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Abstract

In industrial applications of composite materialsgurate characterisation of damage is vital. Atous
Emission (AE) can be utilised to achieve this, hesvein large-scale complex geometry components,
traditional AE approaches have limitations. In ttisdy a large carbon fibre specimen was used to
generate different damage mechanisms under falbguing. The Delta T Mapping technique was used
to locate damage and signal features were corresied the Parameter Correction Technique (PCT). A
comparison between results obtained using traditisignal features and those obtained using PCT is
given. The results are validated using C-scannimijc@mputed tomography. Matrix cracking and
delamination were successfully identified usingB€@T approach and improved location accuracy was
achieved.

Keywords:A. Carbon fibre; D. Acoustic emission; Damage characterisation; Damage location

1. Introduction

Fibre reinforced composite materials are extengiused in large-scale applications for infrastruetu

and transport, (aerospace, energy, automotive amhe), thanks to their high strength to weighiorat

As a result, there is a need to ensure that staldntegrity is maintained which requires a deeper
understanding of mechanical behaviour, damage mérha and remaining life to failure under static
and fatigue load regimes. Many Non-Destructive BEatibn (NDE) techniques can contribute to this and
one such technique is Acoustic Emission (AE) whgcthe passive monitoring of stress waves in a
structure [1]. The stress waves originate in makemvhen strain energy is released during damage

growth. If suitable sensors are used, such as glieaic transducers, the released energy can be



detected. This feature can be usefully exploitedtfe real time monitoring of a structure and eealthe
provision of feedback about the structures intggritd damage evolution and hence can increasabe t
periods between inspections. This is particulaggful in order to reduce cost of inspection esplgaia
hard to access structures such as off-shore wihihies. Moreover, the use of AE allows the
determination of damage locations within a struetamd the identification of the damage mechanisms
present by consideration of the detected AE sifgadlires. This enables the AE technique to be used
very effectively to investigate the integrity ofraposite structures [2]. Many studies have been wcted
on different composite systems using the AE tealmiigr monitoring real-time damage evolution and

identifying different types of damage due to itghhsensitivity to various damage modes [3, 4].

Despite some success, full-scale damage identditasing AE remains a significant challenge and is
non-trivial task. Damage characterisation usingig\iell established for small isotropic components
where the attenuation effects are low, but theoigéE to investigate failure mechanisms in largalsc
components has been limited by the effects of mrafan. Furthermore, many traditional Non-
Destructive Testing (NDT) techniques do not perfevell in composite materials due to their anisoitop
properties. Most composite materials have a distintsotropic mechanical behaviour which leads to
complex wave propagation and scattering phenomemrge-scale structures also often contain geometric
features such as holes, curvatures and thickn@sgyehl, which further interrupt signal propagatiathp.
A further challenge faced in signal classificatisthe variation of sensor transfer function betwee
different sensors. To eliminate these effects # practice for signal classification is to onbnsider
signals recorded by a single sensor. However, Ilstrgetures require the use of multiple sensors to
achieve full coverage and this is particularly s@ed@mposite structures where attenuation is comynonl
high. The variation between sensor transfer funetican therefore have a significant effect on

classification accuracy.

Hence careful consideration of AE data is requiredrder to maximise subtle differences and inczeas
characterisation accuracy of composite damage meérha. It is understood that even in a similar test
with permanent test conditions each sensor candatifierent AE signals due to sensor charactessti

sensor location, signal attenuation and superposés a result of signal reflections from specimeges



[5-7]. Thus, it is very challenging to achieve ablie damage identification using the conventional A
approaches based on the standard recorded AE ide¢#lyd Overcoming these intrinsic limitations il
improve the reliability of the AE damage charaation technique and provide much improved SHM

capabilities.

Several studies have focussed on the use of Afettify damage mechanisms in composite materials
under different loading regimes. Clustering AE sigrexhibiting similarities in to groups based on
conventional AE analysis has been the main targibtese studies by plotting traditional AE desaript
such as amplitude, count, duration, etc. versus$ c@aumber of cycles. The correlation between dwo
more AE descriptors using classification technigibesh unsupervised and supervised has also been

investigated [1].

To discriminate between different damage mechanisorae authors have correlated each damage type
with frequency by using the peak frequency, timegérency or frequency-intensity data from AE signals
[8-18]. Others have correlated damage with a ti@uhi AE parameter such as amplitude of AE signals
[10, 15, 19-21]. However, the correlation betweamege type and frequency range observed by
different studies is dissimilar, suggesting thas ot a reliable approach to consider the frequen
extracted from the AE waveforms as a discriminafaxgor. This is due to the fact that the frequeiscy
dependent on many factors such as the structuoahggey, sensor response, signal propagation path an
source frequency [22]. Furthermore, using burstlange for damage classification in complex matisria

is often inaccurate [23].

In efforts to achieve greater reliability, manyeaschers have adopted multivariate approachegnalsi
classification. These multidimensional analysessiar a large number of AE signal descriptors in an
attempt to provide a more powerful correlation kew AE data from different damage mechanisms.
Many multivariate classification approaches havenbavestigated both individually or in combination
these include algorithms such as k-means [24-2Be&rest Neighbours (k-NN)[27], Fuzzy c-means [30,
31], Principal Components Analysis (PCA) [25, 3Bhussian mixture distribution (GMD) [26], Artifidia

Neural Network (ANN) (such as the Self-Organisingg{SOM) [26-29, 32-34] and Competitive Neural



Networks (CNN) [26]). These normally correlate tlsultant classes with observable damage
mechanisms and then use a single signal parametieras the peak frequency or amplitude to validate
the classification results. Most studies are cotetliasing signals received by a single sensor and
recorded directly by an acquisition system withaumoving effects of propagation, which will likely

affect the reliability of the classification result

The objective of the present work is to use theté¢hnique to identify damage mechanisms generated
within a large-scale laminated carbon fibre comigosanel under low-cycle tension-tension fatigue. A
AE parameter correction methodology known as trerdmeter Correction Technique (PCT)” [35, 36] is
used to correct the propagation effects of AE datkected from the panel. An unsupervised

classification technique, k-means, is then usedassify the AE data into suitable classes.

The PCT has been developed by the authors in twdmrrect for the propagation effects of as-reedrd
traditional AE parameters in large-scale compasitectures with complex geometries. It has been
previously demonstrated that this technique pravaleeliable recalculation of the signal features
recorded from artificial AE sources at differensjiimns within a carbon fibre composite panel [36]s
noteworthy that the PCT presents advantages overeational techniques by overcoming the restriction
of using data from a single sensor for analysisitilising data from multiple sensors in the recédtion

process for each signal parameter. Therefore nda& is lost due to large source to sensor distance

The work presented in this paper builds on two joe papers by the authors [36, 37] and shares the
same experimental process. The initial paper faogamn PCT [36] used artificial data, created using
wave generator and a conical transducer, to demategshe technique. In [37], an Artificial Neural
Network classifier was used on experimental AE dataxplore approaches of self-learning to identify
matrix cracking and delamination signals. This pap¢he first recorded use of PCT to correlaté Ada
damage signals in composites that are validatdablty ultrasonic scanning and CT scans. The Paper is
arranged as follows. First an introduction to tl@&THrocess and cluster analysis is given in Se&ion
The experimental procedure is outlined in Sectiom Bection 4 a comparison between the traditional

and re-calculated data classification is made avadly conclusions are drawn in Section 5.



2. DataProcessing

The aim of this process is to cluster AE data grmups of similar signals using an unsupervised
clustering technique. The differing classes idé@difvill then be attributed to specific damage nsode
occurring during fatigue loading of a compositegdaft should be noted that it is the intentiortlod
authors to apply this classification procedureigoals from located AE events only. That is, onlg A
sources with high energy which hit at least thesressrs are considered as an event to be used in the
analysis.

In this work four signal parameters, (Amplitude u@ig Duration and Energy), are used as input daata i
the clustering process. The classification procediperformed twice, once using the traditionghal
parameters and again using the re-calculated p&eesrfeom the PCT. Figure 1 presents an overview of
the procedure adopted for analysing the AE sigizdsh step will be described in this section (ekcep

assigning the results which will be discussed ictiSa 4).

21 Locate AE Events:

In anisotropic materials, such as composites, ateuE location is complex due to variation in
propagation velocity with direction. Some approachave been taken to solving this problem [38-41]
and improvements in accuracy have been shown iplsitaminated plates. However none of these
approaches account for structural complexities it interrupt the wave propagation path, such as
holes and thickness changes that may be presantimdustrial environment. In order to overcomeséhe
obstacles Baxter et al. [42] presented the Deldapping technique. This technique involves genegati
several artificial sources at each point on a défined across the structure and using the mearakrr
time at each sensor to construct a map of arrived tlifference for each pair of sensors. The maps a
subsequently used in the location calculation &edéchnique has been demonstrated to provideisuper
location accuracy. Originally developed for compigometry metallic structures [42], the technigas h
also been shown to perform very well in anisotrapaterials such as composites [43]. Further
improvements to this approach have been made bgrating an Akaike Information Criteria (AIC)

based arrival time estimation [44] and automatmaintng data cleaning and selection processes [45]



which has significantly reduced operation time ameased reliability. The Delta T Mapping techr@équ

has been used to locate the AE events in this work.

2.2 AE Feature Correction:

In order to correct the traditional parametersearded AE signals the Parameter Correction Tedkeniq
was performed. In this new technique a point cantamical, piezoelectric transducer is used tatexc
artificial AE signals at locations across the stnoe of interest. The sources are excited at aeraiig
amplitude levels and a multi-level map of featuaeiation with respect to source amplitude and apati
location is created. These maps are then usea dmtis for feature correction based on accurately
computed source location. A more detailed desoniptif the PCT methodology can be found in previous
work [35, 36]; however, a summary of the techniguerovided below in five steps:

» Determine area of interest: The technique can provide complete coveragestfugture or part of a
structure, it can be used as an improvement methodrrect the signal parameters emitted from
specific areas of expected fracture.

e Construct grid system: A grid is constructed on the area of intereshimitvhich AE events will be
located. The parameter correction is performed vegipect to the grid coordinates and not the sensor
positions.

e Obtain AE parameter value data set: At each node of the grid, artificial sources witirying input
amplitude are generated to provide AE parameteregaht each sensor. An average result of the
recorded AE data is achieved by repeating the samee amplitude several times at each node, to
reduce error. Missing node data as a result ofshéde example, and the area between nodes are
interpolated from the other surrounding data. Tekameter values of each source amplitude within
the grid will present a contour map.

e Calculate PCT maps: A multi-level (3D) map is then generated for egelnameter by stacking up
the individual contour maps. The layers are arrdngeorder, from the lower source amplitude to the
highest. From these maps, the relationship betweerecorded parameter and the source amplitude
will be calculated for each location.

» Parametersre-calculation: Using these AE parameter versus source amplieldéonships; the

source amplitude for any previous, current or featdE data can be identified. To estimate the



parameter value of any event the average of al@srused to locate that event will is used provide

the most accurate value.

2.3 Traditional AE Features Nor malisation

Before conducting the multivariable analysis adpmnormalisation” step was performed. In any multi-
variable clustering process it is essential to radise the data sets to ensure that each paranatemual
weighting to avoid biasing the solution towards lingh parameter weightings. This step ensuresathat
data has been centred and reduced, posing a meenegaial to zero and a standard deviation equal to
one. The difference between the solution of thenadised set and that of the original set will depen
upon the extent to which the variance of the variparameters differ. This means that the results
obtained from un-normalised data subjected to rditiensional analysis will be weighted in favour of
the parameters with higher relative variance. Witealing with the traditional AE parameters, thaeraa
acceptable reason to consider anything other thaal eveighting and so the data presented to the
classification technique were normalised. The ndiaton step was conducted only with the tradiiion

data because the re-calculated parameters natpoafs equal weighting.

2.4 Unsupervised Clustering and Cluster Quality Criteria

The two data sets, traditional and re-calculateglffzen classified separately uskigneans as an
unsupervised clustering technique. Km@means method aims to minimize the sum of squaisdrte
between all the vectors of a cluster and its cgdg In thek-means approach the number of cluskers
should is specified in advance. In order to sdleetmost appropriate value fertwo common clustering
quality criterions, Silhouette [47] and Calinski#ldbasz [48] indexes, were used to determine tHenapt

number of classes which corresponding to the maximalue of the two criterions.

3. Experimental Procedure

31  Test specimen:

The carbon fibre specimen used in this investigaBshown in Figure 2. More details on the test
specimen can be found in the work by Crivelli ef3a1]. A 500 x 500 mm square panel was manufactured
from 8 plies of Hexcel M21/35%/UD268/T800S uni-ditienal pre-preg material and cured in an

autoclave in line with the manufacturers recomméada. A layup of (0,9Q) was used which resulted



in a cured thickness of 2.1 mm. During layup a 2B aut, perpendicular to the fibres, was made at the
centre of the two inner"(lies in order to promote matrix cracking undersite load. Following

manufacture the panel was inspected using ultragossicanning to ensure quality and uniformity.

In order to transfer the tension load to the tpstsnen, four 5mm thick aluminium tabs with 50 xr&fh
dimensions were glued on to both sides of the pathahg the Omaterial direction, using Araldite 420 (2
Component Epoxy Adhesive). To accelerate the glpinogess the specimen with tabs were cured at 50
centigrade for 4 hours. A 20 mm diameter hole wéked through each of the tabs to provide a load
attachment point. After drilling the specimen was® again C-scanned in order to ensure that nmadte
damage had been induced. The specimen, when fifitthé test machine, as shown in Figure 2. Four 10
mm thick steel plates were used to extend the toachine clevis fixture down to the drilled holeslan

20 mm diameter bolt was placed through the extenaled the panel and tightened with a nut.

3.2  AE acquisition:

AE was continually monitored during the test usingallen AMSY -4 data acquisition system, with 5
MHz sample rate and 34 dB pre-amplification fromi&a AEP3 pre-amplifiers. The AE signals were
monitored using five PAC WD wideband transducenmsitdent noise was filtered using a 44.9 dB
threshold. The sensors were attached to the speaisieg Silicon RTV (Loctite 595) to provide an
acoustic couplant and a mechanical fixture. Thatired positions of the sensors can be seen in &gur

The correct mounting of the sensors was verifiedidigig the Hsu-Nielson (H-N) source [49].

A Delta T grid was created with two resolutions3@0 x 300 mm grid with a 50 mm resolution was
placed centrally on the panel (Figure 2 and 3a)thadaentral 100 x 100 mm area of the grid centred
around the artificial crack was arranged with axiri resolution. The training data for the Delta T

Mapping technique was collected from this grid ptmthe testing.

The PCT process utilised the same 300 x 300 mm @it a resolution of 50 mm that was used for the
Delta T Mapping technique (Figure 2 and 3b). Aifiardl AE source was used to generate signals at
each of the grid nodes to provide training datd.[B6is was achieved by use of a Mistras Group Ltd.

arbitrary waveform generator (WaveGen1410) andhéoiise manufactured broadband conical



transducer provided by the National Physical Latmoya UK. Multi-purpose grease was used as a
couplant to provide consistent acoustic transmisb&tween the conical transducer and the specimen

surface.

3.3 Ted plan:

The tensile specimen was subjected to tensioneeriatigue load, with the maximum applied load
increased from 8 to 31 kN throughout the test. [Blading profile across the whole test is presemted
Figure 4. After 130k cycles the panel was removethfthe test rig and subjected to an impact.

Subsequently the panel was returned to the tesindgoaded for an additional 155k cycles.

The test was performed in batches of 5k cyclesrateaof 1Hz. In order to follow the damage evalnfi
the specimen was inspected by ultrasonic C-scarbréhgeen the batches. The C-scan image and the AE
activity were subsequently considered in ordergoide whether to increase the load or run a fuker
cycle at the same load. The first part of Figu(&e# of vertical dashed line) contains the batamibers

and the applied load before impact.

After 26 batches (130k cycles) of loading the paves impacted at different energy levels (from 340

J) using an Instron Dynatup 9250HV impact test riregto generate a new source of AE activity during
the test. A C-scan inspection was performed follmathe impact testing. The panel was then subjdoted
further fatigue loading in line with the previousopedure. The second part of Figure 4 (right ofigal
dashed line) shows the applied load for batcheyadés after impact. At the end of the test, thegba

was C-scanned for a final time and then a ~50 xrf0section centred on the cut plies was removed fo

x-ray CT evaluation, to verify the development adtrix cracking local to the cut ply region.

4. Resultsand discussion

4.1  Physical observations

The C-scan images are shown in Figure 5 and rélvealifferent conditions of the panel during thet.te
After manufacturing, the C-scan image shows theriinternal damage (Figure 5a). After applyirg th

first 26 loading batches (ending with 21 kN loattafl30k cycles) the panel is still without anyrsigf



internal damage (Figure 5b). The artificial cras&dtion indicates a very slightly higher attenuatiout

it is difficult to identify in-plane cracking by Gean inspection so this cannot be considered csimelu
After impact (Figure 5c), a clear region of higkeatation is observed just above the lower takcataig
the location of impact induced delamination. Thekdgot seen centrally in all the images is sebsor
with its cable exiting to the left of the imageaissible. At the end of the test (31 kN load a286k
cycles) no discernible growth in the delaminatiogsacan be observed, suggesting that the delaminati
has not grown during the test (Figure 5d). Agamila increase in attenuation at the cut plies (hedow
sensor 5) is observable in Figure 5d but no pasitidication of matrix crack growth can be inferred

from this.

The CT scan results are shown in Figure 6 whiclvghe final condition of the cut ply region aftéet
test. The figure shows two selected slices whighesponding to the third ply depth (Figure 6a) el
sixth ply depth (Figure 6b), i.e. the depth of tu plies. The main images (1) show an in-plareesli
through the material at the stated depth and tbheatiditional images (2 & 3) show orthogonal through
thickness slices at the same location. The redvarnodicate a common position that is collocatethimi
all three images. A clear horizontal crack liketfea is seen running horizontally left to righttath

main images, these cracks correspond to the cygqsifions with in the sample. The through thiclenes
slices (2) show corresponding indication of cragkam these positions, appearing as a small blatk do
because the crack is running out of the plane@ptmge. Image 3 at a depth of 3 plies also shaieaa
indication of cracking. At a depth of 6 plies thraak is less obvious in image 3, suggesting thatthck
is less well developed at this depth. By companingge 2 from both Figure 6 a) and b) it can be seen
that the cut plies are miss-aligned and this miiggtaent has restricted the growth of a larger tigio
thickness matrix crack. The CT results, howevenfica that matrix cracking has occurred at therresi

rich pockets made at the position of the cut fibinethe laminate.

The Delta T results for AE source location usidgla five sensors are shown in Figure 7 a) anfdb)
before and after impact, respectively. In Figureb&dore impact, events are clustered close ttathe
boundaries and at the central area of the specattre location of the cut plies. Figure 7b, pagpact,

shows the events located from the final loadinglb&81). High AE activity is observed at the uptadr

10



location with very little activity observed at tlmver tab. A cluster of events is also observetthat
location of the impact induced delamination. Aduliglly, some AE events are located in the unloaded
area to the left of the presented image and thesgt®are assumed to be miss-located. Some miss-
located events is common in AE testing and oftauocfrom low amplitude signals where accurate
arrival time determination is difficult. The per¢age of miss-located events (e.g. x=<10) is ~6.6%®
total located events in this data set and therdfase events are not deemed to be significanselhe
results demonstrate that the Delta T Mapping apprigable to accurately detect and locate signais
noise sources, such as the tabs, and from diffelamgage mechanisms, such as the matrix cracking and
delamination. However to gauge the significancarof located events in a realistic monitoring situat

an indication of the source mechanism is requiredsignal classification is needed.

In order to perform damage identification this wéskuses on the signals located at the artificial
cracking and delamination areas only. The locatemts before impact were selected for the cluggerin
purpose limited on the area of artificial cracke(delected signals presented in Figure 7a). Figoyre

post impact, presents the selected signals fromthet delamination and artificial crack areas.

Figure 8 presents the percentage of events forhwdgensor was not used in the location calculatiat
is the number of events or signals that would besed if each sensor was considered in isolation.
Counter-intuitively; being closest to the damaggamr, channel 5 is missing signals for over 22%hef
events located. When the total number of hits el @hannel are considered channel 5 has recorded
significantly more than all other channels wittaegke number of low energy signals that are not
registered by sensors further away due to attesnuafihis disparity is attributed to the procesgluse
the Delta T Mapping algorithm to group signals elgsspaced in time that will likely be from the sam
event. It is anticipated that the large numberdafitonal hits on channel 5 has caused some eirrors
correct identification of event groups. Neverths]dsgure 8 serves to highlight the issue of dasa |
when only one sensor is considered for classificatHere it would be most intuitive to select cheir
however that would result in the loss of 22.6%lblozated events when all 5 sensors are considered
The PCT technique overcomes this limitation by gsiarrected data from all sensors to provide an

average corrected feature value. So, all data fooated events can be considered in any subsequent

11



classification work, which is an important advamdgr improving the performance and reliabilityAf

damage classification in large-scale components.

4.2  AE data classification

The proposed classification approach was perforimetivo cases: 1) using traditional AE parameters
and 2) PCT corrected AE parameters. The input vegtthe classifier in each case is the same four
signal features (Amplitude, Energy, Count and Dargt After normalising the traditional features
recorded using each one of the five sensors aradictdating the AE parameters using the PCT, the
optimal number of classes was calculated for e&theosix data sets, according to the two clustgrin
quality criteria discussed above. Then the six data were classified using these optimum cluster
numbers. The number of events allocated to eass,diallowing classification, is presented in Fig@r
as a percentage of the total number of eventsdeddny the used sensor. The use of traditional
parameters leads to more than one solution thatlyndépends on the sensor from which data was used
as input to the classifier. Thus it is difficultdecide which result is correct. Normally the operavill
select the result from the sensor with the lardata quantity or the result which corresponds 0 an
expected damage. On the other hand, there is ngke siolution arising from the use of data corrédtg
the PCT approach, which reduces uncertainty antiavbe need for operator decisions within the

analysis.

Practically, it is difficult to rely on data frorme sensor to achieve reliable damage classificatftan
the AE sources are located at different distanaes the sensor [36]. Furthermore, in general udeig
from one sensor leads to the loss of some locakedaka which will have a negative effect on
classification reliability. The PCT approach hasyiously demonstrated the ability to overcome these
limitations for artificial AE sources [36]. Hererther analysis of its ability to accurately clagsiffferent

damages mechanisms from fatigue test data is made.

In order to characterise the possible damage métrharccurring in this test, the AE data is divideio
two parts: the pre-impact stage which correspoadbé located AE activity at the artificial cracgion
(Figure 7a) and the post-impact stage which cooeding to the activity at both damage regions, i.e.

artificial crack and delamination area (Figure 7b).

12



In the pre-impact stage the cut plies are locatdtie load path between the two aluminium tabs reviie
is expected that the stress will be sufficientdase cracking in the resin pocket between cutdibrae
x-ray CT data presented in Figure 6 confirms thegin of matrix cracking in this region. Hence there
high confidence that the AE signals selected frbendrack region were generated from the observed
matrix cracking damage. After the initial AE actjvin the cut ply region, no further AE data was
observed in this region. This is due to the dewedbgracks reaching the end of the cut ply regiah an
being arrested by the intact continuous fibres. iMiletting the location of the PCT classes as two
segments, before and after impact, as shown inr&ig0 it can be seen that prior to impact Classthe

dominant class. Hence it is concluded that Classs@lts from the matrix cracking damage mechanism.

The post impact stage contains events mostly Iddatéhe region of the delamination, with a small
number of events located near the cut ply regiudicating that some additional matrix cracking niigh
have been induced by the higher applied load oN3Higure 10). Significant activity is seen in the
delamination region, despite the C-scan data stgpminobvious signs of delamination growth. The AE
activity in this region is likely to result fromrange of sources including matrix cracking causgethb
induced stress concentrations and friction frorttirg and movement of the existing damage surfaces.
For the data recorded after impact the PCT classifin identifies two classes (Figure 10). The aign
located at the delamination site are a mixturdass<1 and 2, which is expected due to the vardedagde
mechanisms present in this area, with class 2 septing matrix cracking and class 1 representing
fretting of the delamination surfaces. Out of theal number of signals located near the crack ramst

class 2 and located in the region of the crackdips$ correspond to the observed matrix cracking.

The presented methodology provides a solutiondcttallenges of AE signal classification in largels
structures, by eliminating signal propagation effethe PCT provided a single classification soluyti

while use of traditional features leads to multigtebiguous solutions, depending on the sensortedlec

It has also been shown that data from all sensautilised in the PCT process, thus eliminating the
potential loss of some located events. This wodkdemonstrated that the developed methodology sllow

AE signals from different sources to be reliablgsdified into separate groups. The classificatsult

13



achieved using the data corrected by the PCT pecwidhore reliable solution. Two classes correspandi
to matrix cracking and fretting signals were detdctocated and classified. Currently the PCT ctahro
directly implemented in true real time, howevewyelepment of a real time implementation of the

presented technique will form the focus of furtherk.

5. Conclusions:

The main aim of the present work is to use the Afadecorded from the fatigue test of a composite
material panel to identify different source meckars. The Delta T and PCT techniques were used to
locate the AE events and correct AE features wigh performance. The resulting clusters clearly
identify the most critical damage types. The C-saath CT scan results support the proposition tiet t
AE technique can detect two different damage mash@and these are most likely to be matrix
cracking and delamination movement.

The PCT is shown to be an effective tool to corsignal features and overcome the propagation path
influence on the recorded AE data. Furthermoregudata from multiple sensors enables all the latate

events to be accounted for in the final analystbovit loss of data.
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Figure Captions

Figure 1. Flow chart representation of the methogplproposed in the analysis.
Figure 2. The specimen fitted in the tensile nraeffi37].

Figure 3. Sensors locations and (a) Delta T ¢bpgPCT grid.

Figure 4. Test plan with the applied load per batch

Figure 5. The C-scan result during the test (apAfhanufacturing, before apply the load (b) Before
impact, after batch number 26 (c) After impact indimagely (d) After impact, After batch number 31.

Figure 6. The CT scan result at the end of theaest ply depth and b)'6ply depth.
Figure 7. The Delta T location of the recorded ¢évéa) before impact (b) after impact.
Figure 8. Located events losing depend on the ssesbor.

Figure 9. The Classes percentage for each case.

Figure 10. Delta T Mapping locations of the clasaifon results (PCT).
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