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Abstract

Conceptual spaces are a knowledge representation
framework in which concepts are represented geo-
metrically, using convex regions. Motivated by the
fact that exact conceptual spaces are usually diffi-
cult to obtain, we study the problem of spatial rea-
soning about qualitative abstractions of such repre-
sentations. In particular, we consider the problem
of deciding whether an RCC8 network extended
with constraints about betweenness can be real-
ized using bounded and convex regions in a high-
dimensional Euclidean space. After showing that
this decision problem is PSPACE-hard in general,
we introduce an important fragment for which de-
ciding realizability is NP-complete.

1 Introduction

Knowledge about concepts can be represented in at least two
radically different ways. On the one hand, ontology lan-
guages are often used for this purpose. Such languages al-
low us to describe, in a transparent and precise way, how
different concepts are related, but they offer only limited
means for supporting inductive inferences. On the other
hand, in fields such as natural language processing (NLP) or
machine learning, knowledge about concepts is usually en-
coded in the form of vector space embeddings. These embed-
dings typically encode both concepts and objects as vectors
in a high-dimensional Euclidean space [Mikolov et al., 2013;
Bordes et al., 2013]. They are very effective at supporting in-
ductive inferences (e.g. generalizing a learned model to words
not encountered during training in NLP applications), but are
not able to encode exact logical relationships: vector repre-
sentations of concepts can encode how similar two concepts
are, but not e.g. whether one is subsumed by the other.
Conceptual spaces [Girdenfors, 2000] are geometric repre-
sentations, in which the properties and concepts from a given
domain are modeled as convex regions in a potentially high-
dimensional space!. In some sense, conceptual spaces com-
bine the best of both worlds: their geometric nature allows for

'A higher-level representation of concepts is sometimes as-
sumed, in which concepts are seen as weighted sets of properties.
Each of these properties then corresponds to a convex region, in the
space that is associated with its corresponding domain. For simplic-
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elegant formalizations of inductive arguments, while the use
of regions means that logical relationships such as disjoint-
ness and subsumption can be encoded in an exact way.

Unfortunately, conceptual space representations are diffi-
cult to learn from data. A promising alternative, which we
consider in this paper, is to rely on qualitative abstractions of
conceptual spaces to encode knowledge about concepts and
properties. A standard taxonomy, viewed as a set of state-
ments of the form “A is subsumed by B”, written A C B, can
be seen as a simple example of such a qualitative abstraction,
if we view A C B as the spatial constraint reg(A) C reg(B),
where we write reg(X) for the (unknown) conceptual space
representation of the concept X . Similarly, the assertion that
two concepts cannot share any instances corresponds to the
spatial constraint that reg(A) and reg(B) should be disjoint.

By encoding knowledge using qualitative spatial con-
straints, we can also encode information that goes beyond
what is normally considered in ontologies. One example is
conceptual neighborhood [Freksa, 1991]. Two concepts A
and B are called conceptual neighbors if there is a continu-
ous transition from instances of A to instances of B, without
having to go via a third concept. For example, the colors
red and orange, the place types pub and restaurant, and the
adjectives moderate and severe could all be regarded as con-
ceptual neighbors. The assertion that A and B are conceptual
neighbors naturally corresponds to the spatial constraint that
reg(A) and reg(B) are adjacent (i.e. externally connected) to
each other. This type of information is important in appli-
cations where information from multiple sources needs to be
combined, as different sources may disagree about where ex-
actly the boundary between two conceptual neighbors should
be drawn [Schockaert and Prade, 2011]; e.g. a place which
is regarded as a pub by one source might be regarded as a
restaurant by another source, even if both sources agree on
the fact that pub and restaurant are disjoint concepts.

So far, we have only considered qualitative spatial con-
straints that can be modeled in the well-known RCCS calcu-
lus [Randell et al., 1992]. Such constraints are not sufficient
for assessing the plausibility of inductive arguments. In par-
ticular, qualitative conceptual space representations should
allow us to determine whether a given property P is likely
to apply to instances of a given concept C, knowing only that

ity, we will only consider a single Euclidean space, but our results
directly generalize to such multi-domain representations.



it applies to instances of some other concepts C1, ..., Cj [Os-
herson et al., 1990]. For instance, knowing that fine-dining
restaurants and fast-food restaurants in Sweden both need a
license to sell alcohol, we can plausibly conclude that bistros
would as well. Intuitively, this is plausible because bistros are
conceptually in between fine-dining restaurants and fast-food
restaurants. It was found in [Derrac and Schockaert, 2015]
that this qualitative notion of conceptual betweenness is often
sufficient to make highly accurate predictions.

To further enrich qualitative conceptual space representa-
tions, we can consider constraints that only refer to particular
facets of concepts® (e.g. encoding that the price range of a
bistro is in between that of fast-food and fine-dining restau-
rants). Moreover, concepts with gradual boundaries can be
represented by considering nested sets of regions [Gérdenfors
and Williams, 2001]. This would allow us, for instance, to ex-
press that the typical size of a bird is in between that of mice
and dogs. However, as such modeling constructs do not affect
our technical results, we will not explicitly consider them.

Qualitative conceptual spaces can be obtained in similar
ways as traditional taxonomies, e.g. manually encoded by do-
main experts, extracted from text, or learned using Bayesian
methods [Griffiths ef al., 2008]. Approximate information
about betweenness can furthermore be derived from vector
space embeddings. However, as most of these methods are
noisy, we need effective mechanisms for checking the consis-
tency of the resulting representations, to allow repair mecha-
nisms similar to the techniques which are used for taxonomy
learning when cycles are detected [Merhej er al., 2014].

To this end, we study the problem of deciding whether a set
of RCCS constraints with betweenness information can be re-
alized using convex regions. First, we show that this decision
problem is PSPACE-hard in general. We then introduce an
important fragment, and show that deciding realizability for
this fragment is NP-complete. The basis of this result comes
from the observation that the models of (atomic) sets of con-
straints from this fragment can be characterized using a num-
ber of rankings. This ranking representation is significant for
applications, as it allows us to compactly encode which be-
tweenness relations hold between arbitrary sets of regions,
whereas naive encodings would be exponentially large.

The most closely related work is [Schockaert and Li,
2013], where an extension of RCC5 with betweenness con-
straints was proposed. However, while adding betweenness
constraints to RCC5 networks only affects reasoning in a
minimal way (e.g. most transitivity rules that we intuitively
expect to hold for betweenness are only valid for discon-
nected regions). As we will see, the situation for RCCS net-
works is entirely different. Beyond betweenness, a number of
other works have considered forms of qualitative spatial rea-
soning that are important for reasoning about concepts. For
example, [Wolter and Zakharyaschev, 2000] introduced an
extension of RCC8 in which constraints can relate to unions
and intersections of regions. In [Sheremet er al., 2007] a logic
is introduced which can be used to reason about relative simi-
larity (i.e. region A is closer to B than to C). The problem of

Note that is a direct counter-part to multi-domain conceptual
space representations.

realizing RCCS8 networks using convex regions has been stud-
ied in [Davis et al., 1999] for two-dimensional spaces and in
[Schockaert and Li, 2015] for general Euclidean spaces.

2 Preliminaries

In this section we recall some basic notions from the region
connection calculus.

RCC8 is a constraint language based on the Region Con-
nection Calculus [Randell et al., 1992]. Constraints are
built from a set of 8 primitive relations Rg = {DC,EC,
PO,EQ, TPP, TPP~ !, NTPP,NTPP '} and a set of
variables V. For each R C Rg and u,v € V, the expres-
sion u R v is called an RCC8 constraint. An RCC8 network
is a set of RCC8 constraints in which each pair of variables
occurs in at most one constraint. If R = {Ry} is a singleton
then v R v is called an atomic RCC8 constraint, and we usu-
ally write v Ry v instead of u { Ro } v. We will use some com-
mon abbreviations to denote particular non-atomic RCC8 re-
lations: DR = {DC,EC},PP = {TPP,NTPP} P =
PPU{EQ} and O = Rs \ {DC,EC}. An RCC8 network
O is called atomic if every constraint in © is atomic.

Let Reg" be the set of non-empty regular closed® sub-
sets of R™. A mapping S from V to Reg™ is called an (n-
dimensional) interpretation. Table 1 lists the conditions un-
der which S satisfies each of the atomic RCC8 constraints,
except for u NTPP ' v and «w TPP ™! v, which are equiv-
alent to v NTPP v and v TPP u respectively. When S sat-
isfies an atomic RCC8 constraint u R v, we write S = u Rv.
We have that S satisfies a non-atomic constraint u R v, writ-
ten S = uRwv, if S = Ry for some Ry € R. An RCC8
network O is called satisfiable (or consistent or realizable) if
there is an interpretation S that satisfies every constraint in
©. In that case S is called an (RCC8) solution (or realiza-
tion). While we only consider Euclidean spaces in this paper,
it should be noted that any RCC8 network that can be realized
in a topological space that satisfies the axioms of the Region
Connection Calculus also has a Euclidean solution, even if
we fix the number of dimensions [Renz, 2002].

3 RCC8*

We now introduce the notion of RCC8™network, which is
the RCC8 analogue of the RCC5™ networks from [Schockaert
and Li, 2013]. To encode betweenness information, we will
use RCCS constraints in which the arguments can be expres-
sions of the form uMw, denoting the convex hull of the union
of v and w. For instance, the constraint v P uxw encodes that
v is completely between u and w, while v PO uxw encodes
that v is partially between v and w. In particular, let V™ =
V U {uxv|u,v € V}. An RCC8"network over V is then
defined as an RCC8 network over V™. An interpretation S is
called an RCC8™solution of an RCC8™ network O if (i) S is
an RCCS solution of © and (ii) for each u, v € V it holds that
S(uxv) = CH(S(u) US(v)), where CH denotes the convex
hull operator. Note that while  is limited to two regions, we
can consider the convex hull of an arbitrary number of regions
by introducing fresh variables, e.g. in any RCC8™solution

3 A is regular closed if A is equal to the closure of its interior.



Constraint Semantics Constraint ~ Semantics

uDCo Sw)yNnSw) =10 uECwv (¢ ( ( N Ni(SW)) =0) A (S(u) NS(v) # 0)

wEQu  S(u)=8(v) wPOv  (i(S(u) Ni(S(v) # 0) A (S(u) Z S(v)) A (S(v) Z S(u))
uNTPPv  S(u) C i(S(v)) uTPPv  (S(u) C S()) A (S() £ i(S(v)))

Table 1: Conditions for an interpretation S to satisfy atomic RCC8 constraints, with 4 is the topological interior operator.

of {xEQaixy1,y1 EQazxys,....,yn—2EQan_1xa,} it
holds that S(x) = CH(S(a1), ..., S(an)). We write © = @,
for © and ® (sets of) RCC8™ constraints, to denote that every
RCCS solution of O is also an RCC8 solution of ¢. Note that
this is different from requiring that every RCC8™solution of
O is an RCC8™solution of ®.

The problem we will focus on in this paper is deciding
whether an RCC8™has a convex and bounded solution, i.e.
a solution in which every variable is mapped to a convex and
bounded region. The reason why we require convexity stems
from our motivation in terms of conceptual spaces. Further-
more, note that because we can always add constraints of the
form a EQ axa, encoding that a has to be convex, the hard-
ness results we show in this paper remain valid even when
convexity is not required. From a practical point of view, this
also means that we need to understand how convex solutions
can be found, before arbitrary solutions can be considered.
The restriction to bounded regions is because the X operator
can otherwise lead to counterintuitive behaviour®.

We can show the following result’.

Theorem 1. Deciding whether a RCC8™ network has a con-
vex and bounded solution is PSPACE-hard.

When an RCC8™network © contains a constraint such as
u EC v, then in any solution S there is a hyperplane H sep-
arating S(u) from S(v). For each region v, let vy be a new
variable corresponding to the (lower-dimensional and possi-
bly empty) region S(v) N H. The constraints in © can im-
pose constraints between these new variables vy, and check-
ing their satisfiability is similar to checking the satisfiability
of the constraints between the initial set of variables. More-
over, these new constraints may induce further constraints,
between intersections of the regions S(vy) with another sep-
arating hyperplane. Intuitively, it is this recursive process that
causes the PSPACE-hardness.

3.1 Basic Networks

We call an RCC8™network © basic if each constraint in ©
has one of the following forms:

e uRv,with R € {DC,EC,NTPP,P}andu,v € V
e v Puxw, withu,v,w eV

Note that any atomic RCC8™network can be represented
as a basic network by introducing fresh variables, e.g.

*The fact that S(u) and S(v) are regular closed is not sufficient
for CH(S(u), S(v)) to be regular closed, which leads to particular
restrictions on that mappings S that we would be able to consider as
interpretations.

>The proofs of all results from this paper are available in an
online appendix at:
http://users.cs.cf.ac.uk/S.Schockaert/reports/betweennessRCC8-
supplement.pdf

the constraint PO b can be replaced by the set of con-
straints {x Pa,zDCb,yPb,yDCa,zPa,zP b}, where
x,y, z are fresh variables. Similarly, note that the condition
that variables of the form wMw can only occur in constraints
of the form v P uXw is not a real restriction, since we can al-
ways replace occurrences of u v by a fresh variable x,,,,, and
add the constraints x,, P uxv, u P x,, and v P x,,, which
is equivalent to requiring ., EQ uv if only convex solu-
tions are considered.

We thus have that an RCC8™ network © has a (convex and
bounded) solution iff there exists a basic RCC8™network ©’
which has a (convex and bounded) solution and which is such
that © = O. Decide whether an RCC8™ network © has a
(convex and bounded) solution can thus be reduced to guess-
ing a corresponding basic network ©’ and showing that it has
a (convex and bounded) solution. For this reason, we can re-
strict ourselves in this paper to basic networks without loss of
generality. Note, for instance, that the PSPACE-hardness re-
sult from Proposition 1 remains valid for basic networks. For
the ease of presentation, in examples we will sometimes also
use constraints of the form © PO v.

4 An NP-Complete Fragment

We now introduce a restriction on RCC8™ networks to prevent
the aforementioned recursive process that is responsible for
the PSPACE-hardness result.

Definition 1. An RCC8™ network © is non-recursive if there
are no u,v,w € V such that © = {u NTPP v,v EC w}.

One straightforward way to guarantee non-recursiveness is by
either disallowing EC constraints or NTPP constraints. In
applications, EC constraints are important for modeling con-
ceptual neighborhood, while NTPP relations are important
for modeling concepts with gradual boundaries. However, we
would normally only need one of these modeling constructs,
as the notion of conceptual neighborhood is based on the as-
sumption that there is a crisp (i.e. non-gradual) but ill-defined
boundary between two concepts.

Next we show that checking if a basic non-recursive net-
work has a convex and bounded solution is NP-complete.

4.1 Ranking-Based Models

Let us assume that there are regions ag, ...,
some p € {1,...,

Qm, b1, ..., by, and
m} satisfying the following assumptions:

AB; Foreachi € {1,...,p} it holds that © |= a; DCb;.

AB, Foreachi € {p+1,...,m} it holds that © = a; ECb;.

ABj3 For every u,v € V such that © = «DCuo (resp.
© = uwECw) there exists an ¢ € {1,...,p} (resp.

i € {p+1,...,m}) such that © E {uPa;,vPb;} or
O {vPa;,uPb;}.



AB,4 For each v € V and i € {1,...,m} it holds that (i)
O E vPay, (i) © F vPb; or (iii) © E vOa; and
These assumptions do not affect generality, as we can always
add fresh regions and guess the required constraints to make
AB;-AB, satisfied®. Note that while this process involves
making a guess, it does not affect the NP-completeness result.
Let us write M = {ay, ..., Gy, b1, ..., by }. We also write
inv(a;) for b; and inv(b;) for a;. The following proposition in-
troduces a necessary condition for RCC8™ networks to have a
convex solution. In Section 4.3, we will see that this condi-
tion is also sufficient for basic non-recursive networks.

Proposition 1. Suppose that the RCC8™ network © has a
convex and bounded RCC8™ solution. For each x € M there
exists a mapping p, : V. — {0,...,|V| — 1} such that for
every u,v,w € V it holds that:

(O vPusw) = (pa(v) = min(pu(u), pa(w))) (1)
(@ EuNTPPv) = (pi(u) > p.(v)) 2)
(© FvOinv(z) = (pa(v) < pr()) ©)

(px(v) > pT(I)) = (pinv(w) (U) < Pinv(x) (”’W(I))) (4)
and for v,y € M and u,v € V such that © = y DCinv(y):

(pa(u) = p2(v)) A (py(u) = py(y))
= (pinv(y) (U) < pmv(y)(lnv(y))) 5

The mappings p, essentially define a set of rankings over the
variables from V, as only the relative ordering of the p,.(v)
values matters. Note that the existence of suitable rankings
can be straightforwardly checked using integer linear pro-
gramming. Because the existence of these rankings is equiv-
alent to the realizability of © using convex and bounded re-
gions (as we will show), we can effectively view them as
models of RCC8"networks. From an application point of
view, this ranking based representation is also important, as
it will allow us to easily determine for arbitrary variables
V1, ...y Uk, & Whether S(u) € CH(S(v1) U ... U S(vy)), for
S the solution that we will associate with the rankings, which
will be the case iff p,(u) > min(p;(v1), ..., pz(vi)) holds
for all x € M. By encoding qualitative conceptual spaces in
terms of such rankings, we can thus compactly encode expo-
nentially many betweenness statements.

Example 1. It follows from Proposition 1 that the following
set of constraints is not satisfiable:

aq PO a9 aq PO b2 b1 PO a9
ay DC bl ag DC bg ay Pbllxlbg
Indeed, using (1) and (3) we find
Py (bl) 2 min(pb2 (al)’ Pby (bQ)) = Pbs (al)
P, (a1) = min(pp, (b1), po, (b2)) = pu, (b1)

It follows that pp,(a1) = pb,(b1), and thus by (5) (for y =
u = by) that pe, (a1) < pa, (a1), which is a contradiction.

b1 PO by
bl Pallxlbg

Even for basic non-recursive networks, checking whether
Proposition 1 is satisfied is NP-hard. In fact, we can show
the following, stronger property.

8This is shown in the online appendix.

a|

V)

by

by

Figure 1: Solution of the set of RCC8>constraint © from Example
2.

Proposition 2. Let © be an RCC8® network. The problem of
checking whether © satisfies the conditions from Proposition
1 is NP-complete, even if © is a set of basic network and does
not contain any occurrences of NTPP or EC.

4.2 Properties of Hyperrectangles

In Section 4.3, we will show that when the conditions from
Proposition 1 are satisfied, and © is a basic non-recursive
RCC8™network, we can construct a convex and bounded so-
lution from the mappings p,.. The main idea will be to realize
variables using axis-aligned hyperrectangles, where p,, (v)
and py, (v) respectively determine the lower and upper bound
of the i coordinate for the hyperrectangles associated with
v. In this section, we first discuss how hyperrectangles can be
chosen such that betweenness constraints can easily be satis-
fied. The main idea is illustrated in the following example.

Example 2. Let O contain the following constraints:

a1 DCb; a2 DCby; a1 POax a1 POby
b1 POay; b POby cPa; cPby
dPa; dP as ePb; ePas
fPb fP by dP cxe fPcxe

It can be verified that the following choices for p, satisfy the
conditions of Proposition 1:

Par(b1) =1 pp(a1) =1 pa,(a1) =1 pp,(a1) =1
Par(a2) =2 pp(az) =2 pa,(bi) =2 pp,(b1) =2
Pa,(02) =3 pp,(b2) =3 pa,(b2) =3 pp,(az) =3
Par(€) =4 pp(c) =4  pa(c) =4  pp(e)=4
Par(f) =5 po,(d) =5  pa,(f) =5 pu,(d) =5
Pai(@1) =6 pp,(b1) =6 pa,(az) =6 py,(b2) =6
Par(d) =T  py,(e) =T pa(d)=T7 po,(f) =7
Paq (C) =8 pp (f) = Pas (6) = Pby (C) =

A solution S is shown in Figure 1, which corresponds to the
rankings p,, in the following sense: there are decreasing func-
tions f1, fa2, f3, fa such that S(v) for any v € V is given by:

[ = F1(pay (v)), F2(pv, (0)] X [ = f3(pas (V) fa(ppy (v))]

As illustrated in Example 2, up to a monotonic transforma-
tion, the rankings p, will determine a solution (although it



will not always be possible to realize variables using a single
hyperrectangle). In accordance with condition (1), we need to
choose this monotonic transformation such that we are able to
realize a region b as being between two other regions a and c,
as soon as p,(b) > min(p,(a), p;(c)) for all x € M. To this
end we will use the {0, ...,n} — [0, +oo] functions f and g
defined as follows:

[+ +1 ifi<n
f(’)_{?) if i =1

g(1) = <1 - 21>

where n € N will be assumed to be sufficiently large (see
below for details).

The definition of S will be such that all points in S(a;)
are positive in the i coordinate and all points in S(b;) are
negative in this coordinate (as in Figure 1). Furthermore, if
Pa;(u) < pa,(a;) then S(u) will overlap with S(b;), which
means that the lower bound on the i*" coordinate of the hyper-
rectangles defining S(u) will be negative. On the other hand,
if pg; (u) > pq,(a;) then S(u) will be included in S(a;) and
thus this lower bound will be positive. This difference mat-
ters for the following reason. If the lower bound is negative,
we can always make a constraint such as v P uxw satisfied
by making the lower bound of the i coordinate of S(u) suf-
ficiently small (and appropriately defining the other coordi-
nates). In such cases we use the function f to define the lower
bound. However, if the lower bound needs to be positive, a
different strategy is needed, and we instead use the function g
to define lower bounds that can be arbitrarily close to 1. For
the ease of presentation, we will define upper bounds using
the following abbreviation, for A € {0, ...,n}.

hj\r(r) - {g(r —A+1) otherwise
o [—f() ifr <A
hy(r) = {g(r —A+1) otherwise

Similarly we will define lower bounds using the abbrevia-
tion hy (r), defined as —h{ (r). Intuitively, we can think of
h;’b_ (b (Pv,(v)) and A (ai)(pai (v)) as the upper and lower

bounds on the i coordinate for the hyperrectangle corre-

sponding to v. However, the actual construction in Section
4.3 will be slightly more complicated, among others because
we will need more than one hyperrectangle for each variable.

We call a hyperrectangle X,[l;, u;] regular if each I; is of
the form h (r), and each u; is of the form Ay (7). The main
motivation for using regular hyperrectangles is that they allow
us to easily determine which points are in between them. In
particular, the construction in Section 4.3 will crucially rely
on the following property about regular hyperrectangles.
Lemma 1. Ler X,[l;,u;] and X;[l;,u] be regular hyper-
rectangles. Furthermore, we consider the point (p1, ..., Pm)
where each p; is of the form f(r), —f(r), g(r) or —g(r).
We have (p1, ..., pm) € CH((X;[li, ui]) U (X;[U, us])) if the
following holds for each i:

e min(l;,l}) < p;orl; =1, = p;; and

!/ — ) —
e p; < max(u;,ul) oru; = u, = p;

i o

Figure 2: Solution of the RCC8network from Example 3. For sim-
plicity, the realizations of a1, b1, az, b2 are not shown.

4.3 Constructing Convex Solutions

As already mentioned, it is not always possible to construct a
solution in which each variable is realized as a single hyper-
rectangle. This is illustrated in the following example.

Example 3. Consider the following RCC8™ constraints:

vo P ay vo P by v Pag v1 Pas wo P by
wo P by w1 P by w1 P as uP a; uP by
vPa; vo P as v1 P by wP by wo Pw
w1 Pw a1 DCb; asDCby a1 POas a1 POby
b1 POa; b1 POb; uPoxw vPuxw

A possible solution S is shown in Figure 2, where v is realized
as the convex hull of the two rectangles that are labelled with
v. The remaining variables are realized using single rect-
angles, as before. To see why it is not possible to realize v
using a single rectangle, note that because of the constraints
u P vxw and v P umw, the points from S(u) that are at max-
imal distance from S(w) have to belong to S(v) and vice
versa. In particular, this means that none of the points from
S(v) that are at maximal distance from S(w) can belong to
S(ag). Hence, with a single axis-aligned rectangle for v, we
would not be able to also satisfy the constraint vi P v .

We will construct a solution S of the following form (v € V):

S(v) = CH( | R.(v)) (6)

reM
where R (v) is a hyperrectangle of the following form:
(v, z,1),u(v,2,1)] X ... X [[(v,2,m),u(v, 2z, m)]

Next we explain how the lower bounds (v, z,4) and upper
bounds w(v,z,4) are chosen. Throughout the section, we
will assume that > 3mn + 2m. Intuitively, we want
the hyperrectangle R,,(v) to correspond to the set of points
from S(v) whose i coordinate is minimal. For i < p,
that minimal value value of the i coordinate will be chosen

as hy, _(a,,)(3mpai (v)). The reason why we choose this

bound in terms of 3mp,, (v) rather than simply p,, (v) relates
to the fact that we need to consider a number of additional
hyperrectangles in the proof. For 7 > p, some additional care



is needed to ensure that all EC relations are satisfied. To this
end, if ¢ > p, we will ensure that (v, a;,4) < 0 for all regions
v. In other words, for © = a; we have:

min(0, A, 3mpq, (v if i >
I(v, a,i { ( 3mpa, (a 1)( Pa;(v))) p

h;mpa (as) (3mpq, (v)) otherwise

The upper bound u(v,a;,4) is essentially irrelevant, as the
rectangle R,,(v) is only aimed at encoding the set of points
from S(v) whose i coordinate is minimal. In principle,
we could define R, (v) as a degenerate hyperrectangle and
choose l(v, a;, i) = u(v, a;, ). However, to be in accordance
with the conditions of Lemma 1, if ¢ < p, we will choose
u(v, a;, 1) as the lowest possible value that makes R,,(v) a
regular hyperrectangle. For ¢ > p we can simply choose
u(v,a;,1) = 0:

0 ifi>p
u(v, a;,9) = {/@+(Z(v,ai,i)) otherwise
where
£*(x) = min({f(r) | f(r) = 2} U{=g(r)| - g(r) = z)

The values {(v, b;,4) and u(v, b;,7) are chosen in a similar
way, but here it is rather the upper bound that matters:

L]0
U(v,b;,i) = {K(u(v bi, i)

(v,bi i) = {max(() Mgy (5 Bmon, (V) ifi > p

ifi>p
otherwise

h;_mph (bs )(3mpbz( v)) otherwise

where

k() = max({—f(r) [ f(r) <z} U{g(r) [ g

(r) < )
Finally, for ¢ {a;,b;}, the bounds [(v, z,4) and u(v, z,

are chosen such that R, (v) = R, (u) if p,(u) m(v)v
l(v, z,) = max{ly (', 1) | = (v") = pa(v) }
w(v,2,1) = minfus (v, 1) | pa(0') = pa(v)}
where
' min(0, h Smpa, ap)(BMpa, (v)+2m)) ifi >p
hi(v, )= {hgmpa (s )(Smpal(v)+2m) otherwise
wy(0,1) = {;nax(o h3mpb (o) (Bmpp, (V)+2m)) ifi >?
Lgmpb (bs) (Bmpp, (V) +2m) otherwise

We can then show the following result.

Theorem 2. Let © be a basic non-recursive set of RCC8™
constraints. Let S(v) be defined as in (6) and S(uxv) =
CH(S(u) U S(v)) for u,v € V. If the mappings p,, used in
the definition of the hyperrectangles R, satisfy the conditions
from Proposition 1, then S is a solution of ©.

Corollary 1. Deciding whether a basic non-recursive
RCC8"network has a convex and bounded solution is NP-
complete.

The following example illustrates that non-recursiveness is
indeed required to guarantee the existence of a solution.

Co

bo

Figure 3: Partial solution of the RCC8™network from Example 4.

Example 4. Consider the following RCC8™ constraints:

a1 EC by as EC by a1 POas a1 POby
b1 PO as b1 PO by aPap aP by
bP a; bP by cPay cP by

b() PO aq bo PO b1 bon2 Co PO a9
co PO by coPay dP b dPas
bDNTPPby; c¢cNTPPc¢y, aPbxc aECd

Despite the fact that these constraints satisfy the conditions
from Proposition 1, they do not admit a convex solution. Fig-
ure 3 shows an interpretation which satisfies all of these con-
straints, except for a EC d, which cannot be jointly satisfied
with the other constraints. To see why this is the case, let us
consider hyperplanes H; separating a; and b;. The problem
is that ¢ cannot contain any point from Hy due to the con-
straint c N'TPP cg and similarly b cannot contain any point
from Hs due to the constraint bNTPP bg. As a result, given
the constraint a P bXc¢, a cannot contain any points that be-
long to H1 N Ho, which would be required to satisfy a EC d.

5 Conclusions

We have studied the problem of reasoning about between-
ness in the context of RCC8. Among others, we have shown
that satisfiability checking in this setting is PSPACE-hard in
general, and we have introduced a fragment for which satis-
fiability checking is NP-complete. As this fragment appears
general enough for most applications, one of the most im-
portant questions for future work is how RCC8™encodings
of conceptual knowledge could be learned from text. Several
interesting theoretical questions also remain. For example, it
is still an open problem how consistency can be decided when
convexity is not required. Another natural question is how be-
tweenness could be combined with the Boolean region terms
from [Wolter and Zakharyaschev, 2000].
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