For intercalators, the neighbour exclusion principle means a binding site typically distorts and 

blocks the neighbouring binding site.103 Therefore, accommodation of the second intercalator 

between base pairs adjacent to bound intercalator is blocked.98 Increasing positive charge on an 

intercalator leads to an increase in the affinity.104 

 

1.9.3 Groove binding (Major and Minor) 

The DNA structure has two grooves due to the double-helical structure and the geometry of the 

base pairs. In fact, in B−DNA there are two unequal size grooves in the helix, a major groove 

which is wide and shallow (12 Å) and minor groove which is narrower and deeper (6 Å).105 
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Figure 1.21: DNA base pairs showing the exposed functional groups in the major and minor 

grooves showing possible H bond donor and acceptors106 (top). Major and minor grooves of 

DNA (NBD ID: BD003) (bottom). 

Ligands can bind in the major and minor grooves of DNA helix.106 Common groove binders 

are usually long crescent-shaped cationic molecules (Scheme 1.4 ). Like intercalators, groove 

binders can be used for clinical treatment of cancer and bacterial infection.107 

 

Scheme 1.4 

Groove binding is not like intercalation which causes significant changes to the structure of the 

DNA molecule. Groove binding can be described more as a lock-and-key model where a 

biomacromolecule and a ligand match together.108-109 Groove binding, both in the minor and 

major groove, is driven by electrostatic interaction and hydrogen bond formation between the 

complex and DNA base pair. DNA-ligand complex is further stabilised by hydrophobic and 

Van der Waals forces in the grooves. 
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1.10 Supramolecular and self-assembled nanostructured materials. 

One of the most active areas of research in recent years is supramolecular chemistry. Weak 

non-covalent interactions between molecules, such as electrostatic, Van der Waals, hydrogen 

bonding, charge transfer and π-stacking, play a major role in driving assembly processes. Self-

assembly is an automatic process that arranges the components into ordered aggregates or 

structures without external force.110-112 Nature also uses these weak non-covalent interactions 

in forming large and ordered complex supramolecular biomolecules.113-114 

 

1.11 Techniques used for quantification affinity of small molecules for macromolecules  

The interactions between biomacromolecules and oligoheteroaromatics can be measured via 

several techniques such as UV-visible, circular dichroism spectroscopy and isothermal titration 

calorimetry (ITC). A brief discussion of these methods is presented below. 

 

1.11.1 UV-visible Spectroscopy (UV-vis) 

In UV−visible spectroscopy, light is employed to elevate electrons in molecules from the 

ground state to an excited state. When the light absorbed is measured as a function of its 

wavelength  (or frequency )  a spectrum is obtained. Light is usually absorbed in the visible 

region (400-800 nm) or the near–uv region (150-400 nm) by molecules that have a delocalised 

aromatic system that needs less energy to enhance electrons to an excited state (Equation 1.1). 

 
                                 ..…. (1.1) 

Here the energy gap  is between ground state and excited state,  is the frequency of light,  

is the Planck constant,  is the speed of light,  represents the wavelength of radiation. This 

technique is instrumental in analysing conjugated organic compounds and biologically 

macromolecules, such as nucleic acids and proteins, whose concentration in aqueous buffer can 

be accurately measured by absorbance quantities through the  Beer Lambert law. 

The delocalized π-system in the studied DNA binders can absorb light in UV-visible region. As 

a result, UV-vis spectroscopy is an appropriete tool for binding studies. The absorption intensity 

depends on the substance concentration, the chemical nature, and the molecular chromophore 

environment. The absorbance analysis is based on the Beer-Lambert law, which shows that the 

concentration of an ideal solution is linearly related to its absorption.115-116 Changes to a 
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spectrum may correspond to increase (hyperchromic) or decrease (hypochromic) in  absorption 

coefficient or a shift of the wavelength of maximum absorption to higher wavelength (red shift 

or bathochromic shift) or lower wavelength (blue shift or hypsochromic shift).116  

Non-covalent interactions of a chromophore with macromolecules can be studied through these 

spectroscopic responses. These spectroscopic responses can be due to environmental change 

experienced by the ligands or to a confirmation change. The change from aqueous solution to 

a more hydrophobic environment is an example of an environmental change. When plotting 

several spectra for one titration in one graph an isosbestic point may be observed,  an isosbestic 

point is a point where two species have the same extinction coefficient. The presence of an 

isosbestic point is typically interpreted as presenting two species viz. free and bound ligand in 

equilibrium.117-118
 

A titration curve can be obtained from the UV-visible spectroscopy data when all spectra have 

been recorded. By analysing spectroscopic data for a binding process, the binding constant 

Kbinding and stoichiometry n can be obtained. The formation of a complex (C) can be defined as 

the binding of the ligand (L) with the binding site of DNA (bs), and the concentrations of the 

ligands and DNA are related through Kbinding (equation 1.4). Any binding process covers a 

ligand-specific number of bases, the binding site size n. The concentration of binding sites is 

defined as the concentration of DNA base pairs over N (equation 1.5). The equilibrium between 

three compounds (free DNA, free ligand and the ligand bound (complex) is called the binding 

constant Kbinding (equation 1.3). As the concentration of free ligand  and the complex 

concentration [C] are related via the total ligand concentration , it is possible to establish 

an equation describing the equilibrium (1.8). 

 …… (1.2) 

 …… (1.3) 

 …… (1.4) 

 …… (1.5) 

 …… (1.6) 

 …… (1.7) 

 …… (1.8) 
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 …… (1.9) 

It is possible to rearrange equation (1.9) to give a quadratic equation: 

 … (1.10) 

Using the classic solution, the quadratic equation can be treated to obtain the concentration of 

complex  as a function of total ligand and DNA concentrations. 

 … (1.11) 

Combining equation 1.11 with the Beer-Lambert Law ( ) modified for 

background absorbance, the absorbance is expressed by Equation 1.12. This equation can be 

fitted to a relation between absorption and total DNA concentration to determine the best 

approximations for  and the binding site size. 

= + + .  

(Equation 1.12) 

In equation 1.12, Signalobsd is the observed absorbance; background is the buffer absorbance; 

Signalfree,m is the product of cuvette path length and the extinction coefficient; ∆binding.signalm is 

the product of cuvette path length and change in extinction coefficient upon binding; K is the 

binding constant; X is the concentration of DNA or protein; N is the binding site size in base 

pair and [L]tot is the ligand concentration.  

 

1.11.2 Isothermal Titration Calorimetry (ITC) 

Isothermal titration calorimetry (ITC) is a powerful method used to measure the heat absorbed 

or generated as result of interactions. All the thermodynamic parameters (K, N, ΔH and ΔS) of 

a macromolecule–ligand interaction can be obtained at the same time by using this technique.119 

By getting the binding affinity, it is possible to determine the standard molar Gibbs free energy 

(DGꝊ)66 which together with the enthalpy changes DH also provides the standard molar entropy 

changes (DSꝊ)120-121 (equation 1.14). 
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Ꝋ = Ꝋ + Ꝋ  + Ꝋ + Ꝋ  

 

….. (1.13) 

Ꝋ Ꝋ- Ꝋ 

 

…... (1.14) 

Ꝋ

 
…... (1.15) 

Here R is the gas constant (8.314 J / mole), T is a temperature in Kelvin. One disadvantage of 

ITC is the need of high concentrations of ligand and biomacromolecule. This means due 

consideration must be taken into account to the potential for self-aggregation of the molecule. 

Isothermal titration calorimetry includes two cells, the reference cell usually includes water or 

MOPS buffer. The other cell is a sample cell which contains a solution of biomacromolecules. 

The syringe contains a solution of the ligand. The process involves injection of the solution of 

the ligand into the host cell.122 

 

Figure 1.22: Schematic representation of the ITC instrument.123 
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When constant power is provided to both cells, they should stay at the same temperature. Two 

things may be observed when an interaction between the ligand and the macromolecule 

happens:  

1- In an exothermic reaction, adding ligand to the macromolecule causes an increase in the 

temperature of the sample cell. For this reason, the feedback power to the sample cell is 

decreased in order to maintain an equal temperature between the two cells. 

2- In an endothermic reaction, the opposite occurs, the temperature in the sample cell goes 

down, so a feedback power needs to increase in order to maintain a constant  

temperature.122, 124.In a typical experiment, the raw data are plotted as a heat flow per unit time 

needed to maintain the sample cell at the same temperature of the reference cell as a function 

of time. After that, the raw data is divided by the amount of material injected which gives the 

molar heat effects. These heat effects can be analysed in terms of a binding model.123  

 

1.11.3 Circular Dichroism (CD) 

Circular dichroism is an essential absorption technique to determine biomacromolecule 

binding.  An induced CD signal is beneficial in studying the binding between ligands and DNA 

when small ligands, chiral or non‐chiral, bind to the chiral DNA polymer. The transition dipole 

moments of the binder will interact with the nucleobase transition dipole moments in such a 

way that they will display a new CD signal, the induced CD. An induced CD signal only appears 

when the ligand interacts with DNA.125-126  

Circular dichroism measures the differential absorption of the left and the right circularly 

polarized light which will be absorbed by the active chiral molecules (equation 1.16). 

D  …… (1.16) 

Where, DA is the difference between absorbance of the left and right circularly 

polarized light;  is the absorbance of left-handed circularly polarized light and  

is the absorbance of right-handed circularly polarized light. De is the difference 

between two different extinction coefficients of right and left polarized light. 

The molecule that has a chiral chromophore will absorb one of these circularly polarised lights 

more than the other. The difference in absorption of the right and left-handed is measured using 

CD technique.127-128 
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The binding between a chiral biomolecule and achiral compound leads to induced circular 

dichroism (ICD) of the achiral counterpart. The binding mode can be interpreted from the 

induced CD spectra for DNA binding,129 due to molecules interacting with DNA, the interaction 

between the transition dipole moments of the ligand and the DNA bases substantially affects 

the ICD signal of the binder.127  

 

1.12 Selected nucleic binders 

The oligoheteroaromatic molecules used in this study all have a π-conjugated chromophore and 

auxochromes. These molecules, therefore, have absorption and fluorescence spectra in the UV-

visible region of the spectrum, and consequently, they could be used as DNA−binding 

sensitisers in biosensors. Moreover, these π-conjugated molecules have flat, rigid, structures 

and some of them have interesting redox properties. The charges can help to increase the 

electrostatic interactions and solubility in water.  

Three poly(amidoamines) (PAMAM) compounds 1.1, 1.2 and  1.14  (Scheme 1.5) were 

provided by a collaborator.130 The structure of these compounds has an important effect on their 

chemical properties and binding with DNA.131-132 The ligands contain a highly fluorescent flat 

core that is connected to different small poly(amidoamine) side-groups to increase solubility in 

aqueous medium. Based on this structure, we anticipate the molecules of this dendrimeric 

family to bind to duplex DNA133-134 via intercalation and the optical and electronic properties 

may change upon binding with DNA. Compounds 1.1 and 1.2 are highly fluorescent, and they 

could be used as components in DNA biosensors based on the fluorometric detection.  

Compounds 1.3, 1.4, 1.5 and 1.6 (Scheme 1.5) were provided by Simon Pope group. These 

compounds are comprised of a rigid flat, and fluorescent aromatic framework  

(1,8-naphthalimide)135 with different side-groups joined to increase the solubility in MOPS 

buffer. These compounds interact with DNA.136-137 These compounds are  water-soluble 

oligoheteroaromatics which have a strong interaction with dsDNA according to studies by our 

groups138. Changes in the spectroscopic response and electronic properties of molecules will 

occur upon binding with DNA, leading to a decrease in its molar absorptivity. This family may 

be used as a signal enhancer during detection of DNA. 

Hoechst 33258 1.7, Methylene blue 1.8, Fluorescein 1.9, Thioflavin “yellow basic” 1.10 and 

Berberine chloride 1.11 are  commercially available. Hoechst dye H33258 is used as a 

fluorescent stain139 with excellent DNA binding characteristics (i.e. it has a crescent shape, 
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long, possesses a π- conjugated oligo heteroaromatic framework and flexible). The presence of 

single bonds, which connect the aromatic rings, permits enough rotational flexibility to fit into 

the minor groove.140-141 The chromophore can be excited at approximately 352 nm to produce 

an emission around 455 nm in the case of binding between DNA and Hoechst.142-143  

Hoechst 33258 is formed from two central benzimidazoles bound to a phenol ring on one side 

and a N-methyl piperazine on the other side. The configuration of the molecule produces a 

crescent shape which fits into the minor groove144 of DNA helix without distorting the 

DNA.145,146 H33258 also interacts with bovine serum albumin BSA.147 Previous studies have 

found148 a Kbinding 1.1×106 M−1 Finally, it can be used as an antitumour agent.149,150 

Methylene blue MB is water soluble phenothiazine family fluorescent dye that binds 

noncovalently with DNA.151 It is a polyaromatic positively charged compound that is mainly 

used for staining of DNA and RNA. The main type of binding with DNA is as an intercalator, 

and the binding mode is strongly dependent on the electrostatic interaction of DNA.151,152 The 

intercalator has known reversible electrochemical properties. Absorption spectra titrations have 

shown that one MB binds to three to four base pairs (n / b p). Moreover, 1.8 has a relatively 

high binding constant Kbinding with DNA153 of approximately 106 M.−1 

Fluorescein dye has a high extinction coefficient  at 488 nm.154 The fluorescein structure can 

be covalently attached to biomacromolecules, for example to DNA, to protein as well as to 

amino acids.155-156 Fluorescein in aqueous solution occurs in four types namely: cationic, 

neutral, anionic and di-anionic. The absorption and fluorescence properties strongly depend on  

pH.157-158 Fluorescein is usually used for labelling and tracking cells in microscopy 

applications.159 Furthermore, fluorescein can be attached to biologically active molecules like 

antibodies, that allows biologists to target the fluorophore to specific proteins or structures 

within cells.160  

Thioflavin “yellow basic” is a cationic benzothiazole dye which is water−soluble and shows 

enhanced fluorescence upon binding to DNA. DNA binding is further accompanied by red-shift 

in UV-visible absorption.161 The structure of Thioflavin  includes a hydrophobic end with a 

dimethylamino group linked with phenyl group to the positive charge on the benzothiazole 

group including N and S162  

Berberine chloride is a quaternary isoquinoline alkaloid. It is classified as naturally occurring 

medicine.163 The main use of berberine chloride is as a treatment against cancer164 and 
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Alzheimer’s disease.165 It can be utilised for the binding to the DNA, and it offers biological 

activities by blocking transcription or replication.166-167  

Oligothiophene 1.12 displays strong interactions with duplex DNA.  As result, these cationic 

conjugated oligo hetero-aromatics can be used to detect double-stranded DNA.168,169,170 In 

addition, π –conjugated oligothiophene has been used in previous work by the Buurma group 

and has a suitable size and shape to bind to DNA. Thiophene rings link together to produce flat, 

rigid and hydrophobic structure with two cationic charges and as a result, have a high affinity 

for DNA.Compounds 1.13 and 1.15 were prepared and used by Buurma group.  

 

1.13 Project aims 

The project aims to develop optoelectronically active compounds for use as sensitisers in 

sensors. Many molecules bind reversibly to biomacromolecules such as nucleic acids, selected 

proteins (serum albumin SA, transferrin TF), polymers (natural HA, AA and synthetic POSA, 

PAA) and surfactant (SDS, CTAB). When sensitisers bind to biomacromolecules, their 

spectroscopic and electronic properties may change due to the interaction, which leads to   

different applications such as in biosensors and self-assembled nanostructures  

The use of optoelectronically active compounds in biosensors means that we need to understand 

how these compounds interact with DNA and what the effect of the presence of selected 

proteins and polymers (natural and synthetic) could have on genosensors. Understanding the 

interactions of sensitisers with other components of serum14 and biopolymers is crucial for the 

development of biosensors171 because such interactions may interfere with detection of target 

molecules which can lead to the false positive signal.13 The interaction of these compounds 

with nucleic acids is studied in parallel projects in the group, but it is also important to know 

how sensitisers in genosensors interact with (for example) selected proteins of whole blood and 

polymers because this affects assay design. Also, we studied the binding with different types of 

surfactant which may be used to clean the biosensors after use. 

We needed to know whether the presence of biomolecules and biopolymers affect DNA binding 

of ligands by offering a competing binding site. 

We investigate the effect of selected proteins (SA and TF) on DNA-binding properties of 

potential sensitisers. The procedure includes competition between biomolecules and DNA for 

the same molecule. We measure the binding constant to see the effect of selected proteins on 

DNA-binding properties. 



Chapter one 

29 
 

We can use SA, TF, natural polymers, synthetic polymers and surfactant to suppress 

non−specific binding through competition. Furthermore, we used negative polymers for the 

same purpose. In addition, we used anionic and cationic surfactant to remove the molecules 

which stick on the surface of the biosensor. From this work, we are looking forward to 

developing a new technique for developing DNA biosensors that can eventually improve 

clinical diagnosis of inherited genetic diseases and infections by pathogens. 

The interactions can be studied using UV-visible spectroscopy, circular dichroism (CD) and 

isothermal titration calorimetry (ITC). UV-visible & CD spectroscopy will be used for studying 

the interactions in this research. 
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Abstract 

Chapter two presents the results of studies of the binding between π-conjugated molecules as 

shown in (Scheme 1.5) and double-stranded DNA.  

1,8-Naphthalamide derivatives, like the previously studied 2.3, 2.4, 2.5, have moderate affinity 

for DNA with binding constants of ~ 104 M-1. The highest affinity for DNA of all naphthalamide 

studied here is for 2.6 which has a binding constant around 105 M-1. 

UV-visible spectroscopy was also used to investigate the binding of ligands 2.7, 2.8, 2.10, 2.11 

and 2.13 to DNA. The studies confirmed that ligands 2.7, 2.8, and 2.12 have strong affinity for 

DNA of ~105 M-1 under the experimental conditions explored. Moreover, we found the lowest 

affinity for DNA for the ligands 2.10, 2.11, 2.13 and 2.15. 

Compound 2.9 does not show any affinity for duplex-DNA. We attribute this to the negative 

charge of the carboxylate COO─ group on the ligand, leading to electrostatic repulsion between 

ligand and DNA. 
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2.1 Introduction  

As described in chapter one, optoelectronically active DNA binders can be used as sensitisers 

in biosensors for DNA. 

 

2.2 Aim  

Our aims in this Chapter are to measure the binding constants and binding site sizes for  

π-conjugated molecules (Scheme 1.5) interacting with DNA. We will use the results as a 

reference for studies in later chapters to see the effect of the addition of different 

(bio)macromolecules on binding parameters. Ligands that have previously been studied by our 

group are 2.1, 2.2, 2.3, 2.4 and 2.6.172 Here; we want to complement this data with binding 

constants for 2.7, 2.8, 2.10 and 2.11. We want to measure the affinity and binding site sizes in 

the same buffer (MOPS) and under identical conditions in all Chapters in this thesis.  
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2.3 Results and discussion  

The binding of π-conjugated compounds to duplex DNA was studied using UV-visible 

spectroscopy. Binding studies for 2.1, 2.2, 2.3, 2.4 and 2.6 were not carried out because these 

compounds had already been studied172 and were found to show good affinity for duplex DNA. 

 

2.3.1 Compound 2.4 binding with DNA  

To confirm results from previous studies172 the binding of 2.4 to DNA was studied. The changes 

in absorption of 2.4 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) at 25 °C (Figure 2.1). 
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Figure 2.1: UV-visible spectra for 0.058 mM 2.4 upon addition of 0 – 3.1 mM DNA, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 2.1 shows a hypochromic shift in absorbance upon addition of DNA, with a maximum 

change in absorbance at 434 nm. This decrease in UV-visible absorption may have occurred as 

a result of geometrical distortion of 2.4 when it interacts with DNA, but it may also be as a 

result of a local medium effect. The binding of 2.4 with DNA is also accompanied by a slight 

redshift, which may be attributed to 2.4 becoming slightly more planar when binding to DNA, 

leading to an increase in the effective conjugation length. However, considering that 2.4 is 

already significantly planar when free in solution, this will be a very small effect at most. 

To quantify the affinity of 2.4 for DNA, the absorbances at 434 nm were plotted as a function 

of the concentration of DNA (Figure 2.2, for data in tabular format, see Appendix, Tables A55.1 

& A55.2). 
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Figure 2.2: Absorbance at 434 nm for solution of 0.057 mM 2.4 (■) and 0.058 mM 2.4 (●) as 

a function of DNA concentration, at 25 °-C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl).  

The solid lines represent a global fit of the multiple independent binding sites model to the data. 

Figure 2.2 shows a clear decrease in the absorbance for 2.4 upon the addition of DNA. The 

binding affinity Kbinding and binding site size n were determined by fitting a multiple 

independent binding sites model, which also takes ligand dilution into account, to the data. The 

fit gives an equilibrium constant Kbinding of (3.4 ± 0.6) ×104 M−1 for a binding site size of  

(2.3 ± 0.2) base pairs. Previous studies172 have found Kbinding of (3.3 ± 0.4) ×104 M−1 for a 

binding site size restricted to 3 base pair. The obtained binding parameters from data analysis 

were reasonable in term of stoichiometry and affinity and correspond well with previous 

work.172  

 

2.3.2 Compound 2.5 binding with DNA 

For comparison with 1,8-naphthalamides 2.3, 2.4 and 2.6, we wanted to determine the affinity 

of 2.5 for DNA as well. The binding of 2.5 to DNA was studied using UV-visible spectroscopy. 

The changes in absorption of 2.5 upon addition of DNA were measured in buffer (25 mM 

MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 2.3).  
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Figure 2.3: UV-visible spectra for 0.075 mM 2.5 upon addition of 0 – 2.5 mM DNA, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 2.3 shows a hypochromic shift in absorbance upon addition of DNA, with a maximum 

change in absorbance at 444 nm. This decrease in UV-visible absorption may have occurred as 

a result of geometrical distortion of 2.5 when it interacts with DNA, but it may also be as a 

result of a local medium effect. A slight red shift suggests a small increase in effective 

conjugation length, which may be attributed to an increase in planarity of 2.5 upon addition 

DNA. 

To quantify the affinity of 2.5 for DNA, the absorbances at 444 nm were plotted as a function 

of the concentration of DNA (Figure 2.4, see appendix, Tables A55.3). 
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Figure 2.4: Absorbance at 444 nm for 0.075 mM 2.5 upon addition of 0 – 2.5 mM DNA 

concentration, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid line 

represents the best fit to the data in terms of a multiple independent binding sites model. 

Figure 2.4 shows a clear decrease in the absorbance for 2.5 on the addition of DNA. The binding 

affinity Kbinding and binding site size n were determined by fitting a multiple independent 
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binding sites model, which also takes ligand dilution into account to, the data, giving an 

equilibrium constant Kbinding of (1.6 ± 0.7) ×104 M−1 for a binding site size of (1.2 ± 0.3) base 

pairs. The obtained binding parameters were reasonable.  Nevertheless, for comparison the data 

were reanalyzed with the stoichiometry restricted to a binding site size of 3.0 base pairs, giving 

a binding constant Kbinding of (8.9 ± 2.3) ×104
 M−1. 

 

2.3.3 Compound 2.7 binding with DNA. 

For comparison with commercial compound 2.8, 2.9, 2.10 and 2.11, we wanted to determine 

the affinity of 2.7 for DNA in our buffer as well. The binding of 2.7 to DNA was studied using 

UV−visible spectroscopy, the changes in absorption of 2.7 upon addition of DNA were 

measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol.% DMSO) at 25 °C  

(Figure 2.5). 
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Figure 2.5: UV-visible spectra for 0.00143 mM 2.7 upon addition of 0 – 0.0797 mM DNA, at 

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO). 

Figure 2.5 shows that 2.7 exhibits a red shift in absorbance. The red shifts suggest an increase 

in effective conjugation length, which is attributed to an increase in the planarity of 2.7 upon 

interaction with DNA.  

To quantify the affinity of 2.7 for DNA, the absorbances at 339 and 385 nm were plotted as a 

function of the concentration of DNA (Figure 2.6, for data in tabular format, see Appendix, 

Tables A55.4). 
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Figure 2.6: Absorbance at 339 and at 385 nm for 0.00143 mM 2.7 as a function of DNA 

concentration, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl and 10 vol-%. DMSO).  

The solid lines represent a global fit of a multiple independent sites model to the data. 

The binding affinity Kbinding and binding site size n were determined by fitting a multiple 

independent binding sites model, which also takes ligand dilution into account, to the data. The 

fit produces an equilibrium constant Kbinding of (5×10−3 ±1.4) ×106 M−1for a binding site size of 

(3×10−2 ± 8.8) base pairs. The obtained binding parameters from data analysis were not 

reasonable for affinity and binding site size. Therefore, the data were reanalyzed with the 

stoichiometry restricted to a binding site size of 3.0 base pairs, giving a binding constant Kbinding 

of (7.7 ± 1.5) ×105
 M.−1. Previous studies173 have found a Kbinding of (5×105) M−1. 

2.3.4 Compound 2.8 binding with DNA. 

We wanted to know whether 2.8 binds with DNA. The changes in absorption of 2.8 upon 

addition of DNA were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C. 

Figure 2.7) 
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Figure 2.7: UV-visible spectra for 0.00759 mM 2.8 upon addition of 0 - 0.303 mM DNA, at 

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 2.7 shows that 2.8 exhibits a hypochromic shift in absorbance. The small red shift 

suggests a minor increase in effective conjugation length, which is attributed to an increase in 

the planarity of 2.8 upon interaction with DNA. The decrease in UV-visible absorption may 

have occurred as a result of geometrical distortion of methylene blue when it interacted with 

DNA or as a result of local medium effect. 

To quantify the affinity of 2.8 for DNA, the absorbances at 664 nm were plotted as a function 

of the concentration of DNA (Figure 2.8, for data in tabular format, see appendix, Tables 

A55.5). 
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Figure 2.8: Absorbance at 664 nm for 0.00759 mM 2.8 upon addition of 0 - 0.303 mM DNA 

concentration, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid line 

represents the best fit to the data in terms of a multiple independent binding sites model. 
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Figure 2.8 shows a clear decrease in the absorbance for 2.8 upon addition of DNA. The binding 

affinity Kbinding and binding site size n were determined by fitting a multiple independent 

binding sites model, which also takes ligand dilution into account, to the data. The fit gives an 

equilibrium constant Kbinding of (4.5 ± 1.8) ×105 M−1 for a binding site size of (3.07 ± 0.5) base 

pairs. The obtained binding parameters from data analysis were reasonable for affinity and 

binding site size.  Nevertheless, for comparison the data were also reanalysed with the 

stoichiometry restricted to a binding site size of 3.0 base pairs, giving a binding constant Kbinding 

of (4.4 ± 0.5) ×105 M−1. 

2.3.5 Compound 2.9 with DNA 

We wanted to know whether 2.9 and DNA interact. The changes in absorption of 2.9 upon 

addition of DNA were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C 

(Figure 2.9). 
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Figure 2.9: UV-visible spectra for 0.012 mM 2.9 upon addition of 0 – 6.7 mM DNA, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 2.9 shows that 2.9 displays a decrease in absorbance with a maximum change in 

absorbance at 489 nm upon addition of DNA. This decrease in UV-visible absorption may have 

occurred as a result of geometrical distortion of 2.9 when it interacts with DNA, it may also be 

as a result of a local medium effect, but it could also merely be the result of ligand dilution. 

To quantify the affinity of 2.9 for DNA, the absorbances at 489 nm were plotted as a function 

of the concentration of DNA (Figure 2.10, for data in tabular format, see appendix, Tables 

A55.6). 
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Figure 2.10: Absorbance at 489 nm for 0.012 mM 2.9 as a function of DNA concentration, at 

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid line represents the best fit to 

the data in terms of a multiple independent binding sites model. 

Figure 2.10 shows how the binding affinity Kbinding and binding site size n were determined by 

fitting a multiple independent binding sites model, which also takes ligand dilution into account 

to the data. The fit indicates a small equilibrium constant Kbinding of (4×10−3 ± 2.2) ×105 M−1 for 

a binding site size of (0.4 ± 264) base pairs. The fit suggests that 2.9 does not interact with DNA 

and the decrease in absorbance is the result of simple dilution only. The absence of interaction 

is reasonable considering 2.9 is negatively charged. 

2.3.6 Compound 2.10 binding with DNA. 

We wanted to study the binding of 2.10 to DNA; the changes in absorption of 2.10 upon addition 

of DNA were measured in buffer (25 mM MOPS, 50 mM NaCl) at 25 °C (Figure 2.11). 
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Figure 2.11: UV-visible spectra for 0.0262 mM 2.10 upon addition of 0 - 3.09 mM DNA, at 

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 
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Figure 2.11 shows a redshift upon addition of DNA. This red shift in UV-visible absorption 

occurs as a result of the interaction of 2.10 with DNA.This change in UV-visible absorption 

probably occurs because of geometrical distortion of 2.10 when it interacts with DNA, but a 

local medium effect may also contribute. 

To quantify the affinity of 2.10 for DNA, the absorbances at 411 and 432 nm were plotted as a 

function of the concentration of DNA. (Figure 2.12 see Appendix, Tables A55.7). 
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Figure 2.12: Absorbance at 411 nm and at 432 for 0.0262 mM 2.10 upon addition of  

0 - 3.09 mM DNA concentration, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

The solid lines represent a global fit of a multiple independent sites model to the data. 

Figure 2.12 shows the decrease in absorbance at 411 nm and the increase in absorbance at  

432 nm. The peak at 411 nm corresponds predominantly to free ligand, and the peak at 432 nm 

represents the DNA-ligand complex. By adding more DNA, the amount of free ligand will 

decrease as the ligand binds to DNA while the DNA complex peak increases. The bathochromic 

shift corresponds to an increase in conjugation length and hence in planarity of 2.10 upon 

binding to DNA. The binding affinity Kbinding and binding site size n were determined by fitting 

a multiple independent binding sites model, which also takes ligand dilution into account, to 

the data. The fit gives an equilibrium constant Kbinding of (0.39 ± 1.4) ×104 M−1 for a binding 

site size of (1.3 ± 4.4) base pairs. The obtained stoichiometry and affinity were unreasonably 

small without restricting the parameters (Figure 2.12, left panel). Therefore, the data were 

reanalysed with the stoichiometry restricted to 3.0 base pairs, giving an equilibrium constant 

Kbinding of (6.9 ± 0.7) ×103 M−1 (Figure 2.12, righ panel).  Previously reported binding affinities 

for 2.10174-175  were in the order of 104 M−1. 
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2.3.7 Compound 2.11 binding with DNA 

We wanted to know whether 2.11 binds to DNA. The changes in absorption of 2.11 upon 

addition of DNA were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C 

(Figure 2.13). 
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Figure 2.13: UV-visible spectra for 0.0253 mM 2.11 upon addition of 0 – 3.3 mM DNA, at  

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

In the studies, 2.11 showed a red shift in absorbance with a maximum decrease in absorbance 

at 343 nm and an increase at 375 nm upon addition of DNA. The data show   good isosbestic 

point, suggesting that only two species are involved in the titration, viz. free and bound ligand. 

Because of the region in which the spectroscopic changes take place in combination with the 

extent of the shift in λmax this redshift in UV-visible absorption has probably occurred as a result 

of geometrical distortion of 2.11 when it interacts with DNA, but it may also be as a result of a 

local medium effect. 

To quantify the affinity of 2.11 for DNA, the absorbances at 343 and 375 nm were plotted as a 

function of the concentration of DNA (Figure 2.14, for data in tabular format, see Appendix, 

Tables A55.8). 
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Figure 2.14: Absorbance at 343 and at 375 nm for 0.0253 mM 2.11 as a function of DNA 

concentration, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The solid lines represent 

a global fit of a multiple independent sites model to the data. 

Figure 2.14 shows the maximum decrease in absorbance at 343 nm and the highest increase in 

absorbance at 375 nm. The peak at 343 nm corresponds to free ligand, and the peak at 375 nm 

represents DNA-ligand complex. The shift to a longer wavelength is known as a bathochromic 

shift. The bathochromic shift is interpreted as an increase in effective conjugation and planarity 

of 2.11 upon binding to DNA. The binding affinity Kbinding and binding sites size n were 

determined by fitting a multiple independent binding sites model, which also takes ligand 

dilution into account, to the data. The fit gives an equilibrium constant Kbinding of (6.5 ± 4.7) 

×104 M−1 for a binding site size of (8.03 ± 3.2) base pairs. The obtained binding parameters 

were reasonably for both stoichiometry and binding constant. For comparison the data  

were reanalysed with the stoichiometry restricted to 3.0 base pairs, giving an apparent  

equilibrium constant Kbinding of (1.6 ± 0.2) ×104 M−1. Previous studies have found176 a Kbinding of  

(3.54×104) M−1. 

2.3.8 Compound 2.12 binding with DNA 

We wanted to know whether the binding of 2.12 to DNA. The changes in absorption of 2.12 

upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at  

25 °C. (Figure 2.15). 
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Figure 2.15: UV-visible spectra for 0.024 mM 2.12 upon addition of 0 – 0.833 mM DNA, at 

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 2.15 shows a clear red−shift in absorbance. This red shift in UV-visible absorption 

occurs as a result of the interaction of 2.12 molecules with DNA, which forces 2.12 to become 

planar. 

To quantify the affinity of 2.12 for DNA, the absorbances at 367 and 430 nm were plotted as a 

function of the concentration of DNA (Figure 2.16, for data in tabular format, see appendix, 

Tables A55.9). 

0.0 2.0x10
-4

4.0x10
-4

6.0x10
-4

8.0x10
-4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
 n

m
 /

 a
 .

 u

[DNA] / mol dm
-3

 

Figure 2.16: Absorbance at 367 and at 430 nm for 0.024 mM 2.12 as a function of DNA 

concentration, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The solid lines represent 

a global fit of a multiple independent binding sites model to the data. 
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The titration curves in figure 2.16 were analysed globally by the fitting of a multiple 

independent binding sites model, which also takes ligand dilution into account, to the data. The 

fit indicates an equilibrium constant Kbinding of (5.2 ± 2.8) ×104
 M−1 and a binding site size of 

(1.5 ± 0.5) base pairs. The obtained value of affinity and binding site size were reasonable. The 

data of the titration curves were reanalysed for comparison purposes giving an equilibrium 

constant Kbinding of (1.8 ± 0.38) ×105M−1 for a binding site size restricted to 3 base pairs. 

 

2.3.9 Compound 2.13 binding with DNA  

We wanted to study the binding of 2.13 to DNA. The changes in absorption of 2.13 upon 

addition of DNA were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C 

(Figure 2.17). 
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Figure 2.17: UV-visible spectra for 0.044 mM 2.13 upon addition of 0 – 2.2 mM DNA, at  

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 2.17 shows that 2.13 revels a hypochromic shift in absorbance. The small redshifts 

suggest some increase in effective conjugation length, which is attributed to an increase in the 

planarity of 2.13 upon interaction with DNA. The decrease in UV-visible absorption may have 

occurred as a result of geometrical distortion of 2.13 when it interacted with DNA or as a result 

of local medium effect. 

To quantify the affinity of 2.13 for DNA, the absorbances at 446 nm were plotted as a function 

of the concentration of DNA (Figure 2.18, for data in tabular format, see Appendix, Tables 

A55.10). 
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Figure 2.18: Absorbance at 446 nm for a solution of 0.044 mM 2.13 as a function of DNA 

concentration, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid line 

represents the best fit to the data in terms of a multiple independent binding sites model. 

Figure 2.18 shows a clear decrease in the absorbance for 2.13 upon the addition of DNA. The 

binding affinity Kbinding and binding site size n were determined by fitting a multiple 

independent binding sites model, which also takes ligand dilution into account, to the data. The 

fit reproduces the data well and gives an equilibrium constant Kbinding of (2.9 ± 0.3) ×103 M−1 

for a binding site size restricted to 3 base pairs. The binding parameters obtained from data 

analysis were reasonable, and the fit suggests that 2.13 interacts with DNA, albeit weakly, and 

thus that DNA binding sites are accessible to 2.13. 

2.3.9 Compound 2.15 binding with DNA  

The binding of 2.15 to DNA was studied using UV−visible spectroscopy. The changes in 

absorption of 2.15 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0,  

50 mM NaCl) at 25 °C (Figure 2.19). 
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Figure 2.19: UV-visible spectra for 0.014 mM 2.15 upon addition of 0 – 2.5 mM DNA, at  

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 
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Figure 2.19 shows a hypochromic shift in absorbance. The decrease in UV-visible absorption 

may have occurred as a result of geometrical distortion of methylene blue when it interacted 

with DNA or as a result of local medium effect. 

To quantify the affinity of 2.15 for DNA, we plotted the absorbances at 446 nm as a function 

of the concentration of DNA (Figure 2.20, see appendix, Tables A55.11). 
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Figure 2.20: Absorbance at 446 nm for a solution of 0.014 mM 2.15 as a function of DNA 

concentration, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid line 

represents the best fit to the data in terms of a multiple independent binding sites model. 

Figure 2.20 shows a clear decrease in the absorbance for 2.15 upon the addition of DNA. The 

binding affinity Kbinding and binding site size n were determined by fitting a multiple 

independent binding sites model, which also takes ligand dilution into account, to the data. The 

fit reproduces the data well and gives an equilibrium constant Kbinding of (2.9 ± 0.09) ×103 M−1 

for a binding site size restricted to 3 base pairs. The binding parameters obtained from data 

analysis were reasonable, and the fit suggests that 2.15 interacts with DNA and thus that DNA 

has binding sites size accessible to 2.15. 
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Summary 

The UV-visible titrations for our π-conjugated compounds with duplex DNA show that these 

ligands 2.1-2.15 bind to DNA as summarised in Table 2.1. 

Table 2.1 Binding affinities and binding site sizes for binding of 2.1-2.15 to DNA in buffer 

(25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C. 

Ligands 
Binding constant / DNA 

K / M−1 

Binding site size 

n  

2.1 c (C20H16N4O) (1.5 ± 0.1) ×104 n =3* a 

2.2 c (C31H37N7O3) (6.4 ± 1.6) ×104 n =3* a 

2.3 c (C41H57ClEuN5O8) (1.7 ± 0.4) ×104 n =3* 

2.4 c (C18H21N3O4) (3.4 ± 0.2) ×104 n =3* 

2.5 (C20H25N3O5) (8.9 ± 2.3) ×104 n =3* 

2.6c (C35H35N5O7Re) (11.3 ± 2.7) ×104 n =1* 

2.7 (C25H37Cl3N6O6) (7.7 ± 1.5) ×105 n =3* 

2.8 (C16H20ClN3OS) (4.4 ± 0.5) ×105 n =3* 

2.9 (C20H18NO4) No binding  

2.10 (C17H19ClN2S) (6.9 ± 0.7) ×103 n =3* 

2.11 (C20H18ClNO4) (2.0 ± 0.2) ×104 n =3* 

2.12 (C26H33N2S4
2+) (1.8 ± 0.38) ×105 n =3* 

2.13 (C34H35N5O5) (2.9 ± 0.3) ×103 n =3* 

2.15 (C20H24N2O6) (2.9 ± 0.09) ×103 n =3* 

a) apparent binding constant for the event following initial precipitation. 
b) *restricted. 
c) Data from172 
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Table 2.1 shows the interactions that occurred between -conjugated aromatic molecules and 

DNA. The interactions of the 1,8-naphthalimide family show that the rhenium complex 2.6 has 

the highest affinity with α binding constant of around 105 M−1. We attribute this high affinity to 

the presence of more aromatic rings which leads to an increase in hydrophobic interactions 

between ligand and DNA as well as the presence of a positive change. Compounds 2.4, 2.5 and 

2.6 have moderate affinities of ~104 M−1 for DNA. Compound 2.9 does not show any affinity 

for duplex DNA. We may attribute this to the negative charge of the carboxylate group on the 

ligand, leading to an increase electrostatic repulsion between ligand and DNA. 

We found that ligands 2.7, 2.8, 2.10, 2.11 and 2.12 have moderate affinity for DNA. The highest 

affinity is for 2.7, 2.8 and 2.12. We attribute the higher affinities to the presence of more than 

one positive charge and multiple aromatics rings. The weakest binders are 2.10, 2.13 and 2.15. 

The low affinities may be because the structure of thioflavin and double naphthalimides 

demonstrate a hydrophobic end with a dimethylamino group linked with phenyl group to the 

positive charge on the benzothiazole group. 
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2.4 Conclusion 

According to the results presented in this chapter, positivily charged   molecules 2.4, 2.5, 2.7, 

2.8, 2.10, 2.11, 2.12, 2.13 and 2.15 bind with DNA by electrostatic and hydrophobic interaction. 

The binding constants found vary between 103 − 106 M-1 for binding site sizes of 3. The anionic 

ligand 2.9 doesn’t show any binding with DNA as a result of the presence of a negative charge. 

 

2.5 Materials and Methods  

-conjugated compounds 2.1, 2.2 and 2.14 were provided by our collaborators Prof McKeown 

and Dr ElBetany.130 Ligands 2.7, 2.8, 2.9, 2.10 and 2.11 were acquired from known commercial 

sources at the highest available purity and used as received from Sigma-Alderich and Acros 

Organic company. Compounds 2.3, 2.4, 2.5 and 2.6 (Scheme 1.5) were provided by Prof Simon 

Pope group. Cationic oligothiophene 2.12, and naphthalimide derivatives 2.13 and 2.15 have 

been used in previous work by the Buurma group. For purification, 2.12 was dissolved in 

distilled water, filtered and freeze-dried. The solid was redissolved in a small amount of ethanol 

and left in a sealed round bottom flask in the oven for two days at 60 °C. The solid was 

redissolved in a small amount of ethanol and precipitated from ethanol on the wall of the flask. 

The precipitate was then cooled again to -20 °C. DNA was procured from Acros and Sigma-

Aldrich as a lyophilised solid sodium salt. The buffer components were purchased from Melford 

Laboratories Ltd and Sigma-Aldrich. 

 
2.5.1 Equipment 

A Jasco V-630 Bio spectrophotometer equipped with a Peltier temperature controller was used 

to record the UV-visible spectra. pH of buffers was determined using a Hanna Instruments pH 

210 pH meter equipped with a VWR 662−1759 glass electrode. Water was purified using an 

ELGA option-R 7BP water purifier. 

 

2.6 Solutions preparation 

2.6.1 MOPS buffer solution 

MOPS (3-(N-morpholino) propane sulfonic acid (10.46 g, 50 mmoles), NaCl (5.84 g,  

100 mmoles) were transferred to a beaker and ~ 1000 ml of deionised water was added. The 

solution was stirred until all MOPS and salt had completely dissolved. A concentrated NaOH 

(aq) solution was prepared, and this was added dropwise to the solution until the pH was 7.0. 
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This solution was placed in a 2.0 liter volumetric flask and made up to 2 liter with deionised 

water. 

2.6.2 DNA preparation 

The stock solution of DNA was prepared by dissolving around 0.12 g of DNA in MOPS, 

sonicating the solution of DNA around 15 minutes. The solution of DNA was dialysed against 

2.0 litre of MOPS buffer by using a 3.5 kDa MWCO dialysis membrane for one day. The 

concentration of DNA was determined using UV-visible spectroscopy using an extinction 

coefficient ɛ 260 nm of 12800 M-1 cm-1 at 260 nm. 177 

 …… 2.1 

where, A= absorbance, Ɩ= path length, C= concentration, ɛ= extinction coefficient  

 
……. 2.2 

  

 …….. 2.3 

 

 

2.7 Spectroscopic studies 

2.0 ml of MOPS buffer was placed in a 1.0 cm path length cuvette. The required volumes of 

the stock solutions of all molecules in MOPS buffer, sometimes involving 10 vol. % DMSO, 

were added to the cuvette. All UV-visible titrations were carried out by adding aliquots of the 

DNA stock solutions into the 1.0 cm path length cuvette recording the absorption in the range 

of 200 – 800 nm after each addition. Absorptions were kept in the range of 0.0 − 1.0. The 

absorptions at selected wavelengths were plotted against DNA concentrations, and a multiple 

independent binding sites model was used to analyse the UV-visible spectra using the Origin 

9.0 software. 
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Abstract 

This Chapter explores the binding between π-conjugated ligands and SA and TF and the result 

of binding to these proteins on DNA-binding. The studies found that ligands 3.1, 3.2, 3.3, 3.7 

and 3.9 bind to SA with strong affinity in the order of  ~104 M-1 while binding of ligands 3.1, 

3.2, 3.8 and 3.10 to transferrin confirmed that the ligands have a strong affinity of ~104 M-1 for 

TF under the experimental conditions. We further compared the affinity of ligands for DNA in 

absence and presence of SA and TF. We found that ligands 3.1, 3.5, 3.7, 3.8, 3.10, 3.11 and 

3.12 do not show a change in the affinity for DNA when SA is present. Our work demonstrated 

a decrease in affinity of ligands 3.2, 3.4 and 3.6 for DNA in the presence of SA, suggesting that 

binding of these potential sensitisers to serum albumin leads to decreased Kbinding. This could 

be a source of false negative results. An increase in the apparent affinity of 3.3 for DNA was 

also observed in the presence of SA. We attribute this to sensitisers binding to serum albumin 

instead of binding non-specifically to DNA and increasing the apparent Kbinding.. This increase 

could cause false positives. Furthermore, we investigated the effect of TF on DNA binding. 

Binding of 3.1 was not affected by TF. However, 3.2 showed a decrease in affinity for DNA in 

the presence of TF. 
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3.1 Introduction 

3.1.1 The effect of proteins on biosensors 

Whole blood is a complex mixture that contains many components, including significant 

amounts of serum albumin and transferrin. We need to know whether the presence of the main 

components of blood affects the affinity of sensitisers for DNA. The presence of serum albumin 

and other elements in a sample may cause a false negative because binding of ligands with 

DNA in the presence of proteins may be hard and not as easy as when a ligand is free in solution. 

The challenge in this thesis is to improve biosensors involving sensitisers which detect DNA in 

a sample   containing  proteins, such as serum. Protein in the sample may increase the selectivity 

and sensitivity as a result of reduced non-specific binding as we have shown in Figure 1.16. 

However, the protein may also bind too strongly to the sensitiser, decreasing DNA binding of 

the sensitiser. This effect may, therefore, lead to false positive or false negative signals. 

In general, a bioreceptor requires binding with high selectivity, sensitivity, affinity and minimal 

non-specific interaction toward their targets. We introduce a method that it is easy to use, 

exploits cheaper compounds, is fast and which involves competition between biomolecules and 

DNA for the same sensitiser molecule to minimise non-specific interactions that cause a false 

positive signal (Figure 1.16). 

The interaction between selected proteins, such as SA and TF, and sensitisers and the effect of 

these species on DNA binding of sensitisers can be studied using several techniques such as 

UV-visible spectroscopy, and other methods that exploit the thermodynamic characteristics of 

these compounds such as isothermal titration calorimetry. 

 

3.1.2 Aim 

Our goals in this chapter are to measure the binding affinity Kbinding, and binding sites size n of 

sensitisers binding to serum albumin and transferrin. Moreover, we will investigate the effect 

of the presence of serum albumin SA and transferrin TF on the DNA binding parameters of 

potential sensitisers. 

 

3.2 Results and Discussion 

The findings of the studies of the interactions of compounds 3.1-3.12 with proteins SA and TF, 

and the effect of SA and TF on the interactions of these compounds with DNA, will be discussed 

for each compound. 
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Part A: Serum albumin binding studies 

3.2.1 Compounds 3.1 and 3.2 binding to SA 

We wanted to know whether compounds 3.1 and 3.2 bind with SA. The changes in absorption 

of 3.1 upon addition of SA were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 

25 °C (Figure 3.1). For the analogous data for 3.2 see appendix A1 (see appendix, Tables 

A55.15 & A55.16).  
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Figure 3.1: UV-visible spectra for 0.0246 mM 3.1 upon addition of 0 - 0.28 mM SA at 25 °C, 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) (left). UV-visible spectra for 0.0023 - 0.27 mM 

SA in absence of the ligand 3.1 (right). 

Figure 3.1 shows that compound 3.1 displays a hypochromic shift in absorbance upon addition 

of SA, with a maximum change in absorbance at 443 nm. This decrease in UV-visible 

absorption may have occurred as a result of geometrical distortion of 3.1 when it interacts with 

SA, but it may also be as a consequence of a local medium effect. The binding of 3.1 to SA is 

also accompanied by a small red-shift in the UV-visible absorption. The red shift suggests an 

increase in effective conjugation, i.e., an increase in the planarity of 3.1 upon interaction with 

SA. On the other hand, Figure 3.1 (right) also shows an increase in absorbance in the range of 

300-500 nm upon the additions of SA to the buffer solution in the absence of ligand 3.1. This 

observation suggests absorbance and scattering of light by SA in the solution. As result, we 

need to remove any effect caused by SA from the UV-visible spectra. Otherwise, there could 

be an effect on the binding constant parameters. 

To quantify the affinity of 3.1 for SA, the absorbances at 443 nm were corrected for the 

absorbances and scattering caused by SA alone. A stock solution of 1.0 mM SA in buffer  

(25 mM MOPS, pH 7.0, 50 mM NaCl) was prepared. From this stock solution, a series of 
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solutions was prepared and UV-visible spectra were recorded for these solutions in a 1.0 cm 

pathlength cuvette (Figure 3.2, for data in tabular format, see appendix, Tables A55.14). 
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Figure 3.2: Absorbance at 443 nm for SA as a function of SA concentration, at 25 °C in buffer 

(25 mM MOPS, pH 7, 50 mM NaCl). The solid line represents the best fit to the data of a 

multiple independent binding sites model. 

Figure 3.2 shows an increase in the absorbance at 443 nm upon addition of SA to buffer. 

Because this increase occurs above 300 nm, this increase in UV-visible absorption has probably 

occurred as a result of scattering by SA in the solution. We need to remove any effect of 

scattering and/or absorbance by SA by subtracting the absorbance as result of scattering from 

the titration data. We therefore determined the extinction coefficient for SA at the wavelength 

of interest.  

To quantify the extinction coefficient SA, the absorbances at 443 nm were plotted as a  

function of the concentration of SA (Figure 3.2, for data in tabular format see appendix, Tables 

A55.13). A linear fit (red line) was applied to obtain the extinction coefficient for SA of  

(167 ± 6.5) dm-3 mol− 1cm−1 at 443 nm. The extinction coefficient was used to calculate a 

predicted absorbance for SA alone for every point of the titration. These predicted absorbances 

were subtracted from the observed absorbances in the titration to give corrected absorbances 

∆A 443 nm corrected. The corrected absorbances at 443 nm were plotted as a function of the 

concentration of SA (Figure 3.3, for data in tabular format, see appendix, Tables A55.12 & 

A55.13).  
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Figure 3.3: Corrected absorbance at 443 nm for 0.024 mM of 3.1 (■) and for 0.014 mM 3.1 

(●) as a function of SA concentration, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). 

The solid lines represent a global fit of a multiple independent sites model to the data. 

Figure 3.3 shows a decrease in the absorbance at 443 nm for 3.1 upon addition of SA. The 

binding affinity Kbinding and the number of binding sites per protein 1/n were determined by 

fitting a multiple independent binding site model, which also takes ligand dilution into account, 

to the data. The fit suggests an equilibrium constant Kbinding of (1.5 ± 1.2) × 105 M−1 for a binding 

sites size of (0.18 ± 0.06) moles of SA per mole of ligand, that means ~ 6.0 molecules of 3.1 

bind to one molecules of SA, probably distributed overthe subdomains IIA and IIIA. The 

obtained value of the binding site was reasonable, and the fit suggests that 3.1 interacts with SA 

and thus that SA has binding sites accessible to 3.1. 

 

3.2.2 Compounds 3.3 - 3.6 binding to SA 

We wanted to know whether 3.3 -3.6 interact with SA. UV-visible spectroscopy was similarly 

used to determine the affinity and stoichiometry of compounds 3.3-3.6 interacting with SA. The 

changes in absorption of 3.3 upon addition of SA were measured in buffer (25 mM MOPS, pH 

7.0, 50 mM NaCl) at 25° C (Figure 3.4). 
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Figure 3.4: UV-visible spectra for 0.033 mM 3.3 upon addition of 0 - 0.21 mM SA, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 3.4 shows a hypochromic shift in absorbance with maximum change in absorbance at 

347 nm. This decrease and increase in UV-visible absorption may have occurred as a result of 

geometrical distortion of 3.3 when it interacts with SA, but it may also be as a consequence of 

a local medium effect. The binding of 3.3 to SA is also accompanied by a small red−shift in the 

UV-visible absorption. The red shift suggests an increase in effective conjugation, i.e., an 

increase in the planarity of the 3.3 upon interaction with SA. On the other hand, Figure 

3.2(right) also shows an increase in the range of 300-500 nm in absorbance upon the first 

additions of SA to buffer solution in the absence of ligand 3.3. As result of that, we need to 

remove any effect caused by SA from the UV-visible spectra and we did this in the same way 

as for compound 3.1. 

To quantify the affinity of 3.3 for SA, the corrected absorbances at 347 nm were plotted as a 

function of the concentration of SA (Figure 3.5, for data in tabular format see appendix, Tables 

A55.17). 
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Figure 3.5: Corrected absorbance at 347 nm for 0.033 mM 3.3 as a function of SA 

concentration, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid line 

represents the best fit to the data of a multiple independent binding sites model. 

Figure 3.5 shows a decrease in the absorbances at 347 nm upon addition of SA. The binding 

affinity Kbinding and binding sites 1/n were determined by fitting a multiple independent binding 

sites model, which also takes ligand dilution into account, to the data. The fit gives an 

equilibrium constant Kbinding of (1.3×10-3 ± 5.9) ×104 M−1 for a binding site of (6×10−3 ± 2.7). 

The obtained value of affinity and binding site was too small to be unreasonable. Therefore, the 

data of the titration curves were reanalysed for a binding site size restricted to 0.5 mole of SA 

per mole of 3.3 (i.e. two molecules of 3.3 per molecule of SA) giving an equilibrium constant 

Kbinding of (1.16 ± 0.6) ×104 M−1. This means each of the two binding site (one in subdomaine 

IIA and one in IIIA of SA) binds with  one molecule of 3.3. The fit suggests that 3.3 interacts 

and that SA has a binding site reachable to 3.3. 

 

3.2.4 Compound 3.4 binding with SA 

We also wanted to know whether 3.4 binds to SA. The changes in absorption of 3.4 upon 

addition of SA were measured in buffer (25 mM MOPS, pH 7.0 and 50 mM NaCl) at 25 °C 

(Figure 3.6). 
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Figure 3.6: UV-visible spectra for 0.06 mM 3.4 upon addition of 0 − 0.054 mM SA, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Addition of SA to 3.4 was found to result in a decrease in absorbance at 434 nm. The increase 

in absorbance around 330 nm is the result of scattering resulting from the added SA.  

To quantify the affinity of 3.4 for SA, the absorbances at 434 nm were plotted as a function of 

the concentration of SA (Figure 3.7, for data in tabular format see appendix, Tables A55.18). 
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Figure 3.7: Absorbance at 434 nm for 0.06 mM 3.4 as a function of SA concentration, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid line represents the best fit to the 

data in terms of a multiple independent binding sites model. 

The binding affinity Kbinding and binding site size 1/n were determined by fitting a multiple 

independent binding sites model which also takes ligand dilution into account to the data. The 
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fit suggests that 3.4 does not interact with SA and the decrease in corrected absorbance is the 

result of simple dilution only. Similarly, molecules 3.5 and 3.6 do not show any affinity for SA 

either. We may attribute this to the shape of the ligands which does not fit with the binding sites 

on SA. See appendix A2 for compound 3.5 with SA (see appendix, Tables A55.19); and see 

appendix A3 for compound 3.6 with SA (see appendix, Table A55.20). 

 

3.2.5 Compound 3.7 interacting with SA 

We need to know whether 3.7 binds with SA. The changes in absorption of 3.7 upon addition 

of SA were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 3.8). 
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Figure 3.8: UV-visible spectra for 0.0042 mM 3.7 upon addition of 0 - 0.1 mM SA, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 3.8 illustrates that 3.7 exhibits a hypochromic shift in absorbance upon addition of SA 

with a maximum change in absorbance at 339 nm. This decrease and increase in UV-visible 

absorption may have occurred because of geometrical distortion of 3.7 when it interacts with 

SA, but it may also be as a result of a local medium effect. As a result of high scattering, we 

need to remove any effect caused by SA from the UV-visible spectra. Otherwise, there could 

be effect on the binding constant parameters  

To quantify the affinity of 3.7 for SA, the corrected absorbances at 339 nm were plotted as a 

function of the concentration of SA (Figure 3.9, see appendix, Tables A55.21). 
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Figure 3.9: Corrected absorbance at 339 nm for 0.0042 mM 3.7 as a function of SA 

concentration, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid line 

represents the best fit to the data regarding a multiple independent binding sites model. 

Figure 3.10 reveals a decrease in the corrected absorbance at 339 nm upon addition SA. The 

binding affinity Kbinding and the binding sites per SA 1/n were determined by fitting a multiple 

independent binding sites model, which also takes dilution into account, to the data. This  

fit produces an equilibrium constant Kbinding of (1.4×10-3 ± 5.6) × 105 M−1 for a binding site of  

(6×10−2 ± 33.2). The obtained binding site size is too small. We reanalyse of the data for a 

binding site n restricted to 0.5 moles of SA per mole of ligand. The fit gives an equilibrium 

constant Kbinding of (2.2 ± 0.5) × 104 M−1. That means 2.0 molecules of 3.7 bind to one molecule 

of SA. 

3.2.6 Compound 3.9 binding with SA  

The binding of 3.9 to SA was investigated using UV-visible spectroscopy. The changes in 

absorption of 3.9 upon addition of SA were measured in buffer (25 mM MOPS, pH 7.0 and  

50 mM NaCl) at 25 °C (Figure 3.10). 
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Figure 3.10: UV-visible spectra for 0.012 mM 3.9 upon addition of 0 – 0.29 mM SA, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 3.10 shows that 3.9 exhibits a hypochromic and hyperchromic shift in absorbance upon 

addition of SA. Similar redshifts were observed from 489-500 nm. The red shifts suggest an 

increase in effective conjugation length, which is attributed to an increase in the planarity of 

3.9 upon interaction with SA. The decrease and increase in UV-visible absorption may have 

occurred as a result of geometrical distortion of 3.9 when it interacted with SA or as a result of 

a local medium effect. Figure 3.11 also shows an increase in absorbance attributed to scattering 

upon addition SA to the buffer solution. As before we removed any effect caused by SA from 

the UV-visible spectra.  

To quantify the affinity of 3.9 for SA, the corrected absorbances at 489 nm and 500 nm were 

plotted as a function of the concentration of SA (Figure 3.11 for data in tabular format see 

appendix, Tables A55.23). 
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Figure 3.11: Corrected absorbance at 489 nm (■) and at 500 nm (●) for 0.012 mM 3.9 as a 

function of SA concentration, at 25° C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The 

solid lines represent a global fit of a multiple independent binding sites model to the data. 

Figure 3.12 shows a decrease in the corrected absorbance of 3.9 at 489 nm (■) upon addition 

of SA. The red line shows a clear increase in the corrected absorbance of 3.9 at 500 nm (●) 

upon addition of SA. The solid lines represent a global fit in terms of a multiple independent 

sites model. The fit gives an equilibrium constant Kbinding of (4.4×10−2 ± 5.4) ×104 M−1 for a 

binding site of (4.9×10−2 ± 6). The obtained value of the binding site size was not reasonable. 

Therefore, the data of the titration curves were reanalysed with n restricted to   0.5 giving an 

equilibrium constant Kbinding (5.4 ± 0.98) ×104 M−1. The fit suggests two molecules of 3.9 

interacts with one SA, in agreement with the hypothesis that SA has twobinding sites reachable 

to 3.9. Similar experiments for compounds 3.8, 3.10, 3.11 and 3.12 don’t give binding with SA, 

just decreases in absorbance as a result of simple dilution (See appendixes A4-A7). 
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Summary 

The results of UV-visible titrations for ligands 3.1, 3.2, 3.3 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11 

and 3.12 with SA are summarised in Table 3.1. 

Table 3.1 Binding constants and binding site sizes for interaction of 3.1, 3.2, 3.3 3.4, 3.5, 

3.6, 3.7, 3.8, 3.9, 3.10, 3.11 and 3.12 to SA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) 

at 25 °C. 

Ligands 

Binding constant 

 for SA 

K / M−1 

Binding site size 

n 

Binding 

stoichiometry  

1/n 

3.1 (1.5 ± 1.2) × 105 (0.18 ± 0.06) 5.5 ± 3.4 

3.2 (1.7 ± 0.7) × 105 0.5* 2 

3.3  (1.16 ± 0.6) × 104  0.5*  2 

3.4 No binding   

3.5 No binding   

3.6 No binding   

3.7 (2.2 ± 0.5) × 104  0.5* 2 

3.8 No binding   

3.9  (5.4 ± 0.98) ×104  0.5*  2 

3.10 No binding   

3.11 No binding   

3.12 No binding   

* restricted. 
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Table 3.1 shows that 3.1, 3.2, 3.3, 3.7 and 3.9 bind to SA reversibly with binding constants 

around ~ 104 M−1. We note the presence of positive charges on the ammonium NH3
+ groups of 

3.1, 3.2, 3.3, 3.7 and negative group (COO−) on 3.9. This suggest that electrostatics does not 

play a deciding role in the affinity. The presence of aromatic rings leads to increase in 

hydrophobic interactions between molecules and the hydrophobic cavities located in SA. 

Compounds 3.4, 3.5, 3.6, 3.8, 3.10, 3.11 and 3.12 do not show any affinity for SA which we 

attribute to mismatches in the shape of these molecules and SA. 
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Part B: Transferrin binding studies 

3.2.7 Compounds 3.1 and 3.2 binding to TF 

We studied the interactions of 3.1 and 3.2 with transferrin (TF). The changes in absorption of 

3.1 upon addition of TF were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at  

25 °C (Figure 3.12). For the analogous data for 3.2 see appendix A8 (see appendix, Tables 

A55.29). 
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Figure 3.12: UV-visible spectra for 0.0215 mM 3.1 upon addition of 0 − 0.0740 mM TF in 

buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, at 25 °C) (left). UV-visible spectra for  

0.00049 - 0.074 mM TF in absence of ligand 3.1 (right). 

Figure 3.12 shows that 3.1 exhibits a hypochromic and hyperchromic shift in absorbance upon 

addition of TF with a maximum change in absorbance at 444 nm. This   change in UV-visible 

absorption may have occurred because of geometrical distortion of 3.1 when it interacts with 

TF, but it may also be as a result of a local medium effect. Figure 3.13 (right) also shows an 

increase in absorbance in the range of 300-600 nm upon addition of TF to the buffer solution 

in the absence of ligand 3.1. This observation suggests absorbance and scattering of light by TF 

in the solution. As result, we need to remove any effect caused by TF from the UV-visible 

spectra, similar to the treatment of the data for SA. 

To quantify the affinity of 3.1 for TF, the absorbances at 444 nm needed to be corrected for the 

absorbances and scattering caused by TF alone. A stock solution of 1.0 mM TF in buffer  

(25 mM MOPS, pH 7.0, 50 mM NaCl) was prepared and a series of dilutions was prepared 

from the stock solution. UV-visible spectra were recorded for these solutions in a 1.0 cm 

pathlength cuvette (Figure 3.13 (right) panel 2, see appendix, Tables A55.28 for corrected TF 

alone). The absorbances were corrected and the corrected absorbances at 444 nm were plotted 
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as a function of the concentration of TF (Figure 3.13 left) for data in tabular format see 

appendix, Tables A55.27.  
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Figure 3.13: Corrected absorbance at 444 nm for 0.0215 mM 3.1 as a function of TF 

concentration, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The solid line represents 

the best fit to the data in terms of a multiple independent binding sites model (left 1). The solid 

line (right 2) represents the extinction coefficient of TF at 444 nm.  

Figure 3.13 shows a hypochromic shif at 444 nm for 3.1. The binding affinity Kbinding and the 

number of the binding sites per TF were determined by fitting a multiple independent binding 

sites model, which also takes ligand dilution into account, to the data. This fit provides an 

equilibrium constant Kbinding of (2×10−3 ± 1.02) ×105 M−1 for a binding site of (3×10−3 ± 1.1). 

Because the value of 1/n was unreasonable, the data were reanalysed for a binding site size n 

restricted to 0.33 TF. The fit gave an equilibrium constant Kbinding of (9.4 ± 5.9) ×104 M−1. The 

fitting indicates that a binding model involving   one molecule of TF interacting with three 

molecules of 3.1 is reasonable. This is in line with the hypothesis that TF has three binding sites 

accessible to 3.1, presumably in subdomains N and C as reported in the literature42. For the 

analogous data for 3.2 see appendix A8 (see appendix, Tables A55.29). 

 

3.2.8 Compound 3.8 binding to TF 

We wanted to study the binding of 3.8 and TF. The changes in absorption of 3.8 upon addition 

of TF were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 3.14). 
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Figure 3.14: UV-visible spectra for 0.004 mM 3.8 at 664 nm upon addition of 0 – 0.045 mM 

TF, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 3.14 shows that 3.8 displays a hypochromic shift in the absorbance upon addition of TF 

with a maximum change in absorbance at 664 nm. This decrease in UV-visible absorption may 

have occurred as a result of geometrical distortion of 3.8 when it interacts with TF, but it may 

also be as a consequence of a local medium effect. The increase in absorbance is caused by the 

increased scattering of TF.  

To quantify the affinity of 3.8 for TF, the corrected absorbances at 664 nm were plotted as a 

function of the concentration of TF (Figure 3.15, see appendix, Tables A55.34). 
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Figure 3.15: Corrected absorbance at 664 nm for 0.004 mM 3.8 upon addition of 0 – 0.04 mM 

TF, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid lines represent the best 

fit to the data in terms of a multiple independent binding sites model. 
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Figure 3.15 illustrates the decrease in the absorbance at 664 nm for 3.8 upon addition of TF. 

The binding constant Kbinding and the number of binding sites n per protein were determined by 

fitting a multiple independent binding sites model, which also takes ligand dilution into account, 

to the data. This fit gives an equilibrium constant Kbinding of 8.5×10−3 ± 2.1) ×105 M−1
 for an 

unrealistically small binding site size of (2.7×10−2 ± 5.0). We then reanalysed the data for a 

binding site size n restricted to 0.33 TF. The fit gave an equilibrium constant Kbinding of 

 (2.0 ± 0.33) ×104 M−1. The fit indicates that three molecules of compound 3.8 interact with   

one molecule of TF. 

 

3.2.9 Compound 3.10 interacting with TF 

UV-visible spectroscopy has been used to determine the affinity and stoichiometry for 3.10 

binding with TF. The changes in absorption of 3.10 upon addition of TF were measured in 

buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 3.16). 
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Figure 3.16: UV-visible spectra for 0.0279 mM 3.10 upon addition of 0 – 0.032 mM TF in 

buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C. 

Figure 3.16 demonstrates a hypochromic shift in the absorbance upon addition of TF with a 

maximum change in absorbance at 413 nm. This change in UV-visible absorption may have 

occurred because of geometrical distortion of 3.10 when it interacts with TF, but it may also be 

as a result of a local medium effect. The increase in baseline upon addition of TF is attributed 

to scattering of light by TF in solution. We therefore measure scattering and remove it from 

absorbances as before. 
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To quantify the affinity of 3.10 for TF, the corrected absorbances at 413 nm were plotted as a 

function of the concentration of TF (Figure 3.17, see appendix, Tables A55.35). 
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Figure 3.17: Corrected absorbance at 413 nm for 0.027 mM 3.10 upon addition of  

0 – 0.032 mM TF concentration, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The 

solid line represents the best fit to the data in terms of a multiple independent binding sites 

model. 

The titration curve in Figure 3.17 was analysed by fitting a multiple independent binding sites 

model, which also takes ligand dilution into account, to the data, giving an equilibrium constant 

Kbinding of (3×10−3 ± 2.1) ×106 M−1
 for a binding site size of (2×10−3 ± 18). The obtained value 

of the stoichiometry was too small and therefore unreasonable. Therefore, the data were 

reanalysed, with a binding site size restricted to 0.33, giving an equilibrium constant Kbinding of 

(1.0 ± 0.73) ×105 M−1. The fit suggests that three molecules of 3.10 interact with each molecule 

of TF.  Similar experiments for compounds 3.3, 3.4, 3.7, 3.9, 3.11 and 3.12 (See appendix) 

showed no interactions with TF. 
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Summary 

The findings of UV-visible titrations for oligoheteroaromatic compounds 3.1, 3.2, 3.3 3.4, 3.5, 

3.6, 3.7, 3.8, 3.9, 3.10, 3.11 and 3.12 with TF are summarised in Table 3.2. 

Table 3.2 Binding affinities and binding site sizes for binding of 3.1, 3.2, 3.3 3.4, 3.5, 3.6, 

3.7, 3.8, 3.9, 3.10, 3.11 and 3.12 to TF in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 

25 °C. 

Ligands 

Binding constant 

 for TF 

K / M−1 

Binding site 

n 

Binding 

stoichiometry  

1/n 

3.1 (7.4 ± 5.9) × 104  0.33* 3 

3.2 (1.4 ±   1.1) × 10 5  0.33* 3 

3.3 No binding   

3.4 No binding   

3.5 No binding   

3.6 No binding   

3.7 No binding   

3.8 (2.0 ± 0.3) × 104   0.33* 3 

3.9 No binding   

2.10 (1.00 ± 0.73) × 10 5  0.33* 3 

3.11 No binding   

3.12 No binding   

* restricted 

Ligands 3.1, 3.2, 3.8 and 3.10 in Table 3.2 interact with transferrin, and the interaction is 

accompanied by a change in optoelectronic properties. The other molecules did not show any 

binding with TF. The absence of interaction might be because of a mismatch in fit between the 

compound and transferrin. 

  



Chapter three 

74 
 

Part C: Effect of serum albumin on DNA-binding properties. 

3.2.10 Compounds 3.1 and 3.2 interacting with DNA in the presence of 0.1 mM SA 

To evaluate the binding of 3.1 and 3.2 with DNA in the presence of 0.1 mM SA, UV−visible 

spectroscopy has been used. The changes in absorption of 3.1 upon addition of DNA were 

measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25° C in the presence of 0.1 mM 

SA (Figure 3.18). Similar results were found for 3.2 interacting with DNA in the presence of 

SA. (See appendix A15, Table A55.39). 
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Figure 3.19: UV-visible spectra for 0.054 mM 3.1 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of SA and subsequent spectra for 3.1 in the presence of 0.1 mM 

SA upon addition of 0 – 2.49 mM DNA, at 25 °C. 

Figure 3.19 shows a hypochromic shift in absorbance at 446 nm followed by a hyperchromic 

shift at 446 nm upon addition of DNA in the presence of 0.1 mM SA. The observation suggests 

precipitation and subsequent dissolution of a DNA ligand complex in the presence of SA, 

similar to the situation in the absence of SA. 

To quantify the affinity of 3.1 for DNA in the presence of SA, the absorbances at 446 nm were 

plotted as a function of the concentration of DNA (Figure 3.19, see appendix, Tables A55.38). 
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Figure 3.19: Absorbance at 446 nm for a solution of 0.0545 mM 3.1 as a function of DNA 

concentration of 0 – 0.036 mM (■) and of 0.070 – 2.4 mM (●) in the presence of 0.1 mM SA 

(▲), at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The solid line represents a global 

fit of a multiple independent sites model to the data in the 0.070 – 2.4 mM range.  

Figure 3.19 shows two events upon addition of DNA to 3.1 in the presence of SA. The first 

event involves a large decrease in the absorbance at 446 nm up to a concentration of 0.036 mM 

DNA. We attribute this decline in absorbance to strong binding of 3.1 to the sugar-phosphate 

backbone of DNA at low concentration of DNA in combination with a high concentration of 

ligand i.e. a high ligand / DNA ratio. These conditions lead to precipitation as a result of charge 

neutralisation of the 3.1 - DNA complex as also observed previously in the absence of SA.172 

The second event shows a clear increase in the absorbance of 3.1 upon addition of 0.070 – 2.4 

mM of DNA in the presence of 0.1 mM of SA. The ligand strongly interacts with DNA, and 

the titration data in figure 3.18 (with the first event not included) were analysed in terms of a 

multiple independent binding sites models, which also takes ligand dilution into account. An 

apparent equilibrium constant Kbinding of (0.12 ± 24) M−1 for a binding site size of (1.6× 10−5 ± 

3.4× 10−3) base pairs was found. A Kbinding of (1.5 ± 0.1) × 104 M−1 for the binding site size 

restricted to 3.0 base pairs was observed for 3.1 to DNA in the absence of SA. Therefore, the 

data were reanalysed with the stoichiometry restricted to 3.0 base pairs to allow comparison, 

giving an apparent equilibrium constant Kbinding of (2.6 ± 0.8) × 104 M−1. From the similarity in 

the apparent binding constant in the absence of SA172 and in the presence of SA, it appears that 

SA does not significantly compete with DNA for 3.1. Unfortunately, SA therefore does not help 

to avoid precipitation. On the other hand, the absence of this competition is beneficial if 
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compound 3.1 were to be used in a biosensor because it can be used to provide signals to detect 

DNA hybridization information without being affected by precipitation.  

 

3.2.11 Compound 3.3 interacting with DNA in the presence of 0.2 mM SA 

The binding of 3.3 to DNA in the presence of 0.2 mM SA was studied using UV-visible 

spectroscopy; the changes in absorption of 3.3 upon addition of DNA in the presence of SA 

were measured in buffer (25 mM MOPS, pH 7.0 and 50 mM NaCl) at 25 °C (Figure 3.20). 
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Figure 3.20: UV-visible spectra for 0.041 mM 3.3 upon addition of 0 – 1.9 mM DNA in the 

presence of 0.2 mM SA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl)  

Figure 3.20 shows a hypochromic shift in absorbance (at the λ max of 348 nm). The change in 

UV-visible absorption may occur as a result of geometrical distortion of 3.3 when it interacts 

with DNA in the presence of SA, but it may also be a local medium effect. 

To quantify the affinity of 3.3 for DNA in the presence of SA, the absorbances at 348 nm were 

plotted as a function of the concentration of DNA in the presence of SA (Figure 3.21, see 

appendix, Tables A55.40). 
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Figure 3.21: Absorbance at 348 nm of a solution of 0.041 mM 3.3 as a function of DNA 

concentration in the presence of 0.2 mM SA, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM 

NaCl). The solid line represents the best fit to the data in terms of a multiple independent 

binding sites model. 

Figure 3.21 shows a hypochromic shift in absorbance upon addition of DNA as also observed 

previously in the absence of 0.2 mM SA.172 We attribute this decline in absorbance to binding 

of 3.3 to DNA in the presence of 0.2 mM SA. The binding affinity Kbinding and binding sites size 

n were determined by fitting a multiple independent binding sites model, which also takes 

ligand dilution into account, to the data. The fit produces an apparent equilibrium constant 

Kbinding of (2×10−3 ± 3.8) ×105 M−1 for a binding site size of (2.4 ×10−2 ± 32.4) base pairs. A 

Kbinding of (1.7 ± 0.4) ×104 M−1 for the binding site size restricted to 3.0 base pairs was observed 

for 3.3 binding to DNA in the absence of SA.172 Therefore, the data were reanalysed with the 

stoichiometry restricted to 3.0 base pairs to allow comparison, giving an apparent equilibrium 

constant Kbinding of (6.7 ± 2.3) ×104 M−1. From the difference in the apparent binding constant 

in the absence of SA172 and in the presence of SA, it appears that SA significantly competes 

with DNA for 3.3. The presence of this competition is beneficial if the compound 3.3 were to 

be used in a biosensor because SA can be used to decrease nonspecific binding avoiding false 

positive signals when detecting DNA hybridization information or it could reduce sensitivity. 
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3.2.12 Compound 3.4 binding to DNA in the presence of 0.1 mM SA 

We wanted to study the binding of 3.4 to DNA in the presence of 0.1 mM SA. The changes in 

absorption of 3.4 upon addition of DNA in the presence of 0.1 mM SA were measured in buffer 

(25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 3.22). 
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Figure 3.22: UV-visible spectra for 0.053 mM 3.4 upon addition of 0 – 2.3 mM DNA in the 

presence of 0.1 mM SA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

In the studies, 3.4 showed a hypochromic shift in absorbance with a maximum change in 

absorbance at 434 nm upon addition of DNA in the presence of 0.1 mM SA. This decrease in 

UV-visible absorption may have occurred as a result of geometrical distortion of 3.4 when it 

interacts with DNA in the presence of SA, but it may also be as a consequence of a local medium 

effect. 

To quantify the affinity of 3.4 for DNA, the absorbances at 434 nm were plotted as a function 

of the concentration of DNA (Figure 3.23, see appendix, Tables A55.41). 
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Figure 3.23: Absorbance at 434 nm for 0.053 mM 3.4 as a function of DNA concentration in 

the presence of 0.1 mM SA, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The solid 

line represents the best fit to the data in terms of multiple independent binding sites model. 

Figure 3.23 shows a decrease in the absorbance at 434 nm upon addition of DNA in the presence 

of SA. The binding affinity Kbinding and the binding sites size n were determined by fitting a 

multiple independent binding sites model, which also takes simple dilution into account, to the 

data. The fit gives an equilibrium constant Kbinding of (6.4 ± 1.1) ×104 M−1 for a binding site size 

(3.7 ± 0.3) base pairs. A Kbinding of (3.5 ± 0.6) ×104 M−1 for a binding site size of (2.3 ± 0.24) 

base pairs was observed for 3.4 interacting with DNA in the absence of SA. Although the 

obtained binding parameters were reasonable for both stoichiometry and binding constant, the 

data were reanalysed with the stoichiometry restricted to 3.0 base pairs to allow comparison, 

giving an equilibrium constant Kbinding of (4.2 ± 0.2) ×104 M−1. A Kbinding of 

 (5.4 ± 0.3) ×104 M−1 for the binding site size restricted to 3.0 base pairs was observed for 3.4 

binding to DNA in the absence of SA. From the small difference in binding constants in the 

presence and absence of SA, it appears that SA does significantly compete with DNA for 3.4. 

 

3.2.13 Compound 3.5 binding to DNA in the presence of 0.1 mM SA 

We need to know whether of 3.5 interacts with DNA in the presence of 0.1 mM SA. The 

changes in absorption of 3.5 in the presence of 0.1 mM SA upon addition of DNA were 

measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 3.24). 
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Figure 3.24: UV-visible spectra for 0.0744 mM 3.5 upon addition of 0 – 2.80 mM DNA in the 

presence of 0.1 mM SA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

In the studies, 3.5 showed a hypochromic shift in absorbance upon addition of DNA in the 

presence of 0.1 mM SA with a maximum change in absorbance at 444 nm. The decrease in UV-

visible absorption may have occurred as a result of geometrical distortion of 3.5 when it 

interacts with DNA in the presence of SA, but it may also be as a result of a local medium 

effect. 

To quantify the affinity of 3.5 for DNA in the presence of SA we plotted the absorbances at 

444 nm as a function of the concentration of DNA (Figure 3.25, see appendix, Tables A55.42). 
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Figure 3.25: Absorbance at 444 nm for 0.0744 mM 3.5 as a function of DNA concentration in 

the presence of 0.1 mM SA, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The solid 

line represents the best fit to the data in terms of a multiple independent binding sites model. 
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Figure 3.25 shows a clear decrease in the absorbance for 3.5 upon addition of DNA in the 

presence of 0.1 mM SA. The binding affinity Kbinding and binding sites size n were determined 

by fitting a multiple independent binding sites model, which also takes ligand dilution into 

account, to the data. The fit gives an equilibrium constant Kbinding of (4.9 ± 0.8) ×104 M−1 for a 

binding site size of (2.6 ± 0.2) base pairs. A Kbinding of (1.6 ± 0.5) ×104 M−1 for the binding site 

size of (1.2 ± 0.2) base pairs was observed for 3.5 binding to DNA in the absence of SA. The 

obtained binding parameters were reasonable for both stoichiometry and binding constant. 

Nevertheless, the data were reanalysed with the stoichiometry restricted to 3.0 base pairs to 

allow comparison, giving an apparent equilibrium constant Kbinding of (6.5 ± 0.4) ×104 M−1. A 

Kbinding of (8.9 ± 2.3) ×104 M-1 for the binding site size restricted to 3.0 base pairs was observed 

for compound 3.5 binding to DNA in the absence of SA. From the small difference in binding 

constant in the presence and absence of SA, it appears that SA does not significantly compete 

with DNA for 3.5. 

 

3.2.14 Compound 3.6 binding to DNA in the presence of 0.5 mM SA 

We studied the binding of 3.6 with DNA in the presence of 0.5 mM SA. The changes in 

absorption of 3.6 upon addition of DNA in the presence of 0.5 mM SA were measured in buffer 

(25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 3.26). 
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Figure 3.26: UV-visible spectra for 0.011 mM 3.6 upon addition of 0 - 0.203 mM DNA in the 

presence of 0.5 mM SA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 
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Figure 3.26 shows a hypochromic shift upon addition of DNA in the presence of 0.5 mM SA, 

with a maximum change at 440 nm. This decrease in UV-visible absorption may occur because 

of geometrical distortion of 3.6 when it interacts with DNA in the presence of SA, or as a result 

of the different local medium affected by the binding sites.  

The absorbance at 440 nm was plotted as a function of the concentration of DNA in the presence 

of SA (Figure 3.27, see appendix, Tables A55.43). 
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Figure 3.27: Absorbance at 440 nm for a solution of 0.011 mM 3.6 as a function of DNA 

concentration in the presence of 0.5 mM SA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM 

NaCl). The solid line represents the best fit to the data in terms of a multiple independent 

binding sites model. 

Figure 3.27 presents a noticeable decrease in the absorbance of 3.6 on the addition of DNA in 

the presence of 0.5 mM SA. The binding affinity Kbinding and binding sites size n were 

determined by fitting a multiple independent binding sites model, which also takes ligand 

dilution into account, to the data. The fit gives an equilibrium constant Kbinding of (1.1 ± 1.4) 

×107 M−1 for a binding site size of (38 ± 2.1) base pairs. A Kbinding of (11.6 ± 2.7) ×104 M−1 for 

the binding site size restricted to 1.0 base pairs was observed for 3.6 binding to DNA in the 

absence of SA172. Therefore, the data were reanalysed with the stoichiometry restricted to 1.0 

base pairs to allow comparison, giving an apparent equilibrium constant Kbinding of (4.6 ± 1.4) 

×103 M−1. From the difference in binding constants in the absence and presence of SA172 it 

appears that SA does significantly compete with DNA for 3.6. The presence of competition is 

beneficial because it could reduce nonspecific binding and the presence of SA in a sample could 

therefore avoid nonspecific interactions or it could cause a drop in sensitivity to the target. 
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3.2.15 The interaction of compound 3.7 with DNA in the presence of 0.1 mM SA 

We wanted to evaluate the binding of 3.7 to DNA in the presence of SA. The changes in 

absorption of 3.7 upon addition of DNA in the presence of 0.1 mM SA were measured in buffer 

(25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 3.28). 
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Figure 3.28: UV-visible spectra for 0.014 mM 3.7 upon addition of 0 – 0.15 mM DNA in the 

presence of 0.1 mM SA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 3.28 shows   hypochromic and hyperchromic shifts in absorbance at 340 nm and 385 nm 

upon addition of DNA in the presence of 0.1 mM SA. This change in UV visible absorption 

may occur as a result of geometrical distortion of 3.7 when it interacts with DNA in the presence 

of SA, but it may also be a result of a local medium effect. 

To quantify the affinity of 3.7 for DNA in the presence of 0.1 mM SA, the absorbances at 340 

and 385 nm were plotted as a function of the concentration of DNA (Figure 3.29, see appendix, 

Tables A55.44). 
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Figure 3.29: Absorbance at 340 nm (■) and at 385 nm (●) for 0.014 mM 3.7 as a function of 

DNA concentration in the presence of 0.1 mM SA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl). The solid lines represent a global fit of a multiple independent binding sites 

model to the data. 

Figure 3.29 shows a clear decrease at 340 nm and increase at 385 nm in the absorbance for 3.7 

upon addition of DNA in the presence of 0.1 mM SA. The binding affinity Kbinding and binding 

sites size n were determined by fitting a multiple independent binding sites model, which also 

takes ligand dilution into account, to the data. The fit gives an apparent equilibrium  

constant Kbinding of (1.7 ± 6.2) ×104 M−1 for a binding site size of (0.2 ± 0.9) base pairs. A Kbinding 

of (7.7 ± 1.5)×105 M−1 for the binding site size restricted to 3.0 base pairs was observed for 3.7 

binding to DNA in the absence of SA. Therefore, the data were reanalysed with the 

stoichiometry restricted to 3.0 base pairs to allow comparison, giving an apparent equilibrium 

constant Kbinding of (7.9 ± 6.2) ×105 M−1. From the similarity in the apparent binding constant in 

the absence of SA and in the presence of SA, it appears that SA does not significantly compete 

with DNA for 3.7. 

 

3.2.16 Compound 3.8 interacting with DNA in the presence of 0.1 mM SA 

We wanted to study the binding of 3.8 with DNA in the presence of 0.1 mM SA. The changes 

in absorption of 3.8 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) at 25 °C (Figure 3.30). 
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Figure 3.30: UV-visible spectra for 0.00992 mM 3.8 upon addition of 0 - 0.194 mM DNA in 

the presence of 0.1 mM SA, at 25 °C in buffer (25 mM MOPS pH 7.0, 50 mM NaCl). 

Figure 3.30 shows a hypochromic shift at 664 nm upon addition of DNA in the presence of  

0.1 mM SA. This decrease in UV-visible absorption may occur as a result of geometrical 

distortion of 3.8 when it interacts with DNA, or as a result of the different local medium 

presented by the binding sites on the DNA. 

To quantify the affinity of 3.8 for DNA, the absorbances at 664 nm were plotted as a function 

of the concentration of DNA (Figure 3.31, see appendix, Tables A55.45). 
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Figure 3.31: Absorbance at 664 nm for 0.0099 mM 3.8 as a function of DNA concentration in 

the presence of 0.1 mM SA, at 25° C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The solid 

line represents the best fit to the data in terms of a multiple independent binding sites model. 
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Figure 3.31 shows a decrease in absorbance of 3.8 upon addition of the DNA, as also observed 

previously in the absence of SA. We attribute this decline in absorbance to strong binding of 

3.8 to DNA in the presence of 0.1 mM SA. The binding affinity Kbinding and a binding site size 

n were determined by fitting a multiple independent binding sites model, which also takes 

ligand dilution into account, to the data. The ligand strongly interacts with DNA giving an 

equilibrium constant Kbinding of (1.5 ± 0.34) ×105 M−1 for a binding site size of (2.2 ± 0.2) base 

pairs. A Kbinding of (4.5± 1.8) ×105 M−1 for the binding site size of (3.07 ± 0.5) base pairs was 

observed for 3.8 binding to DNA in the absence of SA. The obtained binding parameters were 

reasonable for both stoichiometry and binding constant. The data were reanalysed with the 

stoichiometry restricted to 3.0 base pairs to allow comparison, giving an apparent equilibrium 

constant Kbinding of (2.5 ± 1.6) ×105 M−1. A Kbinding of (4.4 ± 0.5) ×105 M−1 for the binding site 

size restricted to 3.0 base pairs was observed for 3.8 binding to DNA in the absence of SA. 

From the similarity in binding constants in the presence and absence of SA, it appears that SA 

does not significantly compete with DNA for 3.8. 

 

3.2.17 Compound 3.10 binding with DNA in the presence of 0.1 mM SA 

We wanted to know the binding of 3.10 to DNA in the presence of SA was studied; the changes 

in absorption of 3.10 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) at 25 °C (Figure 3.32). 

300 400 500 600

0.00

0.19

0.38

0.57

 A
 /

 a
 .

 u
 .

wavelength [nm]  

Figure 3.32: UV-visible spectra for 0.019 mM 3.10 upon addition of 0 – 1.84 mM DNA in the 

presence of 0.1 mM SA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 
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Figure 3.32 shows a redshift in absorbance of 3.10 upon addition of DNA in the presence of 

0.1 mM SA. This change in UV-visible absorption probably occurs because of geometrical 

distortion of 3.10 when it interacts with DNA, but it may also be a local medium effect.  

To quantify the affinity of 3.10 for DNA in the presence of 0.1 mM SA, the absorbances at 412 

and 432 nm were plotted as a function of the concentration of DNA (Figure 3.33, see appendix, 

Tables A55.46). 
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Figure 3.33: Absorbance at 412 nm (■) and at 432 nm (●) for a solution of 0.0236 mM 3.10 as 

a function of DNA concentration in the presence of 0.1 mM SA, in buffer (25 mM MOPS, pH 

7.0, 50 mM NaCl) at 25 °C. The solid lines represent a global fit of a multiple independent sites 

model to the data. 

Figure 3.33 shows the absorbances at 412 nm and at 432 nm. The data at 412 nm predominantly 

represent free ligand, and the data at 432 nm represent the DNA-ligand complex. Therefore, by 

adding more DNA the amount of free ligand decreases as the ligand binds to DNA. The 

bathochromic shift is explained as increased conjugation resulting from increased planarity 

upon binding to DNA. The binding affinity Kbinding and binding sites size n were determined by 

fitting a multiple independent binding sites model, which also takes ligand dilution into account, 

to the data. The fit gives an equilibrium constant Kbinding of (2.1×10−2 ± 1.6) ×104 M−1 for a 

binding site size of (1×10−1 ± 8.7) base pairs. A Kbinding of (3.9×10−1 ± 1.4) ×104 M−1 for a 

binding site size of (1.3 ± 4.4) base pairs was observed for 3.10 to DNA in the absence of SA. 

The obtained stoichiometry was unreasonably small. Therefore, the data were reanalysed with 

the stoichiometry restricted to 3.0 base pairs to allow comparison, giving an apparent 

equilibrium constant Kbinding of (6.0 ± 0.5) ×103 M−1. A Kbinding of (6.9 ± 0.7) ×103 M−1 for the 
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binding site size restricted to 3.0 base pairs was observed for 3.10 to DNA in the absence of 

SA. From the similarity in the binding constant, it appears that SA does not significantly 

compete with DNA for 3.10. The absence of this competition is beneficial if 3.10 were to be 

used in a biosensor. 

 

3.2.18 Compound 3.11 binding to DNA in the presence of 0.1 mM SA 

The binding of 3.11 to DNA in the presence of 0.1 mM SA was studied using UV−visible 

spectroscopy. The changes in absorption of 3.11 upon addition of DNA in the presence of SA 

were measured in buffer (25 mM MOPS pH 7.0, 50 mM NaCl) at 25 °C (Figure 3.34). 
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Figure 3.34: UV-visible spectra for 0.024 mM 3.11 upon addition of 0 – 3.3 mM DNA in the 

presence of 0.1 mM SA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

In the studies, 3.11 showed a red shift in absorbance upon addition of DNA with maximum 

changes in absorbance at 343 and 375 nm in the presence of 0.1 mM SA. We recognised 

isosbestic points suggesting that only two forms of the DNA binder are involved in the titration, 

viz. the free ligand and DNA−bound ligand. The change in UV-visible absorption may occur 

as a result of geometrical distortion of 3.11 when it interacts with DNA in the presence of SA, 

but it may also be a local medium effect. 

To quantify the affinity of 3.11 for DNA in the presence of SA, the absorbances at 343 and  

375 nm were plotted as a function of the concentration of DNA in the presence of SA (Figure 

3.35, see appendix, Tables A55.47). 
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Figure 3.35: Absorbance at 343 and 375 nm for the solution of 0.024 mM 3.11 as a function 

of DNA in the presence of 0.1 mM SA, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). 

The solid lines represent a global fit of a multiple independent sites model to the data. 

Figure 3.35 shows a clear decrease at 343 nm and an increase at 375 nm in absorbance for 3.11 

upon addition of DNA in the presence of 0.1 mM SA. The binding affinity Kbinding and binding 

sites size n were determined by fitting a multiple independent binding sites model, which also 

takes simple dilution into account, to the data. The ligand strongly interacts with DNA giving 

an equilibrium constant Kbinding of (1.3 ± 2.4) ×105 M−1 for a binding site size of (12.5 ± 11.0) 

base pairs. A Kbinding of (6.5± 0.47) ×104 M−1 for a binding site size of (8.0 ± 3.2) base pairs was 

observed for 3.11 binding to DNA in the absence of SA. The data were reanalysed, with the 

stoichiometry restricted to 3.0 base pairs, to allow comparison, giving an apparent equilibrium 

constant Kbinding of (1.6 ± 0.6) ×104 M−1. A Kbinding of (1.6 ± 0.2) ×104 M−1 for the binding site 

size restricted to 3.0 base pairs was observed for 3.11 binding to DNA in the absence of SA. 

From the similarity in the binding constants, it appears that SA does not significantly compete 

with DNA for 3.11. 

 

3.2.19 Compound 3.12 binding to DNA in the presence of 0.1 mM SA 

The binding of 3.12 to DNA in the presence of 0.1 mM SA was studied using UV−visible 

spectroscopy. The changes in absorption of 3.12 upon addition of DNA in the presence of SA 

were measured in buffer (25 mM MOPS pH 7.0, 50 mM NaCl) at 25 °C (Figure 3.36). 
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Figure 3.36: UV-visible spectra for 0.023 mM 3.12 upon addition of 0 - 1.03 mM DNA in the 

presence of 0.1 mM SA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 3.36 shows a red shift in absorbance of 3.12 upon addition of DNA in the presence of 

0.1 mM SA. The change in UV-visible absorption most likely occur as a result of geometrical 

distortion of 3.12 when it interacts with DNA in the presence of SA, but a local medium effect 

may also contribute. 

To quantify the affinity of 3.12 for DNA in the presence of 0.1 mM SA, the absorbances at 367 

and 420 nm were plotted as a function of the concentration of DNA (Figure 3.37, see appendix, 

Tables A55.48). 
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Figure 3.37: Absorbance at 367 nm (■) and at 430 nm (●) for 0.0236 mM 3.12 as a function 

of DNA concentration, in the presence of 0.1 mM SA, at 25 °C in buffer (25 mM MOPS, pH 

7.0, 50 mM NaCl). The solid lines represent a global fit of a multiple independent binding sites 

model to the data. 
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Figure 3.37 shows the maximum decrease in absorbance at 367 nm and the highest increase  

in absorbance at 430 nm. The absorbance at 367 nm corresponds to the free ligand, and  

the absorbance 430 nm represents the DNA-ligand complex. The binding affinity and  

binding sites size were determined by fitting a multiple independent binding sites model,  

which also takes ligand dilution into account, to the data. The two lines give an equilibrium 

constant Kbinding of (7.5 ± 1.0) ×104 M−1 for a binding site size restricted at 3 base pairs. A Kbinding 

of (1.8 ± 0.38) ×105 M−1 for a binding site size restricted at 3 base pairs was observed for 3.12 

binding to DNA in the absence of SA. From the diffrences in binding constant in the presence 

of SA, it appears that SA does significantly compete with DNA for 3.12. 

 

Part D: Effect of transferrin on DNA- binding properties. 

3.2.20 Compounds 3.1 and 3.2 interacting with DNA in the presence of 0.1 mM TF 

We also wanted to quantify binding of 3.1 and 3.2 to DNA in the presence 0.1 mM TF. The 

changes in absorption of 3.1 and 3.2 upon addition of DNA in the presence of TF were measured 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 3.38). 
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Figure 3.38: UV-visible spectra for 0.063 mM 3.1 upon addition of 0 – 2.3 mM DNA in the 

presence of 0.053 mM TF, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl) (left). UV-

visible spectra for 0.53 mM of TF in the absence of ligand 3.1 (right). 

The absorbance in the range of 400 − 600 nm increases upon addition of TF because of the high 

absorption and scattering of light by TF in the solution as confirmed by the spectrum for TF 

alone Figure 3.39 (right). Figure 3.39 then shows a hypochromic shift in absorbance at 444 nm 

followed by a hyperchromic shift at 444 nm upon addition of DNA in the presence of 0.053 

mM TF. This change in UV-visible absorption at 444 nm may occur because of geometrical 
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distortion of 3.1 when it interacts with DNA in the presence of TF, but it may also be a local 

medium effect.  

To quantify the affinity of 3.1 for DNA in the presence of TF, the absorbances at 444 nm were 

plotted as a function of the concentration of DNA after subtraction of the spectrum of TF alone 

(Figure 3.39, see appendix, Tables A55.49). 
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Figure 3.39: Absorbance at 444 nm for 0.063 mM 3.1 as a function of DNA concentration of 

0 – 0.12 mM (■) and 0.24 – 2.3 mM (●), in the presence of 0.053 mM TF at 25 °C in buffer  

(25 mM MOPS pH 7, 50 mM NaCl). The solid line represents a fit of a multiple independent 

binding sites model to the data in the 0.24 – 2.3 mM range. 

Figure 3.39 shows two events. The first event shows a fast decrease in the absorbance upon 

addition of DNA up to a concentration of 0.24 mM DNA (first two data points in Figure 3.38). 

We attribute this decline in absorbance to strong binding of 3.1 to the sugar-phosphate backbone 

of DNA at low concentration of DNA with a high concentration of ligand, leading to 

precipitation as a result of charge neutralisation of the 3.1- DNA complex in the presence of 

TF, as also observed previously in the absence of TF. The second event shows a clear increase 

in the absorbance of 3.1 upon addition of 0.24– 2.3 mM of DNA in the presence of 0.053 mM 

of TF. The ligand strongly interacts with DNA, and the titration data in Figure 3.40 (with the 

first event not included) were analysed in terms of a multiple independent binding sites models, 

which also takes ligand dilution into account. The equilibrium constant K binding was found to be 

(5.0 ± 7.5) ×105 M−1 for a binding site size of (11.7 ± 2.9) base pairs. The data were re analysed 
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with the stoichiometry restricted to 3.0 base pairs, giving an apparent equilibrium constant 

Kbinding of (7.6 ± 5.6) ×104 M−1. A Kbinding of (1.5 ± 0.1) × 104 M−1 for the binding site size 

restricted to 3.0 base pairs was observed for 3.1 binding to DNA in the absence of TF. From 

the similarity in the apparent binding constants in the absence of TF and the presence of TF172, 

it appears that TF does not significantly compete with DNA for 3.1. Unfortunately, our data 

show that TF does not help to avoid precipitation. On the other hand, the absence of this 

competition is beneficial if compound 3.1 were to be used in a biosensor because it means that 

TF will not cause false negatives. Similar data was observed for 3.2 (See appendix A16, Tables 

A55.50). 
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Summary 

The results of UV-visible titrations for cationic compounds 3.1, 3.2, 3.3 3.4, 3.5, 3.6, 3.7, 3.8, 

3.9, 3.10, 3.11 and 3.12 with DNA in the presence of SA are summarised in Table 3.3. 

Table 3.3 Binding affinities and binding site sizes for binding of 3.1 - 3.12 to DNA and the 

effect of SA on DNA-binding in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C. 

Ligands 

Binding affinities 

for SA  

K / M−1 

Binding affinities 

for DNA 

K / M−1 

Binding affinities 

for DNA +SA 

K / M−1 

Effect of SA 

on affinity for 

DNA 

3.1 
(1.5 ± 1.2) × 105 

n = 0.18 ± 0.06 

(1.5 ± 0.1) × 104 

n = 3* a 

(2.6 ± 0.8) × 104 

n = 3* a 
No change 

3.2 
(2.0 ± 0.3) × 104 

n = 0.1* 

(6.4 ± 1.6) × 104 

n =3* a 

(1.5 ± 0.1) × 104 

n = 3* a 
Decrease 

3.3 
(1.16 ± 0.6) ×104 

n = 0.5* 

(1.7 ± 0.4) × 104 

n = 3* 

(6.7 ± 2.3) × 104 

n = 3* 
Increase 

3.4 
No binding (5.4 ± 0.3) × 104 

n = 3* 

(4.2 ± 0.2) × 104 

n = 3* 
Decrease 

3.5 
No binding (8.9 ± 2.3) × 104 

n = 3* 

(6.5 ± 0.4) × 104 

n = 3* 
No change 

3.6 
No binding (11.6 ± 2.7) × 104 

n = 1* 

(4.6 ± 1.4) × 103 

n = 1* 
Decrease 

3.7 
(2.2 ±0.5) ×104 

n= 0.5 * 

(7.7 ± 1.5) × 105 

n =3* 

(7.9 ± 6.2) × 105 

n =3* 
No change 

3.8 
No binding (4.4 ± 0.5) × 105 

n = 3* 

(2.5 ± 1.6) × 105 

n = 3* 
No change 

3.10 
No binding 

 

(6.9 ± 0.7) × 103 

n = 3* 

(6.0 ± 0.5) × 103 

n = 3* 
No change 

3.11 
No binding (1.6 ± 0.6) × 104 

n = 3* 

(1.6 ± 0.2) × 104 

n=3* 
No change 

3.12 
No binding (1.8 ± 0.38) ×105 

n = 3* 

(7.5 ± 1.0) × 104 

n = 3* 
Decrease 

a. apparent binding constant for the event following initial precipitation. 

b. *restricted. 



Chapter three 

95 
 

To see if the affinities is increase or decrease, we need to compare affinities, taking their error 

margin into account. We did this as follows. 

The confidence interval was taken as and we checked whether the 

confidence intervals for the affinity in the absence and presence of the additive overlapped. For 

example, for the first entry in Table 3.3, the affinity in the absence of SA is (1.5 ± 0.1) × 104 

which corresponds to a confidence interval of 1.6×104 M-1 to 1.7×104 M-1. In the presence of 

SA, the confidence interval for the affinity is 1.8×104 M-1 to 3.4×104 M-1. These two confidence 

intervals overlap, and the parameters are therefore considered the same within error. 

Table 3.3 shows that all cationic oligoheteroaromatic compounds continue to interact with DNA 

in the presence of SA. We also compared the affinity between ligands and DNA in the presence 

and absence of serum albumin. We found ligands 3.1, 3.5, 3.7, 3.8, 3.10 and 3.11 do not show 

change in affinity for DNA. It appears that serum albumin does not significantly compete with 

DNA for these ligands. The absence of this competition is beneficial if these molecules were to 

be used in a biosensor because it means that SA would not cause false negatives. Decreases in 

affinity were observed for four ligands: 3.2, 3.4, 3.6 and 3.12. This could mean that these 

sensitisers bind to SA and lead to a decrease in apparent Kbinding and this could potentially give 

rise to false negative results. Another parameter to consider is the binding constant (a) for 

binding following initial precipitation of 3.1, 3.2 with DNA, which occurs through two events. 

The first event happens at low concentration of DNA and high concentration of ligand, leading 

to the precipitation of charge-neutralised ligands to form DNA complexes. The second event 

occurs at high concentration of DNA, where the ligand binds to main binding sites of DNA. 

Table 3.3 shows that binding of 3.1 to DNA is essentially unaffected by the presence of 0.1 mM 

SA. Binding of 3.2 to DNA is weaker in the presence of 0.1 mM SA. This observation is rather 

surprising because, according to Table 3.1, 3.1 has a higher affinity of SA than 3.2. We therefore 

expected competition to be stronger in the case of 3.1. 

 An increase in the affinity of 3.3 for DNA was observed in presence of SA, an effect attributed 

to sensitisers binding to SA instead of to the DNA backbone and increasing Kbinding and this 

could cause false positives 3.3. 
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Summary  

The effect of the presence of TF on the affinities of 3.1 and 3.2 for DNA are summarised in 

Table 3.4. 

Table 3.4 Binding affinities and binding site sizes for binding of 3.1 and 3.2 to DNA and 

the effect of TF on DNA-binding in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C. 

Ligands 

Binding affinities 

for DNA  

 K / M−1 

Binding affinities 

for DNA +TF 

 K / M−1 

Binding site 

size 

n 

3.1 (1.5 ± 0.1) ×104 a (7.6 ± 5.6) × 104 a 3* 

3.2 (6.4 ± 1.6) ×104 a (1.1 ± 0.4) ×105 a 3* 

a) apparent binding constant for the event following initial precipitation. 

b) *restricted. 

Table 3.4 describes the binding that occurred between 3.1 and 3.2 and DNA in the presence of 

biomolecules TF. Compounds 3.1 and 3.2 shows an increase in the affinity. 
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3.3 Conclusion  

This chapter presents the results of binding studies between ligands and (bio)macromolecules 

serum albumin, transferrin and the effect of serum albumin and transferrin on DNA-binding 

properties. Binding is accompanied by a change in optoelectronic properties of the compounds. 

The affinities for ligands were between 103 and 105 M−1 with different binding site and binding 

site sizes within a range of 0.1 to 6.0. 

Compounds 3.1 and 3.2 bind to serum albumin and transferrin. These ligands interact with a 

hypochromic shift, and the binding site are (0.1- 0.5). The number of binding sites in SA and 

TF is measured by (1/n). The binding suggests that the ligands bind to the protein within 

hydrophobic pockets and also involving electrostatic interactions. The aromatic rings of the 

conjugated compounds probably interact with a hydrophobic area of albumin and transferrin. 

All titration curves had to be corrected to remove the scattering effect of SA and TF from 

absorbances. 

As for the UV-visible results of 3.1 and 3.2 binding to DNA, the trends show two binding events 

with a low ratio of DNA/ligands interacting, leading to precipitation of ligand-DNA complex. 

During the second event with high ratio DNA/ligands, molecules bind to the main site in the 

minor groove or as an intercalator of DNA.  

Our studies also demonstrated that the majority of cationic oligoheteroaromatics explored 

reveal good binding with DNA in the presence of serum albumin from the comparison of 

affinity which suggests that there is no effect of serum albumin on DNA biosensors. Four 

ligands 3.2, 3.4, 3.10, 3.11 and 3.12 exhibit decreased affinity, which could lead to false 

negatives. We also observed an increase in the binding constant of ligand 3.3, which means 

false positives can exist. 

 

3.4 Materials   

Serum albumin SA and TF were purchased from Sigma-Aldrich as solids. The buffer 

components were purchased from Melford Laboratories Ltd and Sigma-Aldrich. 

 

3.5 Solutions preparation  

3.5.1 SA and TF preparation 

The experiments were carried out in buffer (25 mM MOPS, 50 mM NaCl, pH 7.0, at 25 °C). 

Serum albumin solution was prepared by dissolving in MOPS buffer and sonicating for about 
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15 minutes. The SA solution was dialysed against 2000 mL of the buffer using a 3.5 kDa 

MWCO dialysis membrane for 24 hours. SA concentration was determined 

spectrophotometrically using ɛ 278 nm 
178 = 43824 M−1 cm−1. Transferrin was dissolved in MOPS 

buffer to prepare a 1.0 mM solution. Most experiments needed correction of the absorption to 

remove scattering of light by proteins as shown below. 

 

3.5.2 DNA preparation 

To prepare deoxyribonucleic acid (DNA), a stock solution of DNA was prepared by weight 

(around 0.12 g) by dissolving DNA in MOPS buffer. After that the solution of DNA was 

sonicated around 15 minutes. The solution of DNA was dialysed against 2.0 litre of MOPS 

buffer using a 3.5 kDa MWCO dialysis membrane for one day. The concentration of DNA  

was determined using UV-visible spectroscopy with the following extinction coefficient  

ɛ 260 nm= 12800 M-1 cm-1 at 260 nm 177 by using Eqn 3.1. 

 ……. 3.1 

 

where, A= absorbance, Ɩ= path length, C= concentration, ɛ= extinction coefficient  

 …….. 3.2 

  

 

 

 

…….. 3.3 

 

 

3.6 Calculations the binding site of macromolecules 

The stoichiometry of the interaction between ligands and proteins is typically expressed in 

terms of numbers of binding sites. We calculated the binding site of protein and DNA. 

1. Protein concentration is protein (folding) , not as an amino acid. 

2.  Binding site of protein = [Protein] / number of binding site per protein molecule. 

 …..... 3.4 

3. Whereas binding site size for DNA concentration in [M] base pairs (b.p). 
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        …….. 3.5 

  

 
          ..…... 3.6 

 

 

3.7 Corrected absorption 

UV-visible titrations were carried out by adding aliquots of the concentrated stock solution of 

the protein to the buffer without adding a ligand. 

The absorptivity of the (Bio)macromolecules in MOPS buffer at the absorbance of the ligand 

was recorded as a function of the concentration of (Bio)macromolecules. This provided ɛ at the 

wavelength of interest. 

Predicted absorbances were calculated by multiplying molar absorptivity (ɛ) of biomolecules 

at the absorbance region for ligand by the concentration of the (Bio)macromolecules. 

The corrected absorbances were calculated by subtracting the predict absorbances from the 

absorbances of macromolecules with the ligand. 

 



 

 

 

 

 

 

Chapter Four 

 

The effect of negatively charged biopolymers on DNA-binding 

properties of π-conjugated ligands 
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Abstract 

Chapter four presents the results of our studies of the interactions of the negatively charged 

biopolymers hyaluronic acid (HA) and alginic acid (AA) with our π-conjugated compounds and 

the effect of the presence of HA and AA on the DNA − binding parameters of sensitisers for 

biosensors. We found that compounds 4.1 and 4.7 bind to HA in a moderately strong fashion 

and that 4.1 and 4.2 interact with AA. 

We further studied the effect of these biopolymers on the DNA affinity of our potential 

sensitisers and compared the binding of ligands to DNA in the absence and in the presence of 

HA and AA. We found that ligands 4.4, 4.5, 4.10, 4.11 and 4.12 do not show any change in 

affinity for DNA in the presence of HA or AA. Our work also demonstrates a decrease in 

affinity of molecules 4.2, 4.7 and 4.8 for DNA in the presence AA, suggesting that these 

potential sensitisers could bind to the biopolymer and this binding leads to decreased apparent 

Kbinding. Such a decrease could be a source for a false negative result. An increase in the apparent 

affinity of 4.1 for DNA in the presence of HA was also observed. This effect is attributed to 

sensitisers binding to biopolymers, suppressing weak binding in secondary binding sites on 

DNA thus increasing the apparent Kbinding. This effect could cause false positives but could also 

be used to make these sensors more sensitive.  
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4.1 Introduction 

4.1.1 The effect of biopolymers on biosensors  

The presence of negatively charged biopolymers can affect the performance of biosensors 

involving a DNA probe and surface passivation using 6-mercapto -1-hexanol. 

The interactions between sensitisers and biopolymers and how these interactions might affect 

biosensor functioning can be studied using several techniques such as UV-visible spectroscopy, 

isothermal titration calorimetry (ITC) and circular dichroism spectroscopy. These methods 

allow the study of the different parameters describing interactions of sensitisers with DNA and 

how they change upon potential binding of these sensitisers to added macromolecules. 

 

4.1.2 Negatively charged biopolymers 

In this chapter, we selected negatively charged biopolymers as shown in Scheme 4.1. HA 

(C14H21NO11) n is a biopolymer of disaccharides, which contains D-glucuronic acid and N-

acetyl-D-glucosamine connected together by β-(1-4) and β-(1-3) glycoside bonds. HA has an 

average weight around 3–4 million Da.179-180 

Alginic acid (C6H8O6) n is a natural anionic polysaccharide composed of two types of uronic 

acid: mannuronic acid (M) and guluronic acid. (G). The polymer presents functional groups 

like carboxyl groups within the M and G units. These groups can be ion-exchanged and can 

bind to different types of cationic molecules. Alginic acid has many commercial applications 

including as an additive in the dehydrated product, waterproofing and pharmaceuticals. 

 

Scheme 4.1: Chemical structures of AA and HA 

4.1.3 Aims 

Our aims in Chapter four are to measure the binding parameters and binding site sizes for the 

molecules in Scheme 4.2 interacting with negative biopolymers HA and AA. We also study the 

effect of the presence of HA and AA on the DNA-binding parameters of these π-conjugated 

molecules.  
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4.2 Results and Discussion 

The results of our binding studies for compounds 4.1-4.12 with biopolymers HA and AA, and 

the effect of these negatively charged biopolymers on interactions of small molecules with 

DNA will be provided and discussed for each compound. 

 

Part A: Hyaluronic acid binding studies 

4.2.1 Compound 4.1 binding to HA 

We wanted to know whether 4.1 binds to HA, the changes in absorption of 4.1 upon addition 

of HA were measured in buffer (25 mM MOPS, 50 mM NaCl) at 25 °C (Figure 4.1). 
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Figure 4.1: UV-visible spectra for 0.019 mM 4.1 upon addition of 0 - 0.35 mM HA, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 4.1 shows that compound 4.1 presents a hypochromic shift in absorbance upon addition 

of HA with a maximum change in absorbance at 448 nm. This decrease in UV-visible 

absorption may have occurred as a result of geometrical distortion of 4.1 when it interacts with 

HA, but it may also be as a consequence of a local medium effect exerted by the HA binding 

site. 

To quantify the affinity of 4.1 for HA, the absorbance at 448 nm were plotted as a function of 

the concentration of HA (Figure 4.2, see Appendix, Tables A55.51). 
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Figure 4.2: Absorbance at 448 nm for 0.019 mM 4.1 upon addition of 0 – 0.35 mM HA, at  

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid line represents the best fit to 

the data fit in terms of a multiple independent binding sites model. 

Figure 4.2 shows a decrease in the absorbance at 448 nm for 4.1 upon addition of HA. The 

binding affinity Kbinding and binding sites size n were determined by fitting a multiple 

independent binding sites model, which also takes ligand dilution into account, to the data. The 

fit reproduces the data well and gives a binding constant Kbinding of (3.0 ±0.96) × 105 M−1 for a 

binding site size restricted to 3 monomeric unit per molecule of 4.1. The obtained values for 

the binding site size and binding constant seem reasonable. The fit suggests that 4.1 interacts 

with HA and we hypothesise that binding is due to electrostatic interaction. 

 

4.2.2 Compound 4.7 binding to HA  

We wanted to know the binding of 4.7 and HA was studied using UV-visible spectroscopy. The 

changes in absorption of 4.7 upon addition of HA were measured in buffer (25 mM MOPS, pH 

7.0, 50 mM NaCl), at 25 °C (Figure 4.3). 
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Figure 4.3: UV-visible spectra for 0.021 mM 4.7 upon addition of 0 – 1.8 mM HA, at 25 °C in 

buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 4.3 illustrates that 4.7 exhibits a hypochromic shift in its absorbance upon addition of 

HA, with a maximum change in absorbance at 339 nm. This decrease in UV-visible absorption 

may occur as a result of geometrical distortion of 4.7 when it interacts with HA, but it is more 

likely a result of a local medium effect considering  not change significantly. 

To quantify the affinity of 4.7 for HA, we plotted the absorbance at 339 nm as a function of the 

concentration of HA (Figure 4.4, see Appendix, Tables A55.55). 
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Figure 4.4: Absorbance at 339 nm for 0.021 mM 4.7 as a function of HA, at 25 °C in buffer 

(25 mM MOPS, pH 7.0, 50 mM NaCl). The solid line represents the best fit to the data in terms 

of a multiple independent binding sites model. 
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Figure 4.4 shows the decrease in absorbance at 339 nm for 4.7 upon addition HA. The binding 

affinity Kbinding and binding site size n were determined by fitting a multiple independent binding 

sites model, which also takes ligand dilution into account, to the data. The fit reproduces the 

data well and corresponds to an equilibrium constant Kbinding of (2×10−3±1.2) ×105 M−1 for a 

binding site size of (1×10−1 ± 60.1) monomeric units per molecule of 4.7. The obtained 

stoichiometry was unreasonably and had a large error margin. Therefore, the data were 

reanalysed with the stoichiometry restricted to 1, because this stoichiometry corresponds to 

each a positive charge on 4.7 engaging in electrostatic binding with a negative charge on HA. 

This an alysis gives anapparent bindingconstantof (2.0 ± 0.5) × 103 M−1.Similarly, the 

interactions of 4.2, 4.4, 4.5, 4.8, 4.10, 4.11 and 4.12 with HA were studied (see appendix A17-

A23). These interactions were found to be negligible. 
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Summary 

The results of UV-visible titrations for 4.1 and 4.7 with HA show that these molecules interact 

with HA. Compounds 4.2, 4.4, 4.5, 4.8, 4.10 - 4.12 do not show binding. The binding constant 

and stoichiometry for these ligands and HA are summarised in Table 4.1. 

Table 4.1 Binding affinities and binding site sizes for the binding of 4.1, 4.2, 4.4, 4.5, 4.6, 

4.7, 4.8, 4.9, 4.10, 4.11 and 4.12 to HA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl)  

at 25 °C. 

Ligands 
Binding constant for HA 

K / M−1 

Binding site 

n  

4.1 (3.09 ± 0.96) × 105 3* 

4.2 No binding  

4.4 No binding  

4.5 No binding  

4.7   (2.0 ± 0.5) ×103  1* 

4.8 No binding  

4.10 No binding  

4.11 No binding  

4.12 No binding  

* restricted. 

Table 4.1 shows that only ligands 4.1 and 4.7 bind to hyaluronic acid. We attribute this binding 

to the interaction between the negatively charged COO− on the biopolymer and the positively 

charged NH3
+ on the molecules. The highest affinity is for 4.1 with a binding constant of  

105 M−1. The low affinity of 4.7 for HA may be attributed to the structure of ligand which does 

not fit with HA. 
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Part B: Effect of HA on DNA-binding  

4.2.3 Compounds 4.1 and 4.2 binding to DNA in the presence of 0.3 mM HA 

We wanted to evaluate the binding of 4.1 and 4.2 with DNA in the presence of 0.3 mM HA. 

The changes in absorption of 4.1 and 4.2 upon addition of DNA in the presence of 0.3 mM HA 

were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25° C. Data for 4.1 is shown 

in Figure 4.5. For the analogous data for 4.2, see Appendix. A24 (Figure A24.1 and Figure 

A24.2, for data in tabular format, see appendix, Tables A55.60). 
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Figure 4.5: UV-visible spectra for 0.045 mM 4.1 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of HA and subsequent spectra for 4.1 in the presence of 0.3 mM 

HA upon addition of 0 – 1.2 mM DNA, at 25 °C. 

Figure 4.5 shows two events upon addition of DNA in the presence of 0.3 mM HA. The first 

event involves a hypochromic shift in absorbance at 443 nm upon addition HA. The second 

shows a hyperchromic shift at 443 nm of 4.1. The change in UV-visible absorption may occur 

as a result of geometrical distortion of 4.1 when it interacts with DNA in presence HA, but it 

may also be a local medium effect. The observation of a rapid decrease in absorbance followed 

by increase suggests precipitation and subsequent dissolution of a DNA-ligand complex in the 

presence of 0.3mM HA. This, in turn, suggests that the two-species involved in the second 

equilibrium are 4.1 in primary and secondary sites. 

To quantify the affinity of 4.1 for DNA in the presence of 0.3 mM HA, the absorbance at  

443 nm were plotted as a function of the concentration of DNA (Figure 4.6, see Appendix, 

Tables A55.60). 
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Figure 4.6: Absorbance at 443 nm for 0.045 mM 4.1 in the absence of HA (▼) and subsequent 

spectra for 4.1 in the presence of 0.3 mM HA (►) and as a function of DNA concentration of  

0 - 0.067 mM (●) and 0.13 - 1.2 mM (■) both in the presence of 0.3 mM HA, at 25 °C in buffer 

(25 mM MOPS, pH 7, 50 mM NaCl). The solid red line represents a fit of a multiple 

independent sites model to the data in the 0.13 - 1.2 mM range (■). 

Figure 4.6 shows two events. The first event corresponds to a fast decrease in absorbance upon 

addition 0.3 mM HA (►) with a subsequent continued decrease in absorbance upon addition 

of DNA up to a concentration of 0.067 mM (● in Figure 4.7). We attribute this decrease in 

absorbance to strong binding of 4.1 to HA and to the sugar-phosphate backbone of DNA at low 

concentration of DNA with a high concentration of ligand, i.e. a high ligand / DNA ratio. These 

conditions lead to precipitation as a result of charge neutralisation in the 4.1-HA and 4.1-DNA 

complexes. For the 4.1-DNA complex, this is as also observed previously in the absence of 

HA.172 The second event shows a clear increase in the absorbance of 4.1 upon addition of  

0.13 - 1.2 mM DNA in the presence of 0.3 mM of HA. The ligand strongly interacts with DNA, 

and the titration data in Figure 4.7 (with the first event not included) were analysed in terms of 

a multiple independent binding sites models, which also takes ligand dilution into account.  

An apparent equilibrium constant Kbinding of (2.3 ± 1.5) ×105 M−1 for a binding site size of 

(7.1 ± 1.5) base pairs was found. A Kbinding of (1.5 ± 0.1) × 104 M─1 for the binding site size 

restricted to 3.0 base pairs was observed for 4.1 to DNA in the absence of HA.172 Therefore, 

the data were reanalysed with the stoichiometry restricted to 3.0 base pairs to allow comparison, 

giving an apparent equilibrium constant Kbinding of (5.3 ± 1.4) × 104 M─1. From the difference 

in the apparent binding constant in the absence of HA172 and in the presence of HA, it appears 
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that HA does compete with DNA for 4.1. Unfortunately, HA does not help to avoid 

precipitation. On the other hand, the presence of this competition is beneficial if the compound 

4.1 were to be used in a biosensor because it can be used to provide signals to detect DNA 

hybridization information and the presence of HA could avoid nonspecific interactions. 

 

4.2.4 Compound 4.4 binding with DNA in the presence of 0.3 mM HA 

We wanted to know whether the binding of 4.4 to DNA in the presence 0.3 mM HA. The 

changes in absorption of 4.4 upon addition of DNA were measured in buffer (25 mM MOPS 

pH 7.0, 50 mM NaCl) at 25 °C (Figure 4.7). 
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Figure 4.7: UV-visible spectra for 0.055 mM 4.4 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of HA and subsequent spectra for 4.4 in the presence of 0.3 mM 

HA upon addition of 0 – 1.23 mM DNA, at 25 °C. 

In the studies, 4.4 showed a hypochromic shift in absorbance with a maximum change in 

absorbance at 434 nm upon addition of DNA in the presence of 0.3 mM HA. This decrease in 

UV-visible absorption may have occurred as a result of geometrical distortion of 4.4 when it 

interacts with DNA in the presence of HA, but it may also be as a result of a local medium 

effect.  

To quantify the affinity of 4.4 for DNA, the absorbance at 434 nm were plotted as a function of 

the concentration of DNA (Figure 4.8, see Appendix, Tables A55.62). 
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Figure 4.8: Absorbance at 434 nm for 0.055 mM 4.4 as a function of DNA concentration in 

the presence of 0.3 mM HA, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The solid 

line represents the best fit to the data in terms of a multiple independent binding sites model. 

Figure 4.8 shows a decrease in the absorbance at 434 nm for 4.4 upon addition of DNA in the 

presence of HA. The binding affinity Kbinding and the binding sites size n were determined by 

fitting a multiple independent binding sites model, which also takes ligand dilution into account, 

to the data. The fit gives an equilibrium constant Kbinding of (3.8 ± 0.5) × 104 M−1 for a binding 

site size of (2.7 ± 0.2). A Kbinding of (3.4 ± 0.6) × 104 M−1 for a binding site size (2.3 ± 0.2) base 

pairs was observed for 4.4 interacting with DNA in the absence of HA. From the similarity in 

the binding constant, it appears that HA does not significantly compete with DNA for 4.4.  

 

4.2.5 Compound 4.5 binding with DNA in the presence of 0.2 mM HA 

We wanted to know whether 4.5 binds to DNA in the presence 0.2 mM HA using UV-visible 

spectroscopy. The changes in absorption of 4.5 upon addition of DNA were measured in buffer 

(25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 4.9). 
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Figure 4.9: UV-visible spectra for 0.063 mM 4.5 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of HA and subsequent spectra for 4.5 in the presence of 0.2 mM 

HA upon addition of 0 – 1.7 mM DNA, at 25 °C. 

In the studies, 4.5 showed a decrease in absorbance upon addition of DNA with a maximum 

change in absorbance at 444 nm in the presence of 0.2 mM HA. This decrease in UV-visible 

absorption may have occurred as a result of geometrical distortion of 4.5 when it interacts with 

DNA without care to HA, but it may also be as a result of a local medium effect.  

To quantify the affinity of 4.5 for DNA in the presence of 0.2 mM HA, the absorbance at  

444 nm were plotted as a function of the concentration of DNA (Figure 4.10, see appendix, 

Tables A55.63).  
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Figure 4.10: Absorbance at 444 nm for 0.063 mM 4.5 as a function of DNA in the presence of 

0.2 mM HA, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The solid line represents 

the best fit to the data in terms of a multiple independent binding sites model, which also takes 

into account dilution (which causes the continued decrease in absorbance after binding of all 

ligand molecules). 



Chapter four 

113 
 

Figure 4.10 shows the decrease in the absorbance at 444 nm for 4.5 upon addition of DNA in 

the presence of 0.2 mM HA. The binding affinity Kbinding and binding sites size n were 

determined by fitting a multiple independent binding sites model, which also takes ligand 

dilution into account, to the data, giving an equilibrium constant Kbinding of (5.9 ± 9.0) × 103 M−1 

for a binding site size of (0.6 ± 0.7) base pairs. The obtained stoichiometry was unreasonable 

small, although in good agreement with data for 4.5 interacting with DNA in the absence of 

HA, which gives a binding constant of (1.6 ± 0.7) ×104 M−1 for a binding site size (1.2 ± 0.3). 

Therefore, the data were reanalysed with the stoichiometry restricted to 3.0 base pairs, giving 

an equilibrium constant Kbinding of (6.3 ± 1.3) ×104 M−1. A Kbinding of (8.9 ± 2.3) ×104 M−1 for a 

binding site size restricted to 3.0 base pairs was observed for 4.5 DNA interacting within the 

absence of HA. From the similarity in the binding constants, it appears that HA does not 

significantly compete with DNA for 4.5. 

 

4.2.6 Compound 4.7 binding with DNA in the presence of 0.1 mM HA 

We investigate the binding of 4.7 to DNA in the presence 0.1 mM HA. The changes in 

absorption of 4.7 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0,  

50 mM NaCl) at 25 °C (Figure 4.11). 
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Figure 4.11: UV-visible spectra for 0.018 mM 4.7 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of HA and subsequent spectra for 4.7 in the presence of 0.1 mM 

HA upon addition of 0 – 2.1 mM DNA, at 25 °C. 
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Figure 4.11 shows a hypochromic and hyperchromic shift in absorbance at 360 nm upon 

addition of DNA in the presence of 0.1 mM HA. The first rapid decrease is attributed to 

precipitation of 4.7 -DNA complexes at high 4.7 / DNA ratio. The subsequent increase in UV-

visible absorption may occur as a result of geometrical distortion of 4.7 when it interacts with 

DNA in the presence of HA, but it may also be a local medium effect.  

To quantify the apparent affinity of 4.7 for DNA in the presence of 0.1 mM HA, the absorbance 

at 360 nm were plotted as a function of the concentration of DNA (Figure 4.12, see Appendix, 

Tables A55.64). 
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Figure 4.12: Absorbance at 360 nm for 0.018 mM 4.7 in the absence of HA (▼) and subsequent 

spectra for 4.7 in the presence of 0.1 mM HA (●) and upon addition of 0.013 – 2.1 mM DNA 

in the presence of HA (■), at 25 °C.in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The solid 

line represents a fit of a multiple independent binding sites model to the data in the 0 013 – 2.1 

mM range (■). 

Figure 4.12 shows two events. The first event shows a decrease in absorbance upon addition 

0.1 mM HA (●). We attribute this decline in absorbance to the binding of 4.7 - HA. These 

conditions lead to precipitation as a result of charge neutralisation of the 4.7 - HA complex. 

The first addition of DNA results in a further decrease in absorbance which we attribute  

to formation of an insoluble complex between 4.7 and DNA, as was also observed in the 

absence of HA. The second event shows a clear increase in the absorbance of 4.7 upon addition 

of 0.013 – 2.1 mM DNA in the presence of 0.1 mM of HA. The titration data in Figure 4.13 

(with the first event not included) were analysed in terms of a multiple independent  

binding sites models, which also takes ligand dilution into account. The equilibrium constant 
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Kbinding of (8×10−3 ± 7.4) for a binding site size of (8×10−3 ± 7.1) base pairs were considered  

unreasonable. Therefore, the data were reanalysed with the stoichiometry restricted to 3.0 base 

pairs, giving an apparent equilibrium constant Kbinding of (2.8 ± 1.4) ×104 M−1. A Kbinding of  

(7.7 ± 1.5) ×105 M−1 for the binding site size restricted to 3.0 base pairs was observed for 4.7 

interacting with DNA in the absence of HA. From the differences in the apparent binding 

constant in the absence of HA and in the presence of HA, it appears that HA does significantly 

compete with DNA for 4.7. The presence of this competition is beneficial if the compound 4.7 

were to be used in a biosensor because it can be used to provide better signals to detect DNA 

hybridization because it could avoid nonspecific interactions. 

 

4.2.7 Compound 4.8 binding with DNA in the presence of 0.3 mM HA 

In order to explore the binding of 4.8 with DNA in the presence of 0.3 mM HA, the changes in 

absorption of 4.8 upon addition of DNA in the presence of 0.3 mM HA were measured in buffer 

(25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO) at 25 °C (Figure 4.13). 
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Figure 4.13: UV-visible spectra for 0.012 mM 4.8 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl, 10 vol-% DMSO) in the absence of HA and subsequent spectra for 4.8 in the 

presence of 0.3 mM HA upon addition of 0 – 1.5 mM DNA, at 25 °C. 

Figure 4.13 shows a hypochromic shift at 665 nm upon addition of DNA in the presence of  

0.3 mM HA. The decrease in UV-visible absorption may occur because of geometrical 

distortion of 4.8 when it interacts with DNA, or it is a result of the different local medium 

provided by the binding sites. 
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To quantify the affinity of 4.8 for DNA in the presence of 0.3 mM HA, the absorbances at  

665 nm were plotted as a function of the concentration of DNA (Figure 4.14, see Appendix, 

Tables A55.65). 
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Figure 4.14: Absorbance at 665 nm for 0.012 mM 4.8 as a function of DNA concentration in 

the presence of 0.3 mM HA, at 25 C in buffer (25 mM MOPS, pH 7, 50 mM NaCl, 10 vol-% 

DMSO). The solid line represents the best fit to the data in terms of a multiple independent 

binding sites model, which also takes into account dilution which causes the continued decrease 

in absorbance after binding of all ligand molecules. 

The titration curve in Figure 4.14 was evaluated by fitting a multiple independent binding sites 

model, which also takes simple dilution into account, to the data. The fit indicates a binding 

constant Kbinding of (5.7 ± 2.9) ×105 M−1 for a binding site size of (5.3 ± 0.9) base pairs. The 

obtained value of binding constant and binding site size n were reasonable. For comparison 

with data obtained in the absence of HA, the data were reanalysed with the binding site size 

restricted to 3.0, giving an equilibrium constant Kbinding of (1.7 ± 0.37) ×105 M−1. A Kbinding of 

(4.4 ± 0.5) × 105 M−1 for a binding site size restricted to 3.0 base pairs was observed for 4.8 to 

DNA in the absence of HA. From the difference in binding constant in the presence and absence 

of HA, it appears that HA does compete with DNA for 4.8. The presence of this competition is 

beneficial because it could reduce non-specific binding. 
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4.2.8 Compound 4.10 binding with DNA in the presence of 0.1 mM HA 

We wanted to study the binding of 4.10 to DNA in the presence 0.1 mM HA. The changes in 

absorption of 4.10 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0,  

50 mM NaCl) at 25 °C (Figure 4.15). 
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Figure 4.15: UV-visible spectra for 0.026 mM 4.10 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of HA and subsequent spectra for 4.10 in the presence of 0.1 mM 

HA upon addition of 0 – 1.45 mM DNA, at 25 °C. 

In the studies (Figure 4.15), 4.10 showed a red shift in absorbance upon addition of DNA with 

maximum changes in absorbance at 411 and 432 nm in the presence of 0.1 mM HA. This 

redshift UV-visible absorption has probably occurred as a result of geometrical distortion of 

4.10 when it interacts with DNA in the presence of HA, but it may also be as a result of a local 

medium effect. 

To quantify the affinity of 4.10 for DNA, the absorbance at 411 nm and 432 nm were plotted 

as a function of the concentration of DNA (Figure 4.16, see Appendix, Tables A55.66). 
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Figure 4.16: Absorbance at 411 nm (■) and at 432 nm (●) for 0.026 mM 4.10 as a function of 

DNA concentration in the presence of 0.1 mM HA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl). The solid lines represent a global fit of a multiple independent binding sites 

model to the data. 

Figure 4.16 shows a decrease in the absorbance of 4.10 at 411 nm (■) upon addition of DNA in 

the presence of 0.1 mM HA. The red line shows a clear increase in the absorbance of 4.10 at 

432 nm (●) upon addition of DNA in the presence of 0.1 mM HA. The titration curves in Figure 

4.17 were analysed globally by the fitting of a multiple independent binding sites model, which 

also takes simple dilution into account, to the data, giving an equilibrium constant Kbinding of 

(2.0 ± 8.8) ×103 M−1 for a binding site size of (0.8 ± 3.6) base pairs. The obtained value for the 

binding site size was unreasonable and had a large error margin. Therefore, the data of the 

titration curves were reanalysed, giving an equilibrium constant Kbinding of (7.6 ± 2.6) ×103 M−1 

for a binding site size restricted to 3.0 base pairs. A Kbinding of (6.7 ± 0.7) ×103 M−1 for a binding 

site size restricted to 3.0 base pairs was observed for 4.10 to DNA in the absence of HA. 

 

4.2.9 Compound 4.11 binding with DNA in the presence of 0.1 mM HA 

We wanted to know whether the binding of 4.11 to DNA in the presence 0.1 mM HA. The 

changes in absorption of 4.11 upon addition of DNA were measured in buffer (25 mM MOPS, 

pH 7.0, 50 mM NaCl) at 25 °C (Figure 4.17).  
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Figure 4.17: UV-visible spectra for 0.02 mM 4.11 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of HA and subsequent spectra for 4.11 in the presence of 0.3 mM 

HA upon addition of 0 – 1.9 mM DNA, at 25 °C. 

Figure 4.17 shows a hypochromic shift at 342 and 370 nm upon addition of DNA to 4.11 in the 

presence of 0.1 mM HA. This decrease in UV-visible absorption may occur as a result of 

geometrical distortion of 4.11 when it interacts with DNA in the presence of 0.1 mM HA or as 

a result of the different local medium provided by the binding sites. 

To quantify the affinity of 4.11 for DNA in the presence of HA, the absorbances at 342 and  

370 nm were plotted as a function of the concentration of DNA (Figure 4.18, see Appendix, 

Tables A55.67). 
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Figure 4.18: Absorbance at 342 nm and at 370 nm for 0.02 mM 4.11 as a function of DNA 

concentration in the presence of 0.1 mM HA, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM 

NaCl). The solid lines represent a global fit of a multiple independent binding sites model to 

the data. 

Figure 4.18 shows an obvious decrease at 342 nm and an increase at 370 nm upon addition of 

DNA in the presence of 0.1 mM of HA, as also observed previously in the absence of HA. We 

attribute this decrease and increase in absorbance to strong binding of 4.11 to DNA in the 

presence of 0.1 mM HA. The binding affinity Kbinding and binding site size n were determined 

by fitting a multiple independent binding sites model, which also takes ligand dilution  

into account, to the data. The ligand strongly interacts with DNA giving an equilibrium  

constant Kbinding of (2.2 ± 0.2) ×104 M−1 for a binding site size restricted to 3 base pairs. A Kbinding 

of (1.6 ± 0.2) ×104 M−1 for a binding site size restricted to 3.0 base pairs was observed for 4.11 

binding to DNA in the absence of HA. 
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4.2.10 Compound 4.12 binding with DNA in the presence of 0.1 mM HA 

We wanted to study whether the binding of 4.12 to DNA in the presence 0.1 mM HA. The 

changes in absorption of 4.12 upon addition of DNA in the presence 0.1 mM HA were measured 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 4.19). 
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Figure 4.19: UV-visible spectra for 0.021 mM 4.12 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of HA and subsequent spectra for 4.12 in the presence of 0.3 mM 

HA upon addition of 0 – 1.3 mM DNA, at 25 °C. 

Figure 4.19 shows a hypochromic shift in absorbance at 367 nm and a hyperchromic shift at 

430 nm of upon addition of DNA to 4.12 in the presence of 0.1 mM HA.  The change in UV-

visible absorption probably occurs as a result of geometrical distortion of 4.12 when it interacts 

with DNA in the presence of HA, but a local medium effect may also contribute.  

To quantify the affinity of 4.12 for DNA in the presence of 0.1 mM HA the absorbance at  

367 nm and 430 nm were plotted as a function of the concentration of DNA (Figure 4.20, see 

Appendix, Tables A55.68). 
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Figure 4.20: Absorbance at 367 nm (■) and at 430 nm (●) for 0.021 mM 4.12 as a function of 

DNA in the presence of 0.1 mM HA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

The solid lines represent a global fit of a multiple independent binding sites model to the data. 

Figure 4.20 presents that ligand 4.12 displays a red-shift upon increasing the DNA 

concentration in the presence of 0.1 mM HA. The maximum decrease occurs at 367 nm, and 

the highest increase occurs at 430 nm. The absorbance at 367 nm corresponds to the free ligand, 

and the absorbance 430 nm is represented DNA-ligand complex. The binding affinity Kbinding 

and a binding site size n were determined by fitting a multiple independent binding sites model, 

which also takes ligand dilution into account, to the data. The two lines give an equilibrium 

constant Kbinding of (4 ×10─3 ± 6.7) ×105 M─1 for a binding site size of (1×10─2 ± 21) base pairs. 

The obtained binding stoichiometry was unreasonably small but had a significant error margin. 

Therefore, the data were reanalysed with the stoichiometry restricted to 2.0 base pairs181 , giving 

an equilibrium constant Kbinding of (1.0 ± 0.13) × 105 M─1. A Kbinding of (8.2 ± 1.06) x 104 M─1 

for a binding site size restricted to 2.0 base pairs was observed for 4.12 binding to DNA in the 

absence of HA. 
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Summary 

The results of UV-visible titrations for π-conjugated compounds with duplex DNA in the 

presence of HA show that ligands 4.1, 4.2, 4.4, 4.5, 4.7, 4.8, 4.10, 4.11 and 4.12 bind to DNA 

in the presence of HA. The affinities of these compounds for DNA are summarised in Table 

4.2. 

Table 4.2 Binding affinities and a binding site size for binding of 4.1, 4.2, 4.4, 4.5, 4.7, 4.8, 

4.10, 4.11 and 4.12 to DNA in the presence of HA in buffer (25 mM MOPS, pH 7.0, 50 mM 

NaCl) at 25 °C. 

Ligands 

Binding 

constant 

HA / M−1 

Binding 

constant 

DNA / M−1 

Binding constant 

DNA +HA / M−1 

Effect of HA 

on affinity for 

DNA 

4.1 
(3.1 ± 2.7) ×105 

3.0 ± 0.7 

(1.5 ± 0.1) ×104 

n = 3*a 

(5.3 ± 1.4) ×104 

n = 3*a 
Increase 

4.2 No binding 
(6.4 ± 1.6) ×104 

n = 3*a 

(8.8 ± 4.4) ×103 

n = 3*a 
Decrease 

4.4 No binding 
(3.4 ± 0.6) ×104 

2.3 ± 0.2 

(3.8 ± 0.5) ×104 

2.7 ± 0.2 
No change 

4.5 No binding 
(8.9 ± 3.2) ×104 

n = 3* 

(6.3 ± 1.3) ×104 

n = 3* 
No change 

4.7 
(2.0 ± 0.5) ×103 

n = 1* 

(7.7 ± 1.5) ×105 

n = 3* 

(2.8 ± 1.4) ×104 

n = 3*a 
Decrease 

4.8 No binding 
(4.4 ± 0.5) ×105 

n = 3* 

(1.7 ± 0.3) ×105 

n = 3* 
Decrease 

4.10 No binding 
(6.9 ± 0.7) ×103 

n = 3* 

(7.6 ± 0.2) ×103 

n = 3* 
No change 

4.11 No binding 
(1.6 ± 0.2) ×104 

n = 3* 

(1.9 ± 0.02) ×104 

n = 3* 
No change 

 

4.12 
No binding 

(1.8 ± 0.38) ×105 

n = 3* 

(2.2 ± 0.4) x 105 

n = 3* 
No change 

a) apparent binding constant for the event following initial precipitation. 

b) * restricted. 
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Table 4.2 shows the binding that occurred between π-conjugated cationic compounds in our 

studies with biopolymer HA and the effect of HA on duplex DNA-binding. Compounds 4.1, 

4.2 and 4.7 interact with DNA in the presence of HA with two events, the first event occurs 

when the concentration of ligand is high, and the concentration of DNA is still low under these 

condition ligand binds to both the highest affinity binding sites and to the negative sugar-

phosphate backbone of DNA. As result of that precipitation will occur because of formation of 

a charge neutralised ligand-DNA complex. The second event occurs at a high concentration of 

DNA. In this case, the ligand binds to the main binding sites, viz. minor groove or intercalation 

site of DNA. Compounds 4.4, 4.5, 4.10, 4.11 and 4.12 do not show any change in affinity for 

DNA in the presence of HA. From the similarity in the binding constant, it appears that HA 

does not significantly compete with DNA for these ligands. This is in agreement with the 

observation that these compounds do not bind to HA. Decreases in binding constant were 

observed for 4.2, 4.7 and 4.8. That means the binding between these ligands and DNA in the 

presence of HA is not as easy as without polymer. For 4.7, this observation is as expected, 

considering it binds to HA. For 4.2 and 4.8, this is unexpected, considering that these 

compounds were not found to bind to HA. For 4.1 an increase in the apparent binding constant 

was observed. This increase is probably the result of excess ligand at the beginning of the 

titration binding to HA, rather than to secondary binding site on the DNA. This means that the 

second event now corresponds to 4.1 moving from HA to the primary site, rather than from 

precipitated complexes. 
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Part C: Alginic acid binding studies 

4.2.11 Compounds 4.1 and 4.2 binding to AA 

We wanted to know whether 4.1 and 4.2 bind to AA, the changes in absorption of 4.1 upon 

addition of AA were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% 

DMSO) at 25 °C (Figure 4.21). Similar experiments for compound 4.2 were carried out with 

AA (see appendix A25 Figure A25.1 and Figure A25.2, for data in tabular format see Appendix, 

Tables A55.70). 
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Figure 4.21: UV-visible spectra for 0.021 mM 4.1 upon addition of 0 – 1.34 mM AA, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO). 

Figure 4.21 shows that 4.1 displays a hypochromic shift in absorbance upon addition of AA, 

with a maximum change in absorbance at 445 nm. This decrease in UV-visible absorption may 

have occurred as a result of geometrical distortion of 4.1 when it interacts with AA, but it may 

also be as a result of a local medium effect. 

To quantify the affinity of 4.1 for AA, the absorbance at 445 nm was plotted as a function of 

the concentration of AA (Figure 4.22, see Appendix, Tables A55.69). 
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Figure 4.22: Absorbance at 445 nm for 0.021 mM 4.1 upon addition of 0.0 – 1.34 mM AA, at 

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO). The solid line 

represents the best fit to the data in terms of multiple independent binding sites.  

The titration curve in Figure 4.22 shows a decrease in the absorbance for 4.1 upon addition of 

AA. The binding affinity Kbinding and binding sites size n were determined by fitting a multiple 

independent binding sites model, which also takes ligand dilution into account, to the data. The 

fit reproduces the data well and gives an equilibrium constant Kbinding of (4.5 ± 2.4) × 104 M─1 

for a binding site size of (0.3 ± 0.1) monomeric units per molecule of 4.1. The obtained value 

of binding constant was reasonable. The binding site size is numerically well defined but looks 

unreasonable.  We don’t currently know why the apparent binding site size is so small. The fit 

suggests that 4.1 interacts and therefore that AA has a binding site size accessible to 4.1. 

In further experiments, compounds 4.4, 4.5, 4.7, 4.8, 4.10, 4.11 and 4.12 showed no interactions 

with AA (see appendixes A26-A32). 
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Summary 

The affinities for AA of all tested compounds are summarised in Table 4.3. 

Table 4.3 Binding affinities and binding site sizes for the binding of 4.1- 4.12 with AA in 

buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C. 

Ligands 
Binding constant AA 

K / M−1 

Binding site size 

n 

4.1 (4.5 ± 2.4) × 104 0.3 ± 0.1 

4.2 (6.9 ± 1.5) × 104 3* 

4.4 No binding  

4.5 No binding  

4.7 No binding  

4.8 No binding  

4.10 No binding  

4.11 No binding  

4.12 No binding  

* restricted. 

 

Table 4.3 shows that only 4.1 and 4.2 cationic ligands bind with negative natural polymer 

alginic acid AA. We attribute this binding to the interaction between the negatively charged 

COO− on the biopolymer AA and the positively charged on molecules. The affinity for 4.1 and 

4.2 is quantified by a binding constant of 104 M−1. 
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Part D: Effect of AA on DNA-binding properties 

4.2.12 Compound 4.1 binding to DNA in the presence of AA. 

We studied the interactions of 4.1 with DNA in the presence of 0.1 mM AA. The changes in 

absorption of 4.1 upon addition of DNA in the presence of 0.1 mM AA were measured in buffer 

(25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 4.23)  
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Figure 4.23: UV-visible spectra for 0.044 mM 4.1 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of AA and subsequent spectra for 4.1 in the presence of 0.1 mM 

AA upon addition of 0 – 1.5 mM DNA, at 25 °C. 

In the studies, 4.1 shows a hypochromic shift in absorbance at 443 nm upon addition of 0.1 mM 

AA, followed by a hyperchromic shift at 443 nm upon addition of DNA in the presence of  

0.1 mM AA. This observation suggests precipitation and subsequent dissolution of a DNA 

ligand complex in the presence of AA, similar to observations in the absence of AA.172 The 

change in UV-visible absorption during the second phase of the titration may occur because of 

geometrical distortion of 4.1 when it interacts with DNA in the presence of AA, but considering 

the rigidity of 4.1 it is more likely a local medium effect. 

To quantify the apparent affinity of 4.1 for DNA in the presence of 0.1 mM AA, the absorbance 

at 443 nm were plotted as a function of the concentration of DNA (Figure 4.24, see Appendix, 

Tables A55.78). 
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Figure 4.24: Absorbance at 443 nm for 0.044 mM 4.1 in the absence of AA (▲) and subsequent 

spectra for 4.1 in the presence of 0.1 mM AA (●) and upon addition of 0 067 – 1.5 mM DNA 

(■) in the presence of AA, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The solid 

line represents a fit of a multiple independent sites model to the data in the 0.067 – 1.5 mM 

range (■). 

Figure 4.24 shows two events. The first event shows a fast decrease in absorbance upon addition 

0.1 mM AA (●). We attribute this decrease in absorbance to strong binding of 4.1 to AA. The 

second event shows a clear increase in the absorbance of 4.1 upon addition of DNA (■) in the 

presence of 0.1 mM of AA. According to data analysis, the ligand strongly interacts with DNA 

in the presence of AA, giving an apparent equilibrium constant Kbinding of (6.3 ± 3.2) ×105 M−1 

for a binding site size of (6.5 ± 0.5) base pairs. The obtained binding parameters were reasonable 

for both stoichiometry and binding constant. A Kbinding of (1.5 ± 0.1) ×104 M−1 for the binding 

site size restricted to 3 base pairs was observed for 4.1 to DNA in absence AA172. For 

comparison, the data were reanalysed with the stoichiometry restricted to 3.0 base pairs, giving 

an apparent equilibrium constant Kbinding of (7.1 ± 1.8) × 104 M−1. From the difference in the 

apparent binding constant in the absence of AA172 and in the presence of AA, it appears that 

AA does significantly compete with DNA for 4.1. Unfortunately, AA does not help to avoid 

precipitation. On the other hand, the presence of this competition may be beneficial if 

compound 4.1 were to be used in a biosensor because AA could be used to compete with the 

non-specific binding of 4.1 as a sensitiser. Our analogous experiments showed that there is no 

binding between DNA and 4.2 in the presence of AA (See appendix A33 for Compound 4.2 

with DNA. Figure A33.1 and Figure A33.2, see appendix, Tables A55.79). 
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 4.2.13 Compound 4.4 binding with DNA in the presence of 0.1 mM AA 

We wanted to know the binding of 4.4 to DNA in the presence 0.1 mM AA. The changes in 

absorption of 4.4 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0, 50 

mM NaCl) at 25 °C (Figure 4.25). 
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Figure 4.25: UV-visible spectra for 0.076 mM 4.4 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of AA and subsequent spectra for 4.4 in the presence of 0.1 mM 

AA upon addition of 0 – 1.2 mM DNA, at 25 °C. 

In the studies, 4.4 showed a hypochromic shift in absorbance upon addition of DNA with a 

maximum change in absorbance at 434 nm in the presence of 0.1 mM AA. This decrease in 

UV-visible absorption may have occurred as a result of geometrical distortion of 4.4 when it 

interacts with DNA in the presence of AA, but it may also be as a result of a local medium 

effect. 

To quantify the affinity of 4.4 for DNA, the absorbance at 434 nm were plotted as a function of 

the concentration of DNA (Figure 4.26, see Appendix, Tables A55.80). 
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Figure 4.26: Absorbance at 434 nm for 0.076 mM 4.4 as a function of DNA concentration in 

the presence of 0.1 mM AA, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The solid 

line represents the best fit to the data in terms of a multiple independent binding sites model. 

Figure 4.26 shows a clear decrease in absorbance at 434 nm upon addition of DNA in the 

presence of AA. The binding affinity Kbinding and the binding site size n were determined by 

fitting a multiple independent binding sites model, which also takes ligand dilution into account, 

to the data. A binding constant Kbinding of (4.6 ± 0.5) ×104 M−1 was found for binding site size 

restricted to 3 base pairs. A Kbinding of (5.3 ± 0.2) × 104 M−1 for a binding site size restricted to 

3.0 base pairs was observed for 4.4 interacting with DNA in the absence of AA. 

 

4.2.14 Compound 4.5 binding with DNA in the presence of 0.1 mM AA 

The binding of 4.5 to DNA in the presence 0.1 mM AA was studied using UV-visible 

spectroscopy. The changes in absorption of 4.5 upon addition of DNA were measured in buffer 

(25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 4.27). 
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Figure 4.27: UV-visible spectra for 0.063 mM 4.5 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of AA and subsequent spectra for 4.5 in the presence of 0.1 mM 

AA upon addition of 0 – 1.2 mM DNA, at 25 °C. 

In the studies, 4.5 showed a red shift in absorbance upon addition of DNA with a maximum 

change in absorbance at 444 nm in the presence of 0.1 mM AA. This red-shift UV-visible 

absorption has probably occurred as a result of geometrical distortion of 4.5 when it interacts 

with DNA in the presence of AA, but it may also be as a result of a local medium effect. 

To quantify the affinity of 4.5 for DNA, the absorbance at 444 nm were plotted as a function of 

the concentration of DNA (Figure 4.28, see Appendix, Tables A55.81). 
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Figure 4.28: Absorbance at 444 nm for 0.063 mM 4.5 as a function of DNA concentration in 

the presence of 0.1 mM AA, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The solid 

line represents the best fit to the data in terms of a multiple independent binding sites model. 



Chapter four 

133 
 

Figure 4.28 shows a decrease in absorbance at 444 nm upon addition of DNA in the presence 

of AA. The binding affinity Kbinding and the binding site size n were determined by fitting a 

multiple independent binding sites model, which also takes ligand dilution into account, to the 

data. The fit gives an equilibrium constant Kbinding of (4.5 ± 0.98) ×104 M−1 for a binding site 

size restricted to 3 base pairs. A Kbinding of (8.9 ± 2.3) ×104 M−1 for a binding site size restricted 

to 3.0 base pairs was previously observed for 4.5 binding to DNA in the absence of AA. From 

the similarity in the binding constants, it appears that AA does not significantly compete with 

DNA for 4.5. 

 

4.2.15 Compound 4.7 binding with DNA in the presence of 0.1 mM AA 

We wanted to study the binding of 4.7 to DNA in the presence of 0.1 mM AA. The changes in 

absorption of 4.7 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0, 50 

mM NaCl) at 25 °C (Figure 4.29). 
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Figure 4.29: UV-visible spectra for 0.017 mM 4.7 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of AA and subsequent spectra for 4.7 in the presence of 0.1 mM 

AA upon addition of 0 – 2.09 mM DNA, at 25 °C. 

In the studies, 4.7 shows a hypochromic shift in absorbance at 360 nm upon addition 0.1 mM 

AA followed by a hyperchromic shift at 360 nm of 4.7 upon addition of DNA. The slight red 

shift suggests an increase in effective conjugation length, which attributed to increase in the 

planarity of 4.7 upon interaction with DNA in the presence of AA. 
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To quantify the apparent affinity of 4.7 for DNA in the presence of AA, the absorbance at  

360 nm were plotted as a function of the concentration of DNA (Figure 4.30, see Appendix, 

Tables A55.82). 
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Figure 4.30: Absorbance at 360 nm for 0.017 mM 4.7 in the absence of AA (▼) and subsequent 

spectra for 4.7 in the presence of 0.1 mM AA (●) and upon addition of 0.068 – 2.1 mM DNA 

(■) in the presence of AA, at 25 °C.in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The solid 

line represents a fit of a multiple independent sites model to the data in the 0 068 – 2.1 mM 

range (■). 

Figure 4.30 shows two events. The first event shows a large decrease in absorbance upon 

addition of 0.1 mM AA. We attribute this decrease in absorbance to strong binding of 4.7 to 

AA, leading to charge neutralisation of 4.7-AA complexes and eventually precipitation. The 

second event shows a clear increase in the absorbance of 4.7 upon addition of DNA (■) in the 

presence of 0.1 mM of AA. The ligand strongly interacts with DNA in the presence of AA. 

Data analysis gives an apparent equilibrium constant Kbinding of (2×10−5 ± 1.1) ×105 M─1 for a 

binding site size of (1×10−1 ± 51) base pairs. A Kbinding of (7.7 ± 1.5) × 105 M−1 for a binding 

site size restricted to 3.0 base pairs was observed for 4.7 binding to DNA in the absence of AA. 

The data were therefore reanalysed with the stoichiometry restricted to 3.0 base pairs to allow 

comparison, giving an apparent equilibrium constant Kbinding of (1.1 ± 0.2) ×104 M−1. From the 

differences in the binding constants in the absence of AA and in the presence of AA, it appears 

that AA significantly competes with DNA for 4.7. The presence of this competition may be 

beneficial if the compound 4.7 were to be used in a biosensor because it can be used to provide 

cleaner signals to detect DNA hybridization. 
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4.2.16 Compound 4.8 binding with DNA in the presence of 0.1 mM AA 

We wanted to study the binding of 4.8 with DNA in the presence of 0.1 mM AA. The changes 

in absorption of 4.8 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) at 25 °C (Figure 4.31). 
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Figure 4.31: UV-visible spectra for 0.013 mM 4.8 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of AA and subsequent spectra for 4.8 in the presence of 0.1 mM 

AA upon addition of 0 – 1.8 mM DNA, at 25 °C. 

Figure 4.31 shows a red-shift in absorbance upon addition of DNA in the presence of 0.1 mM 

AA (at the λ max of 663 nm) of 4.8. The change in UV-visible absorption may occur as a result 

of geometrical distortion of 4.8 when it interacts with DNA, but it may also be a local medium 

effect. 

To quantify the affinity of 4.8 for DNA in the presence of 0.1 mM AA the absorbance at  

663 nm were plotted as a function of the concentration of DNA (Figure 4.323, see Appendix, 

Tables A55.83). 
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Figure 4.32: Absorbance at 663 nm for 0.013 mM 4.8 in the absence of AA (▲) and subsequent 

spectra for 4.8 in the presence of 0.1 mM AA (▼) and upon addition of 0.0 – 0.013 mM DNA 

(●) and for 0.02 – 1.8 mM DNA (■) both in the presence of AA, at 25 °C in buffer (25 mM 

MOPS, pH 7, 50 mM NaCl. The solid line represents a fit of a multiple independent sites model 

to the data in the 0.02 – 1.8 mM range. 

Figure 4.32 shows two binding events. The first binding event shows a decrease in the 

absorbance upon addition 0.1 mM AA (▼) with a subsequent continued decrease in absorbance 

up to a concentration of 0 – 0.013 mM DNA (● first two data points in Figure 4.33). We attribute 

this decline in absorbance to strong binding of 4.8 to AA and DNA, leading to precipitation as 

a result of charge neutralisation of the 4.8 - DNA in the presence of AA. The second binding 

event shows an increase in the absorbance of 4.8 upon addition 0.020 - 1.8 mM DNA in the 

presence of 0.1 mM of AA. Data analysis in the usual manner yields an apparent equilibrium 

constant Kbinding of (9.2 ± 1.1) ×103 M−1 for a binding site size restricted to 3.0 base pairs. A 

Kbinding (4.4 ± 0.5) ×105 M−1 for a binding site size restricted to 3.0 base pairs was observed for 

4.8 interacting with AA therefore clearly there is a decrease in the affinity of 4.8 for DNA in 

the presence of AA. 
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4.2.17 Compound 4.10 binding with DNA in the presence of 0.1 mM AA 

We desired to know whether 4.10 and DNA interact in the presence 0.1 mM AA. The changes 

in absorption of 4.10 upon addition of DNA in the presence 0.1 mM AA were measured in 

buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 4.33). 
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Figure 4.33: UV-visible spectra for 0.026 mM 4.10 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of AA and subsequent spectra for 4.10 in the presence of 0.1 mM 

AA upon addition of 0 – 1.5 mM DNA, at 25 °C. 

Figure 4.33 shows a red shift in absorbance of 4.10 upon addition of DNA in the presence of 

0.1 mM AA. This change in UV-visible absorption may occur as a result of geometrical 

distortion of 4.10 when it interacts with DNA, but it may also be a local medium effect. 

To quantify the affinity of 4.10 for DNA in the presence of 0.1 mM AA, the absorbance at  

411 nm and at 432 nm were plotted as a function of the concentration of DNA in the presence 

of 0.1 mM AA (Figure 4.34, see Appendix, Tables A55.84). 
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Figure 4.34: Absorbance at 411 nm (■) and at 432 nm (●) for 0.026 mM 4.10 as a function of 

DNA in the presence of AA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The 

solid lines represent a global fit of a multiple independent sites model to the data. 

 

The titration curves in Figure 4.34 were analysed globally in terms of a multiple independent 

binding sites model, which also takes ligand dilution into account, giving an equilibrium 

constant Kbinding of (8.6 ± 0.12) × 103 M−1 for a binding site size restricted to 3.0 base pairs. A 

Kbinding of (6.9 ± 0.7) ×103 M−1 for a binding site size restricted to 3.0 base pairs was observed 

for 4.10 interacting with DNA in the absence of AA. From the similarity in the binding 

constants, it appears that AA does not significantly compete with DNA for 4.10. 

 

4.2.18 Compound 4.11 binding with DNA in the presence of 0.1 mM AA 

The binding of 4.11 to DNA in the presence 0.1 mM AA was studied using UV-visible 

spectroscopy. The changes in absorption of 4.11 upon addition of DNA in the presence 0.1 mM 

AA were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 4.35). 
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Figure 4.35: UV-visible spectra for 0.022 mM 4.11 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of AA and subsequent spectra for 4.11 in the presence of 0.1 mM 

AA upon addition of 0 – 1.9 mM DNA, at 25 °C. 

Figure 4.35 shows a redshift of 4.11 upon addition of DNA in the presence of 0.1 mM AA. This 

red shift in UV-visible absorption may occur as a result of geometrical distortion of 4.11 when 

it interacts with DNA in the presence of 0.1 mM AA, or as a result of the different local medium 

provided by the binding sites. 

To quantify the affinity of 4.11 for DNA in the presence of 0.1 mM AA. The absorbances at 

342 nm and 370 nm were plotted as a function of concentration of DNA in the presence of  

0.1 mM AA (Figure 4.36, see Appendix, Tables A55.85). 
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Figure 4.36: Absorbance at 343 nm and at 375 nm for 0.022 mM 4.11 as a function of DNA 

concentration in the presence of 0.1 mM AA, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM 

NaCl). The solid lines represent a global fit of a multiple independent binding sites model to 

the data. 



Chapter four 

140 
 

The titration data in Figure 4.36 were analysed in terms of a multiple independent binding sites 

model, which also takes ligand dilution into account. The ligand interacts with DNA, giving an 

equilibrium constant Kbinding of (1.5 ± 0.08) ×104 M−1 for a binding site size restricted to 3 base 

pairs. A Kbinding of (1.6 ± 0.2) × 104 M−1 for a binding site size restricted to 3.0 base pairs was 

observed for 4.11 binding to DNA in the absence of AA. From the similarity in the binding 

constants, it appears that AA does not significantly compete with DNA for 4.11. 

 

4.2.19 Compound 4.12 binding with DNA in the presence of 0.1 mM AA 

We wanted to evaluate whether 4.12 and DNA interact in the presence 0.1 mM AA. The 

changes in absorption of 4.12 upon addition of DNA were measured in buffer (25 mM MOPS, 

pH 7.0, 50 mM NaCl) at 25 °C (Figure 4.37). 
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Figure 4.37: UV-visible spectra for 0.023 mM 4.12 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of AA and subsequent spectra for 4.12 in the presence of 0.1 mM 

AA upon addition of 0 – 1.3 mM DNA, at 25 °C. 

Figure 4.37 shows a red shift of 4.12 upon addition of DNA in the presence of 0.1 mM AA. A 

hypochromic shift at one wavelength that happens simultaneously to a hyperchromic shift at a 

higher wavelength is actually a red shift. This change in UV-visible absorption probably occurs 

as a result of geometrical distortion of 4.12 when it interacts with DNA, although a local 

medium effect may also contribute. 
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To quantify the affinity of 4.12 for DNA in the presence of 0.1 mM AA, the absorbance at  

367 nm and 430 nm were plotted as a function of the concentration of DNA in the presence of  

0.1 mM AA (Figure 4.38, see Appendix, Tables A55.86). 
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Figure 4.38: Absorbance at 367 nm (■) and at 430 nm (●) of a solution of 0.023 mM 4.12 as a 

function of DNA concentration in the presence of 0.1 mM AA, in buffer (25 mM MOPS, pH 

7.0, 50 mM NaCl) at 25 °C. The solid lines represent a global fit of a multiple independent 

binding sites model to the data. 

In Figure 4.38, the black line shows the decrease in the absorbance at 367 nm (■) of 4.12 upon 

addition of DNA in the presence of 0.1 mM AA while, the red line shows the increase in the 

absorbance at 430 nm (●) of 4.12 upon addition of DNA in the presence of 0.1 mM AA. The 

solid lines represent a global fit of the multiple independent sites model to the data. This fit also 

takes ligand dilution into account. The fit gives an equilibrium constant Kbinding of (1.9 ± 0.25) 

x 105 M−1 for a binding site size was restricted to 3.0. A Kbinding of (1.8 ± 0.34) x105 M−1 for a 

binding site size restricted to 3.0 base pairs was observed for 4.12 interacting with DNA in the 

absence of AA. From the similarity in the binding constants, it appears that AA does not 

significantly compete with DNA for 4.12.  
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Summary 

The UV-visible titrations for cationic molecules interacting with duplex DNA in the presence 

of AA are summarised in Table 4.6. 

Table 4.6 Binding affinities and binding site sizes for binding of 4.1, 4.2, 4.4, 4.5, 4.7, 4.8, 

4.10, 4.11 and 4.12 to DNA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C. 

Ligands 

Binding constant 

AA / M─1 

N 

Binding constant 

DNA / M─1 

n 

Binding constant 

DNA +AA / M─1 

n 

Effect of AA 

on affinity 

for DNA 

4.1 
(4.5± 2.4) × 104 

0.3 ± 0.1 

(1.5 ± 0.1) ×104 

n =3*a 

(7.1 ± 1.8) ×104 

n =3*a 
Increase 

4.2 
(6.9 ± 1.5) × 104 

n =3* 

(6.4 ± 1.6) ×104 

n =3*a 
No binding Decrease 

4.4 
No binding  (5.4 ± 0.3) ×104 

n =3* 

(4.6 ± 0.5) ×104 

n =3* 
No change 

4.5 
No binding (8.9 ± 3.2) ×104 

n =3* 

(4.0 ± 0.4) ×104 

n =3* 
No change 

4.7 
No binding (7.7 ± 1.5) × 105 

n =3* 

(1.1 ± 0.2) 104 

n =3* a 
Decrease 

4.8 
No binding (4.4 ± 0.5) × 105 

n =3* 

(9.2 ± 1.1) ×103 

n =3*a 
Decrease 

4.10 
No binding (6.9 ± 0.7) ×103 

n =3* 

(8.6 ± 0.1) ×103 

n =3* 
No change 

4.11 
No binding (2.0 ± 0.2) ×104 

n =3* 

(1.7 ± 0.1) ×104 

n =3* 
No change 

4.12 
No binding (1.8 ± 0.38) ×105 

n =3* 

(1.9 ± 0.25) x 105 

n =3* 
No change 

a) apparent binding constant for the event following initial precipitation. 

b) * restricted 

Table 4.6 describes the ligands that can bind to DNA in presence negative natural biopolymers 

alginic acid AA and the interaction is joined by changing their spectroscopic and electronic 

properties. Compounds 4.4, 4.5, 4.10, 4.11 and 4.12 do not show any change in affinity for 
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DNA in the presence of AA. From the similarity in the binding constant, it appears that AA 

does not significantly compete with DNA for these ligands. The decrease in binding constant 

of 4.7 and 4.8 to DNA means the binding between the ligands and DNA in the presence of AA 

is not easy like without polymer. In a biosensor, the presence of AA might, therefore, lead to a 

false negative for these compounds. The increasing binding constant for 4.1 means a false 

positive readout could occur. Compound 4.2 shows no binding to DNA in presence AA as result 

of strong binding between 4.2 and AA. 

 

4.3 Conclusion 

From the results that we obtained, 4.1 and 4.2 interact with both HA and AA with good binding 

affinity, while 4.7 and 4.8 just bind to HA. Most ligands bind to DNA in the presence of these 

biopolymers without any change in a binding constant, that means no effect on DNA biosensors. 

Three molecules, viz. 4.2, 4.7 and 4.8 show decreasing in affinity for DNA while 4.1 binds 

more strongly to DNA in the presence of these biopolymers. 

 

4.4 Materials and Methods 

4.4.1 Materials 

 A solution of the negative natural polymers hyaluronic acid HA and alginic acid AA were 

prepared by dissolving the solids in MOPS buffer. Natural polymers were purchased from 

Acros and Sigma-Aldrich. HA and AA concentrations were determined by weight using one 

monomer unit from polymers as molecular weight. 

 

4.5 Solutions preparation  

4.5.1 Biopolymers HA and AA preparation 

All experiments were carried out in buffer (25 mM MOPS, 50 mM NaCl, pH 7.0, at 25 °C). 

HA and AA with high molecular weight were dissolved in MOPS buffer. To prepare different 

concentration, we use a molecular weight of one monomeric unit for each polymer AA and HA, 

then prepare the stock solution with concentrations expressed in terms of monomeric units. 
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4.6 Spectroscopy studies 

2.0 ml of MOPS buffer was added in a 1.0 cm path length cuvette. The stock solutions of all 

molecules in MOPS buffer, sometimes involving 10 vol.-% DMSO were prepared as mentioned 

before (Section 4.2.7). All UV-visible titrations were carried out by adding aliquots of the 

macromolecules, such as HA and AA and DNA, stock solutions into the 1.0 cm path length 

cuvette which contains the ligand solution in MOPS, recording the absorption in the range of 

200 - 800 nm after each addition. Absorptions were kept in the range of (0.0 - 1.0). Furthermore, 

when studying the effect of AA and HA on DNA - binding, the same steps were carried out as 

before except adding HA and AA after the ligand before continuing with the addition of DNA. 

The absorption at selected wavelengths were plotted against macromolecule concentrations, 

and a multiple independent binding sites model was used to analyse the UV-visible data using 

Origin 9.0 software. 

 

 

 

 



 

 

 

 

 

 

Chapter Five 

 

Effect of negatively charged synthetic polymers on DNA-binding 

properties of π-conjugated ligands 
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Abstract 

Chapter five discusses the binding between negatively charged synthetic polymers (sodium 

polystyrene sulfonic acid POSA and polyacrylic acid PAA see Scheme 5.1) with ligands 

(Scheme 1.5). These interactions were studied using UV-visible spectroscopy. We also studied 

the effect of synthetic negative polymers on DNA binding constants Kbinding and binding site 

sizes n of our sensitisers. We studied this because added polymers may reduce or stop 

nonspecific interactions. In these systems the ligands are in equilibrium between binding with 

DNA or with negatively charged polymers. If binding to polymers is stronger than nonspecific 

binding, then we could avoid any nonspecific binding which might lead to false positives as 

shown in Figure 1.16. Our studies found that compounds 5.1, 5.2, 5.7 and 5.8 bind to both PAA 

and POSA. In contrast, cationic molecules 5.4, 5.5, 5.10 and 5.12 bind to POSA only. 

We further compared the affinity of these molecules for DNA in the absence and presence of 

PAA and POSA. All compounds demonstrated a decrease in affinity for DNA in the presence 

of POSA, suggesting that potential sensitisers could bind to POSA polymer which leads to 

decreased apparent Kbinding and this may be a source of false negative results. 

We found that ligands 5.1 and 5.7 bind to DNA in the presence of PAA and POSA. Compound 

5.2 interacts with DNA in the presence of PAA with precipitation and 5.8 binds to DNA with 

precipitation in the presence of POSA. However, compounds 5.4, 5.10, 5.11 and 5.12 do not 

indicate any change in affinity for DNA in the presence of PAA. That means there is no effect 

of PAA on DNA biosensors. An increase in the affinity of 5.1 for DNA in the presence of POSA 

was also observed. This initially surprising an effect was attributed to sensitisers binding to 

polymers instead of to secondary binding sites on the DNA backbone and increasing the 

apparent Kbinding.  
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5.1 Introduction 

The binding of a sensitiser to synthetic polymers such as PAA and POSA can affect the 

sensitisers DNA-binding properties. Such interactions may therefore offer a new flexible 

method to improve biosensors with high detection sensitivity, selectivity and reduced 

nonspecific interaction. The advantage of using synthetic polymers is that they are easy to use 

and cheap. The way in which a negatively charged polymer can improve a biosensor. 

The interactions between sensitisers and polymers and how these interactions affect biosensor 

functioning can be studied using several techniques such as UV-visible spectroscopy, 

isothermal titration calorimetry (ITC) and circular dichroism spectroscopy. These methods 

allow the study of how different parameters describing interactions of sensitisers with DNA 

change upon potential binding of these sensitisers to added macromolecules. 

Polymers can be classified into two types according to the repeating unit that is found in the 

polymer. Homopolymers are made of only one kind of monomer, for example polyacrylic acid 

PAA Figure 5.2. If a homopolymer is linked to another homopolymer B a so-called block 

copolymer is formed. 

 

Scheme 5.1: Chemical structures of POSA and PAA 

We have selected two negatively charged synthetic polymers, viz POSA and PAA (Scheme 

5.1), for studies. The sodium salt of Poly (4-styrene sulfonic acid) (CH2CHC6H4SO3H) n is a 

water-soluble polymer with a molecular weight 75000 gm/mole. Polyelectrolyte properties with 

high stability in water and high conductivity.182-184 Poly acrylic acid PAA is a weak anionic 

polymer and polyelectrolyte with chemical formula (C3H4O2)n. 
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Figure 5.2: Schematic representation of various types of synthetic polymer structures. 

Homopolymer (A) is formed solely of monomers of acrylic acid A. Block copolymer (AB) is 

formed from acrylic acid and styrene sulfonate monomers, connected as blocks. 

 

5.2 Aim 

Our objectives in Chapter five are to determine binding parameters and binding site sizes for 

various molecules (Scheme 1.5) interacting with POSA and PAA. Moreover, we investigate the 

effect of the presence of negatively charged synthetic polymers POSA and PAA on the DNA 

binding parameter of these molecules.  

 

5.3 Results and Discussion 

The results of the binding studies for different molecules 5.1−5.12 with negatively charged 

synthetic polymers POSA and PAA and the effect of the negatively charged polymers on 

DNA−binding will be shown and discussed for each compound. 

 

Part A: POSA binding studies 

5.3.1 Compounds 5.1 and 5.2 binding to POSA  

We wanted to know whether 5.1 and 5.2 interact with POSA. The changes in absorption of 5.1 

and 5.2 upon addition of POSA were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl 

and 10 vol-% DMSO) at 25 °C. Figure 5.1 shows the results for 5.1 see Appendix A34. We 

used DMSO to prevent the precipitation that often occurs when POSA interacts with molecules 

of opposite charge. The ratio of added DMSO was selected to keep the DNA in its duplex 

form185. 

Homopolymer (A): PAA-PAA-PAA-PAA-PAA-PAA-PAA-PAA-PAA-PAA 

Block copolymer (AB): PAA-PAA-PAA-PAA-PAA-POSA-POSA-POSA-POSA-POSA 
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Figure 5.1: UV-visible spectra for 0.016 mM 5.1 upon addition of 0–1.9 mM POSA, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO).  

Figure 5.1 shows a hypochromic shift in absorbance at 444 nm followed by a hyperchromic 

shift at 444 nm upon addition of POSA. This change in UV-visible absorption may occur as a 

result of geometrical distortion of 5.1 when it interacts with POSA, but it may also be a local 

medium effect. 

To quantify the apparent affinity of 5.1 for POSA we plotted the absorbances at 444 nm as a 

function of the concentration of POSA (Figure 5.2, see Appendix, Tables A55.87). 
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Figure 5.2: Absorbance at 444 nm for 0.016 mM 5.1 as a function of POSA concentration of  

0 – 0.024 mM (▼) and 0.074–1.9 mM (■), at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM 

NaCl and 10 vol-% DMSO). The solid lines represent the best fit to the data of a multiple 

independent binding sites model in the 0.074–1.9 mM range (■). 
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Figure 5.2 shows two events. The first event is a rapid decrease in absorbance upon addition of 

POSA. We attribute this rapid decline in absorption to strong binding of 5.1 to the POSA  

at low POSA / ligand ratios, leading to charge neutralisation of 5.1-POSA complexes  

and eventually precipitation. This is in agreement with the changing baseline between 550  

and 600 nm. The second event is accompanied by an increase in absorbance at high ratio  

POSA / ligand. The second phase was analysed in terms of the multiple independent binding 

sites model. The fit gives an apparent equilibrium constant Kbinding of (1.4 ± 7.0) ×104 M−1 for a 

binding site size of (6.6 ± 27) monomeric units per molecule of 5.1. The error on the binding 

site size was unreasonable. Therefore, the titration data were reanalysed as shown in Figure 5.4 

(without the first event involved) in terms of a multiple independent binding sites models, which 

also takes ligand dilution into account. The fit gives an apparent equilibrium constant Kbinding of 

(6.8 ± 1.1) ×103 M−1 for a binding site size restricted to 3.0 monomeric unites per molecule of 

5.1. Similar results were found for 5.2 interacting with POSA (see appendix. Figure A34.1 and 

Figure A34.2, Tables A44.88). 

 

5.3.2 Compound 5.4 binding to POSA 

We also wanted to know whether 5.4 binds to POSA. The changes in absorption of 5.4 upon 

addition of POSA were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-

% DMSO) at 25 °C (Figure 5.3). 
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Figure 5.3: UV-visible spectra for 0.042 mM 5.4 upon addition of 0 – 2.0 mM POSA, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO). 
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Figure 5.3 shows a hypochromic shift in absorbance of 5.4 upon addition of POSA. This change 

in UV-visible absorption may occur as a result of geometrical distortion of 5.4 when it interacts 

with POSA, but it may be also a local medium effect. 

To quantify the affinity of 5.4 for POSA, the absorbances at 435 nm was plotted as a function 

of the concentration of POSA (Figure 5.4, see Appendix, Tables A55.89). 
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Figure 5.4: Absorbance at 435 nm for 0.042 mM 5.4 as a function of POSA concentration, at 

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO). The solid line 

represents the best fit to the data fit in terms of a multiple independent binding sites model. 

Figure 5.4 shows a decrease in the absorbance at 435 nm for 5.4 upon addition of POSA. The 

binding affinity Kbinding and the binding sites size n were determined by fitting a multiple 

independent binding sites model, which also takes ligand dilution into account, to the data.  

The fit gives an equilibrium constant Kbinding of (0.9 ± 2.3) ×105 M−1 for a binding site size  

(5.7 ± 4.4) monomeric units per molecule of 5.4. The data were reanalysed with the 

stoichiometry restricted to  1, giving an apparent equilibrium constant Kbinding of  (7.0 ± 2.0) 

×103 M−1.The stoichiometry was restricted because the fit does not provide reasonable 

parameters with variable stoichiometry. The fit suggests that one positive molecule of 5.4 binds 

with one negative monomeric unit of POSA. The positive charge on 5.4 allows electrostatic 

binding with negatively charged POSA. 

 

5.3.3 Compound 5.5 binding to POSA 

We wanted to study the binding of 5.5 to POSA. The changes in absorption of 5.5 upon addition 

of POSA were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 5.5). 
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Figure 5.5: UV-visible spectra for 0.074 mM 5.5 upon addition of 0 – 0.24 mM POSA, at  

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 5.5 shows a hypochromic shift in absorbance of 5.5 upon addition of POSA. This change 

in UV-visible absorption may occur as a result of geometrical distortion of 5.5 when it interacts 

with POSA, but it is most likely a local medium effect considering the rigidity of 5.5 and 

absence of a clear shift in . 

To quantify the affinity of 5.5 for POSA, the absorbances at 443 nm was plotted as a function 

of the concentration of POSA (Figure 5.6, see Appendix, Tables A55.90). 
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Figure 5.6: Absorbance at 443 nm for 0.074 mM 5.5 as a function of POSA concentration, at 

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid lines represent the best fit to 

the data in terms of a multiple independent binding sites model. 
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Figure 5.6 shows a decrease in the absorbance at 444 nm for 5.5 upon addition of POSA. The 

binding affinity Kbinding and binding site size n were determined by fitting a multiple 

independent binding sites model, which also takes ligand dilution into account, to the data. The 

fit gives an equilibrium constant Kbinding of (2.0 ± 1.7) ×104 M−1 for a binding site size of  

(2.6×10−1 ± 8.2×10−2) monomeric units. The obtained binding parameters were reasonable but 

small for binding site size. Therefore; the data were reanalysed with the stoichiometry restricted 

to 3.0, giving an equilibrium constant Kbinding of (6×10−1 ± 5.6) ×105 M−1. The obtained binding 

constant now has unreasonable error margin. We therefore know that 5.5 binds to POSA but 

binding cannot reliable be quantified. The binding of 5.5 could be due to electrostatic 

interactions. Because of a positively charged on 5.5 lead to the electrostatic binding with 

negatively charged of POSA.  

 

5.3.4 compound 5.7 binding to POSA  

UV-visible spectroscopy has been used to determine the affinity and stoichiometry for 5.7 

interacting with POSA; the changes in absorption of 5.7 upon addition of POSA were measured 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO) at 25 °C (Figure 5.7). 

300 400 500 600

0.0

0.3

0.6

0.9

A
 /

 a
 .
 u

 .

wavelength [nm]  

Figure 5.7: UV-visible spectra for 0.020 mM 5.7 upon addition of 0 – 0.067 mM POSA at  

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol- % DMSO). 

The isosbestic point in Figure 5.9 suggests that only two forms of the ligands are involved in 

the titration, viz. the free and bound ligand. This change in UV-visible absorption may occur as 

a result of geometrical distortion of 5.7 when it interacts with POSA, but it may also be a local 

medium effect. The observation of rapid decrease in absorbance followed by increase suggests 
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precipitation and subsequent dissolution of a POSA-ligand complex. This, in turn, suggests that 

the two-species involved in the second equilibrium are 5.7 in primary and secondary sites 

To quantify the apparent affinity of 5.7 for POSA, the absorbances at 340 and 388 nm were 

plotted as a function of the concentration of POSA (Figure 5.8, see appendix, Tables A55.91). 
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Figure 5.8: Absorbance at 340 nm (■) and at 388 nm (●) for 0.020 mM 5.7 as a function of 

POSA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO). The 

solid lines represent a global fit of a multiple independent binding sites model to the data. 

The titration curves in Figure 5.8 were analysed globally in terms of a multiple independent 

binding sites model, which also takes ligand dilution into account. The equilibrium constant 

Kbinding was found to be (1.6 ± 0.7) ×106 M−1 for a binding site size of (9×10−1 ± 4×10−2). The 

obtained binding parameters were reasonable, although with a small stoichiometry. Therefore, 

the data were reanalyzed with a stoichiometry restricted to 1, giving an equilibrium constant 

Kbinding of (1.4 ± 0.8) × 106 M−1. The obtained value of binding site size and affinity were 

reasonable, and the fit suggests that 5.7 binds strongly with POSA and has a binding site size 

accessible to 5.7. 

 

5.3.5 Compound 5.8 binding to POSA 

We wanted to know the binding of 5.8 to POSA, the changes in absorption of 5.8 upon addition 

of POSA were measured in buffer (25 mM MOPS, pH 7.0,50 mM NaCl and 10 vol-% DMSO) 

at 25 °C (Figure 5.9). 
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Figure 5.9: UV-visible spectra for 0.0078 mM 5.8 upon addition of 0 – 0.16 mM POSA, at 25 

°C in buffer (25 mM MOPS pH 7.0, 50 mM NaCl and 10 vol-% DMSO). 

Figure 5.9 shows a hypochromic shift in absorbance at 666 nm of 5.8 upon addition of POSA. 

This change in UV-visible absorption may occur as a result of geometrical distortion of 5.8 

when it interacts with POSA, but it may also be a local medium effect.  

To quantify the affinity of 5.8 for POSA, the absorbances at 666 nm was plotted as a function 

of the concentration of POSA (Figure 5.10, see Appendix, Tables A55.92). 
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Figure 5.10: Absorbance at 666 nm for 0.0078 mM 5.8 as a function of POSA concentration, 

at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO). The solid line 

represents the best fit to the data fit in terms of a multiple independent binding sites model. 
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The titration curve in Figure 5.10 was analysed in terms of a multiple independent binding sites 

model, which also takes simple dilution into account. The fit provides an equilibrium constant 

Kbinding of (1×10−2 ± 2.4) ×106 M−1 for a binding site size of (8×10−2 ± 190) monomers per 

molecule of 5.8. The obtained binding parameters were unreasonable for both binding constant 

and binding site. Size. The data were reanalysed with the stoichiometry restricted to 1 

monomers per molecule of 5.8, giving an equilibrium constant Kbinding of (1.  ± 0.2) ×104 M−1. 

The fit suggests that one monomeric unit of POSA interacts with one molecule of 5.8.  

 

5.3.6 Compound 5.10 binding to POSA 

We wanted to study the binding of 5.10 to POSA.The changes in absorption of 5.10 upon 

addition of POSA were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C 

(Figure 5.11). 
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Figure 5.11: UV-visible spectra for 0.024 mM 5.10 upon addition of 0 – 0.68 mM POSA, at 

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 5.11 shows that 5.10 exhibits a slight red-shift in absorbance of 5.10 upon addition of 

POSA.  This redshift suggests an increase in effective conjugation length, which is attributed 

to increase in planarity of 5.10 upon interaction with POSA. The red-shift in absorption may 

have occurred as a result of geometrical distortion of 5.10 when it interacts with POSA, but it 

may also be as a result of a local medium effect. 

To quantify the affinity of 5.10 for POSA, the absorbances at 411 and 439 nm were plotted as 

a function of the concentration of POSA (Figure 5.12, see Appendix, Tables A55.93). 



Chapter five 

 

157 
 

0.00 2.10x10
-4

4.20x10
-4

6.30x10
-4

0.376

0.470

0.564

0.658

A
 /

 a
 .
 u

[POSA] / mol dm
-3

 

Figure 5.12: Absorbance at 411 nm (■) and 439 nm (●) for 0.024 mM 5.10 as a function of 

POSA concentration, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid lines 

represent a global fit of a multiple independent sites model to the data. 

In the Figure 5.12, the black line shows a clear decrease in the absorbance at 411 nm (■) upon 

addition of POSA. The red line shows a clear increase in the absorbance of 5.10 at 439 nm (●) 

upon addition of POSA. The titration curves in Figure 5.14 were analysed globally by the fitting 

of a multiple independent binding site model of the data, which also takes simple dilution into 

account. The fit provides an equilibrium constant Kbinding of (3.2 ± 0.7) ×104 M−1 for a binding 

site size of (6.1 ± 0.7) monomeric units per molecule of 5.10. The obtained value of binding 

site size and affinity were reasonable; the fit suggests that 5.10 interacts with POSA  

 

5.3.7 Compound 5.12 binding with POSA 

We wanted to measure the binding of 5.12 to POSA.The changes in absorption of 5.12 upon 

addition of POSA were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol% 

DMSO) at 25 °C (Figure 5.13). 
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Figure 5.13: UV-visible spectra for 0.012 mM 5.12 upon addition of 0 – 0.37 mM POSA, at 

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO). 

Figure 5.13 shows a red-shift in absorbance of 5.12 upon addition of POSA. The change in UV-

visible absorption may occur as a result of geometrical distortion of 5.12 when it interacts with 

POSA, but it may also be a local medium effect.  

To quantify the affinity of 5.12 for POSA, the absorbances at 369 and 435 nm were plotted as 

a function of the concentration of POSA (Figure 5.14, see Appendix, Tables A55.94). 
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Figure 5.14: Absorbance at 369 nm (■) and at 435 nm (●) for 0.012 mM 5.12 as a function of 

POSA concentration, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% 

DMSO). The solid lines represent a global fit of a multiple independent sites model to the data. 
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Figure 5.14 shows that ligand 5.12 display a  decrease in absorbance at 369 nm and an increase 

in absorbance at 435 nm upon addition of POSA. The absorbance at 369 nm corresponds mainly 

to free ligand, and the absorbance at 435 nm is dominated by the complex of POSA-ligand. 

Therefore, by adding more POSA, the amount of free ligand decreases as the ligand binds. The 

binding affinity Kbinding and a binding sites size n were determined by fitting a multiple 

independent binding sites model, which also takes ligand dilution into account, to the data. The 

fit gives an equilibrium constant Kbinding of (3.9 ± 7.0) ×105 M−1 for a binding site size of (1.3 ± 

0.5) monomeric units per molecule of 5.12. The data were reanalysed with the stoichiometry 

restricted to 1.0, giving an apparent equilibrium constant Kbinding of (1.3 ± 0.6) ×105 M−1. The 

fit suggests that one molecule of 5.12 binds with one monomeric unit of POSA. This is in 

agreement with the positives charges on 5.12 leading to electrostatic binding with negatively 

charged of POSA. 

Compound 5.11 shows no binding to POSA (see appendix A36 for compound 5.11 with POSA). 
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Summary 

The results from UV-visible titrations for 5.1, 5.2, 5.4, 5.5, 5.7, 5.8, 5.10, 5.11 and 5.12 with 

POSA are summarised in Table 5.1. 

Table 5.1 Binding affinities and binding site sizes for binding of 5.1, 5.2, 5.4, 5.5, 5.7, 5.8, 

5.10, 5.11 and 5.12 to POSA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C. 

Ligands 

Binding constant  

for POSA 

 K / M−1 

Binding site size  

n 

5.1 (6.8 ± 1.1) ×103 a 3* 

5.2 (2.2 ± 0.8) ×103 a 3* 

5.4 
(7.0 ± 2.0) ×  

10 3 
 1* 

5.5 (2.0 ± 1.1) ×104 (0.27 ± 0.08) 

5.7 (1.4 ± 0.8) ×106 1* 

5.8 (1.4 ± 0.2) ×104  1* 

5.10 (3.1 ± 0.7) ×104 (6.1 ± 0.7) 

5.11 No binding  

5.12 (1.3 ± 0.67) ×105 1* 

a) apparent binding constant for the event following initial precipitation  

b)  restricted 

Table 5.1 shows the interactions that happen between positively charged molecules and POSA. 

We attribute this binding to the presence of positive charges on the ammonium NH3
+

 groups of 

5.1, 5.2, 5.4, 5.5, 5.7, 5.8, 5.10 and 5.12 interacting with the negative charges on POSA. The 

electrostatic interaction between the ammonium groups and the negative sulfate groups on 



Chapter five 

 

161 
 

POSA are the main driving force responsible for the formation of the ligand-POSA complex. 

In addition, it is possible that hydrophobicity also plays a role. 

Cationic conjugated oligoheteraromatics 5.1 and 5.2 interact with POSA and show two events, 

with a high ligands / POSA ratio leading to a sharp decrease in absorbances as result of 

precipitation of ligand-POSA complexes. The next event at low concentration of ligand and 

high concentration of POSA leads to an increase in absorbance where the ligands bind to the 

main binding sites of POSA. 

The highest affinity is observed for the complex of POSA 5.7 and 5.12, with a binding constant 

105 M−1. We attribute this high affinity to the presence of more positive charges and aromatics 

rings in these molecules, which lead to an increase in electrostatic interactions and hydrophobic 

interactions between ligands and POSA. The weakest binders are 5.1−5.2 with apparent binding 

constant ~ 103 M−1. These low affinities of 5.1−5.2 for POSA may be attributed to precipitation 

and subsequent dissolution of a POSA-ligand complex, leading to decreased apparent affinity. 

In contrast, compound 5.11 does not show any affinity for POSA. We might attribute this to the 

presence of negative charges on COO− which leads to electrostatic repulsion between 5.11 and 

POSA. This indicate that the electrostatic repulsion is stronger than the hydrophobic interaction 

between 5.11 and POSA. 
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Part B: Effect of POSA on DNA-binding properties  

5.3.8 Compounds 5.1 and 5.2 binding with DNA in the presence of 0.1 mM POSA 

We wanted to evaluate the binding of 5.1 and 5.2 with DNA in the presence of 0.1 mM POSA. 

The changes in absorption of 5.1 upon addition of DNA in the presence of 0.1 mM POSA were 

measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25° C (Figure 5.15).  A similar 

experiment for compound 5.2 was carried out with DNA in the presence of POSA (see appendix 

A37. Figure A37.1 and Figure A37.2, Table A55.98). 
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Figure 5.15: UV-visible spectra for 0.034 mM 5.1 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of POSA and subsequent spectra for 5.1 in the presence of  

0.1 mM POSA and upon addition of 0 – 1.5 mM DNA, at 25 °C. 

Figure 5.15 shows two events. The first event involves a hypochromic shift in absorbance at 

443 nm upon addition of POSA. The second event involved a hyperchromic shift at 443 nm 

upon addition of DNA. The isosbestic point for the second event indicates that two forms of the 

DNA binder are involved in the titration during the second event. The change in UV-visible 

absorption may occur as a result of geometrical distortion of 5.1 when it interacts with DNA in 

the presence of POSA, but it may also be a local medium effect. The observation of a rapid 

decrease in absorbance followed by an increase suggests precipitation and subsequent 

dissolution of DNA-ligand complex in the presence of 0.1 mM POSA. This, in turn, suggests 

that the two-species involved in the second equilibrium are 5.1 bound to POSA and 5.1 bound 

to DNA. 
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To quantify the apparent affinity of 5.1 for DNA in the presence of 0.1 mM POSA, the 

absorbances at 443 nm were plotted as a function of the concentration of DNA in the presence 

of 0.1 mM POSA (Figure 5.16, Table A55.97). 
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Figure 5.16: Absorbance at 443 nm for 0.034 mM 5.1 in absence of POSA (▼) and subsequent 

spectra for 5.1 in the presence of POSA (●) and upon addition of DNA concentration of  

0.067 – 1.5 mM (■), at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The solid red line 

represents a fit of a multiple independent sites model to the data in the 0.067 – 1.5 mM  

range (■). 

Figure 5.16 shows two events. The first event corresponds to the large initial decrease in the 

absorbance upon addition of 0.1 mM POSA (●). We attribute this decrease in absorbance to 

strong binding of 5.1 to POSA, leading to precipitation as a result of charge neutralisation of 

the 5.1− POSA complex as also observed previously when titrating 5.1 with POSA in the 

absence of DNA. A similar initial precipitation occurs when titrating 5.1 with DNA in the 

absence of POSA.172 The second event shows a clear increase in the absorbance of 5.1 upon 

addition of DNA (■) in the presence of 0.1 mM of POSA. The ligand interacts with DNA, 

giving an apparent equilibrium constant Kbinding of (1.7 ± 3.0) ×104 M−1 for a binding site size 

of (2.8 ± 4.31) base pairs. A Kbinding of (1.5 ± 0.1) ×104 M−1 for the binding site size restricted 

to 3.0 base pairs was observed for 5.1 binding to DNA in the absence of POSA172. Therefore, 

the data were reanalysed with the stoichiometry restricted to 3.0 base pairs to allow comparison, 

giving an apparent equilibrium constant Kbinding of (1.8 ± 0.14) ×104 M−1. From the similarity 

in the apparent binding constant in the absence of POSA172 and in the presence of POSA, it 

appears that POSA does not significantly compete with DNA for 5.1. This observation 
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suggesting that 5.1 binding to POSA is similar to 5.1 binding non-selectively to the phosphate 

ester backbone of DNA. 

 

5.3.9 Compound 5.4 binding with DNA in the presence of 0.1 mM POSA 

We wanted to know whether of the binding of 5.4 with DNA is affected by the presence of 0.1 

mM POSA. The changes in absorption of 5.4 upon addition of DNA were measured in buffer 

(25 mM MOPS, pH 7.0, 50 mM NaCl) at 25° C in the presence of 0.1 mM POSA (Figure 5.17). 
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Figure 5.17: UV-visible spectra for 0.076 mM 5.4 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of POSA and subsequent spectra for 5.4 in the presence of  

0.1 mM POSA upon addition of 0 – 1.9 mM DNA, at 25 °C. 

Figure 5.17 shows that 5.4 displays a hypochromic shift in its absorbance upon addition of DNA 

in the presence of 0.1 mM POSA with a maximum change in absorbance at 434 nm. This 

decrease in UV-visible absorption may have occurred as a result of geometrical distortion of 

5.4 when it interacts with DNA, but it may also be as a result of a local medium effect. 

To quantify the affinity of 5.4 for DNA in the presence of 0.1 mM POSA, the absorbances at 

434 nm were plotted as a function of the concentration of DNA in the presence of 0.1 mM 

POSA (Figure 5.18, Table A55.99). 
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Figure 5.18: Absorbance at 434 nm for 0.076 mM 5.4 as a function of DNA concentration of 

0 – 1.9 mM, in the presence of 0.1 mM POSA at 25 °C in buffer (25 mM MOPS pH 7, 50 mM 

NaCl). The solid line represents the best fit to the data fit in terms of a multiple independent 

binding sites model. 

Figure 5.18 shows a clear decrease in the absorbances at 434 nm upon addition of DNA in the 

presence of 0.1 mM POSA. The binding affinity Kbinding and binding sites n were determined 

by fitting a multiple independent binding sites model, which also takes ligand dilution into 

account, to the data. A binding constant Kbinding of (9.1 ± 3.0) ×104 M−1 for a binding site size 

of (5.7 ± 0.5) base pairs was found. A Kbinding of (5.3 ± 0.2) ×104 M−1 for a binding site size 

restricted to 3.0 base pairs was observed for 5.4 interacting with DNA in the absence of POSA. 

Therefore, the data were reanalysed with the stoichiometry restricted to 3.0 base pairs to allow 

comparison, giving an apparent equilibrium constant Kbinding of (1.9 ±0.28) ×104 M−1. From the 

difference in the binding constants in the presence and absence of POSA, it appears that POSA 

competes with DNA for 5.4. The presence of competition is beneficial because it could reduce 

a non-specific interaction, but it may also cause a false negative. 
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5.3.10 Compound 5.5 binding with DNA in the presence of 0.5 mM POSA 

We studied the interactions of 5.5 with DNA in the presence of 0.5 mM POSA. The changes in 

absorption of 5.5 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0,  

50 mM NaCl) at 25 °C (Figure 5.19). 
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Figure 5.19: UV-visible spectra for 0.098 mM 5.5 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of POSA and subsequent spectra for 5.5 in the presence of  

0.5 mM POSA upon addition of 0 – 1.7 mM DNA, at 25 °C. 

Figure 5.19 shows that 5.5 displays a hypochromic shift in absorbance upon addition of DNA 

in the presence of 0.5 mM POSA, with maximum change in absorbance at 444 nm. This 

decrease in UV-visible absorption may have occurred as a result of geometrical distortion of 

5.5 when it interacts with DNA in the presence of 0.5 mM POSA, but it may also be as a result 

of a local medium effect. 

To quantify the affinity of 5.5 for DNA in the presence of 0.5 mM POSA, the absorbances at 

444 nm were plotted as a function of the concentration of DNA in the presence of 0.5 mM 

POSA (Figure 5.20, see appendex Table A55.100). 
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Figure 5.20: Absorbance at 444 nm for 0.098 mM 5.5 as a function of DNA concentration of  

0 – 1.7 mM, in the presence of 0.1 mM POSA, at 25 °C in buffer (25 mM MOPS pH 7, 50 mM 

NaCl). The solid line represents the best fit to the data fit in terms of a multiple independent 

binding sites model. 

Figure 5.20 shows that interaction of 5.5 with DNA produces a hypochromic shift at 444 nm in 

the UV-visible spectrum. Titration curves were extracted from the data in Figure 5.22, and these 

were analysed in terms of a multiple independent binding sites model, which also takes ligand 

dilution into account. A binding constant Kbinding of (1.0 ± 1.7) ×104 M−1 for a binding site size 

of (2.62 ± 2.63) base pairs was found. A Kbinding of (8.9 ± 2.3) ×104 M−1 for the binding site size 

restricted to 3.0 base pairs was previously observed for 5.5 interacting with DNA in the absence 

of POSA. Therefore, the data were reanalysed with the stoichiometry restricted to 3.0 base pairs 

to allow comparison, giving an apparent equilibrium constant Kbinding of (1.3 ± 0.3) ×104 M−1. 

From the difference in binding constants in the presence and absence of POSA, it appears that 

POSA competes with DNA for 5.5. 
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5.3.11 Compound 5.7 binding with DNA in the presence of 0.1 mM POSA 

We wanted to quantify the binding of 5.7 with DNA in the presence of 0.1 mM POSA. The 

changes in absorption of 5.7 upon addition of DNA were measured in buffer (25 mM MOPS, 

pH 7.0, 50 mM NaCl) at 25° C in the presence of 0.1 mM POSA (Figure 4.21). 
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Figure 5.21: UV-visible spectra for 0.017 mM 5.7 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of POSA and subsequent spectra for 5.7 in the presence of  

0.1 mM POSA upon addition of 0 – 2.0 mM DNA, at 25 °C. 

Figure 5.21 shows a hypochromic shift in absorbance at 339 nm upon addition of 0.1 mM POSA 

followed by a hyperchromic shift at 339 nm upon addition of DNA in the presence of 0.1 mM 

POSA. This change in UV−visible absorption may occur as a result of geometrical distortion 

of 5.7 when it interacts with DNA, but it may also be a local medium effect. This observation 

suggests precipitation of a POSA-ligand complex and subsequent dissolution of a DNA−ligand 

complex in the presence of 0.1 mM POSA. 

To quantify the apparent affinity of 5.7 for DNA, the absorbances at 339 nm were plotted as a 

function of the concentration of DNA (Figure 5.22, Table A55.101). 
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Figure 5.22: Absorbance at 339 nm for 0.017 mM 5.7 in the absence of POSA (▼) and 

subsequent spectra for 5.7 in the presence of POSA (●) and upon addition of DNA 

concentration of 0.068 – 1.8 mM DNA (■), at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM 

NaCl). The solid line represents the best fit of a multiple independent binding sites model to the 

data in the 0.068 – 1.8 mM DNA range (■). 

Figure 5.22 shows two events. The first event shows a decrease in the absorbance upon addition 

0.1 mM POSA (●). We attribute this decrease in absorbance to strong binding of 5.7 to POSA 

which as result of charge neutralisation, leads to precipitation. The second binding event shows 

a clear increase in the absorbance of 5.7 upon addition of 0.068–1.8 mM DNA (■) in the 

presence of 0.1 mM of POSA. The ligand interacts with DNA, giving an apparent equilibrium 

constant Kbinding of (0.004 ± 4.5) ×105 M−1 for a binding site size (0.6 + 710) base pairs. A Kbinding 

of (7.7 ± 1.5) ×105 M−1 for a binding site size restricted to 3.0 base pairs was observed for 5.7 

binding to DNA in the absence of POSA. Therefore, the data were reanalysed with the 

stoichiometry restricted to 3.0 base pairs to allow comparison, giving an apparent equilibrium 

constant Kbinding of (1.9 ± 0.9) ×103 M−1. From the big difference in binding constants in the 

presence and absence of POSA, it appears that POSA does significantly compete with DNA for 

5.7. The presence of this competition is beneficial because it could reduce non-specific binding 

events. 
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5.3.12 Compound 5.8 binding with DNA in the presence of 0.1 mM POSA 

We wanted to study the binding of 5.8 with DNA in the presence of 0.1 mM POSA. The changes 

in absorption of 5.8 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) at 25°C in the presence of 0.1 mM POSA (Figure 5.23). 
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Figure 5.23: UV-visible spectra for 0.017 mM 5.8 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of POSA and subsequent spectra for 5.8 in the presence of  

0.1 mM POSA upon addition of 0 – 2.7 mM DNA, at 25 °C. 

Figure 5.23 shows a red shift in absorbance at 663 nm upon addition of 0.1 mM POSA followed 

by a hyperchromic shift at 663 nm upon addition of DNA in the presence of 0.1 mM POSA. 

This change in UV-visible absorption may occur as a result of geometrical distortion of 5.8 

when it interacts with DNA, but it may also be a local medium effect. This observation suggests 

precipitation of 5.8-POSA and subsequent dissolution of a DNA-ligand complex in the presence 

of 0.1 mM POSA.  

To quantify the affinity of 5.8 for DNA, the absorbance at 663 nm was plotted as a function of 

the concentration of DNA (Figure 5.24, see Appendix, Tables A55.102). 
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Figure 5.24: Absorbance at 663 nm for 0.014 mM 5.8 in the absence of POSA (▼) and 

subsequent spectra for 5.8 in the presence of 0.1 mM POSA (●) and as a function of DNA 

concentration of 0 – 1.5 mM (■), at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The 

solid line represents a fit of a multiple independent binding sites model to the data in the 0 – 

1.5 mM range (■). 

Figure 5.24 shows two events. The first event shows a large initial decrease in the absorbance 

upon addition 0.1 mM POSA (●). We attribute this decrease in absorbance to strong binding of 

5.8 to POSA, leading to precipitation as a result of charge neutralization of the 5.8−POSA 

complex. The second binding event shows a clear increase in the absorbance of 5.8 upon 

addition of DNA (■) in the presence of 0.1 mM of POSA. The ligand   interacts with DNA, 

giving an apparent equilibrium constant of (4.9 ×10-4 ± 3.5 ×10-1) M−1 for a binding site size of 

(4.1×10-7 ± 2.9×10-5) base pairs. A Kbinding of (4.4 ± 0.5) ×105 M−1 for the binding site size 

restricted to 3.0 base pairs was observed for 5.8 binding to DNA in the absence of POSA. 

Therefore, the data were reanalysed with the stoichiometry restricted to 3.0 base pairs to allow 

comparison, giving an apparent equilibrium constant Kbinding of (3.7 ± 0.4) × 104 M−1. From the 

big difference in binding constant in the presence and absence of POSA, it appears that POSA 

does significantly compete with DNA for 5.8. The presence of competition is beneficial because 

it could reduce non-specific binding. 
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5.3.13 Compound 5.10 binding with DNA in the presence of 0.5 mM POSA 

We wanted to quantify the binding of 5.10 with DNA in the presence of 0.5 mM POSA. The 

changes in absorption of 5.10 upon addition of DNA were measured in buffer (25 mM MOPS 

pH 7.0, 50 mM NaCl) at 25° C in the presence of 0.5 mM POSA (Figure 5.25). 
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Figure 5.25: UV-visible spectra for 0.013 mM 5.10 (blue line) in buffer (25 mM MOPS, pH 

7.0, 50 mM NaCl) in the absence of POSA and subsequent spectra for 5.10 in the presence of 

0.5 mM POSA upon addition of 0 – 1.5 mM DNA, at 25 °C. 

Figure 5.25 shows a redshift in absorbance of 5.10 upon addition of DNA in the presence of 

0.5 mM POSA. This change in UV-visible absorption may occur as a result of geometrical 

distortion of 5.10 when it interacts with DNA, but it may also be a local medium effect.  

To quantify the affinity of 5.10 for DNA in the presence of 0.5 mM POSA, the absorbances at 

411nm and 425 nm were plotted as a function of the concentration of DNA (Figure 5.26, see 

Appendix, Tables A55.103). 
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Figure 5.26: Absorbance at 411 nm (■) and at 425 nm (●) for 0.013 mM 5.10 as a function of 

DNA, in the presence of 0.5 mM POSA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM 

NaCl). The solid lines represent a global fit of a multiple independent binding sites model to 

the data. 

The values of binding affinity and binding site size were determined by fitting a multiple 

independent binding sites model, which also takes ligand dilution into account, to the data in 

Figure 5.28. The fit gives an equilibrium constant Kbinding of (6.5×10−2 ± 9.5) ×105 M−1 for a 

binding site size of (9×10−3 ± 1.3) ×103 base pairs. A Kbinding of (6.9 ± 0.7) ×103 M−1 for a 

binding site size restricted to 3.0 base pairs was observed for 5.10 binding to DNA in the 

absence of POSA. Therefore, the data were reanalysed with the stoichiometry restricted to 3.0 

base pairs to allow comparison, giving an apparent equilibrium constant Kbinding of (2.1 ± 0.5) 

×103 M−1. From the big difference in binding constants in the presence and absence of POSA, 

it appears that POSA does significantly compete with DNA for 5.10. 

 

 

 

 

 

 

 



Chapter five 

 

174 
 

5.3.14 Compound 5.11 binding with DNA in the presence of 0.1 mM POSA 

We wanted to know whether of 5.11 binds with DNA in the presence of 0.1 mM POSA. The 

changes in absorption of 5.11 upon addition of DNA were measured in buffer (25 mM MOPS, 

pH 7.0, 50 mM NaCl) at 25 °C in the presence of 0.1 mM POSA (Figure 5.27). 

300 400 500 600

0.00

0.25

0.50

0.75

A
 /

 a
 .
 u

wavelength [nm]  

Figure 5.27: UV-visible spectra for 0.019 mM 5.11 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of POSA and subsequent spectra for 5.11 in the presence of  

0.1 mM POSA upon addition of 0 – 1.9 mM DNA, at 25 °C. 

Figure 5.27 shows that 5.11 displays a red-shift in its absorbance upon addition of DNA in the 

presence of 0.1 mM POSA. This decrease in UV-visible absorption may have occurred as a 

result of geometrical distortion of 5.11 when it interacts with DNA in the presence of POSA, 

but it may also be as a consequence of a local medium effect. 

To quantify the affinity of 5.11 for DNA in the presence of POSA, the absorbances at 343 and 

375 nm were plotted as a function of the concentration of DNA (Figure 5.28, see Appendix, 

Tables A55.104). 
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Figure 5.28: Absorbance at 343 nm and at 375 nm for 0.021 mM 5.11 as a function of DNA 

concentration of 0 – 1.9 mM in the presence of 0.1 mM POSA, at 25 °C in buffer (25 mM 

MOPS, pH 7, 50 mM NaCl). The solid lines represent the best fit to the data fit in terms of a 

multiple independent binding sites model. 

Figure 5.28 shows a clear decrease in the absorbances at 343 nm and increase at 375 nm upon 

addition of DNA in the presence of POSA. The binding affinity Kbinding and binding site size n 

were determined by fitting a multiple independent binding sites model, which also takes ligand 

dilution into account, to the data. The fit produces a binding constant Kbinding of (4×10−4 ±1.7) 

×106 M−1 for a binding site size of (2×10−1 ± 918). The obtained binding parameters were 

unreasonable for both stoichiometry and binding constant. Therefore, the data were reanalysed 

with the stoichiometry restricted to 3.0 base pairs, giving an apparent equilibrium constant 

Kbinding of (6.1 ±0.9) ×103 M−1. A Kbinding of (1.6 ± 0.2) ×104 M−1 for the binding site size 

restricted to 3.0 base pairs was observed for 5.11 binding to DNA in the absence of POSA. 

From the difference in binding constants in the presence and absence of POSA, it appears that 

POSA does significantly compete with DNA. 

The same experiment was carried out with 5.12 and this showed no interactions between 5.12 

and DNA in the presence of POSA (See appendix A38, Figure A38.1 and Figure A38.2, see 

Appendix, Tables A44.105). 
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Summary 

The results from UV- visible titrations for these cationic compounds with DNA in the presence 

of POSA show that ligands 5.1, 5.2, 5.4, 5.5, 5.7, 5.8, 5.10, and 5.11 bind to DNA in the 

presence of POSA (results are summarised in Table 5.2). Compound 5.12 does not show 

binding with DNA in the presence of POSA. 

Table 5.2 Binding affinities and binding site sizes for binding of 5.1, 5.2, 5.4, 5.5, 5.7, 5.8, 

5.10, 5.11 and 5.12 to POSA and effect of POSA on DNA-binding at 25 °C in buffer  

(25 mM MOPS, pH 7.0, 50 mM NaCl). 

Ligands 

Binding constant 

for POSA 

 K/ M−1  

n 

Binding constant 

for DNA 

 K/ M−1  

N 

Binding constant 

for DNA+POSA 

K / M−1 

N 

Effect of POSA 

on affinity for 

DNA 

5.1 
(6.8 ± 1.1) ×103 a 

3* 

(1.5 ± 0.1) ×104 

3*a 
(1.8 ± 0.14) ×104 

3*a 
No change 

5.2 
(2.2 ± 0.8) ×103 a 

3* 

(6.4 ± 1.6) ×104 

3*a 
No binding Decrease 

5.4 
(7.0 ± 2.0) ×10 3 

 1* 

(5.3 ± 0.2) ×104 

3* 
(1.9 ±0.28) ×104 

3* 
Decrease 

5.5 
(2.0 ± 1.1) ×104 

0.27 ± 0.08 

(8.9 ± 2.3) ×104 

3* 
(1.3 ±0.3) ×104 

3* 
Decrease 

5.7 
(1.4 ± 0.8) ×106 

1* 

(7.7 ± 1.5) ×105 
3* 

(4.5 ± 1.6) ×103 
3*a 

Decrease 

5.8 
(1.4 ± 0.2) ×104 

 1* 

(4.4 ± 0.5) ×105 

3* 
(4.2 ± 0.3) ×104 

3*a 
Decrease 

5.10 
(3.1 ± 0.7) ×104 

6.1 ± 0.7 

(6.9 ± 0.7) ×103 

3* 
(2.1 ± 0.5) ×103 

3* 
Decrease 

5.11 No binding 
(1.6 ± 0.2) ×104 

3* 
(6.1 ±0.9) ×103 

3* 
Decrease 

5.12 
(1.3 ± 0.67) ×105 

1* 

(1.8 ± 0.38) x105  

3* 
No binding Decrease 

a. a) apparent binding constant for the event following initial precipitation. 

b. b) * restricted. 
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Table 5.2 shows the interaction between π-conjugated oligoheteroaromatic molecules and DNA 

in the presence of POSA. 5.1, 5.7 and 5.8 interacting with DNA in the presence of POSA two 

events are observed. The first event occurs when the concentration of ligand is high, and the 

concentration of DNA is still low under these condition ligand binds to both the highest affinity 

binding sites and to the negative sugar-phosphate backbone of DNA. As result of that, 

precipitation will occur because of formation of a charge neutralised ligand-DNA complex. The 

second event occurs at high concentration of DNA. In this case, the ligand binds to the main 

binding sites, viz. in the minor groove or an intercalation sites of DNA.  

The main binding forces between molecules and DNA in the presence of POSA may involve 

hydrophobic forces, electrostatic interactions, Van der Waals interactions and hydrogen-bonds 

interactions. Compound 5.1 does not show any change in affinity in the presence of POSA. The 

absence of this competition is beneficial if we need to use 5.1 in a biosensor. Decreases in 

affinity for DNA are observed for most ligands in the presence of POSA, viz. for 5.2, 5.4, 5.5, 

5.7, 5.8, 5.11 and 5.12. That means the binding between these ligands and DNA in the presence 

of POSA is not as easy as without polymer. For 5.2, 5.4, 5.5, 5.7, 5.8 and 5.12, this observation 

is as expected, considering these ligands bind to POSA. For 5.11 this is unexpected, considering 

that this compound was not found to bind to POSA. From the differences in the binding 

constant, it appears that POSA does significantly compete with DNA for these ligands as result 

of strong binding to POSA. There is no binding to DNA for 5.2 and 5.12 in the presence of 

POSA with DNA. The presence of this competition is harmful if we need to use these 

compounds in a biosensor. 

  



Chapter five 

 

178 
 

Part C: PAA binding studies 

5.3.15 Compound 5.1 and 5.2 binding to PAA 

We wanted to know whether 5.1 and 5.2 bind to PAA. The changes in absorption of 5.1 upon 

addition of PAA were measured in buffer (25 mM MOPS pH 7.0, 50 mM NaCl and 10 vol-% 

DMSO) at 25 °C (Figure 5.29). 
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Figure 5.29: UV-visible spectra for 0.026 mM 5.1 upon addition of 0 – 0.056 mM PAA, at  

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO). 

Figure 5.29 shows that 5.1 displays a hypochromic shift in the absorbance upon addition of 

PAA with a maximum change in absorbance at 445 nm. This decrease in UV-visible absorption 

may have occurred as a result of geometrical distortion of 5.1 when it interacts with PAA, but 

it may also be as a consequence of a local medium effect.  

To quantify the affinity of 5.1 for PAA, the absorbances at 445 nm were plotted as a function 

of the concentration of PAA (Figure 5.30, see Appendix, Tables A55.106). 
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Figure 5.30: Absorbance at 445 nm for 0.026 mM 5.1 upon addition of 0 – 0.056 mM PAA, at 

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol- % DMSO). The solid lines 

represent the best fit to the data fit in terms of a multiple independent binding sites model. 

Figure 5.30 shows a clear decrease in the absorbances of 5.1 at 445 nm upon addition of PAA. 

The binding affinity Kbinding and binding sites size n were determined by fitting a multiple 

independent binding sites model, which also takes ligand dilution into account, to the data.  

The fit gives a binding constant Kbinding of (18×10−2 ± 2.2) × 104 M−1 for a binding site size of 

(4×10−3 ± 3×10−2) monomeric units per molecule of 5.1. The obtained stoichiometry was 

unreasonable; therefore, the data were reanalysed with a stoichiometry restricted to 0.1, giving 

an equilibrium constant Kbinding of (7.3 ± 2.6) ×104 M−1. The fit suggests that 5.1 interacts and 

that PAA has a binding site size reachable to 5.1. Nevertheless, the binding site size is 

unreasonably small. We do not know why this is the case. Further experiments showed that 5.2, 

5.4 and 5.5 did not show any binding with PAA (see appendixes A39 - A 41). 

 

5.3.16 Compound 5.7 binding to PAA 

We wanted to know whether 5.7 binds to PAA. The changes in absorption of 5.7 upon addition 

of PAA were measured in buffer (25 mM MOPS pH 7.0, 50 mM NaCl) at 25 °C (Figure 5.31). 
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Figure 5.31: UV-visible spectra for 0.012 mM 5.7 upon addition of 0 – 0.13 mM PAA, at  

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 5.31 shows a red shift in absorbance of 5.7 upon addition of PAA. The change in UV-

visible absorption may occur as a result of geometrical distortion of 5.7 when it interacts with 

PAA, but it may also be a local medium effect.  

To quantify the affinity of 5.7 for PAA, the absorbances at 339 and 390 nm were plotted as a 

function of the concentration of PAA (Figure 5.32, see Appendix, Tables A55.110). 
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Figure 5.32: Absorbance at 340 nm (■) and at 390 nm (●) for 0.012 mM 5.7 as a function of 

PAA concentration, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid lines 

represent a global fit of a multiple independent sites model to the data. 
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The titration curves in Figure 5.32 were analysed globally in terms of a multiple independent 

binding sites model, which also takes ligand dilution into account, giving an equilibrium 

constant Kbinding of (6×10−3 ± 1.2) ×105 M─1 for a binding site size of (2×10−2 ± 4.2) monomeric 

units per molecule of 5.7. The obtained binding parameters were unreasonable, in particular the 

stoichiometry is ill-defined. Therefore, the data were reanalysed with a stoichiometry restricted 

to 3.0 monomeric units per molecule of 5.7, giving an apparent equilibrium constant Kbinding of 

(2.5± 0.58) ×105 M─1. 

 

5.3.17 Compound 5.8 binding to PAA 

We need to quantify the interactions of 5.8 with PAA. The changes in absorption of 5.8 upon 

addition of PAA were measured in buffer (25 mM MOPS, pH 7.0, 0 mM NaCl) at 25 °C (Figure 

5.33). 
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Figure 5.33: UV-visible spectra for 0.006 mM 5.8 upon addition of 0 – 1.8 mM PAA, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 5.33 displays a hypochromic shift in the absorbance upon addition of PAA, with a 

maximum change in absorbance at 665 nm. This decrease in UV-visible absorption may have 

occurred as a result of geometrical distortion of 5.8 when it interacts with PAA, but it may also 

be as a result of a local medium effect. 

To quantify the affinity of 5.8 for PAA we plotted the absorbances at 665 nm as a function of 

the concentration of PAA (Figure 5.34, see Appendix, Tables A55.111). 
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Figure 5.34: Absorbance at 665 nm for 0.006 mM 5.8 upon addition of 0 – 1.8 mM PAA 

concentration, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid lines 

represent the best fit to the data fit in terms of a multiple independent binding sites model. 

Figure 5.34 shows a clear decrease in the absorbances at 665 nm for 5.8 upon addition of PAA. 

The binding affinity Kbinding and binding sites size n were determined by fitting a multiple 

independent binding sites model, which also takes ligand dilution into account, to the data. A 

binding constant Kbinding of (6.1 ±2.7) × 105 M−1 for a binding site size of (6.4 ± 1.2) monomeric 

units per molecule of 5.8 was found. The fit suggests that 5.8 interacts and that PAA has a 

binding site reachable to 5.8. Ligands 5.10, 5.11 and 5.12 showed no binding with PAA (See 

appendixes A42-A44)  
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Summary 

The UV-visible titrations for oligoheteroaromatic compounds with PAA show that ligands 5.1, 

5.2, 5.7 and 5.8 bind to PAA and the binding parameters are summarised in Table 5.3. 

Table 5.3 Binding affinities and binding site sizes for binding of 5.1, 5.2, 5.4, 5.5, 5.7, 5.8, 

5.10, 5.11 and 5.12 to PAA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C. 

Ligands 

Binding constant  

for PAA 

K / M─1 

Stoichiometry 

N 

5.1 (7.3 ± 2.6) ×104 0.1* 

5.2 (2.9 ± 1.9) ×105 (0.7 ± 0.08) 

5.4 No binding  

5.5 No binding  

5.7 (2.7 ± 0.6) ×105 3* 

5.8 (6.1 ± 2.7) ×105 (6.4 ± 1.2). 

5.10 No binding  

5.11 No binding  

5.12 No binding  

* restricted 

 

Table 5.3 shows that 5.1, 5.2, 5.7 and 5.8 bind to negative synthetic polymer polyacrylic acid 

and the interaction is accompanied by a change in optoelectronic properties of the ligands. For 

example, binding of several ligands to PAA is accompanied by red-shift in UV-visible 

absorption. This red shift suggests an increase in effective conjugation, i.e., an increase in the 

planarity of the molecules upon interaction with PAA. We attribute the affinity for PAA to the 

presence of positive charge on the ammonium NH3
+ group of 5.1, 5.2, 5.7 and 5.8 which 

interacts with the negative charge on the RCOO− of PAA. The electrostatic interaction between 

the ammonium group and the negative charged PAA are presumably the main driving forces 

responsible for the arrangement of ligand-PAA complex. It is possible that hydrophobicity also 

plays a role. However, positive compounds 5.4, 5.5, 5.10, 5.11 and 5.12 do not show any affinity 

for PAA, indicating that electrostatic interactions only are not enough for interaction to occur. 
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Part D: Effect of PAA on DNA-binding properties. 

5.3.19 Compound 5.1 binding with DNA in the presence of 0.5 mM PAA 

We studied the interactions of 5.1 with DNA in the presence of 0.5 mM PAA. The changes in 

absorption of 5.1 upon addition of DNA in the presence of 0.5 mM PAA were measured in 

buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 5.35). 

300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

A
 /

 a
 .
 u

 .

wavelength [nm]  

Figure 5.35: UV-visible spectra for 0.063 mM 5.1 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of PAA and subsequent spectra for 5.1 in the presence of 0.5 mM 

PAA upon addition of 0 – 1.5 mM DNA, at 25 °C. 

Figure 5.35 shows a hypochromic shift in absorbance at 444 nm upon addition of PAA followed 

by a hyperchromic shift at 444 nm upon addition of DNA in the presence of 0.5 mM PAA. This 

observation suggests precipitation of the 5.1-PAA complex and subsequent dissolution of 

DNA-ligand complex in the presence of 0.5 mM PAA, similar to the observation in the absence 

of PAA. The change in UV-visible absorption during the second phase of the titration may 

occur as a result of geometrical distortion of 5.1 when it interacts with DNA, but it may also be 

a local medium effect. 

To quantify the affinity of 5.1 for DNA in the presence of 0.5 mM PAA, the absorbances at  

444 nm were plotted as a function of the concentration of DNA (Figure 5.36, see Appendix, 

Tables A55.115). 
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Figure 5.36: Absorbance at 444 nm for 0.063 mM 5.1 in the absence of PAA (▼) and 

subsequent spectra for 5.1 in the presence of 0.5 mM PAA (●) and as a function of DNA 

concentration of 0 – 1.5 mM (■) at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). The 

solid line represents the best fit to the data fit in terms of a multiple independent binding sites 

model in the 0 – 1.5 mM range (■). 

Figure 5.36 shows two events. The first event shows a large initial decrease in the absorbance 

upon addition 0.5 mM PAA (●). We attribute this decline in absorbance to strong binding of 

5.1 to PAA, leading to precipitation as a result of charge neutralisation of the 5.1 – PAA 

complexes, as also observed previously in the absence of PAA. The second event shows a clear 

increase in the absorbance of 5.1 upon addition of 0 – 1.5 mM (■) of DNA in the presence of 

0.5 mM of PAA. The ligand strongly interacts with DNA in the presence of PAA, giving an 

apparent equilibrium constant Kbinding of (6.2 ± 2.6) ×104 M−1 for a binding site size of (4.3 ± 

0.8) base pairs. A Kbinding of (1.5 ± 0.1) ×104 M−1 for a binding site size restricted to 3.0 base 

pairs was observed for 5.1 binding to DNA in the absence of PAA172. Therefore, the data were 

reanalysed with a stoichiometry restricted to 3.0 base pairs to compare the affinities, giving an 

apparent equilibrium constant Kbinding of (3.7 ± 0.4) ×104 M−1. From the difference in the 

apparent binding constant in the absence of PAA172 and in the presence of PAA, it appears that 

PAA does significantly compete with DNA for 5.1. Unfortunately, PAA does not help to avoid 

precipitation. The presence of this competition is beneficial if 5.1 were to be used in a biosensor 

because it can be used to stop non-specific interaction that may lead to a false positive signal. 

In addition, it may provide signals to detect DNA hybridization when used in biosensors.  
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Similar data were observed for compound 5.2 (See Appendix A45 for compound 5.2 with DNA 

in presence of PAA. Figure A45.1 and Figure A45.2, Tables A55.116). 

 

5.3.20 Compound 5.4 binding with DNA in the presence of 0.7 mM PAA 

We wanted to study the binding of 5.4 with DNA in the presence of 0.7 mM PAA. The changes 

in absorption of 5.4 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0,  

50 mM NaCl) at 25 °C (Figure 5.37). 
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Figure 5.37: UV-visible spectra for 0.055 mM 5.4 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of AA and subsequent spectra for 5.4 in the presence of 0.7 mM 

AA upon addition of 0 – 1.5 mM DNA, at 25 °C. 

Figure 5.37 shows a hypochromic shift with a maximum change at 434 nm upon addition of 

DNA in the presence of 0.7 mM PAA. This decrease in UV-visible absorption may occur 

because of geometrical distortion of 5.4 when it interacts with DNA, or as a result of the 

different local medium affected by the binding sites.  

To quantify the affinity of 5.4 for DNA in the presence of 0.7 mM PAA, the absorbances at  

434 nm was plotted as a function of the concentration of DNA (Figure 5.38, see Appendix, 

Tables A55.117). 
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Figure 5.38: Absorbance at 434 nm for 0.055 mM 5.4 as a function of DNA concentration in 

the presence of 0.7 mM PAA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The 

solid line represents the best fit to the data in terms of a multiple independent binding sites 

model. 

Figure 5.38 shows a decrease in the absorbance for 5.4 upon addition of DNA in the presence 

of 0.7 mM PAA. The binding affinity Kbinding and binding sites size n were obtained by analysis 

of the titration curves in terms of a multiple independent binding sites model, correcting for 

dilution of 5.4. The fit produces an equilibrium constant Kbinding of (4.2 ± 1.1) ×104 M−1 for a 

binding site size of (2.3 ± 0.3) base pairs. A binding constant Kbinding of (3.4 ± 0.67) ×104 M−1 

for a binding site size of (2.3 ± 0.25) base pairs was found for 5.4 binding with DNA in the 

absence of PAA. The obtained binding parameters were reasonable for both stoichiometry and 

binding constant to both experiments. From the similarity in the binding constants, it appears 

that PAA does not significantly compete with DNA for 5.4.  
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 5.3.21 Compound 5.5 binding with DNA in the presence of 0.1 mM PAA 

We wanted to study the binding of 5.5 with DNA in the presence of 0.1 mM PAA. The changes 

in absorption of 5.5 upon addition of DNA in the presence of 0.1 mM PAA were measured in 

buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C (Figure 5.39). 

300 400 500 600

0.00

0.25

0.50

A
 /

 a
 .
 u

 .

wavelength [nm]  

Figure 5.39: UV-visible spectra for 0.032 mM 5.5 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of PAA and subsequent spectra for 5.5 in the presence of 0.1 mM 

PAA upon addition of 0 – 1.7 mM DNA, at 25 °C. 

Figure 5.39 shows a hypochromic shift (with a maximum at 444 nm) of 5.5 upon addition of 

DNA in the presence of 0.1 mM PAA. The decrease in UV-visible absorption may occur 

because of geometrical distortion of 5.5 when it interacts with DNA, or as a result of the 

different local medium provided by the binding sites.  

To quantify the affinity of 5.5 for DNA in the presence of PAA, the absorbances at 444 nm 

were plotted as a function of the concentration of DNA in the presence of PAA (Figure 5.40, 

see Appendix, Tables A55.118). 
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Figure 5.40: Absorbance at 444 nm for 0.032 mM 5.5 as a function of DNA concentration in 

the presence of 0.1 mM PAA, at 25 °C in buffer (25 mM MOPS pH 7.0, 50 mM NaCl). The 

solid line represents the best fit to the data in terms of a multiple independent binding sites 

model. 

 

The figure 5.40 shows a decrease in the absorbance for 5.5 on the addition of DNA in the 

presence of 0.1 mM PAA. The binding affinity Kbinding and binding site size n were determined 

by fitting a multiple independent binding sites model, which also takes ligand dilution into 

account, to the data. A binding constant Kbinding of (1.0 ± 1.5) ×104 M−1 for a binding site size 

of (1.0 ± 1.3) base pairs was found. A Kbinding of (8.9 ± 3.2) ×104 M−1 for a binding site size 

restricted to 3.0 base pairs was observed for 5.5 binding to DNA in the absence of PAA. 

Therefore, the data were reanalysed with the stoichiometry restricted to 3.0 base pairs to allow 

comparison, giving an equilibrium constant Kbinding of (4.0 ± 0.46) ×104 M−1. From the similarity 

in the binding constants, it appears that PAA does not significantly compete with DNA for 5.5.  

 

5.3.22 Compound 5.7 binding with DNA in the presence of 0.1 mM PAA  

We studied the interactions of 5.7 with DNA in the presence of 0.1 mM PAA. The changes in 

absorption of 5.7 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0,  

50 mM NaCl) at 25 °C (Figure 5.41). 
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Figure 5.41: UV-visible spectra for 0.019 mM 5.7 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of PAA and subsequent spectra for 5.7 in the presence of 0.1 mM 

PAA upon addition of 0 – 2.2 mM DNA, at 25 °C. 

Figure 5.41 shows two events upon addition of DNA in the presence of 0.1 mM PAA. The first 

event involves a hypochromic shift in absorbance at 339 nm upon addition of PAA with a 

subsequent continued decrease in absorbance upon addition of DNA up to a concentration of 

0.074 mM DNA (round data point in Figure 5.44). The second event involved a hyperchromic 

shift at 339 nm. The isosbestic point indicates that two forms of the DNA binder are involved 

in the titration during the second event. The change in UV-visible absorption may occur as a 

result of geometrical distortion of 5.7 when it interacts with DNA in presence PAA, but it may 

also be a local medium effect. The observation of rapid decrease in absorbance followed by an 

increase suggests precipitation and subsequent dissolution of DNA-ligand complex in the 

presence of 0.1 mM PAA. This, in turn, suggests that the two-species involved in the second 

equilibrium are 5.7 in primary and secondary sites on the DNA. 

To quantify the affinity of 5.7 for DNA in the presence of 0.1 mM PAA, the absorbance at  

339 nm was plotted as a function of the concentration of DNA (Figure 5.42, see Appendix, 

Tables A55.119). 
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Figure 5.42: Absorbance at 339 nm for 0.019 mM 5.7 in the absence of PAA (▼) and 

subsequent spectra for 5.7 in the presence of 0.1 mM PAA (●) and upon addition of DNA of 

0.0 – 0.075 mM (●) and 0.14 – 2.2 mM (■) of DNA concentration both in presence of 0.1 mM 

PAA, at 25 °C in buffer (25 mM MOPS pH 7, 50 mM NaCl). The solid line represents a fit of 

a multiple independent sites model to the data in the 0.14 – 2.2 mM range (■). 

Figure 5.42 shows two events. The first event shows a decrease in the absorbance upon  

addition of 0.1 mM PAA (●) with a subsequent continued decrease in absorbance up to a 

concentration of 0.075 mM DNA (● in Figure 5.42). We attribute this decline in absorbance to 

strong binding of 5.7 to DNA, leading to precipitation as a result of charge neutralisation of the 

5.7 – DNA complex. The second event shows an increase in the absorbance of 5.7 upon addition 

of 0.14 – 2.2 mM of DNA (■) in the presence of 0.1 mM of PAA. The ligand of interacts with 

DNA, giving an apparent equilibrium constant Kbinding of (3.6×10−3 ± 3.9) ×105 M−1 for a binding 

site size (6×10−1 ± 745) base pairs. A Kbinding of (9.2 ± 1.9) ×105 M−1 for the binding site size 

restricted to 3.0 base pairs was observed for 5.7 binding to DNA in the absence of PAA. 

Therefore, the data were reanalysed with the stoichiometry restricted to 3.0 base pairs to allow 

comparison, giving an apparent equilibrium constant Kbinding of (1.6 ± 0.5) ×103 M−1. From the 

difference in the binding constants, it appears that PAA does significantly compete with DNA 

for 5.7. 
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5.3.23 Compound 5.8 binding with DNA in the presence of 0.5 mM PAA  

We studied the interactions of 5.8 with DNA in the presence of 0.5 mM PAA. The changes in 

absorption of 5.8 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0,  

50 mM NaCl, 10 vol- %DMSO) at 25 °C (Figure 5.43). 
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Figure 5.43: UV-visible spectra for 0.012 mM 5.8 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl, 10 vol-% DMSO) in the absence of PAA and subsequent spectra for 5.8 in the 

presence of 0.5 mM PAA upon addition of 0 – 1.8 mM DNA, at 25 °C. 

Figure 5.43 shows that 5.8 displays a hypochromic shift in absorbance upon addition of DNA 

in the presence of 0.5 mM PAA with a maximum change in absorbance at 664 nm. This decrease 

in UV-visible absorption may have occurred as a result of geometrical distortion of 5.8 when it 

interacts with DNA, but it may also be as a result of a local medium effect. 

To quantify the affinity of 5.8 for DNA in the presence of 0.5 mM PAA, the absorbances at  

664 nm was plotted as a function of the concentration of DNA in the presence of 0.5 mM PAA 

(Figure 5.44, see Appendix, Tables A55.120). 
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Figure 5.44: Absorbance at 664 nm for 0.012 mM 5.8 as a function of DNA concentration of 

 0 – 1.8 mM, in the presence of 0.5 mM PAA, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM 

NaCl, 10 vol-%DMSO). The solid line represents the best fit to the data in terms of a multiple 

independent binding sites model. 

Figure 5.44 shows decrease in the absorbances at 664 nm for 5.8 upon addition DNA in the 

presence of 0.5 mM PAA. The binding affinity Kbinding and binding site size n were determined 

by fitting a multiple independent binding sites model, which also takes ligand dilution into 

account, to the data. The fit provides an equilibrium constant Kbinding of (1.1 ± 0.79) ×106 M−1 

for a binding site size of (8.8 ± 1.8) base pairs. A Kbinding of (4.5 ± 1.8) ×105 M-1 for a binding 

site size of (3.0 ± 0.5) base pairs was observed for 5.8 binding to DNA in the absence of PAA. 

The data were reanalysed with the stoichiometry restricted to 3.0 base pairs to allow 

comparison, giving an apparent equilibrium constant Kbinding of (1.4 ± 0.2) ×105 M−1. A Kbinding 

of (4.4 ± 0.5) ×105 M−1 for the binding site size restricted to 3.0 base pairs was observed for 5.8 

to DNA in the absence of PAA. From the difference in the binding constant in the presence and 

absence of PAA, it appears that PAA does significantly compete with DNA for 5.8. The 

presence of competition is beneficial because it could reduce a nonspecific binding.  
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5.3.24 The interaction of compound 5.10 and DNA in the presence of 0.1 mM PAA 

We studied the interactions of 5.10 with DNA in the presence of 0.1 mM PAA. The changes in 

absorption of 5.10 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0,  

50 mM NaCl, at 25 °C) (Figure 5.45). 
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Figure 5.45: UV-visible spectra for 0.026 mM 5.10 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of PAA and subsequent spectra for 5.8 in the presence of  

0.1 mM PAA upon addition of 0 – 1.8 mM DNA, at 25 °C. 

Figure 5.45 shows a red shift in absorbance of 5.10 upon addition of DNA in the presence of 

0.1 mM PAA. This change in UV-visible absorption may occur as a result of geometrical 

distortion of 5.10 when it interacts with DNA in the presence of 0.1 mM PAA, but it may also 

be a local medium effect.  

To quantify the affinity of 5.10 for DNA in the presence of 0.1 mM PAA, the absorbances at 

411 and 432 nm were plotted as a function of the concentration of DNA (Figure 5.46, see 

appendix, Tables A55.121). 
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Figure 5.46: Absorbance at 411 nm (■) and at 432 nm (●) for 0.026 mM 5.10 as a function of 

DNA concentration in the presence of 0.1 mM PAA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl). The solid lines represent a global fit of a multiple independent binding sites 

model to the data. 

Figure 5.46 shows a decrease in the absorbance of at 411 nm (■) upon addition of DNA in the 

presence of 0.1 mM PAA. The red line shows a clear increase in the absorbance of 5.10 at  

432 nm (●) upon addition of DNA in the presence of 0.1 mM PAA. The titration curves in 

Figure 5.48 were analysed globally by the fitting of a multiple independent binding sites  

model, which also takes simple dilution into account, to the data. The fit gives an equilibrium 

constant Kbinding of (3×10−2 ± 3.1) ×104 M−1 for a binding site size of (5×10−1 ± 13) base pairs. 

A Kbinding of (6.9 ± 0.7) ×103 M−1 for the binding site size restricted to 3.0 base pairs was 

observed for 5.10 binding to DNA in the absence of PAA. Therefore, the data were reanalyzed 

with the stoichiometry restricted to 3.0 base pairs to allow comparison, giving an apparent 

equilibrium constant Kbinding of (8.0 ± 1.9) ×103 M−1. From the similarity in the binding constant, 

it appears that PAA does not significantly compete with DNA for 5.10. The absence of this 

competition is beneficial if 5.10 were to be used in a biosensor.  

 

 

 



Chapter five 

 

196 
 

5.3.25 Compound 5.11 binding with DNA in the presence of 0.1 mM PAA 

We studied the interactions of 5.11 with DNA in the presence of 0.1 mM PAA. The changes in 

absorption of 5.11 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0,  

50 mM NaCl) at 25 °C (Figure 5.47). 
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Figure 5.47: UV-visible spectra for 0.022 mM 5.11 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of PAA and subsequent spectra for 5.11 in the presence of  

0.1 mM PAA upon addition of 0 – 1.9 mM DNA, at 25 °C. 

In the studies, 5.11 showed a red shift in absorbance upon addition of DNA with maximum 

changes in absorbance at 343 and at 375 nm in the presence of 0.1 mM PAA. This decrease in 

UV-visible absorption may have occurred as a result of geometrical distortion of 5.11 when it 

interacts with DNA in the presence of 0.1 mM PAA, but it may also be as a consequence of a 

local medium effect. 

To quantify the affinity of 5.11 for DNA, the absorbances at 343 and 375 nm were plotted as a 

function of the concentration of DNA in the presence of PAA (Figure 5.48, see Appendix, 

Tables A55.122). 
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Figure 5.48: Absorbance at 343 nm and at 375 nm for 0.022 mM 5.11 as a function of DNA 

concentration in the presence of 0.1 mM PAA, at 25 °C in buffer (25 mM MOPS, pH 7.0,  

50 mM NaCl). The solid lines represent the best fit to the data fit in terms of a multiple 

independent binding sites model. 

Figure 5.48 shows a decrease in absorption at 343 nm and an increase at 375 nm upon addition 

DNA in the presence of 0.1 mM PAA. We attribute this decrease and increase in absorbance  

to binding of 5.11 to DNA in the presence of 0.1 mM PAA. The binding affinity Kbinding  

and binding site size n were determined by fitting a multiple independent binding sites model, 

which also takes ligand dilution into account, to the data. The binding constant Kbinding of  

(5.6 ± 4.7) × 104 M−1 for a binding site size of (6.7 ± 3.6) base pairs was found. A Kbinding of 

(1.6 ± 0.2) ×104 M−1 for a binding site size restricted to 3.0 base pairs was observed for 5.11 

binding to DNA in the absence of PAA. The data were reanalysed with the stoichiometry 

restricted to 3.0 base pairs to allow comparison, giving an apparent equilibrium constant Kbinding 

of (1.9 ± 0.2) × 104 M−1. From the similarity in the binding constants, it appears that PAA does 

not significantly compete with DNA for 5.11. The absence of this competition is beneficial if 

5.11 were to be used in a biosensor. 
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5.3.26 Compound 5.12 binding with DNA in the presence of 0.5 mM PAA 

We wanted to study the binding of 5.12 to DNA in the presence 0.5 mM PAA. The changes in 

absorption of 5.12 upon addition of DNA were measured in buffer (25 mM MOPS, pH 7.0,  

50 mM NaCl) at 25 °C (Figure 5.49). 
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Figure 5.49: UV-visible spectra for 0.014 mM 5.12 (red line) in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl) in the absence of PAA and subsequent spectra for 5.12 in the presence of  

0.5 mM PAA upon addition of 0 – 0.68 mM DNA, at 25 °C. 

In the studies, 5.12 showed a red shift in absorbance upon addition of DNA in the presence of 

0.5 mM PAA. The change in UV-visible absorption probably occurs as a result of geometrical 

distortion of 5.12 when it interacts with DNA in the presence of PAA, but a local medium effect 

may also contribute. 

To quantify the affinity of 5.12 for DNA, the absorbances at 367 and 430 nm were plotted as a 

function of the concentration of DNA (Figure 5.50, see Appendix, Tables A55.123). 
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Figure 5.50: Absorbance at 367 nm (■) and at 430 nm (●) for 0.014 mM 5.12 as a function of 

DNA concentration in the presence of 0.5 mM PAA, at 25 °C in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl). The solid lines represent a global fit of a multiple independent binding sites 

model to the data. 

The binding affinity Kbinding and binding sites size n were determined by globally fitting a 

multiple independent binding sites model, which also takes ligand dilution into account, to the 

data in Figure 5.50. A binding constant Kbinding of (4.0 ± 9.3) × 104 M−1 for a binding site size 

of (0.8 ± 1.6) base pairs was found. A Kbinding of (8.3 ± 1.7) ×104 M−1 for a binding site size 

restricted to 2.0 base pairs was observed for 5.12 binding to DNA in absence PAA. The data 

were reanalysed with a stoichiometry restricted to 2.0 base pairs to allow comparison, giving 

an apparent equilibrium constant Kbinding of (1.3 ± 0.3) ×105 M−1. From the similarity in the 

binding constant, it appears that PAA does not significantly compete with DNA for 5.12. The 

lack of this competition is beneficial if 5.12 were to be used in a biosensor.  
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Summary 

The results of UV-visible titrations show that ligands 5.1, 5.2, 5.4, 5.5, 5.7, 5.8, 5.10, 5.11 and 

5.12 bind to DNA in the presence of PAA. Binding parameters are summarised in Table 5.4. 

Table 5.4 Binding affinities and binding site sizes for binding of 5.1, 5.2, 5.4, 5.5, 5.7, 5.8, 

5.10, 5.11 and 5.12 to DNA in the presence of PAA in buffer (25 mM MOPS, pH 7.0, 50 

mM NaCl) at 25 °C. 

Ligands 
Binding constant 

PAA / M−1 

Binding constant 

DNA / M−1 

Binding constant 

DNA+PAA / M−1 

Effect of PAA 

on affinity for 

DNA 

5.1 
(7.3 ± 2.6) ×104 

n = 0.1* 

(1.5 ± 0.1) ×104 

n = 3*a 

(3.7 ± 0.4) ×104 

n = 3*a 
Increase 

5.2 
(2.9 ± 1.9) ×105 

n = 0.7 ± 0.08 

(6.4 ± 1.6) ×104 

n = 3*a 

(2.0 ± 0.5) ×104 

n = 3*a 
Decrease 

5.4 No binding 
(3.4 ± 0.7) ×104 

n = 2.3 ± 0.25 

(4.2 ± 1.1) ×104 

n = 2.3 ± 0.3 
No change 

5.5 No binding 
(8.9 ± 3.2) ×104 

n = 3* 

(4.0 ± 0.5) ×104 

n = 3* 
No change 

5.7 
(2.7 ± 0.6) ×105 

n = 3* 

(7.7 ± 1.5) ×105 

n = 3* 

(8.2 ± 1.3) ×103 

n = 3*a 
Decrease 

5.8 (6.1 ± 2.7) ×105 

n = 6.4 ± 1.2 

(4.4 ± 0.5) ×105 

n = 3* 

(1.4 ±0.2) ×105 

n = 3* 
Decrease 

5.10 No binding 
(6.9 ± 0.7) ×103 

n = 3* 

(8.0 ± 1.9) ×103 

n = 3* 
No change 

5.11 No binding 
(1.6 ± 0.2) ×104 

n = 3* 

(1.9 ± 0.2) ×104 

n = 3* 
No change 

5.12 No binding 
(1.8 ± 0.3) ×105 

n = 3* 

(2.8 ± 0.8) ×105 

n = 3* 
No change 

a. apparent binding constant for the event following initial precipitation. 

b. * restricted. 
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Table 5.4 describes the cationic ligands that can bind to DNA in the presence of PAA. 

Compounds 5.1, 5.2 and 5.7 interact with DNA in the presence of PAA in two events. The first 

event occurs when the concentration of ligand is high, and the concentration of DNA is still 

low. Under these conditions the ligand binds to both the highest affinity binding sites and to the 

negative sugar-phosphate backbone of DNA. As a result of those interactions precipitation will 

occur because of formation of a charge neutralised ligand-DNA complex. The second event 

occurs at high concentration of DNA. In this event, the ligand binds to the main binding sites, 

viz. in the minor groove or in intercalation sites of DNA. 

Compounds 5.4, 5.5, 5.10, 5.11 and 5.12 do not show any change in affinity for DNA in the 

presence of PAA. This is in agreement with the observation that these compounds don’t bind 

to PAA. Decreases in binding constant were observed for 5.2, 5.7 and 5.8. That means the 

binding between these ligands and DNA in the presence of PAA is not in the absence of the 

polymer. For 5.2, 5.7 and 5.8, this observation is as expected, considering they bind to PAA. 

For 5.1 an increase in the apparent binding constant was observed. This increase is probably 

the result of excess ligand at the beginning of the titration binding to PAA, rather than to 

secondary binding sites on the DNA. This means that the second event now corresponds to 5.1 

moving from PAA to the primary binding site on DNA, rather than from precipitated 

complexes. 
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5.4 Potential use of block copolymers in directed assembly  

The results of UV-visible titrations for oligo heteroaromatic compounds with POSA and PAA 

show that ligands 5.1, 5.2, 5.4, 5.5, 5.7, 5.8, 5.10, 5.11 and 5.12 bind to POSA and PAA  

(Table 4.5). 

Table 5.5 Binding affinities and binding site sizes for binding of 5.1, 5.2, 5.4, 5.5, 5.7, 5.8, 

5.10, 5.11 and 5.12 to POSA and PAA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 

25 °C. 

Ligands 
Binding constant PAA 

K / M─1 

Binding constant POSA 

K / M─1 

5.1 
(7.3 ± 2.6) ×104 

n = 0.1* 

(6.8 ± 1.1) ×103 

n = 3*a 

5.2 
(2.9 ± 1.9) ×105 

n = 0.7 ± 0.08 

(2.2 ± 0.8) ×103 

n = 3*a 

5.4 No binding 
(7.6 ± 2.0) ×103 

n = 1* 

5.5 No binding 
(2.0 ± 1.7) ×104 

n = 0.26 ± 0.08 

5.7 
(2.7 ± 0.6) ×105 

n = 3* 

(1.4 ± 0.85) ×106 

n = 3* 

5.8 
(6.1 ± 2.7) ×105 

n = 6.4 ± 1.2. 

(1.4 ± 0.2) ×104 

n = 1* 

5.10 No binding 
(3.2 ± 0.7) ×104 

n = 6.1 ± 0.7 

5.11 No binding No binding 

5.12 No binding 
(1.3 ± 0.6) × 105 

n = 1* 

a. apparent binding constant for the event following initial precipitation. 

b. * restricted. 
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Cationic conjugated oligoheteraromatic 5.1, 5.2, 5.7 and 5.8 interact with POSA and PAA. 

However, the rest of the ligands bind to POSA only. 

Compounds 5.1 and 5.2 bind to POSA and show two events, with a high ratio of ligands / POSA 

leading to a sharp decrease in absorbance as result of precipitation of ligand−POSA complexes. 

The next event with a low concentration of ligand leads to an increase in absorbance. In contrast, 

these compounds bind to PAA without precipitation. 

The highest affinity is observed for 5.7 and 5.12 with a binding constant between 105 – 106 M−1. 

We may attribute this high affinity to the presence of more positive charges and aromatics rings 

which lead to an increase in electrostatic interactions and hydrophobic interaction between the 

ligands and POSA and PAA. The weakest binders are 5.1-5.2 with an apparent binding constant 

~ 103 M-1. The low affinities of 5.1-5.2 for POSA may be attributed to the presence of 

precipitation and subsequent dissolution of a POSA−ligand complex, leading to a decrease in 

the apparent affinity. The compounds 5.1-5.2 bind with PAA with high affinity. 

It is interesting to speculate about what we could do with these molecules in terms of self 

assembly. Compounds 5.4, 5.5, 5.10 and 5.12 show selectivity in binding to POSA over PAA. 

Unfortunately, there are no compounds that are strongly selective for PAA over POSA in this 

data set. If this were the case, we could try to use a block copolymer to organise these molecules 

as illustrated in Figure 5.53. 

 
Figure 5.53: explains that molecules bind with POSA and others bind to PAA. 

  

POSA – POSA – POSA – PAA – PAA – PAA 

5.1, 5.2, 5.4, 

5.5, 5.7, 5.8, 

5.10, 5.12 

5.1, 5.2, 5.7, 

5.8 
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5.5 Conclusions  

Chapter five provided the results of binding studies between different oligoheteroaromatic 

molecules and negative polymers POSA and PAA and the effect of POSA and PAA on  

DNA-binding properties. The binding constants Kbinding for ligands were between 103 M-1 and 

106 M-1 with binding site sizes in a range of 0.1 to 6.0 monomeric units per molecule. 

Compounds 5.1, 5.2, 5.7 and 5.8 bind to POSA and PAA. In addition, ligands 5.4, 5.5, 5.10 and 

5.12 bind with POSA only without any affinity for PAA. 

The UV-visible results show that 5.1 and 5.7 bind to DNA in the presence of POSA and PAA 

with two events. Compound 5.8 binds to DNA in the presence of POSA with two events too. 

Compound 5.2 binds to DNA in the presence of PAA with two binding events. All ligands 

exhibit decreased affinity in the presence of POSA which could lead to false negatives. We also 

observed, compound 5.1 bind to DNA in the presence of POSA without any change in binding 

constant. 

The decreasing affinity of compounds 5.2, 5.5, 5.7 and 5.8 for DNA in the presence of PAA 

and POSA indicates that binding may lead to reduce the non-specific binding. Compounds 5.4, 

5.5, 5.10, 5.11 and 5.12 do not show change in affinity for DNA. That means there is no effect 

of PAA on DNA biosensors involving these sensitisers. 

 

5.6 Materials  

5.6.1 Materials 

  Polystyrenesulfonic acid POSA was procured from Sigma-Aldrich and Acros as a solution. 

Polyacrylicacid with high molecular weight was purchased from Sigma-Aldrich. The buffer 

components were purchased from Melford Laboratories Ltd and Sigma-Aldrich. POSA and 

PAA concentrations were determined in term of monomeric units by molecular weight. 

 

 
5.7 Solutions preparation  

5.7.1 Polymers POSA and PAA preparation 

All experiments were carried out in buffer (25 mM MOPS, 50 mM NaCl, pH 7.0, at 25 °C). 

POSA solutions were prepared by dilution (M1×V1 = M2×V2) in MOPS buffer of a 1 M stock 

solution of POSA. PAA with high molecular weight was dissolved in MOPS buffer. 

Concentrations of stock solutions were determined by weight. 
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5.8 Spectroscopy studies 

2.0 ml of MOPS buffer was added in a 1.0 cm path length cuvette. Stock solutions of all 

molecules were prepared in MOPS buffer, sometimes involving 10 vol-% DMSO. All UV-

visible titrations were carried out by adding aliquots of the stock solution of the macromolecules 

such as POSA, PAA and DNA into the 1.0 cm path length cuvette which contains ligand 

solution in MOPS, recording the absorption in the range of 200 - 800 nm after each addition. 

Absorptions were kept in the range of (0.0 - 1.0). Furthermore, to study the effect of POSA and 

PAA on DNA - binding, the same steps were carried out as before except first adding POSA 

and PAA after the ligand and then continuing to add DNA. The absorptions at selected 

wavelengths were plotted against macromolecules concentrations, and a multiple independent 

binding sites model was used to analyse the UV-visible spectra using the Origin 9.0 software. 

 



 

 

 

 

 

 

Chapter Six 

 

The interactions of π-conjugated ligands with surfactants and the 

effect of surfactant on DNA-binding 
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Abstract 

We studied the interactions of π-conjugated molecules with different types of surfactants viz 

positive, negative and nonionic surfactants using UV-visible spectroscopy. All ligands contain 

a π-conjugated system and possess hydrophilic and hydrophobic side groups.186-187 We show 

that cationic ligands bind to negatively charged sodium dodecyl sulphate (SDS) through 

electrostatic and hydrophobic binding. An anionic compound was found to interact strongly 

with positively charged cetyl trimethyl ammonium bromide (CTAB). Moreover, we used non-

ionic surfactant polyoxyethylene glycol monolaurate of (Tween-20) to study the effect of 

surfactant on DNA binding properties of different molecules. We found some of our 

compounds, such as 6.1, 6.2, 6.4, 6.5, 6.7, 6.8 and 6.12, bind to SDS while anionic molecules 

6.4, 6.9 and 6.14 bind to CTAB. Compounds 6.12 and 6.15 demonstrated a decrease in affinity 

for DNA in the presence of Tween 20, suggesting that these potential sensitiser could bind to 

Tween 20 which may be a source of false negative results. Ligand 6.13 does not show any 

change in affinity for DNA in the presence of  (Tween-20).  This observation means that Tween 

20 does not affect the sensitivity of our DNA biosensors. Electrostatic interactions between the 

oppositely charged groups are responsible for the interactions between surfactants and our 

potential sensitisers. 
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6.1 Introduction 

6.1.1 surfactants 

Surfactants are compounds which contain both hydrophobic tail groups and hydrophilic head 

groups.188 In solution surfactants, such as sodium dodecyl sulphate(SDS) and cetyl trimethyl 

ammonium bromide (CTAB) can help to dissolve chemical compounds by dissociating 

aggregates. Moreover, surfactants are used to increase the solubility of reactants in aqueous 

solutions.189 

The classification of surfactants depends on their polar head group. Ionic surfactants carry 

negative or positive charges. If the charges are negative, the surfactants are called anionic and 

if the charges are positive cationic. In addition, when a surfactant contains a head with two 

oppositely charged groups, it is named zwitterionic. Surfactants without a charge are called 

non-ionic. Sodium dodecyl sulphate (SDS) has the formula CH3(CH2)11SO4Na and its structure 

is shown in Scheme 6.1. It is an anionic surfactant that can be used in cleaning and hygiene 

products.190 CTAB (Scheme 6.1) with formula (C16H33)N(CH3)3Br is a cationic surfactant that 

can bind with negative ligands. Non-ionic surfactants include polyoxyethylene glycol 

monolaurate (Tween 20) which has formula C58H114O26 (Scheme 6.1). 

 

 

Scheme 6.1 
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In aqueous solution, surfactants form aggregates. Surfactants can make different shapes of 

aggregates, for example, spherical micelles, rodlike micelles, wormlike micelles, bilayers and 

vesicles. These shapes of these aggregates depend on the equilibrium between the attraction of 

hydrophobic surfactant alkyl tails and the electrostatic repulsions of the head groups of the 

surfactants.191-192The relation between the aggregate and surfactant shape is described by the 

packing parameter.193 The packing parameter (P) is given by equation 6.1. The shapes of 

aggregate depend on the value of P. 

                                            ………. 6.1 

V is the volume of the hydrocarbon part of the surfactant, l is the length of the extended all-

trans alkyl tail, and a0 the mean surface area of the head group.  

Surfactants form micelles above the critical micelle concentration (CMC);  when the surfactant 

molecules reach this critical concentration they will form micelles in which the hydrophobic 

tails (non-polar) bunch together inside the micelles whereas the polar headgroups (hydrophilic) 

are orientated to the bulk aqueous solution forming a polar shell.194 Above the  CMC, there is 

a dynamic equilibrium between surfactant molecules and micelles. The aggregation of polar 

surfactant and oppositely charged molecules will occur at low concentrations as result of the 

presence of  these charges  which leads to electrostatic interactions between them195-196 as 

shown in Figure 6.1. 

 

6.1.2 The interactions of surfactants with dyes 

We studied in chapter six the interaction between cationic and anionic π-conjugated molecules 

with anionic and cationic surfactants such as sodium dodecyl sulphate (SDS) and cetyl trimethyl 

ammonium bromide (CTAB). Electrostatic interactions between the oppositely charged groups 

are responsible for the interactions between surfactants and our potential sensitisers. 

Hydrophobic molecules, like our sensitisers, can bind to surfactants such as SDS and CTAB as 

shown in Figure 6.1. The presence of surfactant can, therefore, affect DNA-binding of potential 

sensitisers. In addition, it can be useful to wash biosensors using surfactants. Washing is 

essential because interactions with (bio)macromolecules can lead to some of the ligands 

sticking non-selectivily on the biosensor surface. 
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Figure 6.1: shows a complex of ligand and surfactant formed from the anionic surfactant and 

cationic ligand as observed by the interaction between them. 

 

6.1.3 The potential effect of surfactants on biosensors  

The presence of surfactants can affect the performance of biosensors. The interactions between 

sensitisers and surfactant and how these affect biosensor functioning can be studied using 

several techniques such as UV-visible spectroscopy, isothermal titration calorimetry (ITC) and 

circular dichroism spectroscopy. These methods allow the study of how different parameter is 

describing interactions of sensitisers with DNA change upon potential binding of these 

sensitisers to added macromolecules. 

 

6.1.4 Aim 

In this chapter, our objectives are to quantify the binding of compounds 6.1-6.14 (Scheme 1.5) 

to SDS, CTAB and study the effect of surfactant (Tween-20) on DNA binding properties of  

π-conjugated ligands. Tween-20 is a surfactant used in lateral flow assays. 
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6.2 Results and discussion  

Part A: Interactions of DNA binders with the negatively charged surfactants sodium dodecyl 

sulphate  

6.2.1 Compound 6.1 binding with SDS 

We wanted to know whether 6.1 binds to SDS. The changes in absorption of 6.1 upon addition 

of SDS were measured in buffer (25 mM MOPS, pH 7.0 and 50 mM NaCl and 10 vol-% 

DMSO) at 25 °C (Figure 6.2). We used DMSO to prevent the precipitation that often occurs 

when SDS interacts with molecules of opposite charge. 

300 400 500 600

0.0

0.3

0.6

 A
 /

 a
 .

 u
 .
 

wavelength [nm]  

Figure 6.2: UV-visible spectra for 0.031 mM 6.1 upon addition of 0 – 0.28 mM SDS, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO). 

Figure 6.2 shows a hypochromic shift, with a maximum change at 444 nm. This decrease in 

UV-visible absorption occurs as a result of the interaction of 6.1 with SDS. Figure 6.3 also 

shows that the absorbance in the range of 500-600 nm increases upon addition of SDS. This 

observation suggests precipitation of ligand-surfactant salts forms our aqueous solutions. 

Precipitation was also observed by naked eye. Precipitation has been reported before for 

combination of anionic surfactants and cationic ligand as well as for solutions of cationic 

surfactants and anionic ligand.197 

Despite the precipitation, we quantify the apparent affinity of 6.1 for SDS by plotting the 

absorbance at 444 nm as a function of the concentration of SDS (Figure 6.3, Tables A55.124). 
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Figure 6.3: Absorbance at 444 nm for 0.031 mM 6.1 upon addition of 0 - 0.28 mM SDS, at  

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO). The solid line 

represents the fit of a multiple independent sites model to the data. 

The titration curve of Figure 6.3 was analysed by fitting a version of the multiple independent 

binding sites model, which also takes ligand dilution into account, to the data. This fit 

reproduces the data well and produces an apparent equilibrium constant Kbinding of (8.4 ± 1.7) 

×104 M−1 and a stoichiometry of (1.02 ± 0.08) surfactant molecule per molecule of 6.1. 

Electrostatic interactions between the oppositely charged groups are most likely responsible for 

the interaction of the anionic surfactant with 6.1. 
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6.2.2 Compound 6.2 binding with SDS 

We wanted to know whether 6.2 binds to SDS; the changes in absorption of 6.2 upon addition 

of SDS were measured in buffer (25 mM MOPS, pH 7.0 and 50 mM NaCl) at 25 °C (Figure 

6.4).  
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Figure 6.4: UV-visible spectra for 0.044 mM 6.2 upon addition of 0 – 0.32 mM SDS at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 6.4 shows two events upon addition of SDS. The first event is a hypochromic shift with 

a maximum change at 447 nm. The second event shows a hyperchromic shift with a maximum 

change at 558 nm. In fact, Figure 6.4 shows that the absorbance in the range of 500-600 nm 

increases upon addition of SDS. This observation suggests precipitation of ligand -surfactant 

salt from our aqueous solution. Precipitation was also observed by naked eye. 

Despite the precipitation, we quantify the affinity of 6.2 for SDS by plotting the absorbance at 

447 and at 558 nm (representing scattering of light) as a function of the concentration of SDS 

(Figure 6.5, see Appendix, Tables A55.125). 
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Figure 6.5: Absorbance at 447 nm and at 558 nm for 0.044 mM 6.2 upon addition of  

0 - 0.32 mM SDS, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid lines 

represent a global fit of a multiple independent sites model to the data. 

The titration curves of Figure 6.5 were analysed globally by fitting a type of the multiple 

independent binding sites model, which also takes ligand dilution into account, to the data. This 

fit reproduces the data well and gives an apparent equilibrium constant Kbinding of 

(2.2 ± 2.1) × 106 M−1 and a stoichiometry of (3.4 ± 0.3) surfactant molecule per molecule of 

6.2. The obtained stoichiometry and binding constant seem reasonable and suggest strong 

binding between 6.2 and SDS due to electrostatic and hydrophobic interactions. The 

stoichiometry suggests that 6.2 is triply charged in the precipitated salt. This seems reasonable 

because 6.2 has three sites where protonation is likely to occur in aqueous solution. 

 

6.2.3 Compound 6.4 binding with SDS 

We wanted to know whether 6.4 binds to SDS. The changes in absorption of 6.4 upon addition 

of SDS were measured in buffer (25 mM MOPS, pH 7.0 and 50 mM NaCl) at 25 °C  

(Figure 6.6). 
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Figure 6.6: UV-visible spectra for 0.022 mM 6.4 upon addition of 0 – 0.40 mM SDS, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 6.6 shows a hypochromic shift (with a maximum change at 436 nm). This decrease in 

UV-visible absorption occurs because of the interaction of 6.4 with SDS. Figure 6.7 also shows 

that the absorbance in the range of 500 - 600 nm increases upon the first additions of SDS. This 

observation suggests precipitation of ligand -surfactant salt from our aqueous solution. 

To quantify the affinity of 6.4 for SDS, the absorbance at 436 nm were plotted as a function of 

the concentration of SDS (Figure 6.7, see Appendix, Table A55.126). 
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Figure 6.7: Absorbance at 436 nm for 0.022 mM 6.4 upon addition of 0 - 0.40 mM SDS, at  

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid line represents the best fit to 

the data in terms of a multiple independent binding sites model. 
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The titration curve of Figure 6.7 was analysed by fitting the multiple independent binding sites 

model, which also takes ligand dilution into account, to the data. This fit reproduces the data 

well and gives an apparent equilibrium constant Kbinding of (2.1 ± 0.47) × 104 M−1 for a 

stoichiometry restricted at 1 to surfactant molecule per molecule of 6.4. 

 

6.2.4. Compound 6.5 binding with SDS 

We need to know whether 6.5 binds to SDS; the changes in absorption of 6.5 upon addition of 

SDS were measured in buffer (25 mM MOPS, pH 7.0 and 50 mM NaCl and 10 vol-% DMSO) 

at 25 °C (Figure 6.8). 
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Figure 6.8: UV-visible spectra for 0.057 mM 6.5 upon addition of 0 - 0.35 mM SDS, at 25 °C 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 10 vol-% DMSO). 

Figure 6.8 shows a hypochromic shift in absorbance (at the λ max of 444 nm) of 6.5 upon addition 

of SDS. We do not see a significant increase in absorbance between 550 and 600 nm. This 

change in UV-visible absorption may occur as a result of geometrical distortion of 6.5 when it 

interacts with SDS, but it may also be a local medium effect. 

To quantify the affinity of 6.5 for SDS, the absorbance at 444 nm were plotted as a function of 

the concentration of SDS (Figure 6.9, see Appendix, Tables A55.127). 
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Figure 6.9: Absorbance at 444 nm for 0.071 mM 6.5 upon addition of 0 - 0.35 mM SDS, at 

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO). The solid line 

represents the best fit to the data in terms of a multiple independent binding sites model. 

The titration curve of Figure 6.9 was analysed by fitting a version of the multiple independent 

binding sites model, which also takes ligand dilution into account, to the data. This fit 

reproduces the data well and gives an equilibrium constant Kbinding of (2.4 ± 1.7) ×105 M−1 for a 

stoichiometry restricted to 0.1 surfactant molecule per molecule of 6.5. We restricted the 

stoichiometry in order to obtain reasonable binding parameters. We attribute the lack of 

precipitation of 6.5 - SDS complex to the long hydrophilic side chain on 6.5 which keeps the 

complex in solution. 
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6.2.5 Compound 6.7 binding with SDS 

We wanted to study the binding of 6.7 to SDS, the changes in absorption of 6.7 upon addition 

of SDS were measured in buffer (25 mM MOPS, pH 7.0 and 50 mM NaCl) at 25 °C  

(Figure 6.10). 
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Figure 6.10: UV-visible spectra for 0.026 mM 6.7 upon addition of 0 - 0.15 mM SDS, at  

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 6.10 shows a hypochromic shift at the λ max of 339 nm and a hyperchromic shift at 

415 nm for 6.7 upon addition of SDS. Figure 6.11 also shows that the absorbance in the range 

of 400 - 600 nm increases upon addition of SDS. This observation suggests precipitation of the 

ligand − surfactant salt from our aqueous solution. Precipitation was also observed by naked 

eye. The change in UV-visible absorption at 339 nm may occur as a result of geometrical 

distortion of 6.7 when it interacts with SDS, but it may also be a local medium effect. 

To quantify the affinity of 6.7 for SDS, the absorbances at 339 and 415 nm were plotted as a 

function of the concentration of SDS (Figure 6.11, see Appendix, Tables A55.128).  



Chapter six 

219 
 

0.00 4.80x10
-5

9.60x10
-5

1.44x10
-4

0.0

0.2

0.4

0.6

A
 n

m
 /

 a
. 

u

[SDS] / mol dm
-3

 

Figure 6.11: Absorbance at 339 nm and 415 nm for 0.026 mM 6.7 upon addition of  

0 − 0.15 mM SDS, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid lines 

represent a global fit of a multiple independent binding sites model to the data. 

The titration curves of Figure 6.11 were analysed globally by fitting a type of the multiple 

independent binding sites models, which also takes ligand dilution into account, to the data. 

This fit reproduces the data well and gives an apparent equilibrium constant Kbinding of  

(1.5 ± 1.4) × 104 M− 1 for a stoichiometry restricted to 3.0 molecules of SDS per molecule of 

6.7 molecules because of the potential of 6.7 to become triply pronated. The obtained binding 

parameters were reasonable. 

 

6.2.6 Compound 6.8 binding with SDS 

We wanted to know the binding of 6.8 to SDS, the changes in absorption of 6.8 upon addition 

of SDS were measured in buffer (25 mM MOPS, pH 7.0 and 50 mM NaCl and 10 vol-% 

DMSO) at 25 °C (Figure 6.12). 
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Figure 6.12: UV-visible spectra for 0.012 mM 6.8 upon addition of 0 - 0.36 mM SDS, at  

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO). 

Figure 6.12 shows a hypochromic shift in absorbance (at the λ max of 665 nm) of 6.8 upon 

addition of SDS. This change in UV-visible absorption may occur because of geometrical 

distortion of 6.8 when it interacts with SDS, but it may also be a local medium effect. 

To quantify the affinity of 6.8 for SDS, the absorbance at 665 nm were plotted as a function of 

the concentration of SDS (Figure 6.13, see Appendix, Tables A44.129). 
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Figure 6.13: Absorbance at 665 nm for 0.012 mM 6.8 as a function of SDS, at 25 °C in buffer 

(25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO). The solid line represents the best 

fit to the data in terms of a multiple independent binding sites model. 

 
Figure 6.13 shows a clear decrease in the absorbance for 6.8 upon the addition of SDS. The 

binding affinity Kbinding and stoichiometry were determined by fitting a multiple independent 
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binding sites model, which also takes ligand dilution into account to the data. The fit reproduces 

the data well and gives an equilibrium constant Kbinding of (3.6 ± 1.5) ×104 M−1 for a 

stoichiometry restricted to one surfactant molecule per molecule of 6.8. The obtained binding 

constant and stoichiometry seem reasonable. 

 

6.2.7 Compound 6.12 binding with SDS 

We wanted to study the binding of 6.12 to SDS. The changes in absorption of 6.12 upon addition 

of SDS were measured in buffer (25 mM MOPS, pH 7.0 and 50 mM NaCl and 10 vol-% 

DMSO) at 25 °C (Figure 6.14). 
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Figure 6.14: UV-visible spectra for 0.019 mM 6.12 upon addition of 0 - 0.22 mM SDS, at  

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% DMSO). 

Figure 6.14 shows two events upon addition of SDS. The first event is a hypochromic shift with 

a maximum change at 370 nm. The second event shows a hyperchromic shift with a maximum 

change at 404 nm, which appears to be part of the general increase in absorbance at high 

wavelengths we attribute this increase to scattering of light and thus to precipitation. This 

increase and decrease in UV-visible absorption may occur because of geometrical distortion of 

6.12 when it interacts with SDS, but it may also be a local medium effect. 

To quantify the apparent affinity of 6.12 for SDS, the absorbance at 370 and 404 nm were 

plotted as a function of the concentration of SDS (Figure 6.15, see Appendix, Tables A55.132). 
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Figure 6.15: Absorbance at 370 nm and at 404 nm for 0.019 mM 6.12 upon addition of 

0 − 0.22 mM SDS at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 10 vol-% 

DMSO). The solid lines represent a global fit of a multiple independent sites model to the data. 

The titration curves of Figure 6.15 were analysed globally by fitting a version of the multiple 

independent binding sites models, which also takes ligand dilution into account, to the data. 

This fit reproduces the data well and gives an apparent equilibrium constant Kbinding of 

(2.7 ± 2.2) ×106 M−1 and a stoichiometry of (3.0 ± 0.2) surfactant molecule per molecule of 

6.12. The obtained value for affinity and stoichiometry seem reasonable, although a 

stoichiometry of two molecules of SDS per molecule of 6.12 was expected. 

Further experiments showed that compound 6.10 and 6.11 did not show any binding with SDS 

(see appendix A46 for Compound 6.10 with SDS. Figure 46.1 and Figure A46.2, for data in 

tabular format, see Appendix, Tables A55.130); and (see A47 for Compound 6.11 with SDS. 

Figure 47.1 and Figure A47.2, for data in tabular format, see Appendix, Tables A55.131). 
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Summary 

The results from UV-visible titrations for 6.1, 6.2, 6.4, 6.5, 6.7, 6.8 and 6.12 with SDS show 

that these ligands bind to SDS are summarised in Table 6.1. 

Table 6.1 Binding affinities and binding stoichiometries for binding of 6.1, 6.2, 6.4, 6.5, 

6.7, 6.8 and 6.12 to SDS in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at 25 °C. 

Ligands 
Binding constant for SDS 

K / M−1 

Stoichiometry 

n 

6.1 (8.4 ± 1.7) ×104 1.02 ± 0.03 

6.2 (2.2 ± 2.1) ×106 3.4 ± 0.3. 

6.4 (2.1 ± 0.47) ×10 4  1* 

6.5 (2.4 ± 1.7) ×105 0.1* 

6.7 (1.5 ± 1.4) ×104 3* 

6.8 (3.6 ± 1.5) ×104 1* 

6.10 No binding  

6.11 No binding  

6.12 (2.7 ± 2.2) ×106 3.0 ± 0.2 

* restricted 

Table 6.1 reveals that most of our cationic -conjugated materials interact with sodium dodecyl 

sulphate. However, there are no interactions with 6.10 and 6.11 probably because of the 

negative charge on these compounds leads to repulsion with the negative charge of SDS. The 

highest binding constants of 106 M−1 and 105 M−1 are found for ligands that have more positive, 

charge, meaning strong interaction between molecules and surfactant. 
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Part B: Interactions of DNA binders with the positively charged of surfactant cetyltrimethyl-

ammonium bromide  

6.2.8 Compound 6.4 binding with CTAB 

We wanted to know the binding of 6.4 to CTAB. The changes in absorption of 6.4 upon addition 

of CTAB were measured in buffer (25 mM MOPS, pH 7.0 and 50 mM NaCl) at 25 °C (Figure 

6.16). 
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Figure 6.16: UV-visible spectra for 0.010 mM 6.4 upon addition of 0 – 0.42 mM CTAB, at 

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 6.16 shows a small hyperchromic shift followed by a hypochromic shift in absorbance 

(at the λ max of 435 nm) of 6.4 upon addition of CTAB. The increase in UV-visible absorption 

may occur as a result of geometrical distortion of 6.4 when it interacts with CTAB, but it may 

also be a local medium effect. The subsequent decrease is probably the result of dilution. 

To quantify the affinity of 6.4 for CTAB by plotting the absorbance at 435 nm  as a function of 

the concentration of CTAB (Figure 6.17, see Appendix, Tables A55.135). 
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Figure 6.17: Absorbance at 435 nm for 0.010 mM 6.4 upon addition of 0 - 0.42 mM CTAB, at 

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). The solid line represents the best fit to 

the data in terms of a multiple independent binding sites model. 

The titration curve in Figure 6.17 was analysed by fitting a version of the multiple independent 

binding sites model, which also takes ligand dilution into account, to the data. The fit gives an 

equilibrium constant Kbinding of (1.4 ×108 ± 1.6 ×109) M−1 for a stoichiometry (12.2 ± 1.1) 

surfactant molecules per 6.4. The obtained binding parameters were unreasonable for both 

stoichiometry and binding constant. The fit reproduces the data well and gives an equilibrium 

constant Kbinding of (1.7 ± 0.7) × 104 M−1 for a stoichiometry restricted to 1 surfactant molecules 

per molecule of 6.4. Electrostatic interactions between the oppositely charged groups are most 

likely responsible for the interaction of the cationic surfactant with 6.4.   

 

6.2.9 Compound 6.9 binding with CTAB 

We wanted to investigate the binding of 6.9 to CTAB. The changes in absorption of 6.9 upon 

addition of CTAB were measured in buffer (25 mM MOPS, pH 7.0 and 50 mM NaCl) at  

25 °C) (Figure 6.18). 
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Figure 6.18: UV-visible spectra for 0.0061 mM 6.9 upon addition of 0 - 0.27 mM CTAB,  

at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 6.18 shows two events. The first event involves a hypochromic shift with a maximum 

change at 500 nm. The second event shows a hyperchromic shift (with a maximum change at 

500 nm). The decrease and increase in UV-visible absorption occur as a result of the interaction 

of 6.9 molecule with CTAB. The local medium effect would also be the result of the interaction, 

but it may also be a local medium effect. 

To quantify the affinity of 6.9 for CTAB, we plotted the absorbances at 500 nm as a function 

of the concentration of CTAB (Figure 6.19, see Appendix, Tables A55.138). 
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Figure 6.19: Absorbance at 500 nm for 0.067 mM 6.9 as a function of CTAB of 0 – 0.027 mM 

(■) and 0.052 - 0.27 mM (●) of CTAB, at 25 °C in buffer (25 mM MOPS, pH 7, 50 mM NaCl). 

The solid line represents a fit of a multiple independent sites model to the data in the  

0.052 − 0.27 mM range (●). 
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Figure 6.19 shows two events. The first event corresponds to a decrease in the absorbance upon 

addition of 0 - 0.027 mM (■) CTAB. We attribute this decrease in absorbance to strong binding 

of 6.9 to CTAB, leading to precipitation as a result of charge neutralisation of the 6.9-CTAB 

complex. This idea is in agreement with the fact A 500 nm reaches a minimum at a stoichiometry 

of two molecules of CTAB per molecule of 6.9. The second event shows a clear increase in the 

absorbance of 6.9 upon addition 0.052 – 0.27 mM (●) of CTAB. The titration data in Figure 

6.20 (with the first event not included) were analysed in terms of a multiple independent binding 

sites model, which also takes ligand dilution into account. The fit produces an apparent 

equilibrium constant Kbinding of (3.9 ± 1.2) × 106 M−1 for a stoichiometry of (23.9 ± 1.1) 

surfactants per molecule of 6.9.  We interpret this stoichiometry as the number of surfactant 

molecules required to present a micellar environment to the molecules of 6.9. 

 

6.2.10 Compound 6.14 binding with CTAB 

We wanted to know whether 6.14 binds to CTAB. The changes in absorption of 6.14 upon 

addition of CTAB were measured in buffer (25 mM MOPS, pH 7.0 and 50 mM NaCl) at 25 °C 

(Figure 6.20). 
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Figure 6.20: UV-visible spectra for 0.0067 mM 6.14 upon addition of 0 - 0.53 mM CTAB, at 

25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). 

Figure 6.20 shows two events. The first event involves a hypochromic shift with a maximum 

change at 457 nm. The second event shows a hyperchromic shift (with a maximum change at 

457 nm). The increase and decrease in UV-visible absorption occur as a result of the interaction 
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of 6.14 molecule with CTAB. The local medium effect would also be the result of the 

interaction, but it may also be a local medium effect. 

To quantify the affinity of 6.14 for CTAB, the absorbance at 457 nm were plotted as a function 

of the concentration of CTAB (Figure6.21, seeAppendix, Tables A55.142).  
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Figure 6.21: Absorbance at 457 nm for 0.067 mM 6.14 as a function of CTAB of 0 – 0.11 mM 

(■) and 0.14 - 0.53 mM (●) of CTAB, at 25 ºC in buffer (25 mM MOPS, pH 7, 50 mM NaCl). 

The solid line represents a fit of a multiple independent sites model to the data in the  

0.14 - 0.53 mM range. 

Figure 6.21 shows two events. The first event corresponds to a rapid decrease in the absorbance 

upon addition of 0 - 0.11 mM (■) CTAB. We attribute this decrease in absorbance to strong 

binding of 6.14 to CTAB, leading to precipitation as a result of charge neutralisation of the 

6.14-CTAB complex. This idea is in agreement with the fact A 457 nm reaches a minimum at a 

stoichiometry of two molecules of CTAB per molecule of 6.14.  The second event shows a clear 

increase in the absorbance of 6.14 upon addition 0.14 – 0.53 mM (●) of CTAB. The ligand 6.14 

strongly interacts with CTAB, and the titration data in Figure 6.22 (with the first event not 

included) were analysed in terms of a multiple independent binding sites model, which also 

takes ligand dilution into account. The fit reproduces the data well and produces an apparent 

equilibrium constant Kbinding of (6.3 ±1.1) ×104 M−1 for a stoichiometry of (4.5 ±0.3) molecules 

of CTAB per molecule of 6.14. The obtained binding constant and stoichiometry seem 

reasonable. Titrations with CTAB were also carried out for 6.1, 6.2, 6.5, 6.8, 6.10, 6.11 and 

6.12 did not show any binding with CTAB. (See appendixesA48-A54). 
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Summary 

The results from UV-visible titrations for 6.1, 6.2, 6.4, 6.5, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12 and 

6.14 with CTAB are summarised in Table 6.1. 

Table 6.1 Binding affinities and stoichiometry for binding of 6.1, 6.2, 6.4, 6.5, 6.7, 6.8, 6.9, 

6.10, 6.11, 6.12 and 6.14 to CTAB in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) at  

25 °C. 

Ligands 
Binding constant for CTAB 

K / M−1 

Stoichiometry  

n 

6.1 No binding  

6.2 No binding  

6.4 (1.7 ± 0.7) × 104  1* 

6.5 No binding  

6.7 No binding  

6.8 No binding  

6.9 (9.7 ± 4.1) × 104 a 3* 

6.10 No binding  

6.11 No binding  

6.12 No binding  

6.14 (6.3 ± 1.1) ×104 a 4.5 ±0.3 

a) apparent binding constant for the event following initial precipitation 

b) * restricted  

Table 6.1 shows that negatively charged -conjugated aromatic molecules 6.9 and 6.14 bind to 

cetyl trimethyl ammonium bromide CTAB surprisingly, 6.4 also binds to CTAB. The affinity 

of negative molecules for cationic surfactant CTAB is moderately strong at 104 M−1 as result of 

electrostatic interaction and hydrophobic interaction. However, the rest of ligands don’t show 

interacting with CTAB which could be because of the charges on the molecules. 
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Part c: The effect of nonionic surfactant on DNA binding  

6.2.11 Compound 6.12 binding with DNA in the presence of 1 vol-% Tween-20. 

We wanted to know whether the binding of 6.12 to DNA is affected the presence of Tween-20. 

The changes in absorption of 6.12 upon addition of DNA in the presence of 1 vol- % Tween-

20 were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 vol- % Tween-20) at 25 

°C (Figure 6.22). Tween-20 is surfactant used in lateral flow assays. 
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Figure 6.22: UV-visible spectra for 0.0242 mM 6.12 upon addition of 0 – 1.4 mM DNA in 

presence of 1 vol- % Tween, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl,  

1 vol- % Tween-20). 

Figure 6.22 shows a red shift, in absorbance of 6.12 upon addition of DNA in the presence of 

Tween-20. This change in UV-visible absorption probably occurs as a result of geometrical 

distortion of 6.12 when it interacts with DNA, but there may also be a local medium effect. 

We quantified the affinity of 6.12 for DNA by plotting the absorbances at 368 and 430 nm as a 

function of the concentration of DNA in the presence of Tween-20 (Figure 6.23, for data in 

tabular format, see Appendix, Tables A55.143). 
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Figure 6.23: Absorbance at 368 nm (■) and 430 nm (●) for 0.0242 mM 6.12 as a function of 

DNA in the presence of 1 vol- %Tween-20, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM 

NaCl, 1 vol. % Tween-20). The solid lines represent a global fit of a multiple independent sites 

model to the data. 

Figure 6.23 shows a clear decrease and increase in the absorbance for 6.12 upon addition of 

DNA in the presence of 1 vol- % Tween-20. The binding affinity Kbinding and for a binding sites 

size n were determined by globally fitting a multiple independent binding sites model, which 

also takes ligand dilution into account, to the data. A binding constant Kbinding of (3.7 ± 1.0) 

×104 M−1 for a binding site size (3.8 ± 0.67) base pairs was found. The obtained binding 

parameters were reasonable with a well-defined binding site size and binding constant. A 

Kbinding of (1.8 ± 0.38) ×105 M−1 for a binding site size restricted to 3.0 base pairs was observed 

for 6.12 to DNA in absence 1 vol. % Tween-20. From the differences in the binding constant, 

it appears that Tween 20 does significantly compete with DNA for 6.12, but it does not inhibit 

binding completely. 

 

6.2.12 Compound 6.13 binding with DNA in the presence of 1 vol-% Tween-20. 

We wanted to know whether the binding of 6.13 with DNA is affected the presence of Tween-

20. The changes in absorption of 6.13 upon addition of DNA in the presence of Tween 20 were 

measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 vol.% Tween-20) at 25 °C  

(Figure 6.24). 
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Figure 6.24: UV-visible spectra for 0.0363 mM 6.13 upon addition of 0 – 2.5 mM DNA in 

presence of Tween-20, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 vol. % 

Tween-20). 

Figure 6.24 shows a hypochromic shift in absorbance (at the λ max of 446 nm) of 6.13 upon 

addition of DNA in presence Tween-20. This change in UV-visible absorption may occur 

because of geometrical distortion of 6.13 when it interacts with DNA in the presence of Tween 

-20, but it may also be a local medium effect. 

To quantify the affinity of 6.13 for DNA in the presence of Tween-20 by plotting the 

absorbances at 446 nm as a function of the concentration of DNA (Figure 6.25, see Appendix, 

Tables A55.144). 
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Figure 6.25: Absorbance at 446 nm for 0.0363 mM 6.13 as a function of DNA in the presence 

of Tween-20, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 vol. % Tween-20). 

The solid line represents the best fit to the data in terms of a multiple independent binding sites 

model. 
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Figure 6.25 shows a decrease in the absorbance for 6.13 upon addition of DNA in the presence 

of 1 vol- % Tween-20. The binding affinity Kbinding and binding sites size n were determined by 

fitting a multiple independent binding sites model, which also takes ligand dilution into account, 

to the data. A binding constant Kbinding of (1.6×10−3 ± 0.1) ×104 M−1 with a binding site size of 

(1.8×10-6 ± 1.8×10-4) base pairs was found. The obtained binding parameters were very small, 

and both stoichiometry and binding constant seem unreasonable. The data were therefore 

reanalysed with the stoichiometry restricted to 3.0 base pairs, giving an apparent equilibrium 

constant Kbinding of (2.8 ± 0.5) × 103 M−1. A Kbinding of (2.965 ± 0.381) × 103 M−1 for a binding 

site size restricted to 3.0 base pairs was observed for 6.13 interacting with to DNA in the 

absence of Tween-20. From the similarity in the binding constant, it appears that Tween-20 

does not significantly compete with DNA for 6.13. 

 

6.2.13 Compound 6.15 binding with DNA in the presence of 1 vol.% Tween-20. 

We wanted to know whether the binding of 6.15 with DNA is affected the presence of  

Tween-20. The changes in absorption of 6.15 upon addition of DNA in the presence of  

Tween 20 were measured in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 vol.% Tween-20) 

at 25 °C (Figure 6.26). 
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Figure 6.26: UV-visible spectra for 0.021 mM 6.15 upon addition of 0 – 2.05 mM DNA in 

presence of Tween-20, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 vol- % 

Tween-20). 
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Figure 6.26 shows a hypochromic shift in absorbance (at the λ max of 445 nm) of 6.15 upon 

addition of DNA in presence Tween-20. This change in UV-visible absorption may occur 

because of geometrical distortion of 6.15 when it interacts with DNA in the presence of Tween 

-20, but it may also be a local medium effect. 

To quantify the affinity of 6.15 for DNA by plotting the absorbances at 445 nm as a function 

of the concentration of DNA (Figure 6.27, see Appendix, Tables A55.145). 
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Figure 6.27: Absorbance at 445 nm for 0.021 mM 6.15 as a function of DNA in the presence 

of Tween-20, at 25 °C in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 vol- % Tween-20). 

The solid line represents the best fit to the data in terms of a multiple independent binding sites 

model. 

Figure 6.27 shows a decrease in the absorbance for 6.15 upon addition of DNA in the presence 

of 1 vol-% Tween-20. The binding affinity Kbinding and binding sites size n were determined by 

fitting a multiple independent binding sites model, which also takes ligand dilution into account, 

to the data. A binding constant Kbinding of (2×10−3 ± 1.8) ×105 M−1 with a binding site size of 

(4×10−1 ± 318.8) base pairs was found. The obtained binding parameters were very small, and 

both stoichiometry and binding constant seem unreasonable. The data were therefore 

reanalysed with the stoichiometry restricted to 3.0 base pairs, giving an apparent equilibrium 

constant Kbinding of (1.7 ± 0.5) × 103 M−1. A Kbinding of (2.965 ± 0.09) × 103 M−1 for a binding 

site size restricted to 3.0 base pairs was observed for 6.15 interacting with to DNA in the 

absence of Tween-20. From the difference in the binding constant, it appears that Tween-20 

does significantly compete with DNA for 6.15. 
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Summary 

Table 6.3 Binding affinities and binding site sizes for binding of 6.12, 6.13 and 6.15 to DNA 

and the effect of 1 vol- % Tween-20 on DNA binding in buffer (25 mM MOPS, pH 7.0,  

50 mM NaCl) at 25 °C. 

 

Ligands 

Binding affinities 

DNA 

K / M−1 

Binding affinities for 

DNA with Tween-20 

K / M−1 

Effect of Tween-20 

on affinity for DNA  

 

6.12 
(1.8 ± 0.4) ×105 

n = 3* 

(2.7 ± 0.8) 104 

n = 3* 
Decrease  

6.13 
(2.9± 0.3) ×103 

n = 3* 

(2.8 ± 0.5) ×103 

n = 3* 
No change 

6.15 
(2.9± 0.09) × 103 

n = 3* 

(1.7 ± 0.5) ×103 

n = 3* 

No change or small 

Decrease  

a) * restricted 

 

Table 6.3 shows that some of the potential sensitisers bind to DNA in the presence of   Tween-

20. The affinity of 6.12 for DNA in the presence of Tween-20 is moderately  

strong ~ 104 M−1 compared to this affinity, 6.13 and 6.15 have low affinity ~ 103 M−1. 

Compounds 6.12 and 6.15 seem to show a decrease in affinity in the presence of Tween-20 as 

a result of the interaction between the ligand and DNA, even though there is no charge in the 

surfactant Tween-20. From the difference in the binding constant, it appears that Tween-20 

does significantly compete with DNA for 6.12 and 6.15. The presence of this competition may 

be beneficial to avoid any non-specific interaction if we use 6.12 and 6.15 in a biosensor. There 

is no effect of surfactant on binding affinity between DNA and 6.13. 
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6.3 Conclusion 

According to the results presented in this chapter, cations 6.1, 6.2, 6.4, 6.5, 6.7, 6.8 and 6.12 

bind with negative surfactant SDS by electrostatic and hydrophobic interaction. The anionic 

ligands (6.9 and 6.14) bind to CTAB by electrostatic interaction. Remarkably, 6.4 also appears 

to bind to CTAB. We found a decrease in affinity of 6.12 and 6.15 for DNA in the presence of 

Tween 20. In contrast, there is no effect of surfactant on binding between DNA to 6.13. 

 

6.4 Materials and Methods  

6.4.1 Materials 

SDS was procured from Acros and Sigma-Aldrich. CTAB was purchased from Sigma-Aldrich. 

The buffer components were purchased from Melford Laboratories Ltd and Sigma-Aldrich. 

 

6.5 Solutions preparation 

6.5.1 Surfactants, SDA, CTAB and Tween 20 preparation 

All experiments were carried out in buffer (25 mM MOPS, 50 mM NaCl, pH 7.0, at 25 °C). 

SDS and CTAB were dissolved in MOPS buffer. To prepare the 1 vol- % Tween-20, we used 

99 ml MOPS and 1 ml from polysorbate. 

 

6.6 Spectroscopic studies 

2.0 ml of MOPS buffer was added in a 1.0 cm path length cuvette. The stock solutions of all 

molecules in MOPS buffer, sometimes involving 10 vol-% DMSO were prepared as mentioned 

before (Section 6.2.1). All UV-visible titrations were carried out by adding aliquots of the 

macromolecules, such as SDS and CTAB, stock solutions into the 1.0 cm path length cuvette 

which contains the ligand solution in MOPS, recording the absorption in the range of 200 – 800 

nm after each addition. Moreover, we used MOPS with 1 vol- % Tween-20 as a buffer to see 

the effect of surfactant on DNA binding. Absorptions were kept in the range of (0.0 - 1.0). The 

absorptions at selected wavelengths were plotted against macromolecule concentrations, and a 

multiple independent binding sites model was used to analyse the UV-visible data using the 

Origin 9.0 software. 
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7.1 Conclusion 

The aims of this thesis were to develop   optoelectronically active DNA binders as sensitisers  

for sensors (Scheme 1.5) and to  collect binding data that can be used in the use of 

biomacromolecules and optoelectronically active compounds in directed assembly. When 

sensitisers bind to DNA their spectroscopic and electronic properties may change, thus allowing 

applications such as biosensors. Binding of molecules with nucleic acids can also be used for 

the assembly of functional multicomponent structures containing active components templated 

by DNA. 

In particular, this thesis explores the effect of natural biopolymers such as serum albumin (SA), 

hyaluronic acid (HA) and alginic acid (AA) and synthetic polymers such as sodium polystyrene 

sulfonic acid (POSA) and polyacrylic acid (PAA) on DNA-binding of potential sensitisers. In 

addition, we investigated the effect of surfactant on DNA-binding of potential sensitisers. The 

biophysical data is useful for improving sensitivity, selectivity and minimizing nonspecific 

binding to DNA biosensors. 

From the results and discussion presented chapter 2 until 6, the overall conclusions are as 

follows. The majority of cationic oligoheteroaromatics explored reveal good binding with 

duplex DNA. Several of the ligands 3.1, 3.2, 3.3, 3.7 and 3.9 bind to SA in a moderately strong 

mode while ligands 3.1, 3.2, 3.8 and 3.10 were found to have a high affinity for transferrin TF. 

Ligands 3.1, 3.5, 3.7, 3.8, 3.10 and 3.11 do not show a change in the affinity for DNA in the 

presence of SA, but our work demonstrated a decrease in affinity of ligands 3.2, 3.4, 3.6 and 

3.12 for DNA, suggesting that these potential sensitisers bind to serum albumin and this leads 

to a decreased apparent Kbinding. This decrease could be a source of false negative results in our 

biosensors. Surprisingly an increase in the apparent affinity of 3.3 for DNA was also observed 

in the presence of SA, an effect attributed to sensitisers binding to serum albumin instead of to 

the DNA backbone and increasing apparent Kbinding and this could cause false positives. TF also 

affected DNA binding; 3.2 showed a decrease in affinity for DNA in the presence of TF. 

We found good binding of all compounds with AA but only 4.7 and 4.8 bind to HA. Most 

ligands bind to DNA in the presence of biopolymer without any change in a binding constant. 

Four molecules, viz. 4.1, 4.2, 4.7 and 4.8, show changes in affinity for DNA in the presence of 

biopolymers. 
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Although the majority of cationic oligoheteroaromatics reveal good binding with DNA in the 

presence of POSA and PAA, there is a strong effect of POSA and PAA on DNA binding. All 

ligands expect 5.1, exhibit decreased affinity in the presence of polymer POSA which could 

lead to false negatives if these compounds were used in a biosensor. Compounds 5.4, 5.10, 5.11 

and 5.12 show no change in affinity for DNA in the presence of PAA. 

Positive molecules, for example, 6.1, 6.2, 6.4, 6.5, 6.7, 6.8 and 6.12 bind with anionic surfactant 

SDS by electrostatic and hydrophobic interaction. Negative ligands bind to cationic CTAB. We 

also observed that Tween-20 decreases the affinity of sensitisers for DNA but doesn’t fully 

suppress it. 

 

7.2 Future work 

The results from this thesis can help develop and improve the performance of biosensors. 

However there still are several areas which can be explored further to enable the optimisation 

of the biosensor. 

1.  The use of different types of potential DNA binders, in order to develop a structure-

activity relationship and thus design new ligands to use as sensitisers in different types 

of genosensors. 

2. Explore selectivity of oligoheteroaromatics for specific base pairs too, in the hope that 

this could lead to the application of this type of compound in more selective biosensors. 

3. Different number of aromatic rings to make shorter aromatic systems as well as less 

cationic charge to avoid any difficulties resulting from poor solubility and precipitation. 

4. Develop large molecules that can be used in electrochemical impedance spectroscopy 

EIS based biosensors. 

5. Use different positive polymers and macromolecules to complement the work described 

here using negatively charged (bio)polymers. 

6. We can use the potential of copolymers like POSA-PAA to see whether we can develop 

self−sorting systems. 

7. Use different instruments like CD, ITC and fluorescence to study binding in more detail. 
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