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Abstract 

Huntington’s disease (HD) is caused by a CAG repeat expansion in the HTT gene.  Repeat length can 

change over time, both in individual cells and between generations, and longer repeats may drive 

pathology. Cellular DNA repair systems have long been implicated in CAG repeat instability but 

recent genetic evidence from humans linking DNA repair variants to HD onset and progression has 

reignited interest in this area. The DNA damage response plays an essential role in maintaining 

genome stability, but may also licence repeat expansions in the context of HD.  In this chapter we 

summarise the methods developed to assay CAG repeat expansion/contraction in vitro and in cells, 

and review the DNA repair genes tested in mouse models of HD. While none of these systems is 

currently ideal, new technologies, such as long-read DNA sequencing, should improve the sensitivity 

of assays to assess the effects of DNA repair pathways in HD. Improved assays will be essential 

precursors to high throughput testing of small molecules that can alter specific steps in DNA repair 

pathways and perhaps ameliorate expansion or enhance contraction of the HTT CAG repeat. 
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1. Introduction 

Huntington’s disease (HD) is caused by an expanded CAG repeat in exon 1 of the HTT gene. Wild-

type alleles contain between 9 and 26 repeats, whereas disease-causing alleles contain at least 36 

repeats. The longer the repeat, the earlier the onset of motor symptoms, although there is 

considerable variation. Intermediate alleles containing between 27 and 35 repeats do not cause 

disease but are a risk factor for further expansion into the pathogenic range in the subsequent 

generation. By definition, repeat expansion requires DNA synthesis. In dividing cells this may occur in 

the context of DNA replication or DNA repair, whereas in non-dividing (‘post-mitotic’) cells such as 

neurons only DNA repair pathways can be implicated. There is increasing evidence from genetics, 

animal models and cellular studies for the involvement of DNA repair in HD pathogenesis. 

1.1. Genetic evidence for the role of DNA repair in HD 

A recent genome-wide association study looking for single-nucleotide polymorphisms associated 

with particularly early or late motor onset of disease identified significant signals in or near DNA 

repair genes [1]. A pathway analysis in these data detected a strong signal in the genes of the DNA 

damage response implicating this pathway in modifying age at motor onset of disease. More 

specifically, signals were enriched for pathways involving mismatch repair genes and these findings 

have since been corroborated by the association of a coding variant in MSH3 with HD progression 

([1, 2]; see chapter  by Stone and Holmans for more detail [3].  

In theory, DNA repair could be involved in HD either at the level of the CAG repeat in the HTT gene 

or downstream of HTT protein function. Looking across the spinocerebellar ataxias, which are 

caused by expanded CAG repeats in various genes, highlights the same genetic signal as in HD, 

suggesting that there is a common pathogenic mechanism acting on CAG repeats in DNA [4, 5].  It 

remains possible that DNA repair is also affected by mutant HTT protein, or that an expanded 

polyglutamine can have effects on DNA repair outwith of protein context [6], but most evidence 

points towards repair processes affecting CAG repeat stability in DNA. 

1.2. CAG repeat instability in HD 

DNA microsatellites consist of short (up to 5 base pair (bp)) sequences that are repeated in tandem 

multiple times at specific genomic loci. Microsatellites are prone to expansion or contraction of the 

number of repeated units that they contain, and this relatively high mutation rate has made them 

useful as markers in genetic linkage and forensic studies [7].  Repeat sequences that cause disease 
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when expanded beyond a threshold length are a specific instance of microsatellite instability. Many 

of these diseases are neurological, though why this should be so is unclear, although microsatellite 

instability is also observed in neoplasia [8–10]. HD is one of a group of neurological diseases caused 

by CAG repeat expansion above a threshold length. Repeat expansion can occur in germline and 

non-germline (somatic) cells with different consequences. Intergenerational repeat expansion 

through the germline underpins genetic anticipation, where disease onset occurs earlier in 

successive generations [11]. Even in diseases where it is hard to measure the length of the repeat 

disease, anticipation occurs, suggesting that germline expansion of the repeat also occurs [12]. 

Sperm analysis of repeat lengths in HD shows wide variation with a trend towards expansion rather 

than contraction, many mildly expanded alleles and a few very long expansions [13–16].  This is also 

seen in multiple mouse lines where expansion occurs over many generations leading to much longer 

alleles than those originally in the founders [17].  In HD, as in most other CAG repeat diseases and in 

microsatellite transmission in general, germline expansion is most marked on paternal transmission 

of the mutated allele, for unclear reasons [13, 18, 19]. 

Somatic expansion of repeats occurs in many different cell types, including both those that divide 

and those that are terminally differentiated (such as neurons), and is observed in many repeat 

expansion diseases [11, 20, 21]. In HD, mouse models and human post-mortem brain analyses have 

shown that somatic CAG repeat expansion occurs over time in a tissue-dependent manner, and is 

inversely correlated with age at disease onset [22]. The marked somatic expansion observed in 

striatum has led to the hypothesis that repeat expansion in striatal medium spiny neurons drives HD 

pathogenesis. However, large expansions also occur in some non-neural tissues such as liver which 

are not obviously involved in HD [21, 23]. Disease-associated somatic instability is modulated by the 

DNA damage response, and particularly by the mismatch repair system [9, 24, 25]. 

Therefore, by assaying repeat length and stability we can gain insight into the role of DNA repair in 

HD. Here we detail methods for CAG repeat sizing, and the cellular and mouse models that have 

been used to explore DNA repair in HD. 

1.3. Methods for measuring CAG repeat length 

Assessing the sequence and organisation of DNA in repetitive genomic regions is difficult. Various 

methods have been developed over the last 25 years to probe the CAG repeat in HTT, and these are 

outlined in Table 1. The most straightforward methods utilise PCR amplification of the repeat but 

there are inherent errors such as amplification bias towards smaller alleles, and ‘PCR stutter’ arising 

from DNA synthesis in a repetitive region. Non-amplification methods such as genomic DNA 



Chapter 22. Massey, McAllister and Jones  5 

digestion and Southern blotting avoid PCR bias but are laborious, require much more input DNA, and 

are semi-quantitative at best. In addition, most methods assess repeats in bulk reactions, i.e., 

utilising input DNA from thousands of different cells (from tissue or culture) at once. Large changes 

in repeat number can be observed, but rare alleles in individual cells will be missed and calculating 

repeat length averages is not informative for subtle effects. Input DNA dilution as in small-pool PCR 

can obviate these issues but is labour-intensive and prone to contamination. Next-generation 

sequencing (NGS) technologies using typical short-reads (up to 100 bp) can be used to assess wild-

type alleles with few CAG repeats, but alignment of alleles containing expanded repeats is usually 

difficult, if not impossible. New long-read NGS offers exciting opportunities to revolutionise repeat 

sequence and length assessment: by generating sequencing reads of up to 80 kbp long repeats can 

be sequenced, sized and phased in one reaction, and there is the potential to multiplex many 

samples to increase throughput[26]. Currently most of these NGS methods work on amplicons 

across repeats, but techniques where repeats can be sequenced without amplification are in 

development. Costs are high, but are likely to decrease rapidly as the new technology becomes more 

widespread and embedded into standard analyses. 

[Insert Table 1 about here] 

2. Cellular models to assess CAG repeat stability in vivo 

All methods for accurately sizing CAG repeats require DNA extraction from cells or tissue and 

subsequent analysis (Table 1). Although these assays can give an estimate of repeat length at a 

specific time point, they do not provide any information about the intracellular dynamics of the 

repeat instability reactions. To assess these repeat dynamics various models have been developed in 

bacterial, yeast, mammalian, and cell-free systems to try to provide insight into CAG repeat 

instability (Table 2). Most of these models utilise the fact that longer CAG repeats can interfere with 

gene expression and/or splicing as the basis for a selectable reporter system. Frameshifting assays 

are not useful here as the loss or gain of trinucleotide units leaves the translational frame 

unaffected. The reporter system can be plasmid-based or, more usefully, integrated into the host 

cell genome. Most recently a GFP minigene reporter system has been developed with the ability to 

identify expansions and contractions in the same population of living cells – this could provide an 

amenable system for testing DNA repair variants isolated in genetic studies [27]. All of the assay 

systems described in Table 2 highlight the inherent instability of the CAG repeat, the length 

threshold of 30-40 repeats seen in many human diseases, and show that contractions and 

expansions can occur in many genomic contexts. The systems are much more sensitive than PCR 



Chapter 22. Massey, McAllister and Jones  6 

methods for identifying rare repeat instability events (the cellular reporter systems act as biosensors 

to enrich for contractions/expansions) but often require PCR validation of results. DNA repair gene 

knockouts and variants have been assessed effectively in these systems [27, 28]. However, 

interpretation of results is limited by the uncertain relevance of the cell lines to human disease: cells 

may be non-human, they are usually dividing in culture, often immortalised, and the CAG repeat 

arrays are usually within an artificial reporter construct rather than a physiologically relevant 

context. Many long CAG repeats show a bias towards contraction in dividing cellular models in 

contrast to HD neurons in vivo where expansions are favoured. In addition, the time-frame of 

cellular experiments is usually days-weeks which is insignificant in the context of the human HD 

time-course that is measured in years.  

[Insert Table 2 about here] 

Primary and embryonic stem cells from mouse models of HD and human induced pluripotent stem 

cells from HD patients have also been cultured extensively and repeat lengths assessed[29–31]. 

These cells have the advantage of disease-relevant repeat contexts but require downstream in vitro 

repeat length analysis and are harder to manipulate genetically than the reporter systems above. In 

the future a reporter system that can be deployed in a multi-well plate design with automated 

readouts to show repeat instability in living cells, and ideally in cells derived from HD patients, would 

be the ultimate goal. 

3. HD mouse models and DNA repair 

Many transgenic and knock-in mouse models of HD have been generated since the discovery of the 

causative CAG expansion in HTT (reviewed in chapter by Bates [32]. These models recapitulate some 

of the characteristics of human disease and have been used to investigate the role of DNA repair 

processes in repeat stability and correlated phenotypes.  Although very useful for assessing the roles 

of genes and mutations at the level of the whole organism, these models all have limitations in their 

representation of human HD. For example, mice have short lifespans and do not develop a disease 

phenotype unless genetically modified; most of the mice used have very long CAG repeats (>100) in 

order to drive a measurable phenotype in experimental time-frames whereas >90% of human HD 

patients have 40-50 CAG repeats. In addition, although many DNA repair genes are well conserved 

from mice to humans the increased complexity of the DNA damage response in humans, and the 

need to respond to DNA damage accumulated in neurons over decades (compared with months in 

mice), implies that results from mice will not necessarily hold in humans. However, multiple lines of 
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evidence have implicated DNA repair in CAG repeat instability and HD pathogenesis and so many 

repair genes have been tested in mouse models. 

Length and age-dependent somatic CAG repeat expansion in striatal neurons of murine HD models 

correlates with worsening motor and behavioural phenotypes in the animals. However, it is 

extremely difficult to distinguish between pathology arising from the starting (long) repeat and that 

which may be related to somatic expansion of that repeat. Many studies have measured repeat 

stability in the context of DNA repair mutations to implicate DNA repair processes in HD (Table 3). 

There is most evidence for the involvement of the mismatch repair and base excision repair 

pathways: knockout of various genes in various HD models prevents CAG repeat expansion in both 

germline and striatum, and may be correlated with improved phenotype. There is some specificity of 

factors within these pathways: for example, Msh2 and Msh3 knockouts differ in somatic and 

germline effects; Ogg1 and Neil1 affect CAG repeats whereas other glycosylases (e.g. Mpg) do not. 

These findings suggest that there may be specific effects of certain repair enzymes on CAG repeats. 

One further difficulty with data interpretation arises as DNA repair mutant mice may have other 

deleterious phenotypes. For example, Msh2 null mice show methylation tolerance and 

predisposition to lymphomas [33]. Nevertheless, the weight of evidence suggests that DNA repair 

enzymes do affect CAG repeats in mouse models of HD, and may be involved in pathogenesis. 

[Insert Table 3 about here] 

4. Discussion and future directions 

There is now considerable evidence linking DNA repair with HD. Repair pathways are most likely to 

intersect with HD at the level of the CAG repeat, but mechanistic detail remains elusive. For 

example, it is unclear whether DNA repair can stimulate repeat expansion in an unbroken DNA 

duplex, or whether pre-existing DNA damage (e.g. a single or double strand break) is required. DNA 

transactions that melt the duplex, such as transcription or replication, have been linked to repeat 

instability in specific systems but their relevance to human disease is uncertain [34]. How might DNA 

transcription or replication trigger repeat instability? Duplex unwinding exposes single-stranded DNA 

which is then susceptible to damage by exogenous or endogenous reagents leading to a requirement 

for DNA repair. Repair could then stimulate repeat instability. However, such DNA transactions also 

require an open chromatin conformation and recruitment of transcription/replication factors, and 

will cause local changes in DNA supercoiling, all of which may also affect the stability of CAG repeats. 

Experimental approaches to disentangle these and other possibilities involve inducing DNA damage, 
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measuring global effects in cells, and then, in the context of HD, measuring repeat stability. DNA 

damage can be induced with exogenous agents both non-specific (e.g., hydrogen peroxide to cause 

oxidative damage; topoisomerase I inhibitors such as camptothecin to induce single-strand breaks) 

and specific (e.g., CRISPR/Cas9 or Zinc-finger nucleases to induce targeted single or double strand 

breaks) to probe different aspects of DNA repair. DNA damage in cellular systems can be measured 

using comet or alkaline comet assays (for strand breaks), or H2AX immunofluorescence (for double-

strand breaks in non-dividing cells), and repair measured through unscheduled DNA synthesis 

(UDS[35]) – but none of these assays is particularly specific or quantitative[36]. In addition, any 

assays involving perturbation of DNA repair systems are prone to significant confounders such as 

neoplasia and genomic instability – a particular issue in cells (e.g. induced pluripotent stem cells) 

that may be prone to accumulation of genetic rearrangements in the laboratory. 

Over 450 human genes are now implicated in the DNA damage response (DDR) and although there 

are linear pathways within the DDR – such as mismatch repair or base excision repair – it is 

becoming increasingly clear that there is considerable functional redundancy between factors in 

different pathways, and the interplay between them is complex[36]. Such safeguards are crucial for 

maintaining genomic stability in vivo but make experimental investigation much more difficult. In HD 

only a few DDR genes have been investigated so far. These were mainly chosen on theoretical 

grounds linking microsatellite instability and mismatch repair. Results have shown that these genes 

can influence CAG stability in HD models, but do not show whether they are relevant to human 

disease. Recent human genetic data are starting to link actual genetic modifiers of HD onset and 

progression to variants in DNA repair genes[1, 37]. Researchers can now introduce disease-modifiers 

identified from the actual HD population into their model systems of DNA repair and should be able 

to draw much stronger, disease-relevant, mechanistic conclusions. Developments of such assay 

systems will allow more efficient testing of potential therapeutic compounds that affect these 

mechanisms. 
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Tables  

Table 1: In vitro methods for measuring CAG repeat length in Huntington’s disease. 

Method Description Advantages Disadvantages Refs 

Fluorescence PCR 

 

PCR amplification across CAG repeat 
using fluorescently tagged primers. 
Products separated by capillary gel 
electrophoresis and sized using 
GeneScan software 

- High throughput 

- Accurate sizing (+/- 1 CAG) 

- Semi-quantitative 

- Bulk method 

- Low sensitivity for detecting 
rare (<10%) alleles 

 

[38, 
39] 

Triplet-primed 
PCR 

PCR amplification of repeats using 
fluorescent forward primer and CAG-
binding reverse primer to yield ladder 
of products. Products separated by 
capillary gel electrophoresis and sized 
using GeneScan software 

- Good for assessing long 
repeats 

- Useful to determine true 
homozygosity 

- Bulk method  

- Not quantitative 

[40, 
41] 

Small-pool/single-
molecule PCR 

Serial dilution is used to limit input 
DNA to 0.5-200 genome equivalents 
in multiple independent PCRs across 
the CAG repeat. Products are typically 
separated by electrophoresis, 
Southern blotted and probed for the 
repeat. 

- Detection of rare repeat 
alleles (particularly 
expansions) that would be 
missed in bulk PCR methods 

 

- DNA contamination 

- Labour-intensive 

[42, 
43] 

Southern Blotting Genomic DNA is digested by 
restriction enzymes, blotted and 
probed with a labelled DNA fragment 
that hybridises specifically to the 
repeat-containing region 

- No amplification artefacts 

- Useful to determine true 
homozygosity 

- Sensitive for long repeats 
that may not amplify in PCR 

- Bulk method  

- Laborious 

- Requires large amounts of 

DNA (5-20 g) 

[44] 

Sanger 
sequencing 

PCR amplification across CAG repeat, 
separation of alleles by 
electrophoresis, DNA purification and 
sequencing 

- Generates exact repeat 
sequence and length data for 
both alleles 

- Corroboration of other 
methods 

- Cannot easily distinguish 
homozygous or similar 
alleles 

- Labour-intensive 

- Sequencing through repeats 
can be problematic 

 

Long-read next-
generation 
sequencing (NGS) 

Short-read NGS can sometimes be 
used to assess wild-type alleles, but 
sequence alignment is impossible for 
longer repeats. Long-read NGS 
approaches use much larger read 
lengths which enable high-
throughput sequencing through long 
pathogenic repeats 

- High-throughput and can be 
multiplexed 

- Generates exact repeat 
sequence and length data for 
both alleles 

- New technology will enable 
sequencing without 
amplification 

- Very expensive 

- High error-rate (up to 15% 
currently) but mitigated by 
high coverage 

- Protocols not established 

[26, 
45, 
46] 
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Table 2. Cell-based models of CAG repeat instability. 

Model system Advantages Disadvantages Refs 

Bacteria (mainly E. coli). CAG:CTG arrays of various 
lengths either on a reporter plasmid or integrated into 
the bacterial genome (e.g. at the lacZ locus). Antibiotic 
resistance and colony PCR can be used to assess repeat 
stability in a variety of genetic backgrounds. 

- Simple organism 

- Genetically tractable 

- DNA repair well characterised 

- Rapid data generation 

- Few bacteria usually 
contain CAG repeats 

- Dividing bacterial cells 

- Relevance to human cells? 

[47, 48] 

Yeast (S. cerevisiae). CAG repeat arrays inserted 
between TATA box and ATG of URA3 reporter gene and 
construct integrated into LYS2 genomic locus. Repeat 
expansion reduces transcription of URA3 which can be 
selected. Similar design enables repeat contraction to be 
detected. 

- Simple organism and screening 

- Genetically tractable 

- Integrated in genome 

- Can measure expansion and 
contraction 

- Dividing yeast cells 

- Only useful for small (<50) 
repeat ranges 

- Requires validation by 
repeat sizing 

[49–51] 

Yeast (S. cerevisiae). CAG repeats inserted in the GAL1 
promoter (between the UAS and the TATA box) of the 
forward selection marker CAN1. Construct integrated in 
genome. Large repeat expansions (>20) prevent 
transactivation of CAN1 which is selected by growth on 
canavanine.  

- Simple organism and screening 

- Can detect large expansions 

- Can quantify by growth 
characteristics. 

 

- Dividing yeast cells  

- Only detects large 
expansions 

- Requires validation by 
repeat sizing 

[28] 

Mammalian (yeast shuttle vector reporter). Plasmid 
with a mammalian origin of replication and a yeast 
reporter gene system containing a CAG array in the 
promoter. Mammalian cells transfected and propagated, 
plasmid recovered and then transfected into yeast for 
selection (see above).  

- Mammalian cells 

- Versatile 

- Can adapt for contractions or 
expansions 

- Laborious 

- Plasmid-based 

- Requires passage through 
yeast for selection 

- Requires PCR confirmation 

[52–54] 

Mammalian (selectable reporter gene). CAG repeats 
cloned into intron of the APRT gene or the HPRT 
minigene. Transcription through long repeats (>32) leads 
to disrupted mRNA splicing and non-functional gene 
product which can  be selected. The assay can been 
adapted to show contractions or expansions. 

- Mammalian cells  

- Sensitive (10-6 vs 10-3 for PCR 
methods) 

- Threshold in assay fits biological 
data for repeat diseases  

 

- Time-consuming 

- Plasmid-based (although 
can be integrated) 

- Immortalised, cycling cells 

- Artificial repeat context 

- Can only detect small 
changes in repeat number 

[55–58] 

Mammalian (fluorescent reporter gene). Inducible GFP 
minigene with intronic CAG repeats integrated into 
genome of HEK293 cells. Longer repeats inhibit correct 
splicing of GFP. Fluorescence inversely proportional to 
repeat length so can assess repeats in living cells. Has 
been adapted for repeat contractions and expansions. 

- Semi-quantitative readout 

- Living cells 

- Sensitive (10-8) 

- Rapid (days) 

- Can increase throughput with 
flow cytometry 

- Immortalised, cycling cells 

- Artificial repeat context 

- Confounders that 
stimulate/repress GFP 
production 

- Cannot detect very small 
changes in repeat number 

[27, 59] 

Mammalian (cell-free). Yeast shuttle vector reporter 
plasmid with (CAG)22 array in promoter incubated with 
human cell-free extracts (HeLa) and then transfected 

into yeast. Expansion of 4 repeats leads to impaired 
CAN1 expression and consequent canavanine resistance. 

- Simple system 

- Contractions and expansions 
can be assayed 

- No mammalian transcription 

- Yeast used as biosensor to 
increase sensitivity 

- Laborious 

- Plasmid-based 

- Requires passage through 
yeast for selection 

- Requires PCR confirmation 

[60] 
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Table 3. Mouse models used to assess the role of DNA repair in Huntington’s disease. 

DNA repair 
pathway 

DNA repair 
gene (murine) 

HD mouse 
model(s) 

Insights into DNA repair and HD from model system Refs 

Mismatch Repair Msh2 R6 transgenics 

Q111 knock-in 

Homozygous Msh2 knockout prevents somatic and germline CAG 
repeat expansion in all models tested. Heterozygotes are 
unaffected. Conditional striatal knockout correlates absent repeat 
expansion with delayed neuropathology. 

[61–
64] 

 Msh3 R6/1 
transgenic 

Q111 knock-in 

Homozygous Msh3 knockout prevents somatic but not germline 
CAG repeat expansion in Q111 mice. Heterozygotes also show 
much reduced repeat expansion.  Decreased MSH3 protein 
expression/stability correlates with repeat stability in R6/1 mice. 

[43, 
65] 

 Msh6 Q111 knock-in Heterozygous Msh6 knockout increases CAG repeat contractions 
on paternal transmission, but homozygous knockout is as wild-
type. Inconsistent data. Somatic instability of repeats unaffected. 

[65] 

 Mlh1 Q111 knock-in Homozygous Mlh1 knockout prevents somatic CAG repeat 
expansion. Heterozygotes are unaffected. Mlh1 expression levels 
correlate with repeat instability in different mouse backgrounds. 

[66] 

 Mlh3 Q111 knock-in Homozygous Mlh3 knockout prevents somatic CAG repeat 
expansion. Heterozygotes show reduction in repeat expansion. 

[66] 

Base excision 
repair 

Ogg1 R6/1 
transgenic 

Q150 knock-in 

Homozygous Ogg1 knockout prevents age-dependent somatic CAG 
repeat expansion in ~70% of R6/1 HD mice. Loss of somatic 
expansion by knockout of Ogg1 in Q150 HD mice correlates with 
significant delay in onset of motor decline (rotarod). 

[67, 
68] 

 Neil1 R6/1 
transgenic 

Homozygous Neil1 knockout associated with reduction of germline 
and somatic CAG instability. Not tissue specific. Small numbers. 

[69] 

 Mpg R6/1 
transgenic 

Homozygous Mpg knockout has no effect on somatic stability of 
CAG repeat. 

[67] 

 Nthl1 R6/1 
transgenic 

Homozygous Nthl1 knockout has no effect on somatic stability of 
CAG repeat. 

[67] 

 PolB R6 transgenics POL protein specifically enriched at CAG repeats in striatum 
(detected by chromatin immunoprecipitation) and increasing 
enrichment with age. 

[70] 

Nucleotide 
excision repair 

Csb R6/1 
transgenic 

Homozygous Csb knockout increases germline CAG expansions but 
has little effect on somatic CAG repeats. Csb -/- Ogg1 -/- double 
mutant shows increased somatic CAG expansion. Small numbers 
and limited data only. 

[71] 

 Xpc Q111 knock-in Homozygous Xpc knockout has no effect on germline or striatal 
CAG repeat stability 

[65] 

Single-strand 
break repair 

Parp-1 R6/2 
transgenic 

Inhibition of PARP-1 by intraperitoneal injection of INO-1001 
improves motor coordination (rotarod) and survival of R6/2 mice. 
Improvements correlate with less striatal neuropathology. Unclear 
how effects are mediated. CAG repeats not examined. 

[72] 

Double-strand 
break repair 

Ku70 R6/2 
transgenic 

Double-strand DNA breaks accumulate in striatal neurons of R6/2 
mice. KU70 binds mutant HTT protein. Overexpression of KU70 
improves clasping function and survival of R6/2 mice. Small 
numbers. CAG repeats not examined. 

[73] 

 Atm BACHD 
transgenic 

Increased ATM signalling in HD mouse striatum (and in human 
brain tissue). Heterozygous Atm null BACHD mice show improved 
motor abilities and less neuropathology (mirrored by ATM 
inhibition by KU-60019 in HD cell model). 

[74] 
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