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One Sentence Summary: Comprehensive heritability analysis of brain phenotypes demonstrates a 795 
clear role for common genetic variation across neurological and psychiatric disorders and 796 
behavioral-cognitive traits, with substantial overlaps in genetic risk. 797 

Abstract: Disorders of the brain can exhibit considerable epidemiological comorbidity and share 798 
symptoms, provoking debate about their etiologic overlap. We quantified the genetic sharing of 25 brain 799 
disorders from genome-wide association studies of 215,683 patients and 657,164 controls, and their 800 
relationship to 17 phenotypes from 1,191,588 individuals. Psychiatric disorders share common variant risk, 801 
while neurological disorders appear more distinct from one another and from the psychiatric disorders. We 802 
also identify significant sharing between disorders and a number of brain phenotypes, including cognitive 803 
measures. Simulations were used to explore how power, diagnostic misclassification and phenotypic 804 
heterogeneity affect genetic correlations. These results highlight the importance of common genetic 805 
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variation as a risk factor for brain disorders and the value of heritability-based methods in understanding 806 
their etiology. 807 

Main Text:  808 

The classification of brain disorders has evolved over the past century, reflecting the 809 
medical and scientific communities’ assessments of the presumed root causes of clinical 810 
phenomena such as behavioral change, loss of motor function, spontaneous movements or 811 
alterations of consciousness. Directly observable phenomena (such as the presence of emboli, 812 
protein tangles, or unusual electrical activity patterns) generally define and separate neurological 813 
disorders from psychiatric disorders(1). Understanding the genetic underpinnings and categorical 814 
distinctions between brain disorders may be helpful in informing the search for the biological 815 
pathways underlying their pathophysiology(2, 3). 816 

In general, brain disorders (excepting those caused by trauma, infection, or cancer) show 817 
substantial heritability from twin and family studies(4). Epidemiological and twin studies have 818 
explored patterns of phenotypic overlaps(5-7), and comorbidity has been reported for many pairs 819 
of disorders, including bipolar disorder-migraine(8), stroke-major depressive disorder(MDD)(9), 820 
epilepsy-autism spectrum disorders (ASD), and epilepsy-attention deficit hyperactivity disorder 821 
(ADHD)(10, 11). Furthermore, there may also be direct etiological links, as e.g. mutations in the 822 
same ion channel genes confer pleiotropic risk for multiple distinct brain phenotypes(12-14). 823 
Genome-wide association studies (GWAS) have demonstrated that individual common risk 824 
variants can overlap across traditional diagnostic boundaries(15, 16), and that disorders like 825 
schizophrenia, MDD, and bipolar disorder can have genetic correlations(17).  826 

GWAS have also demonstrated that common genetic variation contributes to the 827 
heritability of brain disorders. Generally, this occurs via the combination of many common 828 
variants, each with a small individual effect, with examples in Alzheimer’s disease(18), bipolar 829 
disorder(19), migraine(20), Parkinson’s disease(21), and schizophrenia(22). In addition to locus 830 
discovery, the degree of distinctiveness(23) across neurological and psychiatric phenotypes can be 831 
evaluated with the introduction of novel heritability-based methods(24) and sufficiently large 832 
sample sizes for robust heritability analysis. These analyses can shed light on the nature of these 833 
diagnostic boundaries and explore the extent of shared common variant genetic influences.  834 

 835 

Study design 836 

The Brainstorm consortium is a collaboration among GWAS meta-analysis consortia of 25 837 
disorders (see Table 1), to perform a comprehensive heritability and correlation analysis of brain 838 
disorders. We included meta-analyses of any common brain disorders for which we could identify 839 
a GWAS meta-analysis consortium of sufficient size for heritability analysis. The total study 840 
sample consists of 215,683 cases of different brain disorders and 657,164 controls (Table 1), and 841 
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includes at least one representative of most ICD-10 blocks covering mental and behavioral 842 
disorders and diseases of the central nervous system. Also included are 1,191,588 samples for 13 843 
“behavioral-cognitive” phenotypes (n=744,486) traditionally viewed as brain-related, and four 844 
“additional” phenotypes (n=447,102) selected to represent known, well-delineated etiological 845 
processes (immune disorders [Crohn’s disease], vascular disease [coronary artery disease] and 846 
anthropomorphic measures [height and BMI]; Table 2).  847 

GWAS summary statistics for the 42 disorders and phenotypes were centralized and 848 
underwent uniform quality control and processing(25)(83). We used European-only meta-analyses 849 
for each disorder to avoid potential bias arising from ancestry differences, generating new meta-850 
analyses for those datasets where the original sample sets had diverse ancestries. Clinically 851 
relevant subtypes from three disorders (epilepsy, migraine, and ischemic stroke) were also 852 
included; in these cases, the subtype datasets are parts of the top-level dataset (Table 1).  853 

We have developed a heritability estimation method, linkage disequilibrium score 854 
regression (LDSC)(24), which was used to calculate heritability estimates and correlations, as well 855 
as to estimate their statistical significance from block jack-knife-based standard errors. More 856 
formally, we estimate the common variant heritability (h2g) of each disorder, defined as the 857 
proportion of phenotypic variance in the population that could theoretically be explained by an 858 
optimal linear predictor formed using the additive effects of all common (minor allele frequency 859 
> 5%) autosomal SNPs. The genetic correlation for a pair of phenotypes is then defined as the 860 
correlation between their optimal genetic predictors. Heritability for binary disorders and 861 
phenotypes was transformed to the liability scale. We further performed a weighted-least squares 862 
regression analysis to evaluate whether differences relating to study makeup (such as sample size) 863 
were correlated with the magnitude of the correlation estimates. Finally, we performed a 864 
heritability partitioning analysis(83) using stratified LD score regression to examine whether the 865 
observed heritability for the disorders or phenotypes was enriched into any of the tissue-specific 866 
regulatory regions or functional category partitions of the genome, using ten top-level tissue-type 867 
and 53 functional partitions from Finucane et al.(26). Finally, simulated phenotype data was 868 
generated under different scenarios by permuting 120,267 genotyped individuals from the UK 869 
Biobank(25) to evaluate power and aid in interpreting the results(83). 870 

 871 

Heritability estimates and their error sources 872 

We observed a similar range of heritability estimates among the disorders and the 873 
behavioral-cognitive phenotypes (Fig. S1A-B and Table S1, S2), roughly in line with previously 874 
reported estimates from smaller datasets (Table S3). Three ischemic stroke subtypes 875 
(cardioembolic, large-vessel disease, and small-vessel disease) as well as the “agreeableness” 876 
personality measure from NEO Five-Factor Inventory(27) had insufficient evidence of additive 877 
heritability for robust analysis and thus were excluded from further analysis(25). The only 878 
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observed correlation between heritability estimates and factors relating to study makeup (Table 879 
S4; Fig. S1C-F) was a modest correlation between age of onset of the disorder and heritability, 880 
suggesting that early-onset brain disorders tend to be more heritable. Since some of our 881 
interpretation of the results depends on lack of observed correlation, we explored the behavior of 882 
observed correlation versus power (Fig. S2A), standard errors (Fig. S2B) and the individual results 883 
(Fig. S2C and D) to identify where we can be reasonably robust in claiming lack of correlation.  884 

The common variant heritability estimates for the psychiatric and neurological disorders 885 
were generally somewhat lower than previously reported estimates from common variants (Table 886 
S5). A similar pattern was observed for the behavioral-cognitive traits, when comparing estimates 887 
reported here with those previously reported in smaller sample sizes(28) with the exception of 888 
‘openness’, ‘neuroticism’, and ‘never/ever smoked’, suggesting that some attenuation in 889 
heritability is observed when moving to larger sample sizes. Measures related to cognitive ability, 890 
such as childhood cognitive performance (heritability estimate of 0.19, [SE 0.03]) and years of 891 
education (heritability estimate of 0.30 [SE 0.01]), yielded estimates that were more consistent 892 
with previous estimates of the heritability of intelligence(29, 30), suggesting that the cognitive 893 
measures may be less prone to phenotypic measurement error and/or have a higher heritability 894 
overall than the personality measures.  895 

These heritability estimates should be interpreted somewhat cautiously, as they reflect the 896 
phenotype ascertained in each study, and will be deflated in the presence of diagnostic 897 
heterogeneity, ascertainment errors or unusual contributions of high-impact rare variants. To 898 
evaluate potential sources of these differences, we explored three approaches(83): evaluating the 899 
differences in real data, simulation work (Table S5), and quantifying the magnitude of effect for 900 
potentially implied misclassification (Table S6).  901 

In comparison to heritability estimates obtained using twin and family data, the more 902 
diverse selection and survival biases in the underlying data may attenuate the heritability estimates 903 
and correlations, as might increased within-disorder heterogeneity introduced by the larger meta-904 
analyses. A related explanation for the lower estimates of heritability may be that increasing 905 
sample sizes have led to expanded inclusion criteria, meaning that less severely affected cases with 906 
a lower overall burden of risk factors (both genetic and environmental) might be included, which 907 
in turn would attenuate estimates of heritability. However, the successful identification of genome-908 
wide significant loci suggests that these larger samples are nevertheless very useful for genetic 909 
studies, and the simulation results suggest that this has at most a limited effect on estimated genetic 910 
correlations (Fig S9). Even so, some of the pairs of phenotypes included here lack sufficient power 911 
for robust estimation of genetic correlations. Moreover, our analyses only examine the properties 912 
of common variant contributions and extending these analyses to include the effects of rare 913 
variants may further inform the extent of genetic overlap. For example, epilepsy and ASD show 914 
substantial overlap in genetic risk from de novo loss of functional mutations(31), in contrast to the 915 
limited common variant sharing observed in this study. This may suggest that the rare and common 916 
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variant contributions to genetic overlap may behave differently and that incorporating the two 917 
variant classes into a single analysis may provide further insight into brain disorder pathogenesis.  918 

To address the possibility of methodological differences contributing to the differences in 919 
the estimates and although LDSC and REML have previously been shown to yield similar 920 
estimates from the same data(24), we performed our own comparison in Alzheimer’s disease(32) 921 
(selected based on data availability). In Alzheimer’s disease, the previously published heritability 922 
estimate (0.24 [SE 0.03]) is significantly different from the estimate in the current study (0.13 [SE 923 
0.02]). These differences may reflect implicit heterogeneity in a much larger case collection used 924 
in the current study (effective sample size 10,494 vs. 46,669) and the potential reasons listed above, 925 
but they could also be due to methodological variability (most of the previous estimated listed in 926 
Table S3 are estimated with a different methodology). To evaluate this, we applied the same 927 
analytical process used in this paper to the summary statistics of the GERAD cohort (3,941 cases 928 
and 7,848 controls) from the Alzheimer’s disease meta-analysis, where the previous heritability 929 
estimate was calculated. There, we obtained a heritability estimate of 0.25 [SE 0.04], which agrees 930 
closely with the published estimate of 0.24 [SE 0.03], suggesting that the different estimates may 931 
reflect differences between datasets rather than methodological variability. 932 

 933 

Correlations among brain disorders 934 

We observed widespread sharing across psychiatric disorders (Fig. 1 and S3) by expanding 935 
the number of brain disorder pairs studied beyond those previously reported(17), but similar 936 
sharing was not observed among neurological disorders. Among the psychiatric disorders, 937 
schizophrenia showed significant genetic correlation with most of the psychiatric disorders, while 938 
MDD was positively (though not necessarily significantly) correlated with every other disorder 939 
tested. Further, schizophrenia, bipolar disorder, anxiety disorders, MDD, and ADHD each showed 940 
a high degree of correlation to the four others (average genetic correlation [rg]=0.40; Table S7A). 941 
Anorexia nervosa, obsessive-compulsive disorder (OCD), and schizophrenia also demonstrated 942 
significant sharing amongst themselves (Fig. 1). However, the common variant risk of both ASD 943 
and Tourette Syndrome (TS) appear to be distinct from other psychiatric disorders, although with 944 
significant correlation between TS, OCD, and MDD, as well as between ASD and schizophrenia. 945 
Similarly, post-traumatic stress disorder (PTSD) showed no significant correlation with any of the 946 
other psychiatric phenotypes (though some correlation to ADHD and MDD was observed). The 947 
modest power of the ASD, PTSD, and TS meta-analyses, however, limits the strength of this 948 
conclusion (Fig. S2C).  949 

Neurological disorders showed a more limited extent of genetic correlation than the 950 
psychiatric disorders (Fig. 2 and S4, Table S7A), suggesting greater diagnostic specificity and/or 951 
more distinct etiologies. Parkinson’s disease, Alzheimer’s disease, generalized epilepsy, and 952 
multiple sclerosis showed little to no correlation with other brain disorders. The highest degree of 953 
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genetic correlation among the neurological disorders was observed with focal epilepsy (average rg 954 
=0.46, excluding the other epilepsy datasets), though none were significant, reflecting the 955 
relatively modest power of the current focal epilepsy meta-analysis (Fig. S2C). However, the 956 
modest heritability and the broad pattern of sharing observed for focal epilepsy may be consistent 957 
with heterogeneity and potentially even diagnostic misclassification across a range of neurological 958 
conditions.  959 

In the cross-category correlation analysis, the observed pattern is consistent with limited 960 
sharing across the included neurological and psychiatric disorders (Fig. 3; average rg=0.03). The 961 
only significant cross-category correlations were with migraine, suggesting it may share some of 962 
its genetic architecture with psychiatric disorders; migraine-ADHD (rg=0.26, p=8.81 x 10-8), 963 
migraine-TS (rg=0.19, p=1.80 x 10-5), and migraine-MDD (rg=0.32, p=1.42 x 10-22 for all 964 
migraine, rg=0.23, p=5.23 x 10-5 for migraine without aura, rg=0.28, p=1.00 x 10-4 for migraine 965 
with aura). 966 

We observed several significant genetic correlations between the behavioral-cognitive or 967 
additional phenotypes and brain disorders (Fig. 4 and Table S7B). Results for cognitive traits were 968 
dichotomous among psychiatric phenotypes (Fig. S5A), with ADHD, anxiety disorders, MDD, 969 
and TS showing negative correlations to the cognitive measures and anorexia nervosa, ASD, 970 
bipolar disorder and OCD showing positive correlations. Schizophrenia showed more mixed 971 
results, with significantly negative correlation to intelligence but positive correlation to years of 972 
education. Among neurological phenotypes (Fig. S5B), the correlations were either negative or 973 
null, with Alzheimer’s disease, epilepsy, ICH, ischemic stroke, early-onset stroke, and migraine 974 
showing significantly negative correlations. Correlations between college attainment and years of 975 
education with bipolar disorder(24), Alzheimer’s disease, and schizophrenia have been previously 976 
reported(33)).  977 

Among the personality and symptom measures, significant positive correlations were 978 
observed between neuroticism and anorexia nervosa, anxiety disorders, migraine, migraine 979 
without aura, MDD, OCD, schizophrenia, and TS (Fig. S6A and S6B; replicating previously 980 
reported correlations with MDD and schizophrenia(34)); between depressive symptoms and 981 
ADHD, anxiety disorder, bipolar disorder, MDD, and schizophrenia; and between subjective well-982 
being and anxiety disorder, bipolar disorder, and MDD. For smoking-related measures, the only 983 
significant genetic correlations were between never/ever smoked and MDD (rg=0.33, p=3.10 x 10-984 
11) as well as ADHD (rg=0.37, p=3.15 x 10-6).  985 

Among the additional phenotypes, the two examples of disorders with well-defined 986 
etiologies had different results. Crohn’s disease, representing immunological pathophysiology, 987 
showed no correlation with any of the study phenotypes, while the phenotype representing vascular 988 
pathophysiology (coronary artery disease) showed significant correlation to MDD (rg=0.19, 989 
p=8.71 x 10-5) as well as the two stroke-related phenotypes (rg=0.69, p=2.47 x 10-6 to ischemic 990 
stroke and rg=0.86, p=2.26 x 10-5 to early-onset stroke), suggesting shared genetic effects across 991 
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these phenotypes. Significant correlations were also observed for BMI, which was positively 992 
correlated with ADHD and MDD, and negatively correlated with anorexia nervosa (as previously 993 
reported with a different dataset(24)) and schizophrenia. 994 

Our enrichment analysis (Fig. S7, Tables S8-12) demonstrated significant heritability 995 
enrichments between central nervous system (CNS) and generalized epilepsy, MDD, TS, college 996 
attainment, intelligence, neuroticism, never/ever smoked); depressive symptoms and 997 
adrenal/pancreatic cells and tissues, as well as between hematopoetic cells (category which 998 
includes immune system cells) and multiple sclerosis (Figs. S7A and S7B, Tables S8 and S9). We 999 
replicate the reported (CNS) enrichment for schizophrenia, bipolar disorder, and years of education 1000 
(Tables S8, S9), and observe the reported enrichments for BMI (CNS), years of education (CNS), 1001 
height (connective tissues and bone, cardiovascular system and other), and Crohn’s disease 1002 
(hematopoietic cells) from the same datasets (Fig. S7C, D)(26). We further note that the psychiatric 1003 
disorders with large numbers of identified GWAS loci (bipolar disorder, MDD, and schizophrenia) 1004 
and migraine, which was the only cross-correlated neurological disorder, show enrichment to 1005 
conserved regions (Tables S10 and S12), while the other neurological disorders with similar 1006 
numbers of loci (MS, Alzheimer’s, and Parkinson’s diseases) do not (Fig. S7A, B). Enrichment to 1007 
conserved regions was also observed to neuroticism, intelligence and college attainment and to 1008 
H3K9ac peaks for BMI (Tables S11 and S12). 1009 

 1010 

Discussion 1011 

By integrating and analyzing the genome-wide association summary statistic data from 1012 
consortia of 25 brain disorders, we find that psychiatric disorders broadly share a considerable 1013 
portion of their common variant genetic risk, especially across schizophrenia, MDD, bipolar 1014 
disorder, anxiety disorder, and ADHD, while neurological disorders are more genetically distinct. 1015 
Across categories, psychiatric and neurologic disorders share relatively little common genetic risk, 1016 
suggesting that multiple different and largely independently regulated etiological pathways may 1017 
give rise to similar clinical manifestations (e.g., psychosis, which manifests in both 1018 
schizophrenia(35) and Alzheimer’s disease(36)). Except for migraine, which appears to share 1019 
some genetic architecture with psychiatric disorders, the existing clinical delineation between 1020 
neurology and psychiatry is corroborated at the level of common variant risk for the studied 1021 
disorders.  1022 

We performed some exploratory analyses based on the observed results to address concerns 1023 
about diagnostic overlap and misclassification, which are particularly relevant to psychiatric 1024 
disorders due to their spectral nature. Given that the broad and continuous nature of psychiatric 1025 
disorder spectra has long been clinically recognized(37-39) and that patients can, in small numbers, 1026 
progress from one diagnosis to another(40), we evaluated to what extent this kind of diagnostic 1027 
overlap could explain the observed correlations. Genetic correlation could arise if, for example, 1028 
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patients progress through multiple diagnoses over their lifetime, or if some specific diagnostic 1029 
boundaries between phenotype pairs are particularly porous to misclassification (Table S5). While 1030 
it would a priori appear unlikely to observe large-scale misclassification of migraine as 1031 
schizophrenia, for example, there may be more substantial misclassification between particular 1032 
psychiatric disorders, consistent with the clinical controversies in classification. Previous work(41) 1033 
suggests that substantial misclassification (on the order of 15-30%, depending on whether it is uni- 1034 
or bi-directional) is required to introduce false levels of genetic correlation. We found that the 1035 
observed levels of correlation are unlikely to appear in the absence of underlying genetic 1036 
correlation (Table S6), as it is apparent that a very high degree of misclassification (up to 79%) 1037 
would be required to produce the observed correlations in the absence of any true genetic 1038 
correlation, and that reasonably expected misclassification would have limited impact on the 1039 
observed rg (Fig. S8). Therefore, these results suggest true sharing of a substantial fraction of the 1040 
common variant genetic architecture among psychiatric disorders as well as between behavioral-1041 
cognitive measures and brain disorders. We also performed large-scale simulations to explore the 1042 
effect of sample size, polygenicity and degree of correlation on power to detect significant 1043 
correlations. First, we established that the observed heritability of the simulated misclassified traits 1044 
in the UK Biobank data behaves as would be theoretically expected (Fig. S9A), and that the effects 1045 
on observed correlation (Fig. S9B and S9C) are in line with the estimates from family data(41). 1046 
Reasonably low levels of misclassification or changes to the exact level of heritability appear 1047 
unlikely to induce significant correlations, as observed in the power analysis (Fig. S10), though a 1048 
lower observed heritability caused by substantial misclassification (Fig. S9A) will decrease the 1049 
power to estimate true genetic overlap. 1050 

The high degree of genetic correlation among the psychiatric disorders adds further 1051 
evidence that current clinical diagnostics do not reflect specific genetic etiology for these 1052 
disorders, and that genetic risk factors for psychiatric disorders do not respect clinical diagnostic 1053 
boundaries. Rather, this suggests a more interconnected genetic etiology, in contrast to 1054 
neurological disorders, and underscores the need to refine psychiatric diagnostics. This study may 1055 
provide important ‘scaffolding’ to support a framework for investigating mental disorders, 1056 
incorporating many levels of information to understand basic dimensions of brain function.  1057 

The observed positive genetic correlations are consistent with a few hypothetical scenarios. 1058 
For example, it may reflect the existence of some portion of common genetic risk factors 1059 
conferring risks for multiple psychiatric disorders and where other distinct additional factors, both 1060 
genetic and non-genetic, contribute to the eventual clinical presentation. The presence of 1061 
significant genetic correlation may also reflect the phenotypic overlap between any two disorders; 1062 
for example, the sharing between schizophrenia and ADHD might reflect underlying difficulties 1063 
in executive functioning, which are well-established in both disorders(42), and that the shared risk 1064 
arises from a partial capture of its shared genetic component. Similarly, we might speculate that a 1065 
shared mechanism underlying cognitive biases may extend from overvalued ideas to delusions 1066 
(ranging from anorexia nervosa and OCD to schizophrenia), and that this heritable intermediate 1067 
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trait confers pleiotropic risk to multiple outcomes. This kind of latent variable could give rise to 1068 
the observed genetic correlation between disorders due to the shared portion of variation affecting 1069 
that variable. While a combination of these is likely, more genome-wide significant loci are needed 1070 
to evaluate these overlaps at the locus level. 1071 

Conversely, the low correlations observed across neurological disorders suggest that the 1072 
current classification reflects relatively specific genetic etiologies, although the limited sample 1073 
size for some of these disorders and lack of inclusion of disorders conceived as “circuit-based” in 1074 
the literature, such as restless legs syndrome, sleep disorders and possibly essential tremor, 1075 
constrains the full generalizability of this conclusion. Degenerative disorders (such as Alzheimer’s 1076 
and Parkinson’s diseases) would not be expected a priori to share their polygenic risk profiles with 1077 
a neuro-immunological disorder (like multiple sclerosis) or neurovascular disorder (like ischemic 1078 
stroke). Similarly, we see limited evidence for the reported co-morbidity between migraine with 1079 
aura and ischemic stroke(43) (rg=0.29, p=0.099); however, the standard errors of this comparison 1080 
are too high to draw strong conclusions. At the disorder subtype level, migraine with and without 1081 
aura (rg=0.48, p=1.79 x 10-5) shows substantial genetic correlation, while focal and generalized 1082 
epilepsy (rg=0.16, p=0.388) show much less.  1083 

The few significant correlations across neurology and psychiatry, namely between 1084 
migraine and ADHD, MDD, and TS, suggest modest shared etiological overlap across the 1085 
neurology/psychiatry distinction. The co-morbidity of migraine with MDD, TS and ADHD has 1086 
been previously reported in epidemiological studies(44-47), while in contrast, the previously 1087 
reported co-morbidity between migraine and bipolar disorder seen in epidemiological studies (48) 1088 
was not reflected in our estimate of genetic correlation (rg=-0.03, p=0.406). 1089 

Several phenotypes show only very low-level correlations with any of the other disorders 1090 
and phenotypes studied here, despite large sample size and robust evidence for heritability, 1091 
suggesting their common variant genetic risk may largely be unique. Alzheimer’s disease, 1092 
Parkinson’s disease, and multiple sclerosis show extremely limited sharing with the other 1093 
phenotypes and with each other. Neuroinflammation has been implicated in the pathophysiology 1094 
of each of these conditions(49-51), as it has for migraine(52) and many psychiatric conditions, 1095 
including schizophrenia(53), but no considerable shared heritability was observed with either of 1096 
those conditions nor with Crohn’s disease, nor did we observe enrichment for immune-related 1097 
tissues in the functional partitioning (Fig. S7) as for Crohn’s disease. While this does not preclude 1098 
the sharing of individual neuroinflammatory mechanisms in these disorders, the large-scale lack 1099 
of shared common variant genetic influences supports the distinctiveness of disorder etiology. 1100 
Further, we only observed significant enrichment of heritability for immunological cells and 1101 
tissues in multiple sclerosis, showing that inflammation-specific regulatory marks in the genome 1102 
do not show overall enrichment for common variant risk for either Alzheimer’s or Parkinson’s 1103 
diseases (though this does not preclude the effects of specific, non-polygenic neuroinflammatory 1104 
mechanisms(54)). Among psychiatric disorders, ASD and TS showed a similar absence of 1105 
correlation with other disorders, although this could reflect small sample sizes. 1106 
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Analysis of the Big Five personality measures suggest that the current sample sizes may 1107 
be large enough for correlation testing; neuroticism, which has by far the largest sample size, 1108 
shows several significant correlations. Most significant of these was to MDD (rg=0.737, p=5.04 x 1109 
10-96), providing evidence for the link between these phenotypes, as reported for polygenic risk 1110 
scores(55) and twin studies(56, 57); as well as other psychiatric disorders (Fig. 4, Table S7B). The 1111 
correlation between MDD and anxiety disorders, with a similar pattern of correlation and the 1112 
dimensional measures of depressive symptoms, subjective well-being, and neuroticism suggests 1113 
that they all tag a similar underlying etiology. The significant correlation between coronary artery 1114 
disease and MDD supports the link between MDD and CAD(58), while the observed correlation 1115 
between ADHD and smoking initiation (rg=0.374, p=3.15 x 10-6) is consistent with the 1116 
epidemiological evidence of overlap(59) and findings from twin studies(60). 1117 

For the neurological disorders, five (Alzheimer’s disease, intracerebral hemorrhage, 1118 
ischemic and early-onset stroke, and migraine) showed significant negative genetic correlation to 1119 
the cognitive measures, while a two (epilepsy and focal epilepsy) showed moderate negative 1120 
genetic correlation (Fig. S5). For Alzheimer’s disease, poor cognitive performance in early life has 1121 
been linked to increased risk for developing the disorder(61), but to our knowledge no such 1122 
connection has been reported for other phenotypes. Among the psychiatric disorders, ADHD, 1123 
anxiety disorders and MDD show a significant negative correlation to cognitive and education 1124 
attainment measures, while the remaining five of the eight psychiatric disorders (anorexia nervosa, 1125 
ASD, bipolar disorder, OCD, and schizophrenia) showed significant positive genetic correlation 1126 
with one or more cognitive measures. These results suggest the existence of a link between 1127 
cognitive performance in early life and the genetic risk for both psychiatric and neurological brain 1128 
disorders. The basis of the genetic correlations between education, cognition and brain disorders 1129 
may have a variety of root causes including indexing performance differences on the basis of 1130 
behavioral dysregulation (e.g., ADHD relating to attentional problems during cognitive tests) or 1131 
may reflect ascertainment biases in certain disorders conditional on impaired cognition (e.g., 1132 
individuals with lower cognitive reserve being more rapidly identified for Alzheimer’s disease), 1133 
but the results could also suggest a direct link between the underlying etiologies.  1134 

BMI shows significant positive genetic correlation to ADHD, consistent with a meta-1135 
analysis linking ADHD to obesity(62), and negative genetic correlation with anorexia nervosa, 1136 
OCD, and schizophrenia. This is consistent with evidence for enrichment of BMI heritability in 1137 
CNS tissues(26) that suggest neuronal involvement(63); this may also provide a partial genetic 1138 
explanation for lower BMI in anorexia nervosa patients even after recovery(64). Given that no 1139 
strong correlations were observed between BMI and any of the neurological phenotypes, it may 1140 
be that BMI’s brain-specific genetic architecture is more closely related to behavioral phenotypes. 1141 
Ischemic stroke and BMI show surprisingly little genetic correlation in this analysis (rg=0.07, 1142 
p=0.26), suggesting that although BMI is a risk factor for stroke(65), there is little evidence for 1143 
shared common genetic effects. These analyses also suggest that the reported reduced rates of 1144 
cardiovascular disease in individuals with histories of anorexia nervosa(66, 67) are more likely 1145 
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due to BMI-related secondary effects. The limited evidence of genetic correlation of anorexia 1146 
nervosa with intracerebral hemorrhage, ischemic stroke, early-onset stroke and coronary artery 1147 
disease suggest that any lower cardiovascular mortality is more likely due to direct BMI-related 1148 
effects rather than genetic risk variants.  1149 

The genetic correlation results presented here indicate that the clinical boundaries for the 1150 
studied psychiatric phenotypes do not reflect distinct underlying pathogenic processes. This 1151 
suggests that genetically informed analyses may provide a basis for restructuring of psychiatric 1152 
nosology, consistent with twin and family-based results. In contrast, neurological disorders show 1153 
greater genetic specificity, and although it is important to emphasize that while some brain 1154 
disorders are under-represented here, our results demonstrate the limited evidence for widespread 1155 
common genetic risk sharing between psychiatric and neurological disorders. However, we 1156 
provide strong evidence that both psychiatric and neurological disorders show robust correlations 1157 
with cognitive and personality measures, suggesting new avenues for follow-up studies. Further 1158 
study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology 1159 
may influence treatment choices. Ultimately, such developments give hope to reducing diagnostic 1160 
heterogeneity and eventually improving the diagnostics and treatment of psychiatric disorders.  1161 

Materials and Methods 1162 

We collected GWAS meta-analysis summary statistics for 25 brain disorders and 17 other 1163 
phenotypes from various consortia, and where necessary generated new, non-sex-stratified 1164 
European-cohorts-only versions of the meta-analyses(25). All datasets underwent uniform quality 1165 
control (83). For each trait, using the linkage disequilibrium score (LDSC) framework(24), the 1166 
total additive common SNP heritability present in the summary statistics (h2g) was estimated by 1167 
regressing the association χ2 statistic of a SNP against the total amount of common genetic 1168 
variation tagged by that SNP, for all SNPs. Genetic correlations (rg; i.e., the genome-wide average 1169 
shared genetic risk) for pairs of phenotypes were estimated by regressing the product of Z-score 1170 
for each phenotype and for each SNP, instead of the χ2 statistic. Significance was assessed by 1171 
Bonferroni multiple testing correction via estimating the number of independent brain disorder 1172 
phenotypes via matrix decomposition (83). Functional and partitioning analyses for the GWAS 1173 
datasets were also performed using LDSC. Power analyses and simulation work to aid in 1174 
interpretation of the results were conducted using genotype data from the UK Biobank Resource 1175 
(83). 1176 
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Figure 1. Genetic correlations across psychiatric phenotypes.  1500 

 1501 

Color of each box indicates the magnitude of the correlation, while size of the boxes indicates its significance 1502 
(LDSC), with significant correlations filling each box completely. Asterisks indicate genetic correlations which are 1503 
significantly different from zero after Bonferroni correction. ADHD – attention deficit hyperactivity disorder; ASD – 1504 
autism spectrum disorder; MDD – major depressive disorder; OCD – obsessive-compulsive disorder; PTSD – post-1505 
traumatic stress disorder.  1506 
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Figure 2. Genetic correlations across neurological phenotypes.  1507 

Color of each box indicates the magnitude of the correlation, while size of the boxes indicates its significance (LDSC), 1508 
with significant correlations filling each box completely. Asterisks indicate genetic correlations which are 1509 
significantly different from zero after Bonferroni correction. Some phenotypes have substantial overlaps (see Table 1510 
1), e.g. all cases of generalized epilepsy are also cases of epilepsy. Asterisks indicate significant genetic correlation 1511 
after multiple testing correction. ICH – intracerebral hemorrhage. 1512 

  1513 
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Figure 3. Genetic correlations across neurological and psychiatric phenotypes.  1514 

Color of each box indicates the magnitude of the correlation, while size of the boxes indicates its significance (LDSC), 1515 
with significant correlations filling each box completely. Asterisks indicate genetic correlations which are 1516 
significantly different from zero after Bonferroni correction. ADHD – attention deficit hyperactivity disorder; ASD – 1517 
autism spectrum disorder; ICH – intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-1518 
compulsive disorder; PTSD – post-traumatic stress disorder.  1519 
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Figure 4. Genetic correlations across brain disorders and behavioral-cognitive phenotypes.  1520 

Color of each box indicates the magnitude of the correlation, while size of the boxes indicates its significance (LDSC), 1521 
with significant correlations filling each box completely. Asterisks indicate genetic correlations which are 1522 
significantly different from zero after Bonferroni correction. ADHD – attention deficit hyperactivity disorder; ASD – 1523 
autism spectrum disorder; ICH – intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-1524 
compulsive disorder; PTSD – post-traumatic stress disorder; BMI –body-mass index.  1525 
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Table 1. Brain disorder phenotypes used in the Brainstorm project.  1526 

 1527 

Indented phenotypes are part of a larger whole, e.g. the epilepsy study contains the samples from both focal epilepsy 1528 
and generalized epilepsy; sample counts for such overlaps are shown in gray. ADHD – attention deficit hyperactivity 1529 
disorder; OCD – obsessive-compulsive disorder. ‘Anxiety disorders’ refers to a meta-analysis of five subtypes 1530 
(generalized anxiety disorder, panic disorder, social phobia, agoraphobia, and specific phobias). References are 1531 
listed in Table S1 and data availability in Table S13. 1532 

  1533 

Psychiatric disorders Neurological disorders

Disorder Source Cases Controls Disorder Source Cases Controls
ADHD PGC-ADD2 12,645 84,435 Alzheimer's disease IGAP 17,008 37,154
Anorexia nervosa PGC-ED 3,495 11,105 Epilepsy ILAE 7,779 20,439
Anxiety disorders ANGST 5,761 11,765    Focal epilepsy " 4,601 17,985
Autism spectrum disorder PGC-AUT 6,197 7,377    Generalized epilepsy " 2,525 16,244
Bipolar disorder PGC-BIP2 20,352 31,358 Intracerebral hemorrhage ISGC 1,545 1,481
Major depressive disorder PGC-MDD2 16,823 25,632 Ischemic stroke METASTROKE 10,307 19,326
OCD PGC-OCDTS 2,936 7,279     Cardioembolic stroke " 1,859 17,708
PTSD PGC-PTSD 2,424 7,113     Early-onset stroke " 3,274 11,012
Schizophrenia PGC-SCZ2 33,640 43,456     Large-vessel disease " 1,817 17,708
Tourette Syndrome PGC-OCDTS 4,220 8,994     Small-vessel disease " 1,349 17,708

Migraine IHGC 59,673 316,078
   Migraine with aura " 6,332 142,817
   Migraine without aura " 8,348 136,758
Multiple sclerosis IMSGC 5,545 12,153
Parkinson's disease IPDGC 5,333 12,019

Total psychiatric 108,493 238,514 Total neurologic 107,190 418,650
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Table 2. Behavioral-cognitive and additional phenotypes used in the study.  1534 

  1535 

Indented phenotypes are part of a larger whole, e.g. samples in the college attainment analysis are a subset of those 1536 
in the analysis for years of education; sample counts for such overlaps are shown in gray. (d) – dichotomous 1537 
phenotype, (q) – quantitative phenotype. BMI – body-mass index. References and phenotype definitions are listed in 1538 
Table S2, and data availability in Table S13.  1539 

  1540 

Phenotype Source Samples
Behavioral-cognitive phenotypes
Cognitive
   Years of education (q) SSGAC 293,723
   College attainment (d) " 120,917
   Cognitive performance (q) " 17,989
   Intelligence (d) CTG 78,308
Personality measures
   Subjective well-being SSGAC 298,420
   Depressive symptoms " 161,460
   Neuroticism (q) " 170,911
   Extraversion (q) GPC 63,030
   Agreeableness (q) " 17,375
   Conscientiousness (q) " 17,375
   Openness (q) " 17,375
Smoking-related
   Never/ever smoked (d) TAG 74,035
   Cigarettes per day (q) TAG 38,617

Additional phenotypes
   BMI (q) GIANT 339,224
   Height (q) " 253,288
   Coronary artery disease (d) Cardiogram 86,995
   Crohn's disease (d) IIBDGC 20,883
Total 1,124,048
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Print summary for aap8757, Analysis of Shared Heritability in Common Disorders of the Brain, by Anttila 
V. et al. 

 

Introduction 

Disorders of the brain can exhibit considerable epidemiological comorbidity and share symptoms, provoking debate about their 
etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity and presentation presents a 
considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide 
common variant risk between two phenotypes from pools of different individuals, to understand how connected they, or at 
least their genetic risks, are on the genomic level. We quantified the degree of overlap for genetic risk factors of 25 common 
brain disorders, based on genome-wide association data for 215,683 patients and 657,164 controls, as well as 17 phenotypes 
from a total of 1,191,588 individuals. 

Rationale 

The classification of brain disorders has evolved over the last century, reflecting the medical and scientific communities’ 
assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or 
alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual 
electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the 
genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their 
biological mechanisms. 

Results 

Common variant risk for psychiatric disorders was shown to correlate significantly, especially between ADHD, bipolar disorder, 
major depressive disorder (MDD) and schizophrenia. In contrast, neurological disorders appear more distinct from one another 
and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD and Tourette 
Syndrome. We demonstrate that the personality trait neuroticism in the general population is significantly correlated with 
almost every psychiatric disorder and migraine. We also identify significant sharing between disorders and early life cognitive 
measures in the general population (e.g. years of education and college attainment), demonstrating positive correlation with 
several psychiatric disorders (e.g. anorexia nervosa and bipolar disorder) and negative correlation with several neurological 
phenotypes (e.g. Alzheimer’s disease and ischemic stroke), even though the latter are considered to result from specific 
processes that occur later in life. Extensive simulations were also performed to inform how power, diagnostic misclassification 
and phenotypic heterogeneity influence genetic correlations. 

Conclusion 

The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that the current clinical 
boundaries among them do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a 
deeply interconnected nature, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. 
Genetically informed analyses may provide important ‘scaffolding’ to support such restructuring of psychiatric nosology, which 
likely requires incorporating many levels of information. In contrast, we find limited evidence for widespread common genetic 
risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and 
neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate 
whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such 
developments give hope to reducing heterogeneity and eventually improving the diagnosis and treatment of psychiatric 
disorders. 

 

 

 

 



 

Figure Caption 

Subsection of genetic risk correlations among brain disorders and quantitative phenotypes.  

Heritability analysis of brain disorders points to pervasive sharing of genetic risk among psychiatric 
disorders, largely absent among neurological disorders, but present from both groups to neuro-cognitive 
quantitative phenotypes. Only significant correlations shown. Color and line solidity indicate direction 
and magnitude of correlation, respectively. ADHD – attention deficit hyperactivity disorder; MDD – 
major depressive disorder. 
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Materials and Methods 
Data processing 

We obtained GWAS meta-analysis summary statistics for 25 brain disorders and 17 
phenotypes. Wherever non-European cohorts formed a part of those meta-analyses, we 
generated non-sex-stratified European-cohorts-only version of the meta-analysis of each 
disorder together with the primary analysts for each disorder to avoid bias stemming from 
ancestry differences. Prior to heritability analysis, each dataset underwent additional 
filtering: markers were excluded for not being present among the HapMap Project Phase 
3 SNPs(84), having an allele mismatch to 1000 Genomes alleles, ambiguous strand 
information, INFO score <0.9 (where available), MAF<1%, and if considerable 
missingness in the meta-analysis was observed (where available; defined as effective per-
SNP sample size less than two thirds of the 90th percentile of total sample size). To 
remove a potential source of bias, the major histocompatibility complex region (all SNPs 
on chromosome 6 between 25 and 35 Mb) was removed from all datasets, as was the 
region surrounding the APOE locus (all SNPs on chromosome 19 between 44 and 47 
Mb) from the Alzheimer’s disease summary data. 

 
Simulations 

To evaluate the robustness of these results under various scenarios, we performed 
various simulations using data from the UK Biobank(85). Details about the UK Biobank 
project are available at http://www.ukbiobank.ac.uk. Data for the current analyses were 
obtained under an approved data request (application number #18597).  

We used data from the interim release of 152,376 samples, originally genotyped on 
the UK BiLEVE Axiom array and the UK Biobank Axiom array. We filtered individuals 
for Caucasian ancestry and recommended removals to arrive at a final dataset of 120,267 
individuals. Simulated datasets were generated to evaluate the behavior of correlation 
estimates 1) under different degrees of misclassification; 2) under different heritability 
estimates for the two traits and 3) under different liability thresholds (232 simulation 
conditions, 100 replicates per condition, for a total of 2.95 billion simulated individuals).  

In each simulation replicate, two sets of simulated quantitative phenotypes with 
heritability ranging from 5-50% and prevalence ranging from 1-10% (relevant to the 
study phenotypes) were generated by assigning 5% of total SNPs to have simulated effect 

sizes drawn from 𝑁𝑁 �0,� ℎ2

0.05 𝑀𝑀
�, where h2 is the heritability and M is the total number of 

markers in the genome, standardized for minor allele frequency (p) by �2 ∗ 𝑝𝑝 ∗ (1 − 𝑝𝑝). 
Individual phenotypes were simulated by calculating the sum of mean centered betas 
multiplied by the individual’s risk alleles with the –score option in PLINK 
v1.90b3.38(86) and adding noise term e, drawn from 𝑁𝑁�0,√1 − ℎ2�, to achieve phenotypes 
which sum to 𝑁𝑁(0, ℎ2). Dichotomous phenotypes were generated by assigning top 1%, 5% 
and 10% of each heritability simulation to be cases, and misclassification scenarios by 
mixing the simulated betas with those from a second, independently simulated phenotype 
in proportions ranging between 0-100%. Association statistics were created using an 
additive test in PLINK v1.90b3.38, and LDSC was used to calculate correlation 
estimates.  
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Simulation results were summarized to evaluate three specific scenarios considered 
relevant to the challenges (particularly for the psychiatric disorders, due to their 
spectrum-like behavior) in brain disorder co-morbidity:  

1. Effect of misclassification on phenotype heritability. Given that we generally 
observe slightly lower heritability estimates in this study than reported in the literature 
with previous studies (which generally have used smaller, possibly less heterogeneous 
datasets), we generated 100 replicates each of simulated phenotypes at several prevalence 
and heritability values, and with varying degrees of misclassification of cases from a 
second, independent phenotype (Fig. S9A). These results demonstrate that while large-
scale misclassification will impact the estimated heritability, very large misclassification 
proportions are required to by themselves give rise to large-scale changes in the observed 
heritability to the degree shown in Table S3. 

2. Effect of co-morbidity on genetic correlation. Given the overlapping 
epidemiology of some phenotypes and the potential to observe false positive correlations 
due to non-trivial case misclassification, we created a range of phenotypes with varying 
mixing portions of correctly diagnosed cases (λ) and incorrectly diagnosed cases (1-λ) 
from an independent second phenotype and evaluated the genetic correlation between the 
hybrid phenotype and the second phenotype. This simulates the real-world scenario 
where e.g. (1-λ) proportion of bipolar cases would in fact be misclassified cases of 
schizophrenia free of bipolar disorder (Fig. S9B). We also derived a formula (see “Effect 
of co-morbidity and phenotypic misclassification on correlation estimates” below) to 
estimate the degree of misclassification required to produce the observed correlations in 
the absence of true genetic correlation (Table S6). 

3. Effect of bidirectional comorbidity on genetic correlation. We expanded the 
simulation from the previous scenario given misclassification in both directions, i.e. 
where a proportion (1-λ) of bipolar disorder cases are misclassified schizophrenia cases 
and the same proportion of schizophrenia cases are misclassified bipolar disorder cases 
(Fig. S9C). 
 
Power calculations 

Using the same methodology as described for the simulations, we created 100 
replicated pairs of datasets, each with varying sample sizes (10,000, 20,000 and 40,000 
individuals with a 50/50 case/control split, randomly selected from the UK Biobank data; 
see section above), heritabilities (1%, 5%, 10% and 20%) and polygenicity (simulating 
0.5%-100% of markers contributing to the heritability). In the second set of similarly 
created replicates, phenotypes were additionally created to be 10%, 20%, 30%, or 40% 
correlated to their pair in the first set. LDSC was used to calculate the correlation 
between the pair (Figure S10). 
 
Heritability analysis 

For a given trait, the total additive common SNP heritability in a set of GWAS 
summary statistics (h2g) is estimated by regressing the association χ2 statistic of a SNP 
against the total amount of common genetic variation tagged by that SNP (i.e., the sum of 
r2 between that SNP and all surrounding SNPs within a 1 Mb window, termed the LD 
score). The LD scores themselves, for each SNP with MAF 5-50% in the Hapmap3 data, 
were obtained from previously published data(87) (https://github.com/bulik/ldsc) but 
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edited by removing the at the time erroneously included HLA region markers [chr6, 20-
36 Mb]. Genetic correlations, rg, (i.e., the genome-wide average shared genetic risk) for a 
pair of phenotypes was similarly estimated by regressing the product of Z-score for each 
phenotype for each SNP, instead of the χ2 statistic. The LD score referenced above is 
estimated from a common reference panel (for this work, the European subset of the 1000 
Genomes Project reference). In this framework, including LD in the regression allows us 
to distinguish and account for LD-independent error sources (such as sample sharing and 
population stratification) from LD-dependent sources, like polygenic signal). It is 
essential to use an approach which is not biased by sample overlaps when analyzing 
summary statistics, given the large amount of control sharing between the GWAS meta-
analyses in the study. P-values and effect directions for each phenotype were used to 
create a set of directional χ2 statistics, which were then regressed against the SNP LD 
scores (as the χ2 statistic is dependent on the amount of variation tagged by the SNP).  

A univariate regression of these statistics against the LD statistic of each SNP was 
used to estimate the heritability for each phenotype using LDSC v1.0.0(88). When 
converting the results to liability scale, we assumed that all controls were unselected for 
all brain disorders as well as coronary artery disease and Crohn’s disease from the 
additional phenotypes (u = 1 for the formula presented in (89)). Phenotypes with a 
univariate heritability Z-score < 2 were excluded from further analysis (cardioembolic, 
large-, and small-vessel stroke and agreeableness personality measure), leaving 21 brain 
disorder phenotypes and 16 traits of interest. In the genetic correlation analysis, the 
product of χ2 statistics from the two phenotypes was similarly regressed.  

Significance was assessed by Bonferroni multiple testing correction by estimating 
the number of independent brain disorder phenotypes by matrix decomposition of the 
genetic correlation results using matSpD (see Links)(90, 91). The number of independent 
disorder phenotypes was estimated to be 17.7943 (from 22 initial disorders, after 
exclusions), yielding a Bonferroni-corrected threshold of p < 3.35 x 10-4 for disorder-
disorder pairs; 12.1925 independent phenotypes (from 16 initial phenotypes, after 
exclusions) for a threshold of p < 7.33 x 10-4 for phenotype-phenotype pairs and a total of 
216.96 disorder-phenotype pairs for a threshold of p < 2.30 x 10-4.  
 
Functional enrichment and partitioning analysis 

Partitioning analysis was conducted using LDSC v1.0.0(88), using stratified LD 
score regression to identify enriched cell type groups, expanding on the work described in 
Finucane et al(92). First, we obtained genome annotations for each of ten cell type 
groups, created by taking a union of regions with any of four histone modifications 
(H3K4me1, H3K4me3, H3K27ac, H3K9ac) in any cell type belonging to the cell type 
group. We then added each of these ten annotations to the full baseline model one at a 
time and performed LD score regression for each of the resulting ten models. For each of 
these ten analyses, we computed a Z-score for the regression coefficient corresponding to 
the cell type group, and we used this to test the hypothesis that the cell type group 
contributes positively to SNP heritability after controlling for the 53 categories in the full 
baseline model. Significance threshold was estimated from the number of independent 
phenotypes across 10 tissue categories and 53 functional categories (latter evaluated as 24 
independent categories due to overlapping category structure) for Bonferroni thresholds 
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of p < 2.81 x 10-4 and 1.17 x 10-4, respectively. For the behavioral-cognitive traits and 
additional traits, the corresponding thresholds were p < 4.10 x 10-4 and p < 1.71 x 10-4.  
 
Correlation between heritability and dataset-specific factors 

A weighted-least squares analysis was conducted among the brain disorder 
phenotypes in R, version 3.2, to determine what, if any, phenotype and dataset descriptive 
factors correlate with univariate heritability estimates. Weights were estimated using the 
squares of the standard errors of the univariate heritability estimates from the LD score 
regression analysis. 

 

Supplementary text 
 

Effect of co-morbidity and phenotypic misclassification on correlation estimates 
We derived a formula to quantify the effect of case misclassification on the 

estimated genetic correlation between two traits, given the degree of misclassification, 
the observed heritability and the true genetic correlation. We assume both traits have 
similar sample and population prevalence.  

Let λ be the fraction of correctly classified cases of phenotype 1, with the remainder 
being cases of phenotype 2 misclassified as cases of phenotype 1, β1 and β2 be true 
effects for phenotypes 1 and 2 on an arbitrary SNP. Therefore, the effect of the SNP on 
the misspecified phenotype 1 is α:  

 
𝛼𝛼 ≡ 𝜆𝜆𝜆𝜆1 + (1 − 𝜆𝜆)𝜆𝜆2 

 
Before considering the impact on the estimated genetic correlation, we note that this 

change in SNP effects means the heritability of the observed (potentially misclassified) 
phenotype may differ from the heritability of the true phenotype 1. Noting that the 
observed heritability for each phenotype is proportional to the variance of their effect 
sizes, we first calculate 

 
Var(𝛼𝛼) = Var (𝜆𝜆𝜆𝜆1 + (1 − 𝜆𝜆)𝜆𝜆2) 
               = 𝜆𝜆2 Var (𝜆𝜆1)  + 2𝜆𝜆(1 − 𝜆𝜆)Cov(𝜆𝜆1,𝜆𝜆2) + (1 − 𝜆𝜆)2 Var(𝜆𝜆2) 
               = 𝜆𝜆2 Var (𝜆𝜆1)  + 2𝜆𝜆(1 − 𝜆𝜆)𝑟𝑟𝑔𝑔�Var(𝜆𝜆1) Var(𝜆𝜆2) + (1 − 𝜆𝜆)2 Var(𝜆𝜆2) 

 
Then assuming standardized regression coefficients (e.g. following the LD score 

regression model), this can be written in terms of observed (obs) and true heritabilities for 
the two phenotypes and the number of genome-wide variants M as 

 
ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜
2

𝑀𝑀
= 𝜆𝜆2

ℎ12

𝑀𝑀
+ 2𝜆𝜆 (1 − 𝜆𝜆) 𝑟𝑟𝑔𝑔�

ℎ12

𝑀𝑀
�ℎ2

2

𝑀𝑀
+  (1 − 𝜆𝜆)2  

ℎ22

𝑀𝑀
 

ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜
2 = 𝜆𝜆2ℎ12 + 2𝜆𝜆 (1 − 𝜆𝜆) 𝑟𝑟𝑔𝑔�ℎ12ℎ22 + (1 − 𝜆𝜆)2ℎ22 

 
This allows solving for  �ℎ12 using a quadratic equation, 
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0 = 𝜆𝜆2ℎ12 + 2𝜆𝜆 (1 − 𝜆𝜆) 𝑟𝑟𝑔𝑔�ℎ12ℎ22 + (1 − 𝜆𝜆)2ℎ22 −  ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜
2  

 
 

�ℎ12
1

=  
−2𝜆𝜆(1 − 𝜆𝜆) 𝑟𝑟𝑔𝑔�ℎ22  ±  �4𝜆𝜆2 (1 − 𝜆𝜆)2𝑟𝑟𝑔𝑔2 ℎ22 − 4𝜆𝜆2 �(1 − 𝜆𝜆)2 ℎ22 −   ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜

2 �   

2𝜆𝜆2
 

      =  
−2𝜆𝜆(1 − 𝜆𝜆) 𝑟𝑟𝑔𝑔  �ℎ22  ±  2𝜆𝜆�(1 − 𝜆𝜆)2�𝑟𝑟𝑔𝑔2 − 1� ℎ22 +  ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜

2   

2𝜆𝜆2
 

      =  
−(1 − 𝜆𝜆) 𝑟𝑟𝑔𝑔�ℎ22  ± �(1 − 𝜆𝜆)2�𝑟𝑟𝑔𝑔2 − 1� ℎ22 +  ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜

2   

𝜆𝜆
 

 
Note that the sign of the first term in the numerator will be opposite of the sign of 𝑟𝑟𝑔𝑔. 

Therefore if we select the sign of the phenotype so that  𝑟𝑟𝑔𝑔 > 0, then we must add the 
second term to ensure �ℎ12 > 0. This gives us 

 

�ℎ12 =  
−(1 − 𝜆𝜆) 𝑟𝑟𝑔𝑔�ℎ22 + �(1 − 𝜆𝜆)2�𝑟𝑟𝑔𝑔2 − 1� ℎ22 +  ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜

2   

𝜆𝜆
 

 
Note that this will not be bounded above by one when 𝜆𝜆 is small. This is not 

surprising since a small 𝜆𝜆 implies that most of the cases reported for phenotype 1 are in 
fact cases for phenotype 2, making particular combinations of ℎ22,  ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜

2  and 𝑟𝑟𝑔𝑔 infeasible 
for certain values of 𝜆𝜆. From the above, the determinant of the quadratic form must be 
positive, thus 

 
 ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜
2 ≥ (1 − 𝜆𝜆)2�1 −  𝑟𝑟𝑔𝑔2� ℎ22 

 
Similarly, the determinant of the quadratic formula, solving for ℎ22, implies 
 

ℎ12 ≤
 ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜
2   

𝜆𝜆2�1 −  𝑟𝑟𝑔𝑔2�
 

 
This is the case unless no misclassification is present (𝜆𝜆 = 0) or the phenotypes are 

functionally equivalent (𝑟𝑟𝑔𝑔2 = 1). 
 
We can now return to the original question regarding the relationship between 𝑟𝑟𝑔𝑔 and 

𝑟𝑟𝑔𝑔,𝑜𝑜𝑜𝑜𝑜𝑜 in the presence of phenotype misclassification. We derive for the SNP effects of α 
and β2: 

 
𝑟𝑟𝑔𝑔,𝑜𝑜𝑜𝑜𝑜𝑜 ≡ Corr(𝛼𝛼,𝜆𝜆2) 

           =  
Cov (𝛼𝛼,𝜆𝜆2)

�Var(𝛼𝛼)Var(𝜆𝜆2)
 

           =  
Cov [𝜆𝜆𝜆𝜆1 + (1 − 𝜆𝜆)𝜆𝜆2,𝜆𝜆2]

�Var(𝛼𝛼)Var(𝜆𝜆2)
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           =  
𝜆𝜆 Cov (𝜆𝜆1,𝜆𝜆2) + (1 − 𝜆𝜆) Var(𝜆𝜆2)

�Var(𝛼𝛼)Var(𝜆𝜆2)
 

           =  
𝜆𝜆 𝑟𝑟𝑔𝑔 �Var (𝜆𝜆1) Var (𝜆𝜆2) + (1 − 𝜆𝜆) Var(𝜆𝜆2)

�Var(𝛼𝛼)Var(𝜆𝜆2)
 

           = 𝜆𝜆 𝑟𝑟𝑔𝑔  
�Var(𝜆𝜆1)

�Var(𝛼𝛼)
+ (1 − 𝜆𝜆) 

�Var(𝜆𝜆2)

�Var(𝛼𝛼)
 

 
Again assuming standardized regression coefficients, the variances can be written in 

terms of heritability as 
 

𝑟𝑟𝑔𝑔,𝑜𝑜𝑜𝑜𝑜𝑜 =  
𝜆𝜆 𝑟𝑟𝑔𝑔�ℎ12 +  (1 − 𝜆𝜆)�ℎ22 

�ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜
2

  

 
Rearranging and substituting the expression for �ℎ12 from above, assuming  𝑟𝑟𝑔𝑔 > 0, 

gives 

𝑟𝑟𝑔𝑔 =  
𝑟𝑟𝑔𝑔,𝑜𝑜𝑜𝑜𝑜𝑜�ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜

2 − (1 − 𝜆𝜆)�ℎ22 

𝜆𝜆 �ℎ12
  

 
 

     =  
𝑟𝑟𝑔𝑔,𝑜𝑜𝑜𝑜𝑜𝑜�ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜

2 − (1 − 𝜆𝜆)�ℎ22 

𝜆𝜆 
 

𝜆𝜆

−(1 − 𝜆𝜆) 𝑟𝑟𝑔𝑔�ℎ22  + �(1 − 𝜆𝜆)2�𝑟𝑟𝑔𝑔2 − 1� ℎ22 +  ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜
2

 

     =
𝑟𝑟𝑔𝑔,𝑜𝑜𝑜𝑜𝑜𝑜�ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜

2 − (1 − 𝜆𝜆)�ℎ22 

�(1 − 𝜆𝜆)2�𝑟𝑟𝑔𝑔2 − 1� ℎ22 +  ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜
2 − (1 − 𝜆𝜆) 𝑟𝑟𝑔𝑔�ℎ22 

  

 
Note that in the case with no misclassification, i.e. 𝜆𝜆 = 1,  
  

𝑟𝑟𝑔𝑔 =
𝑟𝑟𝑔𝑔,𝑜𝑜𝑜𝑜𝑜𝑜�ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜

2

� ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜
2  

= 𝑟𝑟𝑔𝑔,𝑜𝑜𝑜𝑜𝑜𝑜 

 
To examine the effects of co-morbidity has on the estimates, Table S5 shows 

numerical solutions for the estimated true correlation of some selected disorder pairs 
based on literature estimates of co-morbidity, assuming unidirectional misclassification 
and that  ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜

2  is equal to true ℎ12 (ie. that both disorders are roughly as heritable). For this 
table, we substituted the lambda values (see table for reference) and used the formula 
above to estimate what the true 𝑟𝑟𝑔𝑔 would be, based on the observed 𝑟𝑟𝑔𝑔 in this study. Figure 
S8 shows how the true genetic correlation estimates for those pairs behave across a range 
of λ values, given the observed 𝑟𝑟𝑔𝑔 in this study, under the same assumptions as Table S5. 
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We further estimate what degree of unidirectional misclassification would be 
required to produce the significant rg values we observe in the paper, in the absence of 
any true correlation. Given 𝑟𝑟𝑔𝑔 = 0, 

 

𝑟𝑟𝑔𝑔,𝑜𝑜𝑜𝑜𝑜𝑜 =
(1 − 𝜆𝜆)�ℎ22

 ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜
2  

 

𝜆𝜆 =  1 −  𝑟𝑟𝑔𝑔,𝑜𝑜𝑜𝑜𝑜𝑜
 ℎ1,𝑜𝑜𝑜𝑜𝑜𝑜
2

�ℎ22
 

 
Table S6 lists the implied values of misclassification (1-𝜆𝜆) required to produce the 

observed significant 𝑟𝑟𝑔𝑔 values between brain disorders in the study, if no true correlation 
between the phenotypes exists.  
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Fig. S1A. Heritability estimates for brain disorders 
Red bars denote psychiatric disorders, while blue bars denote neurological disorders. 
ADHD – attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. Error bars show one 
standard error. 
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Fig. S1B. Heritability estimates for quantitative and additional phenotypes 
BMI – body-mass index. Heritabilities are reported on the observed scale for quantitative 
phenotypes (q) and liability scale for dichotomous phenotypes (d). Error bars show one 
standard error. 
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Fig. S1C. Heritability and effective sample size 
ADHD – attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. Shaded area shows 95% 
confidence interval. Error bars show one standard error. 
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Fig. S1D. Heritability and case/control ratio 
ADHD – attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. Shaded area shows 95% 
confidence interval. Error bars show one standard error. 
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Fig. S1E. Heritability and disorder prevalence 
ADHD – attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. Shaded area shows 95% 
confidence interval. Error bars show one standard error. 
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Fig. S1F. Heritability and average age of onset for the disorder. 
ADHD – attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. Shaded area shows 95% 
confidence interval. Error bars show one standard error. 
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Fig. S2A. Genetic correlations against power to detect heritability 
 

 
 
Red points show significant correlations among all disorder-disorder pairs. Two outlier 
values over 1 (see Table S7A) have been reduced to 1. The points close or equal to rg = 1 
are pairs of a top-level disorder with a subtype of the same disorder, where high 
correlation is expected, ie. all migraine and migraine with aura. 
 
  



 
 

29 
 

Fig. S2B. Inverses of standard errors against power to detect heritability  
 

 
 
Red points show significant correlations among all disorder-disorder pairs. SE – standard 
error. 
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Fig. S2C. Matrix of standard errors for the genetic correlations for disorder-
disorder pairs. 

 
 
Plotted values indicate 1/standard error * 1/25 (1/25 chosen for scaling convenience); 
darker shades indicate tests with more power. Six outlier values over 1 (see Table S7A) 
have been reduced to 1. Asterisks highlight results which are significant after Bonferroni 
correction. ADHD - attention deficit hyperactivity disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder.  
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Fig. S2D. Matrix of standard errors for the genetic correlations for disorder-
phenotype pairs. 

 
Plotted values indicate 1/standard error * 1/25 (1/25 chosen for scaling convenience); 
darker shades indicate tests with more power. 39 outlier values over 1 (see Table S7B) 
have been reduced to 1. Asterisks highlight results which are significant after Bonferroni 
correction. ADHD - attention deficit hyperactivity disorder; ASD – autism spectrum 
disorder; BMI – body-mass index; ICH – intracerebral hemorrhage; MDD – major 
depressive disorder; OCD – obsessive-compulsive disorder; PTSD – post-traumatic stress 
disorder.  
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Fig. S3A and B. Genetic correlations for attention-deficit hyperactivity disorder 
(top) and anorexia nervosa (bottom).  
ADHD - attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. P-values for correlation are 
shown at the end of each bar. Error bars show one standard error. 
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Fig. S3C and D. Genetic correlations for anxiety disorders (top) and autism 
spectrum disorder (bottom).  
ADHD - attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. P-values for correlation are 
shown at the end of each bar. Error bars show one standard error. 
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Fig. S3E and F. Genetic correlations for bipolar disorder (top) and major depressive 
disorder (bottom).  
ADHD - attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. P-values for correlation are 
shown at the end of each bar. Error bars show one standard error.  
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Fig. S3G and H. Genetic correlations for obsessive-compulsive disorder (top) and 
post-traumatic stress disorder (bottom).  
ADHD - attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. P-values for correlation are 
shown at the end of each bar. Error bars show one standard error. 
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Fig. S3I and J. Genetic correlations for schizophrenia (top) and Tourette Syndrome 
(bottom).  
ADHD - attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. P-values for correlation are 
shown at the end of each bar. Error bars show one standard error. 
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Fig. S4A and B. Genetic correlations for Alzheimer’s disease (top) and epilepsy 
(bottom).  
ADHD - attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. P-values for correlation are 
shown at the end of each bar. Error bars show one standard error. 
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Fig. S4C and D. Genetic correlations for focal epilepsy (top) and generalized 
epilepsy (bottom).  
ADHD - attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. P-values for correlation are 
shown at the end of each bar. Error bars show one standard error. 
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Fig. S4E and F. Genetic correlations for intracerebral hemorrhage (top) and 
ischemic stroke (bottom).  
ADHD - attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. P-values for correlation are 
shown at the end of each bar. Error bars show one standard error. 
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Fig. S4G and H. Genetic correlations for early-onset stroke (top) and migraine 
(bottom).  
ADHD - attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. P-values for correlation are 
shown at the end of each bar. Error bars show one standard error.  
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Fig. S4I and J. Genetic correlations for migraine without aura (top) and migraine 
with aura (bottom). 
ADHD - attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. P-values for correlation are 
shown at the end of each bar. Error bars show one standard error.  
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Fig. S4K and L. Genetic correlations for multiple sclerosis (top) and Parkinson’s 
disease (bottom).  
ADHD - attention deficit hyperactivity disorder; ASD – autism spectrum disorder; ICH – 
intracerebral hemorrhage; MDD – major depressive disorder; OCD – obsessive-
compulsive disorder; PTSD – post-traumatic stress disorder. P-values for correlation are 
shown at the end of each bar. Error bars show one standard error. 
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Fig. S5A and B. Genetic correlations for psychiatric and neurological disorders 
against cognitive measures. 
Asterisks highlight results which are significant after Bonferroni correction. ADHD - 
attention deficit hyperactivity disorder; ASD – autism spectrum disorder; MDD – major 
depressive disorder; OCD – obsessive-compulsive disorder; PTSD – post-traumatic stress 
disorder; ICH – intracerebral hemorrhage. Dotted line divides the psychiatric phenotypes 
from the neurological phenotypes. Error bars show one standard error. 
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Fig. S6A. Genetic correlations for psychiatric disorders and four personality axes. 
Grey sectors denote the extent of genetic correlation between each brain disorder and the 
four personality axes. Red line denotes zero correlation, with positive correlations on the 
outside and negative correlations on the inside. Error bars show one standard error. 
Asterisks highlight results which are significant after Bonferroni correction. Consc. – 
Conscientiousness; ADHD - attention deficit hyperactivity disorder; ASD – autism 
spectrum disorder; MDD – major depressive disorder; OCD – obsessive-compulsive 
disorder; PTSD – post-traumatic stress disorder. 
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Fig. S6B. Genetic correlations for neurological disorders and four personality axes. 
Grey bars denote the extent of genetic correlation between each brain disorder and the 
four personality axes. Red line denotes zero correlation, with positive correlations on the 
outside and negative correlations on the inside. Error bars show one standard error. 
Asterisks highlight results which are significant after Bonferroni correction. Consc. – 
Conscientiousness; ICH – intracerebral hemorrhage. 
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Fig. S7A. Tissue category heritability enrichment analysis in psychiatric phenotypes 
ADHD – attention deficit hyperactivity disorder; CNS – central nervous system; GI – 
gastro-intestinal system; OCD – obsessive-compulsive disorder; PTSD – post-traumatic 
stress disorder. Results for largely overlapping dataset in schizophrenia has been 
previously reported in Finucane et al(92). Black line denotes significance threshold for 
Bonferroni multiple testing correction, p=2.81 x 10-4. Only positive enrichment reported. 
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Fig. S7B. Tissue category heritability enrichment analysis in neurological 
phenotypes 
CNS – central nervous system; GI – gastro-intestinal system. Black line denotes 
significance threshold for Bonferroni multiple testing correction, p=2.81 x 10-4. Only 
positive enrichment reported. 
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Fig. S7C. Tissue category heritability enrichment analysis in quantitative and 
additional phenotypes 
BMI – body-mass index. CNS – central nervous system; GI – gastro-intestinal system. 
Results for identical datasets in BMI, Crohn’s disease and height have been previously 
reported in Finucane et al(92), and those for depressive symptoms in Okbay et al(93). 
The black line denotes significance threshold for Bonferroni multiple testing correction, 
p=4.10 x 10-4. Only positive enrichment reported.  
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Fig. S7D. Partitioned heritability analysis across 53 functional categories in study 
disorders  
ADHD - attention deficit hyperactivity disorder; ICH – intracerebral hemorrhage; MDD 
– major depressive disorder; OCD – obsessive-compulsive disorder; PTSD – post-
traumatic stress disorder. Results for a largely overlapping dataset in schizophrenia have 
been previously reported in Finucane et al(92). The black line denotes significance 
threshold for Bonferroni multiple testing correction, p=1.17 x 10-4. Only positive 
enrichment reported. 
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Fig. S8. Effect of case misclassification on true underlying genetic correlation given 
the observed results. 
ADHD - attention deficit hyperactivity disorder; BIP – bipolar disorder; OCD – 
obsessive-compulsive disorder; SCZ – schizophrenia. Genetic correlations as a function 
of misclassification based on derivation described in the section “Effect of co-morbidity 
and phenotypic misclassification on correlation estimates”, for the same phenotype pairs 
as reported in Table S5. 
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Fig. S9A. Effect of case misclassification on observed heritability 
See Supplementary Text “Effect of co-morbidity and phenotypic misclassification on 
correlation estimates” for details. Error bars show one standard error. 
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Fig. S9B. Effect of case misclassification on genetic correlation. 
See Supplementary Text “Effect of co-morbidity and phenotypic misclassification on 
correlation estimates” for details. Error bars show one standard error. 
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Fig. S9C. Effect of bidirectional case misclassification on genetic correlation 
See Supplementary Text “Effect of co-morbidity and phenotypic misclassification on 
correlation estimates” for details. Error bars show one standard error. 
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Fig. S10. Power analysis for detecting genetic correlations. 
Shown at each combination of parameters is the fraction of simulations out of 100 
replicates which detect the simulated correlation between the pair of phenotypes and are 
within the 95% confidence interval from the true correlation.  
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Table S1. Dataset features for the brain disorder phenotypes. 
ADHD – attention deficit hyperactivity disorder; OCD – obsessive-compulsive disorder; 
PTSD – post-traumatic stress disorder; Pop. prev. – population prevalence; AOE – 
average age of onset; GC – genomic control; Publ. – publication for genotype data; MUP 
– manuscript under preparation; Preval. ref. – publication for prevalence estimate; PC – 
personal communication. All age of onset estimates based on personal communication 
and constitute rough estimates. Anxiety disorders refers to a meta-analysis of five 
subtypes (generalized anxiety disorder, panic disorder, social phobia, agoraphobia and 
specific phobias; see reference). Numbers in gray denote a dataset which is non-unique, 
e.g. all cardioembolic stroke cases and controls are also part of ischemic stroke cases and 
controls, respectively. For genomic control, - : no GC; + : study-level GC; ++ : meta-
analysis GC. Note: genomic control will impact the univariate estimate of heritability, but 
the genetic correlation estimation is robust to genomic control. References are: a(94), 
b(95), c(96), d(97), e(98), f(99), g(100), h(101), i(102), j(103), k(104), l(105), m(106), 
n(107), o(108), p(109), q(110), r(111), s(112), approximated from t(113), approximated 
from u(114), v(115), w(116), and x(117). 
 

  
  

Phenotype Cases Controls Pop. prev. AOE Heritability (SE) GC Mean χ2 Lambda Intercept (SE) Publ. Preval. ref.
Psychiatric disorders
ADHD 12,645 84,435 0.050 12 0.100 (0.011) - 1.102 1.107 1.014 (0.007) MUP m
Anorexia nervosa 3,495 11,105 0.006 15 0.172 (0.027) + 1.077 1.086 1.012 (0.008) a n
Anxiety disorders 5,761 11,765 0.100 11 0.112 (0.045) - 1.035 1.030 1.003 (0.008) b o
Autism spectrum disorder 6,197 7,377 0.010 2 0.189 (0.025) - 1.081 1.071 0.987 (0.009) c m
Bipolar disorder 20,352 31,358 0.010 25 0.205 (0.010) - 1.324 1.387 1.021 (0.010) MUP m
Major depressive disorder 16,823 25,632 0.150 32 0.112 (0.006) - 1.263 1.293 1.005 (0.010) MUP m
OCD 2,936 7,279 0.016 16 0.255 (0.037) - 1.059 1.065 1.000 (0.007) MUP p
PTSD 2,424 7,113 0.080 23 0.148 (0.065) - 1.107 1.102 1.014 (0.007) d q
Schizophrenia 33,640 43,456 0.010 21 0.256 (0.010) - 1.588 1.768 1.059 (0.012) e m
Tourette's syndrome 4,220 8,994 0.005 7 0.196 (0.025) - 1.096 1.103 1.010 (0.007) MUP r
Neurological disorders
Alzheimer's disease 17,008 37,154 0.170 65 0.130 (0.023) - 1.093 1.104 1.038 (0.007) f PC
Epilepsy 7,779 20,439 0.030 25 0.101 (0.022) + 1.047 1.057 0.993 (0.010) g s
   Focal epilepsy 4,601 17,985 0.020 15 0.053 (0.026) + 1.023 1.013 0.988 (0.009) g PC
   Generalized epilepsy 2,525 16,244 0.008 15 0.351 (0.039) + 1.065 1.081 0.960 (0.009) g PC
Intracerebral hemorrhage 1,545 1,481 0.002 70 0.156 (0.060) - 1.038 1.037 1.012 (0.007) h t
Ischemic stroke 10,307 19,326 0.010 71 0.038 (0.010) - 1.065 1.066 1.032 (0.006) i u
  Cardioembolic stroke 1,859 17,708 - - - - 1.061 1.047 1.049 (0.006) i -
  Early-onset stroke 3,274 11,012 0.003 50 0.051 (0.020) - 1.029 1.033 1.009 (0.007) i PC
  Large-vessel disease 1,817 17,708 - - - - 1.061 1.053 1.052 (0.006) i -
  Small-vessel disease 1,349 17,708 - - - - 1.048 1.047 1.052 (0.006) i -
Migraine 59,673 316,078 0.160 30 0.150 (0.007) - 1.293 1.375 1.036 (0.010) j v
  Migraine with aura 6,332 142,817 0.075 30 0.124 (0.024) - 1.077 1.087 1.003 (0.007) j w
  Migraine without aura 8,348 136,758 0.130 30 0.208 (0.025) - 1.080 1.085 1.033 (0.007) j w
Multiple sclerosis 5,545 12,153 0.002 30 0.141 (0.016) ++ 1.050 1.078 0.975 (0.008) k x
Parkinson's disease 5,333 12,019 0.002 60 0.105 (0.017) + 1.026 1.044 0.965 (0.008) l x
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Table S2. Dataset features for the behavioral-cognitive and additional phenotypes 
Numbers in gray denote a sample set which is non-unique, e.g. all samples in the BMI 
analysis are also part of the height analysis. SE – standard error; Ref. – reference; ISCE - 
International Standard Classification of Education (1997); NEO-FFI - Neuroticism-
Extraversion-Openness Five-Factor Inventory; BMI – body-mass index; CAD – coronary 
artery disease; MI – myocardial infarction; (d) – dichotomous phenotype; (q) – 
quantitative phenotype. References are: a(118), b(119), c(120), d(121), e(93), f(122), 
g(123), h(124), i(125), j(126), k(127) and l(128). 
 

 
 
  

Phenotype n Heritability (SE) Mean χ2 Lambda Intercept (SE) Ref. Definition
Cognitive measures
   Years of education (q) 293,723 0.302 (0.010) 1.645 1.475 0.938 (0.009) a Years of schooling, measured with the ISCE scale
   College attainment (d) 120,917 0.109 (0.008) 1.223 1.194 1.021 (0.009) b College completion (ISCE scale value >=5)
   Cognitive performance (q) 17,989 0.191 (0.031) 1.075 1.065 1.001 (0.009) c General cognitive ability in childhood (ages 6-18)
   Intelligence (q) 78,308 0.194 (0.010) 1.299 1.260 1.015 (0.008) d Intelligence measures (fluid intelligence scores in 

adults or general cognitive ability in children)
Personality measures
   Subjective well-being (q) 298,420 0.062 (0.005) 1.152 1.130 1.001 (0.007) e Self-assessed psychological well-being, based on 

positive affect or life satisfaction questionnaires
   Depressive symptoms (q) 161,460 0.063 (0.005) 1.153 1.133 1.000 (0.007) e Score for depressive symptoms, based on positive 

affect or life satisfaction questionnaires
   Neuroticism (q) 170,911 0.125 (0.010) 1.307 1.237 0.994 (0.010) e Personality score for neuroticism symptoms, based on 

positive affect or life satisfaction questionnaires
   Extraversion (q) 63,030 0.049 (0.008) 1.073 1.065 1.008 (0.007) f Extraversion personality trait, as measured by several 

different questionnaires
   Agreeableness (q) 17,375 - 1.010 0.999 1.001 (0.010) g NEO-FFI questionnaire for personality scores
   Conscientiousness (q) 17,375 0.070 (0.033) 1.029 1.020 1.001 (0.009) g NEO-FFI questionnaire for personality scores
   Openness (q) 17,375 0.125 (0.030) 1.037 1.041 0.988 (0.009) g NEO-FFI questionnaire for personality scores
Smoking-related measures
   Never/ever smoked (d) 74,035 0.120 (0.010) 1.103 1.090 0.996 (0.006) h Lifetime cigarette consumption >= 100
   Cigarettes per day (q) 38,617 0.057 (0.013) 1.049 1.053 1.007 (0.006) h Average or maximum number of cigarettes per day
Additional phenotypes
   BMI (q) 339,224 0.109 (0.003) 1.158 1.038 0.672 (0.008) i BMI, as measured
   Height (q) 253,288 0.312 (0.014) 2.949 2.001 1.325 (0.019) j Height, as measured
   Coronary artery disease (d) 86,995 0.098 (0.013) 1.145 1.105 1.027 (0.009) k Presence of CAD, MI, or both
   Crohn's disease (d) 20,883 0.177 (0.021) 1.242 1.143 1.028 (0.012) l Presence of Crohn’s disease
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Table S3. Comparison of heritability estimates in this study with previously 
reported estimates based on SNP data. 
ADHD – attention deficit hyperactivity disorder; ESS – effective sample size; OCD – 
obsessive-compulsive disorder; SE – standard error. References previous reports are: 
a(106), b(95), c(129), d(97), e(130), f(131), g(132), h(133), and i(134). * - Previously 
reported heritability for anxiety disorders is an LDSC analysis of the same dataset; 
difference between the estimates is due to the current study estimating heritability under 
unscreened controls. 
 
 

 
 
  

Previously reported Current study
Phenotype Heritability (SE) ESS Heritability (SE) ESS Reference
Psychiatric disorders
ADHD 0.28 (0.023) 12,374 0.100 (0.011) 43,992 a
Anorexia nervosa - - 0.172 (0.027) 10,633 -
Anxiety disorders* 0.10 (0.037) 15,469 0.112 (0.045) 15,469 b
Autism spectrum disorder 0.17 (0.025) 6,729 0.189 (0.025) 10,610 a
Bipolar disorder 0.25 (0.012) 15,391 0.205 (0.010) 49,367 a
Major depressive disorder 0.21 (0.021) 18,416 0.112 (0.006) 40,627 a
OCD 0.37 (0.070) 3,394 0.255 (0.037) 8,369 c
PTSD* 0.15(0.060) 7,232 0.148 (0.065) 7,232 d
Schizophrenia 0.23 (0.008) 20,811 0.256 (0.010) 75,846 a
Tourette's syndrome 0.58 (0.090) 2,146 0.196 (0.025) 11,489 c

Neurological disorders 0.130 (0.023)
Alzheimer's disease 0.24 (0.030) 7,095 0.101 (0.022) 46,669 e
Epilepsy 0.32 (0.046) 4,041 0.053 (0.026) 22,538 f
   Focal epilepsy 0.23 (0.102) 3,229 0.351 (0.039) 14,655 f
   Generalized epilepsy 0.36 (0.117) 1,134 0.156 (0.060) 8,741 f
Intracerebral hemorrhage 0.29 (0.110) 1,663 0.038 (0.010) 3,025 g
Ischemic stroke 0.38 (0.052) 8,025 - 26,888 h
  Cardioembolic stroke 0.33 (0.074) 2,592 0.051 (0.020) 6,730 h
  Early-onset stroke - - - 10,095 h
  Large-vessel disease 0.40 (0.076) 2,698 - 6,592 -
  Small-vessel disease 0.16 (0.077) 1,993 0.150 (0.007) 5,014 h
Migraine - - 0.124 (0.024) 200,785 -
  Migraine with aura - - 0.208 (0.025) 24,253 -
  Migraine without aura - - 0.141 (0.016) 31,471 -
Multiple sclerosis 0.30 (0.030) 3,523 0.105 (0.017) 15,231 e
Parkinson's disease 0.27 (0.053) 20,798 0.105 (0.017) 14,776 i
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Table S4. Heritability estimates and selected study variables in weighted-least 
squares analysis. 
P-values are uncorrected for multiple testing. Age of onset refers to the average age of 
onset of the disorder. Asterisk indicates results which are significant after Bonferroni 
correction for four tests. 

  
 

Table S5. Implied true correlations between selected phenotypes, given co-morbidity 
estimates from literature. 
ADHD – attention deficit hyperactivity disorder; OCD – obsessive-compulsive disorder. 
References used for λ values (proportion of cases correctly called cases) are a (135), 
b(136), c(137). From reference a, λ was calculated by summing over all relevant disorder 
progression paths. See Supplementary text (“Effect of co-morbidity and phenotypic 
misclassification on correlation estimates”) for further details. 
 

 
 
  

Study feature F-statistic Adjusted R2 P-value
Case/control ratio 0.534 -0.023 0.474
Effective sample size 1.039 0.002 0.320
Phenotype prevalence 0.341 -0.032 0.566
Age of onset 10.280 0.307 0.004*

Phenotype 1 Phenotype 2 True rg Observed rg λ h1,obs h2 Reference
Schizophrenia Bipolar disorder 0.654 0.681 0.946 0.506 0.453 a
Schizophrenia OCD 0.120 0.428 0.683 0.506 0.505 b
Bipolar disorder ADHD 0.043 0.261 0.686 0.453 0.316 c
Bipolar disorder Schizophrenia 0.514 0.681 0.808 0.453 0.506 a
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Table S6. Proportions of unidirectional misclassification. 
Listed are the proportions of unidirectional misclassification which would be required to 
reach the observed genetic correlation under the assumption of no true genetic correlation 
for the significantly correlated disorder-disorder pairs in this study, in order of decreasing 
significance. ADHD – attention deficit hyperactivity disorder; ASD – autism spectrum 
disorder; MDD – major depressive disorder; OCD – obsessive-compulsive disorder. 
Type-subtype pairs (e.g. epilepsy and focal epilepsy) have been excluded. 
 

 
 

Table S7 (separate file). Disorder-disorder (A), disorder-phenotype (B) and 
phenotype-phenotype (C) correlation results. 
 
  

Phenotype 1 Phenotype 2 Observed rg Misclassification %
Bipolar disorder Schizophrenia 0.681 54.5%
MDD Schizophrenia 0.338 14.8%
Bipolar disorder MDD 0.351 64.2%
MDD Migraine 0.323 24.8%
ADHD MDD 0.521 46.5%
OCD Schizophrenia 0.327 32.6%
ADHD Migraine 0.261 17.9%
Anxiety disorders MDD 0.794 79.4%
ADHD Schizophrenia 0.223 8.7%
OCD Tourette Syndrome 0.428 55.7%
Bipolar disorder OCD 0.311 25.0%
ADHD Bipolar disorder 0.261 12.7%
Anorexia nervosa OCD 0.517 34.9%
Migraine Tourette Syndrome 0.192 14.3%
MDD Migraine without aura 0.225 12.2%
Anorexia nervosa Schizophrenia 0.219 14.7%
MDD Migraine with aura 0.278 29.4%
MDD Tourette Syndrome 0.213 12.2%
MDD OCD 0.228 10.0%
ASD Schizophrenia 0.208 15.5%
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Table S8. Tissue enrichment analysis for brain disorders. 
Results shown for phenotype-tissue pairs where P-value for enrichment coefficient p-
value below the Bonferroni threshold (p < 2.81 x 10-4; data for all pairs in Table S12A). 
CNS – central nervous system; Coeff. – coefficient; SE – standard error. Results for 
schizophrenia in a largely overlapping dataset have been previously reported in Finucane 
et al (38). 

 

Table S9. Tissue enrichment analysis for behavioral-cognitive phenotypes and 
additional traits 
Results shown for phenotype-tissue pairs where P-value for enrichment coefficient p-
value below the Bonferroni threshold (p < 4.10 x 10-4; data for all pairs in Table S12A). 
BMI – body-mass index; CNS – central nervous system; Coeff. – coefficient; SE – 
standard error. Results for the same dataset in height, BMI and Crohn’s disease have been 
previously reported in Finucane et al (38), and depressive symptoms in Okbay et al(93).

 

Table S10. Functional category enrichment analysis for brain disorders 
Results shown for phenotype-tissue pairs where P-value for enrichment coefficient p-
value below the Bonferroni threshold (p < 1.17 x 10-4; data for all pairs in Table S12B). 
ADHD – attention deficit hyperactivity disorder; Coeff. – coefficient; SE – standard 
error. Results for schizophrenia in a largely overlapping dataset have been previously 
reported in Finucane et al (38). 

  

Phenotype Tissue Enrichment SE Coeff. SE Coeff. p-value
Schizophrenia CNS 3.25 0.18 1.65E-07 1.92E-08 3.35E-18
Bipolar disorder CNS 3.81 0.32 1.43E-07 2.28E-08 1.69E-10
Major depressive disorder CNS 2.76 0.30 2.03E-08 3.58E-09 6.73E-09
Multiple sclerosis Hematopoietic 4.90 0.54 2.85E-07 5.44E-08 8.03E-08
Tourette Syndrome CNS 4.23 0.78 2.32E-07 5.29E-08 5.67E-06
Generalized epilepsy CNS 2.79 0.60 1.68E-07 4.34E-08 5.44E-05

Phenotype Tissue Enrichment SE Coeff. SE Coeff. p-value
Years of education CNS 2.87 0.19 9.51E-08 1.15E-08 5.66E-17
Intelligence CNS 3.38 0.31 8.34E-08 1.20E-08 2.26E-12
Height Connective_Bone 5.32 0.38 2.24E-07 3.55E-08 1.31E-10
BMI CNS 2.67 0.18 2.73E-08 4.46E-09 4.39E-10
Crohn's disease Hematopoietic 4.19 0.43 3.60E-07 6.66E-08 3.15E-08
Neuroticism CNS 2.47 0.29 3.83E-08 8.45E-09 2.95E-06
College attainment CNS 3.31 0.45 2.71E-08 6.52E-09 1.59E-05
Height Cardiovascular 4.23 0.38 1.28E-07 3.08E-08 1.66E-05
Height Other 3.42 0.21 8.26E-08 2.19E-08 7.84E-05
Depressive symptoms Adrenal_Pancreas 5.15 0.94 3.77E-08 1.04E-08 1.47E-04
Never/ever smoked CNS 3.45 0.73 3.06E-08 9.13E-09 4.04E-04

Phenotype Category Enrichment SE Coeff. SE Coeff. p-value
Major depressive disorder Conserved_LindbladToh 19.14 2.50 1.74E-07 2.52E-08 2.42E-12
Migraine Conserved_LindbladToh 16.88 2.08 1.09E-07 1.72E-08 1.15E-10
Schizophrenia Conserved_LindbladToh 11.03 1.55 6.73E-07 1.21E-07 1.27E-08
ADHD Conserved_LindbladToh 27.15 6.24 2.00E-07 4.61E-08 7.46E-06
Migraine without aura Conserved_LindbladToh 20.64 4.99 9.63E-08 2.61E-08 1.12E-04
Bipolar disorder Conserved_LindbladToh 9.95 1.98 3.80E-07 1.03E-07 1.17E-04
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Table S11. Functional category enrichment analysis for behavioral-cognitive 
phenotypes and additional traits 
Results shown for phenotype-tissue pairs where P-value for enrichment coefficient p-
value below the Bonferroni threshold (p < 1.71 x 10-4; data for all pairs in Table S12B). 
BMI – body-mass index; Coeff. – coefficient; SE – standard error. Results for the same 
dataset in height and BMI have been previously reported in Finucane et al (38). 
 

 

Table S12 (separate file). Tissue (A) and functional category (B) enrichment analysis 
results for brain disorders, behavioral-cognitive phenotypes, and additional traits. 

Table S13 (separate file). Data sources, responsible consortia, and data availability. 
 
 

Phenotype Category Enrichment SE Coeff. SE Coeff. p-value
BMI Conserved_LindbladToh 16.68 1.69 2.76E-07 3.34E-08 7.28E-17
Years of education Conserved_LindbladToh 14.96 1.68 6.56E-07 8.80E-08 4.67E-14
Height Conserved_LindbladToh 11.07 1.59 5.15E-07 9.79E-08 7.20E-08
BMI H3K9ac_peaks_Trynka 7.00 0.97 1.18E-07 2.41E-08 4.79E-07
Neuroticism Conserved_LindbladToh 11.96 2.95 2.26E-07 5.10E-08 4.50E-06
Intelligence Conserved_LindbladToh 13.50 2.56 3.51E-07 8.24E-08 9.77E-06
College attainment Conserved_LindbladToh 16.32 3.31 1.61E-07 3.92E-08 1.98E-05
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Supplementary Table 7A: Disorder-disorder correlations.

Phenotype 1 Phenotype 2 Correlation Correlation SE P-value
ADHD Alzheimer's disease 0.0845 -0.0945 0.3713
ADHD Anorexia nervosa -0.2135 -0.1048 0.0417
ADHD Anxiety disorders 0.398 -0.1882 0.0345
ADHD Autism spectrum disorder 0.0809 -0.0958 0.3986
ADHD Bipolar disorder 0.2612 -0.0581 7.00E-06
ADHD Epilepsy 0.1408 -0.121 0.2444
ADHD Focal epilepsy 0.2655 -0.1801 0.1405
ADHD Generalized epilepsy 0.0665 -0.0872 0.4455
ADHD Intracerebral hemorrhage 0.134 -0.1433 0.3498
ADHD Ischemic stroke 0.0438 -0.1214 0.7182
ADHD Early-onset stroke -0.0477 -0.1495 0.7498
ADHD Major depressive disorder 0.5207 -0.0563 2.18E-20
ADHD Migraine 0.2608 -0.0487 8.81E-08
ADHD Migraine without aura 0.1703 -0.0759 0.0249
ADHD Migraine with aura 0.1666 -0.1115 0.1352
ADHD Multiple sclerosis -0.0588 -0.0721 0.4148
ADHD OCD -0.0668 -0.0945 0.48
ADHD Parkinson's disease 0.0262 -0.0906 0.7721
ADHD PTSD 0.4488 -0.1706 8.50E-03
ADHD Schizophrenia 0.2226 -0.0459 1.22E-06
ADHD Tourette Syndrome 0.2504 -0.0843 0.003
Alzheimer's disease Anorexia nervosa -0.0151 -0.1113 0.8919
Alzheimer's disease Anxiety disorders 0.077 -0.1783 0.6658
Alzheimer's disease Autism spectrum disorder 0.0494 -0.0986 0.6162
Alzheimer's disease Bipolar disorder -0.0224 -0.0547 0.6821
Alzheimer's disease Epilepsy 0.1577 -0.1325 0.2339
Alzheimer's disease Focal epilepsy 0.4709 -0.2483 0.0579
Alzheimer's disease Generalized epilepsy -0.0154 -0.0911 0.8659
Alzheimer's disease Intracerebral hemorrhage -0.1145 -0.1968 0.5606
Alzheimer's disease Ischemic stroke 0.1638 -0.1379 0.2348
Alzheimer's disease Early-onset stroke -0.0092 -0.1794 0.9592
Alzheimer's disease Major depressive disorder 0.0414 -0.0696 0.5521
Alzheimer's disease Migraine -0.0144 -0.0606 0.8128
Alzheimer's disease Migraine without aura 0.1054 -0.1042 0.3116
Alzheimer's disease Migraine with aura -0.1143 -0.1141 0.3165
Alzheimer's disease Multiple sclerosis -0.0394 -0.0832 0.6355
Alzheimer's disease OCD -0.0898 -0.1102 0.4152
Alzheimer's disease Parkinson's disease -0.0747 -0.0957 0.435
Alzheimer's disease PTSD -0.091 -0.1918 0.6352
Alzheimer's disease Schizophrenia 0.0328 -0.0457 0.4722
Alzheimer's disease Tourette Syndrome 0.0593 -0.0808 0.463
Anorexia nervosa Anxiety disorders 0.0711 -0.203 0.7262
Anorexia nervosa Autism spectrum disorder 0.0338 -0.1007 0.7371
Anorexia nervosa Bipolar disorder 0.1904 -0.057 0.0008
Anorexia nervosa Epilepsy 0.0405 -0.1357 0.7653
Anorexia nervosa Focal epilepsy -0.0019 -0.2159 0.993
Anorexia nervosa Generalized epilepsy 0.0951 -0.1039 0.3602



Anorexia nervosa Intracerebral hemorrhage -0.399 -0.2034 0.0498
Anorexia nervosa Ischemic stroke -0.1623 -0.17 0.3396
Anorexia nervosa Early-onset stroke -0.3669 -0.2139 0.0862
Anorexia nervosa Major depressive disorder 0.1599 -0.0663 0.0159
Anorexia nervosa Migraine 0.0115 -0.0629 0.8555
Anorexia nervosa Migraine without aura 0.0349 -0.0927 0.7068
Anorexia nervosa Migraine with aura 0.2318 -0.1097 3.46E-02
Anorexia nervosa Multiple sclerosis -0.0098 -0.0818 0.9043
Anorexia nervosa OCD 0.5168 -0.1172 1.04E-05
Anorexia nervosa Parkinson's disease 0.0006 -0.1073 0.9952
Anorexia nervosa PTSD -0.0154 -0.1934 0.9365
Anorexia nervosa Schizophrenia 0.2194 -0.0543 5.35E-05
Anorexia nervosa Tourette Syndrome -0.0468 -0.0955 0.6241
Anxiety disorders Autism spectrum disorder 0.2539 -0.1945 0.1918
Anxiety disorders Bipolar disorder 0.2091 -0.1139 0.0664
Anxiety disorders Epilepsy 0.2606 -0.256 0.3086
Anxiety disorders Focal epilepsy 0.1437 -0.4363 0.7419
Anxiety disorders Generalized epilepsy 0.1473 -0.1602 0.3579
Anxiety disorders Intracerebral hemorrhage 0.713 -0.3622 4.90E-02
Anxiety disorders Ischemic stroke 0.1191 -0.2299 0.6044
Anxiety disorders Early-onset stroke 0.1377 -0.2734 0.6146
Anxiety disorders Major depressive disorder 0.7939 -0.159 5.97E-07
Anxiety disorders Migraine 0.2417 -0.1042 0.0203
Anxiety disorders Migraine without aura 0.2811 -0.1751 0.1084
Anxiety disorders Migraine with aura 0.3014 -0.2155 0.1618
Anxiety disorders Multiple sclerosis 0.0699 -0.1618 0.6659
Anxiety disorders OCD 0.3745 -0.2084 0.0724
Anxiety disorders Parkinson's disease -0.0642 -0.1631 0.6939
Anxiety disorders PTSD -0.0028 -0.3413 0.9934
Anxiety disorders Schizophrenia 0.2582 -0.0898 0.004
Anxiety disorders Tourette Syndrome 0.1925 -0.1572 0.2207
Autism spectrum disorder Bipolar disorder 0.0968 -0.0665 0.1455
Autism spectrum disorder Epilepsy -0.3372 -0.13 0.0095
Autism spectrum disorder Focal epilepsy -0.5292 -0.2346 0.0241
Autism spectrum disorder Generalized epilepsy -0.167 -0.095 0.0788
Autism spectrum disorder Intracerebral hemorrhage 0.1239 -0.1904 0.5151
Autism spectrum disorder Ischemic stroke -0.1517 -0.1254 0.2265
Autism spectrum disorder Early-onset stroke -0.2436 -0.1631 0.1354
Autism spectrum disorder Major depressive disorder 0.1552 -0.0602 0.0099
Autism spectrum disorder Migraine -0.077 -0.0516 0.1355
Autism spectrum disorder Migraine without aura 0.1578 -0.0898 0.0788
Autism spectrum disorder Migraine with aura -0.0647 -0.108 0.549
Autism spectrum disorder Multiple sclerosis 0.0243 -0.0839 0.7721
Autism spectrum disorder OCD 0.001 -0.1064 0.9924
Autism spectrum disorder Parkinson's disease -0.1961 -0.1012 0.0525
Autism spectrum disorder PTSD 0.0346 -0.1926 0.8575
Autism spectrum disorder Schizophrenia 0.2082 -0.0577 0.0003
Autism spectrum disorder Tourette Syndrome 0.0582 -0.0877 0.5067
Bipolar disorder Epilepsy -0.0839 -0.0719 0.2433
Bipolar disorder Focal epilepsy -0.0761 -0.1056 4.71E-01



Bipolar disorder Generalized epilepsy -0.0595 -0.0562 0.2896
Bipolar disorder Intracerebral hemorrhage -0.023 -0.1114 0.8363
Bipolar disorder Ischemic stroke 0.178 -0.091 0.0506
Bipolar disorder Early-onset stroke 0.2083 -0.1025 0.0423
Bipolar disorder Major depressive disorder 0.3507 -0.0318 2.75E-28
Bipolar disorder Migraine -0.0251 -0.0302 0.4065
Bipolar disorder Migraine without aura -0.0486 -0.0532 3.61E-01
Bipolar disorder Migraine with aura 0.001 -0.0676 0.9886
Bipolar disorder Multiple sclerosis 0.0001 -0.0503 9.98E-01
Bipolar disorder OCD 0.3108 -0.068 4.93E-06
Bipolar disorder Parkinson's disease 0.0773 -0.0567 0.1724
Bipolar disorder PTSD 0.0672 -0.0911 0.4608
Bipolar disorder Schizophrenia 0.6808 -0.021 2.1E-230
Bipolar disorder Tourette Syndrome 0.0309 -0.053 0.5597
Epilepsy Focal epilepsy 0.6176 -0.1233 5.51E-07
Epilepsy Generalized epilepsy 0.7719 -0.0587 1.53E-39
Epilepsy Intracerebral hemorrhage 0.1541 -0.223 0.4896
Epilepsy Ischemic stroke 0.3885 -0.2484 0.1178
Epilepsy Early-onset stroke 0.3694 -0.225 0.1006
Epilepsy Major depressive disorder 0.1706 -0.0816 0.0366
Epilepsy Migraine 0.219 -0.0722 0.0024
Epilepsy Migraine without aura 0.0912 -0.1296 0.4818
Epilepsy Migraine with aura 0.4665 -0.1491 0.0018
Epilepsy Multiple sclerosis -0.048 -0.1297 0.7114
Epilepsy OCD -0.4081 -0.1283 0.0015
Epilepsy Parkinson's disease 0.0459 -0.141 0.7448
Epilepsy PTSD 0.1534 -0.2453 0.5318
Epilepsy Schizophrenia -0.0268 -0.0649 0.6798
Epilepsy Tourette Syndrome -0.1876 -0.1159 0.1054
Focal epilepsy Generalized epilepsy 0.1549 -0.1796 0.3884
Focal epilepsy Intracerebral hemorrhage 0.806 -0.3949 0.0412
Focal epilepsy Ischemic stroke 0.6156 -0.3947 0.1189
Focal epilepsy Early-onset stroke 0.7506 -0.401 0.0612
Focal epilepsy Major depressive disorder 0.3305 -0.1413 0.0194
Focal epilepsy Migraine 0.3351 -0.1294 0.0096
Focal epilepsy Migraine without aura 0.3295 -0.2065 0.1106
Focal epilepsy Migraine with aura 0.6517 -0.2624 0.013
Focal epilepsy Multiple sclerosis 0.0504 -0.1993 0.8004
Focal epilepsy OCD -0.4762 -0.2284 0.0371
Focal epilepsy Parkinson's disease 0.1685 -0.2197 0.443
Focal epilepsy PTSD 0.3863 -0.3735 0.3009
Focal epilepsy Schizophrenia -0.0102 -0.0913 0.9114
Focal epilepsy Tourette Syndrome -0.3396 -0.1859 0.0678
Generalized epilepsy Intracerebral hemorrhage -0.1502 -0.165 0.3627
Generalized epilepsy Ischemic stroke -0.0715 -0.1733 0.68
Generalized epilepsy Early-onset stroke 0.0333 -0.2171 0.878
Generalized epilepsy Major depressive disorder 0.0231 -0.0645 0.7207
Generalized epilepsy Migraine 0.0624 -0.0518 0.2284
Generalized epilepsy Migraine without aura -0.0494 -0.0981 0.6144
Generalized epilepsy Migraine with aura 0.1661 -0.1115 0.1362



Generalized epilepsy Multiple sclerosis -0.0977 -0.0866 0.2593
Generalized epilepsy OCD -0.1928 -0.0931 0.0384
Generalized epilepsy Parkinson's disease 0.0011 -0.0978 0.9909
Generalized epilepsy PTSD 0.0827 -0.1507 0.5829
Generalized epilepsy Schizophrenia -0.0249 -0.0521 0.6328
Generalized epilepsy Tourette Syndrome 0.0013 -0.0783 0.9872
Intracerebral hemorrhage Ischemic stroke 0.4997 -0.2212 0.0239
Intracerebral hemorrhage Early-onset stroke 0.3607 -0.319 0.2583
Intracerebral hemorrhage Major depressive disorder 0.1333 -0.1209 2.70E-01
Intracerebral hemorrhage Migraine -0.003 -0.0979 0.9754
Intracerebral hemorrhage Migraine without aura -0.1632 -0.1773 0.3574
Intracerebral hemorrhage Migraine with aura -0.0445 -0.2078 0.8306
Intracerebral hemorrhage Multiple sclerosis -0.2004 -0.1483 0.1766
Intracerebral hemorrhage OCD 0.0987 -0.1686 0.5582
Intracerebral hemorrhage Parkinson's disease -0.0577 -0.1725 0.7378
Intracerebral hemorrhage PTSD -0.1799 -0.3111 0.563
Intracerebral hemorrhage Schizophrenia 0.0941 -0.0799 0.2386
Intracerebral hemorrhage Tourette Syndrome 0.1324 -0.1516 0.3827
Ischemic stroke Early-onset stroke 1.818 0.308 3.43E-09
Ischemic stroke Major depressive disorder 0.2263 -0.0953 0.0176
Ischemic stroke Migraine 0.0835 -0.0809 0.3024
Ischemic stroke Migraine without aura -0.0481 -0.1402 0.7317
Ischemic stroke Migraine with aura 0.2892 -0.1751 0.0986
Ischemic stroke Multiple sclerosis 0.0823 -0.1119 0.4622
Ischemic stroke OCD -0.0142 -0.1322 0.9145
Ischemic stroke Parkinson's disease 0.1146 -0.1186 0.3338
Ischemic stroke PTSD 0.6276 -0.2891 0.0299
Ischemic stroke Schizophrenia 0.2192 -0.0814 7.00E-03
Ischemic stroke Tourette Syndrome 0.0368 -0.1212 7.61E-01
Early-onset stroke Major depressive disorder 0.3313 -0.1106 0.0027
Early-onset stroke Migraine 0.0253 -0.0983 0.7968
Early-onset stroke Migraine without aura -0.3 -0.1922 0.1187
Early-onset stroke Migraine with aura 0.1678 -0.1942 0.3875
Early-onset stroke Multiple sclerosis -0.1442 -0.1537 3.48E-01
Early-onset stroke OCD -0.0986 -0.1802 0.5842
Early-onset stroke Parkinson's disease 0.0456 -0.1805 8.00E-01
Early-onset stroke PTSD 0.2004 -0.3024 5.08E-01
Early-onset stroke Schizophrenia 0.1106 -0.0771 0.1514
Early-onset stroke Tourette Syndrome -0.0448 -0.1532 0.7697
Major depressive disorder Migraine 0.3232 -0.0331 1.42E-22
Major depressive disorder Migraine without aura 0.2251 -0.0556 5.23E-05
Major depressive disorder Migraine with aura 0.278 -0.0715 1.00E-04
Major depressive disorder Multiple sclerosis 0.0241 -0.0504 6.32E-01
Major depressive disorder OCD 0.2276 -0.0601 0.0002
Major depressive disorder Parkinson's disease 0.0794 -0.0586 0.1752
Major depressive disorder PTSD 0.5192 -0.1492 0.0005
Major depressive disorder Schizophrenia 0.3377 -0.0282 5.45E-33
Major depressive disorder Tourette Syndrome 0.2133 -0.055 0.0001
Migraine Migraine without aura 0.9103 -0.0425 1.1E-101
Migraine Migraine with aura 1.1103 -0.0917 9.74E-34



Migraine Multiple sclerosis 0.022 -0.043 0.6091
Migraine OCD 0.0857 -0.0618 0.1653
Migraine Parkinson's disease -0.0258 -0.0542 0.6337
Migraine PTSD 0.1645 -0.1026 0.1088
Migraine Schizophrenia -0.0839 -0.0269 0.0018
Migraine Tourette Syndrome 0.1916 -0.0447 1.8E-05
Migraine without aura Migraine with aura 0.4763 -0.111 1.79E-05
Migraine without aura Multiple sclerosis 0.1787 -0.0852 0.0358
Migraine without aura OCD 0.0105 -0.0912 9.08E-01
Migraine without aura Parkinson's disease -0.0648 -0.0816 4.27E-01
Migraine without aura PTSD -0.0699 -0.1628 0.6675
Migraine without aura Schizophrenia -0.068 -0.0442 0.1236
Migraine without aura Tourette Syndrome 0.0503 -0.0819 0.5396
Migraine with aura Multiple sclerosis 0.0151 -0.0924 0.8699
Migraine with aura OCD 0.1102 -0.1075 0.3055
Migraine with aura Parkinson's disease -0.086 -0.1304 0.5096
Migraine with aura PTSD 0.1205 -0.2096 0.5654
Migraine with aura Schizophrenia -0.0958 -0.0576 0.0963
Migraine with aura Tourette Syndrome 0.2914 -0.1197 0.0149
Multiple sclerosis OCD 0.0807 -0.091 0.375
Multiple sclerosis Parkinson's disease 0.0453 -0.0774 0.5583
Multiple sclerosis PTSD 0.0385 -0.1427 0.7874
Multiple sclerosis Schizophrenia 0.0867 -0.0401 0.0308
Multiple sclerosis Tourette Syndrome -0.0171 -0.0745 0.8184
OCD Parkinson's disease 0.1301 -0.1074 0.2256
OCD PTSD 0.2815 -0.1847 0.1275
OCD Schizophrenia 0.3273 -0.0588 2.58E-08
OCD Tourette Syndrome 0.4285 -0.092 3.18E-06
Parkinson's disease PTSD 0.0253 -0.1949 0.8967
Parkinson's disease Schizophrenia 0.0545 -0.0534 0.3073
Parkinson's disease Tourette Syndrome 0.0904 -0.0965 0.3487
PTSD Schizophrenia 0.1471 -0.088 0.0945
PTSD Tourette Syndrome -0.1382 -0.1599 0.3877
Schizophrenia Tourette Syndrome 0.0627 -0.0416 0.1313



Significance threshold
p < 3.35 x 10-4



Supplementary Table 12A: Tissue enrichment analysis results for brain disord      
Significant enrichments in bold
Psychiatric disorders
Phenotype Tissue Enrichment SE Coeff. SE Coeff. z-score
Schizophrenia CNS 3.25 0.18 1.65E-07 1.92E-08 8.62
Bipolar disorder CNS 3.81 0.32 1.43E-07 2.28E-08 6.28
Major depressive disorder CNS 2.76 0.30 2.03E-08 3.58E-09 5.68
Tourette Syndrome CNS 4.23 0.78 2.32E-07 5.29E-08 4.39
ADHD CNS 2.03 0.74 2.02E-08 6.90E-09 2.93
OCD CNS 3.93 1.08 1.51E-07 6.46E-08 2.34
Autism spectrum disorder Liver 3.03 1.12 1.96E-07 8.48E-08 2.31
Bipolar disorder Hematopoietic 1.99 0.22 4.52E-08 2.34E-08 1.93
Autism spectrum disorder Other 2.20 0.56 1.33E-07 7.21E-08 1.84
OCD Kidney 8.66 2.78 2.21E-07 1.20E-07 1.84
OCD GI 3.07 1.10 1.35E-07 7.40E-08 1.82
Bipolar disorder Adrenal_Pancreas 3.57 0.50 5.69E-08 3.20E-08 1.78
Tourette Syndrome Hematopoietic 2.18 0.57 9.73E-08 5.81E-08 1.68
Schizophrenia Adrenal_Pancreas 2.66 0.30 3.95E-08 2.74E-08 1.44
Anxiety disorders Connective_Bone 12.32 6.99 7.43E-08 5.38E-08 1.38
Schizophrenia Hematopoietic 1.53 0.16 2.81E-08 2.15E-08 1.31
Tourette Syndrome SkeletalMuscle 3.06 1.09 1.00E-07 7.87E-08 1.28
ADHD SkeletalMuscle 1.39 1.05 1.27E-08 1.04E-08 1.22
Autism spectrum disorder Kidney 2.59 1.69 1.33E-07 1.37E-07 0.97
Major depressive disorder Adrenal_Pancreas 2.69 0.50 5.91E-09 6.26E-09 0.94
Tourette Syndrome Adrenal_Pancreas 2.83 1.25 7.17E-08 8.37E-08 0.86
Major depressive disorder Connective_Bone 1.96 0.41 3.93E-09 5.27E-09 0.74
Anxiety disorders CNS 8.03 4.33 2.78E-08 3.87E-08 0.72
Autism spectrum disorder CNS 1.89 0.62 4.13E-08 6.08E-08 0.68
OCD Adrenal_Pancreas 4.12 1.70 7.08E-08 1.05E-07 0.67
Anxiety disorders Hematopoietic 5.44 3.15 2.70E-08 4.92E-08 0.55
Anorexia nervosa Kidney 1.16 2.87 5.40E-08 1.03E-07 0.52
Autism spectrum disorder SkeletalMuscle 1.86 0.86 4.54E-08 9.05E-08 0.50
Anorexia nervosa CNS 0.99 1.00 2.10E-08 4.96E-08 0.42
Autism spectrum disorder Adrenal_Pancreas 1.90 0.99 3.08E-08 9.76E-08 0.32
Bipolar disorder SkeletalMuscle 2.96 0.42 6.97E-09 2.97E-08 0.23
Anorexia nervosa GI 0.51 1.13 1.14E-08 5.64E-08 0.20
OCD SkeletalMuscle 3.27 1.50 1.63E-08 8.92E-08 0.18
Autism spectrum disorder Connective_Bone 1.36 0.72 2.82E-09 7.87E-08 0.04
Tourette Syndrome Liver 1.60 1.26 2.49E-09 7.77E-08 0.03
Anorexia nervosa Adrenal_Pancreas 1.19 1.87 1.50E-09 8.28E-08 0.02
Anorexia nervosa SkeletalMuscle 0.90 1.50 -1.88E-09 6.85E-08 -0.03
Autism spectrum disorder Hematopoietic 1.46 0.48 -3.43E-09 6.75E-08 -0.05
Major depressive disorder Hematopoietic 1.07 0.24 -3.96E-10 4.25E-09 -0.09
Anorexia nervosa Hematopoietic -0.09 0.87 -5.42E-09 5.77E-08 -0.09
Anorexia nervosa Other 0.88 0.98 -8.19E-09 5.51E-08 -0.15
OCD Other 1.40 1.08 -1.32E-08 8.03E-08 -0.16



Anorexia nervosa Connective_Bone 0.04 1.29 -1.08E-08 5.79E-08 -0.19
ADHD Cardiovascular 0.42 1.10 -2.55E-09 1.19E-08 -0.21
OCD Cardiovascular 2.89 1.56 -4.71E-08 9.27E-08 -0.51
OCD Liver 2.74 1.74 -4.50E-08 8.65E-08 -0.52
ADHD Hematopoietic 0.33 0.58 -4.79E-09 8.19E-09 -0.58
Schizophrenia SkeletalMuscle 2.26 0.27 -1.58E-08 2.58E-08 -0.61
Anorexia nervosa Liver -0.19 1.69 -4.00E-08 6.18E-08 -0.65
ADHD Other 0.17 0.71 -6.21E-09 9.15E-09 -0.68
Autism spectrum disorder GI 1.43 0.69 -5.52E-08 7.86E-08 -0.70
Bipolar disorder Connective_Bone 2.33 0.36 -1.87E-08 2.43E-08 -0.77
ADHD Liver 0.19 1.22 -7.28E-09 9.42E-09 -0.77
Major depressive disorder SkeletalMuscle 2.09 0.41 -4.02E-09 5.01E-09 -0.80
Anxiety disorders Cardiovascular 6.90 4.65 -5.47E-08 6.53E-08 -0.84
OCD Hematopoietic 0.21 0.93 -7.39E-08 8.44E-08 -0.87
Tourette Syndrome Connective_Bone 1.09 0.99 -6.87E-08 7.07E-08 -0.97
Anxiety disorders Other 3.90 3.00 -5.13E-08 5.12E-08 -1.00
ADHD Connective_Bone -0.02 0.96 -8.75E-09 8.65E-09 -1.01
Major depressive disorder Kidney 2.15 0.68 -8.00E-09 7.35E-09 -1.09
Tourette Syndrome GI 1.39 0.76 -7.42E-08 6.33E-08 -1.17
Tourette Syndrome Other 1.18 0.72 -8.30E-08 7.00E-08 -1.19
Schizophrenia Connective_Bone 1.80 0.25 -2.70E-08 2.27E-08 -1.19
OCD Connective_Bone 1.19 1.29 -9.69E-08 7.66E-08 -1.27
Bipolar disorder Liver 2.39 0.53 -3.80E-08 2.81E-08 -1.35
Tourette Syndrome Cardiovascular 1.15 1.18 -1.21E-07 8.65E-08 -1.40
Autism spectrum disorder Cardiovascular 1.35 0.92 -1.46E-07 1.02E-07 -1.43
ADHD Kidney -1.33 1.95 -2.25E-08 1.56E-08 -1.45
ADHD Adrenal_Pancreas -0.45 1.21 -1.56E-08 1.04E-08 -1.49
Anorexia nervosa Cardiovascular 0.44 1.55 -1.03E-07 6.70E-08 -1.54
Tourette Syndrome Kidney -0.69 2.09 -1.76E-07 1.12E-07 -1.57
Schizophrenia Liver 1.86 0.30 -4.14E-08 2.33E-08 -1.78
Major depressive disorder Other 1.31 0.29 -8.82E-09 4.56E-09 -1.93
Anxiety disorders SkeletalMuscle 4.23 4.48 -1.08E-07 5.52E-08 -1.96
Anxiety disorders Adrenal_Pancreas 2.13 5.00 -1.33E-07 6.48E-08 -2.06
Anxiety disorders Liver 2.73 4.89 -1.22E-07 5.82E-08 -2.09
Schizophrenia Cardiovascular 2.13 0.28 -6.25E-08 2.88E-08 -2.17
Major depressive disorder Liver 1.40 0.49 -1.20E-08 5.50E-09 -2.18
Bipolar disorder Cardiovascular 2.37 0.43 -7.04E-08 3.05E-08 -2.31
Anxiety disorders Kidney 1.76 7.29 -1.86E-07 7.96E-08 -2.34
Bipolar disorder Kidney 2.04 0.79 -9.80E-08 4.00E-08 -2.45
ADHD GI -0.64 0.78 -1.93E-08 7.83E-09 -2.46
Bipolar disorder Other 1.75 0.28 -6.08E-08 2.44E-08 -2.50
Bipolar disorder GI 1.66 0.29 -6.83E-08 2.29E-08 -2.98
Major depressive disorder Cardiovascular 1.81 0.48 -1.94E-08 6.09E-09 -3.19
Anxiety disorders GI -0.12 3.60 -1.83E-07 5.37E-08 -3.41
Schizophrenia Other 1.31 0.17 -9.80E-08 2.37E-08 -4.13
Schizophrenia Kidney 1.16 0.43 -1.40E-07 3.16E-08 -4.42
Schizophrenia GI 1.15 0.20 -1.10E-07 2.45E-08 -4.51



Major depressive disorder GI 0.74 0.31 -2.12E-08 4.33E-09 -4.89

 
 
 

  
 

 
 

 

 
 
 

 
 

 

 
 

 
 

 
 

 
 

 
 



  

  



         ders, behavioral-cognitive phenotypes, and additional traits.

Neurological disorders
Phenotype Tissue Enrichment SE Coeff. SE Coeff. z-score
Multiple sclerosis Hematopoietic 4.90 0.54 2.85E-07 5.44E-08 5.24
Generalized epilepsy CNS 2.79 0.60 1.68E-07 4.34E-08 3.87
Migraine without aura Kidney 8.80 2.14 2.96E-08 1.09E-08 2.72
Early-onset stroke SkeletalMuscle 6.71 2.86 1.65E-07 6.49E-08 2.55
Epilepsy CNS 2.47 1.01 6.62E-08 2.62E-08 2.53
Migraine CNS 3.39 0.30 7.64E-09 3.25E-09 2.35
Alzheimer's disease Liver 8.32 2.02 4.29E-08 2.01E-08 2.13
Alzheimer's disease Hematopoietic 5.13 0.91 3.68E-08 1.76E-08 2.10
Migraine Cardiovascular 4.30 0.51 9.58E-09 4.74E-09 2.02
Focal epilepsy Cardiovascular 2.47 3.34 9.19E-08 4.55E-08 2.02
Migraine Kidney 5.61 0.95 1.49E-08 7.83E-09 1.91
Intracerebral hemorrhage Cardiovascular 9.75 7.68 6.35E-07 3.52E-07 1.81
Migraine with aura SkeletalMuscle 6.80 1.67 1.24E-08 7.21E-09 1.72
Alzheimer's disease Other 4.27 0.97 2.86E-08 1.67E-08 1.71
Migraine with aura Cardiovascular 6.76 1.80 1.22E-08 7.24E-09 1.69
Migraine with aura Kidney 10.13 2.99 1.69E-08 1.02E-08 1.65
Epilepsy Hematopoietic 1.42 0.83 3.84E-08 2.62E-08 1.46
Migraine without aura GI 4.00 0.91 8.59E-09 6.03E-09 1.42
Generalized epilepsy Hematopoietic 1.52 0.53 6.48E-08 4.59E-08 1.41
Migraine without aura Connective_Bone 4.70 1.09 8.79E-09 6.41E-09 1.37
Migraine SkeletalMuscle 4.08 0.47 6.31E-09 4.78E-09 1.32
Migraine with aura Adrenal_Pancreas 6.71 1.97 9.82E-09 7.56E-09 1.30
Parkinson's disease CNS 3.85 0.79 9.66E-08 7.58E-08 1.28
Migraine with aura Hematopoietic 2.68 0.84 7.38E-09 5.81E-09 1.27
Ischemic stroke Cardiovascular 4.80 1.85 4.04E-08 3.21E-08 1.26
Early-onset stroke Cardiovascular 4.61 2.92 9.05E-08 7.28E-08 1.24
Focal epilepsy Hematopoietic -0.36 2.07 3.45E-08 2.96E-08 1.16
Migraine Connective_Bone 3.70 0.46 5.22E-09 4.60E-09 1.13
Generalized epilepsy Adrenal_Pancreas 1.97 1.03 6.56E-08 5.80E-08 1.13
Alzheimer's disease CNS 4.91 1.12 1.54E-08 1.37E-08 1.12
Migraine without aura Cardiovascular 4.92 1.32 9.49E-09 8.50E-09 1.12
Parkinson's disease Adrenal_Pancreas 4.91 1.49 9.06E-08 8.22E-08 1.10
Focal epilepsy Liver 1.16 3.70 4.44E-08 4.15E-08 1.07
Ischemic stroke SkeletalMuscle 4.04 1.62 2.79E-08 2.88E-08 0.97
Epilepsy Cardiovascular 3.33 1.53 3.66E-08 4.10E-08 0.89
Migraine GI 2.96 0.35 3.45E-09 4.00E-09 0.86
Migraine Liver 3.78 0.56 4.32E-09 5.12E-09 0.84
Migraine with aura CNS 4.24 1.15 4.05E-09 4.88E-09 0.83
Ischemic stroke Connective_Bone 3.72 1.47 2.24E-08 2.73E-08 0.82
Parkinson's disease Hematopoietic 2.63 0.89 4.23E-08 5.28E-08 0.80
Early-onset stroke Adrenal_Pancreas 3.88 2.96 4.81E-08 6.63E-08 0.73
Focal epilepsy CNS -2.08 2.76 2.16E-08 2.98E-08 0.72



Early-onset stroke Liver 3.05 3.05 4.44E-08 6.49E-08 0.68
Epilepsy Liver 2.52 1.63 2.10E-08 3.60E-08 0.58
Migraine without aura CNS 3.62 0.75 2.84E-09 5.19E-09 0.55
Early-onset stroke CNS 1.94 1.92 2.27E-08 4.20E-08 0.54
Migraine Adrenal_Pancreas 3.75 0.50 2.25E-09 4.43E-09 0.51
Intracerebral hemorrhage GI 4.40 4.35 1.25E-07 2.55E-07 0.49
Early-onset stroke Hematopoietic 0.52 1.57 2.58E-08 5.42E-08 0.48
Ischemic stroke Other 2.86 1.15 1.21E-08 2.55E-08 0.47
Alzheimer's disease Connective_Bone 5.02 1.41 8.91E-09 2.00E-08 0.44
Intracerebral hemorrhage Other 3.57 3.77 9.92E-08 2.37E-07 0.42
Generalized epilepsy Other 1.44 0.64 2.27E-08 5.46E-08 0.42
Migraine without aura Adrenal_Pancreas 4.25 1.26 3.15E-09 7.91E-09 0.40
Intracerebral hemorrhage CNS 3.65 3.78 8.30E-08 2.17E-07 0.38
Epilepsy Adrenal_Pancreas 2.35 1.48 1.42E-08 3.76E-08 0.38
Intracerebral hemorrhage Kidney 7.97 9.75 1.64E-07 4.38E-07 0.37
Focal epilepsy Kidney -1.64 5.06 1.95E-08 5.56E-08 0.35
Ischemic stroke Hematopoietic 1.43 0.84 8.52E-09 2.47E-08 0.35
Alzheimer's disease Kidney 8.69 3.00 7.52E-09 3.00E-08 0.25
Alzheimer's disease Adrenal_Pancreas 5.50 1.70 5.06E-09 2.19E-08 0.23
Ischemic stroke CNS 1.87 1.07 4.38E-09 1.99E-08 0.22
Alzheimer's disease GI 4.11 1.06 3.59E-09 1.77E-08 0.20
Migraine Hematopoietic 1.96 0.24 7.27E-10 3.65E-09 0.20
Alzheimer's disease SkeletalMuscle 5.05 1.53 4.23E-09 2.19E-08 0.19
Migraine with aura GI 3.59 1.18 8.23E-10 6.66E-09 0.12
Generalized epilepsy SkeletalMuscle 1.39 0.88 5.46E-09 5.68E-08 0.10
Migraine with aura Connective_Bone 4.37 1.46 5.42E-10 5.99E-09 0.09
Ischemic stroke Liver 2.57 2.00 6.24E-10 3.06E-08 0.02
Early-onset stroke Kidney 1.75 4.46 -2.37E-09 8.56E-08 -0.03
Early-onset stroke Connective_Bone 1.67 2.37 -3.65E-09 5.70E-08 -0.06
Migraine with aura Other 3.51 1.10 -5.64E-10 5.59E-09 -0.10
Migraine with aura Liver 4.41 1.91 -1.19E-09 7.01E-09 -0.17
Generalized epilepsy GI 1.12 0.67 -1.14E-08 5.35E-08 -0.21
Ischemic stroke Adrenal_Pancreas 2.65 1.89 -1.04E-08 3.42E-08 -0.30
Parkinson's disease Connective_Bone 3.12 1.88 -2.37E-08 7.62E-08 -0.31
Early-onset stroke GI 0.73 2.30 -1.89E-08 5.68E-08 -0.33
Migraine Other 2.70 0.29 -1.36E-09 3.99E-09 -0.34
Epilepsy Kidney 1.83 2.25 -1.86E-08 5.09E-08 -0.37
Parkinson's disease SkeletalMuscle 3.17 1.12 -3.55E-08 9.56E-08 -0.37
Parkinson's disease Liver 3.55 1.41 -2.69E-08 6.93E-08 -0.39
Multiple sclerosis SkeletalMuscle 4.10 0.77 -2.70E-08 5.85E-08 -0.46
Focal epilepsy Adrenal_Pancreas -3.19 3.94 -2.14E-08 4.61E-08 -0.47
Focal epilepsy SkeletalMuscle -3.35 4.05 -2.01E-08 4.28E-08 -0.47
Intracerebral hemorrhage SkeletalMuscle 1.92 5.46 -1.52E-07 2.91E-07 -0.52
Migraine without aura Liver 3.23 1.26 -3.71E-09 6.87E-09 -0.54
Migraine without aura Other 2.84 0.79 -3.78E-09 6.78E-09 -0.56
Ischemic stroke Kidney 1.55 2.88 -2.24E-08 3.87E-08 -0.58
Generalized epilepsy Liver 0.61 1.01 -4.10E-08 6.53E-08 -0.63



Migraine without aura Hematopoietic 2.36 0.63 -3.98E-09 6.21E-09 -0.64
Multiple sclerosis Connective_Bone 3.73 0.71 -3.96E-08 6.08E-08 -0.65
Intracerebral hemorrhage Connective_Bone 1.01 4.21 -1.51E-07 2.28E-07 -0.66
Parkinson's disease Other 2.44 0.88 -3.87E-08 5.73E-08 -0.68
Early-onset stroke Other 1.13 1.99 -3.53E-08 5.21E-08 -0.68
Generalized epilepsy Connective_Bone 1.06 0.81 -3.46E-08 5.04E-08 -0.69
Migraine without aura SkeletalMuscle 3.49 1.08 -5.11E-09 7.07E-09 -0.72
Focal epilepsy Other -2.66 2.67 -2.85E-08 3.72E-08 -0.77
Epilepsy SkeletalMuscle 1.11 1.50 -2.77E-08 3.58E-08 -0.77
Ischemic stroke GI 1.74 1.28 -2.03E-08 2.53E-08 -0.80
Multiple sclerosis Adrenal_Pancreas 4.12 0.87 -5.48E-08 6.47E-08 -0.85
Intracerebral hemorrhage Hematopoietic 1.40 2.75 -2.01E-07 2.27E-07 -0.88
Epilepsy Connective_Bone 0.39 1.27 -3.02E-08 3.30E-08 -0.92
Parkinson's disease GI 2.16 1.03 -5.20E-08 5.54E-08 -0.94
Multiple sclerosis Kidney 5.86 1.39 -9.33E-08 8.70E-08 -1.07
Multiple sclerosis CNS 2.75 0.50 -4.63E-08 4.17E-08 -1.11
Generalized epilepsy Cardiovascular 0.71 0.99 -7.58E-08 6.50E-08 -1.17
Multiple sclerosis Liver 4.33 0.93 -7.94E-08 6.01E-08 -1.32
Focal epilepsy Connective_Bone -5.31 3.73 -5.58E-08 3.46E-08 -1.61
Epilepsy Other 0.24 0.95 -5.10E-08 2.98E-08 -1.71
Generalized epilepsy Kidney -0.84 1.57 -1.42E-07 8.14E-08 -1.75
Focal epilepsy GI -3.88 3.41 -6.58E-08 3.36E-08 -1.96
Alzheimer's disease Cardiovascular 2.19 1.40 -4.47E-08 2.20E-08 -2.03
Intracerebral hemorrhage Adrenal_Pancreas -3.56 6.51 -6.66E-07 3.28E-07 -2.03
Multiple sclerosis Cardiovascular 3.34 0.84 -1.38E-07 6.60E-08 -2.09
Parkinson's disease Cardiovascular 1.74 1.55 -1.48E-07 6.90E-08 -2.15
Epilepsy GI -0.10 1.11 -7.08E-08 3.27E-08 -2.17
Intracerebral hemorrhage Liver -5.46 6.90 -7.03E-07 2.96E-07 -2.37
Parkinson's disease Kidney 1.23 2.44 -2.18E-07 9.15E-08 -2.38
Multiple sclerosis Other 2.24 0.51 -1.38E-07 5.35E-08 -2.57
Multiple sclerosis GI 2.32 0.57 -1.96E-07 5.77E-08 -3.40



  

  



Behavioral-cognitive phenotypes and additional traits
Phenotype Tissue Enrichment SE
Years of education CNS 2.87 0.19
Intelligence CNS 3.41 0.32
Height Connective_Bone 5.32 0.38
BMI CNS 2.67 0.18
Crohn's disease Hematopoietic 4.19 0.43
Neuroticism CNS 2.47 0.29
College attainment CNS 3.31 0.45
Height Cardiovascular 4.23 0.38
Height Other 3.42 0.21
Depressive symptoms Adrenal_Pancreas 5.15 0.94
Never/ever smoked CNS 3.45 0.73
BMI Adrenal_Pancreas 2.92 0.28
Height SkeletalMuscle 4.06 0.33
Depressive symptoms CNS 2.84 0.49
Intelligence Adrenal_Pancreas 3.28 0.51
BMI Hematopoietic 1.63 0.14
Coronary artery disease Liver 4.57 1.00
Cognitive performance Liver 3.85 1.81
Openness CNS 4.84 1.82
Subjective well-being CNS 3.33 0.52
Height GI 3.04 0.23
Openness Hematopoietic 3.49 1.46
Depressive symptoms Kidney 5.42 1.30
Conscientiousness GI 6.46 2.63
Coronary artery disease Other 3.41 0.57
Intelligence SkeletalMuscle 2.92 0.46
Depressive symptoms Hematopoietic 1.70 0.38
Cognitive performance Adrenal_Pancreas 3.44 1.76
Coronary artery disease Kidney 5.90 1.62
Cognitive performance CNS 2.42 1.00
Years of education Adrenal_Pancreas 2.61 0.36
Cigarettes per day Connective_Bone 2.95 1.50
Extraversion SkeletalMuscle 4.26 1.39
Conscientiousness SkeletalMuscle 7.72 3.08
Coronary artery disease Cardiovascular 4.28 0.93
Cognitive performance Cardiovascular 2.52 1.50
Subjective well-being Hematopoietic 2.36 0.36
Extraversion CNS 3.27 0.92
Height Kidney 4.45 0.65
Coronary artery disease Connective_Bone 3.89 0.78
Cognitive performance Kidney 3.37 2.70
Years of education Hematopoietic 1.45 0.15



Coronary artery disease SkeletalMuscle 4.20 0.85
Never/ever smoked Adrenal_Pancreas 3.60 1.12
Cigarettes per day Adrenal_Pancreas 3.28 1.90
Subjective well-being Adrenal_Pancreas 3.24 0.81
Depressive symptoms Liver 3.26 0.91
Height Liver 3.65 0.36
Cognitive performance Hematopoietic 1.95 0.86
Coronary artery disease GI 2.94 0.60
College attainment Liver 3.01 0.75
BMI SkeletalMuscle 2.26 0.25
Extraversion Cardiovascular 3.82 1.42
Cigarettes per day CNS 1.68 1.20
Coronary artery disease Hematopoietic 2.18 0.44
Coronary artery disease Adrenal_Pancreas 3.67 0.98
Extraversion Adrenal_Pancreas 3.57 1.38
Conscientiousness Kidney 9.92 5.61
Height Adrenal_Pancreas 3.44 0.44
Cigarettes per day GI 1.92 1.53
Height Hematopoietic 2.20 0.21
College attainment Hematopoietic 1.40 0.37
Conscientiousness Adrenal_Pancreas 5.68 3.60
Never/ever smoked Liver 2.52 1.14
BMI Connective_Bone 1.89 0.24
Intelligence Liver 2.00 0.50
Cigarettes per day Liver 1.10 2.35
Openness SkeletalMuscle 3.75 2.12
Cigarettes per day Other 1.39 1.45
Extraversion Connective_Bone 2.76 1.09
Conscientiousness Liver 4.80 3.03
Neuroticism Hematopoietic 1.18 0.30
College attainment SkeletalMuscle 2.84 0.67
Cigarettes per day Hematopoietic 1.18 1.00
College attainment Connective_Bone 2.15 0.53
Never/ever smoked SkeletalMuscle 2.48 1.01
Conscientiousness Other 2.95 1.96
Crohn's disease Kidney 5.13 1.26
Conscientiousness CNS 3.15 2.04
Intelligence Other 1.85 0.30
Extraversion Other 2.38 0.95
Cognitive performance Connective_Bone 0.99 1.23
Subjective well-being Cardiovascular 2.47 0.73
Crohn's disease SkeletalMuscle 3.71 0.69
Never/ever smoked Connective_Bone 1.76 0.87
Conscientiousness Cardiovascular 5.61 3.10
Neuroticism Adrenal_Pancreas 1.71 0.44
Cigarettes per day SkeletalMuscle 0.91 2.14
Openness Kidney 3.45 4.23



Conscientiousness Hematopoietic 2.02 1.56
Cognitive performance SkeletalMuscle 0.72 1.47
College attainment Adrenal_Pancreas 2.60 0.75
College attainment Cardiovascular 3.05 0.72
Years of education Liver 1.90 0.29
Crohn's disease Liver 3.99 0.76
Years of education SkeletalMuscle 2.08 0.25
Neuroticism Liver 1.35 0.56
Subjective well-being SkeletalMuscle 2.29 0.67
Subjective well-being Liver 2.20 0.79
Extraversion Hematopoietic 1.68 0.84
Subjective well-being Other 1.99 0.42
Cognitive performance GI 1.11 1.03
Openness Liver 1.66 2.30
Cognitive performance Other 0.98 1.00
Extraversion GI 2.12 0.96
Never/ever smoked Hematopoietic 1.16 0.53
Openness Adrenal_Pancreas 2.19 2.33
Intelligence Kidney 1.73 0.78
Conscientiousness Connective_Bone 1.81 2.24
Subjective well-being Kidney 2.04 1.32
Depressive symptoms SkeletalMuscle 2.15 0.73
Crohn's disease Connective_Bone 3.22 0.67
Subjective well-being Connective_Bone 2.07 0.56
Intelligence Hematopoietic 1.35 0.21
Never/ever smoked Kidney 1.19 1.84
Extraversion Kidney 0.72 2.39
Openness Cardiovascular 2.75 2.23
Coronary artery disease CNS 2.35 0.54
College attainment Kidney 2.17 1.12
Crohn's disease GI 2.92 0.53
Never/ever smoked Other 1.66 0.67
Cigarettes per day Kidney -1.99 3.01
BMI Liver 1.85 0.30
Openness Connective_Bone 1.07 1.76
Never/ever smoked Cardiovascular 2.53 1.01
College attainment Other 1.74 0.45
Neuroticism SkeletalMuscle 1.45 0.41
Neuroticism Kidney 0.81 0.66
Intelligence Cardiovascular 2.28 0.49
Cigarettes per day Cardiovascular -0.18 2.41
Years of education Connective_Bone 1.64 0.22
Years of education Cardiovascular 2.15 0.31
Crohn's disease Other 2.29 0.48
Depressive symptoms Connective_Bone 1.24 0.61
Extraversion Liver 0.78 1.57
Depressive symptoms Other 1.19 0.48



Never/ever smoked GI 1.19 0.73
BMI Kidney 2.01 0.45
Depressive symptoms GI 1.36 0.51
Neuroticism Other 1.20 0.32
College attainment GI 1.53 0.45
Openness GI 0.81 1.40
Intelligence Connective_Bone 1.46 0.37
Neuroticism Connective_Bone 0.85 0.37
Depressive symptoms Cardiovascular 2.22 0.74
Crohn's disease Cardiovascular 2.64 0.63
Crohn's disease CNS 2.15 0.51
BMI Other 1.43 0.16
Crohn's disease Adrenal_Pancreas 2.85 0.72
BMI Cardiovascular 1.80 0.27
Openness Other -0.60 1.48
Subjective well-being GI 1.47 0.47
Neuroticism GI 0.87 0.33
Years of education Kidney 1.36 0.43
Height CNS 2.41 0.22
Neuroticism Cardiovascular 1.26 0.48
Years of education Other 1.35 0.17
BMI GI 1.33 0.19
Intelligence GI 1.17 0.35
Years of education GI 1.24 0.19



Coeff. SE Coeff. z-score Key:
9.51E-08 1.15E-08 8.29 CNS
8.30E-08 1.23E-08 6.73 Connective_Bone
2.24E-07 3.55E-08 6.32 Hematopoietic
2.73E-08 4.46E-09 6.13 Cardiovascular
3.60E-07 6.66E-08 5.41 Other
3.83E-08 8.45E-09 4.53 Adrenal_Pancreas
2.71E-08 6.52E-09 4.16 SkeletalMuscle
1.28E-07 3.08E-08 4.15 Liver
8.26E-08 2.19E-08 3.78 GI
3.77E-08 1.04E-08 3.62 Kidney
3.06E-08 9.13E-09 3.35
2.15E-08 6.69E-09 3.21 For exact makeup of categories, see
7.76E-08 2.65E-08 2.93 H. K. Finucane et al., Partitioning heritability by function             
1.68E-08 6.05E-09 2.78
4.96E-08 1.96E-08 2.53
1.14E-08 4.62E-09 2.46
3.25E-08 1.43E-08 2.28
1.23E-07 5.42E-08 2.27
8.15E-08 3.61E-08 2.26
1.57E-08 7.13E-09 2.20
4.87E-08 2.24E-08 2.17
8.40E-08 4.18E-08 2.01
2.53E-08 1.26E-08 2.01
9.64E-08 4.89E-08 1.97
2.52E-08 1.32E-08 1.91
3.55E-08 1.97E-08 1.81
1.24E-08 6.93E-09 1.80
1.11E-07 6.34E-08 1.75
4.22E-08 2.48E-08 1.71
5.98E-08 3.58E-08 1.67
3.60E-08 2.25E-08 1.60
3.13E-08 2.02E-08 1.55
2.44E-08 1.59E-08 1.54
9.12E-08 6.07E-08 1.50
3.03E-08 2.03E-08 1.50
7.82E-08 5.44E-08 1.44
9.68E-09 6.75E-09 1.43
1.46E-08 1.04E-08 1.40
5.49E-08 4.14E-08 1.33
1.68E-08 1.41E-08 1.19
1.00E-07 8.48E-08 1.18
1.63E-08 1.40E-08 1.16



1.86E-08 1.64E-08 1.13
1.50E-08 1.35E-08 1.11
2.87E-08 2.61E-08 1.10
1.01E-08 9.58E-09 1.06
8.96E-09 8.76E-09 1.02
2.38E-08 2.47E-08 0.96
3.85E-08 4.50E-08 0.86
1.04E-08 1.31E-08 0.80
6.78E-09 9.08E-09 0.75
4.44E-09 6.15E-09 0.72
1.32E-08 1.85E-08 0.71
1.23E-08 1.75E-08 0.71
7.71E-09 1.24E-08 0.62
9.94E-09 1.66E-08 0.60
1.03E-08 1.82E-08 0.57
4.98E-08 8.89E-08 0.56
1.24E-08 3.18E-08 0.39
8.11E-09 2.25E-08 0.36
7.25E-09 2.33E-08 0.31
2.50E-09 8.31E-09 0.30
1.88E-08 7.49E-08 0.25
2.02E-09 1.24E-08 0.16
3.25E-10 5.40E-09 0.06
1.03E-09 1.72E-08 0.06
1.40E-09 2.67E-08 0.05
6.73E-10 4.81E-08 0.01

-1.48E-10 2.20E-08 -0.01
-5.26E-10 1.36E-08 -0.04
-1.96E-09 4.62E-08 -0.04
-6.31E-10 9.35E-09 -0.07
-1.09E-09 9.04E-09 -0.12
-2.73E-09 2.15E-08 -0.13
-1.08E-09 8.28E-09 -0.13
-2.63E-09 1.45E-08 -0.18
-1.28E-08 5.32E-08 -0.24
-3.25E-08 1.26E-07 -0.26
-1.13E-08 3.91E-08 -0.29
-4.80E-09 1.62E-08 -0.30
-4.43E-09 1.36E-08 -0.33
-1.52E-08 4.59E-08 -0.33
-3.75E-09 1.05E-08 -0.36
-2.77E-08 7.71E-08 -0.36
-4.49E-09 1.21E-08 -0.37
-2.18E-08 5.71E-08 -0.38
-5.46E-09 1.38E-08 -0.40
-1.01E-08 2.48E-08 -0.41
-3.65E-08 8.73E-08 -0.42



-1.95E-08 4.67E-08 -0.42
-2.53E-08 5.74E-08 -0.44
-5.03E-09 1.08E-08 -0.47
-5.55E-09 1.11E-08 -0.50
-7.74E-09 1.49E-08 -0.52
-3.89E-08 6.97E-08 -0.56
-8.79E-09 1.53E-08 -0.57
-6.22E-09 1.08E-08 -0.58
-5.25E-09 8.98E-09 -0.58
-5.17E-09 8.45E-09 -0.61
-9.13E-09 1.41E-08 -0.65
-5.44E-09 8.21E-09 -0.66
-2.92E-08 4.33E-08 -0.68
-3.65E-08 5.27E-08 -0.69
-3.53E-08 4.80E-08 -0.74
-1.06E-08 1.36E-08 -0.78
-9.52E-09 1.18E-08 -0.81
-5.07E-08 5.76E-08 -0.88
-2.22E-08 2.41E-08 -0.92
-4.46E-08 4.76E-08 -0.94
-1.33E-08 1.36E-08 -0.97
-8.46E-09 8.59E-09 -0.98
-8.06E-08 8.19E-08 -0.98
-7.34E-09 7.45E-09 -0.99
-1.38E-08 1.31E-08 -1.05
-2.03E-08 1.90E-08 -1.07
-2.44E-08 2.26E-08 -1.08
-6.27E-08 5.69E-08 -1.10
-1.21E-08 1.08E-08 -1.12
-1.45E-08 1.26E-08 -1.15
-7.72E-08 6.65E-08 -1.16
-1.43E-08 1.23E-08 -1.16
-3.69E-08 3.11E-08 -1.19
-6.84E-09 5.57E-09 -1.23
-5.51E-08 4.39E-08 -1.26
-2.09E-08 1.55E-08 -1.34
-1.16E-08 8.44E-09 -1.37
-1.60E-08 1.16E-08 -1.38
-2.37E-08 1.69E-08 -1.40
-2.76E-08 1.94E-08 -1.42
-4.24E-08 2.86E-08 -1.49
-1.94E-08 1.29E-08 -1.50
-2.85E-08 1.90E-08 -1.50
-1.24E-07 8.14E-08 -1.52
-1.24E-08 7.60E-09 -1.64
-2.47E-08 1.49E-08 -1.66
-1.30E-08 7.34E-09 -1.77



-2.10E-08 1.16E-08 -1.81
-1.31E-08 6.99E-09 -1.87
-1.27E-08 6.68E-09 -1.91
-1.70E-08 8.82E-09 -1.93
-1.50E-08 7.54E-09 -2.00
-8.96E-08 4.38E-08 -2.04
-3.18E-08 1.47E-08 -2.17
-2.58E-08 1.12E-08 -2.30
-2.17E-08 9.38E-09 -2.31
-2.07E-07 8.91E-08 -2.33
-1.50E-07 6.09E-08 -2.45
-1.22E-08 4.77E-09 -2.56
-1.93E-07 7.38E-08 -2.62
-1.73E-08 6.44E-09 -2.68
-1.27E-07 4.50E-08 -2.81
-2.11E-08 7.31E-09 -2.89
-3.23E-08 9.97E-09 -3.24
-6.92E-08 2.02E-08 -3.43
-5.91E-08 1.71E-08 -3.46
-3.89E-08 1.10E-08 -3.53
-4.72E-08 1.32E-08 -3.58
-1.75E-08 4.70E-09 -3.73
-5.86E-08 1.56E-08 -3.76
-5.67E-08 1.26E-08 -4.49



        al annotation using genome-wide association summary statistics. Nat Genet. 2015 Nov; 47(11): 1228–12
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Supplementary Table 13: Data sources, responsible consortia, and data av

Data sources (valid as of 8/2/18)
Disorder or phenotype (reference)
Psychiatric disorders 
ADHD
Anorexia nervosa(68)
Anxiety disorder(69)
Autism spectrum disorders(70)
Bipolar disorder
Major depressive disorder
OCD – PGC
PTSD – PGC
Schizophrenia(22)
Tourette Syndrome

Neurological disorders 
Alzheimer's disease(18)
Epilepsy and subtypes, focal and generalized(71)
Intracerebral hemorrhage(72)
Ischemic stroke and subtypes (cardioembolic, early onset, small vessel and large vessel)(73)
Migraine and subtypes, migraine with and without aura
Multiple sclerosis(74)
Parkinson's disease(21)

Behavioral-cognitive phenotypes
College attainment, years of education(75)
Childhood cognitive performance(76)
Extraversion, agreeableness, conscientiousness and openness (27)
IQ(77)
Neuroticism, depressive symptoms and subjective well-being(78)
Never/ever smoked, cigarettes per day(79) 

Additional phenotypes 
BMI(63)
Height(80)
Crohn’s disease(81)
Coronary artery disease(82)

Genotype data used for simulations and power analyses
UK Biobank 



         vailability

Consortium or dataset identifier Availability

PGC-ADD2 Freely available
PGC-ED Freely available
ANGST Freely available
PGC-AUT Freely available
PGC-BIP2 By application, later freely available
PGC-MDD2 By application, later freely available
PGC-TSOCD Freely available
PGC-PTSD Freely available
PGC-SCZ2 Freely available
PGC-TSOCD By application

IGAP Freely available
ILAE Freely available
ISGC Freely available (PMC3980413)
METASTROKE dataset of the ISGC Freely available (PMC3490334)
IHGC By application
IMSGC By application
IPDGC By application

SSGAC Freely available
SSGAC Freely available
GPC Freely available
CTG Freely available
SSGAC Freely available
TAG Freely available

GIANT Freely available
GIANT Freely available
IIBDGC Freely available
CARDIoGRAM Freely available

UK Biobank Available through application



Address

http://www.med.unc.edu/pgc/results-and-downloads
http://www.med.unc.edu/pgc/results-and-downloads
http://www.med.unc.edu/pgc/results-and-downloads
http://www.med.unc.edu/pgc/results-and-downloads
http://www.med.unc.edu/pgc/results-and-downloads
http://www.med.unc.edu/pgc/results-and-downloads
http://www.med.unc.edu/pgc/results-and-downloads
http://www.med.unc.edu/pgc/results-and-downloads
http://www.med.unc.edu/pgc/results-and-downloads
http://www.med.unc.edu/pgc/pgc-workgroups

http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php
http://www.epigad.org/gwas_ilae2014/
http://cerebrovascularportal.org/informational/downloads
http://cerebrovascularportal.org/informational/downloads
http://www.headachegenetics.org/content/datasets-and-cohorts
http://imsgenetics.org/?page_id=83
www.pdgene.org

http://www.thessgac.org/data
http://www.thessgac.org/data
http://www.tweelingenregister.org/GPC/
http://ctg.cncr.nl/software/summary_statistics 
http://www.thessgac.org/data
http://www.med.unc.edu/pgc/results-and-downloads

https://www.broadinstitute.org/collaboration/giant
https://www.broadinstitute.org/collaboration/giant
http://www.ibdgenetics.org/downloads.html
http://www.cardiogramplusc4d.org/data-downloads/

 amsportal.ukbiobank.ac.uk
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