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Summary 

Total joint replacement (TJR) is commonly used for the treatment of end stage 

arthritis. The use of Poly-methylmethacrylate (PMMA) bone cement is a gold 

standard TJR, where it is frequently used for local delivery of antibiotics to provide 

prophylaxis from prosthetic joint infections (PJI).  Currently used antibiotic loaded 

bone cements have many limitations, including burst release which fall below 

inhibitory levels leading to the selection of antibiotic resistant strains. This study 

aims to provide a controlled release for antimicrobial agents from bone cement to 

provide prophylaxis from postsurgical infections. 

For this purpose, gentamicin and chlorhexidine were loaded alone or in 

combination on silica nanoparticles surface using layer-by-layer coating technique 

(LbL). A novel LbL construct was built using hydrolysable and non-hydrolysab le 

polymers. The nanoparticles were characterised by transmission electron 

microscopy, thermogravimetric analysis, zeta measurement, and drug release in 

different media.  Then, antimicrobial agents LbL coated nanoparticles were 

incorporated into PMMA cement and the nanocomposite is characterized for drug 

release, antimicrobial, mechanical, rheological properties and cytocompatibility. 

The build-up of LbL coating was confirmed by thermogravimetric analysis and 

zeta measurements. The release of antimicrobial agents was controlled for > 30 

days for different drugs used. The nanocomposite drug release profile also 

continued > 30 days at concentration higher than the commercial formula t ion 

containing the same amount of antibiotics, where burst release for few days were 

observed. Moreover, the nanocomposite showed superior antimicrobial inhibit ion 

for bacterial growth, without adversely affecting the mechanical properties. 

Different nanocomposites showed cytocompatibility when tested against Saos-2 

cells.   

Techniques from a variety of disciplines were employed in this study and this inter-

disciplinary approach has allowed many features of PMMA bone cement to be 

investigated. The developed nanocomposites can have the potential to reduce PJIs, 

and the newly developed LbL nano-delivery system may have wider application 

in a variety of biomaterials.  
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1  Introduction 

1.1 Total joint replacement 

The replacement of a dysfunctional joint with an orthopaedic implant is reserved  

as the last choice for the treatment of joint diseases. Arthritic and degenerative 

diseases is a leading cause of disability worldwide (Kim et al., 2012). The most 

common form of arthritis is osteoarthritis which affects around 15% of the 

population (Johnson and Hunter, 2014). In the United States (US), more than 26 

million people are suffering from osteoarthritis (Litwic et al., 2013), while that 

number reaches 8.5 million in the United Kingdom (UK) (Conaghan et al., 2015). 

Total joint replacement (TJR) is the treatment of choice for patients with end-stage 

arthritis when less invasive therapies fail to alleviate the severe pain or dysfunc tion 

of the joint (Figure 1) (Cram et al., 2012). This procedure showed noticeable 

progress in patients’ quality of life (Singh et al., 2015; Wang et al., 2012). 

According to the National Joint Registry (NJR, 2015), the predominant indicat ion 

for TJR was osteoarthritis (more than 90% in hip and knee replacements) between 

the years 2003 and 2014. Whereas, a small percentage undertook TJR for other 

reasons, such as avascular necrosis, trauma, infection and inflammatory arthritis.    

Figure 1: Total joint replacements undertaken during 2014: (a) Hip and (b) Knee 

prosthesis, adapted from National Joint Registry (NJR 2015). 
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The popularity of total hip and total knee replacements is increasing worldwide  

which places a huge burden on health care systems (Bumpass and Nunley, 2012; 

Kurtz et al., 2005; Skyttä et al., 2011). In the US, over 1 million hip and knee 

replacement are performed annually (Maradit et al., 2015). This number is 

expected to increase drastically in the next 20 years because of ageing as well as 

growing prevalence of risk factors such as obesity (Kurtz et al., 2009; Liddle et al., 

2014). In the UK, the same trend is apparent; between the years 2003 and 2014 

708,644 and 772,113 primary hip and knee replacements were performed, 

respectively. In 2014, 83,125 hip and 91,955 knee replacements were performed 

in the UK (NJR, 2015).  

1.1.1 Revision surgery 

Despite the ability of TJR to improve the quality of life and retrieve mobility to 

many patients, the life expectancy for this procedure is around 10-15 years (Labek 

et al., 2011; Pabinger et al., 2013; Patel et al., 2015), hence there is a need for 

revision surgeries. Revision surgeries are the joint replacements performed after 

primary TJR because of implant failure. In the US, revision surgeries account for 

18% of hip and 8% of knee total replacements performed each year (Ong et al., 

2010). Similarly, revisions in the UK are 11 % (8925) of hip and 6 % (5873) of 

knee primary procedures performed in 2014 (NJR, 2015). The main reasons for 

infection are aseptic loosening, pain and infection. 

Compared to primary surgery, revision surgery is more complex and takes longer 

time to perform (Patel et al., 2010). In addition, clinical and functional outcomes 

are poorer such as pain, joint stiffness and stability, muscle impairment and 

atrophy, with lower patient satisfaction and quality of life after surgery, because 

of complexity and nature of revision surgery (Greidanus et al., 2011). As a result, 

revision is accompanied by higher complication rates, longer patient hospital stays 

and the use of a more expensive implants (Kallala et al., 2015; Maradit et al., 

2013). Accordingly, revision surgery is associated with higher costs when 

compared to primary replacements, as well as relatively shorter survival (Bhandari 

et al., 2012). For example, the cost of primary knee replacement is around $15000, 

while the cost of revision surgery is higher and can reach $ 24000 (Maradit et al., 
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2013). In the UK, health care costs for revision surgery were estimated to be 80 

million in the year 2010 (Vanhegan et al., 2012).  

Infection after joint replacements is a severe problem that not only decreases the 

success rates of surgery, but also can be life threatening to patients. Despite 

antibiotic prophylaxis and operation under laminar flow, infection rates in the first 

two years of primary replacement are 1% in knee replacements, 2% in hip 

replacements and can reach 9% in other types of TJRs. Also, infection rates are 

significantly higher after revision surgeries (up to 40%) (Cobo and Del, 2011; 

Zimmerli et al., 2004). These percentages translate into large numbers when we 

look at the total numbers of TJRs done annually. For example, 2,400 revision 

procedures were performed in the UK in 2014 due to infection (NJR, 2015) and 

22,000 revisions of infected knee and hip replacements were done in the US in 

2009 (Kurtz et al., 2012). Prosthetic infections extend hospitalization time, 

readmissions and length of antimicrobial treatment, hence increasing the economic 

burden on health care systems; the cost of treatment for an incident of prosthetic 

infection can reach $50000 which is more than 3 times the cost of primary surgery 

and 2 times the cost of revision surgery (Lamagni, 2014).  

1.2 Cemented and cementless joint replacements 

Nowadays, there are two main types for TJRs, namely, cemented and cementless 

joint replacements (Figure 2). In cemented TJRs, bone cement is widely used for 

fixation of prosthesis. Poly (methyl methacrylate) (PMMA) based bone cement is 

the gold standard material used in such procedures.  This type of TJR involves 

complete removal of the impaired joint, after that a cavity is made inside the bone. 

The surgeon fills the cavity with PMMA bone cement. Then, the metallic implant 

is placed and positioned in the cavity while the cement sets. Cementless TJRs 

follow the same procedure except that the implant is inserted in direct contact with 

a bone without using a cement (NHS choices, 2014). 
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Figure 2: Total hip replacement: (a) cemented implant, (b) cementless implant. 

 

Bone cements are routinely used in TJRs to fasten the orthopaedic implant in place; 

transfer mechanical stresses and loads between the stiff metallic implant and bone 

tissue; and, commonly, to provide prophylaxis from post-surgical prosthetic 

infections by releasing one or more antibiotic such gentamicin or tobramycin 

(Figure 3) (Magnan et al., 2013). In addition, advantages for using bone cement 

include that the bone cavity does not have to be perfect match with the implant and 

the use of bone cement reduces the need for blood transfusions, because of reduced 

blood loss and the cement tamponade effect (Bidolegui et al., 2014; Choy et al., 

2014). Furthermore, the most important reason for using PMMA bone cement in 

TJR is the outstanding long-term survivorship (98% at ten years and 91% at 20 

years) (Demey et al., 2011; Kendrick et al., 2015). However, there are always 

concerns about cemented replacements because of their degradation products and 

debris, as well as deterioration of bone cement interface and third body wear 

(Zhang et al., 2015). These concerns led researchers to seek new alternatives for 

fixation, i.e. cementless fixation. 
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Figure 3 : Cemented total hip replacement (functions of bone cement). 

 

Cementless replacements depend on biological fixation or osteo-integration of the 

implant to the bone; advocates of this type of fixation believe that bone ingrowth 

through the micropores of the metallic implant can achieve more durable fixat ion 

with bone (Figure 2). The claimed advantages of cementless fixation are: shorter 

operation time, ease of revision, and improved longevity for active younger 

patients (Kallala et al., 2013). However, cementless fixation has inconsistent long-

term results and is not regularly used in most centres, because it is accompanied 

with a high rate of revision (NAR, 2010; NJR, 2015; SHA, 2013). 

1.2.1 Total knee replacement 

The use of cemented implant is the ‘gold standard’ in total knee replacement 

(TKR) in the last 3 decades and has high success rates of more than 95% at 15 

years with long term durability (Demey et al., 2011). Many articles reported 

outstanding long-term results for cemented TKR. Crowder et al. (2005) analysed 

32 patients with cemented implants, he reported survivorship rate of 100% in 15 

years and 93.7% in 20 years after TKR procedure. Gill et al. (1997) reported 96.5 

% survivorship 18 years after the procedure in patients 55 years old or younger. 
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Ritter et al. (2007) also reported 97.6% success rate in the same age group when 

followed for 9.1 years. Vessely et al. (2006) looked at 244 patients with cemented 

TKR, survivorship was 95.7% in 15 years after the procedure. A study, includ ing 

265 patients with posterior stabilized prosthesis, had 94.1% success rate over 16 

years (Font-Rodriguez et al., 1997). 

Many authors have directly compared cemented fixation with cementless fixat ion 

in TKR (Barrack et al., 2004; Rorabeck, 1999). Rand et al. (2003) carried out a 

survivorship analysis for 11606 patients at 10 years.  The success rate was 92% in 

patients with cemented prostheses, whereas only 61% success rate reported in 

patients without cement (P<0.0001). Barrack et al. (2004) compared 82 cementless 

mobile bearing knees with 73 cemented knees, 8% of cementless knees were 

revised, while no revision found in cemented knees. Rorabeck (1999) looked at 

484 patients of hybrid and cemented knee fixation, reporting 9.6% revision rate in 

hybrid group (uncemented femur and cemented tibia), compared to 1.6% in the 

cemented group after 3 years. Figure 4 shows the number of TKR in UK between 

the years 2003-2014 (NJR, 2015). 
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Figure 4: Number of TKR procedures performed in the UK between the years 

2003-2014, adapted from NJR, 2015. 

 

1.2.2 Total hip replacement 

Clinical studies performed on total hip replacement (THR) with cemented implants 

have convincing long-term results. Berry et al. (2002) reported a survivorship rate 

of 80% in 25 years after the procedure in 1689 patients with cemented implant. 

Another study about cemented implant including 226 patients reported similar 

survival rate of 81% in 25 years (Sochart and Porter, 1997). However, a tendency 

towards cementless hip replacement has been seen in recent days, because of the 

significant improvement in survival rate for cementless stems. In patients using 

cementless BiCONTACT stem, the survival rate is 94.4% in 15 years (Tsukada 

and Wakui, 2016). Emerson et al. (2002) looked at 181 patients with cemented and 

cementless hip implant. The survivorship was 84 % in cemented group, while it 

was 100% in cementless group. Cementless implant is specifically selected for 

young active patients who have greater physical loads with greater failure rates 

secondary to loosening, whereas cemented implants are used for older patients 



 

8 

 

with poor bone quality (Liu et al., 2015; Wyatt et al., 2014). Figure 5 shows the 

number of THR in the UK between the years 2003-2014 (NJR, 2015). 

 

Figure 5: The number of THR in UK between the years 2003-2014, adapted from 

NJR, 2015. 

1.3 PMMA bone cements 

Poly(methyl methacrylate) polymer (PMMA) is a polymer based on methyl 

methacrylate (MMA) monomer units. PMMA cement is prepared by mixing two 

constituents together:  PMMA polymer powder and liquid MMA monomer (Figure 

7). After mixing the two components, the hardened bone cement is formed by an 

exothermic free radical polymerization reaction, as the liquid monomer 

polymerizes around the pre-polymerized powder producing heat (Vaishya et al., 

2013). The heat of the setting reaction can reach (66-82.5 ºC). The setting time for 

the cement is relatively short (less than 15 min) and the cement must be inserted 

into the bone before cement hardening, otherwise the procedure cannot be 

completed (Boner et al., 2009). Premature polymerization of the liquid component 

may happen because of exposure to heat and light. Therefore, Hydroquinone is 

added as a stabilizer to prevent polymerization before mixing of the cement 
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constituents. Benzoyl peroxide is added to the powder to initiate the free radical 

polymerization reaction, while N, N-Dimethyl para-toluidine (DMPT) is added as 

an accelerator to facilitate the polymerization reaction between the polymer and 

monomer at room temperature (Chaudhry and Dunlop, 2012). Barium sulphate 

(BaSO4) or zirconium dioxide (ZrO2) are added as radiopaque agent to allow X-

ray imaging because PMMA is not radiopaque (O’Brien et al., 2010). 

        

 

 

 

 

 

 At present, many commercial bone cements are marketed by different 

manufacturers (Table 1Table 1: Composition of some commercially available 

PMMA bone cements (Lewis, 2009).). The main differences between different 

formulations are the molecular weight of PMMA, the ratio between homopolymer 

and copolymer, the ratio between powder and liquid, the radiopacifier and other 

additives such as antibiotics.  Different copolymer of different acrylic monomers 

are added to modify the mechanical properties of the cement, such as styrene and 

Ethyl methacrylate (Nien and Chen, 2006) (Table 1).  

  

Figure 6: Free radical polymerization reaction of PMMA 
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 Constituent* 
Cemex® XL 

Genta LV 

Copal® 
EnduranceTM 

Gentamicin 

Palacos® 

R+G 

SmartSet® 

GHV 

Powder  

Poly (methyl methacrylate) (PMMA) 82.78 - 65.28 - - 

Methyl methacrylate (MMA)/styrene 

co-polymer 

- - 18.65 - - 

PMMA/MMA co-polymer - 82.65 - 82.15 80.46 

Benzoyl peroxide (BPO) 3.00 0.75 1.85 0.78 0.96 

Barium sulfate 10.00 - 10.00 - - 

Zirconium dioxide - 10.03 - 15.01 14.37 

Gentamicin sulfate 4.22 3.76 4.22 2.06 4.22 

Clindamycin hydrochloride - 2.82 - - - 

Chlorophyll  0.002 - 0.002 - 

Liquid  

MMA 98.20 97.98 98.00 97.98 97.50 

N, N dimethyl-p-toluidine (DMPT) 1.80 2.02 < 2.00 2.02 < 2.50 

Hydroquinone 75 75 75 75 75 

Chlorophyll - 0.002 - 0.002 - 

*The amount of each constituent of a cement is in wt. /wt. %, except for 

hydroquinone, which is ppm 

Table 1: Composition of some commercially available PMMA bone cements 

(Lewis, 2009). 

 

The main drawback of PMMA bone cement is the absence of bone bonding ability, 

i.e. bioactivity. This can lead to the formation of fibrous tissue around the implant 

and a space for the wear particles to accumulate (Freemont, 2012). As a result, 

bone resorption around the implant causes loosening and failure of the implant 

after a long period of time, which is the most commonly reported reason for 

revision in cemented replacements (NJR, 2015). Despite the extensive research 

done on developing alternatives for PMMA in THR and TKR, PMMA stays to be 

the biomaterial of choice in TJRs since the 1960s, because of its acceptable long-
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term survivorship and long-established clinical history as well as excellent 

mechanical properties (Vaishya et al., 2013). Extensive research has been directed 

on developing new bioactive bone cements that integrate with bone, and improving 

the biocompatibility as well as mechanical properties of PMMA bone cements (Ni 

et al., 2006; Oonishi, 2012).  

One of the examples on bone cements with bioactive properties is calcium 

phosphate bone cement (CPC), which has been studied since 1980s (Zhang et al., 

2014). Their poor mechanical properties such as strength, toughness and 

brittleness limited their application to low load-bearing arthroplasties e.g. 

craniofacial and maxillofacial surgeries (Table 2). Despite CPCs bioactive 

properties, their inferior mechanical properties are not sufficient to replace the use 

of PMMA in high load-bearing arthroplasties such as knee and hip replacements 

(Ambard and Mueninghoff, 2006; Krüger and Groll, 2012). The mechanism for 

setting reaction involves a dissolution-precipitation process that occurs at body 

temperature, without causing tissue necrosis in the surrounding tissue unlike the 

exothermic setting reaction for PMMA (Yu et al., 2010). Despite the presence of 

many CPC formulations, the final product only could be either brushite or 

hydroxyapatite. Brushite is a metastable form that may transform into 

hydroxyapatite at pH>4 in vivo (Chen et al., 2013). CPCs are microporous in 

nature which helps in the penetration of biological fluids, hence they are resorbable 

and can be replaced by bone (Schwarz et al., 2009). In addition, the micropores 

enhance the ability of CPCs to load drugs which is an appealing option for any 

type of biomaterial (Ginebra et al., 2012; Habraken et al., 2007).  

Apatite/wollastonite is another bioactive bone cement that has been researched for 

use in knee and hip replacements. Apatite/wollastonite glass bioactive ceramics 

have currently many medical applications and used as bone filler or bulk material 

(Cannillo et al., 2009). Also, they have higher mechanical properties than other 

bioactive ceramics and cortical bone (Table 2). However, they cannot be used in 

high load arthroplasties such as hip and knee replacements, because their fracture 

toughness is lesser and elastic modulus is greater than those of cortical bone 

(Kokubo et al., 2003).  
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Dental cements have been also researched for orthopaedic application such as glass 

polyalkenoate and Bioglass (Dickey et al., 2013; Neo et al., 1992). Glass 

polyalkenoate is a dental cement with good mechanical properties (Table 2), but 

the release of aluminium from the glass phase causes defective bone mineraliza t ion 

and limits their use in the orthopaedic field (Boyd et al., 2008). In order to avoid 

this problem aluminium was replaced with Zn, as it has a positive effect on 

osteoblast proliferation and increases bone mass. However, Zn based glass 

polyalkenoate has substantially inferior mechanical and setting properties 

compared with aluminium containing counterparts (Dickey et al., 2013). 

Moreover, resin modified glass polyalkenoate, another biomaterial, was developed 

in an attempt to improve the poor mechanical properties of conventional glass 

polyalkenoate. Although it has good mechanical properties, they suffer from 

volumetric shrinkage after curing which causes mechanical failure at the implant 

interface (Cook et al., 1999; Nourmohammadi et al., 2008).  
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Strength (MPa) Young’s 

modulus 

(GPa) 

Fracture 

toughness, 

KIC (MPam1/2) 

Reference 

Compressive Bending 

Bioglass® (45S5) - 42 35 - 
(Kokubo et 

al., 2003) 

glass polyalkenoate 175.21 - 12.82 0.63 
(Higgs et 

al., 2001) 

Hydroxyapatite 39-103 - 4.5-9 0.15-0.5 
(Zhang et 

al., 2011) 

Apatite/wollastonite 1080 220 118 2.0 
(Kokubo et 

al., 2003) 

PMMA 73-117 50-125 2.552 1.03-2.32 

(Lee, 2005;  

Lewis, 

1997) 

Human 

bone 

Cancellous 2-12 - 0.05-0.5 - 
(Kokubo et 

al., 2003) 

Cortical 100-230 50-150 7-30 2-12 
(Kokubo et 

al., 2003) 

Table 2 : Mechanical properties for some bioactive cements, PMMA and human 

bone (cortical and cancellous bone). 

None of the previously mentioned bioactive cements have the required mechanica l 

properties to be used in high load bearing arthroplasties. Despite the lack of bone-

bonding properties of PMMA, it is still the only biomaterial to be used in cemented 

hip and knee arthroplasties. Therefore, PMMA fails to achieve a long-last ing 

replacement making aseptic loosening the most common cause for revision. Newly 

developed bone cement should have both bone-bonding properties (bioactivity), 

as well as mechanical properties that match those of bone and optimally have 

antimicrobial properties (Kenny and Buggy, 2003). 
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1.4 Prosthetic infections 

The success of TJRs in relieving pain and improving the quality of life for patients 

is increasingly growing. Infection is considered the most serious problem after 

joint prosthesis implantation, which decreases success rate of the surgery and can 

be life threatening to patients in some cases (Cobo and Del, 2011). Prosthetic 

infections are difficult to diagnose and occur at variable times after the primary 

surgery. Management of prosthetic infections is complex and needs multip le 

procedures and prolonged antimicrobial therapy with poor functional outcome 

(Zimmerli et al., 2004). This places considerable burden on medical resources and 

health care expenditure, because of the high cost of prosthetic joint infect ion 

incidence treatment that can reach up to $50000 (Lamagni, 2014). Efforts have 

been made to reduce the risk of prosthetic infections such as the use of 

perioperative antimicrobial prophylaxis and surgical laminar airflow environment, 

however the incidence of prosthetic infection is still high and can reach up to 2% 

in total hip and knee replacement, and even higher after revision surgeries (up to 

40%) (Cobo and Del, 2011). 

Prosthetic infections have 3 classifications based on the onset of infection, namely, 

(i) early, (ii) delayed, (iii) late infections. For early infections, the signs and 

symptoms of infections appear in the first 3 months after surgery, and the infect ion 

are usually because of bacterial contamination during or after surgery caused by 

highly virulent microorganisms. Early infections account for up to 45% of 

prosthetic infections. In delayed infections, the first signs and symptoms appear 

after 3 months to 2 years after surgery. The cause of delayed infections are low 

virulent microorganisms inoculated during surgery. In late infections, the onset 

starts after 2 years from surgery, and caused by seeding via the blood from an 

infection in other body parts such as skin, respiratory or urinary tract infect ions  

(Fsadni and Fsadni, 2013; Trampuz and Widmer, 2006; Zimmerli and Ochsner, 

2003). 

Biofilm formation is the typical mode of growth for bacteria involved in prosthetic 

infections, which adds to the difficulty and length of treatment. The 

microorganisms in biofilms form ordered and complex clusters enclosed by a 

hydrophilic polymeric matrix (Fsadni and Fsadni, 2013; Zimmerli et al., 2004). 
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Biofilms shelter microorganisms form antibiotics and host immune defence, as 

well as increase bacterial resistance and reduce susceptibility to antibiotics by 500-

5000 times compared to planktonic, free floating bacteria (Cobo and Del, 2011). 

In addition, the implant acts as a binding site for bacterial accumulation into 

biofilms and decreases the minimum dose of bacteria needed to cause infect ion 

(Zimmerli et al., 2004). 

The most commonly encountered bacteria in prosthetic joint infections are 

coagulase-negative staphylococci (30-43%) and Staphylococcus aureus (12-23%), 

followed by streptococci (9-10%), Gram-negative bacilli (3-6%), enterococci (3-

7%), and anaerobes (2-4%). Polymicrobial infections, which usually occur 

postoperatively, are seen in (10-12%) and they are difficult to treat. (Fsadni and 

Fsadni, 2013; Trampuz and Zimmerli, 2005). 

1.4.1 Treatment 

The treatment of prosthetic infection aims to relieve patients from pain, restore 

joint mobility and eradicate infections. Treatment of such infections is typically 

challenging and complex with combined aggressive surgical interventions and 

antimicrobial therapy, which make it hard to achieve all the 3 aims together. 

Management of prosthetic infections should be customised for each patient and 

usually includes one of 3 main types of surgical interventions (Cobo and Del, 

2011; Strange et al., 2016). First, prosthetic retention with debridement of all 

infected tissue and irrigation, which is a choice for early postoperative or late 

haematogenous infections with retention of the prosthesis and long-term antibiot ic 

treatment (Brimmo et al., 2016; Buller et al., 2012). Second, prosthetic exchange, 

the most frequently used, by one stage or two stage revision. In one stage revision, 

the removal of all foreign material debridement and reimplantation of a new 

prosthesis are done in the same procedure (Zahar et al., 2015). While in two stage 

revision, the removal of foreign material and debridement are done, and the 

reimplantation of a new prosthesis is delayed for a variable period of time 

(typically after > 6 weeks) (Vielgut et al., 2015). Third, salvage procedure 

including resection arthroplasty, arthrodesis and amputation which are the last 

choice when infection management is not achievable by the previously mentioned 

interventions (Aslam and Darouiche, 2012). 
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Two stage revision has become the standard procedure in the treatment of deep 

tissue prosthetic infections (Masters et al., 2013). The two-stage approach gives 

sufficient time for debridement and removal of the infected tissues, the 

determination of the infecting microorganism and its sensitivity to antibiot ics, 

modifying the antimicrobial therapy before reimplantation. However, extended 

hospitalization increases the surgery costs, while delayed mobilization and risk of 

other surgery is cautiously considered, particularly in elderly people (Ritter and 

Farris, 2010).   

 In two stage surgery, the use of antibiotic- impregnated spacers is considered the 

gold standard for the eradication of infection and avoiding limb shortening 

(Romanò et al., 2012; Stammers et al., 2015). Spacers are bone cement pieces that 

is placed in the joint place to prevent muscle contractions and preserve their length. 

The use of a temporary spacer in two-stage surgery in knee replacement gives the 

patient the ability to move, also provides good alignment of the knee between the 

two stages (Cooper and Valle, 2013; Haddad et al., 2000). Success rates with the 

use of antibiotic impregnated PMMA interim spacer/prosthesis are reported to be 

higher than 90% (Jaekel et al., 2012). The advantage offered by such spacer is 

delivering high level of antibiotic locally, while maintaining joint mobility 

(Anagnostakos et al., 2006). Table 3 shows common antibiotic combinations used 

for the impregnation of PMMA bone cement spacers. 
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1.4.2 Prophylaxis 

Antibiotic loaded bone cements (ALBC)s are routinely used in hip and knee TJRs , 

not only in the treatment of prosthetic infections, but also to prevent infect ions 

after cemented replacements, and their use has become a well-established practise 

along with peri-operative systemic antibiotics (Engesaeter et al., 2006; Parvizi et 

al., 2008). More than 90% of surgeons use ALBC in primary TKR in the UK 

(Malik et al., 2005), Sweden (Robertsson et al., 2001), and Norway (Engesaeter et 

al., 2006). The use of ALBC in knee replacements reduces the percentage of 

prosthetic infection compared to bone cements lacking antibiotics (Chiang and 

Chiu, 2012; Srivastav et al., 2009). Similarly, the use of ALBC in hip replacements 

improves survivorship by reducing the risk of prosthetic infections after primary 

replacements (Dunbar, 2009; Espehaug et al., 2002). A meta-analysis evaluat ing 

Reference Antibiotic combination used per 40g PMMA  

(Bertazzoni et al., 2004) 0.76 g gentamicin ±1 g vancomycin 

 (Anagnostakos et al., 2009; 

Whittaker et al., 2009) 

0.25 g gentamicin ±2 g vancomycin 

(Masri et al., 1998) 1.2-4.8 g tobramycin ±1-2 g vancomycin 

(Hsieh et al., 2004) 4 g vancomycin ±2 g piperacillin 

Koo et al, 2001 1 g gentamicin±1g vancomycin +1 g cefotaxime 

(Evans, 2004; Ha, 2006; 

Kurd et al., 2010) 

3.6-4.8 g tobramycin ±4 g vancomycin  

(Park et al., 2010) 4.5 g piperacillin-tazobactam ±2 g vancomycin 

±1 g erythromycin  

Table 3: Antibiotic combinations used for the impregnation of PMMA bone 

cement spacers for hip and knee prosthetic infections. 
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the efficacy of ALBC in hip replacements reported that the use of ALBC reduces 

prosthetic infections after primary hip replacements from 2.3% to 1.2%, and 40% 

after revision (Parvizi et al., 2008). 

Local antibiotic release from the bone cement gives higher concentration in the 

joint compared with systemic antibiotics, which are hindered by limited blood 

circulation at the site of implantation (Nandi et al., 2009; H. L. Tan et al., 2012). 

Moreover, local delivery of antibiotics avoids the adverse effects of high antibiot ic 

levels in the blood, such as nephrotoxicity and ototoxicity (Chandrika and 

Garneau-Tsodikova, 2016). Hence, ALBC provide an alternative strategy for the 

prosthetic infection prophylaxis. 

The antibiotic loaded acrylic bone cements available commercially can be either a 

premixed powder, where the antibiotic is blended with the cement powder by the 

manufacturer, or an off-label formulation. In off-label formulations the antibiot ic 

powder is provided separately to be mixed with the cement by the surgeon during 

surgery (Lewis and Janna, 2006; Meyer et al., 2011). Low concentrations of the 

antibiotic (0.5-1.0 g per 40 of powder) are used for primary arthroplasty 

prophylaxis and second stage of a two-stage revision arthroplasty, while high 

concentrations (2.0-4.0 g per 40 g powder) are used for the treatment of existing 

active infection (Lewis, 2009). 
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Brand Antibiotics Antibiotic used 

per 40g PMMA 

Manufacturer 

Palacos R+G Gentamicin 1.0 g Zimmer 

Palacos LV+G Gentamicin 1.0 g  Zimmer 

CMW 1 Gentamicin 1.0 g  DePuy  

CMW 2 Gentamicin 1.0 g DePuy 

SmartSet GHV Gentamicin 1.0 g DePuy 

SmartSet GMV Gentamicin 1.0 g DePuy 

Simplex P  Tobramycin 1.0 g Stryker 

Copal G+V Gentamicin ±Vancomycin 0.5 g ±2.0 g  Heraeus 

Copal G+V Gentamicin ±Clindamycin 1.0 g ±1.0 g Heraeus 

Table 4: Some of the commercially available antibiotic loaded bone cement 

brands 

 

The choice of antibiotic for incorporation in the bone cement depends on several 

factors. Desirable antibiotic characteristics include availability in powder form, 

broad antibacterial spectrum, thermal stability to withstand the high exothermic 

temperature of the setting reaction, elution from the bone cement for prolonged 

period of time, low allergic effects and most importantly low influence on the 

mechanical properties of the bone cement (Anagnostakos and Kelm, 2009). 

Among the antibiotics used, which usually meet these criteria, are aminoglycos ide 

(gentamicin and tobramycin) (Scott and Higham, 2003) and glycopeptides 

(vancomycin) (Jackson et al., 2011). The combination of antibiotics from more 

than one group gives a wide antimicrobial spectrum (Duey et al., 2012). Table 4 

shows some of the commercially available bone cement brands and the 

incorporated antibiotics. 
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1.5 Limitations for antibiotic loaded bone cements 

1.5.1 Antibiotic elution properties from bone cement 

The elution kinetics of antibiotics form PMMA bone cements are highly variable 

and depend on many factors. Different brands of bone cements come with different 

compositions, viscosities and porosities (Gálvez-López et al., 2014; Penner et al., 

1999). Hence the difference in their ability to release antibiotics. Porosity is 

introduced into the cement by the formation of air bubbles during the exothermic 

setting reaction and depends on the viscosity and manipulation technique (Dunne 

and Orr, 2001). Porosity increases antibiotic elution from bone cement but at the 

same time has a negative impact on its mechanical properties (Xu et al., 2001). 

Among other factors affecting elution kinetics is type of antibiotic used or 

antibiotic combinations (Buttaro et al., 2005; Duey et al., 2012). 

The ideal ALBC should sustain the release of antibiotic at high concentration 

above inhibitory concentrations for a long period of time to prevent early onset 

infections and avoid the development of resistant bacterial strains (Anagnostakos 

and Kelm, 2009). However, the antibiotic release from ALBC, in reality, is 

characterised by initial uncontrolled burst release for the first few hours after 

surgery. Subsequently, the antibiotic release drops rapidly below inhibitory levels 

within few days, and does not provide long term sustained delivery of antibiot ics 

(Dunne et al., 2008; Gasparini et al., 2014; Moojen et al., 2008; Squire et al., 2008). 

Moreover, more than 90% of the loaded antibiotic may still entrapped within the   

hydrophobic PMMA matrix (Dunne et al., 2007; Van et al., 2000). The initial burst 

release occurs when the ALBC is exposed to fluid surrounding the joint and mainly 

a surface phenomenon because of the presence of antibiotic agglomerates on the 

surface of bone cement, while the sustained release over the next few days is a 

bulk phenomenon and more affected by the porosity of cement (van de Belt et al., 

2001). 

1.5.2 Development of antimicrobial resistance 

Antibiotic burst release from the bone cement is followed by slow release of 

antibiotic at low concentrations below the minimum inhibitory concentration 

needed to kill bacteria (Gasparini et al., 2014; Moojen et al., 2008). This slow 

release increases the chances for selecting resistant microbial strains which raises 
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concerns about future effectiveness of antibiotics used in ALBCs (Campoccia et 

al., 2010; Fulkerson et al., 2006).  The bacterial strains selected at low antibiot ic 

concentrations are generally highly resistant (Sandegren, 2014). Some 

experimental studies show the capacity of pathogens to grow on the surface of 

ABLC and the ability to form biofilms (van de Belt et al., 2001; Zimmerli et al., 

2004). Anguita-Alonso et al. (2005) investigated the susceptibility of 

Staphylococcus taken from patients with prosthetic infection against gentamic in 

and tobramycin (aminoglycoside antibiotics). 41% and 66% of bacteria were 

resistant to gentamicin and tobramycin respectively. Corona et al. (2014) 

compared antibiotic susceptibility between patients having infection for the first 

time and patients with previous use of ALBC and found a significantly higher 

resistance, indicating the risk of selecting aminoglycosides resistant strains after 

using ALBC. 

1.5.3 Antibiotics effect on the mechanical properties of bone cement 

 Addition of antibiotics to bone cements has a negative impact on their mechanica l 

properties. Small quantities of antibiotics (< 1g per 40 g of bone cement) slightly 

decrease compressive and bending strength of bone cement but stays in the 

acceptable range stated by the standard ISO 5833:2002, while high antibiot ic 

quantities cause a significant decrease in the mechanical properties (Krause and 

Hofmann, 1989; Lewis and Janna, 2006). The acceptable ranges for the 

mechanical properties of a set bone cement are > 70 MPa compressive strength, > 

1800 MPa bending modulus and >50 MPa bending strength (Lee, 2005). High dose 

ALBCs (>2g per 40g cement) are only used temporarily in spacers for the 

treatment of prosthetic infection in two stage surgery, because their poor 

mechanical properties, while low dose ALBCs (< 2g per 40g cement) are used for 

prophylaxis where mechanical properties are important for implant fixat ion 

(Dunne et al., 2008; Paz et al., 2015).  Persson et al. (2006) reported a detrimenta l 

decrease in the bending (-22%) and fatigue strength (-15%) of bone cement when 

vancomycin was added at 2.5% w/w. (He et al., 2002) observed that the use of 

gentamicin at concentrations below 3% had no significant effect on the 

compressive and elastic modulus of bone cement; however, higher concentrations 

caused significant decrease in these two parameters.  
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1.6 Novel bone cement nano-formulations 

1.6.1 Role of nanotechnology 

Currently used antibiotics have many limitations including microbial resistance, 

narrow therapeutic index, cytotoxicity and side effects linked to non-selectivity in 

their mode of action and poor release profiles from carrier systems. 

Nanotechnology, which refers to the production and application of materials in the 

size range (1-100nm), has been used in the treatment of many diseases such as 

cancer (Tiwari, 2012), inflammation (Chaudhary et al., 2014), hypertens ion 

(McLendon et al., 2015). The success of nanotechnology in improving drug release 

in the treatment of many diseases makes it an appealing approach for application 

in antimicrobial therapy. Nowadays, the development of antimicrobial resistance 

is rapidly increasing compared to the discovery of new antimicrobial agents. 

Therefore, the development of nanotechnology drug delivery systems or new 

antimicrobial nanomaterials can be used to overcome the problems of insuffic ient 

delivery of antimicrobial agents and resistance to currently used antimicrob ia ls 

(Huh and Kwon, 2011).  

 Novel nanotechnology drug delivery systems offer many advantages to overcome 

the current challenges with antimicrobial therapy. Nanoparticles have unique 

physicochemical properties such as large ratio of surface area to mass, small size, 

and ease of structural or functional modification.  The antibiotics can be loaded 

into nanoparticles by physical encapsulation, adsorption or chemical conjugation 

where the drug release profiles can be significantly altered compared to free drug 

counterpart, enhancing poor delivery of drugs and sustaining release (Sharma et 

al., 2012). In addition, specific microbial resistance mechanisms to antibiotics can 

be overcomed by the use of nano-systems, which act on multiple biologica l 

pathways present in most types of bacteria (Kalhapure et al., 2015). Moreover, 

nano-carriers can be used for the delivery of multiple antibiotics to provide 

synergistic effect against resistant strains (Zhang et al., 2010). Nanoparticles 

labelled antibiotics increase binding to bacteria and the concentration at the site of 

infection. These improvements can be attributed to the enhanced solubility of 

drugs and controlled release profiles. Also, nano-systems decrease side effects by 

enhancing cellular internalization and uniform distribution in the target tissue, and 

improving the pharmacokinetic profiles and patient compliance to antibiot ics 
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(Mansour et al., 2009). Compared to antibiotic synthesis, the preparation of 

nanoparticles is cost-effective giving stable formulations for long term storage. 

Although, antibiotics can be degraded easily at harsh conditions, nanoparticles can 

withstand harsh conditions such as high temperature and sterilization (Huh and 

Kwon, 2011). 

The use of nanotechnology as antimicrobial treatment offers another platform to 

fill the gap where antibiotic frequently fail. The advantages of non-antibiotic based 

antimicrobial agents are their diversity of mode of action, broad spectrum of 

activity against multidrug resistant strains and biofilms (Beyth et al., 2015). This 

can be done through the delivery of nanoparticles with antimicrobial properties 

such as silver (Ge et al., 2014), dendrimer (Abid et al., 2017), etc. Alternative ly, 

non-antibiotic biocidal agents can be loaded in nano-carrier systems to enhance its 

activity and its antimicrobial properties (Chen and Liu, 2015).  

1.6.2 Nanotechnology based antibiotic based antimicrobial bone cements  

Nanotechnology based antibiotic delivery systems is becoming a new approach for 

solving the limitation of antimicrobial therapy. Nanoparticles can be used to 

improve the release kinetics of antibiotics by enhancing delivery and providing 

controlled release. These improvements are attributed to large area to mass ratio 

and small size, and different ways available for modification and for antibiot ic 

loading (Sharma et al., 2012). Many nanotechnology based antibiotic carriers have 

been researched to improve the antibiotic release profile from PMMA bone cement 

including liposomes (Ayre et al. 2016), mesoporous silica, carbon nano-tubes, 

hydroxyapatite nano-rods (Shen et al. 2016) and clay nanotubes (Wei et al., 2012).  

Although liposomes have miscibility problems in non-aqueous environment 

because of their hydrophilic surface, they were used to improve gentamic in 

distribution within PMMA bone cement. Liposomes have been largely used as 

drug carrier in aqueous suspensions, and have miscibility problems when mixed 

with PMMA leading to phase separation (Miller et al., 2011). Ayre et al. (2016) 

solved the problem of phase separation by using Pluronic on the surface of 

liposomes (Ayre et al., 2016).  

Pluronics are surfactants made of interconnected chains of polyethylene oxide 

(PEO) and poly propylene oxide (PPO) subunits. It is hypothesized that the 
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hydrophilic PEO will attach to the hydrophilic surface of liposomes, while the PPO 

will attach to the hydrophobic matrix of PMMA. Liposomes were suspended to 

the liquid MMA part of cement before mixing with PMMA powder. Moreover, 

pelleted liposomes of 100 nm size were prepared by extrusion and ultra-

centrifuged with 3 different Pluronic surfactants (L31, L43, and L61). Gentamic in 

release from liposomal bone cement was sustained for 30 days with 22% of the 

loaded antibiotic released compared to 9% from commercial formulat ion.  

Gentamicin release was characterized by burst release in the first 72 hrs for 

commercial bone cement, while liposomal cement showed nearly linear release 

profile. Despite the slight reduction in compressive strength, the liposomal 

formulation enhanced the toughness, bending strength and Vickers hardness of 

cement when compared to Palacos R+G. The addition of liposomes improved the 

dispersion of gentamicin in bone cement and improved the mechanical properties 

as well.  

In another work, Shen et al. (2016) mesoporous silica nanoparticles (MSN) were 

used to improve the release kinetics of gentamicin from PMMA bone cement 

(Shen et al., 2016). The presence of 10% MSN enhanced the release for more than 

60% of loaded gentamicin over 80 days. Furthermore, the concentration of MSN 

was found to be crucial to build a nano network to facilitate the diffusion of 

gentamicin molecules. Hence, MSN concentration below 6 % could not improve 

gentamicin release. The compressive strength of MSN functionalised bone 

cements is nearly the same as the commercial bone cement. However, the bending 

modulus is reduced by 10%. Moreover, the 10% MSN bone cement was 

cytocompatible with 3T3 mouse fibroblasts, showing 96% cell viability in 3T3 

mouse.  

Carbon nanotubes (CNT) were also tested for enhancing gentamicin release from 

PMMA bone cement. Although 5% CNT loaded bone cement lead to 75% release 

of gentamicin for 60 days, the compressive strength reduced by 90% compared 

with the commercial bone cement. Furthermore, CNT showed high toxicity to 3T3 

mouse fibroblasts with 85% cell viability. Cytotoxicity of CNTs is a concern for 

its application in biological systems and it has also attracted more attention in 

recent investigation (Firme and Bandaru, 2010). In the same work, hydroxyapatite 

nano-rods (HAP) were loaded with gentamicin by wet impregnation and loaded 
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into PMMA bone cement at 32% concentration. At this concentration, 75% 

gentamicin was released over 60 days. Despite low cytotoxicity of HAP, as it is 

one of major compositions of bone structure, the compressive strength is decreased 

by 50% compared to the commercial bone cement.  

In another study, clay nanotubes Halloysite was used to improve gentamic in 

release from PMMA bone cement (Wei et al., 2012). Halloysite is a naturally 

occurring nanotube with a length of 500–1000 nm, diameter of 50 nm, and lumen 

of 15 nm. Therefore, it is highly biocompatible as confirmed by blue cell essays 

on HeLa and MCF-7 cell lines (Vergaro et al., 2010). PMMA bone cement was 

loaded with 5-8% Halloysite and with 10-15% gentamicin. The release profile was 

characterised by burst in the first few days. After that, gentamicin release slowly 

continued for 250 hours. Furthermore, the addition of 5-7% Halloysite nanotubes 

improves the tensile strength and adhesive properties, except for flexural strength 

which is slightly reduced with higher concentration such as is 5% which gives both 

higher tensile strength and good flexural properties. Table 5 summarizes the 

mechanical properties of previously mentioned nanocomposites and Table 6 is a 

list of different nanotechnology based antibiotic loaded PMMA bone cements. 
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 Compressive 

strength 

(MPa) 

Bending 

strength 

(MPa) 

Bending 

Modulus 

(MPa) 

Fracture 

Toughness 

(MPam1/2) 

Vickers 

Hardness 

(MPa) 

Liposomes 

(L31)  

80.8 79 3200 3.0 26.6 

Mesoporous 

silica 

85 - 2100 - - 

Carbon nano-

tubes 

8.7 - - - - 

Hydroxyapatite 

nano-rods 

43.5 - - - - 

Clay nano-tubes - 35 - - - 

Table 5: Summary of mechanical properties for different PMMA 

nanocomposites. 
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Nano-carrier % of 

NPs in 

bone 

cement 

Loading 

capacity of 

gentamicin 

Dura-

tion of 

release  

% of 

gentamici

-n 

released  

Tested 

bacte-

ria  

Limitation Reference 

Liposomes   ---- 30 days 22 S. 

aureus 

-- (Ayre et al. 2016) 

Mesoporous silica 10 ---- 80 days 60 --- -- (Shen et al., 2011) 

Carbon nano-tubes 5 ---- 60 days 75 ---- Cytotoxici-

ty, negative 

impact on 

mechani-

cal 

properties 

(Shen et al., 2016) 

Hydroxyapatite 

nano-rods 

32 ---- 60 days 75 ---- Negative 

impact on 

mechanical 

properties 

(Shen et al., 2016) 

Clay nano-tubes 5-7 10-15 10 days 60 S. 

aureus, 

E. coli 

Burst 

release  

(Wei et al. 2012) 

Table 6: Summary list of nanotechnology based antibiotic loaded PMMA bone 

cements. 

 

1.6.3 Non-antibiotic based antimicrobial bone cements 

Quaternary ammonium compounds attracted research because of their 

antimicrobial properties and stable structure (Abid et al., 2017). Chitosan 

quaternary ammonium nanoparticles impregnated bone cement showed 

antimicrobial activity against viable bacterial at a concentration of 15% w/w (Shi 

et al., 2006). In another study, hydroxypropyl trimethyl ammonium chloride 

chitosan loaded (HACC) bone cement inhibited biofilms caused by methicillin-

resistant Staphylococcus strains showing in vitro release for 120 hours (Tan et al., 

2012), with enhanced physical and osteogenic properties (Tan et al., 2012). 

HACC-loaded bone cement was further evaluated in vivo for the treatment of 

Methicillin-resistant Staphylococcus epidermidis infection of the tibial metaphys is 

in a rabbit model, and exhibited effectiveness in the inhibition of bone infect ions 

(Tan et al., 2014). One quaternary ammonium dendrimer of tripropylene glycol 
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diacrylate (TPGDA) was mixed with bone cement at a concentration of 10%. At 

this concentration, TPGDA modified bone cement showed antimicrobial activity 

for 30 days. In addition, the dendrimer bone cement composite was potent to kill 

108 CFU/mL of bacteria on regular intervals of 5 days for a month. However, the 

addition of dendrimer resulted in a reduction of compressive strength (>15%) 

compared to the original sample. Furthermore, the MTT (Methylthiazo lyl 

tetrazolium) assay for the dendrimer modified bone cement showed 12.5% 

reduction in the viable cells compared to the control, and further determination of 

cytotoxicity is needed (Abid et al., 2017). Table 7 summarizes some examples of 

antimicrobial bone cements with potential application in total joint arthroplasties. 

Quaternary ammonium chitosan derivative nanoparticles (QCS) achieved a 103-

fold reduction in the number of viable bacterial cells upon contact with the surface 

when added at concentration of 15% to bone cement. Chitosan in the form of 

nanoparticles is better in preserving the mechanical properties of the bone cement 

compared to powdered chitosan, i.e. Young modulus and bending modulus is 

>90% of the original bone cement values. When the Chitosan (powder not 

Nanoparticles) loading was decreased to 15%, the Young’s modulus and bending 

modulus are about 90% of the corresponding properties of the original bone 

cement. This can be explained by the homogenous distribution of nanopartic les 

inside the bone cement matrix, which minimizes the macroscopic cracks in cement 

mantle. QCS nanoparticles showed higher antimicrobial activity compared to 

chitosan nanoparticles at the same concentration, where the viable cell number 

declined by about three orders and two orders of magnitude, respectively. 

However, The MTT assay showed that there is no significant difference in 

cytotoxicity between the chitosan NP, QCS NP and the non-toxic control (Shi et 

al., 2006).   

Silver nanoparticles have many applications in medical field as safe and effective 

antimicrobial agents, such as bandages, catheters and surgical scrubs (Ge et al., 

2014). Oei et al. (2012) investigated the antimicrobial properties of a PMMA bone 

cement impregnated with silver nanoparticles (Oei et al., 2012). Despite in vitro 

release of silver ions for 28 days and broad spectrum antimicrobial activity, the 

mechanical properties of bone cement was negatively affected at the concentration 

used (1% w/w) and showed lower bending modulus. Silver nanoparticles prepared 
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with different capping agents were studied for bone cement impregnation. 

Prokopovich et al. (2015) reported a broad spectrum antimicrobial activity of silver 

nanoparticles capped with oleic acid at low concentrations of 0.05 w/w %, without 

affecting the mechanical properties and cytotoxicity of the bone cement 

(Prokopovich et al., 2015). Similar preferable antimicrobial and mechanica l 

properties were identified when silver nanoparticles capped with tiopronin were 

impregnated in PMMA bone cement at a concentration of 0.1 w/w % (Prokopovich 

et al., 2013). 

 In another study, Perni et al. (2015) developed a propyl paraben nanopartic le 

loaded bone cement at a concentration of 7% w/w (Perni et al., 2015). 

Nanoparticles at this concentration exhibited wide spectrum antimicrobial killing 

with no detrimental effect on mechanical properties and cytocompatibility. 
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Type of 

Antimicrobial 

nanoparticles 

% of NPs 

in bone 

cement 

Duration of 

release  

% 

released  

Antimicrobial 

spectrum 

Tested bacteria Mode of action Limitations Reference 

Chitosan 15 --- --- Broad 

spectrum 

(Gram positive 

and Gram 

negative) 

S. aureus, 

S. epidermidis 

Interaction w ith 

negatively 

charged cell w all 

and cell lysis. 

--- (Shi et al., 

2006) 

QCS  15 --- --- Broad 

spectrum 

(Gram positive 

and Gram 

negative) 

S. aureus, 

S. epidermidis 

Interaction w ith 

negatively 

charged cell w all 

and cell lysis. 

--- (Shi et al., 

2006) 

dendrimer 10 30 days --- Broad 

spectrum 

(Gram positive 

and Gram 

negative) 

S. aureus, 

 E coli,   

P. aeruginosa 

Interaction w ith 

negatively 

charged cell w all 

and cell lysis. 

Cytocompatibility 

problems 

(Abid et al., 

2017) 

Silver 

nanoparticles  

1 28 days  --- Broad 

spectrum 

(Gram positive 

and Gram 

negative) 

P. aeruginosa,  

A. baumannii,  

 S. aureus,   

P. mirabilis 

Ag NPs or Ag 

ions can interact 

w ith DNA 

replication, 

respiratory chain 

and cell division. 

Negative effect on 

mechanical properties  

(Oei et al., 

2012) 

oleic acid 

capped Silver 

nanoparticles  

0.05 --- --- Broad 

spectrum 

(Gram positive 

and Gram 

negative) 

S.aureus 

MRSA 

S. epidermidis 

A. baumannii 

 

Ag NPs or Ag 

ions can interact 

w ith DNA 

replication, 

respiratory chain 

and cell division. 

--- (Prokopovic

h et al., 

2015) 

Tiopronin 

capped Silver 

nanoparticles 

0.1 --- --- Broad 

spectrum 

(Gram positive 

and Gram 

negative) 

MRSA Ag NPs or Ag 

ions can interact 

w ith DNA 

replication, 

respiratory chain 

and cell division. 

--- (Prokopovic

h et al., 

2013) 
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Propyl 

paraben 

7 5 --- Broad 

spectrum 

antibacterial 

(Gram positive 

and Gram 

negative) and 

antifungal 

activity 

S. aureus 

MRSA 

S. epiermidis 

A. baumannii 

Inhibition of the 

synthesis DNA 

and RNA or 

ATPases and 

phosphotransfer

ases 

--- (Perni et al., 

2015) 

Table 7: Summary list of nanotechnology non-antibiotic based antimicrobial 

PMMA bone cements 
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1.7 Drug delivery systems and nano-formulations for potential 

use in bone cements 

One of the novel approaches for enhancing the delivery of aminoglycos ide 

antibiotics is “Layer by Layer” assembly (LbL). LbL has numerous applications 

in drug delivery (Deshmukh et al., 2013). This coating technique is a versatile 

method and involves the deposition of alternative oppositely charged 

polyelectrolytes on different substrates, allowing control of the thickness and 

composition of coating at nanoscale level in a reproducible manner (Ariga et al., 

2011; Vergaro et al., 2011). Tamanna et al. (2015) managed to control the release 

of gentamicin from gentamicin- loaded mesoporous silica nanoparticles coated 

using LbL technique (Tamanna et al., 2015). The coating polyelectrolytes were 

polystyrene sulfonate and poly (allylamine hydrochloride). The coated layer 

controlled drug release for 10 days with no burst release compared to the same 

gentamicin loaded nanoparticles without coating. 

Mu et al. (2016) evaluated the antimicrobial properties of phosphatidylcholine-

decorated Au nanoparticles loaded with gentamicin (size 180 nm), which showed 

broad spectrum activity and inhibition of biofilm formation (Mu et al., 2016). The 

presence of phosphatidylcholine on the surface facilitated the electrostatic binding 

of gentamicin. The nanoparticles were more efficient in the inhibition of 

Pseudomonas aeruginosa and Staphylococcus aureus biofilm, when compared to 

gentamicin or phosphatidylcholine Au nanoparticles without gentamic in. 

Gentamicin release continued for 7 days in buffer media pH 7.4, and the loading 

efficiency was 38µg/ml (gentamicin/Au). Cytocompatibility studies were done 

using RAW 264.7 cells and the nanoparticles were nontoxic and can be engulfed 

by macrophages. 

Fan et al. (2016) loaded chlorhexidine on Ca-silicate mesoporous nanopartic les 

(size 78.6 nm) using mixing-coupling technique (Fan et al., 2016). The 

nanoparticles were able to release chlorhexidine as well as Ca2+ and silicate2- ions 

for up to 9 days in simulated body fluids. They showed antimicrobial activity 

against Enterococcus faecalis which is commonly reported to be involved in root 

canal infection. The nanoparticles did not show any negative effect on cell 
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proliferation and showed in vivo mineralization effect, which give them the 

potential to be used in intra-canal defects or bone infections. 

Poly (lactic-co-glycolic acid) (PLGA) is hydrophobic biodegradable and 

biocompatible polymer that is approved for clinical use. Abdelgahany et al. (2012) 

prepared gentamicin PLGA nanoparticles through emulsion evaporation method, 

using two approaches: water/oil/water and solid/oil/water (Abdelghany et al., 

2012). The size for the nanoparticles were 251 nm and 359 nm, respectively, with 

loading efficiency reached up to 22.4 µg/ml. Gentamicin release from the 

nanoparticles continued for up to 16 days at pH 7.4. In addition, the nanopartic les 

showed antimicrobial activity against P. aeruginosa planktonic bacteria and 

biofilms, as well as in vivo infected mice model.   

Kurtjak et al. (2016) loaded gallium nanoparticles (size 22nm) into hydroxyapatite 

nano-rods bioactive composite through ultrasonic emulsification (Kurtjak et al., 

2016). The gallium nanocomposite showed better antimicrobial properties against 

Pseudomonas aeruginosa, when compared to silver nanocomposite, as illustra ted 

by microdilution assay and MIC (minimum inhibitory concentration) 

determination. Also, gallium nanoparticles had lower toxicity for human lung 

fibroblast and mouse fibroblasts.  
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1.8 Aim of the project 

Given the severe problems associated with prosthetic infections after total joint 

replacements, it becomes evident the need to develop antimicrobial bone cements 

with better performance and outcome for total joint replacement to improve 

patients’ quality of life.  

In this context, the present PhD project aims to develop a novel nano-composite 

antimicrobial bone cement containing antibiotic or non-antibiotic antimicrob ia l 

agents or a combination of both, for the prevention of prosthetic infections after 

total joint replacement which is one of the major causes for revision surgery. The 

antimicrobial agents to be tested are gentamicin and chlorhexidine, either alone or 

in combination, to evaluate potential synergism or additive antimicrobial effect 

needed to overcome the problem of antibiotic resistance mentioned earlier. We 

hypothesize that the release of antimicrobial agents from the bone cement can be 

sustained at inhibitory concentrations for a long time (3-6 months) using LbL 

assembly technique combined with nanotechnology. In order to provide 

prophylaxis from post-surgical orthopeadic infections, both early and late stage 

infections.  To the best of our knowledge, the LbL assembly technique has not 

been applied before to control the release of antibiotics from bone cement.  

To accomplish this aim, the following objectives were defined: 

(i) Novel nanotechnology based antimicrobial drug delivery system 

development: 

In the initial stage, silica nanoparticles were prepared, which are broadly applied 

as drug delivery carrier because of their biocompatibility, high loading capacity, 

ease of synthesis and scale up with reasonable cost. Silica nanoparticles were 

functionalised with amino group to allow further modifications on their surface  

through the deposition of cationic or anionic polyelectrolytes, and antimicrob ia l 

agents, during LbL multilayer coating process.  

 

Gentamicin has been employed as a model antibiotic, which is a widely-used 

aminoglycoside antibiotic in TJR, because of its’ wide spectrum antimicrob ia l 

activity and thermal stability during the exothermic setting reaction of PMMA 

bone cement. Gentamicin was loaded on the silica nanoparticles using layer by 



 

35 

 

layer assembly (LbL), allowing control of coating thickness and composition at 

nanoscale level in a reproducible manner. In addition, chlorhexidine has been 

employed as a model antimicrobial non-antibiotic agent, which is widely used as 

antiseptic and disinfectants skin infections, cleaning wounds, preventing dental 

plaque, yeast infections of the mouth, for disinfecting urinary tract catheters and 

sterilisation of surgical instrument.  

  

Different polyelectrolytes were used to coat the surface of silica nanopartic les 

during LbL coating process using hydrolysable and non-hydrolysable polymers, 

controlling the release of gentamicin, chlorhexidine, or a mixture of both from 

polyelectrolyte multilayers on the surface of silica nanoparticles. In addition, the 

polyelectrolytes aid in antibiotic loading between different layers by electrostatic 

attraction between oppositely charged species. Silica nanoparticles with different 

coatings and loaded antimicrobial agents were characterised by transmission electron 

microscopy (TEM), thermogravimetric analysis (TGA), zeta potential, Fourier 

transform infra-red spectroscopy (FTIR), and drug release testing in different release 

media representing healthy and infected joint.  

 

(ii) PMMA bone cement loaded with the novel antimicrobial nanoparticles: 

After full characterisation of the newly developed novel LbL multilayer nano-drug 

delivery system, the nanoparticles with different types of coatings and 

antimicrobial agents were loaded into the PMMA bone cement. Then, the newly 

formed nanocomposites were evaluated for the following properties: 

 

1. Bone cement settling time. 

The influence of nanoparticles on bone cement settling time was determined 

through rheological tests, in particular dynamic oscillation tests.  

2. Antimicrobial agent release quantification. 

the release of antimicrobial agents from bone cement was evaluated and 

compared against commercial formulations e.g. Cemex G and Palacos R in 

vitro. 

 

 

3. Microbial testing. 
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The antimicrobial properties were determined once the nanopartic les 

incorporated into bone cement against common bacteria reported to cause post-

orthopaedic surgery infections, such as: Staphylococcus aureus, MRSA, S. 

epidermidis and Acinetobacter baumannii.  Moreover, they were compared 

with the antimicrobial properties of commercial formulations for ALBCs, e.g. 

Cemex G and Palacos R. 

4. Mechanical testing. 

Mechanical properties of the nanocomposite were determined against 

commercial formulations for ALBCs, e.g. Cemex G. In order to assess the 

effect of incorporated nanoparticles on the mechanical properties of the bone 

cement, such as compression, bending strength and fracture toughness.     

 

5. Water uptake studies. 

When immersed in fluids, the increase of bone cement containing 

nanoparticles because of water uptake was monitored, and compared to 

commercial formulations to evaluate the influence of nanopartic les 

incorporation on the physicochemical properties of the bone cement, in 

particular hydrophilicity.  

 

6. Nanoparticles distribution: 

Fluorescence images were taken for the surface and inside of the bone cement 

to evaluate the homogeneity of distribution of nanoparticles and compare it to 

antibiotic powder distribution in commercial cements.  

 

7. Cytotoxicity testing. 

The cytocompatibility was verified for the PMMA impregnated bone cement 

against commercial formulations e.g. Cemex G using relevant cell lines e.g. 

osteoblasts, to make sure that the newly formed nanocomposite is 

biocompatible with bone tissue, e.g. Methylthiazolyl tetrazolium (MTT) assay, 

Lactase dehydrogenase release (LDH) assay test, osteoblast calcium 

production assay (alizarin red), Nitric oxide production and fluorescence 

imaging.   
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2 General methods 

This chapter refers to some of the common methods that have been used for the 

preparation of different nanoparticles and bone cements, and testing their 

properties throughout this thesis. Later chapters will refer to these methods to 

reduce repetition with highlighting main differences in nanoparticle and 

nanocomposite formulation. Test methods that are specific to certain chapters will 

be described in detail in the appropriate chapter.  

2.1 Nanoparticles preparation and characterisation  

2.1.1 Chemicals 

Triton X-100, tetraethyl orthosilicate (TEOS), 3-aminopropyltriethoxysilane 

(APTS), sodium alginate (Mw 80.000-120.000 Da), chitosan (Mw 190.000-

310.000 Da), gentamicin sulphate, sodium acetate trihydrate, phosphate buffer 

solution (PBS) tablets, o-phthaldialdehyde reagent solution (OPA) were purchased 

from Sigma-Aldrich, UK. Cyclohexane, n-hexanol, ammonium hydroxide (35%), 

ethanol, methanol, glacial acetic acid and iso-propanol were purchased from 

Fishers scientific, UK. All reagents were stored according to manufacturer’s 

guidelines and used as received. B1: is a patented biocompatible, biodegradable 

Poly-beta-amino-ester (PBAE) polymer, the precise structure will remain 

confidential due to the IP associated, was freshly prepared in the lab before use.  

Acetic acid-sodium acetate buffer was prepared as follows: to prepare 100 ml 

acetic acid-sodium acetate buffer (0.1 M, pH 5), 30 ml of sodium acetate trihydrate 

(CH3COONa.3H2O) (0.1 M) were added to 70 ml of acetic acid (CH3CO2H) (0.1 

M) solutions and stirred. Phosphate buffer saline (PBS) (pH 7.3) was prepared by 

dissolving 1 tablet of PBS in 100 ml of deionized water. 

2.1.2 Nanoparticle preparation 

2.1.2.1  Amino functionalised silica nanoparticle synthesis 

Silica nanoparticles functionalised with amine groups (SiO2-NH2) were prepared 

in one-pot synthesis by hydrolysis of TEOS in reverse micro-emulsion and 

subsequent functionalization with amino group (Stöber method) (Stöber et al., 

1968). In a typical synthesis, Triton X-100 (17.7 g) was mixed with 16 ml of n-

hexanol, 75 ml of cyclohexane, and 4.8 ml of deionised water under vigorous 
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stirring. Once the solution was transparent, 600 µl of ammonium hydroxide 

(29.6%) was added. The solution was subsequently sealed and stirred for 20 

minutes, followed by addition of 1 ml of TEOS and stirring for 24 hours. The silica 

nanoparticles surface was functionalised with amino groups by adding 50 µl of 

APTS to the micro-emulsion under stirring and incubating further 24 hours. The 

SiO2-NH2 nanoparticles were recovered by adding ethanol (200 ml) to break the 

micro emulsion and centrifuging at 14000 rpm for 10 minutes (LE-80K, 

Ultracentrifuge, Beckman Coulter, UK) at 20 °C (35280 g). The nanopartic les 

were vigorously washed three times with deionized water. Finally, the washed 

nanoparticles were left to dry at room temperature in a fume hood for 24 hours. 

2.1.2.2 Layer by Layer (LbL) coating technique 

The amino functionalised silica nanoparticles were layered with different numbers 

of a repeating sequence of polyelectrolytes: sodium alginate as a polyanion, a 

polycation (chitosan, B1) and drug with antimicrobial activity (gentamicin or 

chlorhexidine). Different sequences were composed of a repeating unit of four 

layers making one quadruple layer (Q). Up to ten quadruple layers were coated 

onto silica nanoparticles (Table 9). The following concentrations of the 

polyelectrolytes and the drugs in acetic acid-sodium acetate buffer (pH 5) were 

used in LbL: sodium alginate (2 mg/ml), gentamicin (10 mg/ml) and chitosan (2 

mg/ml). 
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Table 8: 10 quadruple layers’ abbreviations and constituents used for LbL 

coating on silica nanoparticles. 

The procedure for LbL technique was the following: the dried amino 

functionalised silica nanoparticles were placed in a test tube and dispersed in 20 

ml of sodium alginate solution and stirred for 10 minutes. Then, the dispersed 

nanoparticles were centrifuged to precipitate nanoparticles. After that, the 

supernatant was removed and replaced with 20 ml of acetic acid-sodium acetate 

buffer as a washing step after each layer to remove traces of the layered 

polyelectrolyte. Then, the buffer was centrifuged and the washed nanopartic les 

were ready for next layer. For the second layer, 10 ml of gentamicin solution was 

stirred with the nanoparticles for 10 minutes, centrifuged and washed again with 

buffer. Next, sodium alginate solution was layered again and washed. Finally, 20 

ml of the polycation (either chitosan or B1) solution was used to layer the fourth 

layer and washed, completing the first quadruple layer. This sequence was 

repeated to build up 10 quadruple layers on the surface of the silica nanopartic les.  

Quadruple layer no. Abbreviation  Layers on the surface of amino functionalised 

silica nanoparticles (SiNH2) 

1 Q1 SiNH2-alginate-drug-alginate-polycation 

2 Q2 SiNH2-Q1-alginate-drug-alginate-polycation 

3 Q3 SiNH2-Q2-alginate-drug-alginate-polycation 

4 Q4 SiNH2-Q3-alginate-drug-alginate-polycation 

5 Q5 SiNH2-Q4-alginate-drug-alginate-polycation 

6 Q6 SiNH2-Q5-alginate-drug-alginate-polycation 

7 Q7 SiNH2-Q6-alginate-drug-alginate-polycation 

8 Q8 SiNH2-Q7-alginate-drug-alginate-polycation 

9 Q9 SiNH2-Q8-alginate-drug-alginate-polycation 

10 Q10 SiNH2-Q9-alginate-drug-alginate-polycation 
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Figure 7: LBL procedure. 

 

2.1.3 Nanoparticles surface and material characterisation 

2.1.3.1 Nanoparticles size measurements 

The size of nanoparticles was characterized using transmission electron 

microscopy (TEM). A droplet (4 µL) of nanoparticles suspension was placed on a 

plain carbon-coated copper TEM grid and left to evaporate in air under ambient 

laboratory conditions for few hours. Bright field TEM images were taken using a 

JEOL-1010 microscope at 80 kV equipped with a Gatan digital camera. The 

magnification of the images was 100,000 X. Then, the images were analysed with 

the computer software ImageJ® and the diameters of at least 150 particles were 

measured. 

2.1.3.2 Nanoparticles Zeta potential measurements  

The electrophoretic mobility for the nanoparticles was measured by dynamic light 

scattering (DLS), using Malvern Zetasizer, Nano ZS particle characteriza t ion 

system (Malvern Instruments Limited, UK). He-Ne laser (wavelength 633 nm) at 

an angle of 17° was combined with reference beam to analyse the samples. The 

measured electrophoretic mobility was converted to zeta potential values (ζ) using 

Henry equation: 
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 𝑈𝐸=2 𝜀𝜁𝑓 (𝐾𝑎)/ 3𝜂  

Where 𝑈𝐸 is the measured electrophoretic mobility, (ζ) is the zeta potential, (ε) is 

the dielectric constant, (𝜂) describes the viscosity, and f (κa) is Henry’s function. 

Smoluchowski’s approximation is commonly used to determine zeta potential for 

electrophoretic measurements in aqueous media using moderate electrolyte 

concentration, where the value of f (κa) is equal to 1.5 (Sikora et al., 2015).  

For zeta potential measurement, 1 mg of nanoparticles was dispersed in 1 ml of 

acetic acid-sodium acetate buffer solution using the vortex and the ultrasonic bath 

(~30min). Then, the suspension was immediately transferred into the capillary cell. 

Each data value was an average of three measurements. 

2.1.3.3 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis (TGA) was performed using a Perkin-Elmer TGA 

4000 instrument. The samples were heated from 50 to 800 °C with a constant 

heating rate of 10 °C per minute. Sample weight was recorded and weight loss 

percentage of each sample was calculated relative to initial weight of sample, prior 

to heating. The organic and inorganic material percentages were calculated by 

subtracting the point at initial weight loss (%) up to when the line plateaus. 

2.1.4 Gentamicin release quantification  

Gentamicin release from the nanoparticles was evaluated by dispersing the drug 

loaded nanoparticles (10 mg/ml) in 2 buffer media: acetic acid-sodium acetate 

buffer pH 5 and PBS pH 7.3, where they were kept in eppendorfs. These two pH 

points were chosen to assess the drug release under healthy joint (pH 7.35-7.45) 

(Ribeiro et al., 2012), and for infected joint, which are associated with low pH 

values (pH < 7) or local acidosis (Kinnari et al., 2009). 

Then, samples were vigorously stirred in a vortex, and then incubated at 37°C. 

Samples were taken every 24 hours where 1ml of release medium aliquots were 

taken after centrifugation, to avoid withdrawing nanoparticles during taking the 

sample. 

The amount of gentamicin released from the nanoparticles in the buffer was 

quantified through fluorescence spectroscopy instrument using o-

phthaldialdehyde reagent (Perni and Prokopovich, 2014), where the reagent reacts 



 

42 

 

with the amino groups of gentamicin to give a fluorogenic product. 100 µl of buffer 

containing antibiotic were mixed with 100 µl of iso-propanol and 100 µl of OPA 

reagent solution. After 30 min at room temperature in the dark, 200 µl of the 

mixture were transferred in a black 96 wells plate and the fluorescence was 

determined (excitation wavelength = 340 nm and emission wavelength = 450 nm) 

with a fluoroscan (FLUOROstar Optina, BMG labtech). Average gentamic in 

concentrations for each time point was calculated from 3 samples, and cumulat ive 

gentamicin release was also calculated for 30 days.   

Eight calibration solutions with gentamicin concentrations from 0 µg/ml to 100 

µg/ml were prepared for calibration curve, and analysed simultaneously for each 

96-well plate run. The standards were prepared by serial dilution of gentamic in 

stock (100 µg/ml) in the first 3 columns of the 96-well plate, to get three replicates 

for each point. A linear relationship between concentration and fluorescence was 

produced (Figure 8).  

 

 

 

 

 

 

 

 

Figure 8: Representative calibration curve for gentamicin. 

 

2.1.5 Chlorhexidine release quantification 

Chlorhexidine release from the nanoparticles was evaluated by dispersing the drug 

loaded nanoparticles (10/ml mg) in 2 buffer media: acetic acid-sodium acetate 

buffer pH 5 and PBS pH 7.3, where they were kept in eppendorfs. These two pH 

points are chosen to assess the drug release under healthy joint (pH 7.35-7.45) 
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(Ribeiro et al., 2012), and for infected joint, which are associated with low pH 

values (pH < 7) or local acidosis (Kinnari et al., 2009). 

Then, samples were vigorously stirred in a vortex, and then incubated at 37°C. 

Samples were taken every 24 hours where 1ml of release medium aliquots were 

taken after centrifugation, to avoid withdrawing nanoparticles during taking the 

sample. 

The amount of chlorhexidine released from nanoparticles was quantified using 

reversed-phase High Performance Liquid Chromatography (HPLC) method. The 

HPLC system from 1100 series Agilent Technologies®.  The mobile phase was a 

mixture of acetate buffer pH 4 (73%), acetonitrile (27%) at a fixed flow rate of 1 

ml/min. Injection volume was 20 µl which was detected by UV detector at 239 

nm. The analytical column was µBondapak C18 column Waters® (Ireland, UK), 

(pore size 125 Aº, 10 µm, 3.9 mm X 150 mm). Standards of known chlorhexid ine 

concentration were analysed to establish a calibration curve for chlorhexidine. The 

calibration curve was obtained by plotting the concentration (µg/ml) of 

chlorhexidine standard versus peak area under the curve (mAu). The standard 

concentrations were prepared by serial dilutions of a chlorhexidine stock solution 

(1 mg/ml) to a range of 0.4-25 µg/ml. Each data point is an average of three 

replicates.  
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Figure 9: Representative calibration curve for chlorhexidine. 

 

2.1.6 Statistical analysis 

All data were expressed as means ± standard deviation (SD) from at least three 

values. To assess the statistical significance of results between groups, one-way 

analysis of variance (ANOVA) was performed. Experimental results were 

considered statisticallysignificant at 95 % confidence level (p<0.05). All analyses 

were run using the SPSS ® software. 
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2.2 Bone cement preparation and characterization 

2.2.1 Chemicals 

Triton X-100, Tetraethyl orthosilicate (TEOS), (3-Aminopropyl) triethoxysilane 

(APTS), sodium alginate, chitosan, gentamicin sulphate, sodium acetate 

trihydrate, phosphate buffer solution (PBS) tablets, o-phthaldialdehyde reagent 

were purchased from Sigma-Aldrich, UK.  

Cyclohexane, 1-hexanol, ammonium hydroxide 35%, ethanol, methanol, glacia l 

acetic acid and 1-propanol were purchased from Fishers, UK. All reagents were 

stored according to manufacturer’s guidelines and used as received. Two types of 

bone cements were used Cemex® (Tecres® SpA, Verona, Italy) and Palacos ® 

(Heraeus Medical GmbH, Wehrheim, Germany). 

B1: is a patented biocompatible, biodegradable cationic polymer, the precise 

structure will remain confidential due to the IP associated.  

2.2.2 Bone cement preparation 

PMMA bone cement is formed by a free radical polymerisation reaction between 

the liquid and powder component upon mixing. Bone cement preparation was 

carried out according to manufacturer’s instructions and the ISO5833:2002 

(Implants for surgery-Acrylic resin cements). All the contents of the bone cement 

were stored at recommended conditions (20-25ºC for the powder and 8-15 ºC for 

the liquid in the dark) and conditioned to room temperature (23ºC) 2 hours before 

mixing. The powder component was sifted before weighing and mixed thoroughly, 

while each liquid component was weighed separately. Finally, both components 

were hand mixed in a polypropylene bowl with a polypropylene spatula for 1 

minute, before being filled into a mould. Polytetrafluoroethylene (PTFE) moulds 

were used to produce samples with specific dimension for different tests. PTFE 

withstands the high exothermic temperature of the setting reaction, and allows for 

easy removal of the samples without adherence or interactions with bone cement. 

After applying the cement into the mould, the mould was clamped with two steel 

endplates covered with PTFE film at both ends. After 2 hours, the samples were 

pushed out of the mould using a steel rod and allowed to cure for 24±2 hours at 

23ºC. Then, the samples were sanded down to the correct dimensions using 320 

grit silicon carbide paper.  
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2.2.3 Rheology testing 

The effect of adding the nanoparticles on the cement settling time was evaluated 

through rheological tests using Anton Paar MRC702 (Anton Paar Ltd., UK), 

equipped with 6 mm diameter circular flat plates. Dynamic oscillation tests were 

performed in these measurements, a sinusoidal oscillation strain (σ), of small 

amplitude (σ0) and frequency (ω), was applied to the sample:  

𝜎 (𝑡) = 𝜎0 exp(𝑖𝜔𝑡)  

 

 The resulting stress (ω) was compared with the strain giving the complex modulus 

G*.  

𝐺∗ =
𝜎 (𝑡)

𝛾 (𝑡)
 

 

Because the two sinusoidal waves will have a phase difference, δ, the storage (G′) 

and loss modulus (G″) can be defined as the component in phase and π/2 out of 

phase with the strain, respectively.  

𝐺∗  = 𝐺′ + 𝑖𝐺′′ 

and  

𝐺′ = |𝐺∗  | cos 𝛿 

𝐺′′ = |𝐺∗  | sec 𝛿 

Rheological testing was conducted using dynamic time sweep test that takes 

successive measurements at constant frequency and strain at selected interva ls. 

Test were conducted at room temperature, plate distance 1 mm, a strain of 0.1% 

and fixed frequency of 1 rad/sec. For all tests, the bone cement solid phase was 

mixed with the liquid phase quickly with a spatula; the mixture was deposited onto 

the lower plate and experiments started as fast as possible. To account for the time 

elapsed during mixing and pouring, a timer was started at the moment of mixing 

the liquid with powders. Measurement of complex Young modulus and phase 

angle were taken every 6 seconds for up to 10 minutes. The setting time was 
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extracted from each curve as the time correspondent to a local maximum of tan 

delta (G"/G'). Each sweep experiment was carried out on three independently 

prepared cement samples, and results are presented as mean and standard deviation 

(Perni et al., 2015). 

 

2.2.4 Drug release quantification 

A PTFE mould was used to produce cylindrical samples with 6mm diameter and 

10 mm length. Each sample weighed 0.40 ± 0.01g and three samples were used 

for release study for each type of bone cement. The bone cement samples were 

incubated in 3ml PBS buffer (pH 7) at 37ºC. The release media was replaced each 

day to attain sink condition, where the concentration of released drug is negligib le 

in comparison to its’ saturation solubility. The release samples were stored in the 

refrigerator (2-8 ºC) for analysis. The concentration of gentamicin or chlorhexid ine 

was determined in the samples using methods described previously in 2.1.4 and  

2.1.5. 

2.2.5 Antimicrobial testing 

Cylindrical samples of 12 mm length and 6mm diameter were prepared for as 

previously described (section 2.2.2) for antimicrobial testing. Brain heart infus ion 

agar (BHI) (Oxoid Ltd., Basingstoke, UK) was prepared by dissolving 47g of brain 

heart infusion agar powder in one litre of distilled water. The solution was shaken 

to suspend agar powder evenly, then sterilized in an autoclave at 121 ºC for 15 

minutes. The solution was allowed to cool to 45-50 ºC before being poured into 

Petri dishes (9 cm diameter). The Petri dishes were cooled to room temperature 

then stored at 8-15 ºC until use. BHI broth was prepared by dissolving 37g of BHI 

broth powder in one litre of distilled water, then sterilised in an autoclave at 121 

ºC for 15 minutes. The sterilised broth was allowed to cool to room temperature 

before being poured into 15 ml sterile tubes and stored at 8-15 ºC until use.  

Gram-positive bacteria methicillin-resistant Staphylococcus aureus (NCTC 

12493), Streptococcus pyogenes (ATCC 19615), and Staphylococcus 

epidermidis (ATCC 12228) along with Gram-negative bacterium Acinetobacter 

baumannii (NCIMB 9214), Pseudomonas aeruginosa (NCIMB 10548), 
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Escherichia coli (NCTC 10418) were used. Also, 12 clinical strains were obtained 

from Bristol hospital patients with prosthetic joint infections (PJI) in the period 

2013-2015 and species were confirmed by polymerase chain reaction. The patients 

were anonymised by giving a code for each selected strain. These clinical strains 

are: E. coli 59293, Enterococcus faecalis 58181, MRSA 23140, MRSA 38924, 

MRSA 59275, A. baumannii 44646, A. baumannii 44640, A. baumannii 44643, S. 

epidermidis 59272, S. epidermidis 53222, S. epidermidis 59199. Bacteria frozen 

stokes were stored at -80°C; strains were streaked on BHI plates weekly and 

incubated for 18-24 hours at 37°C, then stored at 4°C. The antimicrobial activity 

of bone cement was tested against different bacterial strains that are most 

commonly encountered in PJI including:  coagulase-negative staphylococci (30-

43%) and Staphylococcus aureus (12-23%), followed by streptococci (9-10%), 

Gram-negative bacilli (3-6%), enterococci (3-7%), and anaerobes (2-4%). 

Polymicrobial infections, which usually occur postoperatively, are seen in PJIs 

(10-12%) (Fsadni and Fsadni, 2013; Trampuz and Zimmerli, 2005). 

The minimum inhibitory concentration (MIC) is defined as the lowest concertation 

of antimicrobial that inhibits any visual growth of a microorganism after overnight 

culture. MIC for chlorhexidine and gentamicin was determined against different 

bacteria tested through standard broth dilution MIC protocol (Wiegand et al., 

2008). The bacteria were inoculated in broth and the broth was incubated for 24 

hours at 37ºC. Then, the broth was diluted 1000 time to get bacterial count in the 

range of 104-105 CFU/ml which is normally used for MIC testing. Each well in a 

row of 96-well plate was filled with 100 µl of broth bacteria after incubation for 

24 hours at 37ºC. Then, 100 µl of known drug concentration is added the first well 

of each row and carefully mixed. After that, 100 µl were pipetted out of the first 

well and transferred to the next well on the right and mixed. This procedure was 

repeated down the row to have gradual serial dilutions of the drug in each well 

(each well was half the concentration of the well on the left). Then, the plate was 

incubated for 24 hours at 37ºC, and the growth in each well was evaluated visua lly. 

MIC was the lowest concertation of the drug showing no growth visually.  

Bone cement samples were incubated in 3ml PBS buffer (pH 7) at 37ºC. The 

release samples were stored in the refrigerator (2-8 ºC) for microbial testing. Each 
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bacterial strain was inoculated into BHI broth and incubated for 18-24 hours at 

37ºC. Then, the inoculated growth was diluted 1000 times, and 20 µl of the diluted 

broth were added into a sterile 96-well plate. After that, each well was filled with 

100 µl of the release media of different types of bone cement, and the plate was 

incubated for 18-24 hours at 37ºC. In the next day, the growth in each well was 

evaluated visually (Figure 10) (Balouiri et al., 2016).  A sufficient growth of the 

tested bacteria was considered as a positive result, i.e. obvious button or definite 

turbidity as compared with the positive and negative growth control. Each data 

point was performed in triplicate for each individual strain, to determine the 

duration for the release media from the bone cement is still able to inhibit the 

growth of bacteria.   

 

 

Figure 10: Procedure for antimicrobial testing of bone cement.  
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2.2.6 Mechanical testing 

2.2.6.1  Compressive strength 

The compressive strength testing was performed according to the ISO 5833:2002 

standard (“ISO 5833:2002,” 2002). Bone cement samples that are 12±0.01mm in 

length, 6±0.01mm in diameter were prepared for this test. The test was performed 

using a Zwick Roell ProLine table-top Z050/Z100 materials testing machine 

(Zwick Testing Machines Ltd., Herefordshire, UK), where the sample was loaded 

incrementally at a constant cross-head speed of 20 mm/min (Figure 11). Load 

displacement curves were obtained and loading was stopped at sample failure or 

when the upper yield point had been passed. The compressive strength (σc) in MPa 

was calculated by dividing the Fmax (Figure 12), the load to cause fracture, by the 

original cross-sectional area (in mm2) of the sample as shown in the following 

equation: 

𝜎𝑐 =  
𝐹𝑚𝑎𝑥  

 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙  𝑎𝑟𝑒𝑎
                  

The Fmax is taken from the 2 % offset load or the upper yield point load 

(whichever occurred first, in N) (Figure 12), an average of five samples were used.  

 

Figure 11: Compression test according to ISO5833 2002. 
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Figure 12: Idealized curve of load vs. displacement for cement (ISO5833 2002). 

 

2.2.6.2 Bending strength 

The bending strength and modulus determination tests were performed according 

to the ISO 5833:2002 standard (“ISO 5833:2002,” 2002). The bone cement 

samples were rectangular with a length of 75±0.1 mm, width of 10±0.1 mm and 

thickness of 3.3±0.1 mm. The bending test is a four-point test where the distance 

between the inner loading points is 20±0.1 mm, and the outer loading points is 

60±0.1 mm. The rectangular bending sample was placed at the centre of the 
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bending rig, and loaded incrementally using a Zwick Roell ProLine table-top 

Z050/Z100 materials testing machine (Zwick Testing Machines Ltd., 

Herefordshire, UK) (Figure 13 and  Figure 14). During loading, the displacement 

was recorded as a function of applied force until the failure of sample occurred.  

Bending modulus is calculated using equation 1, and equation 2 was used to 

calculate the bending strength from the average of five samples. 

  

𝐸𝑏  =
𝐹𝑎

4𝑓𝑏ℎ3  (3𝑙2 −  4𝑎2)    …………………………. equation 1                         

𝐵 =
  3𝐹𝑓𝑟𝑎𝑐   𝑎 

𝑏ℎ2                               ………………………. equation 2                        

                                          

Where: 

F           is the difference between the deflections at 15N and 50N in mm 

b           is the average width of the specimen in mm 

h           is the average thickness of the specimen in mm 

l            is the distance between the outer loading points (60mm) 

ΔF         is the load range (50N - 15N) 

a         is the distance between the inner and outer loading points (20mm) 

Ffract   Force at fracture in N 

 

 

 

 

 

 

Figure 13: Bending test according to ISO5833 2002. 
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Figure 14: Four-point bending test (ISO5833 2002). 

2.2.6.3 Fracture toughness 

The fracture toughness was determined by the ISO13586:2000 Plastics - 

Determination of fracture toughness (GIC and KIC) – Linear elastic fracture 

mechanics (LEFM) approach. The bone cement samples were rectangular with a 

length of 45±0.1 mm, width of 10±0.1 mm and thickness of 3.3±0.1 mm. A sharp 

chevron notch of 4.4-5.5mm was made at the centre of the sample, using a sharp 

razor blade. The rectangular bending sample was placed at the centre of the 

bending rig, and loaded incrementally using a Zwick Roell ProLine table-top 

Z050/Z100 materials testing machine (Zwick Testing Machines Ltd., 

Herefordshire, UK) (Figure 15). The fracture toughness is a three-point test, where 

the distance between the rollers is 40mm. The length of the crack was measured 

by a Pye Scientific travelling microscope (Pye Scientific, Cambridge, UK), and 

the width and length of each sample was measured by a Vernier calliper. The 

results were an average of five samples.  
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Figure 15: Fracture toughness test according to ISO 13586 2000. 

 

2.2.7 Water uptake testing 

Bone cement commercial samples and nanocomposites were incubated in 3 ml 

PBS at 37°C for 3 months; for the first 2 weeks, the samples were weighed daily; 

after that the samples were weighed every 3 days (Perni et al., 2015). Water 

uptake studies give an insight about the cement behaviour after being immersed 

in PBS (pH 7) to simulate the in-vivo conditions inside the joint with the synovial 

fluid. 

2.2.8 Cytotoxicity testing 

The new bone growth of skeletal cells around orthopaedic implants is formed by 

osteoblasts.  These cells are from mesenchymal origin showing the ability to form 

osteoid components needed for bone matrix deposition (Olivares-Navarrete et al., 

2012). Many osteoblast cell models have been developed for research in the field 

of biomaterials. These include cells isolated from various species, immortalized 

cells malignant cells and stem cells (Alvarez et al., 2012; Saldaña et al., 2011; 

Tashiro et al., 2009). Osteosarcoma tumours derived osteoblasts have features 

similar to osteoblasts, such as expression of specific receptors (e.g. vitamin D3 and 

calcitonin) (Saldaña et al. 2011), alkaline phosphatase activity and production of 

proteins specific for bone matrix (Tashiro et al. 2009; Alvarez et al. 2012). 

However, immortalized cells don’t fully resemble osteoblasts because of the origin 

of osteosarcoma cell and immortalization for cells which led to some phenotypic 

differences. Immortalized cells are frequently used in biological testing more than 

primary derived cells because of unlimited number, ease of culturing, higher 
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phenotypical stability and repeatability of results during testing compared to 

primary cells (Czekanska et al., 2014).  

In this work, Saos-2 human osteosarcoma osteoblast-like cells (ATCC® HTB-

85™) were used for cytocompatibility testing which derived from osteosarcoma 

tumours. Saos-2 cells demonstrated similar alkaline phosphatase activity, 

mineralization potential and gene regulation to primary human osteoblast cells 

(Czekanska et al., 2014). In addition, Saos-2 cell line is more suitable for in vitro 

biomaterial biological testing  when compared to other cell lines used, such as MG-

63, and MC3T3-E1 because they have better similarity in cell proliferation and 

mineralization to primary human osteoblast cells  (Saldaña et al., 2011).  

In this work, Saos-2 were cultured in RPMI-1640 medium supplemented with fetal 

bovine serum (10% v/v) and 1% v/v of a solution of penicillin (5000 

U/mL)/streptomycin (5000 mg/mL); cells were incubated at 37°C in humidified 

atmosphere with 5% CO2. Cells were grown till 70% confluence, washed twice 

with sterile PBS, and detached with trypsin; osteoblast cells were counted (using 

Trypan Blue to differentiate between viable and nonviable cells).  Bone cement 

samples were prepared for different types of composites (Palacos R, Palacos NP, 

Cemex Genta, Cemex NP). The bone cement was round disk shaped with a 

diameter of 10 mm, and 5mm height, where each independent experiment had 6 

replicates. 

.  

2.2.8.1 MTT  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium test 

Vybrant® MTT Cell Proliferation Assay Kit (V-13154) (Thermofisher scientific, 

UK) was used for the determination of the number of viable cells. The MTT assay 

involves the conversion of the water soluble MTT (3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide) to an insoluble formazan (Liu et al., 1997). The 

formazan is then solubilized, and its concentration determined by optical density 

at 560 nm. In a 24-well plate, each bone cement sample was incubated in 1 ml 

growth media inoculated with approximately 60000 cells/well for 7 days at 37°C 

in humidified atmosphere with 5% CO2. After that, MTT test was done after 1, 2, 

4 and 7 days of incubation. On each time point, the medium present in the well 

was taken off and replaced with 1 ml of fresh medium (phenol red-free). Twenty 
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microliters of MTT reagent (5 mg/mL in PBS) was added to each well and the 

plate was incubated for 24 hours at 37°C in humidified atmosphere with 5% CO2. 

After this, 900 ml of the media were removed from each well, and 150 µl of 

dimethyl sulfoxide (DMSO) was added to each well and the plates were incubated 

for further 10 min. Two hundred microliters of solution containing the dissolved 

formazan was put in another 96-well plate and analysed with a spectrophotometer 

(Tecan® Infinite F50, Austria) at 560 nm.  

The media in each well was replaced with fresh media (1 ml of RPMI-1640 

medium) warmed up to 37ºC in the incubator on day number 4, to supply the cells 

with nutrients before testing. Replacing media is only needed for the time point 

day 7, because the previous points (Day 1,2,4) are done before the nutrients in the 

media are consumed. The viability of cells was plotted as percentage viability, by 

dividing the optical density of viable cells for the nanocomposite by the optical 

density of commercial cement as in the following equation: 

𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
𝑂𝑝𝑡𝑖𝑐𝑎𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑛𝑎𝑛𝑜𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 

𝑂𝑝𝑡𝑖𝑐𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 𝑐𝑒𝑚𝑒𝑛𝑡 
∗ 100% 

 

2.2.8.2  Lactate dehydrogenase release assay test (LDH) 

The LDH assay is used for measuring the viability of cells along with the MTT 

test. This assay is based on the reduction of NAD by LDH, where the reduced 

NAD (NADH) is utilized in the stoichiometric conversion of a tetrazolium dye. 

The resulting coloured compound is measured spectrophotometrically (Decker and 

Lohmann-Matthes, 1988). Cell death is determined by the quantification of plasma 

membrane damage. LDH is a stable enzyme present intracellularly and released 

into cell culture medium upon damage of the plasma membrane, hence it is used 

as a marker for cell viability (Legrand et al., 1992). The viability of the osteoblasts 

was determined using two independent enzyme assays, because LDH is based on 

the relative concentration of lactate dehydrogenase inside the cells and in the 

media. Therefore, using a single assay could be inconclusive in case a reduction in 

metabolic activity which could be indicative of a reduction of viable cells if only 

MTT was employed (Perni and Prokopovich, 2017). The kit used is “In Vitro 

Toxicology Assay Kit, LDH based, catalogue number: TOX7” (Sigma-Aldr ich, 
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UK), and viability of cells were assayed according to manufacturer protocols. The 

kit contains the following components: substrate solution, cofactor solution, dye 

solution, lysis solution.  

In a 24-well plate, each bone cement sample was incubated in 1 ml growth media 

inoculated with approximately 60000 cells/well for 7 days at 37°C in humidified 

atmosphere with 5% CO2. After that, LDH test were done on days 1, 2, 4 and 7 of 

incubation. LDH assay was done for the cell culture media before and after adding 

the cell lysis solution, and cell viability was calculated according to the following 

equation:  

𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
(𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙𝑠 − 𝐷𝑒𝑎𝑑 𝑐𝑒𝑙𝑙𝑠) 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙𝑠 
∗ 100% 

Dead cells: the optical activity (at 490 nm) for the media before adding the lysis 

solution, which accounts for the dead cells. 

Total cells: the optical activity (at 490 nm) for the media after adding the lysis 

solution, which accounts for total number of cells, live and dead cells.  

 

The assay of dead cells was done by measuring the LDH release into the medium 

from cells with ruptured cell membrane and lost integrity. 75 µl cell culture media 

transferred to 96-well plate for each sample. Then, 50 µl was added into each well 

from the following reagents: substrate solution, cofactor solution, dye solution to 

determine LDH enzymatic activity.  After that, the plate was covered with 

aluminium foil to protect from light and incubated at room temperature for 30 

minutes. Then, the optical density was measured at a wavelength of 490 nm.  

The assay for the total cells was done by adding the 75 µl lysis solution to each 

sample in the 24-well plate containing cells with cement samples, and incubation 

at 37°C for 30 minutes. The lysis solution ruptures the cell membrane for all cells 

and causes the release of LDH enzyme to the media. Then, the procedure for 

testing LDH in the media is repeated as in dead cells. 75 µl cell culture media 

transferred to 96-well plate for each sample. Then, 50 µl was added into each well 

from the following reagents: substrate solution, cofactor solution, dye solution to 

determine LDH enzymatic activity.  After that, the plate was covered with 
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aluminium foil to protect from light and incubated at room temperature for 30 

minutes. Then, the optical density was measured at a wavelength of 490 nm. 

  

2.2.8.3 Calcium production assay-Alizarin red 

Alizarin Red, an anthraquinone derivative, used to identify calcium in tissue 

sections and cultured cells in vitro. The reaction is not strictly specific for calcium, 

since magnesium, manganese, barium, strontium, and iron may interfere, but these 

elements usually do not occur in sufficient concentration to interfere with the 

staining. Calcium forms an Alizarin Red S-calcium complex in a chelation process, 

and the end product is a bright red stain. Alizarin red is a commonly used dye to 

identify calcium containing osteocyte in differentiated culture of both human and 

rodent mesenchymal stem cells (Reich et al., 2015). 

In a 24-well plate, each bone cement sample was incubated in 1 ml growth media 

inoculated with approximately 60000 cells/well for 21 days at 37°C in humidified 

atmosphere with 5% CO2. after that, alizarin red test was done after 21 days of 

incubation. On day 21, the medium present in each well was taken off and replaced 

with 1 ml of glutaraldehyde 10% (v/v) (Sigma-Aldrich, UK); the plates were 

incubated for 15 min and washed with deionized water three times. 1 ml of Alizar in 

Red S 1% (v/v) (Sigma-Aldrich, UK) was added to each well and the plates were 

incubated for 20 min. After washing with deionized water, 1 ml of acetic acid 10% 

(v/v) was added to each well and the plates were incubated for 30 min. After this, 

200 µl of solution was put in another 96-well plate analysed with a 

spectrophotometer (Tecan® Infinite F50, Austria) at 450 nm (Tommasi et al., 

2016). 

 

2.2.8.4 NO 

Nitric oxide (NO) is involved in many physiologic processes (Schmidt and Walter, 

1994; Snyder, 1992), such as vasodilation, inflammation thrombosis, immunity 

and neurotransmission. Nitric oxide is a free radical which has important effects 

on bone cell function. The endothelial isoform of nitric oxide synthase is widely 

expressed in bone on a constitutive basis, whereas inducible NO is only expressed 
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in response to inflammatory stimuli (Danziger et al., 1997). Several methods have 

been developed for NO quantification in biological systems (Archer, 1993). One 

of these methods is called Griess deionization reaction quantify nitrite formed from 

the spontaneous oxidation of NO under physiological conditions (Ignarro et al., 

1987; Tracey et al., 1990). Griess reagent kit for nitrite determination (catalogue 

number: G-7921) (Molecular Probes, Oregon, USA) was used for nitrite 

quantification from culture media incubated with bone cement sample. Bone 

cement samples were prepared for different types of composites (commercial and 

nanocomposites). The samples were round disk shaped with a diameter of 10 mm, 

and 5mm height, where each time point was a replicate of 6 samples. In a 24-well 

plate, each bone cement sample was incubated in 1 ml growth media (RPMI 1640 

medium containing 10% Fetal bovine serum ‘FBS’ and 1% penicill in 

streptomycin) inoculated with approximately 60000 cells/well for 7 days at 37°C 

in humidified atmosphere with 5% CO2. after that, nitrite quantification was done 

after 1, 2, 4 and 7 days of incubation according to kit manufacturer instructions.  

In a 96-well plate, the following were mixed in each well (sample capacity is 300 

µL per well): 20 µL of Griess reagent, 150 µL of the nitrite containing sample and 

130 µL of deionized water. Then, the 96-well plate was incubated for 30 minutes 

in the dark at room temperature. A photometric reference sample was prepared by 

mixing 20 µL of Griess regent and 280 µL of deionized water. After that, the 

absorbance of the nitrite containing samples relative to the reference sample was 

determined in a spectrophotometric microplate reader at wavelength 560 nm. The 

absorbance of readings was converted to nitrite concentrations using the 

calibration curve (Figure 16). The calibration points were obtained by preparing 

nitrite solutions with concentrations between 1-100 µM by diluting the nitrite 

standard solution (included in the kit) with deionized water. 
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Figure 16: Calibration curve for nitrite production. 

 

2.2.8.5 Fluorescence images 

a. Live/dead 

The viability of cells was assessed using simultaneous fluorescence staining of 

viable and dead cells. Human SAOS-2 cells (4x104 cells/well) were seeded 

directly on glass coverslips in 6-well plates and cultured in RPMI 1640 medium 

containing 10% FBS and 1% penicillin streptomycin at 37°C in a humidified 5% 

CO2-95% air atmosphere for 24 hours. Fluorescence imaging were performed for 

cement samples of different types of composites (commercial and 

nanocomposites). After cell attachment, the medium was replaced with 3 ml of the 

cement solutes, which was the 24 hours incubation of cements in RPMI 1640 

medium containing 10% FBS and 1% penicillin streptomycin. Cells were washed 

thoroughly three times in PBS 24 hours later. Observation of cell morphology 

necessitated fluorescent dyes for cell staining. Briefly, for the staining of the viable 

and dead cell and nuclei, cells were incubated with calcein-AM, propidium iodide 

(Sigma-Aldrich, St. Louis, MO, USA), and trihydrochloride Hoechst 33342 

(Thermo Fisher Scientific, Eugene, OR, USA), respectively. After washing the 

cells with PBS, 3 ml of staining solution was added to each well (0.1% v/v 

propidium, 0.2% v/v calcein, 5 µg/ml Hoechst in PBS). Then, the cells were 
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incubated at 37°C for 30 minutes, and the stain was removed from each and cells 

were washed with PBS immediately before imaging.  

Calcein-AM, acetoxymethyl ester of calcein, is highly lipophilic and cell 

membrane permeable. Though Calcein-AM itself is not a fluorescent molecule, 

the calcein generated from Calcein-AM by esterase in a viable cell emits strong 

green fluorescence (excitation: 490 nm, emission: 515 nm). On the other hand, PI, 

a nucleus staining dye, cannot pass through a viable cell membrane. It reaches the 

nucleus by passing through disordered areas of dead cell membrane, and 

intercalates with the DNA double helix of the cell to emit red fluorescence 

(excitation: 535 nm, emission: 617 nm) (Lecoeur, 2002). Hoechst 33342 nucleic 

acid stain is a popular cell-permeant nuclear counterstain that emits blue 

fluorescence when bound to DNA, and this dye is often used to distinguish 

condensed nuclei in apoptotic cells. Hoechst 33342 is a cell-permeable DNA stain 

that is excited by ultraviolet light and emits blue fluorescence at 460-490 nm. 

Hoechst 33342 binds preferentially to adenine-thymine (A-T) regions of DNA. 

This stain binds into the minor groove of DNA and exhibits distinct fluorescence 

emission spectra that are dependent on dye: base pair ratios. (Mocharla et al., 

1987). Confocal microscopy (Zeiss, Oberkochen, Germany) was used for 

visualization of the staining, the magnifying glasses used are 10X and 64X. 

 

b. Actin/dapi 

Actin stains and probes are used in determining the structure and function of the 

cytoskeleton in living and fixed cells. Human SAOS-2 cells (4x104 cells/we ll) 

were seeded directly on glass coverslips in 6-well plates and cultured in RPMI 

1640 medium containing 10% FBS and 1% penicillin streptomycin at 37°C in a 

humidified 5% CO2-95% air atmosphere for 24 hours. Fluorescence imaging were 

performed for cement samples of different types of composites (commercial and 

nanocomposites). After cell attachment, the medium was replaced with 3 ml of the 

cement solutes, which was the 24 hours incubation of cements in RPMI 1640 

medium containing 10% FBS and 1% penicillin streptomycin. Cells were washed 

thoroughly three times in PBS 24 hours later. Then, for the staining of the F-actin 
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cytoskeleton and nuclei, cells were fixed with 4% paraformaldehyde in PBS and 

permeabilized with 0.1% Triton-X-100.  

Observation of cell morphology necessitated fluorescent dyes for cell staining. 

Thus, cells were incubated with tetramethyl rhodamine B isothiocyana te-

conjugated phalloidin (Sigma-Aldrich, St. Louis, MO, USA) and trihydrochlor ide 

Hoechst 33342 (Thermo Fisher Scientific, Eugene, OR, USA), respectively. 3 ml 

of staining solution was added to each well (50 µg/ml fluorescent phallo id in 

conjugate, 5 µg/ml Hoechst in PBS). Then, the cells were incubated at 37°C for 30 

minutes, and the stain was removed from each and cells were washed with PBS 

immediately before imaging.  

 Phalloidin is a fungal toxin isolated from the poisonous mushroom Amanita 

phalloides. Its toxicity is attributed to the ability to bind F actin in liver and muscle 

cells (Waggoner et al., 1989). Phalloidin binding to actin filaments to form a 

complex that is strongly stabilized. Phalloidin has been found to bind only to 

polymeric and oligomeric forms of actin, and not to monomeric actin. Fluorescent 

conjugates of phalloidin are used to label actin filaments for histologica l 

applications (Small et al., 1988). Confocal microscopy (Zeiss, Oberkochen, 

Germany) was used for visualization of the staining, the magnifying glasses used 

are 10X and 64X. 

 

2.2.9 Nanoparticles distribution in bone cement: 

The distribution of nanoparticles inside the bone cement was studied by florescent 

images of fluorescent labelled nanoparticles incorporated into the cement. 

Fluorescent nanoparticles, used for different LbL coatings, were prepared as 

described in section 2.1.2.1 using deionised water containing 86 mg fluoresce in 

sodium salt (Sigma-Aldrich, St. Louis, MO, USA). Then, the fluorescent 

nanoparticles were mixed with the bone cement powder and the cement was 

prepared as described in section 2.2.2. However, a small amount of the cement 

paste was taken with a spatula before cement hardening, and allowed to set on a 

glass slide. Confocal microscopy (Zeiss, Oberkochen, Germany) was used for 

visualization of the fluorescent nanoparticles distribution inside the cement 

utilizing the glass slides for different types of nanocomposites, the magnifying 
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glasses used are 10X and 64X. Several images were taken in various locations (at 

least 10 different locations) to give a reproducible insight about nanopartic les 

distribution in the cement.  

 

2.2.10 Statistical analysis  

All data were expressed as means ± standard deviation (SD) from at least three 

independent values. To assess the statistical significance of results between 

groups, one-way analysis of variance (ANOVA) was performed. Experimenta l 

results were considered statisticallysignificant at 95 % confidence level (p<0.05). 

All analyses were run using the SPSS ® software. 
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3  Gentamicin controlled release from Layer-by-Layer 

coated silica nanoparticles. 

3.1 Introduction 

The development of controlled release drug delivery systems is vital for effective 

therapeutic treatment (Li et al., 2012). High drug loading and prolonged release 

kinetics are attractive attributes in drug delivery systems for many applications 

such as biomedical infections (Béraud and Huneault, 2005; Gimeno et al., 2015). 

Despite the emergence of antibiotic resistant bacteria, the use of antibiot ic 

releasing biomaterials remains the standard and effective approach for the 

prevention and treatment of biomedical infections (Masters et al., 2013; 

Schmidmaier et al., 2006; Stammers et al., 2015). Infection and biofilm formation 

can be prevented through controlled release of antibiotics locally at high 

concentrations, over prolonged period of time without burst release (Anagnostakos 

and Kelm, 2009). 

One of the novel approaches for enhancing the delivery of a wide range of 

therapeutic agents is Layer by layer assembly (LbL) (Gentile et al., 2015). This 

coating technique is based on the deposition of alternative oppositely charged 

polyelectrolytes on different substrates, allowing control of the thickness and 

composition of coating at nanoscale level in a reproducible manner (Ariga et al., 

2011; Vergaro et al., 2011). Moreover, the coating process is simple, low-cost, 

scalable, and does not comprise harsh organic conditions, as it involves mild 

aqueous solutions. Because of its’ advantages, LbL has numerous applications in 

drug delivery (Deshmukh et al., 2013). 

Nanoparticles have been extensively explored and successfully applied as drug 

carriers for antibiotics and others. Among all nano-carriers, silica nanoparticles are 

commonly preferred as a drug carrier, because of its unique physicochemica l 

properties and biocompatibility and low cost. Silica nanoparticles have as large 

ratio of surface area to mass, small size, and ease of structural or functiona l 

modification because of silanol-containing surface (Feng et al., 2014; Tamanna et 

al., 2015).  
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Gentamicin sulphate is a broad spectrum aminoglycoside antibiotic acting against 

most gram-positive and gram-negative bacterial pathogens that commonly cause 

device-related infections such as Staphylococcus aureus, S. epidermidis, 

Pseudomonas aeruginosa and Escherichia coli (Donlan, 2001). The bactericida l 

activity of gentamicin is concentration dependant which inhibit protein synthes is 

in bacteria (Tam et al., 2006). Gentamicin have been extensively used for to 

prevent infection in implants coatings (Li et al., 2012), orthopeadic bone cement 

(Van et al., 2000), and for the treatment of osteomyelitis by incorporation in poly-

methacrylic acid beads to provide prophylaxis, where a period of 6 to 8 weeks of 

release is required (Anagnostakos et al., 2006).  

Gentamicin is small molecule with five ionisable amino groups that can attach on 

negatively charged surfaces after protonation in aqueous media. However, it is 

difficult to build stable LbL constructs with small molecular weight, because of 

lack of polymeric nature with multiple ionisable groups for electrostatic 

interactions (Chuang et al., 2008; Wang et al., 2016). poly-β-amino esters 

(PBAEs), a very well-known class of synthetic polymers obtained from the co-

polymerization of diacrylate and amines (Lynn and Langer, 2000), have been 

extensively used in LbL coating for biomedical applications in virtue of their 

positive charge and possible hydrolysis (Chuang et al. 2008).Wang et al. (Wang et 

al., 2016) conjugated cationic gentamicin sulphate with polycyclic acid polyanion 

to enable incorporation in multilayer film as (poly (acrylic acid)-

gentamicin/poly(ethylenimine)) n through LbL method. Chuang et al (Chuang et 

al., 2008) used a poly (β-amino esters) (Poly with different chain lengths, X = 1, 2, 

and 6A) with positive charges to construct a multilayer film with [Poly 

1/Anion/Gentamicin/Anion]n in tetralayers, to enable the incorporation of 

gentamicin into the LbL construct. The drug release was controlled by the 

hydrolytic degradation of multilayers without the need for enzymatic or cellular 

interaction to provide a controlled release of gentamicin for 10 hours after the 

deposition of 50 tetralayers.  

In this chapter, we aim to provide controlled release of gentamicin incorporated 

directly into multilayer films constructed on the surface of silica nanopartic les 

using LbL assembly coating method. Multilayer films were constructed using 

hydrolysable and non-hydrolysable polyelectrolytes to provide controlled release 
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of gentamicin for more than 4 weeks at high concentrations with high drug loading 

capacity. This approach represents a convenient and effective strategy to control 

the release of gentamicin which has many antibacterial applications in infect ion 

prevention and treatment. 

3.2 Materials and methods 

3.2.1 Chemicals  

Triton X-100, tetraethyl orthosilicate (TEOS), 3-aminopropyltriethoxysilane 

(APTS), sodium alginate (Mw 80.000-120.000 Da), chitosan (Mw 190.000-

310.000 Da), gentamicin sulphate, sodium acetate trihydrate, phosphate buffer 

solution (PBS) tablets, o-phthaldialdehyde reagent solution (OPA) were purchased 

from Sigma-Aldrich, UK. Cyclohexane, n-hexanol, ammonium hydroxide (35%), 

ethanol, methanol, glacial acetic acid and iso-propanol were purchased from 

Fishers scientific, UK. All reagents were stored according to manufacturer’s 

guidelines and used as received. B1: is a patented biocompatible, biodegradable 

cationic polymer, the precise structure will remain confidential due to the IP 

associated, was freshly prepared in the lab before use.  

Acetic acid-sodium acetate buffer was prepared as follows: to prepare 100 ml 

acetic acid-sodium acetate buffer (0.1 M, pH 5), 30 ml of sodium acetate trihydrate 

(CH3COONa.3H2O) (0.1 M) were added to 70 ml of acetic acid (CH3CO2H) (0.1 

M) solutions and stirred. Phosphate buffer saline (PBS) (pH 7.3) was prepared by 

dissolving 1 tablet of PBS in 100 ml of deionized water. 

3.2.2 Gel permeation chromatography (GPC) 

In a 50-ml test tube a solution composed by 100 mg of B1, previously synthesized, 

and 10 ml of acetate buffer pH5 was incubated at 37°C to start a study of molecular 

weight degradation. The same procedure was followed for pH 7.4. The 

determination of the molecular weight was performed by the FPLC (Fast Protein 

Liquid Chromatography) of Akta Design (Amersham pharmacia biotech-Sweden) 

supplied with Superdex 75 10/3000 GL column. Firstly, as a starting point (day 0), 

0.5 ml of sample for each media was collected and analysed for the determina tion 

of the molecular weight. After that, samples were collected every 24 hours and 

immediately analysed for 30 days. For each sample 2 replicates were taken. A 

calibration curve was built to correlate the molecular weights and retention 



 

67 

 

volumes. 7 standards of polymers with known molecular weight purchased from 

(Fluka Chemie AG and Polymer Laboratories Ltd,.) were used for calibration 

(Figure 17). For each one 1mg has been diluted with 1 ml of acetate buffer pH 5 

and 0.2 ml of this solution was injected into the FPLC using a defined method with 

a running time of 24 minutes for each run. The column used was Superdex 75 

10/3000 GL and the mobile phase was acetate buffer pH 5.  

 

Figure 17: FPLC calibration curve 

3.2.3 Nanoparticle preparation 

3.2.3.1  Amino functionalised silica nanoparticle synthesis 

Silica nanoparticles functionalised with amine groups (SiO2-NH2) were prepared 

in one-pot synthesis by hydrolysis of TEOS in reverse micro-emulsion and 

subsequent functionalization (Stöber method) (Stöber et al., 1968), as described in 

section 2.1.2.1.  
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3.2.3.2  Layer by Layer (LbL) coating technique 

 The silica nanoparticles were layered with different numbers of a repeating 

sequence of polyelectrolytes (sodium alginate, chitosan, B1) and drug 

(gentamicin). Two sequences were used, each one was composed of a repeated 

unit of four layers making one quadruple layer (Q). The first sequence was: sodium 

alginate, gentamicin, sodium alginate and chitosan, respectively. Up to ten 

quadruple layers were coated onto silica nanoparticles, named as Qn where n 

represents the number of quadruple layers.  (Table 9). The following 

concentrations of polyelectrolytes and drug in acetic acid-sodium acetate buffer 

were used in LbL: sodium alginate (2 mg/ml), gentamicin (10 mg/ml) and chitosan 

(2 mg/ml). (The procedure for LbL coating technique was described in section 

2.1.2.2.)  

  

Table 9: 10 quadruple layers’ abbreviations and constituents using chitosan as 

polycation 

Quadruple layer no. Abbreviation  Layers on the surface of amino functionalised 

silica nanoparticles (SiNH2) 

1 Q1 SiNH2-alginate-gentamicin-alginate-chitosan 

2 Q2 SiNH2-Q1-alginate-gentamicin-alginate-chitosan 

3 Q3 SiNH2-Q2-alginate-gentamicin-alginate-chitosan 

4 Q4 SiNH2-Q3-alginate-gentamicin-alginate-chitosan 

5 Q5 SiNH2-Q4-alginate-gentamicin-alginate-chitosan 

6 Q6 SiNH2-Q5-alginate-gentamicin-alginate-chitosan 

7 Q7 SiNH2-Q6-alginate-gentamicin-alginate-chitosan 

8 Q8 SiNH2-Q7-alginate-gentamicin-alginate-chitosan 

9 Q9 SiNH2-Q8-alginate-gentamicin-alginate-chitosan 

10 Q10 SiNH2-Q9-alginate-gentamicin-alginate-chitosan 
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For the second sequence, chitosan was replaced with B1 as the polycation using 

the same solution concentration. As a result, the new sequence for a quadruple 

layer became: sodium alginate, gentamicin, sodium alginate and B1, respectively. 

Ten quadruple layers were also layered with the same procedure and concentration 

used before with chitosan (Table 10). 

 

 

 

 

 

 

 

 

 

Quadruple layer no. Abbreviation  Layers on the surface of amino functionalised silica 

nanoparticles (SiNH2) 

1 Q1 SiNH2-alginate-gentamicin-alginate-B1 

2 Q2 SiNH2-Q1-alginate-gentamicin-alginate-B1 

3 Q3 SiNH2-Q2-alginate-gentamicin-alginate-B1 

4 Q4 SiNH2-Q3-alginate-gentamicin-alginate- B1 

5 Q5 SiNH2-Q4-alginate-gentamicin-alginate- B1 

6 Q6 SiNH2-Q5-alginate-gentamicin-alginate- B1 

7 Q7 SiNH2-Q6-alginate-gentamicin-alginate- B1 

8 Q8 SiNH2-Q7-alginate-gentamicin-alginate- B1 

9 Q9 SiNH2-Q8-alginate-gentamicin-alginate- B1 

10 Q10 SiNH2-Q9-alginate-gentamicin-alginate- B1 

Table 10: 10 quadruple layers abbreviations and constituents using B1 as a 

polycation 
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3.2.4 Nanoparticles surface and material characterisation 

3.2.4.1 Nanoparticles size measurements 

The size of nanoparticles was characterized using transmission electron 

microscopy (TEM) as described in section 2.1.3.1.  

3.2.4.2 Nanoparticles Zeta potential measurements  

The electrophoretic mobility for the nanoparticles was measured by dynamic light 

scattering (DLS), using Malvern Zetasizer, Nano ZS particle characteriza t ion 

system (Malvern Instruments Limited, UK), as described in section 2.1.3.2.  

 

3.2.4.3 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis (TGA) was performed using a Perkin-Elmer TGA 

4000 instrument, as described in section 2.1.3.3.  

 

3.2.5 Gentamicin release quantification  

Gentamicin release from the nanoparticles was evaluated by dispersing the drug 

loaded nanoparticles (10 mg/ml) in 2 buffer media: acetic acid-sodium acetate 

buffer pH 5, and PBS pH 7.3. These two pH points were chosen to assess the drug 

release under healthy joint (pH 7.35-7.45) (Ribeiro et al., 2012), and for infected 

joint, which are associated with low pH values (pH < 7) or local acidosis (Kinnari 

et al., 2009). 

Then, samples were vigorously stirred in a vortex, and then incubated at 37°C. 

Samples were taken every 24 hours where 1ml of release medium aliquots were 

taken after Eppendorf centrifugation, to avoid withdrawing nanoparticles during 

taking the sample. 

The amount of gentamicin released from the nanoparticles in the buffer was 

quantified through fluorescence spectroscopy using o-phthaldialdehyde reagent 

(Perni and Prokopovich 2014), as described in section 2.1.4. 
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3.2.6 Statistical analysis 

All data were expressed as means ± standard deviation (SD) from at least three 

independent values. To assess the statistical significance of results between 

groups, one-way analysis of variance (ANOVA) was performed. Experimental 

results were considered statisticallysignificant at 95 % confidence level (p<0.05). 

All analyses were run using the SPSS ® software. 
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3.3 Results 

3.3.1 B1 hydrolysis kinetics (GPC) 

The results for B1 hydrolysis study are shown in Figure 18. At pH 7, no hydrolys is 

was observed for 30 days, because at this neutral condition hydrolysis is difficult 

as hydrolysis needs an acidic or basic condition to break the ester bonds. B1 

maintained the molecular weight for the first 20 days. Then, hydrolysis of B1 was 

drastic after 20 days at acidic condition.  

 

Figure 18: GPC hydrolysis study for B1. 

3.3.2 Nanoparticles surface and material characterization 

3.3.2.1 Size measurements 

TEM images for the amino functionalised silica nanoparticles, Q1 and Q10 are 

shown in Figure 19 and revealed that the nanoparticles were roundly shaped. 

Moreover, LbL deposition did not alter either the shape of the nanoparticles but 

increased their size from around 55 nm to 65 after 10 quadruple layers Table 11. 
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Figure 19: Examples of TEM images for: (a) amino functionalised silica 
nanoparticles, (b) Q10 chitosan layered nanoparticles, (c) Q10 B1 layered 

nanoparticles. 
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Sample Size (nm)   

SiNH2 nanoparticles 55 ± 8 

Q10 (chitosan) 64 ± 8 

Q10 (B1) 65 ± 9 

Table 11: Size measurements calculated from TEM images for amino 
functionalised silica nanoparticles, Q10 layered with chitosan or B1 as a 

polycation (n = 3 ± SD). 

 

3.3.2.2 Zeta potential measurements 

Zeta potential measurements were done for the amino functionalised silica 

nanoparticles and after each layering step, as shown (Figure 20 and  Figure 21). 

Zeta potentials were measured for both types of nanoparticles layered with 

different polycations (chitosan or B1) for ten quadruple layers; the total number of 

layers needed to build ten quadruple layers is 40 layers. The zeta potential for the 

amino functionalised silica nanoparticles was 30.1±0.95 mV. 

 

Figure 20: Zeta potential for amino functionalised silica nanoparticles (layer 0) 

and for 40 layers of a repeating unit of (alginate-gentamicin-alginate-chitosan) to 

build 10 quadruple layers (n = 3 ± SD). 
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For chitosan layered nanoparticles (Figure 20), the first quadruple layer (layer 1 

to 4) showed that layering sodium alginate reversed the zeta potential to a negative 

value of -27.83±0.95 mV. Next, the gentamicin layer decreased the negativity of 

the zeta potential to -13.17±1.12 mV, but could not reverse it into a positive value 

because it is a small molecule with small number of ionisable groups compared to 

polyelectrolytes. Then, the subsequent sodium alginate layer increased the 

negativity of the zeta potential value -27.83±0.97 mV back again to nearly the 

same value seen in the first alginate layer. Then, chitosan layering step reversed 

the value of zeta potential to a positive value of 25.47±1.45 mV. For quadruple 

layers 2 to 10 (layer number 5-40), similar trend in the changes of zeta potential 

value and sign was observed compared to the first quadruple layer. The sodium 

alginate layer gives a negative zeta potential value, the gentamicin layer decreases 

the negativity of alginate charge and chitosan layer reverses the negative charge of 

alginate to a positive zeta potential value. 

For B1 layered nanoparticles (Figure 21), the first quadruple layer (layer 1 to 4) 

showed that layering sodium alginate reverses the zeta potential to a negative value 

of -16±0.31mV. Next, the gentamicin layer decreased the negativity of the zeta 

potential to -7.51±0.44 mV with similar trend seen previously in chitosan layered 

nanoparticles. Then, the subsequent sodium alginate layer increased the negativity 

of the zeta potential value to -25.57±0.23 mV. Then, B1 layering step reversed the 

value of zeta potential to a positive value of 5.35±0.43 mV. For quadruple layers 

2 to 10 (layer number 5-40), similar trend in the changes of zeta potential was 

observed compared to the first quadruple layer, except for B1. B1 zeta potential 

values were close to zero. B1 did not reverse the negativity of sodium algina te, 

because the zeta potential for a pure solution of B1 is +8 mV compared to +25 mV 

for chitosan. B1 is a weaker polycation, and sodium alginate projected an overall 

negative zeta value even on the surface of B1 layered nanoparticles.    
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Figure 21: Zeta potential for amino functionalised silica nanoparticles layer with 

40 layers of a repeating unit of (alginate-gentamicin-alginate-B1) to build 10 

quadruple layers (n = 3 ± SD). 

3.3.2.3 Thermogravimetric analysis (TGA) 

For the purpose of assessing the organic matter content after doing LbL coating, 

thermogravimetric analysis was performed for amino functionalised silica 

nanoparticles and the same nanoparticles layered with different number of 

quadruple layers, using both types of polycations (chitosan or B1) as shown in 

(figure 22 and figure 23). 

   

 

Figure 22: Thermogravimetric curves for amino functionalised silica nanoparticles 
and the same nanoparticles layered with different number of quadruple layers (Q1, 

Q3, Q5, Q7 and Q10) using chitosan as a polycation (n = 3 ± SD). 
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 An initial weight loss around (5%) was observed at about 100 ºC, which is 

normally attributed to the evaporation of adsorbed water from the samples (Wang 

et al., 2014). As a result, the organic content for each sample (Table 12 and  Table 

13) was calculated based on the weight loss beyond 100 ºC, which truly 

corresponds to the combustion of organic matter (Du et al., 2015). 

 

Samples Organic content (%) 

SiNH2-Nanoparticles 14.95 ±1.0 

Q1 18.23 ±2.65 

Q3 26.68 ±1.98 

Q5 32.73 ±1.46 

Q7 39.77 ±1.43 

Q10 45.24 ±1.11 

Table 12: Percentage of organic material in amino functionalised silica 

nanoparticles and the same nanoparticles layered with different number of 

quadruple layers (Q1, Q3, Q5, Q7 and Q10) using chitosan as a polycation (n = 

3 ± SD). 

 

In chitosan layered nanoparticles (Table 12), the organic content for the amino 

functionalised silica nanoparticles is 14.95 %, due to APTS. The organic content 

is increased by adding the first quadruple layer as seen for Q1 (18.23%), which 

makes a 3% increase in the organic content for the first quadruple layer for Q3, the 

organic matter is increased to reach (26.68%). And the organic content kept 

increasing, as expected, with addition of more quadruple layers to reach 32.73, 

39.77 and 45.24% for Q5, Q7 and Q10, respectively. 
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In B1 layered nanoparticles (Table 13), similarly, the organic content for the amino 

functionalised silica nanoparticles is 14.95 %. The organic content is increased by 

adding the first quadruple layer as seen for Q1 (18.07%), which makes a 3% 

increase in the organic content for the first quadruple layer. In Q3, the organic 

matter is increased to reach (21.28%). And the organic content kept increasing, as 

expected, with addition of more quadruple layers to reach 38.07, 38.07 and 41.5% 

for Q5, Q7 and Q10, respectively. 

  

Figure 23: Thermogravimetric curves for amino functionalised silica nanoparticles 
and the same nanoparticles layered with different number of quadruple layers (Q1, 

Q3, Q5, Q7 and Q10) using B1 as a polycation (n = 3 ± SD). 
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Samples Organic content (%) 

SiNH2-Nanoparticles 14.95 ±1.0 

Q1 18.07 ±1.27 

Q3 21.28 ±0.93 

Q5 27.97 ±1.03 

Q7 38.07 ±2.96 

Q10 41.5 ±3.66 

Table 13 : Percentage of organic material in amino functionalised silica 

nanoparticles and the same nanoparticles layered with different number of 
quadruple layers (Q1, Q3, Q5, Q7 and Q10) using B1 as a polycation (n = 3 ± 

SD). 

 

3.3.3 Gentamicin release quantification 

The drug release studies for gentamicin loaded silica nanoparticles were carried 

out in two release media; PBS buffer (pH 7.3), and acetic acid-sodium acetate 

buffer (pH 5). Gentamicin was quantified by fluorescence detection in each 

sample. These two pH points were chosen to assess the drug release under healthy 

joint conditions (pH 7.35-7.45) (Ribeiro et al., 2012), and for infected joint, which 

are associated with low pH values (pH < 7) or local acidosis (Kinnari et al., 2009). 

For chitosan layered nanoparticles, most of the drug was released within the first 

5 days in the two release media (figure 24 and figure 25). Subsequently, slow 

gradual release was observed until it reached plateau after 20 days. In PBS buffer 

(pH 7.3), Q1, Q3, Q5 had nearly the same release profiles (p>0.05), while Q7 and 

Q10 had significantly higher drug release. In acetic acid-sodium acetate buffer (pH 

5), all layers had similar release profile (p>0.05); however, Q7 release profile was 

marginally higher than other profiles (p<0.05). 
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Figure 24: Cumulative gentamicin release in PBS (pH 7.3) from Q1, Q3, Q5, Q7 

and Q10 layered using chitosan as a polycation (n = 3 ± SD). 

 

Figure 25: Cumulative gentamicin release in acetate buffer (pH 5) from Q1, Q3, 

Q5, Q7 and Q10 layered with chitosan as a polycation (n = 3 ± SD). 

 

The similarity in release profiles for different quadruple layers with chitosan 

suggests that the release occurs from only the last quadruple layer on the surface 

of nanoparticles. In order to test this hypothesis, different quadruple layers were 

incubated in hydrochloric acid- potassium chloride buffer (pH 2) at 37 C0 for 7 
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days. This condition is considered harsh enough to break all the layers of 

polyelectrolytes and allow the release of the drug. At pH 2, deionization of 

carboxylic group of alginate occurs, decreasing the electrostatic interaction with 

chitosan needed to maintain LbL assembly (Han et al., 2016). After the incubation 

time, thermogravimetric analysis was carried out (Figure 27), and the % of organic 

matter were calculated (Table 14). The % of organic matter in nanoparticles after 

trying to destroy LbL (Table 14) was similar to the organic matter in untreated 

nanoparticles, (p>0.05) (Table 12). These findings indicate that the layers are hard 

to hydrolyse and stay intact entrapping gentamicin between them, which explains 

the similarity in the release profiles for different quadruple layers in different 

media as gentamicin release occurs most probably only the outer layer of the 

deposited coating. 

 

 

  

Figure 26: Thermogravimetric analysis for chitosan layered nanoparticles after 

destroying LbL in pH 2 buffer (n = 3 ± SD). 
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Samples Organic content (%) 

Q1 14.49 ±2.65 

Q3 23.88 ±1.98 

Q5 30.67 ±1.46 

Q7 37.75 ±1.43 

Q10 43.67 ±1.11 

Table 14 : Organic matter in chitosan layered nanoparticles after trying to destroy 

LbL in pH 2 buffer (n = 3 ± SD). 

For B1 layered nanoparticles, gentamicin release was continued up to 30 days 

before reaching plateau (Figure 27 and  Figure 28). In pH 7.3 media (Figure 27), 

Q1 and Q3 had similar release (p>0.05), also Q5 and Q7 had similar release profile 

and Q10 showed the highest release profile than Q7 (p<0.05). In pH 5 media 

(Figure 28), Q10 had the highest release profile and Q1 had the lowest. Also, the 

amount of drug released from Si nanoparticles with the same number of quadruple 

layers was greater at pH 7.3 than pH 5 (p<0.05).  

 

Figure 27: Gentamicin release in PBS (pH 7.3) from Q1, Q3, Q5, Q7 and Q10 

layered using B1 as a polycation (n = 3 ± SD). 
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Figure 28: Gentamicin release in acetate buffer (pH 5) from Q1, Q3, Q5, Q7 and 

Q10 layered with B1 as a polycation (n = 3 ± SD). 

 

The zeta value for alginate and B1 was measured at different pH points (Figure 

29), to understand the electrostatic interaction between them and explain the 

release results at different pH media. At pH 7.3, both B1 and alginate were 

negatively charged, so the electrostatic interaction between them was weak. The 

amino group of B1 become deprotonated at pH 7.3.  

At pH 5, B1 is positively charged and alginate is negatively charged, resulting in 

strong electrostatic interaction between oppositely charged polyelectrolytes. This 

strong electrostatic interaction decreased the rate of hydrolysis of B1 and 

prevented the destruction of LbL construct, and with increasing the number of 

quadruple layers this phenomenon was more obvious. Consequently, the order of 

release was reversed and the more quadruple layers on nanoparticles, the lower the 

release profile. For example, the prevalence of B1 hydrolysis in Q1 give the 

highest release profile because of low electrostatic interaction involved compared 

with Q10, which showed the lowest release profile. 
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Figure 29 : Zeta values for pure sodium alginate solutions and B1 (2mg/ml) at 

different pH values (n = 3 ± SD). 
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3.4 Discussion 

In this study, a gentamicin nanotechnology based delivery system was developed 

to provide prophylaxis from post-surgical orthopaedic infections. LbL technique 

was used for loading gentamicin on amino functionalised silica nanoparticles using 

two types of quadruple layers: (i) (sodium alginate, gentamicin, sodium algina te 

and chitosan), (ii) (sodium alginate, gentamicin, sodium alginate and B1). The two 

quadruple layers differ in the polycation used; either chitosan or B1. Ten quadruple 

layers were loaded on the surface of the nanoparticles using two types of quadruple 

layer sequences. The coated nanoparticles were characterized for size, TGA, and 

zeta potential. In order to evaluate the deposition of polyelectrolyte layers and 

gentamicin on the surface of the nanoparticles. Finally, in vitro release studies 

were performed to investigate gentamicin release profile from both types of 

coatings at different joint conditions, healthy joint (pH ~ 7.3) and infected joint 

associated with local acidosis (pH ~ 5) (Kinnari et al., 2009; Ribeiro et al., 2012).  

3.4.1 Size measurements 

The amino functionalised silica nanoparticles had spherical monodisperse shape, 

which was confirmed by TEM images of (55 nm). This size is consistent with 

previously prepared amino functionalised silica nanoparticles in literature (Lu, 

2013; Soto-Cantu et al., 2012). After layering different number of electrolytes, 

there was a small increase in the size of nanoparticles up to (65 nm) as seen in Q10 

and calculated from TEM images, which is consistent with polyelectro lyte 

quadruple layers of about 0.5 nm thickness.  

3.4.2 Zeta potential measurements 

Zeta potential is a straightforward and widely used method for monitoring the 

multilayer build up, and deposition of polyelectrolyte layers on the surface of 

nanoparticles during LbL technique (Taladriz-Blanco et al., 2013).  

Amino functionalization is a common straightforward method to give the 

nanoparticles strong charge, because the non-functionalised silica nanoparticles do 

not have enough charge for the deposition of polyelectrolytes (Soto-Cantu et al., 

2012). The zeta value for the amino functionalised silica nanoparticles (Figure 20) 

was consistent with previous studies about amino functionalization of silica 
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nanoparticles with APTS (Arce et al., 2015) (Niu et al., 2015). The positive charge 

was due to the protonation of the amino groups at pH 5, which compensates for 

the negative charge of silanol groups. The zeta potential value after layering 

sodium alginate was converted into a negative value of nearly – 30 mV. Sodium 

alginate is an anionic polyelectrolyte with carboxylic acid as a functional group. 

This change of the of the sign of zeta potential was due to the electrostatic 

interaction between the carboxylate group of sodium alginate and amino groups 

on the surface of the nanoparticles. The negative zeta potential value after layering 

sodium alginate was in accordance with values reported by (Feng et al., 2014).  

After layering gentamicin, the value of zeta potential was decreased less negativity 

value. However, Gentamicin could not reverse it into a positive value since it is a 

small molecule, with small number of ionisable groups, compared to a 

polyelectrolyte like sodium alginate. Gentamicin is an aminoglycoside antibiot ic 

with only five amino functional groups. The electrostatic interaction between the 

amino groups of gentamicin and the carboxylate groups of sodium alginate was 

the reason for the deposition of gentamicin. After layering sodium alginate over 

gentamicin, the zeta value was decreased again to almost the same negative value 

seen in the first alginate layer.  

After layering chitosan, the zeta potential was reversed into a positive value of 

nearly +20 mV. This zeta potential values were similar to those obtained by (Feng 

et al., 2014). Chitosan is a cationic polyelectrolyte with positively charged amino 

groups. Chitosan was deposited on the surface of sodium alginate because of the 

electrostatic interaction between carboxylate groups of sodium alginate and amino 

groups of chitosan. In B1 layered nanoparticles, layering B1 could not reverse the 

negativity of zeta value into a positive one, because the zeta value of pure B1 

solution is +8 mV compared to +25 mV for chitosan, indicating weaker cationic 

properties for B1. However, B1 managed to decrease the negativity of coated 

particles close to zero, but alginate projected an overall negative charge on the 

surface of coated nanoparticles. Higher concentration of B1 layering solution is 

possibly needed to reverse the negative zeta value of alginate.  

Generally speaking, zeta potential value kept alternating with the same pattern as 

evident in Figure 20 and Figure 21. This pattern is summarized for one quadruple 



 

87 

 

layer as follows: (- 30 mV) after layering sodium alginate, less negative value of 

nearly (-13 mV) after layering gentamicin, more negative value back again to -30 

after layering sodium alginate, and finally (+20 mV) after layering chitosan or (-5 

mV) in case of B1 in each quadruple layer. Also, the values obtained for 

nanoparticles coated with alginate or chitosan were close to the zeta values of pure 

polyelectrolyte solutions, therefore deposition was optimal. This pattern was 

observed to be nearly the same in the 10 quadruple layers which confirms the 

deposition of polyelectrolytes and gentamicin during LbL process. 

3.4.3 Thermogravimetric analysis (TGA) 

TGA is a commonly used type of analysis to assess the presence of organic matter 

on the surface of nanoparticles, based on the observation of mass loss (Mai et al., 

2013). Furthermore, TGA is used to evaluate surface functionalization on the 

surface of nanoparticles (Zhong et al., 2015).  Therefore, during LbL assembly, 

the deposition of polyelectrolytes on the surface of nanoparticles was evaluated 

quantitatively using TGA analysis (Wu et al., 2015).  

The thermogram for the amino functionalised silica nanoparticles (Figure 22) was 

similar to the one obtained by (Branda et al., 2010). Moreover, the calculated 

organic matter percentage for the amino functionalised silica nanoparticles (Table 

12) was in agreement with the one reported by (Liu et al., 2015). A consistent 

increase in the organic content was observed for amino functionalised silica 

nanoparticles and different quadruple layer with increasing the number of layers 

on the surface of the amino functionalised silica nanoparticles. This consistent 

increase in the organic content confirmed the deposition of the layered 

polyelectrolytes and drug on the surface of the amino functionalised silica 

nanoparticles. 

3.4.4 Gentamicin release quantification 

Drug release from a LbL construct occurs as combination of two extreme cases; 

one is the delamination of the deposited layers and the second the diffusion of the 

drug through the deposited layers (Smith et al., 2009); each of these two 

mechanisms have a distinctive release profile. Pure delamination returns a constant 

release kinetic until all the coating is detached, at this point drug release drops to 

zero. On the other hand, diffusion returns a Fickian profile (Smith et al., 2009) 
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with drug release monotonically decreasing from the initial value down to zero. 

Based on previous studies (Grech et al., 2008; Min et al., 2014; Wong et al., 2010), 

gentamicin release from LbL coatings is mainly dependent on the number of 

quadruple layers, the type of polyelectrolytes used, the electrostatic interaction 

between different polyelectrolytes, and the kinetics of hydrolysis for the 

polyelectrolytes involved. Moreover, the different kinetics observed at the two pH 

values impact on both the electrostatic interactions between polyelectrolytes 

chains (through different level of protonation) and their kinetics of hydrolysis.  

In chitosan layered nanoparticles, gentamicin release was not affected by the pH 

value of the medium (Figure 24 and  Figure 25). The electrostatic interaction 

between chitosan and alginate formed a stable construct at both pH tested; hence 

the drug could be released only through diffusion; moreover because of the strong 

interaction between chitosan and alginate gentamicin release could only occur 

from the superficial layers. The stability of the LbL constructs at pH 2 and the 

release profiles in both buffers are consistent with such mechanism.  

For B1 coated nanoparticles, gentamicin release from different quadruple layers 

was dependent on pH value because pH affected the ionization of B1, whose 

charge was positive at pH 5 and close to zero at pH 7 forming a weaker 

polyelectrolyte interaction with alginate; such higher electrostatic interact ions 

reduce the ability of gentamicin to diffuse through the layer (reduce the diffus ion 

coefficient). B1 showed higher release at pH 7, compared to pH 5, as the weaker 

the LbL constructs the higher the gentamicin diffusion through the coating. The 

higher kinetics of release at pH 7 was despite B1 hydrolysis rate was more rapid 

in acid environment. Therefore, even though the hydrolysis of B1 is considered 

the key controlling mechanism in drug release from LbL coating, the electrostatic 

interactions between polyelectrolytes appeared to play the predominant role in the 

release of the deposited gentamicin. Despite the well-known pH dependent 

behaviour of PBAEs (Devalapally et al., 2007), role of electrostatic interactions in 

controlling drug release when PBAE are used in LbL constructs had not been 

addressed before. 
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The mechanisms based on electrostatic interactions suggested here would still 

explain the effect of the intercalating clay (Min et al. 2014) or PAH/PAA (Poly 

(allylamine hydrochloride)/ Poly (allylamine)) (Wood et al., 2006) layers that were 

employed to intercalate quadruple layers constructs containing B1 in order to 

extend the period of effective drug release under the hypothesis that they were 

being not hydrolysable, would slow down B1 degradation. These intercala t ing 

layers exhibit higher charges that B1 at the pH conditions of those experiments 

hence resulting in a reduced diffusion coefficient for gentamicin. 

 

In chitosan layered nanoparticles, gentamicin release was not affected by the pH 

value of the medium (Figure 24 and  Figure 25). The electrostatic interaction 

between chitosan and alginate formed a stable construct and prevented the 

hydrolysis of alginate chitosan layers, and the drug was entrapped between the 

layers. It is well known that the hydrolysis of chitosan in vitro, and other 

polysaccharides, only occurs via enzymatic hydrolysis, making it possible for the 

stable construct to release gentamicin in vivo (Lim et al., 2008). For PBAE coated 

nanoparticles, gentamicin release from different quadruple layers was dependent 

on pH value because pH affected the ionization of PBAE, and PBAE charge 

became close to zero at pH 7 forming a weak polyelectrolyte interaction with 

alginate. As a result, PBAE showed higher release at pH 7 compared to pH 5. Also, 

PBAE hydrolysis rate was more rapid at basic environment, where more 

degradation of PBAE was in pH 7 compared to pH 5. Moreover, the ability of 

PBAE to be hydrolysed in vitro helped in obtaining higher release profiles 

compared to chitosan layer nanoparticles.  

Wong et al. (2010) achieved controlled gentamicin release for several hours using 

hydrolytically degradable polyelectrolytes multilayers, with gentamic in 

sandwiched between different layers of poly (β-amino esters) using LbL 

technique. In this work, gentamicin release from B1 layered nanopartic les 

continued for 30 days, which is a considerable improvement from the current 

PMMA bone cement that release antibiotics for only 6 days (Dunne et al., 2008; 

Gasparini et al., 2014; Moojen et al., 2008; Squire et al., 2008). The release of 

gentamicin did not show the initial burst seen in LbL gentamicin quadruple layers 
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using hydrolysable polyelectrolytes. Furthermore, gentamicin release was 

sustained for longer period of time with less number of quadruple layers.   

Moskowitz et al. (2010) studied the release of gentamicin from a titanium implant 

coated using LbL technique. The implant was coated with 200 tetralayer of 

degradable films (tetralayer: poly (β-amino esters), polyacrylic acid, gentamic in, 

polyacrylic acid). More than 70 % of the drug was released in the first 3 days with 

continued release for 5 weeks, and the total amount released was 550 µl/ml in at 

pH 7.4. In another work, Wong et al. (2010) reported gentamicin release from LbL 

coating composed of 30 units of the same tetralayer of (poly (β-amino esters), 

polyacrylic acid, gentamicin, polyacrylic acid) for 7 hours in PBS, pH 7.3.  Chuang 

et al. (2008) studied the release of gentamicin from a 100 tetralayers of (poly (β-

amino esters), hyaluronic acid, gentamicin, hyaluronic acid) in simulated body 

fluids, where gentamicin release was controlled for not more than 15 hours.  

Compared to the previously mentioned work, B1 LbL system showed better 

outcome in terms of controlling the release kinetics for extended period of time at 

higher concentrations, using smaller number of quadruple layers.  

Gentamicin release with B1 at pH 7 reached high concentration of 3500 µg/ml. 

This concentration is relatively high compared to minimum inhibitory 

concentration needed to kill different bacteria involved in orthopeadic infect ions 

(Drago et al., 2014). This high concentration is promising for further evaluation of 

release when the nanoparticles are impregnated into the PMMA bone cement. The 

controlled release manner and long duration of release could provide prophylaxis 

from early stage infections, but further optimization for gentamicin loading and 

assessment of release profiles from impregnated bone cements are needed to 

confirm these assumptions.   

3.5 Conclusion 

Antimicrobial thin films were constructed through LbL deposition technique using 

two types of tetralayers. The films were deposited by alternating depositions 

between alginate and hydrolytically degradable polymers; the antibiot ic 

gentamicin was directly incorporated without the need for pre-modification. LbL 

was effective in controlling release of antibiotic from silica nanoparticles for at 

least 4 weeks without initial burst release, giving a promising profile for the 
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application in infection prevention and treatment, either by using the LbL as a 

coating for biomedical implants and devices, or by incorporation of the coated 

nanoparticles into bone cements. Chitosan results in a LbL structure that is too 

stable to provide release for a long period of time, entrapping gentamicin between 

the layers. PBAE is more suitable as a polycation to prepare gentamicin releasing 

silica nanoparticles, and the release profile can be tuned by variations in LbL 

coating. 

For the first time, this work provides evidence that the mechanism of gentamic in 

release is governed by electrostatic interaction between different polyelectrolytes 

even when PBAE were employed, confuting the establish assumption that 

hydrolysis is the key factor when these polymers are used. 

Our results also provide guidance in the polyelectrolyte properties required to 

achieve a desired release profile; i.e. to increase the release kinetic a 

polyelectrolyte with lower charge is required instead of more easily hydrolysed 

one; as it would be the case if hydrolysis was the governing mechanism in drug 

release from LbL coatings. 
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4 Chlorhexidine controlled release from Layer-by-

Layer coated silica nanoparticles. 

4.1 Introduction 

The use of antibiotics is the traditional approach for the prevention and treatment 

of PJIs (Parvizi et al., 2008). However, the continuing emergence of resistant 

microbial strains decreases the effectiveness of antibiotic-based therapies 

(Allahverdiyev et al., 2011). Hence, it is extremely urgent to develop non-

antibiotic therapies for the prevention and treatment of infections in general, 

especially in PJIs. Anguita-Alonso et al. (2005) investigated the susceptibility of 

Staphylococcus taken from patients with prosthetic infection against gentamic in 

and tobramycin (aminoglycoside antibiotics). 41% and 66% of bacteria were 

resistant to gentamicin and tobramycin respectively. Corona et al. (2014) 

compared antibiotic susceptibility between patients having infection for the first 

time and patients with previous use of ALBC and found a significantly higher 

resistance, indicating the risk of selecting aminoglycosides resistant strains after 

using ALBC. 

Chlorhexidine is a broad spectrum cationic bactericidal polybiguanide 

antimicrobial agent (Hidalgo and Dominguez, 2001). It has many applications as 

a disinfectant and antiseptic for skin infections, cleaning wounds (O’Malley, 

2008), sterilization of surgical instruments (Knox et al., 2015), and many dental 

applications including treatment of dental plaque, gingivitis and endodontic 

disease (Supranoto et al., 2015). The guanidium groups in its structure is 

responsible for the antimicrobial activity by binding to bacterial cell membrane 

causing cell function disruption (Denyer, 1995). Although it has been widely 

examined in dental cements (Fan et al., 2016), it has not been investigated widely 

in acrylic bone cements. The use of chlorhexidine in bone cements can enhance its 

antimicrobial properties because of the superior antimicrobial activity. However, 

one of the limitations for application of chlorhexidine in bone cement is the 

decrease in the compressive strength upon powder incorporation (Rodriguez et al., 

2015) 

 Despite chlorhexidine small structure, it can be incorporated in LbL assembly 

multilayers. Chlorhexidine release from B1 layered nanoparticles continued for 70 
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days, which is a considerable improvement from the current drug delivery systems 

that release antimicrobial agents for only few days (Dunne et al., 2008; Gasparini 

et al., 2014; Moojen et al., 2008; Squire et al., 2008). The release of chlorhexid ine 

did not show the initial burst seen in LbL chlorhexidine quadruple layers using 

non-hydrolysable polyelectrolytes.   

 In this chapter, we aim to provide controlled release of chlorhexidine incorporated 

directly into multilayer films constructed on the surface of silica nanopartic les 

using LbL assembly coating method. Multilayer films were constructed using the 

hydrolysable polymer B1, and non-hydrolysable polymer alginate to provide 

controlled release of chlorohexidine for more than 2 months at high concentrations 

with high drug loading capacity. This approach represents a convenient and 

effective strategy to control the release of chlorhexidine which has many 

antibacterial applications in infection prevention and treatment, particularly the 

early and delayed stage infections after TJR. 
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4.2 Materials and methods 

4.2.1 Chemicals 

Triton X-100, tetraethyl orthosilicate (TEOS), 3-aminopropyltriethoxysilane 

(APTS), sodium alginate, chlorhexidine diacetate, sodium acetate trihydrate, 

phosphate buffer solution (PBS) tablets, were purchased from Sigma-Aldrich, UK. 

Cyclohexane, n-hexanol, ammonium hydroxide (35%), ethanol, methanol, glacia l 

acetic acid and acetonitrile were purchased from Fishers scientific, UK. All 

reagents were stored according to manufacturer’s guidelines and used as received. 

B1: is a patented biocompatible, biodegradable cationic polymer, the precise 

structure will remain confidential due to the IP associated, freshly prepared in the 

lab before use.  

Acetic acid-sodium acetate buffer as follows: to prepare 100 ml acetic acid-sodium 

acetate buffer (0.1 M, pH 5), 30 ml of sodium acetate trihydrate 

(CH3COONa.3H2O) (0.1 M) were added to 70 ml of acetic acid (CH3CO2H) (0.1 

M) solutions and stirred. Acetate buffer (0.1 M, pH 4) was prepared by mixing 18 

ml of sodium acetate trihydrate with 82 ml of acetic acid.  Phosphate buffer saline 

(PBS) (pH 7.3) was prepared by dissolving 1 tablet of PBS in 100 ml of deionized 

water. 

4.2.2 Nanoparticle preparation 

4.2.2.1 Amino functionalised silica nanoparticle synthesis 

Silica nanoparticles functionalised with amine groups (SiO2-NH2) were prepared 

in one-pot synthesis by hydrolysis of TEOS in reverse micro-emulsion and 

subsequent functionalization (Stöber method) (Stöber et al., 1968), as described in 

section 2.1.2.1.  

4.2.2.2 Layer by Layer (LbL) coating technique 

The silica nanoparticles were layered with different numbers of the repeating 

sequence of polyelectrolytes (sodium alginate/chlorhexidine/sodium alginate/B1). 

Up to ten quadruple layers were coated onto silica nanoparticles (Table 15). The 

following concentrations of polyelectrolytes and drug in acetic acid-sodium 

acetate buffer were used in LbL: sodium alginate (2 mg/ml), Chlorhexidine (10 
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mg/ml) and B1 (2 mg/ml). (The procedure for LbL coating technique was 

described in section 2.1.2.2) 

 

 

4.2.3 Nanoparticle surface and material characterisation 

4.2.3.1 Nanoparticle size measurements 

The size of nanoparticles was characterized using transmission electron 

microscopy (TEM), as described in section 2.1.3.1.  

4.2.3.2 Nanoparticle zeta potential measurements 

The electrophoretic mobility for the nanoparticles was measured by dynamic light 

scattering (DLS), using Malvern Zetasizer, Nano ZS particle characteriza t ion 

system (Malvern Instruments Limited, UK), as described in section 2.1.3.2.  

Quadruple layer no. Abbreviation  Layers on the surface of amino functionalised silica 

nanoparticles (SiNH2) 

1 Q1 SiNH2-alginate-chlorhexidine-alginate-B1 

2 Q2 SiNH2-Q1-alginate- chlorhexidine -alginate-B1 

3 Q3 SiNH2-Q2-alginate- chlorhexidine -alginate-B1 

4 Q4 SiNH2-Q3-alginate- chlorhexidine -alginate- B1 

5 Q5 SiNH2-Q4-alginate- chlorhexidine -alginate- B1 

6 Q6 SiNH2-Q5-alginate- chlorhexidine -alginate- B1 

7 Q7 SiNH2-Q6-alginate- chlorhexidine -alginate- B1 

8 Q8 SiNH2-Q7-alginate- chlorhexidine -alginate- B1 

9 Q9 SiNH2-Q8-alginate- chlorhexidine -alginate- B1 

10 Q10 SiNH2-Q9-alginate- chlorhexidine -alginate- B1 

Table 15 : 10 quadruple layers containing chlorhexidine as an antimicrobial 

agent, and B1 as a polycation 
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4.2.3.3 Thermogravimetric analysis 

Thermogravimetric analysis (TGA) was performed using a Perkin-Elmer TGA 

4000 instrument, as described in section 2.1.3.3.  

 

4.2.4 Chlorhexidine release quantification 

Chlorhexidine release from the nanoparticles was evaluated by dispersing the drug 

loaded nanoparticles (10 mg) in 1ml in 2 buffer media: acetic acid-sodium acetate 

buffer pH 5 and PBS pH 7.3, and kept in eppendorfs. These two pH points are 

chosen to assess the drug release under healthy joint (pH 7.35-7.45) (Ribeiro et al., 

2012), and for infected joint, which are associated with low pH values (pH < 7) or 

local acidosis (Kinnari et al., 2009). 

Then, samples were vigorously stirred in a vortex, and then incubated at 37°C. 

Samples were taken every 24 hours where 1ml of release medium aliquots were 

taken after centrifugation, to avoid withdrawing nanoparticles during taking the 

sample. 

The amount of chlorhexidine released from nanoparticles was quantified using 

reversed-phase High Performance Liquid Chromatography (HPLC) method, as 

described in section 2.1.5.  

4.2.5 Statistical analysis 

All data were expressed as means ± standard deviation (SD) from at least three 

values. To assess the statistical significance of results between groups, one-way 

analysis of variance (ANOVA) was performed. Experimental results were 

considered statisticallysignificant at 95 % confidence level (p<0.05). All analyses 

were run using the SPSS ® software. 
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4.3 Results 

4.3.1 Nanoparticle surface and material characterization 

4.3.1.1 Size measurements  

TEM images of the amino functionalised silica nanoparticles and Q10 are shown 

in (Figure 30). The size measurement calculated from TEM images are 55.1±8.3 

and 66.2± 6.2 for the silica NPs and Q10, respectively.  

 

Figure 30:TEM images for: (a) amino functionalised silica nanoparticles (b) Q10 

of chlorhexidine loaded silica nanoparticles with B1 as a polycation. 

4.3.1.2 Zeta potential measurements 

Zeta potential were done for the amino functionalised silica nanoparticles and after 

each layering step, as shown in Figure 31. Zeta potentials were measured for ten 

quadruple layers; the total number of layers needed to build ten quadruple layers 

is 40 layers. The zeta potential for the amino functionalised silica nanopartic les 

was 30.1±0.95 mV because of the ionized amino groups on the surface. 
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The first quadruple layer (layer 1 to 4) showed that layering sodium algina te 

reverses the zeta potential to a negative value of -27.8 ± 1.2 mV. Next, 

chlorhexidine layer decreased the negativity of zeta potential to - 4.0 ± 1.5 mV 

with similar trend seen previously in gentamicin containing nanoparticles. Then, 

the subsequent sodium alginate layer increased the negativity of the zeta potential 

value to -39.6 ± 3.5 mV. Then, B1 layering step reversed the value of zeta potential 

to a negative value of -15.8 ± 2.8 mV. For quadruple layers 2 to 10 (layer number 

5-40), a similar trend in the changes of zeta potential was observed compared to 

the first quadruple layer. B1 zeta potential values were negative among different 

types of layers. B1 did not reverse the negativity of sodium alginate, because the 

zeta potential for a pure solution of B1 is +8 mV compared to - 30 mV for algina te. 

B1 is a weaker polycation, and sodium alginate projected an overall negative zeta 

value even on the surface of B1 layered nanoparticles, the same observation was 

seen in gentamicin containing nanoparticles.    

Figure 31: Zeta potential for 10 quadruple layers with the repeating unit (alginate-chlorhexidine-

alginate-B1) (n = 3 ± SD). 
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4.3.1.3 Thermogravimetric analysis 

Thermogravimetric analysis was performed for amino functionalised silica 

nanoparticles and the same nanoparticles layered with different number of 

quadruple layers, using B1 as a polycation and chlorhexidine as an antimicrob ia l 

as shown in (Figure 32). In order to assess the organic matter content after and the 

build-up of multilayers after LbL coating process. 

An initial weight loss around (5%) was observed at about 100 ºC, which is 

normally attributed to the evaporation of adsorbed water from the samples (Wang 

et al., 2014). As a result, the organic content for each sample (Table 16) was 

calculated based on the weight loss beyond 100 ºC, which corresponds to the 

combustion of organic matter (Du et al., 2015). 

  

Figure 32: Thermogram for silica nanoparticles layered with different number of 

quadruple layer containing chlorhexidine (n = 3 ± SD). 
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Samples Organic content (%) 

SiNH2-Nanoparticles 14.95 ± 1.00 

Q1 20.18 ± 1.51 

Q3 25.95 ± 0.36 

Q5 33.08 ± 2.14 

Q7 40.45 ± 1.45 

Q10 49.59 ± 2.25 

Table 16 : Percentage of organic matter in silica nanoparticles layered with 

different number of quadruple layers containing chlorhexidine (n = 3 ± SD). 

 

In B1 layered nanoparticles (Table 16), the organic content for the amino 

functionalised silica nanoparticles is 14.95 %. The organic content is increased by 

adding the first quadruple layer as seen for Q1 (20.18 %), which makes a 5% 

increase in the organic content for the first quadruple layer. For Q3, the organic 

matter was increased to reach (25.95 %). And the organic content kept increasing 

with addition of more quadruple layers to reach 33.08, 40.45 and 49.59 % for Q5, 

Q7 and Q10, respectively, as observed previously with gentamicin containing 

nanoparticles.  

4.3.2 Chlorhexidine release quantification 

The drug release studies for chlorhexidine loaded silica nanoparticles were carried 

out in two release media; PBS buffer (pH 7.3), and acetic acid-sodium acetate 

buffer (pH 5). Chlorhexidine was quantified by HPLC using UV detection in each 

sample. These two pH points are chosen to assess the drug release under healthy 

joint conditions (pH 7.35-7.45) (Ribeiro et al., 2012), and for infected joint, which 

are associated with low pH values (pH < 7) or local acidosis (Kinnari et al., 2009). 
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Figure 33 : Cumulative chlorhexidine release in PBS (pH 7.3) from Q1, Q3, Q5, Q7and Q10 layered 

 nanoparticles (n = 3 ± SD). 

Figure 34 : Cumulative chlorhexidine release in acetate buffer (pH 5) from Q1, Q3, Q5, Q7and Q10 layered 

nanoparticles (n = 3 ± SD). 
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Chlorhexidine release continued up to 70 days before reaching plateau (Figure 33 

and  Figure 34). In pH 7.3 media (Figure 33), the release profile increased with 

increasing the number of quadruple layers, with Q10 having the highest release 

profile. However, there was not a significant difference between Q7 and Q10 

release profiles, (p>0.05). In pH 5 media (Figure 34), drug release also continued 

up to 70 days, but with lower release profile concentrations compared to amount 

of drug released at pH 7.3.  the same trend in the increase in the release profiles 

with increasing the number of quadruple layers was also observed. However, the 

difference was less evident between Q5, Q7 and Q10, showing release more or 

less in the same range (p>0.05).   

4.4 Discussion 

In this chapter, a chlorhexidine nanotechnology based delivery system was 

developed to provide prophylaxis and treatment from post-surgical orthopaedic 

infections. LbL technique was used for loading chlorhexidine on amino 

functionalised silica nanoparticles using the quadruple layers (sodium 

alginate/chlorhexidine/sodium alginate/B1) to build ten quadruple layers on the 

surface of the nanoparticles. The coated nanoparticles were characterized for size, 

TGA, and zeta potential. In order to evaluate the deposition of polyelectro lyte 

layers and chlorhexidine on the surface of the nanoparticles. Finally, in vitro 

release studies were performed to investigate chlorhexidine release profile from 

both types of coatings at different joint conditions, healthy joint (pH ~ 7.3) and 

infected joint associated with local acidosis (pH ~ 5) (Kinnari et al., 2009; Ribeiro 

et al., 2012).  

 

4.4.1 Size measurements  

The size of the amino functionalised silica nanoparticles and Q10 for chlorhexid ine 

nanoparticles loaded with chlorhexidine were analysed by TEM. The amino 

functionalised silica nanoparticles had a size of 55.1±8.3 nm. After layering 10 

quadruple layers the size increased to 66.2± 6.2 nm, which is similar to the size of 

gentamicin loaded silica nanoparticles.  



 

103 

 

4.4.2 Zeta potential measurements 

Zeta potential is a straightforward and widely used method for monitoring the 

multilayer build up, and deposition of polyelectrolyte layers on the surface of 

nanoparticles during LbL technique (Taladriz-Blanco et al., 2013). Amino 

functionalization is a common method to give the nanoparticles a positive charge, 

because the non-functionalised silica nanoparticles do not have enough charge for 

the deposition of polyelectrolytes (Soto-Cantu et al., 2012). The zeta value for the 

amino functionalised silica nanoparticles (Figure 31) was consistent with previous 

studies about amino functionalization of silica nanoparticles with APTS (Arce et 

al., 2015; Niu et al., 2015). The positive charge was due to the protonation of the 

amino groups at pH 5, which compensates for the negative charge of silano l 

groups. The zeta potential value after layering sodium alginate was converted into 

a negative value of nearly – 30 mV. Sodium alginate is an anionic polyelectro lyte 

with carboxylic acid as a functional group. This change of the sign of zeta potential 

was due to the electrostatic interaction between the carboxylate group of sodium 

alginate and amino groups on the surface of the nanoparticles. The negative zeta 

potential value after layering sodium alginate was in accordance with values 

reported by (Feng et al., 2014).  

After layering chlorhexidine, the value of zeta potential was decreased less 

negativity value. However, chlorhexidine could not reverse it into a positive value 

because it is a small molecule (molecular weight: 505.5 g/mole), with small 

number of ionisable groups, compared to a polyelectrolyte like sodium algina te  

(Molecular weight >10000 g/mole). Chlorhexidine is an bisbiguanide antiseptic 

with only ten amino functional groups. The electrostatic interaction between the 

amino groups of chlorhexidine and the carboxylate groups of sodium alginate was 

the reason for the deposition of chlorhexidine. After layering sodium alginate over 

chlorhexidine, the zeta value was decreased again to almost the same negative 

value seen in the first alginate layer. In B1 layered nanoparticles, layering B1 could 

not reverse the negativity of zeta value into a positive one, because the zeta value 

of pure B1 solution is +8 mV compared to -30 mV for alginate which have stronger 

ionic character. However, B1 managed to decrease the negativity of coated 

particles close to zero, but alginate projected an overall negative charge on the 
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surface of coated nanoparticles. Doubling the concentration of B1 could not 

reverse the negative zeta value of alginate.  

Generally speaking, zeta potential value kept alternating with the same pattern as 

evident in Figure 31. This pattern is summarized for one quadruple layer as 

follows: (- 40 mV) after layering sodium alginate, less negative value of nearly (-

20 mV) after layering chlorhexidine, more negative value back again to -40 after 

layering sodium alginate, and finally (-15 mV) in case of B1 in each quadruple 

layer. Also, the values obtained for nanoparticles coated with alginate was close 

to the zeta values of pure polyelectrolyte solutions, therefore deposition was 

optimal. This pattern was observed to be nearly the same in the 10 quadruple layers 

which confirms the deposition of polyelectrolytes and chlorhexidine during LbL 

process. 

4.4.3 Thermogravimetric analysis 

TGA is a commonly used type of analysis to assess the presence of organic matter 

on the surface of nanoparticles, based on the observation of mass loss (Mai et al., 

2013). Furthermore, TGA is used to evaluate surface functionalization on the 

surface of nanoparticles (Zhong et al., 2015).  Therefore, during LbL assembly, 

the deposition of polyelectrolytes on the surface of nanoparticles was evaluated 

quantitatively using TGA analysis (Wu et al., 2015).  

The thermogram for the amino functionalised silica nanoparticles (Figure 32) was 

similar to the one obtained by (Branda et al., 2010). Moreover, the calculated 

organic matter percentage for the amino functionalised silica nanoparticles ( Table 

16) was in agreement with the one reported by (Liu et al., 2015). A consistent 

increase in the organic content was observed for amino functionalised silica 

nanoparticles and different quadruple layer with increasing the number of layers 

on the surface of the amino functionalised silica nanoparticles. This consistent 

increase in the organic content confirmed the deposition of the layered 

polyelectrolytes and drug on the surface of the amino functionalised silica 

nanoparticles. Compared to Q10 from gentamicin loaded nanoparticles (organic 

content 41.5% ±3.6), Q10 for the chlorhexidine loaded nanoparticles had higher 

organic matter of 49.5%± 2.2 which is expected because chlorhexidine has higher 

molecular weight than gentamicin (gentamicin molecular weight 477.5 g/mole). 
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4.4.4 Chlorhexidine release quantification 

Drug release from LbL coatings is mainly dependent on the number of quadruple 

layers, the type of polyelectrolytes used, the electrostatic interaction between 

different polyelectrolytes, and the kinetics of hydrolysis for the polyelectrolytes 

involved (Grech et al., 2008; Min et al., 2014; Wong et al., 2010). Moreover, 

different pH value for the release media would also affect the behaviour of 

different polyelectrolytes including their hydrolysis, and further modify drug 

release.  

Chlorhexidine release from different quadruple layers was dependent on pH value 

because pH affected the ionization of B1, and B1 charge became close to zero at 

pH 7 forming a weak polyelectrolyte interaction with alginate. As a result, 

chlorhexidine showed higher release at pH 7 compared to pH 5, a similar trend 

was observed with gentamicin release (chapter 2). Also, B1 hydrolysis rate was 

more rapid at basic environment, where more degradation of B1 was in pH 7 

compared to pH 5. (Luo et al., 2016) prepared chlorhexidine polymorphs spheres 

as a template for LbL coating to enhance solubility and control the release of the 

drug. The size of the spheres was 5.6-20 µm spheres with 90% chlorhexid ine 

content. The LbL coat consisted of 3.5 bilayers of poly(allylamine hydrochlor ide) 

(PAH) and polystyrenesulfonate (PSS). The release of chlorhexidine was 

evaluated in PBS buffer media, where the uncoated spheres showed a bust release 

in the first 2 hours for all chlorhexidine. While, the coated spheres showed burst 

release, followed by 7 hours of controlled release with 15% left inside the coated 

spheres. (Fan et al., 2016) reported a mixing coupling method for incorporating 

chlorhexidine into calcium silicate nanoparticles, with approximate size of 80 nm 

at 1:1 ratio by mass. Chlorhexidine release was studied in Simulated body fluids 

(SBF), were the drug showed burst release of 100 µg/ml after 24 hours of release, 

followed by a decreased concentration of < 30 µg/ml after 3 days. 

In this work, chlorhexidine release from B1 layered nanoparticles continued for 70 

days, which is a considerable improvement from the current drug delivery systems 

that release antimicrobial agents for only few days (Dunne et al., 2008; Gasparini 

et al., 2014; Moojen et al., 2008; Squire et al., 2008). The release of chlorhexid ine 

did not show the initial burst seen in LbL chlorhexidine quadruple layers using 
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non-hydrolysable polyelectrolytes. Furthermore, chlorhexidine release was 

sustained for longer period of time with less number of quadruple layers.  

Chlorhexidine release with B1 at pH 7.3 reached high concentration of 3000 

µg/ml. This concentration is relatively high compared to minimum inhibitory 

concentration needed to kill different bacteria involved in orthopeadic infect ions  

(7.8 µg/ml for P. aeruginosa and A. baumannii). This high concentration is 

promising for further evaluation of release when the nanoparticles are impregna ted 

into the PMMA bone cement, especially with a non-antibiotic based antimicrob ia l 

agent. The controlled release manner and long duration of release could provide 

prophylaxis and treatment from early and late stage infections, but further 

optimization for chlorhexidine loading and assessment of release profiles from 

impregnated bone cements are needed to confirm these assumptions.   

Chlorhexidine use is considered safe in cosmetic products at concentrations up to 

0.14% calculated as free base (Andersen, 1999). The use of 2% chlorhexid ine 

gluconate is considered safe for vaginal operative preparation, and not associated 

with increased vaginal irritation in a gynaecologic surgery (Al-Niaimi et al., 2016). 

However, chlorhexidine application on bone tissue need further investigation to 

assess cytocompatibility.  

 

 

 

 

 

 

. 
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4.5 Conclusion 

Antimicrobial thin films were constructed through LbL deposition technique, 

using the sequence (alginate/chlorhexidine/alginate/B1). Chlorhexidine was 

directly deposited without the need for pre-modification between the layers of 

alginate, despite it is not a polymeric polyelectrolyte. The LbL construct was 

effective in controlling the release of chlorhexidine from silica NPs for >2 months 

without initial burst release, which is considered a promising profile for many 

applications in prevention and treatment of infections. This construct can be used 

either as a coating for biomedical devices, or the coated NPs can be incorporated 

in bone cements. The developed LbL construct showed reproducibility in the case 

of gentamicin and chlorhexidine, in terms of characterization and release 

performance, which can have potential application for many other therapeutic 

molecules with similar physicochemical properties.  
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5  Gentamicin nanoparticle-containing bone cement  

5.1 Introduction 

PMMA bone cements use is considered a gold standard in hip and knee 

replacements. The use of ALBCs is considered a standard practice in the 

prevention and treatment of PJIs after TJRs, where the loaded cement delivers 

powdered antibiotics locally (Anagnostakos, 2017; Letchmanan et al., 2017). The 

most common antibiotics employed in bone cements are aminoglycosides, in 

particular gentamicin sulphate which is currently employed in several commercia l 

bone cement formulations (Jackson et al., 2011). Gentamicin sulphate is 

thermostable and can withstand the exothermic polymerization reaction of PMMA 

bone cement.  It is also available in powder form that makes it ideal for mixing 

with the cement powder as a premixed or off-label formulation (Bertazzoni Minelli 

et al., 2015).  

Although antibiotics are widely incorporated in PMMA bone cements, there are 

many concerns about the release kinetics of added antibiotics (Liu et al., 2015). In 

reality, the antibiotic release from the bone cement is a burst for the first few hours 

after surgery, followed by slow release below inhibitory levels within few days  

(Swearingen et al., 2016). This release profile does not provide long term 

prophylaxis from early and delayed stage infections (early infection starts during 

first 24hrs-1 week, and late infections after 1 month according to orthopaedic 

surgeons). In addition, less than 10 % of added antibiotics is released, and the 

majority may be still entrapped within the hydrophobic PMMA matrix (Wendling 

et al., 2016; Wu et al., 2016). 

To overcome these problems, we propose using gentamicin loaded LbL loaded 

silica nanoparticles (NPs) developed in chapter 3, which contains the patented 

hydrolysable polymer B1 as a polycation to improve the release kinetics of 

gentamicin from bone cement. The gentamicin loaded NPs were incorporated in 

PMMA bone cement commercial formulations Cemex Genta and Palacos R+G, 

and compared with the same cements loaded with gentamicin powder. The 

commercial and nanocomposite bone cements were characterised for release, 

antimicrobial activity, mechanical properties, cytocompatibility and water uptake. 
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The aim of this work is to achieve a prolonged gentamicin release for several 

weeks (4-6 weeks) to provide prophylaxis from postsurgical PJIs.  

5.2 Materials and methods 

5.2.1 Chemicals 

Triton X-100, Tetraethyl orthosilicate (TEOS), (3-Aminopropyl) triethoxysilane 

(APTS), sodium alginate, chitosan, gentamicin sulphate, sodium acetate 

trihydrate, phosphate buffer solution (PBS) tablets, o-phthaldialdehyde reagent 

were purchased from Sigma-Aldrich, UK.  

Cyclohexane, 1-hexanol, ammonium hydroxide 35%, ethanol, methanol, glacia l 

acetic acid and 1-propanol were purchased from Fishers, UK. All reagents were 

stored according to manufacturer’s guidelines and used as received. Two types of 

bone cements were used Cemex®-Genta (Tecres® S.p.A., Italy) and Palacos 

R+G® (Heraeus Medical GmbH, Germany).  

B1: is a patented biocompatible, biodegradable cationic polymer, the precise 

structure will remain confidential due to the IP associated.  

 

5.2.2 Nanoparticle preparation 

5.2.2.1 Amino functionalised silica nanoparticles synthesis 

Silica nanoparticles functionalised with amine groups (SiO2-NH2) were prepared 

in one-pot synthesis by hydrolysis of TEOS in reverse micro-emulsion and 

subsequent functionalization with amino group (Stöber et al. 1968), as described 

in section 2.1.2.1. 

5.2.2.2 Layer by Layer (LbL) coating technique 

The amino functionalised silica nanoparticles were layered with ten quadruple 

layers of a repeating sequence of (sodium alginate/gentamicin/sodium alginate/  

B1), described in section 3.2.3.2. The following concentrations of the 

polyelectrolytes and the drug in acetic acid-sodium acetate buffer (pH 5) were used 

in LbL: sodium alginate (2 mg/ml), gentamicin (10 mg/ml) and B1 (2 mg/ml). The 

nanoparticles were coated using the same procedure described in section 2.1.2.2. 
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5.2.3 Bone cement preparation 

Bone cement preparation was carried out according to manufacturer’s 

instructions and the ISO5833:2002 (Implants for surgery-Acrylic resin cements) 

and as described in section  2.2.2.  

5.2.4 Gentamicin release quantification 

Commercially available antibiotic loaded bone cements (Palacos R+G, Cemex G) 

were prepared as described in section 2.2.2. In addition, gentamicin nanopartic le 

containing bone cement were prepared by the same procedure for commercia l 

cement, except replacing gentamicin powder with gentamicin LbL coated 

nanoparticles, Table 17 shows the composition of all cements tested. Calculat ions 

for the nanoparticle containing bone cements were based on the loading efficiency 

(30% w/w), to have equal amounts of gentamicin between commercial and 

nanocomposite bone cements. 
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 Palacos R+G Palacos NPs Cemex Genta Cemex NPs 

Liquid 

component / g 

18.80 18.80 13.30 13.30 

Methyl 

Methacrylate / 

%w/w 

97.87 97.87 98.20 98.20 

N-N Dimethyl-p-

Toluidine / 

%w/w 

2.13 2.13 1.80 1.80 

Hydroquinone / 

ppm 

60.00 60.00 75.00 75.00 

Powder 

Component / g 

40.80 40.80 40.00 40.00 

Polymethyl 

Methacrylate / 

%w/w 

83.27 83.27 82.78 82.78 

Barium Sulphate 

/ %w/w 

- - 10.00 10.00 

Benzoyl 

Peroxide / %w/w 

0.50 0.50 3.00 3.00 

Zirconia / %w/w 15.00 15.00 - - 

Gentamicin 

sulphate / %w/w 

1.23 - 3 - 

Gentamicin NPs 

%w/w 

- 3 - 9 

Powder: Liquid 

ratio 

2.17 2.17 3.01 3.01 

Table 17 : Composition of gentamicin containing bone cement. 
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A PTFE mould was used to produce cylindrical samples with 6mm diameter and 

10 mm length. Each sample weighed 0.40±0.01g and three samples were used for 

release study from each type of bone cement. The bone cement samples were 

incubated in 3ml PBS buffer (pH 7) at 37ºC. The release media was replaced each 

day in order attain sink condition, where the concentration of released gentamic in 

is negligible in comparison to its’ saturation solubility. The release samples were 

stored in the refrigerator (2-8 ºC) for analysis. The concentration of gentamic in 

was determined in the samples using o-phtaldialdehyde method as described 

previously in section 2.1.4. 

5.2.5 Rheology testing 

The effect of adding the nanoparticles on the cement settling time was evaluated 

through rheological tests as described in section 2.2.3. 

 

5.2.6 Antimicrobial testing 

Antimicrobial testing was done for the gentamicin powder and NPs containing 

bone cements listed in Table 17 (Palacos-1% gentamicin powder, Palacose-3% 

gentamicin NPs, Cemex-3% gentamicin powder, Cemex-9% gentamicin NPs), 

using the same protocol described in section 2.2.5. The minimum inhibitory 

concentration (MIC) for gentamicin was determined against different bacteria 

tested through standard MIC protocol as described in section 2.2.5. The bacteria 

tested are methicillin-resistant Staphylococcus aureus (NCTC 12493), 

Streptococcus pyogenes (ATCC 19615), Staphylococcus epidermidis (ATCC 

12228), Acinetobacter baumannii (NCIMB 9214), Pseudomonas 

aeruginosa (NCIMB 10548), Escherichia coli (NCTC 10418). 

 

5.2.7 Mechanical testing 

Mechanical testing was performed as described in section 2.2.6 for different bone 

cements (Palacos-1% gentamicin powder, Palacose-3% gentamicin NPs, Cemex-

3% gentamicin powder, Cemex-9% gentamicin NPs). Compressive strength 

testing was performed at 0 and 3 months’ time. Also, bending and fracture 

toughness testing were performed at zero time.  
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5.2.8 Water uptake testing 

Bone cement commercial samples and nanocomposites (Palacos-1% gentamic in 

powder, Palacos-3% gentamicin NPs, Cemex-3% gentamicin powder, Cemex-9% 

gentamicin NPs ) were incubated in 3 ml PBS at 37°C for 3 months; for the first 2 

weeks, the samples were weighed daily; after that the samples were weighed every 

3 days (Perni et al., 2015), as described in section 2.2.7. Water uptake was 

calculated by dividing the increase in sample weight at different time points by the 

initial sample weight at time zero, and plotted as a percentage. Water uptake 

studies give an insight about the cement behaviour after being wetted in solution 

to simulate the in-vivo conditions inside the joint with the synovial fluid. 

5.2.9 Nanoparticles distribution in bone cement   

The distribution of nanoparticles in Palacose-3% gentamicin NPs and Cemex-9% 

gentamicin NPs was studied by fluorescence imaging using fluorescent 

nanoparticles as described in section 2.2.9. 

 

5.2.10 Cytotoxicity testing 

5.2.10.1 MTT 

MTT test was done for Palacos-1% gentamicin powder, Palacose-3% gentamic in 

NPs, Cemex-3% gentamicin powder, Cemex-9% gentamicin NPs for days 1,2,4 

and 7 using the same protocol described in section 2.2.8.1 . 

 

5.2.10.2 LDH 

LDH assay test was done for Palacos-1% gentamicin powder, Palacose-3% 

gentamicin NPs, Cemex-3% gentamicin powder, Cemex-9% gentamicin NPs for 

days 1,2,4 and 7 using the same protocol described in section 2.2.8.2 . 
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5.2.10.3 Calcium production assay-Alizarin red 

Alizarin red test was done for Palacos-1% gentamicin powder, Palacose-3% 

gentamicin NPs, Cemex-3% gentamicin powder, Cemex-9% gentamicin NPs for 

days 1,2,4 and 7 using the same protocol described in section 2.2.8.3. 

5.2.10.4 Fluorescence imaging  

Fluorescence imaging (live/dead and actin/dapi) was done for Cemex-3% 

gentamicin powder, Cemex-9% gentamicin NPs using the same protocol in section 

2.2.8.5. 

 

5.2.11 Statistical analysis  

All data were expressed as means ± standard deviation (SD) from at least three 

independent values. To assess the statistical significance of results between 

groups, one-way analysis of variance (ANOVA) was performed. Experimenta l 

results were considered statisticallysignificant at 95 % confidence level (p<0.05). 

All analyses were run using the SPSS ® software. 
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5.3 Results 

5.3.1 Bone cement settling time  

The possible effects of the gentamicin loaded nanoparticles on the kinetics of 

different bone cements settling time was investigated through the evaluation of the 

rheological properties of bone cement dough after mixing (Figure 35, Figure 36, 

Figure 37 and  Figure 38). For different bone cements, the storage modulus (G′) 

was greater than the loss modulus (G″); the pattern followed a monotonic increase 

at an initial fast rate that slowed down reaching a plateau. The storage modulus 

measures the stored energy, representing the elastic portion, and the loss 

modulus measures the energy dissipated as heat, representing the viscous portion. 

In Palacos cement, the presence of nanoparticles required similar settling time of 

6 minutes (defined as the time needed for the dough to reach constant rheologica l 

properties) compared to gentamicin powder mixed Palacos-R (5 minutes). The 

addition of nanoparticles in Cemex did not change the settling time of the cement 

(around 6 minutes). 

 

Figure 35: Storage (G’) and loss (G’’) modulus for Palacos-R. 
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Figure 36: Storage (G’) and loss (G’’) modulus for Palacos-NP. 

 

Figure 37: Storage (G’) and loss (G’’) modulus for Cemex-Genta. 
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Figure 38: Storage (G’) and loss (G’’) modulus for Cemex-NPs. 

5.3.2 Gentamicin release profile  

Gentamicin release from bone cement was studied in PBS buffer (pH 7.3), which 

the is the pH value in healthy joints (Ribeiro et al., 2012). Gentamicin was 

quantified by fluorescence detection in each sample, each data point is an average 

of three independent samples measurements. Figure 39 shows the cumulat ive 

release of gentamicin from Cemex Genta (3% of gentamicin powder), Palacos R 

(1% of gentamicin powder), and the nanocomposite for Cemex Genta (9% of 

gentamicin nanoparticles), and the nanocomposite for Palacos R (3% of 

gentamicin nanoparticles) for 30 days. 
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All bone cements, except Cemex Gentamicin NP, stopped releasing gentamic in 

after 15 days. Cemex Genta NP continued releasing gentamicin up to 30 days, at 

a concentration of higher than 1000 µg/ml, while Cemex Genta achieved a 

concentration of 400 µg/ml. The release was burst for the first 7 days for all the 

cements, except for Cemex Genta NP the release was little burst only in the first 3 

days after that the release was nearly first order which controlled until 30 days. 

Cemex NP released significantly higher amount of gentamicin compared to Cemex 

Genta (p<0.05), (more than 2.5 times amount of gentamicin). Also, Cemex Genta 

release was characterised by burst in the first 7 days, with no more than 400 µg/ml. 

Palacos R and Palacos R nanocomposite achieved similar gentamicin release 

concentration of 200 µg/ml (p>0.05). The release in Palacos R was burst in the 

first 2 days and after that gentamicin release reached plateau. However, in the first 

7 days, gentamicin was released gradually in Palacos NP which was lower than 

the initial burst release in Palacos R, and gentamicin release was controlled for up 

to 10 days before reaching plateau.  In general, when assessing the release in the 

first 15 days, the standard deviations experienced for all nanocomposite bone 

Figure 39 : Cumulative gentamicin release from commercial bone cements (Cemex Genta, 

Palacos R), and nanocomposite samples (n=3+SD). 
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cements were smaller than those experienced by the commercial cements with 

powder gentamicin.  

 

 

In terms of total percentage release (Figure 40), Cemex Genta with nanopartic les 

performed significantly better than the other types of bone cements. At 5 days, a 

similar percentage release was seen by Palacos R and Palacos nanocomposite, 

however after this time point the Palacos nanocomposite achieved a higher 

percentage. After 7 days, Palacos R and Palacos nanocomposite achieved 12% 

total gentamicin release, while Cemex Genta released roughly 10%. In the case of 

Palacos nanocomposite, the gentamicin release was controlled over the first 8 days, 

compared to the burst seen in bone cements containing gentamicin powder. In 

Cemex nanocomposite, the percentage of gentamicin released was 26% which is 

2.5 times higher from the gentamicin powder Cemex Genta. The release was 

controlled over the first 20 days before reaching plateau after 30 days, with 

minimal burst effect.  

Figure 40: Cumulative percentage release of gentamicin from commercial bone 

cements (Cemex Genta, Palacos R) and nanocomposite samples (n=3+SD). 
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5.3.3  Antimicrobial analysis 

Antimicrobial testing against selected bacterial strains, that is commonly 

encountered in PJIs, was performed for Cemex Genta, Palacos R, Cemex NPs and 

Palacos NP, (Figure 41). The minimum inhibitory concentration (MIC) for 

gentamicin was determined against different bacteria tested, and was found to be 

the following:  S. aureus 15.6 µg/ml, S. epidermis 0.98 µg/ml, MRSA 15.6 µg/ml, 

S. pyogenes 7.8 µg/ml, E. coli   7.8 µg/ml, P. aeruginosa 7.8 µg/ml. The 

nanoparticle containing bone cements showed longer duration of bacterial growth 

inhibition compared to the gentamicin powder bone cements. Cemex NPs 

inhibited the growth of all bacteria for more than 23 days, except for Pneumonia 

and E. coli but longer than other bone cement types (p-value< 0.03). However, 

Cemex Genta inhibited bacterial growth for nearly 15 days, with less inhibit ion 

duration for S. pneumonia and E. coli (p-value >0.7 when compared to Palacos R 

and Palacos NP). Palacos NPs showed different antimicrobial activity depending 

on bacteria tested, with short duration of inhibition (less than 8 days) against S. 

aureus ATCC9144, MRSA, A. baumanii, E. coli 59284, S. pneumonia, (p-value > 

0.5) and longer duration of inhibition (more than 13 days) against S. pyogenes 

ATCC12344, E. coli NCTC10418 and S. aureus NCIMB9518 (p-value > 0.5). 

Palacos R showed the weakest antimicrobial activity with duration of inhibit ion 

less than 8 days for all types of bacteria, except for S. aureus NCIMB9518, and S. 

pyogenes ATCC12344 (p-value > 0.5).   
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Figure 41: Antimicrobial testing for different types of bone cements (Palacos R, 

Cemex Genta, Palacos 3% NPs, Cemex 9% NPs) against different bacterial 

strains (n=3+SD). 

5.3.4 Mechanical properties 

The compressive strength of different types of bone cements was tested after 24 

hours in air, and after 3 months of incubation in release media PBS, pH 7.4 at 37 

ºC (Figure 42) according to ISO standard 5833:2002. At 24 hours and after 3 

months, all nanoparticle containing bone cements had similar compressive 

strength to the commercial ones (p>0.05). For Palacos G+R and Palacos NPs, there 

was no significant difference in the compressive strength (p-value > 0.05) at zero 

time and after 3 months. For Cemex Genta and Cemex NP, there was no significant 

difference in the compressive strength (p-value > 0.05) at zero time and after 3 

months.  In addition, incubation for 3 months did not adversely affect the 

compressive strength of the bone cement (p-values > 0.10). Bending strength and 

fracture toughness were only tested for Cemex G and Cemex NPs (Table 18), 

because Palacos cement was not able to sustain the release of gentamicin for a long 

time (Figure 39).  Cemex NPs showed similar bending strength and fracture 

toughness to Cemex G (p-value >0.6). The acceptable ranges for the mechanica l 

properties of a set bone cement are > 70 MPa compressive strength, > 1800 MPa 

bending modulus and >50 MPa bending strength (Lee, 2005). 
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Figure 42: Compressive strength of commercial and nanocomposite bone 
cements before and after incubation in PBS pH 7.3 at 37 ºC for 3 months 

(n=6+SD). 

 

 
Bending strength 

(MPa) 

Bending 

modulus (MPa) 

Fracture 

toughness 

(MPam1/2) 

Cemex-Genta 54.3 ± 2.0 2901 ± 62 2.4 ± 0.5 

Cemex-NP 51.2 ± 4.1 2964 ± 101 2.2 ± 0.3 

Table 18: Bending strength and modulus, and fracture toughness for Cemex bone 

cement.  

 

5.3.5 Water uptake testing  

The weight of the different types of bone cement was recorded after incubation 

in PBS buffer media pH 7.3, to study the water uptake behaviour for up to 30 

days (Figure 43). The nanocomposite water uptake behaviour was similar to that 

of the commercial cements (p>0.05). The bone cement samples increased in 

weight during the first 4-5 days because of water uptake, and after that, the 

amount of water in the samples remained stable.  
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Figure 43: Water uptake for different types of gentamicin containing bone 

cements after incubation in PBS buffer, pH 7.3 (n=3+SD). 
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5.3.6 Nanoparticles distribution in bone cement  

The distribution of nanoparticles inside the bone cement was studied by 

florescence imaging of fluorescence- labelled nanoparticles incorporated into the 

cement. Figure 44 shows nanoparticle distribution in Palacos bone cement (3% 

NPs w/w).  Figure 45 nanoparticle distribution in Cemex bone cement (9% NPs 

w/w). In both types of cement, nanoparticles were homogeneously distributed 

throughout the cement matrix, with minimal agglomeration at higher concentration 

of nanoparticles in cement, as seen in Cemex 9% NPs w/w. The nanopartic les 

agglomeration and size was higher in Cemex nanocomposite compared to Palacos, 

because it has higher concentration of nanoparticle 9% NPs w/w. 

 

 

Figure 44: Nanoparticle distribution in Palacos bone cement (3% NPs w/w) 

(bar=20µm). 
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Figure 45: Nanoparticle distribution in Cemex bone cement (9% NPs w/w) 

(bar=20µm). 
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5.3.7 Cytotoxicity analysis  

5.3.7.1 MTT assay 

Relative to osteoblasts exposed to Palacos R commercial formulation, one day 

exposure to Palacos NP resulted in 10% insignificant reduction in osteoblast 

proliferation, and 6 % reduction after 7 days (p-value> 0.94).  At 2 and 4 days, 

osteoblast proliferation had returned to normal levels. While relative to osteoblasts 

exposed to Cemex Genta, 1-7 days exposure to Cemex NP resulted in similar 

osteoblast proliferation with maximum insignificant reduction of 10% at days 4 

(p-value >0.464) (Figure 46).  

 

Figure 46: Viability of osteoblasts exposed to different types of bone cements: 

Palacos R, Palacos NP, Cemex-Genta, Cemex NP, assessed through MTT test as 

viability ratio (Nanocomposite/commercial cement) (n=6+SD). 

 

5.3.7.2 LDH assay 

The viability of cells exposed to Palacos NP was similar to the commercial cement 

Palacos R at day 1, 2, and 4 (p-value > 0.495). However, the viability of cells was 

reduced to 15% at day 7 (P<0.05). For Cemex NP, the viability of cells was similar 
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to Cemex Genta with maximum reduction of 10% at day 4 (p-value 0.595) (Figure 

47).  

 

Figure 47: Viability of osteoblasts exposed to different types of bone cements: 

Palacos R, Palacos NP, Cemex-Genta, Cemex NP, assessed through LDH test: 

(a) percentage viability, (b) viability ratio (Nanocomposite/commercial cement) 

(n=6+SD). 

  

a 

b 
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5.3.7.3 Alizarin red 

The alizarin red staining is shown in  Figure 48, which shows no significant 

reduction in calcium production for osteoblasts exposed to nanocomposites 

(Palacos NP and Cemex NP) when compared to commercial cements (p-value 

>0.05) (Palacos R and Cemex Genta). 

 Figure 48: Alizarin red assay for osteoblasts after 21 days grown on different 

types of bone cements: Palacos R, Palacos NP, Cemex-Genta, Cemex NP. 

 

 

5.3.7.4 Fluorescence images 

Live and dead fluorescent images for Cemex Genta (Figure 49) and Cemex 

nanocomposite (figure 50) show the live cells (green color), dead cells (red color) 

and cell nuclei (blue color). In addition, actin/dapi fluorescent for Cemex Genta 

(Figure 51) and Cemex nanocomposite (Figure 52) show actin filaments (red 

color) and cell nuclei (blue color). Cemex Genta showed similar cell viability 

(number of cells), actin filament spreading and development for the cells 

cytoskeleton compared to Cemex NPs.   
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Figure 49: Live/dead images for Cemex Genta cement with two different scales. 

(Top: 100 µm bar, bottom: 20 µm bar). 
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Figure 50: Live/dead images for Cemex nanoparticles cement with two different 

scales. (Top: 100 µm bar, bottom: 20 µm bar). 
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Figure 51: Actin/dapi images for Cemex Genta cement with two different scales. 

(Top: 100 µm bar, bottom: 20 µm bar). 
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Figure 52: Actin/dapi images for Cemex nanoparticles cement with two different 

scales. (Top: 100 µm bar, bottom: 20 µm bar). 
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5.4 Discussion 

5.4.1 Surface and material properties of bone cement 

5.4.1.1 Bone cement settling time   

The settling time is a critical parameter for bone cement use during application and 

after patient recovery, because it determines the time needed to develop the final 

mechanical properties of the cement. Therefore, the introduction of nanopartic les 

into the cement formulation must not have great change to the settling time for the 

commonly used commercial cements. In this work, the settling time of Cemex-NP 

bone cement did not alter the settling time for the gentamic in powder containing 

cement, which was proved by rheological testing. The profiles detected for G’ and 

G’’ were comparable to those presented by others for PMMA bone cements (Farrar 

and Rose, 2001; Perni et al., 2015).  

The time of cement application and prosthesis insertion by the surgeon depends 

mainly on the rheological properties of the cement and it’s setting behaviour.  In 

general, implant insertion should be delayed until the cement has developed a 

sufficient degree of viscosity to resist excessive displacement by the implant, the 

acceptable setting of PMMA cement is usually between 8-10 minutes (Perni et al., 

2015; Vaishya et al., 2013). However, implant insertion should not be delayed such 

that there is a risk that the procedure cannot be completed due to cement hardening 

(Vaishya et al., 2013). 

5.4.1.2 Mechanical properties  

The addition of antibiotics to bone cement decreases the mechanical properties  

(Duey et al., 2012; Khaled et al., 2011). As a result, only a small amount of 

antibiotics is added (< 1g per 40 g of bone cement) to keep the compressive and 

bending strength within the acceptable ranges needed for the cement mechanica l 

performance. He et al. (2002) observed that the use of gentamicin at concentrations 

below 3% had no significant effect on the compressive and elastic modulus of bone 

cement; however, higher concentrations caused significant decrease in these two 

parameters (He et al. 2002). The acceptable ranges for the mechanical properties 

of a set bone cement are > 70 MPa compressive strength, > 1800 MPa bending 

modulus and >50 MPa bending strength (Lee, 2005). The compressive strength 

and bending strength for different types of bone cements was determined 
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according to the ISO standard 5833:2002.  The fracture toughness was determined 

by the ISO13586:2000. 

The compressive strength is an important parameter in evaluating the mechanica l 

performance of bone cement, because the cemented prosthetic joint is loaded most 

of the time by compression (Lee, 2005). Shen et al. (2016) tested the mechanica l 

strength for a bone cement loaded with 10%, 5%, 32% of mesoporous silica, 

carbon nano-tubes and hydroxyapatite nano-rods, respectively. The compressive 

strength for the mesoporous silica (85 MPa) was not adversely affected by the 

added nanoparticles. While, the carbon nano-tubes (8.7 MPa) and hydroxyapatite 

nano-rods (43.5 MPa) decreased the compressive strength drastically which 

stopped further investigations.  

(Ayre et al. 2015) tested the compressive strength for a liposomal bone cement 

formulation, where the gentamicin loaded liposomes were added to the liquid part 

of the bone cement. The compressive strength of the cement dropped from 104 

MPa (without liposomes) to 77 MPa   after adding the liposomes. The drop in the 

compressive strength might be attributed to the presence of water, which affects 

the free radical polymerisation reaction of methyl methacrylate (Schoonover, 

Brauer, and Sweeney, 1952). In our work, the added silica NPs did not adversely 

affect the compressive strength of the bone cement (Figure 42), which is in 

accordance to with compressive strength of mesoporous silica NPs (Shen et al. 

2016). The incubation of different types of bone cements in PBS pH 7.3 did not 

have a significant effect on the compressive strength.  

The bending strength and modulus for Cemex-Genta and Cemex-NPs comply with 

the requirements for set and cured cement in the ISO 5833:2002 Implants for 

surgery – Acrylic resin cements (bending strength > 50 MPa and bending modulus 

> 1800 MPa). (Ayre et al. 2015) reported a bending strength of > 60 MPa for, and 

fracture toughness of 2.5 MPam1/2 for Palacos bone cement. In this work, the 

bending strength of Cemex and Cemex nanocomposite was >50MPs, around 3000 

bending moduli, and the fracture toughness is 2.2 MPam1/2, which is in agreement 

with literature for different types of bone cements. Letchmanan et al. (2017), 

reported a bending modulus of > 3000 MPa for mesoporous silica incorporated 

Simplex-P® bone cement (Stryker Co, UK). 
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The main function of the cement is to act as an interfacial phase between the high 

modulus metallic implant and the bone, and to transfer and distribute body weight 

loads as well as cyclic loads due to movements from prosthesis to bone (Münker 

et al., 2018). The joint is mainly mechanically stressed by compression, however, 

other forms of stresses (bending, fracture) are also important to provide adequate 

fracture resistance and prevent the loosening of the implant. Since the forces 

transmitted through the hip and knee joint are high about 3 times body weight 

when walking, rising to 8 times body weight when stumbling. As a result, the bone 

cement is subjected to high stresses and has to function in a relatively aggressive 

environment, showing adequate mechanical properties (Lee, 2005). 

 

5.4.1.3 Water uptake studies 

 Although the current commercially available bone cements must have enough 

mechanical properties and pass standards in dry conditions, these properties can 

change overtime in vivo. Aging of the bone cement in simulated physiologic 

conditions causes a decrease in the mechanical properties of the bone cement, 

because of the plasticising effect of water uptake by decreasing the attraction 

between polymer chains and increasing flexibility (Arnold and Venditti, 2001). In 

addition, the presence of other factors such as high temperatures and stresses also 

affect the mechanical properties over a long period. (Bettencourt et al., 2004) 

investigated the hydrolysis of PMMA ester groups in biological fluids, which can 

be due to the change in the composition of the cement and surface wettability. 

Water uptake not only affects the mechanical properties of the bone cement, but it 

was also found to affect the surface properties and structure of the cement leading 

to a decrease in its molecular weight over long periods of time (Hughes et al., 

2003). Thus, an initial determination of the water uptake behaviour is necessary to 

estimate the change in the physicochemical properties of the bone cement.  

In this work, the presence of NPs did not affect the water uptake behaviour of the 

commercial bone cements (Figure 43). The weight of cement samples stopped 

increasing after 4-5 days, which also explain the similarity in the compressive 

strength tested after 3 months. These findings suggest that the presence of NPs, 
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instead of gentamicin powder, did not change the diffusion of water nor the 

compressive strength compared to the commercial product, however long- term 

exposure of the cement to physiological fluids play an important role in changing 

its overall performance.  

5.4.2 Gentamicin release profile 

The use of ALBCs has become a well-established standard to reduce infect ions 

after TJR, where large amounts of antibiotics are employed to achieve therapeutic 

levels of release (up to 1g per 40g of cement) (Engesaeter et al., 2006; Parvizi et 

al., 2008). However, there are several limitations associated with the release profile 

of antibiotics from ALBCs. Initially, the antibiotic is released at large amounts in 

uncontrolled manner, which is described as burst release for the first few hours 

after surgery. This burst release is followed by a rapid drop in the release profile 

below inhibitory levels within few days, which increases the selection of resistant 

antimicrobial strains (Dunne et al., 2008; Gasparini et al., 2014). In addition, more 

than 90% of the loaded antibiotic stays within the bone cement matrix as 

agglomerates, affecting the mechanical properties and performance of the cement 

(Dunne et al., 2007; Van et al., 2000). 

Silica nanoparticles have been widely used as drug delivery carrier because of their 

biocompatibility, high loading capacity, low cost and ease of synthesis. Shen et al. 

(2016) used MSN to improve gentamicin release from PMMA bone cement. 

Gentamicin was loaded into MSN by wet impregnation, and the bone cement was 

loaded by 10% of nanoparticles. The release of gentamicin from the loaded cement 

continued for up to 80 days, where 60% of gentamicin was released. Shen et al. 

(2016) proved that the presence of MSN at concentration above 6 % is crucial for 

the build of nano-network to facilitate the diffusion of gentamicin molecules.  

However, nothing was mentioned about the concentration of released gentamic in 

or the loading efficiency of MSN.   

Many nanotechnology-based gentamicin loaded carriers have been studied to 

improve the release profile of gentamicin from ALBCs. Ayre et al. (2015) loaded 

gentamicin into liposomes of 100 nm size. Gentamicin release from loaded cement 

continued for up to 30 days with 22% of the loaded antibiotic released compared 

to 9% from commercial formulation. Shen et al. (2016) incorporated gentamic in 
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loaded carbon nanotubes and hydroxyapatite into bone cement at concentration of 

5% and 32%, respectively. The release of gentamicin was continued for more than 

60 days with more than 75% of gentamicin released, however, the compressive 

strength for the bone cement was drastically decreased limiting further 

investigation.  

This release from our LbL system showed little bust release compared to 

commercial formulation, and continued up to 30 days. The loading efficiency of 

gentamicin in the NPs was nearly 30% (w/w), which is lower than Shen et al (2016) 

because mesoporous silica NPs have higher size (100–300 nm) with pore sizes in 

the range 5–30 nm allowing higher gentamicin loading inside the pores, compared 

to our silica nanoparticles where the antibiotic is loading on top by LbL coating 

technique.   The concentrations of NPs used in the bone cement were 9% and 3 % 

in Cemex NP and Palacos NP respectively, to have equivalent amount of 

gentamicin to the commercial cements. The release of gentamicin was sustained 

gradually for more than 4 weeks without the need for adding high concentrations 

of NPs as in the case with Cemex NP. The gentamicin loaded nanocomposite 

enhanced the total amount of gentamicin released from the bone cement (26% of 

loaded gentamicin) by 2-3 folds compared to the commercial formulation. The 

enhancement of release kinetics is attributed to the homogenous distribution of 

NPs in the bone cement matrix (Figure 44 and  Figure 45), that may lead to the 

formation of nano-network channels to facilitate the diffusion of gentamicin, or 

simply because of the increased surface area available for gentamicin release from 

nanoparticles (Shen et al. 2016). 

 (Anagnostakos et al., 2009) studied the maximum peak gentamicin concentration 

in daily drainage fluids after hip replacement with beads and spacers (In vivo), 

where it reached 1160 μg/mL and 21 μg/mL, respectively after day 1. (Hsieh et al., 

2009) studied gentamicin concentration in the joint fluids after revision hip 

replacement, where he reported a peak of gentamicin of (43.6 μg/mL) on the first 

day and then gradually decline below (10 μg/mL) in the first week. The reported 

concentrations of antibiotics released is lower than the our Cemex nanocomposite 

which released gentamicin at a concentration 400 μg/mL at day 1. It was shown 

that the bactericidal activity of aminoglycosides is concentration dependent and 

that high peak to MIC ratios could reduce the emergence of resistant mutants, 
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however, higher concentrations are associated with more systemic effects in case 

of systemic administration, or more cytotoxicity in local release (Lefort et al., 

2000). Also, gentamicin can be tolerated for up 800 µg/ml of gentamicin before 

causing toxicity to cells (Rathbone et al., 2011). 

 

The intraarticular antibiotic concentrations were measured in the first few days 

after inserting vancomycin-tobramycin- loaded spacers. Highest concentrations 

measured at day 1 were 19 µg/ml for vancomycin and 107 µg/ml for tobramycin. 

The concentrations determined from the wound drainage fluids were 10-30 times 

higher than MICs of infecting organisms (Masri et al., 1998). In another work, the 

concentration of vancomycin was 57 µg/mL on day 1 from vancomycin-

impregnated spacers in the treatment of orthopaedic implant related S. epidermidis 

infections, also determined from the drainage fluids (Isiklar et al., 1999). 

(Anagnostakos et al., 2009) studied the release of gentamicin and vancomycin 

from beads and spacers in the drainage fluid using a two-stage protocol in the 

treatment of infected hip arthroplasties. Peak mean concentrations from PMMA 

beads and spacers were reached for gentamicin (115.70 µg/ml and 21.15 µg/ml, 

respectively) and vancomycin (80.40 µg/ml and 37.0 µg/ml, respectively) on day 

1. The last measured concentrations for the beads group was 3.70 µg/ml for 

gentamicin and 23.00 µg/ml for vancomycin after 13 days, and 1.85 µg/ml for 

gentamicin and 6.60 µg/ml for vancomycin after 7 days in the spacer group.  

5.4.3  Antimicrobial efficacy  

Antimicrobial testing was done against common bacteria involved in PJIs, both in 

early and delayed infections (early infection starts during first 24hrs-1 week, and 

late infections after 1 months according to orthopaedic surgeons). The protocol 

used for antimicrobial testing (described in section 2.2.5) allows the comparison 

in antimicrobial activity between different bone cement formulation in vitro by 

directly incubating the release media from bone cement with tested bacteria. This 

gives a straightforward comparison between different types of bone cement and 

simulates the real scenario in the cemented prosthetic joint.  

Different protocols are used to evaluate the antimicrobial properties of bone 

cements in literature (Table 19). Perni et al. (2015) measured the optical density 
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at 600 nm for an incubated broth with propyl paraben NPs loaded bone cement, 

after certain dilutions to record bacterial growth curves. Then, the antimicrob ia l 

activity for different bone cement formulations can be compared by estimating the 

duration of the lag phase and the maximum growth rate. Abid et al. (2017) tested 

the antimicrobial properties of dendrimer loaded bone cement by counting the 

number of viable bacterial cells after contact with different cement samples every 

5 days. In another work, (Ayre et al. 2015) used agar diffusion test to evaluate the 

antimicrobial properties of liposomal cement formulation. The zones of inhibit ion 

were measured around bone cement sample disks and compared to gentamicin disc 

as a control.  

 

In our work, the antimicrobial activity of different cement formulations was linked 

to the gentamicin release profile, hence, once the release stopped the growth of 

bacteria was observed. However, S. pneumonia and E. coli showed less 

Antimicrobial 

used 

Antimicrobial 

test protocol 

Bacteria tested  Reference 

a. Propyl 

paraben NPs. 

b. Oleic capped 

Silver NPs. 

Bacterial 

growth curves.  

S. aureus, S. 

epidermis, A. 

baumannii, MRSA 

  

  

 

(Perni et al. 2015) 

(Prokopovich et al., 

2015) 

a. dendrimer 

b. chitosan 

c. QCS 

Colony count 

method. 

S. aureus, 

S. epidermidis, E. 

coli, P. 

aeruginosa 

(Abid et al., 2017) 

(Shi et al., 2006) 

Gentamicin 

loaded 

liposomes 

Agar diffusion 

test 

S. aureus (Ayre et al. 2015) 

Table 19: Some protocols used in literature to test the antimicrobial properties of 

PMMA bone cements. 
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vulnerability to released gentamicin, as in the case of Cemex NPs, which might be 

linked to their high MIC. The antimicrobial activity of Cemex NPs continued for 

up to 23 days, which is a promising for providing prophylaxis from PJIs. For other 

types of bone cement, the antimicrobial activity of cements continued even after 

gentamicin release reached a plateau, may be because still there was a small 

amount of gentamicin leaching out of the cement which is enough for inhibit ing 

the growth of bacteria for an extra few days. The short inhibition duration for the 

commercial bone cements is in accordance with the reported drop in the 

concentration of gentamicin below inhibitory levels in the first few days 

(Anagnostakos et al., 2009; Hsieh et al., 2009).  

The aim of incorporating antimicrobials in the PMMA cements used to secure the 

implant is to prevent the development of infection after primary arthroplasty or 

aseptic revision or to have local antimicrobial therapy for the treatment of 

established infection in arthroplasty exchanges for PJI (Anagnostakos, 2017). In 

some countries, >90% of cemented primary replacement surgeries are performed 

by using ALBC (Parvizi et al., 2008), despite a lack of high- level evidence to 

support the effectiveness of this approach. A meta-analysis of six nonrandomized 

studies found a 50 % reduction in deep infection in > 20,000 primary or aseptic 

hip revision surgeries. A randomized study using systemic antimicrob ia l 

prophylaxis found a decrease in deep infection in diabetics undergoing primary 

knee arthroplasty (Chiu et al., 2001). ALBC is used for prosthesis reimplanta t ion 

in the majority of patients undergoing one-stage or two-stage arthroplasty 

exchanges (Martínez‐ Moreno Javier et al., 2017). However, new approaches 

needed to improve the antimicrobial properties of ALBCs, to extend the 

antimicrobial activity for longer duration. Also, the emergence of resistant 

antimicrobial strains decreases the effectiveness of antibiotics loaded into PMMA 

cement (Anguita-Alonso et al., 2005; Helbig et al., 2018). Nanotechnology based 

antibiotic delivery systems is a becoming a new approach for solving the limita t ion 

of antimicrobial therapy. Nanoparticles can be used to improve the release kinetics 

of antibiotics by enhancing delivery and providing controlled release. These 

improvements are attributed to large area to mass ration and small size, and 

different ways available for modification and for antibiotic loading (Sharma et al., 

2012; Wei et al., 2012). Also, nanotechnology can serve as a platform for 



 

141 

 

developing new antimicrobial delivery systems that can help tackling the problem 

of antibiotic resistant bacterial strains (Abid et al., 2017).  

 

5.4.4 Cytocompatibility  

The present study shows that the gentamicin loaded nanocomposite (Palacos R and 

Cemex Genta) elicit a small reduction (less than 15%) (p-value 0.94 and 0.46) in 

osteoblast proliferation, possibly, cells did not have enough nutrients because the 

media was changed after experiments at day 4. However, this effect was transient, 

with osteoblasts proliferation returning to normal after 7 days of exposure to 

cements (Figure 46 and  Figure 47). In addition, there was no effect on osteoblast 

calcium production as shown from the alizarin red staining  Figure 48). At the 

released gentamicin concentrations, cumulative gentamicin released from Palacos 

NP was <200 µg/ml in the first 7 days, and <800 µg/ml for Cemex NP (Figure 39), 

the fluorescence cell images of Cemex Genta showed similar cell viability (number 

of cells) compared to Cemex NPs. Also, actin filament spreading and development 

for the cells cytoskeleton was seen in nanocomposite images, which is in 

agreement with the images obtained by exposing osteoblasts to Silica gentamic in 

nanoparticles (He et al., 2018).   

In a study using human fetal osteoblast cells, soluble gentamicin in concentrations 

up to 750 µg/ml was not toxic for tested osteoblasts (Belcarz et al., 2009). 

Moreover, the number of growing cells was not affect by gentamicin concentration 

up to 1000 µg/ml, but the cellular structure of the cells has slightly changed 

(Belcarz et al., 2009). In another work, the use of amikacin and tobramycin, which 

are also aminoglycoside antibiotics as gentamicin, did not result in a significant 

change in cell number up to 5000 µg/ml, however, 800 µg/ml of gentamicin was 

toxic to cells, where toxicity was evaluated using alkaline phosphatase assay and 

DNA assay (Rathbone et al., 2011). In a study evaluating the effect of gentamic in 

on primary human osteoblast cells in as a model for wound irrigation in spinal 

surgery. Gentamicin at concentration of 1700 µg/ml induced a reduction of 15-20 

% in osteoblast proliferation in the first 48 hours by reducing DNA production and 

alkaline phosphatase activity, which returned to control values after 72 hours. 

Also, it did not have any significant effect on osteoblast mineralization and bone 
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nodule formation (Philp et al. 2017). Critically, the metabolic activity of 

osteoblasts was significantly decreased by gentamicin at any concentration 

compared to control, as indicated by the alkaline phosphatase activity which is an 

early expressed marker for osteogenic differentiation (Ince et al., 2007).  However, 

the expression of mRNA and alkaline phosphatase genes was unaffected even at 

the highest concentration of 800 μg/ml, which could be explained by the 

bactericidal activity of gentamicin. It has the ability to bind prokaryotic ribosomes 

which cause inhibition of protein synthesis and in consequence bacterial death 

(Ince et al., 2007).   

Silica nanoparticles are broadly applied as drug delivery carrier because of their 

biocompatibility, high loading capacity and surface area, ease of synthesis and 

scale up with reasonable cost. Silica nanoparticles have a reactive surface with Si-

OH groups, which are present also in conventional bioactive glasses, have 

bioactive properties because they can react with biological fluids to produce 

nanometre-sized apatite (Izquierdo-Barba et al., 2008; Vallet-Regí and Balas, 

2008). The surface of silica particles can serve as nucleation sites causing rapid 

release of soluble silicon in the form of silicic acid, after ion exchange with H+ 

and H3O+ under physiological conditions.  This ion exchange changes the pH and 

influence cell metabolism, function and aids the initial adherence by adsorbing 

serum glycoproteins, e.g. fibronectin (Izquierdo-Barba et al., 2008; Ravichandran 

et al., 2013). This makes silica-based materials are promising candidates for 

biomaterial application as bioceramics or drug delivery carriers because of their 

bioactive properties.  

The main advantage of the use of ALBCs is delivering antibiotic directly into the 

effect infected joint, allowing achievement of high concentration at the site of 

action, and minimal or no systemic toxicity which includes ototoxicity, 

nephrotoxicity and encephalopathy (Martínez‐ Moreno Javier et al., 2017). The 

food and drug administration authorized ALBCs for second stage reimplanta t ion 

after infected arthroplasties. However, the use of these ALBCs for prophylaxis in 

prosthesis surgery is off-label use (Walker et al., 2017). Aminoglycos ide 

antibiotics (e.g. gentamicin and tobramycin) are commonly used in ALBCs 

because they satisfy the properties required for antibiotics to be incorporated into 

bone cements, such as thermo-stability at high temperature, availability in powder 
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form etc. In addition, their evidence of effectiveness and safety after frequent use 

in TJR. 

 Parvizi et al. (2008) conducted a meta-analysis (a statistical approach to combine 

the results from multiple studies in an effort to increase power over individua l 

studies) that evaluated the efficacy of gentamicin-loaded cement in primary 

revision arthroplasty. A total of 21 444 knees arthroplasties impregnated with 

gentamicin or not were evaluated. Only one of the six studies evaluated by the 

authors reached statistical significance regarding prophylaxis of infection. Also, it 

was concluded that the ALBC reduced the deep infection rate by approximate ly 

50% (from 2.3% to 1.3% when ALBC was used) with statistical significance in 

favour of antibiotic loading into bone cement. Based on previously mentioned 

clinical data, our nanocomposite provides a prolonged released for antibiot ics 

which has a promising application in the clinical field for prophylaxis and 

treatment of PJIs.  

 

5.5 Conclusion 

The LbL coated silica nanoparticles have been successfully incorporated into bone 

cement commercial formulations Cemex and Palacos, without adversely affecting 

the mechanical performance. The novel LbL coated silica NPs provided a more 

controlled, gradual and prolonged release of gentamicin sulphate compared to 

commercial formulations. The NP containing bone cement showed superior 

antimicrobial activity against different bacterial stains. The nanocomposites 

showed cytocompatibility and were nontoxic to osteoblast without adversely 

affecting calcium production. In conclusion, the application of LbL nano-delivery 

systems may play a vital role in improving the release of antibiotics and other 

therapeutic agents from the bone cement, which is needed to reduce infection rates 

after TJRs.  
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6  Chlorhexidine nanoparticle containing bone cement 

6.1 Introduction 

The continuing emergence of resistant microbial strains limits the success of 

conventional antibiotic-based therapies in the prevention and treatment of PJIs 

(Parvizi et al., 2008). Anguita-Alonso et al. (2005) It was reported that 41% and 

66% of Staphylococci isolates, taken from patients with prosthetic joint infections,  

were resistant to gentamicin and tobramycin respectively, resistance is also 

reported with Staphylococcus aureus (Anguita-Alonso et al., 2005; Helbig et al., 

2018). Also, the resistance is significantly higher in patients with previous use of 

ALBC, which indicates the selection of aminoglycoside resistant strains after 

using ALBC (Corona et al., 2014; Staats et al., 2017). Consequently, the 

development of non-antibiotic based therapies is becoming extremely urgent for 

the treatment and prevention of infections in general, and particularly in PJIs. 

Chlorhexidine use in bone cements can enhance its antimicrobial properties 

because of the superior antimicrobial activity (Bellis et al., 2016; O’Malley, 2008). 

However, one of the limitations for application of chlorhexidine in bone cement is 

the decrease in the compressive strength upon powder incorporation (Rodriguez et 

al., 2015). Although it has been widely examined in dental cements (Fan et al., 

2016; Seneviratne et al., 2014; Takahashi et al., 2006), it has not been investiga ted 

widely in acrylic bone cements. It has many applications as a disinfectant and 

antiseptic n for skin infections, cleaning wounds (O’Malley, 2008; Peel et al., 

2014), sterilization of surgical instruments (Knox et al., 2015; Magalini et al., 

2013), and many dental applications including treatment of dental plaque, 

gingivitis and endodontic disease (Lucchese et al., 2012; Supranoto et al., 2015). 

Despite chlorhexidine small structure, it can be incorporated in LbL assembly 

multilayers as shown in chapter 4. Chlorhexidine release from B1 layered 

nanoparticles continued for 70 days, which is a considerable improvement from 

the current drug delivery systems that release antimicrobial agents for only few 

days (Dunne et al., 2008; Gasparini et al., 2014; Moojen et al., 2008; Squire et al., 

2008). The release of chlorhexidine did not show the initial burst as seen in LbL 

chlorhexidine quadruple layers made of non-hydrolysable (alginate) and 

hydrolysable (B1) polyelectrolytes.  
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In this chapter, chlorhexidine loaded in LbL structure silica nanoparticles (NPs) 

developed in chapter 4, were incorporated in PMMA bone cements to create a 

novel nanocomposite antimicrobial bone cements. The chlorhexidine loaded NPs 

and chlorhexidine powders were encapsulated into the PMMA bone cement 

(Cemex and Palacos) and characterised for drug release, antimicrobial activity, 

cytocompatibility, water uptake and mechanical properties. The aim of this work 

is to achieve a prolonged chlorhexidine release for several weeks (4-6 weeks) to 

provide prophylaxis and treatment from postsurgical PJIs, and to study the 

feasibility of chlorhexidine as an alternative to aminoglycoside antibiotics (e.g. 

gentamicin). The chlorhexidine powder and chlorhexidine nanocomposite bone 

cements were characterised for drug release (chlorhexidine), antimicrob ia l 

activity, material and mechanical properties and cytocompatibility. 

 

 

6.2 Materials and methods 

6.2.1 Chemicals 

Triton X-100, Tetraethyl orthosilicate (TEOS), (3-Aminopropyl) triethoxysilane 

(APTS), sodium alginate, chitosan, chlorhexidine diacetate, sodium acetate 

trihydrate, phosphate buffer solution (PBS) tablets, o-phthaldialdehyde reagent 

were purchased from Sigma-Aldrich, UK.  

Cyclohexane, 1-hexanol, ammonium hydroxide 35%, acetonitrile, ethanol, 

methanol, glacial acetic acid and 1-propanol were purchased from Fishers, UK. 

All reagents were stored according to manufacturer’s guidelines and used as 

received. The bone cement was used is Cemex® (Tecres® S.p.A., Italy).  

B1: is a patented biocompatible, biodegradable cationic polymer, the precise 

structure will remain confidential due to the IP associated.  
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6.2.2 Nanoparticle preparation 

6.2.2.1 Amino functionalised silica nanoparticles synthesis 

Silica nanoparticles functionalised with amine groups (SiO2-NH2) were prepared 

in one-pot synthesis by hydrolysis of TEOS in reverse micro-emulsion and 

subsequent functionalization with amino group (Stöber et al. 1968), as described 

in section 2.1.2.1 

6.2.2.2 Layer by Layer (LbL) coating technique 

The amino functionalised silica nanoparticles were layered with ten quadruple 

layers of a repeating sequence of (sodium alginate/chlorhexidine/sodium alginate/ 

B1). The following concentrations of polyelectrolytes and drug in acetic acid-

sodium acetate buffer were used in LbL: sodium alginate (2 mg/ml), chlorhexid ine 

(10 mg/ml) and B1 (2 mg/ml). The nanoparticles were coated by the same 

described in section 2.1.2.2. 

6.2.3 Bone cement preparation 

Bone cement preparation was carried out according to manufacturer’s 

instructions and the ISO5833:2002 (Implants for surgery-Acrylic resin cements) 

and as described in section 2.2.2. 

6.2.4 Rheology testing 

The storage (G’) modulus and (G’’) loss modulus were recorded to study the 

effect of adding the nanoparticles on the cement settling time, as described in 

section 2.2.3. 

6.2.5 Chlorhexidine release quantification 

Commercially available bone cement (Cemex® and Palacos®) were prepared as 

described in section 2.2.2. Chlorhexidine powder was added to each bone cement 

at different concentrations to study the release profile and antimicrobial properties 

for the bone cement with different concentrations of chlorhexidine. For optimizing 

the concentration of chlorhexidine powder, different concentrations were added to 

Cemex® bone cement (0.5-5% w/w). Chlorhexidine LbL coated nanopartic les 

were added to the bone cement at 9% which is equivalent to 3% pure chlorhexid ine 

powder, Table 20 shows the composition of all cements tested. Calculations for 



 

147 

 

the nanoparticle containing bone cements were based on the loading efficiency 

(30% w/w) prepared in chapter 4, to have equal amounts of chlorhexidine between 

powder and nanoparticle containing bone cements. 

 Palacos-

chlorhexidine 

powder  

Palacos NPs Cemex – 

chlorhexidine 

powder  

Cemex -

NPs 

Liquid 

component / g 

18.80 18.80 13.30 13.30 

Methyl 

Methacrylate / 

%w/w 

97.87 97.87 98.20 98.20 

N-N Dimethyl-

p-Toluidine / 

%w/w 

2.13 2.13 1.80 1.80 

Hydroquinone 

/ ppm 

60.00 60.00 75.00 75.00 

Powder 

Component / 

g 

40.80 40.80 40.00 40.00 

Polymethyl 

Methacrylate / 

%w/w 

83.27 83.27 82.78 82.78 

Barium 

Sulphate / 

%w/w 

- - 10.00 10.00 

Benzoyl 

Peroxide / 

%w/w 

0.50 0.50 3.00 3.00 

Zirconia / 

%w/w 

15.00 15.00 - - 

Chlorhexidine 

diacetate / 

%w/w 

1.23 - 0.5, 1, 2, 3, 4, 5 - 
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Chlorhexidine 

NPs/ %w/w 

- 3 - 9 

Powder: 

Liquid ratio 

2.17 2.17 3.01 3.01 

Table 20: Composition of chlorhexidine containing bone cements. 

 

A PTFE mould was used to produce cylindrical samples with 6mm diameter and 

10 mm length. Each sample weighed 0.40±0.01g and three samples were used for 

release study from each type of bone cement. The bone cement samples were 

incubated in 3ml PBS buffer (pH 7) at 37ºC. The release media was replaced each 

day in order attain sink condition, where the concentration of released 

chlorhexidine is negligible in comparison to its’ saturation solubility. The release 

samples were stored in the refrigerator (2-8 ºC) for analysis. The concentration of 

chlorhexidine was determined in the samples using the HPLC method described 

previously in section 2.1.5. 

6.2.6 Antimicrobial testing 

Antimicrobial testing was done for the chlorhexidine powder and NPs containing 

bone cement listed in Table 20 (Palacos-1% chlorhexidine powder, Palacos- 3% 

NPs, Cemex- 3% chlorhexidine powder, Cemex-9% NPs) using the same protocol 

described in section 5.2.6 and 2.2.5. The minimum inhibitory concentration (MIC) 

for chlorhexidine was determined against different bacteria tested through 

standard MIC protocol as described in section 5.2.6 and 2.2.5. The bacteria tested 

are methicillin-resistant Staphylococcus aureus (NCTC 12493), Streptococcus 

pyogenes (ATCC 19615), Staphylococcus epidermidis (ATCC 12228), 

Acinetobacter baumannii (NCIMB 9214), Pseudomonas aeruginosa (NCIMB 

10548), Escherichia coli (NCTC 10418). 

6.2.7 Mechanical testing 

Mechanical testing was performed as described in section 5.2.7 and 2.2.6.  for 

different bone cements (Palacos-1% chlorhexidine powder, Palacos- 3% NPs, 

Cemex- 3% chlorhexidine powder, Cemex-9% NPs). Compressive strength testing 

was performed at 0 and 3 months’ time. Also, bending and fracture toughness 
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testing were performed. Also, bending and fracture toughness testing were 

performed at zero time.  

 

6.2.8 Water uptake testing 

Different bone cement samples (Palacos-1% chlorhexidine powder, Palacos- 3% 

NPs, Cemex- 3% chlorhexidine powder, Cemex-9% NPs) were incubated in 3 ml 

PBS at 37°C for 3 months; for the first 2 weeks, the samples were weighed daily; 

after that the samples were weighed every 3 days (Perni et al., 2015), as described 

in section 5.2.8 and 2.2.7. Water uptake was calculated by dividing the increase in 

sample weight at different time points by the initial sample weight at time zero, 

and plotted as a percentage. Water uptake studies give an insight about the cement 

behaviour after being wetted in solution to simulate the in-vivo conditions inside 

the joint with the synovial fluid. 

1.1.1 Nanoparticles distribution in bone cement  

The distribution of nanoparticles in Palacose-3% chlorhexidine NPs and Cemex-

9% chlorhexidine NPs was studied by fluorescence imaging using fluorescent 

labelled LbL nanoparticles as described in section 2.2.9. 

 

6.2.9 Cytotoxicity testing 

6.2.9.1 MTT 

MTT test was done for Cemex, Cemex- 3% chlorhexidine powder, Cemex- 9% 

chlorhexidine NP for time points of 1,2,4 and 7 days with the protocol described 

in section 2.2.8.1. 

 

6.2.9.2 LDH 

LDH assay test was performed for Cemex, Cemex- 3% chlorhexidine powder, 

Cemex- 9% chlorhexidine NP for days 1,2,4 and 7 using the protocol described in 

section 2.2.8.2. 
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6.2.9.3 Calcium production assay-Alizarin red 

Alizarin red test was done for Cemex, Cemex- 3% chlorhexidine powder, Cemex-  

9% chlorhexidine NP after 21 days using the same protocol described in section 

2.2.8.3. 

6.2.9.4 NO  

The concentration of NO released by cells into the media was determined for 

Cemex, Cemex- 3% chlorhexidine powder, Cemex- 9% chlorhexidine NP for days 

1,2,4 and 7 using the protocol detailed in section 2.2.8.4. 

6.2.9.5 Fluorescence images 

Fluorescence imaging were performed for Cemex® bone cement of different types 

of composites (Cemex, Cemex- 3% chlorhexidine powder, Cemex- 9% 

chlorhexidine NP) using the protocol described in section 2.2.8.5.  

 

6.2.10 Statistical analysis 

All data were expressed as means ± standard deviation (SD) from at least three 

independent values. To assess the statistical significance of results between 

groups, one-way analysis of variance (ANOVA) was performed. Experimenta l 

results were considered statisticallysignificant at 95 % confidence level (p<0.05). 

All analyses were run using the SPSS ® software. 

 

6.3 Results 

6.3.1 Chlorhexidine release profile 

Chlorhexidine release from bone cement was studied in PBS buffer (pH 7.3), 

which is the pH value in healthy joints (Ribeiro et al., 2012). Chlorhexidine was 

quantified by HPLC with UV-detection at 239 nm in each sample, each data point 

is an average of three independent sample measurements. Figure 53 shows the 

cumulative release of chlorhexidine from Cemex® bone cement with different 

concentrations of chlorhexidine powder (0.5, 1, 2, 3, 4, 5% w/w) for 30 days. 

Different concentrations of chlorhexidine powder were studied to determine the 

suitable concentration of chlorhexidine to be added.  
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All bone cements stopped releasing chlorhexidine after 22 days. The total 

cumulative concentration released from 0.5% cement was 450 µg/ml, and for the 

(1 and 2 and 3 %) cements was around 600 µg/ml. While, the 4% and 5 % cements 

released around 750 µg/ml. The increase in the cumulative chlorhexidine release 

was not proportional to the increase in the concentration of chlorhexidine powder 

added. Moreover, the release profiles for 3 % were similar to the 5% cement with 

P-value >0.05. Therefore, the 3% chlorhexidine powder concentration was chosen 

for further optimization, which is the normal concentration usually used for the 

incorporation of antibiotics in commercial bone cements without compromis ing 

the mechanical properties of the cement (Lewis, 2009).  

 

Figure 53: Cumulative chlorhexidine release in PBS (pH 7.3) from Cemex® with 
different concentrations of chlorhexidine powder (0.5, 1, 2, 3, 4, 5% w/w) 

(n=3+SD). 

Based on previous release study (Figure 53), the release of chlorhexidine was 

studied in Cemex® and Palacos® at 3 and 1 % concentration for chlorhexid ine 

powder, and 9 and 3% concentration for the nanocomposite to have an equivalent 

amount of chlorhexidine, Figure 54. Palacos® cement stopped releasing 

chlorhexidine after 5 days for both powder and nanoparticle incorporated cement. 
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Also, the maximum cumulative concentration reached was < 200 µg/ml. However, 

there was a significant difference between the release profile of the chlorhexid ine 

powder containing Cemex® and its nanoparticle counterpart, with p-value <0.05. 

The chlorhexidine nanocomposite achieved a cumulative concentration of 1300 

µg/ml compared to 600 µg/ml in the chlorhexidine powder containing cement. In 

addition, the release profile continued for up to 30 days in the nanocomposite, 

which is longer compared to the chlorhexidine powder containing cement (22 

days). 

 

Figure 54: Cumulative chlorhexidine release in PBS (pH 7.3) from Palacos-1% 
chlorhexidine powder, Palacose-3% chlorhexidine NPs, Cemex-3% 

chlorhexidine powder, Cemex-9% chlorhexidine NPs (n=3+SD).  

In terms of total percentage release (Figure 55), Cemex with nanopartic les 

performed significantly better than the other types of bone cements. After day 7, 

Palacos chlorhexidine powder and Palacos nanocomposite stopped releasing 

chlorhexidine, however, Palacos nanocomposite achieved a higher percentage of 

15 % compared to 8 % in the earlier cement (p-value <0.05). In Cemex 

nanocomposite, the percentage of chlorhexidine released was 33% which is two 

times higher than the chlorhexidine powder containing Cemex (16 % released) The 

release was controlled over the first 20 days before reaching plateau after 30 days, 

with minimal burst effect.  
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Figure 55: Cumulative percentage chlorhexidine release in PBS (pH 7.3) from 

Palacos-1% chlorhexidine powder, Palacose-3% chlorhexidine NPs, Cemex-3% 

chlorhexidine powder, Cemex-9% chlorhexidine NPs (n=3+SD). 

 

6.3.2 Antimicrobial analysis 

Antimicrobial testing against different types of bacteria that are encountered in 

PJIs was performed for Cemex with different concentrations of chlorhexidine (0.5-

5% w/w) (Figure 56).   The MIC for chlorhexidine was determined against 

different bacteria tested through standard MIC protocol (Wiegand et al., 2008), 

and was found to be the following:   S. epidermis 0.031 µg/ml, MRSA 0.98 µg/ml, 

S. pyogenes 1.95 µg/ml, E. coli   0.031 µg/ml, P. aeruginosa 7.8 µg/ml, A. 

baumannii 7.8 µg/ml. There was no significant difference in the antimicrob ia l 

activity for the different bone cements (0.5-5% w/w) against Acinetobacter 

baumannii and Pseudomonas aeruginosa (p-value >0.9), which had less than 4 

days duration of inhibition.  The antimicrobial activity of the 3 and 4 and 5% 

concentration was around 20 days against MRSA and Escherichia coli (p-value 

>0.40). However, the antimicrobial activity against Streptococcus pyogenes and 

Staphylococcus epidermidis continued for around to 25 days for the 3 and 4 and 
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5% cements (p-value >0.5). As a result, the concentration 3% chlorhexid ine 

powder was chosen for further optimization, because it seemed that higher 

concentrations of chlorhexidine (4 and 5 %) didn’t have a significant increase in 

the antimicrobial activity. The lowest the amount of antimicrobial added to the 

cement is the better, with the same antimicrobial activity, since higher amounts 

may compromise the mechanical properties of the cement without improving the 

antimicrobial properties.  

 

Figure 56: Antimicrobial testing for Cemex cement containing different 

concentrations for chlorhexidine powder (0.5, 1, 2, 3, 4, 5% w/w) (n=3+SD). 

After optimizing the concentration of chlorhexidine, antimicrobial testing against 

different types of bacteria was performed for Palacos-1% chlorhexidine powder, 

Palacose-3% chlorhexidine NPs, Cemex-3% chlorhexidine powder, Cemex-9% 

chlorhexidine NPs) (Figure 57). Cemex containing chlorhexidine nanopartic les 

bone cement showed longer duration of bacterial growth inhibition compared to 

other types of bone cement against Acinetobacter baumannii and Pseudomonas 

aeruginosa for up to 8 days (p-value<0.05). Palacos chlorhexidine powder and 

nanoparticles showed same antimicrobial activity against all tested bacteria. 
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However, Cemex bone cement had superior antimicrobial activity to Palacos 

because it has higher amount of loaded chlorhexidine. Cemex loaded powder or 

nanoparticles inhibited the growth for up to 24 days for Streptococcus pyogenes 

and Staphylococcus epidermidis. Also, there was no significant difference in the 

antimicrobial activity of Cemex powder or nanoparticle containing bone cement 

against MRSA, Streptococcus pyogenes and Staphylococcus epidermidis (p-value 

>0.70).  

  

Figure 57: Antimicrobial testing for different types of bone cements (from 
Palacos-1% chlorhexidine powder, Palacose-3% chlorhexidine NPs, Cemex-3% 

chlorhexidine powder, Cemex-9% chlorhexidine NPs) (n=3+SD).  

 

 

6.3.3 Bone cement settling time  

The possible effects of the chlorhexidine nanoparticles on the kinetics of different 

bone cements settling time was investigated through the evaluation of the 

rheological properties of bone cement dough after mixing (Figure 58 and  Figure 

59). For all types of bone cements, storage modulus (G′) was nearly the same as 

loss modulus (G″); the pattern followed an increase at an initial fast rate that 

slowed down reaching a plateau. The storage modulus measures the stored energy, 
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representing the elastic portion, and the loss modulus measures the energy 

dissipated as heat, representing the viscous portion. Viscoelastic parameters, such 

as storage modulus, loss modulus have been obtained and show the change from 

primarily viscous to elastic behaviour as the cements set. In Cemex, the presence 

of nanoparticles required nearly the same settling time of 7 minutes (defined as the 

time needed for the dough to reach constant rheological properties) compared to 

chlorhexidine powder mixed cement. Palacos cement was not evaluated because 

it could not sustain the drug release for a long time with less antimicrob ia l 

performance unlike Cemex, which showed better performance.  

 

 

Figure 58: Storage (G’) and loss (G’’) modulus for Cemex-chlorhexidine 

powder. 
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Figure 59: Storage (G’) and loss (G’’) modulus for chlorhexidine Cemex-NPs. 

 

6.3.4  Mechanical properties 

The compressive strength of different types of bone cements (Cemex and Palacos 

with chlorhexidine powder or loaded NPs) was tested after 24 hours in air, and 

after 3 months of incubation in release media PBS, pH 7.4 at 37 ºC (Figure 60) 

according to ISO standard 5833:2002. At 24 hours and after 3 months, all types of 

bone cement had similar compressive strength (p>0.05). For Palacos with 

chlorhexidine powder and Palacos NPs, there was no significant difference in the 

compressive strength (p-value > 0.762) at zero time and after 3 months. For Cemex 

powder and Cemex chlorhexidine NPs, there was a significant difference in the 

compressive strength (p-value = 0.001) after 3 months, with the nanopartic les 

showing higher compressive strength compared to the powder mixed cement. In 

addition, incubation for 3 months did not adversely affect the compressive strength 

of the bone cement. The bending and fracture toughness tests were performed for 

chlorhexidine loaded Cemex nanocomposite, and compared with commercia l 

gentamicin loaded Cemex-Genta® (Table 21). Palacos cement was not evaluated 

because it could not sustain the drug release for a long time unlike Cemex, which 

showed better performance. The bending strength for the nanoparticle loaded 

chlorhexidine cement was similar to commercial cement Cemex-Genta, and meets 
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the ISO requirements (> 50 MPa). In addition, the fracture toughness for the two 

cements were similar (p-value> 0.20). 

 

 

Figure 60: Compressive strength testing for different types of bone cements 
(from Palacos-1% chlorhexidine powder, Palacose-3% chlorhexidine NPs, 

Cemex-3% chlorhexidine powder, Cemex-9% chlorhexidine NPs) (n=6+SD). 

 

 
Bending strength 

(MPa) 

Bending 

modulus (MPa) 

Fracture 

toughness 

(MPam1/2) 

Cemex-Genta 54.3 ± 2.0 2901 ± 62 2.4 ± 0.5 

Cemex-

chlorhexidine 

NPs 

51.4 ± 3.6 

 

2744 ± 97 2.1 ± 0.2 

Table 21: Bending strength and modulus, and fracture toughness for 

chlorhexidine loaded Cemex nanocomposite as compared to commercial 

gentamicin loaded Cemex-Genta®.  
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6.3.5 Water uptake testing 

The weight of the different types of bone cement was recorded after incubation 

in PBS buffer media pH 7.3, to study the water uptake behaviour for up to 22 

days (Figure 61

 

Figure 61). The nanocomposite water uptake behaviour was similar to that of the 

powder containing cements (p>0.05). The bone cement samples increased in 

weight during the first 4-5 days because of water uptake, and after that, the amount 

of water in the samples remained stable.  
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Figure 61: Water uptake for different types of chlorhexidine containing bone 

cements after incubation in PBS buffer, pH 7.3 (n=3+SD). 

 

6.3.6 Nanoparticles distribution in bone cement  

The distribution of nanoparticles inside the bone cement was studied by 

florescence imaging of fluorescence- labelled nanoparticles incorporated into the 

cement. Figure 62 shows nanoparticle distribution in Palacos bone cement (3% 

NPs w/w).  Figure 63 nanoparticle distribution in Cemex bone cement (9% NPs 

w/w). In both types of cement, nanoparticles were homogeneously distributed 

throughout the cement matrix, with minimal agglomeration at higher concentration 

of nanoparticles in cement, as seen in Cemex 9% NPs w/w.  
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Figure 62: Nanoparticle distribution of Palacos chlorhexidine nanoparticles (3% 

w/w) (bar=20µm). 
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Figure 63: Nanoparticle distribution of Cemex chlorhexidine nanoparticles (9% 

w/w) (bar=20µm). 
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6.3.7 Cytotoxicity analysis 

6.3.7.1 MTT  

Relative to osteoblasts exposed to Cemex® commercial formulation (no added 

antibiotic), Cemex-chlorhexidine and Cemex NPs showed similar cell viability at 

day 1 (p-value 0.142 and 0.302) (figure 64). However, it was significantly different 

from cells control with p-value <0.004. At day 2, the viability of cells increased 

and Cemex-chlorhexidine and Cemex NPs cements showed similar viability (p-

value 0.662) which was higher than Cemex® by up to 30% as seen in Cemex NPs 

(p-value <0.001). At day 4, the viability of osteoblasts dropped to 80% for Cemex-

chlorhexidine cement. While, viability dropped to 75% in cells exposed to Cemex-

NPs, and was significantly different from cells control (p-value <0.005). This drop 

could be because cells did not have enough nutrients because the media was 

changed after experiments at day 4. At day 7, Cemex-chlorhexidine and Cemex 

NPs showed increased viability which was similar to Cemex® (p-value>0.2).  
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Figure 64: Viability of osteoblasts exposed to different types of bone cements: 

Cells control, Cemex, Cemex-chlorhexidine powder, Cemex with NPs, assessed 

through MTT test at Optical density of 570 nm presented as viability ratio 

(composite/commercial cement) (n=6+SD). 

 

6.3.7.2 LDH 

Relative to the viability of osteoblasts exposed to Cemex® (commercial cement), 

the viability of Cemex-chlorhexidine was significantly lower with 30% reduction 

at day 1 (p-value = 0.033). Cemex-NPs showed similar viability to Cemex® of 

85% as seen in Figure 65 (p-value = 0.538). At day 2, Cemex NPs showed viability 

similar to Cemex® of 90% (p-value = 0.657), while Cemex-chlorhexidine showed 

significantly different viability of 70% (p-value = 0.023). However, all bone 

cements showed significantly different osteoblast viability compared to cells 

control. At day 4, Cemex-chlorhexidine and Cemex-NPs showed similar viability 

to Cemex® (p-value >0.141). However, at day 7 the viability of osteoblasts 

dropped below 60% for both Cemex-chlorhexidine and Cemex-NPs. 
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Figure 65: Viability of osteoblasts exposed to different types of bone cements: 

Cells control, Cemex, Cemex-chlorhexidine powder, Cemex with NPs, assessed 

through LDH test: (a) percentage viability, (b) viability ratio 

(composite/commercial cement) (n=6+SD). 

 

a 

b 
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6.3.7.3 NO production 

Nitric oxide (NO) is a free radical involved in the regulation of many physiologica l 

processes, such as vascular relaxation, neurotransmission, platelet aggregation and 

in immune regulation (van’T Hof and Ralston, 2001). Nitric oxide is a free radical 

which has important effects on bone cell function. The endothelial isoform of nitric 

oxide synthase is widely expressed in bone on a constitutive basis, whereas 

inducible NO is only expressed in response to inflammatory stimuli (Danziger et 

al., 1997). In general, Cemex-chlorhexidine and Cemex-NPs showed significantly 

higher nitrite production at different days tested, when compared to Cemex® or 

cells control (Figure 66) (p-value <0.05). 

 

Figure 66: Nitrite production for osteoblasts exposed to different bone cements: 

Cells control, Cemex, Cemex-chlorhexidine powder, Cemex with NPs (n=6+SD). 
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6.3.7.4 Alizarin red 

The calcium production data are shown in figure 67, where Cemex-chlorhexid ine 

and Cemex-NPs had similar results compared to Cemex® (p-value <0.05).  

 

Figure 67: Alizarin red assay for osteoblasts after 21 days grown on different 
types of bone cements: Cells control, Cemex, Cemex-chlorhexidine powder, 

Cemex with NPs (n=6+SD). 

 

6.3.7.5 Fluorescence images 

Live and dead fluorescent images for Cemex (Figure 68), Cemex chlorhexid ine 

powder (Figure 69) and Cemex chlorhexidine nanoparticles (Figure 70) show the 

live cells (green colour), dead cells (red colour) and cell nuclei (blue colour). In 

addition, actin/dapi fluorescent images for Cemex (Figure 71), Cemex 

chlorhexidine powder (Figure 72) and Cemex chlorhexidine nanoparticles (Figure 

73) show actin filaments (red colour) and cell nuclei (blue colour). Different types 

of bone cements showed more or less similar viability in terms of number of cells, 

and similar actin filament spreading and development for the cells cytoskeleton. 
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Figure 68: Live/dead images for Cemex cement with two different scales. (Top: 

100 µm bar, bottom: 20 µm bar). 
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Figure 69: Live/dead images for Cemex chlorhexidine powder cement with two 

different scales. (Top: 100 µm bar, bottom: 20 µm bar). 

  



 

170 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 70: Live/dead images for Cemex chlorhexidine nanoparticles cement with 

two different scales. (Top: 100 µm bar, bottom: 20 µm bar). 
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Figure 71: Actin/dapi images for Cemex cement with two different scales. (Top: 

100 µm bar, bottom: 20 µm bar). 

  



 

172 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 72: Actin/dapi images for Cemex chlorhexidine powder cement with two 

different scales. (Top: 100 µm bar, bottom: 20 µm bar). 
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Figure 73: Actin/dapi images for Cemex chlorhexidine nanoparticles cement 

with two different scales. (Top: 100 µm bar, bottom: 20 µm bar). 
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6.4 Discussion 

6.4.1 Chlorhexidine release profile  

The continuing emergence of resistant microbial strains limits the success of 

conventional antibiotic-based therapies in the prevention and treatment of PJIs  

(Corona et al., 2014; Staats et al., 2017). Even though adding large amounts of 

antibiotics become a well-established method in the prevention and treatment of 

PJIs.  There are many limitations related to the release profile from bone cement 

including burst release for the first few hours followed by slow release below 

inhibitory levels in the following days for less than 10% of the incorporated 

antibiotics (Dunne et al., 2008; Gasparini et al., 2014). Chlorhexidine is a broad 

spectrum cationic bactericidal polybiguanide antimicrobial agent (Hidalgo and 

Dominguez, 2001), which can offer an alternative to enhance the antimicrob ia l 

properties of bone cement.  

The release from our LbL system showed less bust release compared to 

commercial formulation, and continued up to 30 days. The loading efficiency of 

chlorhexidine in the NPs was nearly 30% (w/w). The concentrations of NPs used 

in the bone cement were 9% in Cemex NP. The release of chlorhexidine was 

sustained gradually for more than 4 weeks, as in the case with Cemex NP. The 

chlorhexidine loaded nanocomposite enhanced the total amount of chlorhexid ine 

released from the bone cement (up to 35% of loaded chlorhexidine) by up to 2-3 

folds compared to the chlorhexidine powder cement. The enhancement of release 

kinetics, as being observed also in the case of gentamicin loaded nanocomposite 

in chapter 5, could be attributed to the homogenous distribution of NPs in the bone 

cement matrix (Figure 63), and the formation of nano-network channels to 

facilitate the diffusion of chlorhexidine (Shen et al. (2016), or simply because of 

the increased surface area available for drug release from nanoparticles. These 

findings confirm the reproducibility of the developed LbL coated nanopartic les 

when comparing the release profiles for chlorhexidine and gentamicin from the 

tested cements.  

(Young et al., 2008) evaluated chlorhexidine release from brushite calcium 

phosphate bone cement added at different concentrations (3, 6, 9, 12 % w/w). The 

cumulative percentage release was independent of chlorhexidine concentration 
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with 60 % of the drug released after 24 hours, and 95% after 2 weeks. The rate of 

release in water followed Fick’s low of diffusion and was proportional to the 

square root of time with 1 mm thick specimens.  (Zhao et al., 2011) investiga ted 

chlorhexidine release from bone adhesives consisting of fluid photo-polymerizab le 

(lactide-co-propylene glycol-co- lactide) dimethacrylate. Chlorhexidine was added 

at 10 % w/w of total mixture the release was fast in the first 10 days and then 

declined with time releasing up to 80 % of total chlorhexidine loaded.   

(Riool et al., 2017) developed an antimicrobial coating for orthopaedic implants 

containing chlorhexidine as the antimicrobial agent. The coating was epoxy-based 

spin-coated on titanium implant, and loaded with either 5% or 10 % w/w 

chlorhexidine. The coatings showed potent bactericidal activity in vitro against S. 

aureus, with over 80 % of the release (19 µg/cm2 for 5% concentration and 41 

µg/cm2 for the 10 %) occurring within the first 24 h. The amount of chlorhexid ine 

released was proportional to the amount of chlorhexidine in the formulat ion, 

however the release was burst and stopped after 4 days. (Yan et al., 2017) studied 

the release of chlorhexidine from glass ionomer cement used aesthetic dentistry to 

prevent secondary caries. Chlorhexidine was encapsulated in mesoporous silica 

nanoparticles by wet impregnation with encapsulation efficiency of 44.62% w/w. 

The loaded nanoparticle incorporated in the dental cement at three concentrations 

(1%, 5%, and 10% (w/w)). Chlorhexidine release continued for up to 30 days for 

all concentrations, but the amount released was not proportional to the increase in 

concentration. This suggests that the released chlorhexidine comes from the 

nanoparticles on the surface and the deeply embedded ones remained entrapped 

inside the cement.  

Chlorhexidine has many dental applications including treatment of dental plaque, 

gingivitis and endodontic disease (Karpiński and Szkaradkiewicz, 2015; 

Supranoto et al., 2015). Chlorhexidine is used for primary and secondary 

prevention of gingivitis, periodontitis and tooth decay (James et al., 2017). Also, 

chlorhexidine use decreases plaque, gingivitis bleeding and inflammation (Prasad 

et al., 2016). Chlorhexidine is available as mouthwash at different concentrations 

ranging from 0.02% to 0.3%. The type of action is dose dependent, bacteriostatic 

at low concentrations (0.02%-.06%) and bactericidal at higher concentrations 

(0.12%-0.2%). However, chlorhexidine also available in other pharmaceutica l 
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forms as gel, aerosol and spray to be applied directly at the area to be treated 

(Prasad et al., 2016; Varoni et al., 2012). 30% chlorhexidine remains on the oral 

mucosa after a single use of chlorhexidine mouthwash and negligible amount is 

swallowed. The absorption of chlorhexidine is limited through the skin and 

gastrointestinal tract because of its cationic properties, and chlorhexidine is 

excreted mainly through faecal matter (Varoni et al., 2012). 

Chlorhexidine has many applications as a disinfectant and antiseptic for skin 

infections, cleaning wounds, sterilization of surgical instruments (O’Malley, 

2008). (Knox et al., 2015). Chlorhexidine has many applications in TJR, its use for 

per-operative skin cleansing is proven to be beneficial in decreasing the incidence 

of PJIs (Chlebicki et al., 2013). Also, chlorhexidine is widely used in surgical site 

preparation and hand antisepsis for surgeon (Sistla et al., 2010; Widmer, 2013).  

Chlorhexidine is used in intra-articular irrigation of infected joins (Smith et al., 

2015). The concentration needed for irrigation is required to be above 2% to 

provide persistent decrease in biofilm. Lower concentration can decrease biofilm 

formation but rebound growth of biofilm occurs, but higher concentration is 

associated with higher cytotoxicity to fibroblasts (van Meurs et al., 2014).  

 

6.4.2 Antimicrobial efficacy  

Antimicrobial testing was done against common bacteria involved in PJIs, both in 

early and delayed infections (early infection starts during first 24hrs-1 week, and 

late infections after 1 month according to orthopaedic surgeons). (Wendling et al. 

2016; Wu et al. 2016). The protocol used for antimicrobial testing (described in 

section 2.2.5) allows the comparison in antimicrobial activity between different 

bone cement formulation in vitro by directly incubating the release media from 

bone cement with tested bacteria. This gives a straightforward comparison 

between different types of bone cement and simulates the real scenario in the 

cemented prosthetic joint. Maintaining the antimicrobial properties of the bone 

cement in the first few weeks after surgery is important to provide prophylaxis 

from PJIs (Aslam and Darouiche, 2012). 

Different protocols are used to evaluate the antimicrobial properties of cements in 

literature (Table 19). Rodriguez et al. (2015) evaluated the antimicrobial properties 



 

177 

 

for chlorhexidine incorporated in PMMA bone cement along with brushite calcium 

phosphate bone fillers, to improve the bioactivity and antimicrobial properties of 

acrylic bone cements. Cement samples with chlorhexidine added at 8% w/v had 

larger zones of inhibition than control samples when tested against Enterococcus 

faecalis. Also, bacterial proliferation assays did not show proliferation, as depicted 

by the flat-lined growth curve plot for 18 hr after incubation. Zhao et al. (2011) 

tested the antimicrobial activity of chlorhexidine released from bone adhesives 

consisting of fluid photo-polymerizable (lactide-co-propylene glycol-co-lact ide) 

dimethacrylate loaded at 10 % w/w. The agar diffusion assay against bacterial 

strains of S. aureus and MRSA showed larger zones of inhibition compared to 

control samples. Also, chlorhexidine released from the polymer and composites in 

the first 24 hours could effectively inhibit the growth of tested stains. (Yan et al., 

2017) used an MTT assay method to evaluate the inhibition of bacterial growth (S. 

mutans UA159) on the surface of a glass ionomer cement, which was loaded with 

chlorhexidine encapsulated mesoporous silica nanoparticles at different 

concentrations (1%, 5%, and 10% (w/w)). The mean reduction of relative biofilm 

viability for three tested concentrations were 97.81% and 98.56% on day-1 and 

day-30 compared to the control cement without chlorhexidine. 

In this work, the antimicrobial activity of different cement formulations was linked 

to the chlorhexidine release profile, hence, once the release stopped the growth of 

bacteria was observed. Also, the same observation applied to inhibition of bacterial 

growth in the gentamicin loaded bone cements in chapter 5. However, 

Acinetobacter baumannii and Pseudomonas aeruginosa showed less vulnerability 

to released gentamicin, as in the case of Cemex NPs, which is linked to their high 

MIC. The antimicrobial activity of Cemex NPs continued for up to 27 days, which 

is a promising for providing prophylaxis from PJIs. For other types of bone 

cement, the antimicrobial activity of cements continued even after chlorhexid i ne 

release reached a plateau, may be because still there was a small amount of 

chlorhexidine leaching out of the cement which is enough for inhibiting the growth 

of bacteria for an extra few days. The short inhibition duration for chlorhexid ine 

powder containing bone cements, is in accordance with the reported drop in the 

concentration of antibiotics below inhibitory levels in the first few days in 
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commercial antibiotic loaded cements (Anagnostakos et al., 2009; Hsieh et al., 

2009). 

 

6.4.3 Surface and material properties of bone cement 

6.4.3.1 Settling time for bone cement  

The settling time is important for bone cement use during application and after 

patient recovery, because it determines the time needed to develop the final 

mechanical properties of the cement. Therefore, the introduction of nanopartic les 

into the cement formulation must not have great change to the settling time for the 

commonly used commercial cements. In this work, the settling time of Cemex-NP 

bone cement did not alter the settling time for the gentamicin powder containing 

cement, which was proved by rheological testing. The profiles detected for G’ and 

G’’ were comparable to those presented by others for PMMA bone cements (Farrar 

and Rose, 2001; Perni et al., 2015).  

The rheological behaviour of acrylic bone cements is very important for their 

mixing/handling and viscoelastic properties during the curing phase. Their 

behaviour has a significant influence on the cement porosity, degree of bone 

penetration and strength of the prosthesis/cement interface (Rodrigues et al., 

2009). In the case of bone cement, the cement rheologic behaviour changes from 

being mainly liquid- like immediately after mixing, to being predominantly solid-

like properties after setting. Therefore, it is useful to characterise curing of bone 

cement as viscoelastic materials, where the application of oscillatory shear plays 

an important role, where G’ (storage modulus) corresponds to the elastic behaviour 

of the material and G’’ (loss modulus) corresponds to the viscous behaviour 

(Khaled et al., 2011).  The initial increase in viscosity is due to the swelling and 

dissolution of PMMA in liquid monomer, while the final rapid increase in viscosity 

is due to polymer formation (Farrar and Rose, 2001). The dough time and setting 

time are described in ISO standard for characterising the handling properties of 

bone cement. Dough time is defined as the time after mixing of the components at 

which a freshly exposed cement surface fails to adhere to a powder-free latex 

glove. The setting time is defined as the time when the temperature of the cement 

reaches halfway between ambient and the peak exothermic temperature (“ISO 
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5833:2002,” 2002). However, using the viscoelastic parameters such as G’ and G’’ 

provide a better description for the behaviour of the cement and a better measure 

of handling and setting characteristics (Farrar and Rose, 2001). 

6.4.3.2 Mechanical testing 

Incorporating antibiotics in the bone cement compromises the mechanica l 

properties, hence only less than 3% of antibiotics are usually added (Engesaeter et 

al., 2006; Parvizi et al., 2008). The amount of chlorhexidine added was optimised 

after finding that increasing the concentration beyond 3% w/w does not have a 

significant increase in the release profile, or improved the antimicrob ia l 

performance. The compressive strength, bending strength, bending modulus and 

fracture toughness were tested according the relevant standards. The acceptable 

ranges for the mechanical properties of a set bone cement are > 70 MPa 

compressive strength, > 1800 MPa bending modulus and >50 MPa bending 

strength (Lee, 2005). The compressive strength for different types of bone cements 

was determined according to the ISO standard 5833:2002.  

Its commonly reported in literature that the incorporation of chlorhexidine in 

cements decreases the compressive strength (Holt et al., 2007; Rodriguez et al., 

2015). Holt et al. (2007) studied the effect of adding chlorhexidine at 2% w/w 

concentration on the compressive strength of mineral trioxide aggregate cement 

used as root-end filling material. The cement samples were testing by an Instron 

testing machine for compression to fracture after 72 hours curing time. The values 

recorded showed that samples with chlorhexidine had always significantly lower 

compressive strength and higher variability (3.25 MPs compared to 38.46 MPa for 

control). (Takahashi et al., 2006) evaluated the effect of adding chlorhexidine in 

glass ionomer dental cement used for restorative treatment after the removal of 

carious lesions. A significant decrease in the compressive strength were observed 

with increasing the concentration of chlorhexidine above 2% w/w, this decrease is 

also accompanied by an increase in cement setting time.  

(Rodriguez et al., 2015) measured the compressive strength for chlorhexid ine 

loaded acrylic bone cement. The addition of reagent grade chlorhexid ine 

significantly lowered the compressive strength with increasing concentration 2, 4, 

and 8 %  in comparison with the control cement by more than 50%. However, the 
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addition of chlorhexidine diacetate compressive strength was similar to the control 

and maintained the mechanical properties compared to control.  

In this work, the addition of chlorhexidine powder decreased the compressive 

strength of the Cemex cement but not Palacos, because the concentration in the 

former is 3% compared to 1% in the later. The noticeable decrease in the bone 

cement in Cemex is consistent with literature reporting increasing levels of 

chlorhexidine in dental and bone cements (Holt et al., 2007; Rodriguez et al., 

2015). However, the addition of nanoparticle loaded chlorhexidine did not 

decrease the compressive strength of the cement when compared to the powder 

mixed cement and the commercial gentamicin loaded cement (Cemex-Genta) in 

chapter 5. The same trend was also observed when comparing the compressive 

strength between gentamicin and chlorhexidine loaded nanoparticles on Cemex. 

The addition of chlorhexidine in the powder form is detrimental to the mechanic a l 

properties of the cement, while the nanoparticles loaded chlorhexidine preserves 

the cement mechanical properties. The morphology of fractured surfaces of 

ALBCs revealed cluster of antibiotic powder agglomerations, which may act as 

crack propagation points that weakens the cement mantle and decrease the 

mechanical properties (Dunne et al., 2008). Also, chlorhexidine is known to 

interfere with the free radical polymerization reaction of PMMA due to 

chlorhexidine free radical quenching effect (Rodriguez et al., 2015), the presence 

of nanoparticle seems to provide better mixing and less agglomeration inside the 

cement mantle, which can preserve the mechanical properties of the cement, as 

seen in nanoparticle distribution fluorescence images Figure 63 . The bending 

strength and modulus for Cemex-Genta and Cemex-NPs comply with the 

requirements for set and cured cement in the ISO 5833:2002 Implants for surgery 

– Acrylic resin cements (bending strength > 50 MPa and bending modulus > 1800 

MPa).   

 

6.4.3.3 Water uptake 

Aging of the bone cement in simulated physiologic conditions causes a decrease 

in the mechanical properties of the bone cement, because of the plasticising effect 

of water uptake by decreasing the attraction between polymer chains and 
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increasing flexibility (Arnold and Venditti, 2001). Although the current 

commercially available bone cements must have enough mechanical properties 

and pass standards in dry conditions, these properties can change overtime in vivo. 

In addition, the presence of other factors such as high temperatures and stresses 

also affect the mechanical properties over a long period. (Bettencourt et al., 2004) 

investigated the hydrolysis of PMMA ester groups in biological fluids, which can 

be due to the change in the composition of the cement and surface wettability. 

Water uptake not only affects the mechanical properties of the bone cement, but it 

was also found to affect the surface properties and structure of the cement leading 

to a decrease in its molecular weight over long periods of time (Hughes et al., 

2003). Thus, an initial determination of the water uptake behaviour is necessary to 

estimate the change in the physicochemical properties of the bone cement.  

 In this work, the presence of NPs did not affect the water uptake behaviour of the 

commercial bone cements. The weight of cement samples stopped increasing after 

4-5 days, which also explain the similarity in the compressive strength tested after 

3 months. These findings suggest that the presence of NPs, instead of 

chlorhexidine powder, did not change the diffusion of water nor the compressive 

strength compared to the commercial product, however long-term exposure of the 

cement to physiological fluids play an important role in changing its overall 

performance.    

 

6.4.4 Cytocompatibility testing 

Chlorhexidine is rapid acting and widely used antiseptic that is well tolerated and 

available in different formulations and concentrations (Milstone et al., 2008; 

Oosterwaal et al., 1989), as a skin and mucus membrane antiseptic exhibit ing 

activity against a broad spectrum of organisms (Mangram et al., 1999). 

Chlorhexidine gluconate is used in formulations such as wipes, cloths, scrubs and 

solutions in concentrations that range between (0.5%-4%), as single agent or in 

combination with alcohol (Conroy et al., 1999; Edmiston et al., 2008). It is 

bacteriostatic at low concentrations (0.0002% to 0.5%) and is bactericidal at much 

higher concentrations (>0.5%) (Milstone et al., 2008; Oosterwaal et al., 1989). 

Chlorhexidine has many applications in TJR as pre-operative skin cleansing, 
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surgical site preparation, surgent team hand antisepsis and intra-articular irriga t ion 

of infected joints (Azzam et al., 2010; Garibaldi, 1988; Widmer, 2013).  

The rapid antimicrobial activity of chlorhexidine persists for up 48 hours of contact 

with skin (Hibbard, 2005), which make it an ideal antiseptic for pre-operative skin 

preparation (Garibaldi, 1988). Chlorhexidine shower before surgery are performed 

to decrease the skin microbial load before replacement. Also, cloths impregna ted 

with chlorhexidine are available commercially for patients to use before TJR, and 

advocated because of ease of use and better patient compliance and achieving 

higher concentrations of chlorhexidine on skin (Edmiston et al., 2008). In addition, 

chlorhexidine is commonly used to remove transient pathogenic skin flora present 

at the time of incision (Mangram et al., 1999).  

In this work, the use of chlorhexidine in bone cement showed less cell viability to 

control, which is consistent with previous work on osteoblast cells (Faria et al., 

2009; Giannelli et al., 2008; Mariotti and Rumpf, 1999). However, the cell 

viability is generally higher (>60%, Figure 64 and Figure 65) than what have been 

previously reported. Regardless of chlorhexidine cytotoxicity and safety issues, it 

is still commonly used in peri-implant infections dental application and TJRs with 

many applications before operation as antiseptic shower, cloth and even during 

surgery as irrigation solution at bactericidal concentration. Despite the fact that the 

lack of evidence about the safety of antimicrobial agents used in irriga t ion 

solutions including chlorhexidine, they are routinely used in the irrigation of 

infected joints due their perceived benefits (Tejwani and Immerman, 2008).  

Antiseptic irrigation is an important step in revision surgery involving debridement 

of infected joints (Odum et al., 2011). Chlorhexidine antiseptic solution is among 

many other solutions used that are commonly used for irrigation such as normal 

saline, castile soap, bacitracin solution, betadine and hypochlorite (Conroy et al., 

1999; Owens et al., 2009). Most surgeons use a combination of irrigation solutions 

for the management of PJIs (Azzam et al., 2010). The optimal concentration of 

chlorhexidine gluconate is 2 % in irrigation solutions, to provide suffic ient 

decrease in biofilm formation on orthopaedic implants (Smith et al., 2015). Lower 

concentrations can decrease biofilm growth but can cause rebound growth of 

biofilm and likely to cause regrowth in in vivo models. However, further research 
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is necessary to establish the safety and effectiveness of chlorhexidine contain ing 

irrigation solutions.  

Chlorhexidine solution is shown to be cytotoxic to human osteoblasts, fibroblas ts 

and lymphocytes in dose and time dependent manner (Faria et al., 2009; Gianne ll i 

et al., 2008; Mariotti and Rumpf, 1999). Chlorhexidine can be cytotoxic to human 

fibroblasts at low concentrations as 0.02% (van Meurs et al., 2014). Extensive 

chondrolysis was reported in accidental irrigation of 1% chlorhexidine solution 

during knee arthroscopy in a case series of five patients (Douw et al., 1998). In an 

in vitro study, low concentrations of chlorhexidine didn’t affect cellular 

proliferation significantly, however, reduced collagen and non-collagen protein 

production of human gingival fibroblasts (Mariotti and Rumpf, 1999). In another 

study, chlorhexidine at a concentration of 0.2 % was cytotoxic to Saos-2 cell and 

human gingival fibroblasts (John et al., 2014). In a study on primary human 

osteoblast cells, chlorhexidine gluconate chip (2.5 mg) (releasing at concentration 

of 0.5 %) caused a 51% cell viability compared to control (Almazin et al., 2009). 

Also, chlorhexidine showed cytotoxic effect on human osteoblastic cell line U2OS 

cells, where the inhibition concentration of chlorhexidine was approximate ly 

0.005%. The effect of chlorhexidine inhibition of cell proliferation is considered 

dose dependant, i.e. depends on the exposure dose, frequency and duration. 

Concentrations higher than 5% was found to inhibit cell proliferation, 0.01% 

almost completely inhibit DNA synthesis. Chlorhexidine inhibited collagen 

synthesis of at concentrations >3%, and at 2% decreased about 50% collagen 

synthesis (Lee et al., 2010). In this work, the concentrations of chlorhexid ine 

released in day 1 is 200-600 µg/ml (0.2-0.6 w/v %) for different nanocomposites. 
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6.5 Conclusion 

The chlorhexidine loaded LbL coated silica nanoparticles have been successfully 

incorporated into bone cement commercial formulation Cemex®, without 

adversely affecting the mechanical performance. The novel LbL coated silica NPs 

provided a controlled, gradual and prolonged release of chlorhexidine for up to 30 

days. The NP containing bone cement showed superior antimicrobial activity 

against different bacterial stains. Cytocompatibility testing showed an expected 

decrease in cell viability for the nanocomposite with osteoblasts. In conclusion, 

the application of LbL nano-delivery systems may play a vital role in improving 

the release of antibiotics and other therapeutic agents from the bone cement, which 

is needed to reduce infection rates after TJRs. Also, it offers an alternat ive 

approach for loading non-antibiotic based antimicrobial into bone cement without 

compromising other properties needed for performance.  
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7 Gentamicin and chlorhexidine nanoparticle 

containing bone cement 

7.1 Introduction 

The emergence of resistant bacterial pathogenic strains has become a significant 

global health threat (Medernach and Logan, 2018). Rising antibiotic resistance is 

threatening the vast medical advancements over the decades made by using 

antibiotics to treat infections. The lack of innovative approaches for the treatment 

of antibiotic drug resistant bacteria is severely affecting many fields in medicine, 

including surgery, cancer chemotherapy, sepsis etc (Meer et al., 2016). Also, 

adding to this problem complexity is the lack of investment in antibiotic drug 

discovery by pharmaceutical companies because of low return rate compared to 

chronic diseases drug targets. The development of new classes for this problem is 

slow, as few classes have been added introduced over the last two decades. 

Furthermore, significant resistance can develop in a period of months to years after 

the introduction of new antibiotic for clinical use (Walsh, 2000). For example, 

after the introduction of daptomycin for clinical use in 2003, resistance in patients 

was observed with Enterococcus faecium and MRSA infections within less than 

year. Consequently, finding alternative approaches to controlling bacterial 

infections is solely needed (Dolgin, 2010).  

One of the approaches for the treatment of antibiotic resistant strains is the use 

drug combinations to effectively eradicate the multi drug resistant phenotypes 

(Markley et al., 2015). This approach includes antibiotic-antibiotic combinations 

to either directly target resistant mechanisms or to provide more than mode of 

action by targeting different sites in bacterial cell (Tamma et al., 2012). 

Combination antibiotic therapy provide many advantages as compared to 

monotherapy such as a broader antibacterial spectrum, synergistic effects and 

minimizes the risk for emerging resistance during therapy (Markley et al., 2015). 

Also, combinations are increasingly used to improve the efficacy of availab le 

drugs against multidrug resistant strains (Dolgin, 2010). However, the use of 

combination antimicrobial therapy is associated with increased risk of side effects 

i.e. ototoxicity and nephrotoxicity, especially when taken systemically (Prayle et 

al., 2010). Therefore, it is been recommended to use a the most selective single 
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agent as soon as the antibiotic susceptibility profile of the causative agent is 

known, or using a local delivery whenever possible to reduce drugs concentration 

in the systemic circulation and their consequent side effects (Jackson et al., 2011).  

Many causative organisms in prosthetic infections have been reported to be 

resistant to certain antibiotics, e.g. nearly 50% of Staphylococci involved PJIs are 

now resistant to gentamicin (Staats et al., 2017). Staphylococcus aureus have been 

implicated in up to 55% of PJIs, but other stains can also be found e.g. 

Propionibacterium species. Polymicrobial infections have been increasingly 

detected with complex microbiological treatment and poor clinical outcome 

(Helbig et al., 2018). Therefore, this emerging resistance increased interest in using 

PMMA bone cements with combination antimicrobial agents, such as gentamic in, 

vancomycin and cefuroxime. 

In this chapter, chlorhexidine and gentamicin LbL loaded silica nanopartic les 

(NPs) were developed, and were incorporated in PMMA bone cements to create a 

novel nanocomposite combination antimicrobial bone cement. The chlorhexid ine  

and gentamicin loaded NPs were encapsulated into the PMMA bone cement 

(Cemex®) and characterised for drug release, its antimicrobial activity, 

cytocompatibility, water uptake and mechanical properties. The aim of this work 

is to achieve a prolonged chlorhexidine release for several weeks (4-6 weeks) with 

an initial burst of gentamicin loaded on top of nanoparticles, to provide 

prophylaxis and treatment from postsurgical PJIs.  
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7.2 Materials and methods 

7.2.1 Chemicals 

Triton X-100, Tetraethyl orthosilicate (TEOS), (3-Aminopropyl) triethoxysilane 

(APTS), sodium alginate, chitosan, chlorhexidine diacetate, sodium acetate 

trihydrate, phosphate buffer solution (PBS) tablets, o-phthaldialdehyde reagent 

were purchased from Sigma-Aldrich, UK.  

Cyclohexane, 1-hexanol, ammonium hydroxide 35%, acetonitrile, ethanol, 

methanol, glacial acetic acid and 1-propanol were purchased from Fishers, UK. 

All reagents were stored according to manufacturer’s guidelines and used as 

received. The bone cement was used is Cemex® (Tecres® S.p.A., Italy).  

B1: is a patented biocompatible, biodegradable cationic polymer, the precise 

structure will remain confidential due to the IP associated.  

 

7.2.2 Nanoparticle preparation 

7.2.2.1 Amino functionalised silica nanoparticles synthesis 

Silica nanoparticles functionalised with amine groups (SiO2-NH2) were prepared 

in one-pot synthesis by hydrolysis of TEOS in reverse micro-emulsion and 

subsequent functionalization with amino group (Stöber et al. 1968), as described 

in section 2.1.2.1.  

7.2.2.2 Layer by Layer (LbL) coating technique 

The silica nanoparticles were layered with ten quadruple layers of a repeating 

sequence of (sodium alginate/chlorhexidine or gentamicin/sodium alginate/ B1). 

The following concentrations of polyelectrolytes and drug in acetic acid-sodium 

acetate buffer were used in LbL: sodium alginate (2 mg/ml), chlorhexidine or 

gentamicin (10 mg/ml) and B1 (2 mg/ml). The nanoparticles were coated by the 

same procedure described in section 2.1.2.2. The following chlorhexidine and 

gentamicin layer combination were built (Table 22): 

• 9:1 nanoparticles, which is 9 quadruple layers containing chlorhexid ine 

and the 10th outermost layer containing gentamicin.  
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• 8:2, which is 8 quadruple layers containing chlorhexidine and 9th and 10th 

top layers containing gentamicin. 

• 7:3 nanoparticles, which is 7 quadruple layers containing chlorhexid ine 

and 8th, 9th and 10th outermost layers containing gentamicin.  

Table 22: The antimicrobial agent added in each quadruple layer (alginate-
chlorhexidine or gentamicin-alginate-B1) to give three coating combinations 

9:1, 8:2 and 7:3 nanoparticles. 

  

7.2.3 TGA 

Thermogravimetric analysis was performed for different types of nanoparticles as 

described in section 2.1.3.3 to study the build-up of LbL coatings and percentage 

of organic matter on the surface of the nanoparticles. 

Quadruple layer no. Antimicrobial agent added in each quadruple layer 

on the surface of amino functionalised silica 

nanoparticles (SiNH2) 

7:3 8:2 9:1 

1 chlorhexidine chlorhexidine chlorhexidine 

2 chlorhexidine chlorhexidine chlorhexidine 

3 chlorhexidine chlorhexidine chlorhexidine 

4 chlorhexidine chlorhexidine chlorhexidine 

5 chlorhexidine chlorhexidine chlorhexidine 

6 chlorhexidine chlorhexidine chlorhexidine 

7 chlorhexidine chlorhexidine chlorhexidine 

8 gentamicin chlorhexidine chlorhexidine 

9 gentamicin gentamicin chlorhexidine 

10 gentamicin gentamicin gentamicin 
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7.2.4 Bone cement preparation 

Bone cement preparation was carried out according to manufacturer’s instruct ions 

and the ISO5833:2002 (Implants for surgery-Acrylic resin cements) and as 

described in section 2.2.2.  

 

7.2.5 Rheology testing 

The storage (G’) modulus and (G’’) loss modulus were recorded to study the effect 

of adding the nanoparticles on the cement settling time, as described in section 

2.2.3. 

7.2.6 Bone cement drug release quantification 

The different types of nanoparticles (7:3, 8:2 and 9:1) were added to Cemex® bone 

cement at the same concentration (9 %) which is equivalent to 3 % of chlorhexid ine 

powder, Table 23 shows the compositions of all cements tested. Calculations for 

the nanoparticle containing bone cements were based on the loading efficiency 

(30% w/w) prepared in chapter 4, to have equal amounts of antimicrobial agents 

(chlorhexidine and gentamicin) between powder and nanoparticle containing bone 

cement.  
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 Cemex – 7:3 NPs  Cemex -8:2 NPs Cemex-9:1 NPs 

Liquid 

component / g 

13.30 13.30 13.30 

Methyl 

Methacrylate / 

%w/w 

98.20 98.20 98.20 

N-N Dimethyl-

p-Toluidine / 

%w/w 

1.80 1.80 1.80 

Hydroquinone / 

ppm 

75.00 75.00 75.00 

Powder 

Component / g 

40.00 40.00 40.00 

Polymethyl 

Methacrylate / 

%w/w 

82.78 82.78 82.78 

Barium 

Sulphate / 

%w/w 

10.00 10.00 10.00 

Benzoyl 

Peroxide / 

%w/w 

3.00 3.00 3.00 

Zirconia / 

%w/w 

- - - 

combination 

NPs 

9 9 9 

Powder: 

Liquid ratio 

3.01 3.01 3.01 

Table 23: Composition of chlorhexidine and gentamicin containing bone 

cements. 

A PTFE mould was used to produce cylindrical samples with 6mm diameter and 

10 mm length. Each sample weighed 0.40 ± 0.01g and three samples were used 

for release study from each type of bone cement. The bone cement samples were 
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incubated in 3 ml PBS buffer (pH 7) at 37ºC. The release media was replaced each 

day in order to attain sink condition, where the concentration of released 

chlorhexidine and gentamicin is negligible in comparison to its’ saturation 

solubility. The release samples were stored in the refrigerator (2-8 ºC) for analys is. 

The concentrations of chlorhexidine and gentamicin were determined in the 

samples as described previously in sections 2.1.4 and 2.1.5.  

 

   

7.2.7 Antimicrobial testing 

Antimicrobial testing was done for NPs containing bone cement (Cemex with 7:3, 

8:2 and 9:1 NPs) listed in Table 23, using the protocol described in section 2.2.5. 

Different stains were tested including catalogue and clinical strains. The catalogue 

strains are Gram-positive bacteria methicillin-resistant Staphylococcus 

aureus (NCTC 12493), Streptococcus pyogenes (ATCC 19615), and 

Staphylococcus epidermidis (ATCC 12228) along with Gram-negative bacterium 

Acinetobacter baumannii (NCIMB 9214), Pseudomonas aeruginosa (NCIMB 

10548), Escherichia coli (NCTC 10418). The clinical strains tested (12 clinica l 

strains) were obtained from Bristol hospital patients with PJI in the period 2013-

2015 and species were confirmed by polymerase chain reaction. The patients were 

anonymised by giving a code for each selected strain. These clinical strains are: E. 

coli 59293, Enterococcus faecalis 58181, MRSA 23140, MRSA 38924, MRSA  

59275, A. baumannii 44646, A. baumannii 44640, A. baumannii 44643, S. 

epidermidis 59272, S. epidermidis 53222, S. epidermidis 59199. 

7.2.8 Mechanical testing 

Mechanical testing was performed as described in section 2.2.6 for different bone 

cements (Cemex with 7:3, 8:2 and 9:1 NPs). Compressive strength testing was 

performed at 0 and 3 months’ time. Also, bending and fracture toughness testing 

were performed.  
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7.2.9 Water uptake testing 

Bone cement nanocomposites (Cemex with 7:3, 8:2 and  9:1 NPs) were incubated 

in 3 ml PBS at 37°C for 3 months; for the first 2 weeks, the samples were weighed 

daily; after that the samples were weighed every 3 days (Perni et al., 2015), as 

described in section 2.2.7 and 2.2.7. Water uptake was calculated by dividing the 

increase in sample weight at different time points by the initial sample weight at 

time zero, and plotted as a percentage. Water uptake studies give an insight about 

the cement behaviour after being wetted in solution to simulate the in-vivo 

conditions inside the joint with the synovial fluid. 

7.2.10 Nanoparticles distribution in bone cement  

The distribution of nanoparticles in cement nanocomposites (Cemex with 7:3, 8:2 

and 9:1 NPs) was studied by fluorescence imaging using fluorescent nanopartic les 

as described in section 2.2.9. 

 

7.2.11 Cytotoxicity testing 

7.2.11.1 MTT 

MTT test was done for (Cemex with 7:3, 8:2 and 9:1 NPs) bone cements for days 

1,2,4 and 7 using the protocol described in 2.2.8.1. 

 

7.2.11.2 LDH 

LDH assay test was done for (Cemex with 7:3, 8:2 and 9:1 NPs) bone cements for 

days 1,2,4 and 7 using the same protocol described in section 2.2.8.2. 

 

7.2.11.3 Calcium production assay-Alizarin red 

Alizarin red test was done for (Cemex with 7:3, 8:2 and 9:1 NPs) bone cements 

after 21 days with the same protocol described in section 2.2.8.3. 
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7.2.11.4 NO 

The concentration of NO released by cells into the media was determined for 

Cemex with 7:3, 8:2 and 9:1 NPs for days 1,2,4 and 7 using the protocol detailed 

in section 2.2.8.3 and 2.2.8.4. 

  

7.2.11.5 Fluorescence images 

Fluorescence images (actin staining and live/dead) were done for (Cemex with 7:3, 

8:2 and 9:1 NPs) bone cement for using the same protocol described in section 

2.2.8.5. 

7.2.12 Statistical analysis 

All data were expressed as means ± standard deviation (SD) from at least three 

independent values. To assess the statistical significance of results between 

groups, one-way analysis of variance (ANOVA) was performed. Experimenta l 

results were considered statistically significant at 95 % confidence level (p<0.05). 

All analyses were run using the SPSS ® software. 
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7.3 Results 

7.3.1 Nanoparticles surface and material characterization.  

TGA was performed for assessing the organic content after LbL coating for 

different NPs combinations (7:3, 8:2 and 9:1). TGA thermograms of silica NPs 

and the same NPs with different number of quadruple layers are shown in Figure 

74. An initial weight loss around (5%) was observed at about 100 ºC, which is 

normally attributed to the evaporation of adsorbed water from the samples (Wang 

et al., 2014). The organic content in each sample (Table 24) was calculated based 

on the weight loss beyond 100 ºC, which truly corresponds to the combustion of 

organic matter (Du et al., 2015). The build of organic matter with increasing 

number of quadruple layers is shown in Figure 75.  

    

Figure 74: TGA for Silica nanoparticles, 7:3-Q7: 7 quadruple layers of 7:3 NPs 
combination, 8:2-Q8: 8 quadruple layers of 8:2 combination, 9:1-Q9: 9 quadruple 
layers of 9:1 combination, 7:3-Q10: 10 quadruple layers of 7:3 NPs combination, 

8:2-Q10: 10 quadruple layers of 8:2 combination, 9:1-Q10: 10 quadruple layers 
of 9:1 combination, Pure chlx-Q10: 10 quadruple layers containing chlorhexidine 

(n = 3 ± SD).  
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Samples Organic content (%) 

SiNH2-Nanoparticles 14.95 ± 1.0 

7:3-Q7 46.19 ± 1.46 

8:2-Q8 48.71 ± 1.23 

9:1-Q9 52.72 ± 1.90 

7:3-Q10 58.49 ± 1.51 

8:2-Q10 58.22 ± 1.77 

9:1-Q10 58.77 ± 1.68 

Pure chlx-Q10 58.34 ± 1.59 

Table 24: Percentage of organic matter in different layers of chlorhexidine NPs 
and chlorhexidine gentamicin combination NPs calculated from Figure 74 (n = 3 

± SD).  

 

Figure 75: The build-up of organic matter with increasing number of quadruple 

layers. 

The organic content for the amino functionalised silica NPs is 14.95%. After 

adding 7 quadruple layers, the organic content increased to 46.19%. Then, adding 
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one quadruple layer (Q8) of chlorhexidine increased the organic content to 

48.71%, which makes a 2.5% increase in organic matter. Adding the ninth 

quadruple layer increased the organic content by 4% to reach 52.72%. Layering 

10 quadruple layers on the surface of amino-functionalised silica NPs yielded 

similar organic content of around 58% irrespective whether the layers containing 

chlorhexidine or gentamicin or chlorhexidine alone (p-value >0.05). This is also 

confirmed by linear relationship (R2=0.9837) between the number of quadruple 

layers and the build-up of organic matter on the surface of the NPs as seen in Figure 

75. 

 

7.3.2 Bone cement settling time  

The possible effects of the chlorhexidine and gentamicin LbL coated nanopartic les 

on the kinetics of Cemex bone cement settling time was investigated (before and 

after adding 9:1 NPs), through the evaluation of the rheological properties of bone 

cement dough after mixing (Figure 76 and Figure 77). Storage modulus (G′) was 

nearly the same as loss modulus (G″) in Cemex alone cement and Cemex-9:1 NPs 

nanocomposite; there was an increase at fast rate at the beginning which slowed 

down later reaching a plateau. The presence of nanoparticles required the same 

settling time of 6-7 minutes (defined as the time needed for the dough to reach 

constant rheological properties) compared to Cemex alone cement settling time. 

The stored energy representing the elastic portion of the cement is measured by 

the storage modulus. While, the energy dissipated as heat representing the viscous 

portion is measured by loss modulus.  
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Figure 76: Storage (G’) and loss (G’’) modulus for Cemex alone bone cement. 

Figure 77: Storage (G’) and loss (G’’) modulus for Cemex-9:1 NP. 
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7.3.3 Bone cement drug release profile 

Chlorhexidine and gentamicin release were studied in PBS (pH 7.3), which is the 

pH value in healthy joints (Ribeiro et al., 2012). Gentamicin was quantified by 

fluorescence spectroscopy after conjugation with o-phthaldialdehyde, while 

chlorhexidine was quantified by HPLC with UV-detection at 239 nm from the 

same sample, each data point is an average of three independent sample 

measurements. Figure 78 shows the cumulative release from Cemex bone cement 

containing different types of NPs (7:3, 8:2 and 9:1). Also, Figure 79 shows 

chlorhexidine cumulative release from Cemex bone cement containing different 

types of NPs (7:3, 8:2 and 9:1). 

All bone cements stopped releasing chlorhexidine and gentamicin after 30 days. 

Regarding gentamicin release, the total cumulative concentration released was 

1180 µg/ml from Cemex-7:3, 1000 µg/ml from Cemex-8:2, and 870 µg/ml from 

Cemex-9:1. There was a proportional increase in the cumulative release for 

gentamicin with increasing the number of gentamicin layers, however the increase 

was not significantly different between release profiles (p-value> 0.05). Regarding 

chlorhexidine release, the total cumulative concentration released was 1130 µg/ml 

from Cemex-7:3, 1500 µg/ml from Cemex-8:2, and 1900 µg/ml from Cemex-9:1. 

The release was also proportional to the number of chlorhexidine layers; however, 

it was not significantly different between the release profile of different 

nanocomposites (p-value> 0.05).   
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Figure 78: Gentamicin cumulative release from Cemex bone cement containing 

different types of NPs (7:3, 8:2 and 9:1) (n = 3 ± SD). 

 

Figure 79: Chlorhexidine cumulative release from Cemex bone cement 

containing different types of NPs (7:3, 8:2 and 9:1) (n = 3 ± SD).  
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7.3.4 Antimicrobial analysis  

Antimicrobial testing was performed against different types of bacteria that are 

encountered in PJIs for Cemex bone cement containing different types of NPs (7:3, 

8:2 and 9:1). First, the antimicrobial analysis was performed using catalogue 

strains (Figure 80), the bacteria tested methicillin-resistant Staphylococcus 

aureus (NCTC 12493), Streptococcus pyogenes (ATCC 19615), Staphylococcus 

epidermidis (ATCC 12228), Acinetobacter baumannii (NCIMB 9214), 

Pseudomonas aeruginosa (NCIMB 10548), Escherichia coli (NCTC 10418). 

Then, antimicrobial analysis was performed using clinical patients stains resistant 

to gentamicin (Figure 81), These clinical strains are: E. coli 59293, Enterococcus 

faecalis 58181, MRSA 23140, MRSA 38924, MRSA 59275, A. baumannii 44646, 

A. baumannii 44640, A. baumannii 44643, S. epidermidis 59272, S. epidermidis 

53222, S. epidermidis 59199. 

Catalogue strains inhibition duration was similar between different types of 

nanocomposites (p-value>0.9) against different types of strains. The antimicrob ia l 

activity continued for up to 48 days as seen in Streptococcus pyogenes and 

Staphylococcus epidermidis. The antimicrobial activity lasted for 38 days for all 

types of nanocomposites against Escherichia coli, Pseudomonas aeruginosa and 

MRSA. The least antimicrobial activity was observed against Acinetobacter 

baumannii for nearly 30 days. Clinical stains resistant to gentamicin inhibition was 

similar between different types of nanocomposites (p-value> 0.7). The least 

inhibition duration was observed in Acinetobacter baumannii clinical strains 

which only lasted for less than 7 days. The antimicrobial activity against 

Staphylococcus epidermidis continued for up to 28 days. While, the antimicrob ia l 

activity continued for up to 25 days against Escherichia coli and MRSA, and 20 

days against Enterococcus faecalis.  

 

  



 

201 

 

Figure 80: Antimicrobial testing of Cemex cement containing different types of 

NPs (7:3, 8:2 and 9:1) (n = 3 ± SD). 

 

Figure 81: Antimicrobial testing against gentamicin resistant clinical strains for 

Cemex cement containing different types of NPs (7:3, 8:2 and 9:1) (n = 3 ± SD). 
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7.3.5 Mechanical testing 

The compressive strength was tested for different types of nanocomposites 

(Cemex-7:3, 8:2 and 9:1) after 24 hours in air, and after 3 months of incubation in 

release media PBS, pH 7.3 at 37 ºC (Figure 82) according to ISO standard 

5833:2002. Cemex-9:1 had similar compressive strength at 0 and 3 months’ time 

compared to Cemex alone cement (p-value> 0.2) which was > 80 MPa at zero time 

and >70 MPa after 3 months of incubation. However, Cemex-7:3 and Cemex-8:2 

had significantly lower compressive strength compared to Cemex (p-value<0.05) 

which was > 70 MPa for Cemex-8:2. The bending and fracture toughness test were 

performed for Cemex-9:1 nanocomposite and Cemex alone as a reference. There 

was no significant difference in bending and fracture toughness between Cemex-

9:1 nanocomposite and Cemex alone (p-value>0.25). The compressive and 

bending properties of the Cemex-9:1 nanocomposite meets the criteria for in the 

ISO standard 5833:2002 (>70 MPa compressive strength, >50MPa for bending 

strength). 
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Figure 82: Compressive strength testing for Cemex alone and with different 
types of NPs (7:3, 8:2 and 9:1) at zero time and after 3 months of incubation on 

PBS at 37°C. ((n = 3 ± SD). 

 Bending strength 

(MPa) 

Bending modulus 

(MPa) 

Fracture toughness 

(MPam1/2) 

Cemex 54.3 ± 2.0 2901 ± 62 2.4 ± 0.5 

Cemex-9:1 52.6 ± 2.0 

 

2980 ± 150 

 

2.5 ± 0.5 

 

Table 25: Bending strength and modulus, and fracture toughness for Cemex and 

Cemex containing 9:1 NPs.  
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7.3.6 Water uptake testing 

The weight of different types of nanocomposites (Cemex-7:3, 8:2 and 9:1) and 

Cemex was recorded after incubation in PBS buffer media pH 7.3, to study the 

water uptake behaviour for up to 30 days (Figure 83). The bone cement samples 

increased in weight during the first 7 days because of water uptake, and after that, 

the amount of water in the samples remained stable.  

 

Figure 83: Water uptake study for Cemex and Cemex nanocomposite containing 
different types of NPs (7:3, 8:2 and 9:1) after incubation in PBS buffer, pH 7.3 

(n=3+SD). 
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7.3.7 Nanoparticles distribution in bone cement  

The distribution of nanoparticles inside the bone cement was studied by 

florescence imaging of fluorescence- labelled nanoparticles incorporated into the 

cement. Figure 84 shows nanoparticle distribution in Cemex-9:1 nanocomposite 

((9% NPs w/w). The nanoparticles appear to be homogenously distributed 

throughout the cement matrix with minimal agglomeration  

 

 

 

Figure 84: Nanoparticle distribution of Cemex-9:1 nanocomposite (9% w/w) 

(bar=20µm). 
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7.3.8 Cytotoxicity analysis 

7.3.8.1 MTT    

Relative to osteoblast exposed to Cemex® commercial cement (no added 

antibiotic), all nanocomposite cements (Cemex 9:1, 8:2 and 7:3 NP) showed 

similar cell viability at day 1 (p-value >0.115) (Figure 85). At day 2, the viability 

of cells exposed to Cemex-8:2 and 7:3 was significantly lower than Cemex alone 

(p-value <0.05), but Cemex-9:1 showed similar viability to Cemex commercia l 

cement (p-value 0.683). At day 4 and 7, all nanocomposites showed similar 

viability to Cemex alone (p-value >0.8), which reflects cells recovering with time 

after initial exposure to different nanocomposites.  

 

 

Figure 85: Viability of osteoblasts exposed to different types of bone cements: 

Cells control, Cemex, Cemex nanocomposite containing different NPs (7:3, 8:2 
and 9:1), assessed through MTT test at Optical density of 570 nm presented as 

viability ratio (nanocomposite/Cemex) (n=6+SD). 
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7.3.8.2  LDH 

Relative to the viability of osteoblasts exposed to Cemex® (commercial cement), 

the viability ratio at day 1 for all nanocomposites was around 1 which means it is  

similar to the Cemex alone (p-value >0.9). At day 2, cells viability for Cemex-8:2 

nanocomposite (viability ratio is 0.8) was significantly lower than Cemex 9:1 and 

Cemex 7:3 (p-value <0.05). At day 4 and 7, all nanocomposites showed similar 

cell viability (p-value >0.8), which was more 0.8 viability ratio similar to Cemex 

commercial cement until they recovered total at day 7 reaching viability ratio 

around 1.  
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Figure 86: Viability of osteoblasts exposed to different types of bone cements: 
Cells control, Cemex, Cemex nanocomposite containing different NPs (7:3, 8:2 

and 9:1), assessed through LDH test: (a) percentage viability, (b) viability ratio 

(nanocomposite/Cemex) (n=6+SD). 

 

 

 

a 

b 
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7.3.8.3 NO production 

In general, Cemex nanocomposites (Cemex-9:1, 8:2 and 7:3) showed higher nitrite 

production at different days tested, when compared to Cemex® or cells control 

(Figure 87) (p-value <0.05). 

 

 

 

 

 

Figure 87: Nitrite production for osteoblasts exposed to different types of bone 
cements: Cells control, Cemex, Cemex nanocomposite containing different NPs 

(7:3, 8:2 and 9:1) (n=6+SD). 
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7.3.8.4 Calcium production assay-Alizarin red 

The calcium production data are shown in Figure 88, Where different Cemex 

nanocomposites had similar results compared to Cemex® (p-value <0.05).  

 

Figure 88: Alizarin red assay for osteoblasts after 21 days grown on different 
types of bone cements: Cells control, Cemex, Cemex nanocomposite containing 

different NPs (7:3, 8:2 and 9:1) (n=6+SD). 
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7.3.8.5 Fluorescence images 

Live and dead fluorescent images for Cemex-7:3 (Figure 89), Cemex-8:2 (Figure 

90) and Cemex-9:1 (Figure 91) nanocomposites show the live cells (green colour), 

dead cells (red colour) and cells nuclei (blue colour). Also, actin/dapi fluorescent 

images for Cemex-7:3 (Figure 92), Cemex-8:2 (Figure 93) and Cemex-9:1 (Figure 

94) show actin filaments (red colour) and cell nuclei (blue colour). Live/dead 

images showed minimum dead cells (red colour) which was masked by the most 

abundant live cells (green colour) for all nanocomposites. Actin/dapi cell images 

showed cells filament spreading and developed for cells cytoskeleton which is 

similar to Cemex images in previous chapter (Figure 71).  
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Figure 89: Live/dead images for Cemex-7:3 nanocomposite with two different 

scales. (Top: 100 µm bar, bottom: 20 µm bar). 
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Figure 90: Live/dead images for Cemex-8:2 nanocomposite with two different 

scales. (Top: 100 µm bar, bottom: 20 µm bar). 
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Figure 91: Live/dead images for Cemex-9:1 nanocomposite with two different 

scales. (Top: 100 µm bar, bottom: 20 µm bar). 
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Figure 92: Actin/dapi images for Cemex-7:3 nanocomposite with two different 

scales. (Top: 100 µm bar, bottom: 20 µm bar). 
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Figure 93: Actin/dapi images for Cemex-8:2 nanocomposite with two different 

scales. (Top: 100 µm bar, bottom: 20 µm bar). 
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Figure 94: Actin/dapi images for Cemex-9:1 nanocomposite with two different 

scales. (Top: 100 µm bar, bottom: 20 µm bar).  
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7.4 Discussion 

7.4.1 Nanoparticle surface and material characterization 

TGA is a commonly used type of analysis to assess the presence of organic matter 

on the surface of nanoparticles, based on the observation of mass loss (Mai et al. 

2013). Furthermore, TGA is used to evaluate surface functionalization on the 

surface of nanoparticles (Zhong et al. 2015).  Therefore, during LbL assembly, the 

deposition of polyelectrolytes on the surface of nanoparticles was evaluated 

quantitatively using TGA analysis (Wu et al. 2015).  

The thermogram for the amino functionalised silica nanoparticles (Figure 74) was 

similar to the one obtained by (Branda et al. 2010). Moreover, the calculated 

organic matter percentage for the amino functionalised silica nanoparticles (Table 

24) was in agreement with the one reported by (Liu et al. 2015). A consistent 

increase in the organic content was observed for amino functionalised silica 

nanoparticles and different quadruple layer with increasing the number of layers 

on the surface of the amino functionalised silica nanoparticles. This consistent 

increase in the organic content confirmed the deposition of the layered 

polyelectrolytes and drug on the surface of the amino functionalised silica 

nanoparticles. 

 

 

7.4.2 Drug release profile  

The use of ALBCs has become a well-established practice to prevent infect ions 

after TJR (Engesaeter et al., 2006; Parvizi et al., 2008). However, large amounts 

of antibiotics need to be added to achieve therapeutic levels (up to 1g per 40g of 

cement) (Letchmanan et al. 2017). There are several problems related to the release 

profile of antibiotics from ALBCs. The burst release for in the first few hours after 

surgery, followed by low release below inhibitory levels which doesn’t provide 

prophylaxis for a long period of time. Also, the sub-inhibitory concentrations 

released adds to the problem of emerging antibiotic resistant bacterial strains 

(Dunne et al., 2008; Gasparini et al., 2014). In addition, more than 90% of the 
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loaded antibiotics remain entrapped inside the cement matrix (Dunne et al., 2007; 

Van et al., 2000).  

Many studies studied the in-vivo and in-vitro combination antibiotics released 

from PMMA cements (Anagnostakos et al., 2009; Duey et al., 2012). The 

antibiotics are released from the cement at different rates according their 

physicochemical properties, and sometime improving release kinetics especially 

when combining two water-soluble antibiotics in the cement. The elution of 

vancomycin and amikacin were nearly the same when used in combination or 

when used individually (Kuechle et al., 1991). The combination of tobramycin and 

vancomycin in vitro can increase tobramycin and vancomycin release by 68% and 

103%, respectively, compared to adding each one alone (Penner et al., 1996). Also, 

in-vivo studies of vancomycin and tobramycin improved the release of both 

antibiotics (Masri et al., 1998). In another study, the addition of vancomycin 

improved the release of gentamicin (Anagnostakos et al., 2009). Other 

combinations of antibiotics are possible and considered off-label use for the drugs, 

however, antibiotic impregnated PMMA cements are commercially available (e.g. 

Vancogenx®, Merete GmbH, Berlin, Germany). Despite of the common practice 

of combining two antibiotics in bone cement, the data is limited about their release 

in-vivo from prosthetic devices after implantation.  

The release from different nanocomposites (Cemex-9:1, 8:2 and 7:3) showed less 

burst release effect, and continued for up to 30 days for both gentamicin and 

chlorhexidine. The nanoparticles were homogenously distributed inside the 

cement (Figure 84).  These findings confirm the reproducibility of the developed 

LbL coated nanoparticles when comparing the release profiles for chlorhexid ine 

and gentamicin nanocomposites tested in previous chapters. The enhancement of 

release could be attributed the increased surface area available for drug release 

form nanoparticles, because of the formation of nano-channel networks that 

facilitate the diffusion of drugs (Shen et al. 2016). Silica nanoparticles are 

biocompatible as drug delivery system with high loading capacity and ease of 

synthesis.  Mesoporous silica nanoparticles loaded with gentamicin have been 

incorporated into bone cement, and achieved long sustained release >30 days Shen 

et al. (2016). Also, gentamicin has been loaded in liposomal formulation and 
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incorporated into as liquid in the bone cement, and achieved sustained release for 

nearly 30 days (Ayre et al. 2015). 

Chlorhexidine has been incorporated in cementous dental and orthopeadic 

composites/implants either in the form of powder, or loaded into nanopartic les 

(Riool et al., 2017; Yan et al., 2017). Chlorhexidine was incorporated into glass-

ionomer cement, after encapsulation in mesoporous silica nanoparticles at loading 

efficiency of 44.62% w/w. The loading continued of up to 30 days, for cement 

loaded with different concentrations (1%, 5%, and 10% (w/w)). however, 

chlorhexidine incorporation as powder in brushite calcium phosphate bone cement 

resulted in 60 % of the drug released after 24 hours, and 95% after 2 weeks, where 

the cement was loaded with different concentration (3, 6, 9, 12 % w/w) (Young et 

al., 2008). 

Clinical studies looked at the concentration of combination antibiotics in PMMA 

spacers used after TJRs (Isiklar et al., 1999; Anagnostakos et al., 2009). The 

intraarticular antibiotic concentrations were measured in the first few days after 

inserting vancomycin-tobramycin-loaded spacers. Highest concentrations 

measured at day 1 were 19 µg/ml for vancomycin and 107 µg/ml for tobramycin. 

The concentrations determined from the wound drainage fluids were 10-30 times 

higher than MICs for infecting organisms (Masri et al., 1998). In another work, the 

concentration of vancomycin was 57 µg/mL on day 1 from vancomycin-

impregnated spacers in the treatment of orthopaedic implant related S. epidermidis 

infections, also determined from the drainage fluids (Isiklar et al., 1999). 

(Anagnostakos et al., 2009) studied the release of gentamicin and vancomycin 

from beads and spacers in the drainage fluid using a two-stage protocol in the 

treatment of infected hip arthroplasties. Peak mean concentrations from PMMA 

beads and spacers were reached for gentamicin (115.70 µg/ml and 21.15 µg/ml, 

respectively) and vancomycin (80.40 µg/ml and 37.0 µg/ml, respectively) on day 

1. The last measured concentrations for the beads group was 3.70 µg/ml for 

gentamicin and 23.00 µg/ml for vancomycin after 13 days, and 1.85 µg/ml for 

gentamicin and 6.60 µg/ml for vancomycin after 7 days in the spacer group.  
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7.4.3 Antimicrobial efficacy  

Antimicrobial testing was done against common bacteria involved in PJIs, both in 

early and delayed infections (early infection starts during first 24hrs-1 week, and 

late infections after 1 month according to orthopaedic surgeons).) (Wendling et al. 

2016; Wu et al. 2016). In this chapter, the combination of chlorhexidine and 

gentamicin in the same LbL coated construct nanoparticles achieved a longer 

duration of antimicrobial inhibition (Figure 80) compared with each antimicrob ia l 

cement alone in previous chapters (Figure 57and  Figure 41) when tested against 

catalogue stains. All drug combination nanocomposites (Cemex-9:1, 8:2 and 7:3) 

achieved an antimicrobial inhibition up to 48 days, compared to less than 30 days 

for chlorhexidine and gentamicin nanocomposite alone. This enhanced 

antimicrobial inhibition suggests the presence of either synergistic or additive 

effect between chlorhexidine and gentamicin, where synergism is when the effect 

of two antimicrobial agents produces a combined effect greater than the sum of 

each antimicrobial alone (Bollenbach, 2015). The antimicrobial properties of the 

combination nanocomposites were tested against clinical strains resistant to 

gentamicin, and different combinations inhibited bacterial growth for up to 25 days 

(Figure 81).  

Many causative organisms in prosthetic infections have been reported to be 

resistant to certain antibiotics, e.g. nearly 50% of Staphylococci involved PJIs are 

now resistant to gentamicin (Staats et al., 2017). Staphylococcus aureus have been 

implicated in up to 55% of PJIs, but other stains can also be found e.g. 

Propionibacterium species. Polymicrobial infections have been increasingly 

detected with complex microbiological treatment and poor clinical outcome 

(Helbig et al., 2018). Therefore, this emerging resistance increased interest in using 

PMMA bone cements with combination antimicrobial agents, such as gentamic in, 

vancomycin and cefuroxime. It was reported that 41% and 66% of Staphylococci 

isolates, taken from patients with prosthetic joint infections, were resistant to 

gentamicin and tobramycin respectively, resistance is also reported with 

Staphylococcus aureus (Anguita-Alonso et al., 2005; Helbig et al., 2018). Also, 

the resistance is significantly higher in patients with previous use of ALBC, which 

indicates the selection of aminoglycoside resistant strains after using ALBC  

(Corona et al., 2014; Staats et al., 2017). Consequently, the development of non-
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antibiotic based therapies is becoming extremely urgent for the treatment and 

prevention of infections in general, and particularly in PJIs. 

Chlorhexidine resistance is rarely encountered in Escherichia coli, Salmonella 

spp., Staphylococcus aureus or coagulase negative staphylococci. However, some 

resistant isolates can be found in Enterobacter spp., Pseudomonas spp., Proteus 

spp., Providencia spp. and Enterococcus spp. (Kampf, 2016). Chlorhexidine is 

commonly used at different concentrations (0.5%–4%) of the water-soluble 

gluconate form. Chlorhexidine acts by binding strongly, through the biguanide 

groups, to exposed anionic groups on the cell membrane and cell wall, which 

causes the disruption of osmotic equilibrium of the cell (Horner et al., 2012).  

Chlorhexidine has many medical applications, it has been widely examined in 

dental cements (Fan et al., 2016; Seneviratne et al., 2014; Takahashi et al., 2006), 

although it has not been investigated widely in acrylic bone cements (Rodriguez 

et al., 2015). It has many applications as a disinfectant and antiseptic for skin 

infections, cleaning wounds (O’Malley, 2008; Peel et al., 2014), sterilization of 

surgical instruments (Knox et al., 2015; Magalini et al., 2013), and many dental 

applications including treatment of dental plaque, gingivitis and endodontic 

disease (Lucchese et al., 2012; Supranoto et al., 2015). 

One of the approaches for the treatment of antibiotic resistant strains is the use 

drug combinations to effectively eradicate the multi drug resistant phenotypes 

(Markley et al., 2015), to either directly target resistant mechanisms or to provide 

more than mode of action by targeting different sites in bacterial cell (Tamma et 

al., 2012). Combination antibiotic therapy provide many advantages as compared 

to monotherapy such as a broader antibacterial spectrum, synergistic effects and 

minimizes the risk for emerging resistance during therapy (Markley et al., 2015). 

Also, combinations are increasingly used to improve the efficacy of availab le 

drugs against multidrug resistant strains (Dolgin, 2010). The guanidium groups in 

chlorhexidine’s structure is responsible for the antimicrobial activity by binding to 

bacterial cell membrane causing cell function disruption (Denyer, 1995). On the 

other hand, the bactericidal activity of gentamicin is concentration dependant 

which inhibit protein synthesis in bacteria (Tam et al., 2006). It has the ability to 

bind prokaryotic ribosomes which cause inhibition of protein synthesis and in 

consequence bacterial death (Ince et al., 2007).   
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The combination of gentamicin and penicillin is recommended for the treatment 

of infective endocarditis and prosthetic joint infections in adults (Anagnostakos 

and Kelm, 2009; Polin, 2012). A study confirmed the presence of synergism of 

penicillin and gentamicin against clinical group B Streptococcus isolates, where 

synergism was defined as a ≥100-fold (≥2 log) increase in killing at 24 h (as 

measured by colony counts [CFU/mL]) with the combination therapy in 

comparison with the most active single drug (Ruppen et al., 2016). In addition, the 

synergetic effect of vancomycin and gentamicin combination was documented 

against MRSA. Time-kill curves were determined for vancomycin at 10 mg/ml and 

gentamicin at 1 mg/ml. Six MRSA strains showed low-level gentamicin resistance 

(MIC 0.5 to >128 mg/ml.), where vancomycin-gentamicin demonstrated 

synergism against these gentamicin resistant strains (Mulazimoglu et al., 1996). 

On the other hand, recent studies demonstrated that chlorhexidine has a synergist ic 

antimicrobial activity when combined with silver ions and loaded into mesoporous 

silica NPs (MSN), resulting in improved efficacy in the treatment of resistant 

Candida-associated denture stomatitis (Lu et al., 2017). The synergistic action was 

ascribed to the wide pores of MSNs offered chemical functionalization and 

permitted simultaneous hosting chlorhexidine and nano- silvers, which allowed 

the simultaneous release of silver ions and chlorhexidine under acidic conditions. 

Also, compared to larger silver NPs, the silica matrix could prevent nano-silvers’ 

aggregation and facilitate the dissolution of silver ions (Lu et al., 2017).  In another 

study, chlorhexidine and metallic silver showed synergistic bactericidal action 

against action toward the gram-negative Pseudomonas aeruginosa and the gram- 

positive Staphylococcus epidermidis (Ben-Knaz et al., 2013). 

 

7.4.4 Surface and material properties of bone cement 

7.4.4.1 Bone cement settling time  

The rheological properties of PMMA bone cement is crucial for the handling 

properties during curing phase. The settling time is an important factor in 

developing the final mechanical properties of the cement, the degree of penetration 

and strength of the prosthesis/cement interface (Rodrigues et al., 2009). It is 

preferred that the incorporation of nanoparticles doesn’t have significant effect on 
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the settling time, which is defined as the time when the temperature of the cement 

reaches halfway between ambient and the peak exothermic temperatures (“ISO 

5833:2002,” 2002). However, using the viscoelastic parameters such as G’ and G’’ 

provide a better description for the behaviour of the cement and a better measure 

of handling and setting characteristics (Farrar and Rose, 2001). 

The introduction of nanoparticle in the bone cement didn’t change the settling time 

and rheological behaviour compared to the commercial cement, which is 

consistent with nanocomposite behaviour in previous chapters. The viscoelast ic 

behaviour of the cement changed from being mainly liquid -like at the beginning 

of mixing into solid-like after setting. where G’ (storage modulus) corresponds to 

the elastic behaviour of the material and G’’ (loss modulus) corresponds to the 

viscous behaviour (Khaled et al., 2011). This change is rheological properties is 

critical, because implant insertion by surgeon should be delayed until the cement 

has a sufficient degree of viscosity, but before complete hardening of the cement 

(Vaishya et al., 2013).  

7.4.4.2 Mechanical properties  

The incorporation of a second antibiotic in bone cement adds to the problem of 

loading antibiotics into PMMA cements, hence only less than 3% of total 

powdered antibiotics can be added without compromising the cement mechanica l 

properties. The use of gentamicin powder at concentration higher than 3% caused 

a significant decrease in the compressive and elastic modulus of bone cement, 

while lower concentrations kept these parameters at acceptable ranges (He et al., 

2002). The acceptable ranges for the mechanical properties of a set bone cement 

are > 70 MPa compressive strength, > 1800 MPa bending modulus and >50 MPa 

bending strength (Lee, 2005). The compressive strength for different types of bone 

cements was determined according to the ISO standard 5833:2002. The 

incorporation of chlorhexidine powder in cements is commonly reported to 

decrease the compressive strength (Holt et al., 2007; Rodriguez et al., 2015). 

In this work, the addition of nanoparticles didn’t compromise the mechanica l 

properties of the nanocomposite, compared to the commercial cement as seen in 

Cemex-9:1 (Figure 82 and  Table 25). The mechanical properties meet the criteria 

set by ISO standard 5833:2002. The nanocomposite loaded with 9% of NPs had 
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compressive strength of >80 MPa, which is in accordance with Shen et al. (2016) 

work which reported a compressive strength of 85 MPa for %10 mesoporous silica 

NP loaded bone cement. The presence of nanoparticles seems to provide better 

mixing and less agglomeration inside the cement mantle, which can preserve the 

mechanical properties of the cement, as seen in the NP distribution images (Figure 

84). The agglomeration of powdered antibiotics forms clusters which act as crack 

propagation points that weakens the mechanical strength of the cement. Also, the 

presence of chlorhexidine powder can interfere with PMMA polymeriza t ion 

reaction because of its free radical quenching effect (Rodriguez et al., 2015). The 

bending strength and modulus for the nanocomposite also comply with cement 

mechanical requirements set in ISO 5833:2002 (bending strength > 50 MPa and 

bending modulus > 1800 MPa). Even though the joint is mainly stressed by 

compression, testing other forms of stress (bending, fracture) is important to 

account for other forms of stresses.  

 

7.4.4.3 Water uptake testing 

Water uptake of the bone cement in physiologic conditions changes the mechanica l 

properties of the cement, because water decreases the attraction between polymer 

chains and increase their flexibility (Arnold and Venditti, 2001). Water uptake not 

only affects the mechanical properties of the bone cement, but also found to change 

structure and surface properties of the cement by decreasing the molecular weight 

of PMMA over time (Hughes et al., 2003). Therefore, studying the water uptake 

behaviour is important to estimate any initial changes in the physicochemica l 

properties of the cement.   

In this work, the presence of NPs did not affect the water uptake behaviour 

compared the commercial cement, and no water was absorbed after 30 days 

(Figure 83). The weight of bone cement samples stopped increasing after 4-5 days, 

which explains the similarity in the compressive strength after 3 months. The 

presence of NPs didn’t affect the water uptake behaviour nor the compressive 

strength compared to commercial cement (Cemex®). However, long term 

exposure of cement to physiological fluids play an important role in cement overall 

performance (Bettencourt et al., 2004).  
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7.4.5 Cytocompatibility  

The present study shows that the combination nanocomposite (Cemex-9:1) 

showed similar viability to control (Cemex®) as tested by MTT, LDH and 

fluorescence images. However, other nanocomposite combinations (Cemex-8:2 

and 7:3) showed transient reduction in cell viability, where the osteoblast viability 

proliferation returned to normal at day 7 for all types of combinations. In our study, 

the cumulative release for the combination of nanocomposite is < 700 µg/ml 

gentamicin, and < 800 µg/ml chlorhexidine in the first 7 days. Nitrite production 

was similar in all different bone cement samples, compared to osteoblasts cell 

control sample which are documented to produce nitrite at normal in-vitro growth 

conditions (Sosroseno et al., 2009). Calcium production was nearly the same for 

different nanocomposites with insignificantly higher averages, that could be 

attributed to electrochemical reaction between alizarin and silica nanoparticles in 

the bone cement (Liu et al., 2015). 

Aminoglycoside antibiotics (e.g. gentamicin and tobramycin) are commonly used 

in ALBCs because they satisfy the properties required for antibiotics to be 

incorporated into bone cements, such as thermo-stability at high temperature, 

availability in powder form etc. In addition, their evidence of effectiveness and 

safety after frequent use in TJR has been studied by the meta-analysis done by 

Parvizi et al (2008). Gentamicin at concentrations up to 750 µg/ml was not toxic 

for human fetal osteoblasts, and the number of growing cells was not affect by 

gentamicin concentration up to 1000 µg/ml with slight changes in cellular structure 

(Belcarz et al., 2009). In another study, gentamicin resulted in significant cell 

toxicity at 800 µg/ml (Rathbone et al., 2011). In another work, gentamicin at 

concentration of 1700 µg/ml induced a reduction of 15-20 % in osteoblast 

proliferation in the first 48 hours, which returned to control values after 72 hours. 

Also, it did not have any significant effect on osteoblast mineralization and bone 

nodule formation (Philp et al. 2017).  

Chlorhexidine is a well-tolerated and widely used antiseptic available in different 

formulations, including wipes, cloths, solutions at different concentrations (0.5%-

4%) (Conroy et al., 1999; Edmiston et al., 2008). Chlorhexidine has many 

applications in TJR as pre-operative skin cleansing, surgical site preparation, 
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surgent team hand antisepsis and intra-articular irrigation of infected joints 

(Azzam et al., 2010; Garibaldi, 1988; Widmer, 2013). However, Chlorhexid ine 

can be cytotoxic to human fibroblasts at low concentrations as 0.02% (van Meurs 

et al., 2014). Extensive chondrolysis was reported in accidental irrigation of 1% 

chlorhexidine solution during knee arthroscopy in a case series of five patients 

(Douw et al., 1998). Chlorhexidine solution is shown to be cytotoxic to human 

osteoblasts, fibroblasts and lymphocytes in dose and time dependent manner (Faria 

et al., 2009; Giannelli et al., 2008; Mariotti and Rumpf, 1999). Chlorhexidine at a 

concentration of 0.2 % was cytotoxic to Saos-2 cell and human gingival fibroblas ts 

(John et al., 2014). 

Although using combination antimicrobial agents can increase cell toxicity, 

combination antibiotic therapy provides many advantages as compared to 

monotherapy such as a broader antibacterial spectrum, synergistic effects and 

minimizes the risk for emerging resistance during therapy (Markley et al., 2015). 

Also, combinations are increasingly used to improve the efficacy of availab le 

drugs against multidrug resistant strains (Dolgin, 2010). The use of combination 

antimicrobial therapy is associated with increased risk of side effects i.e. 

ototoxicity and nephrotoxicity, especially when taken systemically (Prayle et al., 

2010). Therefore, it is been recommended to use a the most selective single agent 

as soon as the antibiotic susceptibility profile of the causative agent is known, or 

using a local delivery whenever possible to reduce drugs concentration in the 

systemic circulation and their consequent side effects (Jackson et al., 2011). 

However, combination antibiotic therapy provides many advantages as compared 

to monotherapy such as a broader antibacterial spectrum, synergistic effects and 

minimizes the risk for emerging resistance during therapy (Markley et al., 2015). 

Also, combinations are increasingly used to improve the efficacy of availab le 

drugs against multidrug resistant strains (Dolgin, 2010). 

7.5 Conclusion 

The chlorhexidine and gentamicin combination LbL construct has been 

successfully coated on silica nanoparticle. Then, these nanoparticles, with different 

combination ratios, were incorporated into bone cement commercial formula t ion 

Cemex®, without adversely affecting the mechanical performance. The novel LbL 

coated silica NPs provided a controlled, gradual and prolonged release of 
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chlorhexidine for up to 30 days. The NP containing bone cement showed superior 

antimicrobial activity against different bacterial catalogue stains. In addition, the 

nanocomposites showed antimicrobial activity against gentamicin resistant 

clinical strains. The nanocomposites showed cytocompatibility and were nontoxic 

to osteoblast without adversely affecting calcium production. In conclusion, the 

application of LbL nano-delivery systems may play a vital role in improving the 

release of antibiotics and other therapeutic agents from the bone cement, which is 

needed to provide prophylaxis from PJIs infection after TJRs.  
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8 Conclusion 

PMMA bone cements use is considered a gold standard in hip and knee 

replacements. The use of ALBCs is considered a standard practice in the 

prevention and treatment of PJIs after TJRs, where the loaded cement delivers 

powdered antibiotics locally. Although antibiotics are widely incorporated in 

PMMA bone cements, there are many concerns about the release kinetics of added 

antibiotics. In reality, antibiotics release from the bone cement is a burst for the 

first few hours after surgery, followed by slow release below inhibitory levels 

within few days. This release profile does not provide long term prophylaxis from 

early and delayed stage infections (early infection starts during first 24hrs-1 week, 

and late infections after 1 months according to orthopaedic surgeons). In addition, 

the continuing emergence of resistant microbial strains limits the success of 

conventional antibiotic-based therapies in the prevention and treatment of PJIs. 

There is a continuing need to improve the release kinetics of antibiotics from 

PMMA cements, and to improve its antimicrobial performance by exploring new 

alternatives for conventional antibiotics currently used.  

The main purpose of this research programme was to develop a novel nano-

composite antimicrobial PMMA bone cement containing antibiotic or non-

antibiotic antimicrobial agents or a combination of both, for the prevention of PIs 

after TJR which is one of the major causes for revision surgery. In order to achieve 

this, a new drug delivery LbL nano system where developed for loading different 

antimicrobial agents in the same carrier. Also, it was necessary to gain an 

understanding of the properties and characteristics of PMMA bone cement, such 

as release profile, setting properties, mechanical properties and cytocompatibilit y. 

A decent understanding of the different test methods used to determine the 

properties of PMMA was also required and knowledge of the principles behind the 

test methods allowed for a critical assessment of the results. 

Previous studies showed that novel nanotechnology drug delivery systems offer 

many advantages to overcome the current challenges with antimicrobial therapy. 

However, the use of LbL coating technique at nano-scale level has not been 

researched for application in PMMA cements. In this study, antimicrobial thin 

films were constructed through LbL deposition technique using different types of 
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tetralayers. The films were deposited by alternating depositions between algina te 

and hydrolytically degradable polymer (B1); gentamicin and chlorhexidine was 

directly incorporated without the need for pre-modification. LbL was effective in 

controlling release of each single and combination antimicrobial agents from silica 

nanoparticles for at least 4 weeks without initial burst release, giving a promising 

profile for the application in infection prevention and treatment, either by using 

the LbL as a coating for biomedical implants and devices, or by incorporation of 

the coated nanoparticles into bone cements.  

In chapter 3, this study has highlighted that the mechanism of gentamicin or 

chlorhexidine release is governed by electrostatic interaction between different 

polyelectrolytes when PBAE were employed, confuting the establish assumption 

that hydrolysis is the key factor when these polymers are used. Our results also 

provide guidance in the polyelectrolyte properties required to achieve a desired 

release profile; i.e. to increase the release kinetic a polyelectrolyte with lower 

charge is required instead of more easily hydrolysed one; as it would be the case  

if hydrolysis was the governing mechanism in drug release from LbL coatings. 

 

In chapter 5, the gentamicin LbL coated silica nanoparticles have been 

successfully incorporated into bone cement commercial formulations Cemex and 

Palacos, without adversely affecting the mechanical performance. The novel LbL 

coated silica NPs provided a more controlled, gradual and prolonged release for 

up to 30 days of antimicrobial used compared to commercial formulat ions 

containing powdered antibiotics. The NP containing bone cement showed superior 

antimicrobial activity against different bacterial stains. The nanocomposites 

showed cytocompatibility towards human osteoblasts without adversely affecting 

calcium production.  

In chapter 6, the chlorhexidine loaded LbL coated silica nanoparticles have been 

successfully incorporated into bone cement commercial formulation Cemex®, 

without adversely affecting the mechanical performance. The novel LbL coated 

silica NPs provided a controlled, gradual and prolonged release of chlorhexid ine 

for up to 30 days. The NP containing bone cement showed superior antimicrob ia l 

activity against different bacterial stains. Cytocompatibility testing showed an 
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expected decrease in cell viability for the nanocomposite with osteoblasts. In 

conclusion, the application of LbL nano-delivery systems may play a vital role in 

improving the release of antibiotics and other therapeutic agents from the bone 

cement, which is needed to reduce infection rates after TJRs. Also, it offers an 

alternative approach for loading non-antibiotic based antimicrobial into bone 

cement without compromising other properties needed for performance.  

In chapter 7, the chlorhexidine and gentamicin combination LbL construct has 

been successfully coated on silica nanoparticle. Then, these nanoparticles, with 

different combination ratios, were incorporated into bone cement commercia l 

formulation Cemex®, without adversely affecting the mechanical performance. 

The novel LbL coated silica NPs provided a controlled, gradual and prolonged 

release of chlorhexidine for up to 30 days. The NP containing bone cement showed 

superior antimicrobial activity against different bacterial catalogue stains for up to 

50 days (Cemex-9:1). In addition, the nanocomposites showed antimicrob ia l 

activity against gentamicin resistant clinical strains. The nanocomposites showed 

cytocompatibility towards human osteoblasts without adversely affecting calcium 

production. 

In conclusion, this study helps to explore single antimicrobial agents or in 

combination.  combination antibiotic therapy provides many advantages as 

compared to monotherapy such as a broader antibacterial spectrum, synergist ic 

effects and minimizes the risk for emerging resistance during therapy. Also, 

combinations are increasingly used to improve the efficacy of available drugs 

against multidrug resistant strains. The application of LbL nano-delivery systems 

may play a vital role in improving the release of antibiotics and other therapeutic 

agents from bone cement. Also, LbL nano-delivery systems makes it possible for 

having combination antimicrobial agents in the same carrier, which is needed to 

provide prophylaxis from PJIs infection after TJRs.  
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9  Future work 

The work carried out in this study has contributed to the existing body of 

knowledge and as a result, a series of further questions have emerged from this. 

The following experiments have been deemed outside the scope and time frame of 

this study, but they may form the basis for potential future research.  

Although nanocomposites loaded with different types of nanopartic les 

(gentamicin, chlorhexidine and combination LbL coated nanoparticles) were 

assessed for cytocompatibility using cell line Saos-2, the biocompatibility of these 

nanocomposites should be questioned in more detail. A series of in vitro 

experiments investigating the toxicity of the nanocomposites on tissues and cells 

is needed, to clarify their clinical applicability. If the outcome of such experiments 

is favourable, animal trails may then be justifiable to assess the extent of their 

biocompatibility.  

The development of the LbL nano-coated silica particles has created exciting 

possibilities for the delivery of therapeutic agents from bone cement. The 

therapeutic agents that can be loaded into the bone cement is not restricted to 

gentamicin and chlorhexidine, but can include other antimicrobial agents (alone or 

in combination), anti-inflammatory agents and osteogenic agents needed after 

TJRs. Any therapeutic molecule with sufficient charge and size suitable for LbL 

coating can be replaced by the used model drugs (gentamicin and chlorhexidine). 

In addition, other polyelectrolytes can be used instead of alginate and B1 to 

construct the LbL system, to ensure optimum drug loading and to tailor the release. 

The use of other polyelectrolytes with different molecular weight, hydrolys is 

kinetics, charge, chemical structure can be researched for optimizing the 

performance of LbL system. Also, using different substrates for LbL coating may 

change the performance of the delivery system and its effect on the mechanica l 

and cytocompatibility of the bone cement.  

Successful implementation of the LbL nano-delivery system would require 

industrial scale production methods. Batch production methods to obtain large 

quantities of materials may alter the properties of the final product and therefore 

careful consideration and investigation of the processes are required. 
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The final experimental work that is of great interest is the wider applicability of 

the LbL nano-based delivery system in various biomaterials. Having enhanced the 

properties of PMMA bone cement, the use of such a technology may be 

advantageous to other biomaterials, such as restorative dental materials or 

catheters. Although this is merely speculative, it is worthwhile investigating and 

may create further opportunities for future research and collaborations. 
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