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Ordinal regression methods: survey and
experimental study

Pedro Antonio Gutiérrez, Member, IEEE, Marı́a Pérez-Ortiz, Javier Sánchez-
Monedero, Francisco Fernández-Navarro, and César Hervás-Martı́nez, Senior Member, IEEE

Abstract—Ordinal regression problems are those machine learning problems where the objective is to classify patterns using a
categorical scale which shows a natural order between the labels. Many real-world applications present this labelling structure and
that has increased the number of methods and algorithms developed over the last years in this field. Although ordinal regression can
be faced using standard nominal classification techniques, there are several algorithms which can specifically benefit from the ordering
information. Therefore, this paper is aimed at reviewing the state of the art on these techniques and proposing a taxonomy based on
how the models are constructed to take the order into account. Furthermore, a thorough experimental study is proposed to check if the
use of the order information improves the performance of the models obtained, considering the most significant published approaches
within the taxonomy. The results confirm that ordering information benefits ordinal models improving their accuracy and the closeness
of the predictions to actual targets in the ordinal scale.

Index Terms—Ordinal regression, ordinal classification, binary decomposition, threshold methods, augmented binary classification,
proportional odds model, support vector machines, discriminant learning, artificial neural networks

F

1 INTRODUCTION

L EARNING to classify or to predict numerical values
from prelabelled patterns is one of the central re-

search topics in machine learning and data mining [1]–
[3]. However, less attention has been paid to ordinal
regression (also called ordinal classification) problems,
where the labels of the target variable exhibit a natural
ordering. For example, student satisfaction surveys usu-
ally involve rating teachers based on an ordinal scale
{poor, average, good, very good, excellent}. Hence, class
labels are imbued with order information, e.g. a sample
vector associated with class label average has a higher
rating (or better) than another from the poor class, but
good class is better than both. When dealing with this
kind of problems, two facts are decisive: misclassifica-
tion costs are not the same for different errors (it is
clear that misclassifying an excellent teacher as poor
should be more penalised than misclassifying him/her
as very good) and the ordering information can be used
to construct more accurate models. A further distinc-
tion is made by Anderson [4], which differentiates two
major types of ordinal categorical variables, “grouped
continuous variables” and “assessed ordered categorical
variables”. The first one is a discretised version of an un-
derlying continuous variable, which could be observed
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Rabanales, Albert Einstein building, 14017 - Córdoba, Spain, e-
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itself. The second one covers those variables where a user
provides his/her judgement on the grade of the ordered
categorical variable. However, imposing an ordering is
meaningful for both cases.

Ordinal regression problems are very common in
many research areas, and they have been frequently
considered as standard nominal problems which can
lead to non-optimal solutions. Indeed, ordinal regression
problems can be said to be between classification and
regression, presenting some similarities and differences.
Some of the fields where ordinal regression is found
are medical research [5]–[11], age estimation [12], brain
computer interface [13], credit rating [14]–[17], econo-
metric modelling [18], face recognition [19]–[21], facial
beauty assessment [22], image classification [23], wind
speed prediction [24], social sciences [25], text classifica-
tion [26], and more. All these works are examples of
application of specifically designed ordinal regression
models, where the ordering consideration improves their
performance with respect to their nominal counterparts.

In statistics, ordinal data were firstly studied by using
a link function able to model the underlying prob-
ability for generating ordinal labels [4]. The field of
ordinal regression has evolved in the last decade, with
a plethora of noteworthy research progress made in
supervised learning [27], from support vector machine
(SVM) formulations [28], [29] to Gaussian processes [30]
or discriminant learning [31], to name a few. However,
up to the authors’ knowledge, these methods have not
yet been categorised in a general taxonomy, which is
essential for further research and for identifying the
developments made and the present state of existing
methods. This paper contributes a review of the state-
of-the-art of ordinal regression, a taxonomy proposal to
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better organise the advances in this field, and an ex-
perimental study with a complete repository of datasets
and a total of 16 ordinal regression methods (including
a software tool to run and test all the methods).

Several objectives motivate the experimental study.
First of all, our focus is on evaluating the necessity
of taking ordering information into account. In [32],
ordinal meta-models were compared with respect to
their nominal counterparts to check their ability to ex-
ploit ordinal information. The work concludes that such
meta-methods do exploit ordinal information and may
yield better performance. However, as will be analysed
in this work, specifically designed ordinal regression
methods can further improve the results with respect to
meta-model approaches. Another study [33] argues that
ordinal classifiers may not present meaningful advan-
tages over the analogue non-ordinal methods, based on
accuracy and Cohen’s Kappa statistic [34]. The results
of the present review show that statistically significant
differences are found when using measures which take
the order into account, which is the case of the Mean
Absolute Error (MAE), i.e. the average deviation be-
tween predicted and actual targets in number of cate-
gories. The second main motivation of this paper is to
provide some guidelines to decide on the best methods
in terms of accuracy, MAE and computational time.
Since there are not specific repositories of ordinal re-
gression datasets, proposals are usually evaluated using
discretised regression ones, where the target variable is
simply divided into different bins or classes. 24 of these
discretised datasets are used for our study, in addition to
17 real benchmark ordinal regression datasets extracted
from public repositories. The last objective is to evaluate
whether the methods behave differently depending on
the nature of the datasets.

This paper is a significant extension of a preliminary
conference version [35]: a deeper analysis of the state-
of-the-art has been performed, including most recent
proposals and a taxonomy to group them. Moreover, the
experimental study includes more methods and datasets.
The rest of the paper is organised as follows. Section 2
introduces the problem of ordinal regression and briefly
describes its differences from some related machine
learning topics outside the scope of this paper. Section
3 revises ordinal regression state-of-the-art by grouping
different methods with a proposed taxonomy. The main
representatives of each family are then empirically com-
pared in Section 4, where the experiments are described
and the corresponding results are studied and discussed.
Finally, Section 5 deals with the main achievements.

2 NOTATION AND NATURE OF THE PROBLEM

2.1 Problem definition
The ordinal regression problem consists on predicting
the label y of an input vector x, where x ∈ X ⊆ RK and
y ∈ Y = {C1, C2, . . . , CQ}, i.e. x is in a K-dimensional
input space and y is in a label space of Q different labels.

These labels form categories or groups of patterns, and
the objective is to find a classification rule or function f :
X → Y to predict the categories of new patterns, given
a training set of N points, D = {(xi, yi), i = 1, . . . , N}. A
natural label ordering is included for ordinal regression,
C1 ≺ C2 ≺ . . . ≺ CQ, where ≺ is an order relation given
by the nature of the classification problem. Many ordinal
regression measures and algorithms consider the rank of
the label, i.e. the position of the label in the ordinal scale,
which can be expressed by the function O(·), in such a
way that O(Cq) = q, q = 1, . . . , Q. The difference between
this setting and other related ones is now established.
The assumption of an order between class labels makes
that two different elements of Y can be always compared
by using the relation ≺, which is not possible under the
nominal classification setting. If compared to regression
(where y ∈ R), it is true that real values in R can be
ordered by the standard < operator, but labels in ordinal
regression (y ∈ Y) do not carry metric information, so the
category serves as a qualitative indication of the pattern
rather than a quantitative one.

2.2 Ordinal regression in the context of ranking and
sorting

Although ordinal regression has been paid attention
recently, the amount of related research topics is worth
to be mentioned. First, it is important to remark the
differences between ordinal regression and other related
ranking problems. There are three terms to be clarified:
ranking, sorting and multipartite ranking.

Ranking generally refers to those problems where the
algorithm is given a set of ordered labels [36], with one
label for each pattern, and the objective is to learn a rule
able to rank patterns by using this discrete set of labels.
The induced ordering should be partial with respect to
the patterns, in the sense that ties are allowed. This rule
should be able to obtain a good ranking, but not to
classify patterns in the correct class. For example, if the
labels predicted by a classifier are shifted one category
(in the ordinal scale) with respect to the actual ones, the
classifier will still be a perfect ranker.

Another term, sorting [36] is referred to the problem
where the algorithm is given a total order for the training
dataset and the objective is to rank new sets during the
test phase. As we can see, this is equivalent to a ranking
problem where the size of the label set is equal to the
number of training points, Q = N . Ties are not allowed
for the prediction. Again, the interest is in learning a
function that can give a total ordering of the patterns
instead of a concrete label.

The multipartite ranking problem is a generalisation of
the well-known bipartite ranking one. Multipartite rank-
ing can be seen as an intermediate point between rank-
ing and sorting. It is similar to ranking because training
patterns are labelled with one of Q ordered ratings
(Q = 2 for bipartite ranking), but here the goal is to learn
from them a ranking function able to induce a total order
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in accordance with the given training ratings [37]–[39],
which is similar to sorting. The objective of multipartite
ranking is to obtain a ranking function which ranks
“high” classes ahead of “low” classes (in the ordinal
scale), being this a refinement of the order information
provided by an ordinal classifier, as the latter does not
distinguish between objects within the same category.
ROC analysis, which evaluates the ability of classifiers
to sort positive and negative instances in terms of the
area under the ROC curve, is a clear example of training
a binary classifier to perform well in a bipartite ranking
problem. The relationship between multipartite ranking
and ordinal classification is discussed in [38]. An ordinal
regression classifier can be used as a ranking function by
interpreting the class labels as scores. However, this type
of scoring will produce a large number of ties (which
is not desirable for multipartite ranking). On the other
hand, a multipartite ranking function f(·) can be turned
into an ordinal classifier by deriving thresholds to define
an interval for each class, but how to find the optimal
thresholds is an open issue.

A more general term is learning to rank, gathering
different methods in which the goal is to automatically
construct a ranking model from training data [40]. Meth-
ods used for the three previously mentioned problems
can be used for learning to rank ones. Moreover, ordinal
regression can be used as a learning to rank algorithm,
where the categories are individually evaluated for each
training pattern, using a finite ordinal scale. In this
context, we refer now to the categorisation presented
in [40], which establishes different families of ranking
model structures: pointwise or itemwise ranking (where the
relevance of an input vector x is predicted by using ei-
ther real-valued scores or ordinal labels), pairwise ranking
(where the relative order between two input vectors x
and x′ is tried to be predicted, i.e. the local comparison
nature of ranking, which can be easily cast to binary
classification) and listwise ranking (where the algorithms
try to order a finite set of patterns S = {x1,x2, . . . ,xN}
by minimising the inconsistency between the predicted
permutation and the training permutation). Ordinal re-
gression methods are pointwise ranking models, where
each vector is assigned an ordinal label in order to rank
it. In this way, they can be used for ranking as an
alternative to both pairwise and listwise structures, which
have serious problems of scalability with the size of the
training dataset [41], the former needing to examine all
pairs of patterns and the latter considering all possible
permutations of the training data.

In summary, ordinal regression is a pointwise ap-
proach to classify data, where the labels exhibit a natural
order. It is related to the problems of ranking, sorting
and multipartite ranking, but, during the test phase, its
objective is to obtain correct labels or labels as close
as possible to the correct ones, not a correct relative
partial order of the patterns (ranking), a total order of
patterns in accordance to the order of the training set
(sorting) or a total order in accordance to the training

labels (multipartite ranking).

2.3 Advanced related topics
In this section, other advanced methods related to ordi-
nal regression are surveyed. They are outside the scope
of this paper, as they consider different learning settings

Monotonic classification [42]–[44] is a special class of
ordinal classification task, where there are monotonicity
constraints between features and decision classes, i.e.
x � x′ → f(x) ≥ f(x′) [45], where x � x′ means
that x dominates x′, i.e. xk ≥ x′k, k = 1, . . . ,K. Mono-
tonic classification tasks are very common in real-world
problems [43] (e.g. consider the case where employers
must select their employees based on their education and
experience), where monotonicity may be an important
model requirement for justifying the decision made. This
kind of problems have been approached, for example, by
decision trees [43], [46] and rough set theory [44].

A recent work is concerned with transductive ordinal
regression [27], where a SVM model is derived to learn
from a set of labelled and unlabelled patterns. The core
of their formulation is an objective function that caters
to several commonly used loss functions in transductive
settings, but for ordinal regression. This SVM model is
combined with a proposed label swapping scheme for
multiple class transduction to derive ordinal decision
boundaries that pass through a low-density region of
the augmented labelled and unlabelled data. Another
related work [47] considers transfer learning in the same
context, where the objective is to obtain a classifier for
new target domains using the available label information
of other related source domains. The proposed method
spans the feasible solution space with an ensemble of
ordinal classifiers from the multiple relevant source do-
mains, using the maximum margin criterion.

Uncertainty has been included in ordinal regression
models in two different ways. Nondeterministic ordinal
classifiers (defined as those allowed to predict more
than one label for some patterns) are considered in [48].
In [49] a kernel model is proposed for those ordinal
problems where partial class memberships probabilities
are available instead of crisp labels.

One step forward [50] considers those problems where
the prediction labels follow a circular order (e.g. direc-
tional predictions).

3 AN ORDINAL REGRESSION TAXONOMY

In this section, a taxonomy of ordinal regression methods
is proposed. With this purpose we firstly review what
have been referred to as naı̈ve approaches, in the sense that
the model is obtained by using other standard machine
learning prediction algorithms (e.g. nominal classifica-
tion or standard regression). Secondly, ordinal binary de-
composition approaches are reviewed, the main idea being
to decompose the ordinal problem into several binary
ones, which are separately solved by multiple models
or by one multiple-output model. The third group will
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include the set of methods known as threshold models,
which are based on the general idea of approximating a
real value predictor and then dividing the real line into
intervals. The taxonomy proposed is given in Fig. 1.

3.1 Naı̈ve approaches

Ordinal regression problems can be easily simplified
into other standard problems, which generally involves
making some assumptions. As will be later discussed,
these methods can be very competitive given that, even
though these assumptions may not hold, they inherit the
performance of very well-tuned models.

3.1.1 Regression

One idea is to cast all the different labels {C1, C2, . . . , CQ}
into real values {r1, r2, . . . , rQ} [51], where ri ∈ R, and
then to apply standard regression techniques [2], [52],
[53] (such as neural networks, support vector regres-
sion...). Typically, the value of each label is related to
its position in the ordinal scale, i.e. ri = i. For example,
Kramer et al. [54] map the ordinal scale by assigning
numerical values, applying a regression tree model and
rounding the results for assigning the class when pre-
dicting new values. They also evaluate the possibility of
using the median, the mode, or the rounded mean of all
the patterns in the leaves of the tree. The main problem
with these approaches is that real values used for the
labels may hinder the performance of the regression
algorithms, and there is no principled way of deciding
the value a label should have without prior information
about the problem, since the distance between classes
is unknown. Moreover, regression learners will be more
sensitive to the representation of the label rather than
its ordering [55]. A recent alternative is proposed in
[56], where, instead of choosing arbitrary ordered values
for the different labels, the variable is reconstructed by
examining the different pairwise class distances.

3.1.2 Nominal classification

Ordinal classification problems are usually considered
from a standard nominal perspective, and the order
between classes is simply ignored. Some researchers
routinely apply nominal response data analysis methods
(yielding results invariant to the permutation of the
categories) to both nominal and ordinal target variables
alike because they are both categorical [57]. Nominal
classification algorithms ignore the ordering of the labels,
thus requiring more training data [55]. The Support
Vector Machine paradigm (SVM) [58] is perhaps the most
common kernel learning method for statistical pattern
recognition. Beyond the application of the kernel trick to
allow non-linear decision discriminants, and the slack-
variables to avoid inseparability, relax the constraints
and handle noisy data, the original binary SVM had to
be reformulated to deal with multiclass problems [59].

Nominal
Classification

Ordinal Binary
Decompositions

Multiple
Models

Naı̈ve
Approaches

Regression

Threshold
Models

Cumulative Link Models
Support Vector Machines
Discriminant Learning
Perceptron Learning
Augmented Binary Classification
Ensembles
Gaussian Processes

Multiple
Output
Single
Model

Cost
Sensitive

Classification

Ordinal
Regression

Fig. 1. Proposed taxonomy for ordinal regression meth-
ods

TABLE 1
Example of different cost matrices for a five class

classification problems, with class labels
y ∈ Y = {C1, C2, C3, C4, C5}.

Zero-one Absolute cost Quadratic cost
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0




0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0




0 1 4 9 16
1 0 1 4 9
4 1 0 1 4
9 4 1 0 1
16 9 4 1 0


Actual class labels are arranged in rows, while predicted class labels are
arranged in columns.

3.1.3 Cost-sensitive classification

A more advanced method that can be considered in this
group is cost-sensitive learning. Many real-world appli-
cations of machine learning and data mining require the
evaluation of the learned system with different costs
for different types of misclassification errors [60]. This
is the case with ordinal regression, although the exact
costs for misclassification can not be always evaluated
a priori. The cost of misclassifications can be forced to
be different depending on the distance between real
and predicted classes, in the ordinal scale. The work
of Kotsiantis and Pintelas [61] considers cost-sensitive
classification, by using absolute costs (i.e. the element
cij of the cost matrix C is equal to the difference in
the number of categories, cij = |i − j|). Different algo-
rithms are shown to obtain better MAE values when
cost matrices are used, without harming (in fact even
improving) accuracy [61]. We include two cost matrices
for a five class problem in Table 1, with the absolute
cost matrix and the quadratic cost (cij = |i − j|2),
together with a zero-one cost matrix, which is the one
assumed in nominal classification. Other possibilities are
to choose asymmetric costs or non-convex two-Gaussian
cost [41]. Again, the main problem is that, without a
priori knowledge of the ordinal regression problem, it
is not clear which cost matrix is more suitable.
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TABLE 2
Binary decompositions for a 5-class ordinal problem, with

class labels y ∈ Y = {C1, C2, C3, C4, C5}.

Nominal decompositions
OneVsAll OneVsOne

+,−,−,−,−
−,+,−,−,−
−,−,+,−,−
−,−,−,+,−
−,−,−,−,+



−,−,−,−, , , , , ,
+, , , ,−,−,−, , ,
,+, , ,+, , ,−,−,
, ,+, , ,+, ,+, ,−
, , ,+, , ,+, ,+,+


Ordinal decompositions

OrderedPartitions OneVsNext OneVsFollowers OneVsPrevious
−,−,−,−
+,−,−,−
+,+,−,−
+,+,+,−
+,+,+,+



−, , ,
+,−, ,
,+,−,
, ,+,−
, , ,+



−, , ,
+,−, ,
+,+,−,
+,+,+,−
+,+,+,+




+,+,+,+
+,+,+,−
+,+,−,
+,−, ,
−, , ,



3.2 Ordinal binary decompositions

This group includes all those methods which are based
on decomposing the ordinal target variable into several
binary ones, which are then estimated by a single or
multiple models. A summary of the decompositions is
given in Table 2, where five classes are considered, each
method generating a different decomposition matrix.
Columns of the matrix correspond to the binary subprob-
lems and rows to the role of each class for each subprob-
lem. The symbol + is associated to the positive class and
the symbol − to the negative one. If the class is not used
in the specific binary subproblem, no symbol is included
in the corresponding position. OneVsAll and OveVsOne
formulations are nominal classification methods (and
should be listed as naı̈ve approaches), but they have been
included in this table for comparison purposes. Note
the high number of binary decompositions needed by
OneVsOne (in this case, 10 combinations).

Two main issues have to be taken into account when
analysing the methods herein presented: 1) some of them
are based on the idea of training a different model for
each subproblem (multiple model approaches), while
others learn one single model for all the subproblems; 2)
apart from defining how to decompose the problem, it
is important to define a rule for predicting new patterns,
once the decision values are obtained. For the prediction
phase, the corresponding binary codes of Table 2 can be
considered as part of the error-correcting output codes
(ECOC) framework [62], where the predicted class is the
one closest to the code formed by all binary responses.
Taking the first criterion into account, we have divided
ordinal binary decomposition algorithms into multiple
model and multiple-output single model approaches.

3.2.1 Multiple model approaches

Ordinal information gives us the possibility of compar-
ing the different labels. For a given rank q, a direct
question can be the following, “is the label of pattern x
greater than q?” [41]. This question is clearly a binary
classification problem, so ordinal classification can be
solved by considering each binary classification problem

independently and combining the binary outputs into a
label, which is the approach followed by Frank and Hall
in [63] (this decomposition is called OrderedPartitions in
Table 2). In their work, Frank and Hall considered C4.5
as the binary classifier and the decision of the different
binary classifiers were combined by using associated
probabilities pq = P (y � Cq|x), q = 1, . . . , Q− 1:

P (y = C1|x) ≈ 1− p1, P (y = CQ|x) ≈ pQ−1,
P (y = Cq|x) ≈ pq−1 − pq, 2 ≤ q ≤ Q− 1.

Note that this approach may lead to negative probability
estimates [64], given that binary classifiers are indepen-
dently learned and nothing assures that pq−1 < pq .
When there is no need for proper probability estimations,
prediction can be done by selecting the maximum.

In the work of Waegeman et al. [65], this framework
is used but explicit weights over the patterns of each
binary system are imposed, in such a way that errors on
training objects are penalised proportionally to the ab-
solute difference between their rank and q (the category
examined). Additionally, labels for the test set are ob-
tained by combining the estimated outcomes yq of all the
Q−1 binary classifiers. The interpretation of these binary
outcomes yqi ∈ {+1,−1}, q = 1, . . . , Q − 1, i = 1, . . . , N,
intuitively leads to yi � Cq if yqi = +1. In this way, the
rank k is assigned to pattern xi so that yqi = −1,∀q < k,
and yqi = +1,∀q ≥ k. As stated by the authors, this
strategy can result in ambiguities for some test patterns,
and they should be solved by using similar techniques
to those considered for nominal classification. A very
similar scheme is proposed in [12], where the weights
are obtained slightly differently, and different kernels are
used for the different binary classification sub-problems.

Other ordinal binary decompositions can be found
in the literature. The cascade linear utility model [66]
considers Q−1 projections, in such a way that projection
q separates classes C1 ∪ . . . ∪ CQ−q−1 from class CQ−q ,
i.e. one class is eliminated for each projection (this is
the OneVsPrevious decomposition in Table 2). The pre-
dictions are then combined by a union utility function.
Finally, binary SVMs were also applied to ordinal re-
gression [15], by making use of the ordinal pairwise
partitioning approach [14]. This approach is composed of
four different reformulations of the classical OneVsOne
and OneVsAll paradigms. OneVsNext considers that each
binary classifier q separates class Cq from class Cq+1, and
OneVsFollowers (which is similar to the OneVsPrevious
approach in [66] but in the opposite direction) constructs
each binary classifier q for the task of separating class Cq
from classes Cq+1∪ . . .∪CQ. The prediction phase is then
approached by examining each binary classifier in order,
so that, if a model predicts that the pattern is in the class
which is isolated (not grouped with other classes), then
this is the predicted class. This can be done in a forward
manner or in a backward manner [15].

Finally, another possibility [67] is to derive a classifier
for each class but separating the labels into groups
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of three classes (instead of only two) for intermediate
subtasks (labels lower than Cq , label Cq , and labels
higher than Cq), or two classes for the extreme ones.
The objective is to incorporate the order information in
the subclassification tasks. Although the decomposition
for intermediate classes is not binary but ternary, this
approach has been included in this group because its
motivation is similar to all the aforementioned.

3.2.2 Multiple-output single model approaches
Among non-parametric models, one appealing property
of neural networks is that they can handle multiple
responses in a seamless fashion [68]. Usually, as many
output neurons as the number of target variables are
included in the output layer and targets are presented
to the network in the form of vectors ti, i = 1, . . . , N .
When applied to nominal classification, the most usual
approach is to consider a 1-of-Q coding scheme [53],
i.e. ti = {ti1, . . . , tiQ}, tiq = 1 if xi corresponds to an
example belonging to class Cq , and tiq = 0 (or tiq =
−1), otherwise. In the ordinal regression framework,
one can take the ordering information into account to
design specific ordinal target coding schemes, which
can improve the performance of the methods. Indeed,
all the decompositions in Table 2 can be used to train
neural networks, by taking each row as the code for
the target class, ti, and a single model will be obtained
for all related subproblems (considering that each output
neuron is solving each subproblem). This can be done by
assigning a value (+1, 0 or −1) to each of the different
symbols (+ or −) in Table 2. For sigmoidal output
neurons, a 1 is assigned for positive symbols (+) and a 0
for negative ones (−). For hyperbolic functions, negative
symbols are represented with a −1 and positive ones
also with a 1. Those decompositions where a class is
not involved should be treated as a “does not matter”
condition where, whatever the output response, no error
signal should be generated [69].

A generalisation of ordinal perceptron learning [70]
in neural networks was proposed in [71]. The method
is based on two main ideas: 1) the targets are coded
using the OrderedPartitions approach; and 2) instead of
using the softmax function [53] for the output nodes, a
standard sigmoid function is imposed, and the category
assigned to a pattern is equal to the index previous to
that of the first output node whose value is higher than
a predefined threshold T , or when no nodes are left.
This method ignores inconsistencies (e.g. a sigmoid with
value higher than T after the index selected).

Extreme learning machines (ELMs) are single-layer
feedforward neural networks, where the hidden layer
does not need to be tuned given that corresponding
weights are randomly assigned. ELMs have demon-
strated good scalability and generalisation performance
with a faster learning speed when compared to other
models such as SVMs [72]. They have been adapted
to ordinal regression [73], and one of the proposed
ordinal ELMs also considers OrderedPartitions targets.

Additionally, multiple models are also trained using the
OneVsOne and the OrderedPartitions approaches. For the
prediction phase, the loss-based decoding approach [62]
is utilised, i.e. the chosen label is that which minimises
the exponential loss, k = arg minq=1,...,Q d (Mq,y(x)) ,
where Mq is the code associated to class q (q-th row
of the coding matrix), y(x) is the vector of predic-
tions, and d (Mq,y(x)) is the exponential loss function,
d (Mq,y(x)) =

∑Q
i=1 exp (Mqi · yi(x)). The values of the

vector y(x) are assumed to be in the [−1,+1] range,
and those of Mq in the set {−1, 0,+1}. The single ELM
was found to obtain slightly better generalisation results
and also to report the lowest computational time [73].
Other adaption of the ELM is found in [74], where
an evolutionary algorithm is applied to optimise the
different weights of the model by using a fitness function
to impose the ordering restriction in model selection. A
different approach is taken in [75], where the ordinal
constraints are included into the weights connecting the
hidden and output layers.

Costa [69] followed a probabilistic framework to pro-
pose another neural network architecture able to exploit
the ordinal nature of the data. The proposal is based
on the joint prediction of constrained concurrent events,
which can be turned into a classification task defined
in a suitable space through a “partitive approach”. An
appropriate entropic loss is derived for P(Y), i.e. the
set of subsets of Y , where Y is a set of Q elementary
events. A probability for each possible subset should
be estimated, leading to a total of 2Q probabilities.
However, depending on the classification problem, not
all possibilities should be examined. For example, this is
simplified for random variables taking values in finite or-
dered sets (i.e. ordinal regression), as well as in the case
of independent boolean random variables (i.e. nominal
classification). To adapt neural networks to the ordinal
case structure, targets were reformulated following the
OneVsFollowers approach and the prediction phase was
accomplished by considering that, under its constrained
entropic loss formulation, the output of the q-th output
neuron estimates the probability that q and q − 1 events
are both true. This methodology was further evaluated
and compared in other works [64], [76], [77].

Although all these neural network approaches consist
of a single model, they are trained independently in
the sense that the output of the neurons do not depend
on the other outputs (only on common nonlinear trans-
formations of the inputs). That is the reason why we
have included them into the category of ordinal binary
decompositions.

These neural network models can be grouped under
the term multitask learning [78] (MTL), which is a learn-
ing paradigm that considers the case of simultaneously
tackling several related tasks. Any of the different pro-
posals in this field could be applied to train a single
model for the different ordinal decompositions analysed
in this section. Indeed, one of the existing proposals,
MTL via conic programming [79], was validated in the
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context of ordinal regression, showing promising results.

3.3 Threshold models
Often, in the ordinal regression paradigm, it is natural
to assume that an unobserved continuous variable un-
derlies the ordinal response variable. Such a variable
is called a latent variable, and methods based on that
assumption are known as threshold models, which are
the most popular approaches for modelling ordinal and
ranking problems [49]. These methodologies estimate:
• A function f(x) that tries to predict the values of the

latent variable, acting as a mapping function from
feature space to the real one (similar to the ranking
function to be learned by multipartite algorithms).

• A set of thresholds b = (b1, b2, . . . , bQ−1) ∈ RQ−1 to
represent intervals in the range of f(x), which must
satisfy the constraints b1 ≤ b2 ≤ . . . ≤ bQ−1.

Threshold models can be seen as an extension of naı̈ve
regression models. The main difference between these
two approaches is that the distances among the different
classes are not defined a priori for threshold models,
being estimated during the learning process. Although
they are also related to (single-model) ordinal binary
decomposition approaches, the main difference is that
threshold models are based on one single projection
vector with multiple thresholds, one for each class.

3.3.1 Cumulative link models
Arising from a statistical background, the Proportional
Odds Model (POM) is one of the first models specifically
designed for ordinal regression [80], dated back to 1980.
It is a member of a wider family of models recognised as
Cumulative Link Models (CLMs) [81]. In order to extend
binary logistic regression to ordinal regression, CLMs
predict probabilities of groups of contiguous categories,
taking the ordinal scale into account. In this way, cumu-
lative probabilities P (y � Cj |x) are estimated, which can
be directly related to standard probabilities:

P (y � Cq|x) = P (y = C1|x) + . . .+ P (y = Cq|x),
P (y = Cq|x) = P (y � Cq|x)− P (y � Cq−1|x),

with q = 2, . . . , Q, and considering by definition that
P (y = C1|x) = P (y � C1|x) and P (y � CQ|x) = 1.

A decision rule f : X → Y is not fitted directly.
Instead, stochastic ordering of space X is satisfied by
the following general model form [28]:

g−1 (P (y � Cq|x)) = bq −wTx, q = 1, . . . , Q,

where g−1 : [0, 1] → (−∞,+∞) is a monotonic function
often referred to as the inverse link function and bq is
the threshold defined for class Cq . This model is clearly
inspired by the latent variable motivation, considering
that f(x) = wTx is a linear transformation. Consider the
error of the model of the latent variable, f(x) = wTx+ε,
where ε is the random component with zero expectation,
E[ε] = 0, distributed according to Fε. If a distribution

assumption Fε is made for ε, the cumulative model
is obtained by choosing the inverse distribution F−1ε

as the inverse link function g−1. The most common
choice for the distribution of ε is the logistic function
(which is indeed the one selected for the POM [82]),
although probit, complementary log-log, negative log-
log or cauchit functions could also be used [81]. If the
ordinal response is a coarsely measured latent continu-
ous variable f(x), label Cq in the training set is observed
if and only if f(x) ∈ [bq−1, bq], where the function f and
b = (b0, b1, ..., bQ−1, bQ) are to be determined from the
data. It is assumed that b0 = −∞ and bQ = +∞, so
the real line, defined by f(x), x ∈ X , is divided into
Q consecutive intervals. Each region separated by two
consecutive biases corresponds to a category Cq . The
constraints b1 ≤ b2 ≤ . . . ≤ bQ−1 ensure that P (y � Cq|x)
increases with q [83].

As will be seen, all the models in this section are
inspired by the POM in the strategy assumed, obtaining
a one-dimensional mapping function and dividing the
real line into different ordered intervals. This mapping
function can be used to obtain more information about
the confidence of the predictions by relating it to its
proximity to the biases. Additionally, the POM model
provides us with a solid probabilistic interpretation. The
distribution of ε is assumed to be the standard logistic
function for the POM:

g−1 (P (y � Cq|x)) = ln

(
P (y � Cq|x)
P (y � Cq|x)

)
= bq −wTx,

where q = 1, . . . , Q− 1, odds(y � Cq|x) = exp(bq −wTx),
so odds(y � Cq|x) = P (y�Cq|x)

1−P (y�Cq|x) . Therefore, the ratio of
the odds for two pattens x0 and x1 are proportional:

odds(y � Cq|x1)

odds(y � Cq|x0)
= exp(−wT (x1 − x0)).

More flexible non-proportional alternatives have been
developed, one of them simply assuming different w for
each class (which is known as the generalised ordered
logit model [84]). Another alternative applies the pro-
portional odds assumption only to a subset of variables
(partial proportional odds [85]). Moreover, Tutz [86]
presented a general framework for parametric models
that extends generalised additive models to incorporate
nonparametric parts.

Apart from assuming proportional odds, linear CLMs
are rather inflexible since the decision functions are
always linear hyperplanes, this generally affecting the
performance of the model (as analysed in the experi-
mental section of this work). A non-linear version of the
POM model was proposed in [18], [83] by simply setting
the projection f(x) to be the output of a neural network.
The probabilistic interpretation of CLMs can be used to
apply a maximum likelihood maximisation for setting
the network parameters. Gradient descent techniques
with proper constraints for the biases serve this purpose.
This non-linear generalisation of the POM model based
on neural networks was considered in [87], where an
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evolutionary algorithm was applied to optimise all the
parameters considered. Linear ordinal logistic regression
was combined with nonlinear kernel machines using
primal-dual relations from Nystrom sampling [88]. How-
ever, to make the computation of the model feasible,
a sub-sample from the data had to be selected, which
limits the applicability to those cases where there is a
reasonable way to do this [88].

An interesting alternative to CLMs is the so-called
ordistic model presented in [89]. The work presents
two threshold-based constructions which can be used
to generalise loss functions for binary labels, such as
the logistic and hinge loss, and another generalisation
of the logistic loss based on a probabilistic model for
ordered labels. Both constructions are based on including
Q−1 thresholds partitioning the real line to Q segments,
but they differ in how predictors outside the “correct”
segment (or too close to its edges) are penalised. The
immediate-threshold construction only penalises the vio-
lations of the two thresholds limiting this segment, while
the all-threshold one considers all of them.

3.3.2 Support vector machines
Because of their good generalisation performance, SVM
models are maybe the most widely applied ones to
ordinal regression, their structure being easily adapted
to that of threshold models. The proposal of Herbrich et
al. [28], [90] is the first SVM based algorithm, where they
consider a pairwise approach by deriving a new dataset
made up of all possible difference vectors xdij = xi − xj
and yij = sign (O(yi)−O(yj)), with yi, yj ∈ {C1, . . . , CQ}.
In contrast, all the SVM pointwise approaches share the
common objective of seeking Q − 1 parallel discrimi-
nant hyperplanes, all of them represented by a common
vector w and the scalars biases b1 ≤ . . . ≤ bQ−1 to
properly separate training data into ordered classes. In
this sense, several methodologies for the computation of
w and {b1, . . . , bQ−1} can be considered. The work of
Shashua and Levin [91] introduced two first methods:
the maximisation of the margin between the closest
neighbouring classes and the maximisation of the sum of
margins between classes. Both approaches present two
main problems [64]: the model is incompletely speci-
fied, because the thresholds are not uniquely defined,
and they may not be properly ordered at the optimal
solution, since the inequality b1 ≤ b2 ≤ . . . ≤ bQ−1 is not
included in the formulation.

Consequently, Chu and Keerthi [29], [92] proposed
two different reformulations for the same idea, solving
the problem of unordered thresholds at the solution.
On the one hand, they imposed explicit constraints on
the optimisation problem, only considering adjacent la-
bels for threshold determination (Support Vector Ordinal
Regression with Explicit Constraints, SVOREX). On the
other hand, patterns in all the categories were allowed
to contribute errors for each hyperplane (SVOR with
Implicit Constraints, SVORIM), which, as they prove
[29], leads to automatically satisfied constraints in the

optimal solution (see Lemma 1 of [29]). Let Nq be the
number of patterns of class Cq , and let xqi be those
patterns x which class label is Cq . The SVORIM learning
problem is defined as follows:

min
w,b,ξ,ξ∗

1

2
||w||+ C

Q−1∑
q=1

 q∑
j=1

Nq∑
i=1

ξqji +

Q∑
j=q+1

Nq∑
i=1

ξ∗qji

 ,

subject to the constraints:

w · xji − bq ≤ −1 + ξqji, ξ
q
ji ≥ 0, j ∈ {1, . . . , q},

w · xji − bq ≥ +1− ξ∗qji , ξ
∗q
ji ≥ 0, j ∈ {q + 1, . . . , Q},

where i ∈ {1, . . . , Nq}, b ∈ RQ−1, ξqji and ξ∗qji are the
slacks for the q-th parallel hyperplane (defined for the
left and right part of the hyperplanes, respectively). The
first group of constraints is focused on the left part
of the j-th hyperplane (classes with q ≤ j), while the
second one is focused on the right part (classes with
q > j). They empirically found that SVOREX performed
better in terms of accuracy (with a more local behaviour),
and SVORIM preceded in terms of absolute deviations
in number of classes or MAE (with a more global
behaviour), and this is justified theoretically based on
the loss minimised for each method. The framework
of reduction [41] also explains this from the point of
view of the cost matrices selected. Our results seem to
agree with these conclusions for discretised regression
datasets, but the differences are not so clear for real
ordinal regression ones. Generalisation properties for
some ordinal regression algorithms, including SVOR,
were further studied in [93].

In [94], the errors of an ordinal SVM classifier are
studied separately depending on whether they corre-
spond to upgrading errors (predicted label higher than
the actual one) or downgrading ones (the predicted label
being lower than the actual one). Authors address the
two-objective problem of finding a classifier maximising
simultaneously the two margins, and they show that the
whole set of Pareto-optimal solutions can be obtained by
solving a quadratic optimisation problem.

Some recent works focused on solving the bottle-
neck of these SVM proposals, which is usually the
high computational complexity to handle larger datasets.
Concerning this topic, two different proposals can be
distinguished: block-quantised support vector ordinal
regression [95] and ordinal-class core vector machines
[96]. The former is based on performing kernel k-means
and applying SVOR in the cluster representatives, on the
idea of approximating the kernel matrix K by K̃ which
will be composed of k2 constant blocks, in such a way
that the problem scales with the number of clusters, in-
stead of the dataset size. The latter is an extension of core
vector machines [97] in the ordinal regression setting.
Finally, an incremental version of SVOR algorithms is
proposed in [98].
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3.3.3 Discriminant learning

Discriminant learning has also been reformulated to
tackle ordinal regression [31]. Discriminant analysis is
usually not considered as a classification technique by
itself, but rather as a supervised dimensionality reduc-
tion. Nonetheless, it is widely used for that purpose,
since, as a projection method, the definition of thresholds
can be used to discriminate the classes. In general, to
allow the computation of the optimal projection for the
data, this algorithm analyses two main objectives: the
maximisation of the between-class distance, and the min-
imisation of the within-class distance, by using variance-
covariance matrices and the Rayleigh coefficient. In order
to reformulate the algorithm for ordinal regression, an
ordering constraint over contiguous classes is imposed
on the averages of projected patterns of each class, which
leads the algorithm to order projected patterns according
to their label. This will preserve the ordinal information
and avoid some serious ordinal misclassification errors.
The original optimisation problem is transformed and
extended with a penalty term (C):

min J(w, ρ) = wTSww− Cρ,

subject to wT (mq+1 −mq) ≥ ρ, where mq =
1
Nq

∑Nq

i=1 xi,
Sw is the within-class scatter matrix and ρ represents
the minimum difference of the projected means between
consecutive classes (if ρ > 0, the projected means are
correctly ranked). This methodology is known as Kernel
Discriminant Learning for Ordinal Regression (KDLOR)
[31] and it has been used in some later works [9], [99].
In [100], the KDLOR model is extended by trying to
learn multiple orthogonal projections, which are then
combined into a final decision function.

The method was extended in [101], [102] based on
the idea of preserving the intrinsic geometry of the
data in the embedded non-linear structure, i.e. in the
induced high-dimensional feature space, via kernel map-
ping. This consideration is the basis of manifold learning
[53], and the algorithms mentioned construct a neigh-
bourhood graph (which takes the ordinal nature of the
dataset into account) which is afterwards used to derive
the Laplacian matrix and obtain a projection which
considers the underlying manifold of the data. A related
method is proposed in [103], where several different
projections are iteratively derived.

3.3.4 Perceptron learning

PRank [104] is a perceptron online learning algorithm
with the structure of threshold models. It was then ex-
tended by approximating the Bayes point, what provides
good performance for generalisation [55].

3.3.5 Augmented binary classification

Although the approaches in Subsection 3.2 are simple
to implement, their generalisation performance cannot
be analysed easily. The two algorithms included in this

TABLE 3
Extended binary transformation for three given patterns
(x1, y1 = C1), (x2, y2 = C2), (x3, y3 = C3), the identity

coding matrix and the quadratic cost matrix.

x
(q)
i

i q wi,q x mq y
(q)
i

1 1 2 · |0− 1| = 2 x1 {1, 0} 2J1 < 1K− 1 = −1
1 2 2 · |1− 4| = 6 x1 {0, 1} 2J2 < 1K− 1 = −1
2 1 2 · |1− 0| = 2 x2 {1, 0} 2J1 < 2K− 1 = +1
2 2 2 · |0− 1| = 2 x2 {0, 1} 2J2 < 2K− 1 = −1
3 1 2 · |4− 1| = 6 x3 {1, 0} 2J1 < 3K− 1 = +1
3 2 2 · |1− 0| = 2 x3 {0, 1} 2J2 < 3K− 1 = +1

subsection work differently, and, as later analysed, the
models derived are equivalent to threshold models.

A reduction framework can be found in the works
of Lin and Li [41], [105], where ordinal regression is
reduced to binary classification by applying three steps:

1) A coding matrix M is used to represent the class
being examined. Given a coding matrix M of
(Q−1) rows, input patterns (xi, yi) are transformed
into extended binary patterns by replicating them,
(x

(q)
i , y

(q)
i ), with:

x
(q)
i = (xi,mq), y

(q)
i = 2Jq < O(yi)K− 1,

where q = 1, . . . , Q − 1, mq is the q-th row of M
and J·K is a Boolean test which is 1 if the inner
condition is true, and 0 otherwise. Q− 1 replicates
of each pattern are generated with weights:

wi,q = (Q− 1) · |CO(yi),q − CO(yi),q+1|,

where i = 1, . . . , N , C is a V-shaped cost ma-
trix (i.e. CO(yi),q−1 ≥ CO(yi),q , if q ≤ O(yi), and
CO(yi),q ≤ CO(yi),q+1, if q ≥ O(yi)). The cost
matrix must be defined a priori. An example of
this transformation is given in Table 3. As can
be seen, the final extended pattern represents the
question “Is the rank of x greater than q?” [41]. The
weights measure the importance of the pattern for
the binary classifier, and they are also used for the
theoretical analysis.

2) A single binary classifier with confidence outputs,
f(x,mk), is trained for the new weighted extended
patterns, aiming at a low weighted 0/1 loss.

3) A classification rule like the following is used to
construct a final prediction for new patterns:

r(x) = 1 +

Q−1∑
q=1

Jf(x,mq) > 0K. (1)

All the binary classification problems are solved jointly
by computing a single binary classifier. The most striking
characteristic of this algorithm is that it unifies many
existing ordinal regression algorithms [41], such as the
perceptron ones [104], kernel ranking [36], AdaBoost.OR
[106], ORBoost-LR and ORBoost-All thresholded ensem-
ble models [107], CLM [81] or several ordinal SVM
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proposals (oSVM [64], SVORIM and SVOREX [29]).
Moreover, it is important to highlight the theoretical
guarantees provided by the framework, including the
derived cost and regret bounds and the proof of equiv-
alence between ordinal regression and binary classifi-
cation. An extension of this reduction framework was
proposed in [108], where ordinal regression is proved to
be equivalent to a regular multiclass classification whose
distribution is changed. This extension is free of the
following restrictions: target functions should be rank-
monotonic; and rows of loss matrix are convex.

The data replication method of Cardoso et al. [64]
(whose previous linear version appeared in [10]) is a
very similar framework, except that it essentially con-
siders the absolute cost, consequently being less flexible.
However, for ordinal regression, increasing the error
with the absolute difference between the predicted and
estimated labels is a natural choice in the absence of any
other information [18]. An advantage of the framework
of data replication is that it includes a parameter s which
limits the number of adjacent classes considered, in such
a way that the replicate q is constructed by using the
q− s classes to its ’left’ and the q+ s classes to its ’right’
[64]. This parameter s ∈ {1, ..., Q − 1} plays the role of
controlling the increase of data points.

It is worth mentioning that augmented binary classifi-
cation models and threshold models are closely related,
and that is the reason why they have been included in
this section. The extended patterns only differ in the
new variables introduced by the coding matrix M. The
original version of the dataset is replicated in different
subspaces, with different values for the new variables.
By obtaining the intersection of the binary hyperplane in
the extended dataset with each of the subspace replicas
we derive parallel boundaries in the original dataset [64],
with a single projection vector and multiple thresholds.
In fact, SVORIM and reduction to SVM is known to
be not so different in formulation [103]. The model
of Mathieson [18] (threshold model) is equivalent to
the one proposed in [64] (oNN, an augmented binary
classification model) if the activation function of the
output node is set to the logsig function and the model
is trained to predict the posterior probabilities when
fed with the original input variables and the variables
generated by the data replication method. The predicted
thresholds would be the weights of the connection of
the added Q− 2 components. Finally, augmented binary
classification and ordinal binary decomposition are not
disjoint categories. The former class of models do not
restrict consistency of binary classifiers, making use of
a “voting” of the binary classifiers (see Eq. 1 of [105]).
Moreover, all the ordinal decompositions in Table 2 can
be viewed as a special case of “cost-sensitive ordinal
classification” via augmented binary classification [41].

3.3.6 Ensembles
From a different perspective, the confidence of a binary
classifier can be regarded as an ordering preference.

RankBoost [109] is a boosting algorithm that constructs
an ensemble of those confidence functions to form a
better ordering preference. Some efforts were made to
apply a similar idea for ordinal regression problems,
deriving into Ordinal Regression Boosting (ORBoost)
[107]. The corresponding thresholded-ensemble models
inherit the good properties of ensembles, including more
stable predictions and sufficient power for approximat-
ing complicated target functions [110]. The model is
composed of confidence functions, and their weighted
linear combination is used as the projection f(x). A set
of thresholds for this projection is also included in the
model and iteratively updated with the rest of parame-
ters. Following a similar approach to [89], large margin
bounds of the classification error and the absolute error
are derived, from which two algorithms are presented:
ORBoost with all margins and ORBoost with left-right
margins [107]. Two alternative thresholded-ensemble al-
gorithms are presented in [111], both generating an
ensemble of ordinal decision rules based on forward
stagewise additive modelling.

With a different perspective, the well-known Ad-
aBoost algorithm was recently extended to improve any
base ordinal regression algorithm [106]. The extension,
AdaBoost.OR, proved to inherit the good properties of
AdaBoost, improving both the training and test perfor-
mances of existing ordinal classifiers. Another ordinal re-
gression version of AdaBoost is proposed in [112], while
in this case the adaption is based on considering a cost
matrix both in pattern weighting and error updating.

The framework of negative correlation learning (where
the ensemble members are learnt in such a way that the
correlation between their responses is minimised) was
used in the context of ordinal regression [17], [113] by
calculating the correlation between the latent variable
estimations or, alternatively, between the probabilities
obtained by the ensemble members.

3.3.7 Gaussian processes
All the previous threshold models can be considered
discriminative models in the sense that they estimate
directly the posterior P (y|x), or learn a function to map
the input x to class labels. On the contrary, generative
models learn a model of the joint probability P (x, y) of
input patterns x and label y, and make the prediction by
a Bayesian framework to estimate P (y|x).

Gaussian Processes for Ordinal Regression (GPOR)
[30] models the latent variable f(x) using Gaussian Pro-
cesses, to estimate then all the parameters by means of
a Bayesian framework. The values of the latent function
{f(xi)} are assumed to be the given by random variables
indexed by their input vectors in a zero-mean Gaussian
process. Mercer kernel functions approximate the covari-
ance between the functions of two input vectors. Finally,
the thresholds are included in the model to divide the
latent variable in consecutive intervals, and they are
optimised together with the rest of parameters, using
padding variables to avoid unordered solutions. Given
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the latent function f , the joint probability of observing
the ordinal variables is P (D|f) =

∏N
i=1 P (yi|f(xi)), and

the Bayes theorem is applied to write the posterior prob-
ability P (f |D) = 1

P (D)

∏N
i=1 P (yi|f(xi))P (f). A Gaussian

noise with zero mean and unknown variance σ2 is as-
sumed for the latent functions. The normalisation factor
P (D), more exactly P (D|θ), is known as the evidence
for the vector of hyperparameters θ and is estimated
in the paper by two different approaches: a Maximum
a Posteriori approach with Laplace approximation and
an Expectation Propagation with variational methods. A
more general GPOR was then proposed to tackle multi-
class classification problems but with a free structure of
preferences over the labels [114]. A probabilistic sparse
kernel model was proposed for ordinal regression in
[115], where a Bayesian treatment was also employed
to train the model. A prior over the weights governed
by a set of hyperparameters was imposed, inspired by
the well-known relevance vector machine. Srijith et al.
have proposed a probabilistic least squares version of
GPOR [116], two different sparse versions [117] and a
semi-supervised version [118].

3.4 Other approaches and problem formulations

This subsection includes some methods that are difficult
to consider in the previous groups. For example, an
alternative methodology is proposed by da Costa et al.
[76], [77] for training ordinal regression models. The
main assumption of their proposal is that the random
variable class associated with a given pattern should
follow a unimodal distribution. For this purpose, they
provide two possible implementations: a parametric one,
where a specific discrete distribution is assumed and
the associated free parameters are estimated by a neural
network; and a non-parametric one, where no distribu-
tion is assumed but the error function is modified to
avoid errors from distant classes. The same idea was
then applied to SVMs in [119] by solving an ordinal
problem through a single optimisation process (the all-
at-once strategy).

In [120], both decision trees and nearest neighbour
(NN) classifiers are applied to ordinal regression prob-
lems by introducing the notion of consistency: a small
change in the input data should not lead to a ’big jump’
in the output decision, i.e. adjacent decision regions
should have equal or consecutive labels. This rationale
was used as a post-processing mechanism of a standard
decision tree and as a pre- or post- processing step for
the NN method. An improvement was presented in [121]
to reduce the over-regularised decision region artifact by
using ensemble learning techniques.

Two ordinal learning vector quantisation schemes,
with metric learning, specifically designed for classifying
data items into ordered classes, are introduced in [122],
[123]. The methods use the order information during
training, both in the selection of the prototypes and for
determining the way they are updated.

Different prediction methods as a function of the error
measure to be minimised are presented in [124]. The pa-
per discusses the fact that the Bayes optimal decision for
a classifier which return probability estimates is different
depending on the loss function considered for the errors.
In this way, for the maximisation of the accuracy one
should consider the mode (or maximum probability),
but the median of the probability distribution is the
optimal decision when minimising the MAE in ordinal
regression problems.

4 EXPERIMENTAL STUDY

4.1 Experimental design
In this subsection, the experiments are clearly specified,
including the datasets and algorithms considered, the
parameters to optimise, the performance measures and
the statistical tests used for assessing the differences.

4.1.1 Datasets selected
The most widely used dataset repository is the one pro-
vided by Chu et al. [30], including different regression
benchmark datasets. These datasets are not real ordinal
classification problems but regression ones, which are
turned into ordinal classification by discretising the tar-
get into Q different bins with equal frequency. It is clear
that these datasets do not exhibit some characteristics of
typical complex classification tasks, such as class imbal-
ance, given that all classes are assigned the same number
of patterns. However, we find interesting to check how
the algorithms perform in this more controlled environ-
ment and to compare the conclusions obtained.

Table 4 shows the characteristics of the 41 datasets,
including the number of patterns, attributes and classes,
and also the number of patterns per class. The real
ordinal classification datasets were extracted from bench-
mark repositories1 (UCI [125] and mldata.org [126]),
and the regression ones were obtained from the website
of W. Chu2. For the discretised datasets, we considered
Q = 5 and Q = 10 bins to evaluate the response
of the classifiers to the increase in the complexity of
the problem. The synthetic toy dataset was generated
as proposed in [77] with 300 patterns. All nominal at-
tributes were transformed into as many binary attributes
as the number of categories, and all the datasets were
properly standardised.

4.1.2 Algorithms selected
We have selected some representatives of the different
families included in the proposed taxonomy (see Table
5). It is important to note that naı̈ve approaches and
ordinal binary decompositions can be applied using
almost any base binary classifier or regressor. In our ex-
periments, we have selected in those cases SVMs, given

1. We would like to note that many of these datasets have been
previously considered in machine learning literature, but ignoring the
ordering information.

2. http://www.gatsby.ucl.ac.uk/∼chuwei/ordinalregression.html

http://www.gatsby.ucl.ac.uk/~chuwei/ordinalregression.html
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TABLE 4
Characteristics of the benchmark datasets

Discretised regression datasets
Dataset #Pat. #Attr. #Classes Class distribution

pyrim5 (P5) 74 27 5 ≈ 15 per class
machine5 (M5) 209 7 5 ≈ 42 per class
housing5 (H5) 506 14 5 ≈ 101 per class

stock5 (S5) 700 9 5 140 per class
abalone5 (A5) 4177 11 5 ≈ 836 per class

bank5 (B5) 8192 8 5 ≈ 1639 per class
bank5’ (BB5) 8192 32 5 ≈ 1639 per class

computer5 (C5) 8192 12 5 ≈ 1639 per class
computer5’ (CC5) 8192 21 5 ≈ 1639 per class

cal.housing5 (CH5) 20640 8 5 4128 per class
census5 (CE5) 22784 8 5 ≈ 4557 per class

census5’ (CEE5) 22784 16 5 ≈ 4557 per class
pyrim10 (P10) 74 27 10 ≈ 8 per class

machine10 (M10) 209 7 10 ≈ 21 per class
housing10 (H10) 506 14 10 ≈ 51 per class

stock10 (S10) 700 9 10 70 per class
abalone10 (A10) 4177 11 10 ≈ 418 per class

bank10 (B10) 8192 8 10 ≈ 820 per class
bank10’ (BB10) 8192 32 10 ≈ 820 per class

computer10 (C10) 8192 12 10 ≈ 820 per class
computer10’ (CC10) 8192 21 10 ≈ 820 per class
cal.housing (CH10) 20640 8 10 2064 per class

census10 (CE10) 22784 8 10 ≈ 2279 per class
census10’ (CEE10) 22784 16 10 ≈ 2279 per class

Real ordinal regression datasets
Dataset #Pat. #Attr. #Classes Class distribution

contact-lenses (CL) 24 6 3 (15, 5, 4)
pasture (PA) 36 25 3 (12, 12, 12)

squash-stored (SS) 52 51 3 (23, 21, 8)
squash-unstored (SU) 52 52 3 (24, 24, 4)

tae (TA) 151 54 3 (49, 50, 52)
newthyroid (NT) 215 5 3 (30, 150, 35)
balance-scale (BS) 625 4 3 (288, 49, 288)

SWD (SW) 1000 10 4 (32, 352, 399, 217)
car (CA) 1728 21 4 (1210, 384, 69, 65)

bondrate (BO) 57 37 5 (6, 33, 12, 5, 1)
toy (TO) 300 2 5 (35, 87, 79, 68, 31)

eucalyptus (EU) 736 91 5 (180, 107, 130, 214, 105)
LEV (LE) 1000 4 5 (93, 280, 403, 197, 27)

automobile (AU) 205 71 6 (3, 22, 67, 54, 32, 27)
winequality-red (WR) 1599 11 6 (10, 53, 681, 638, 199, 18)

ESL (ES) 488 4 9 (2, 12, 38, 100,
116, 135, 62, 19, 4)

ERA (ER) 1000 4 9 (92, 142, 181, 172,
158, 118, 88, 31, 18)

that they are suggested by many of the authors of the dif-
ferent works analysed. Starting with naı̈ve approaches,
the following methods were considered: 1) C-Support
Vector Classifier (C-SVC) with OneVsOne and OneVsAll
decompositions (SVC1V1 and SVC1VA), because they
are the two main approaches when applying SVM to
multiclass problems [59]. Although these methods con-
sider binary decompositions, they have been included
in the nominal classification group, given that they do
not take the class order into account. 2) Support Vector
Regression (SVR) applied to a modified dataset where
the target variable Y = {C1, C2, . . . , CQ} is mapped to the
real values {0, 1/(Q− 1), 2/(Q− 1), . . . , 1}. The concrete
regression model considered is the ε-SVR [52]. 3) Cost-
Sensitive SVC (CSSVC), which is a C-SVC [59] with
the OneVsAll decomposition, where absolute costs are
included as different weights [127] for the negative class
of each decomposition.

Regarding the ordinal binary decompositions, the
methods considered are the following: 1) The Ordered-
Partitions decomposition was applied to the C-SVC clas-

TABLE 5
Different algorithms considered for the experiments

Abbr. Short description
Naı̈ve approaches

SVC1V1 Support Vector Classifier with OneVsOne [59]
SVC1VA Support Vector Classifier with OneVsAll [59]
SVR Support Vector Machines for regression [52]
CSSVC Cost-Sensitive Support Vector Classifier (CSSVC) [59]

Ordinal Binary decompositions
SVMOP Support Vector Machines with OrderedPartitions [63], [65]
NNOP Neural Network with OrderedPartitions [71]
ELMOP Extreme Learning Machine with OrderedPartitions [73]

Threshold models
POM Proportional Odds Model [80]
NNPOM Neural Network based on Proportional Odd Model [18]
SVOREX Support Vector Ordinal Regression with Explicit Constraints [29]
SVORIM Support Vector Ordinal Regression with Implicit Constraints [29]
SVORLin SVORIM using a linear kernel [29]
KDLOR Kernel Discriminant Learning for Ordinal Regression [31]
GPOR Gaussian Processes for Ordinal Regression [30]
REDSVM Reduction applied to Support Vector Machines [41]
ORBALL Ordinal Regression Boosting with All margins [107]

sification algorithm (SVMOP), but including different
weights, as proposed by Waegeman et al. [65]. However,
given the problem of possible ambiguities recognised by
the authors, probability estimates are obtained following
the method presented in [128]. Then, the fusion of proba-
bilities of Eq. (1) is performed [63]. 2) The neural network
model proposed in [71] (NNOP). This model considers
the OrderedPartitions coding scheme for the labels and a
rule for decisions based on the first node whose output
is higher than a predefined threshold (T = 0.5, in our
experiments). We consider then the mean square error
function over the outputs and the iRProp+ algorithm
[129] to optimise the parameters. 3) Finally, the single
model ordinal ELM presented in [73] (ELMOP).

The threshold models considered are the following: 1)
The POM [82], with the logit link function (the most pop-
ular one). 2) A neural network approach based on the
POM (NNPOM), similar to the one proposed by Math-
ieson [18]. The cross entropy function is optimised by the
iRProp+ algorithm [129]. Threshold constraints are satis-
fied by substituting the set of parameters {b1, b2, . . . , bQ}
by {α1, α1 + α2

2, . . . , α1 + α2
2 + . . . + α2

Q}, which allows
unconstrained optimisation of {α1, . . . , αQ}. 3) Ordinal
support vector formulations of Chu and Keerthi [29],
including both explicitly and implicitly constrained alter-
natives (SVOREX and SVORIM). We have also included
a linear version of the SVORIM method (considering the
linear kernel instead of the Gaussian one) to check how
the kernel trick affects the final performance (SVORLin).
4) KDLOR algorithm presented in [31]. 5) The GPOR
method [30] including automatic relevance determina-
tion, as proposed by the authors. 6) The reduction from
ordinal regression to binary SVM classifiers was also
considered (REDSVM). The configuration used was the
identity coding matrix, the absolute cost matrix and the
standard binary soft-margin SVM, as proposed in [41]. 7)
Finally, the ORBoost method with all margins [107] (OR-
BALL). As proposed by the authors, the total number of
ensemble members is set to T = 2000, and normalised
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sigmoid functions are used as the base classifier, where
the smoothness parameter is γ = 4 [107].

4.1.3 Performance evaluation and model selection
Different measures can be considered for evaluating
ordinal regression models [119], [130], [131]. However,
the most common ones are the Mean Zero-one Error
(MZE) and the Mean Absolute Error (MAE). MZE is
the error rate of the classifier:

MZE =
1

N

N∑
i=1

Jy∗i 6= yiK = 1−Acc,

where yi is the true label, y∗i is the predicted label and
Acc is the accuracy of classifier. MZE values range from
0 to 1. It is related to global performance, but without
considering the order. The MAE is the average deviation
in absolute value of the predicted rank (O(y∗i )) from the
true one (O(yi)) [131]:

MAE =
1

N

N∑
i=1

|O(yi)−O(y∗i )|.

MAE values range from 0 to Q−1 (maximum deviation
in number of categories). In this way, MZE considers a
zero-one loss for misclassification, while MAE uses an
absolute cost. We consider these costs for evaluating the
datasets because they are most common (for example,
see [29]–[31], just to cite some of them).

Multiple random splits of the datasets were consid-
ered. For discretised regression datasets, 20 random
splits were done and the number of training and test
patterns were those suggested in [30]. For real ordinal
regression problems, 30 random stratified splits with
75% and 25% of the patterns in the training and test
sets were considered, respectively (as suggested in [132]).
All the partitions were the same for all the methods,
and one model was trained and evaluated for each split.
Then, MZE or MAE values were obtained, and the
computational times were also gathered.

All SVM classifiers or regressors were run using
the implementations available in the libsvm library
(version 3.0) [127]. The mnrfit function of Matlab
was used for training the POM model. The authors
of GPOR, SVOREX, SVORIM, RED-SVM and ORBoost
provide publicly available software implementations of
their methods3. All the experiments were run using a
common Matlab framework, with an Intel(R) Xeon(R)
CPU E5405 at 2.00GHz with 8GB of RAM. This frame-
work is available, together with all the datasets and
partitions, the individual results and the detailed results
of the statistical tests, on the website associated with this
paper4.

3. GPOR (http://www.gatsby.ucl.ac.uk/∼chuwei/
ordinalregression.html), SVOREX and SVORIM (http://www.
gatsby.ucl.ac.uk/∼chuwei/svor.htm), ORBoost (http://www.
work.caltech.edu/∼htlin/program/orensemble/) and RED-SVM
(http://home.caltech.edu/∼htlin/program/libsvm/)

4. http://www.uco.es/grupos/ayrna/orreview

It is very important to consider a proper model selec-
tion process to assure a fair comparison. In this sense, all
model hyperparameters were selected by using a nested
five fold cross-validation over the training set. Once the
lowest cross-validation error alternative was obtained,
it was applied to the complete training set and test
results were extracted. The criteria for selecting the best
configuration were both MAE and MZE performances,
depending on the measure we were interested in. The
parameter configurations explored are now specified.
The Gaussian kernel function was considered for all
the kernel methods (SVC1V1, SVC1VA, SVR, CSSVC,
SVMOP, SVOREX, SVORIM, REDSVM and KDLOR).
The following values were considered for the width of
the kernel, σ ∈ {10−3, 10−2, . . . , 103}. The cost parameter
C of all SVM methods (including SVORLin) was selected
within the values C ∈ {10−3, 10−2, . . . , 103} and for
the KDLOR within the values C ∈ {10−1, 100, 101},
since, in this case, this parameter presents a different
interpretation and, therefore, there is no need to use
a larger spectrum of values. An additional parameter
u was also needed by KDLOR, which is intended to
avoid singularities in the covariance matrices. The values
considered were u ∈ {10−6, 10−5, . . . , 10−2}. The range
of ε for ε-SVR was ε ∈ {100, 101, . . . , 103}. For the neural
network algorithms (NNOP and NNPOM), the number
of hidden neurons, H , was selected by considering the
following values, H ∈ {5, 10, 20, 30, 40}. The sigmoidal
activation function was considered for hidden neurons.
For the iRProp+ algorithm, the number of iterations,
iter, was also decided by cross-validation, by consider-
ing the values iter ∈ {50, 100, 150, . . . , 500}. The other
parameters of iRProp+ were set as in [129]. For ELMOP,
higher numbers of hidden neurons are considered, H ∈
{5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, given that it relies
on sufficiently informative random projections [72]. With
regards to the GPOR algorithm, the hyperparameters
are determined by part of the optimisation process. The
ORBoost process did not need any hyperparameter.

Each pair of algorithms is compared by means of the
Wilcoxon test [133]. A level of significance of α = 0.1
was considered, and the corresponding correction for
the number of comparisons was also included. As 16
algorithms are compared, the total number of compar-
isons for each dataset is 120, so the corrected level of
significance was α∗ = 0.1/120 = 0.00083.

4.2 Discretised regression datasets

Tables 6 and 7 show the results obtained for all al-
gorithms throughout the discretised regression datasets
(when considering Q = 5 and Q = 10 bins), and also
the ordinal regression ones (analysed in the following
subsection). The results include the average and the
standard deviation of MZE and MAE, respectively.
Additionally, an analysis of the ranking of each method
for each dataset was done, where this ranking is 1 for the
best method and 16 for the worst one. Then, the average

http://www.gatsby.ucl.ac.uk/~chuwei/ordinalregression.html
http://www.gatsby.ucl.ac.uk/~chuwei/ordinalregression.html
http://www.gatsby.ucl.ac.uk/~chuwei/svor.htm
http://www.gatsby.ucl.ac.uk/~chuwei/svor.htm
http://www.work.caltech.edu/~htlin/program/orensemble/
http://www.work.caltech.edu/~htlin/program/orensemble/
http://home.caltech.edu/~htlin/program/libsvm/
http://www.uco.es/grupos/ayrna/orreview
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TABLE 6
Test MZE results for each dataset and method, including the average over all the splits and the standard deviation.

Discretised regression datasets (MeanSD)
Datasets SCV1V1 SVC1VA SVR CSSVC SVMOP NNOP ELMOP POM NNPOM SVOREX SVORIM SVORLin KDLOR GPOR REDSVM ORBALL

P5 .546.091 .542.075 .492.090 .533.063 .521.083 .646.109 .652.088 .485.118 .646.085 .508.095 .498.092 .485.099 .512.081 .515.096 .506.080 .562.067
M5 .428.060 .452.061 .431.056 .458.059 .414.063 .400.066 .402.074 .394.065 .431.073 .432.058 .416.067 .403.061 .425.064 .403.054 .400.064 .389.069

H5 .353.034 .374.027 .351.031 .372.025 .351.030 .358.026 .361.027 .355.018 .386.027 .329.022 .325.027 .350.019 .362.027 .310.029 .324.029 .328.025
S5 .107.013 .112.017 .120.016 .107.016 .116.020 .122.018 .112.014 .370.016 .119.015 .113.014 .113.014 .368.017 .113.013 .109.015 .111.018 .101.014

A5 .512.010 .527.008 .530.007 .524.009 .507.010 .520.009 .521.007 .539.005 .518.009 .512.006 .524.008 .541.005 .546.009 .509.007 .524.008 .529.008
B5 .453.064 .539.044 .357.056 .546.032 .431.035 .705.071 .545.046 .271.024 .765.023 .273.025 .276.029 .275.021 .315.048 .267.017 .283.038 .329.028

BB5 .709.021 .690.020 .664.020 .684.016 .693.019 .780.014 .735.026 .639.026 .786.013 .652.024 .646.024 .642.023 .657.024 .585.029 .644.024 .673.018
C5 .421.016 .470.017 .424.035 .463.020 .413.018 .426.017 .461.030 .381.014 .453.036 .390.028 .397.031 .386.012 .429.027 .377.014 .397.038 .458.026

CC5 .380.032 .425.023 .375.018 .421.021 .370.024 .406.017 .457.046 .342.019 .415.021 .343.016 .338.014 .337.016 .387.028 .325.017 .341.019 .434.031
CH5 .519.021 .542.022 .527.020 .546.023 .516.023 .520.016 .547.019 .492.010 .527.032 .496.011 .499.011 .502.017 .510.017 .497.017 .494.016 .515.012
CE5 .564.018 .576.016 .587.015 .587.021 .567.017 .587.023 .595.019 .558.010 .596.023 .555.013 .556.012 .567.016 .568.018 .535.009 .559.013 .592.016

CEE5 .564.016 .585.017 .573.016 .585.018 .560.020 .600.016 .599.016 .584.017 .634.020 .553.018 .555.016 .585.020 .552.016 .539.009 .553.013 .583.011
RD5 8.5000 12.1667 9.6667 12.0000 7.8333 11.6250 12.4167 5.7500 13.3750 5.3750 5.2917 6.8333 9.0833 2.6667 4.5000 8.9167
P10 .775.069 .758.064 .769.091 .758.063 .763.079 .802.075 .794.081 .719.076 .850.073 .783.076 .735.095 .708.078 .756.086 .779.087 .717.102 .760.091
M10 .597.055 .641.062 .634.065 .634.047 .643.047 .621.058 .610.054 .642.059 .653.054 .624.062 .629.054 .648.061 .651.065 .642.056 .618.051 .606.055
H10 .597.025 .636.028 .590.035 .623.019 .589.031 .584.033 .599.029 .592.032 .606.033 .574.033 .557.029 .602.026 .599.038 .542.026 .548.032 .551.029
S10 .206.022 .218.019 .231.019 .215.020 .212.021 .249.033 .238.018 .561.019 .257.025 .235.023 .234.021 .589.022 .230.019 .249.019 .230.021 .232.025
A10 .713.008 .733.012 .739.005 .725.008 .718.008 .725.010 .731.008 .743.005 .719.008 .709.008 .733.008 .748.007 .744.009 .708.005 .728.010 .732.007
B10 .755.033 .766.020 .588.052 .763.020 .704.047 .851.044 .754.044 .472.019 .881.013 .506.020 .494.021 .483.023 .524.047 .485.016 .487.022 .560.023

BB10 .858.010 .860.011 .825.024 .848.009 .861.015 .895.006 .869.014 .805.014 .894.006 .814.017 .811.018 .804.017 .816.019 .777.014 .815.017 .831.012
C10 .643.016 .677.019 .634.032 .677.016 .631.016 .634.011 .672.024 .580.014 .657.035 .598.027 .607.024 .589.017 .644.028 .588.017 .601.027 .654.015

CC10 .603.013 .647.020 .585.032 .651.027 .591.019 .605.021 .645.024 .534.012 .628.021 .549.030 .546.021 .536.017 .611.034 .527.013 .548.020 .642.024
CH10 .732.019 .744.016 .725.013 .744.013 .733.022 .723.015 .746.017 .704.011 .719.022 .702.012 .707.015 .710.012 .717.018 .696.014 .706.018 .713.011
CE10 .770.012 .780.015 .770.009 .779.011 .768.019 .778.013 .778.012 .753.012 .786.014 .755.014 .756.014 .763.016 .776.014 .736.007 .758.018 .778.010

CEE10 .778.022 .782.014 .767.014 .782.013 .771.013 .785.009 .788.009 .780.008 .813.012 .758.009 .759.012 .780.009 .761.015 .749.010 .762.018 .774.007
RD10 8.0833 12.2500 8.6667 11.3333 8.3333 10.7500 12.0833 6.1667 13.5000 5.3333 5.5000 7.7500 9.2500 4.0833 4.5833 8.3333
RD 8.2917 12.2083 9.1667 11.6667 8.0833 11.1875 12.2500 5.9583 13.4375 5.3542 5.3958 7.2917 9.1667 3.3750 4.5417 8.6250

Ordinal regression datasets (MeanSD)
Datasets SCV1V1 SVC1VA SVR CSSVC SVMOP NNOP ELMOP POM NNPOM SVOREX SVORIM SVORLin KDLOR GPOR REDSVM ORBALL

CL .278.126 .278.110 .317.080 .261.136 .367.102 .283.125 .422.218 .383.170 .356.143 .356.129 .383.117 .361.099 .339.155 .394.093 .372.121 .356.129
PA .307.119 .330.107 .337.129 .322.114 .319.091 .237.116 .400.184 .504.154 .344.178 .348.119 .344.122 .344.122 .326.116 .478.178 .326.116 .300.121
SS .359.095 .403.145 .387.113 .395.134 .403.094 .395.116 .444.162 .618.152 .500.131 .374.127 .372.129 .372.133 .392.125 .549.100 .379.132 .364.124
SU .221.121 .279.158 .244.103 .269.156 .267.116 .295.113 .387.129 .651.142 .390.143 .264.114 .269.114 .315.113 .264.108 .356.162 .269.119 .297.098
TA .439.059 .448.065 .396.073 .428.072 .456.057 .415.060 .436.079 .496.077 .453.090 .411.069 .401.072 .460.072 .433.055 .672.041 .399.068 .403.057
NT .035.027 .041.029 .044.024 .038.025 .041.027 .035.022 .057.024 .028.022 .033.025 .034.023 .034.023 .031.024 .026.020 .034.024 .032.023 .042.029
BS .028.015 .033.012 .165.027 .031.013 .034.014 .039.013 .087.023 .094.019 .062.048 .002.006 .002.006 .094.019 .160.031 .034.012 .001.004 .032.016
SW .422.034 .437.035 .435.030 .429.032 .424.035 .423.035 .426.025 .432.030 .456.032 .432.030 .431.027 .431.030 .514.028 .422.031 .429.027 .439.032
CA .006.005 .014.006 .027.006 .014.006 .003.004 .026.013 .159.015 .843.306 .106.022 .012.006 .012.005 .077.010 .047.010 .037.009 .012.004 .012.006
BO .429.042 .431.060 .458.072 .433.060 .447.098 .533.093 .567.135 .656.161 .618.143 .453.062 .451.074 .433.085 .473.093 .422.032 .436.055 .458.091
TO .050.026 .055.028 .068.037 .054.028 .072.028 .062.031 .071.029 .711.026 .062.032 .020.014 .020.014 .730.016 .107.032 .046.022 .023.012 .052.025
EU .360.029 .445.026 .361.027 .435.026 .350.026 .423.036 .428.029 .851.016 .462.042 .364.027 .361.033 .357.023 .372.028 .314.034 .362.035 .380.029
LE .368.025 .372.020 .375.025 .367.019 .367.025 .375.026 .367.022 .377.028 .382.024 .375.022 .380.018 .384.028 .458.031 .388.030 .373.024 .391.029
AU .246.058 .260.058 .321.067 .265.061 .258.042 .389.060 .381.061 .533.194 .550.077 .316.055 .323.069 .408.068 .301.067 .389.073 .317.070 .294.055
WI .352.023 .361.024 .372.019 .362.023 .358.020 .402.018 .397.016 .403.015 .401.022 .373.019 .373.020 .407.015 .350.019 .394.015 .373.020 .334.021

ES .307.037 .328.027 .296.034 .320.026 .289.032 .308.039 .302.039 .295.034 .341.129 .290.026 .284.032 .293.033 .355.034 .287.031 .287.030 .323.022
ER .736.025 .825.026 .750.023 .801.029 .745.023 .708.017 .746.019 .744.021 .727.028 .714.026 .751.021 .750.023 .805.031 .712.027 .751.019 .760.021
ROR 4.0000 8.8824 8.5588 7.1471 6.4706 8.3529 11.4706 12.9118 12.1765 6.6176 7.0588 9.9706 9.7647 8.7059 5.8824 8.0294

The best result for each dataset is in bold face and the second one in italics

values of these rankings were obtained for discretised
regression problems of 5 classes (RD5), of 10 classes
(RD10), for all discretised regression problems (RD) and
for real ordinal regression ones (ROR), as a reference of
the general performance. For all methods including a
model selection process, Table 6 shows the results when
using MZE as the selection criterion, while the results
in Table 7 are obtained using MAE for this selection. In
addition, the average rankings of the total computational
time (the sum of cross-validation, training and test times)
are presented in Table 8. For all these Tables, the best
method for each dataset (or set of datasets) is highlighted
in bold face and the second one in italics.

As previously stated, the Wilcoxon test was applied
to check the existence of significant differences. Using
this test, each pair of methods was compared for each
dataset and the total number of statistically significant
wins or losses was recorded, together with the number of

draws (or absence of statistically significant differences).
These results are included in Table 9 for the discretised
regression datasets (Q = 5 and Q = 10). The number
of wins (w), draws (d) and losses (l) for 15 × 24 = 360
comparisons are included (24 datasets and 15 methods to
compare each method against). The methods are ordered
by the number of statistically significant wins.

By analysing Tables 6, 7, 8, and specially Table 9,
the best performing ordinal regression methods from
the different families in the taxonomy can be obtained.
From the naı̈ve approaches, SVC1V1 obtains better ac-
curacy or MZE while SVR is better on MAE. However,
both improved performances imply worse results for
MAE and MZE, respectively. The computational time
of SVR is higher, given that an additional parameter has
to be cross-validated. In general, SVC1VA and CSSVC
show worse MAE and MZE than SVC1V1. When
considering ordinal binary decompositions, SVMOP is
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TABLE 7
Test MAE results for each dataset and method, including the average over all the splits and the standard deviation.

Discretised regression datasets (MeanSD)
Datasets SCV1V1 SVC1VA SVR CSSVC SVMOP NNOP ELMOP POM NNPOM SVOREX SVORIM SVORLin KDLOR GPOR REDSVM ORBALL

P5 0.790.13 0.750.18 0.660.14 0.740.15 0.690.16 0.910.21 1.120.26 0.700.20 0.960.21 0.660.12 0.630.11 0.640.14 0.670.19 0.650.13 0.640.14 0.730.10
M5 0.470.08 0.550.08 0.480.09 0.550.10 0.460.08 0.460.07 0.450.09 0.430.08 0.490.07 0.470.07 0.440.10 0.430.07 0.490.10 0.440.07 0.460.09 0.410.08

H5 0.410.05 0.440.04 0.380.04 0.440.04 0.400.04 0.410.03 0.420.04 0.400.02 0.450.05 0.360.03 0.360.03 0.400.02 0.390.05 0.340.04 0.360.03 0.360.03
S5 0.110.01 0.110.01 0.120.02 0.110.02 0.110.02 0.130.02 0.110.01 0.390.02 0.120.02 0.110.01 0.110.02 0.390.02 0.110.01 0.110.01 0.110.02 0.100.01

A5 0.710.02 0.790.02 0.660.01 0.780.02 0.670.01 0.660.01 0.670.01 0.690.01 0.700.01 0.660.01 0.650.01 0.690.01 0.760.02 0.680.01 0.650.01 0.670.01
B5 0.500.08 0.670.09 0.360.05 0.670.07 0.470.04 1.130.19 0.690.10 0.280.03 1.320.19 0.280.03 0.280.03 0.280.03 0.330.06 0.270.02 0.280.03 0.340.03

BB5 1.180.07 1.180.05 0.940.08 1.190.07 1.090.07 1.400.06 1.300.15 0.980.09 1.470.09 0.940.08 0.920.07 0.930.07 0.950.08 0.830.08 0.930.07 0.890.05
C5 0.510.03 0.590.05 0.490.03 0.570.04 0.500.03 0.500.03 0.550.04 0.430.02 0.560.06 0.450.05 0.450.04 0.440.01 0.520.06 0.430.02 0.440.04 0.520.04

CC5 0.430.05 0.500.03 0.400.02 0.500.03 0.420.04 0.490.20 0.530.06 0.380.03 0.480.03 0.370.02 0.370.01 0.370.02 0.440.04 0.350.02 0.370.02 0.480.05
CH5 0.660.04 0.750.04 0.630.03 0.750.04 0.640.03 0.650.03 0.700.03 0.590.01 0.670.05 0.600.02 0.600.02 0.600.02 0.650.04 0.620.03 0.590.02 0.640.02
CE5 0.790.03 0.860.04 0.760.03 0.870.05 0.770.03 0.810.03 0.800.03 0.730.02 0.870.05 0.740.03 0.730.02 0.730.02 0.790.04 0.740.02 0.730.02 0.790.03

CEE5 0.810.03 0.880.08 0.740.02 0.860.04 0.790.04 0.870.04 0.830.03 0.780.03 0.930.04 0.740.03 0.720.03 0.780.03 0.740.03 0.740.02 0.720.03 0.730.01
RD5 10.7500 13.9167 7.3333 12.9167 8.7500 11.8333 12.2500 6.7500 14.3333 5.6667 3.2500 5.8333 8.9167 3.5833 3.5000 6.4167
P10 1.880.40 1.880.35 1.430.22 1.820.43 1.460.30 1.770.37 2.080.53 1.540.29 2.200.80 1.440.23 1.390.19 1.470.24 1.430.26 1.550.24 1.320.19 1.530.22
M10 1.050.14 1.140.15 1.030.15 1.110.16 0.990.09 0.940.16 0.920.12 0.920.11 1.120.15 0.960.12 0.920.13 0.910.11 1.090.20 0.970.11 0.920.11 0.910.12
H10 0.890.08 1.070.09 0.800.06 1.030.09 0.880.06 0.870.07 0.900.06 0.880.05 0.950.11 0.780.06 0.770.06 0.890.05 0.840.06 0.760.05 0.760.07 0.760.06
S10 0.220.02 0.220.02 0.240.02 0.230.02 0.220.02 0.270.04 0.250.02 0.820.03 0.270.03 0.230.02 0.240.02 0.800.04 0.240.02 0.250.02 0.230.02 0.240.02
A10 1.560.03 1.730.06 1.380.02 1.740.03 1.430.03 1.380.02 1.390.02 1.450.01 1.490.02 1.470.02 1.360.02 1.440.02 1.640.04 1.490.02 1.360.02 1.400.02
B10 1.470.28 1.620.09 0.720.11 1.640.16 0.980.06 2.240.58 1.460.29 0.540.03 2.870.43 0.590.05 0.570.03 0.560.03 0.630.10 0.570.03 0.560.05 0.670.04

BB10 2.510.10 2.600.18 1.910.12 2.580.14 2.270.19 2.910.10 2.560.30 1.980.14 3.000.13 1.920.14 1.880.13 1.920.17 1.920.12 1.830.18 1.880.13 1.830.10

C10 1.150.06 1.300.11 0.990.05 1.280.13 1.060.05 1.060.06 1.180.06 0.870.03 1.160.10 0.930.05 0.900.03 0.880.03 1.080.10 0.920.04 0.900.04 1.040.06
CC10 0.940.05 1.140.06 0.830.05 1.120.07 0.890.05 0.920.05 1.040.10 0.750.04 1.050.12 0.790.06 0.760.05 0.750.03 0.970.10 0.740.03 0.760.03 0.960.09
CH10 1.460.06 1.670.08 1.270.04 1.630.07 1.370.06 1.340.06 1.430.05 1.230.04 1.400.11 1.310.05 1.250.04 1.240.04 1.410.10 1.300.06 1.250.04 1.310.03
CE10 1.770.09 1.910.12 1.550.04 1.920.17 1.640.06 1.720.07 1.650.06 1.540.06 1.860.11 1.650.07 1.510.04 1.530.06 1.750.12 1.610.06 1.500.05 1.640.07

CEE10 1.760.05 1.920.06 1.530.05 1.890.06 1.640.06 1.770.07 1.720.06 1.640.04 2.000.14 1.620.08 1.500.04 1.630.05 1.610.09 1.640.08 1.510.06 1.510.03
RD10 11.1667 14.0833 6.0833 13.5833 8.2500 10.3333 10.8333 6.2500 14.1667 6.9167 3.8333 5.7500 9.1667 6.4167 3.0833 6.0833
RD 10.9583 14.0000 6.7083 13.2500 8.5000 11.0833 11.5417 6.5000 14.2500 6.2917 3.5417 5.7917 9.0417 5.0000 3.2917 6.2500

Ordinal regression datasets (MeanSD)
Datasets SCV1V1 SVC1VA SVR CSSVC SVMOP NNOP ELMOP POM NNPOM SVOREX SVORIM SVORLin KDLOR GPOR REDSVM ORBALL

CL 0.520.22 0.460.19 0.380.15 0.460.23 0.500.18 0.460.25 0.520.28 0.530.25 0.480.23 0.480.13 0.520.17 0.460.16 0.520.22 0.510.17 0.460.16 0.420.18
PA 0.300.14 0.320.10 0.320.12 0.340.13 0.290.13 0.240.11 0.400.14 0.590.20 0.370.22 0.330.12 0.340.12 0.340.11 0.340.13 0.490.19 0.330.11 0.300.12
SS 0.380.14 0.460.16 0.370.12 0.430.15 0.410.12 0.420.13 0.480.18 0.810.25 0.540.16 0.370.15 0.380.13 0.380.14 0.370.15 0.630.15 0.350.15 0.360.12
SU 0.220.13 0.280.18 0.270.10 0.280.17 0.270.12 0.280.10 0.420.14 0.830.23 0.420.14 0.260.12 0.270.11 0.320.11 0.250.13 0.360.16 0.260.12 0.310.11
TA 0.540.10 0.500.09 0.480.07 0.520.11 0.500.08 0.540.11 0.620.12 0.630.12 0.580.13 0.470.06 0.470.07 0.550.08 0.460.07 0.860.16 0.460.06 0.500.09
NT 0.040.03 0.040.02 0.050.03 0.040.02 0.040.03 0.040.02 0.050.02 0.030.02 0.030.03 0.030.02 0.030.02 0.030.02 0.020.02 0.030.02 0.030.02 0.040.03
BS 0.030.01 0.030.01 0.170.03 0.030.01 0.030.02 0.040.01 0.090.03 0.110.02 0.110.19 0.000.01 0.000.01 0.110.02 0.160.02 0.030.01 0.000.00 0.030.02
SW 0.440.04 0.480.04 0.450.03 0.480.04 0.450.04 0.450.04 0.450.03 0.450.03 0.480.04 0.450.03 0.450.03 0.450.03 0.580.03 0.440.03 0.450.03 0.460.04
CA 0.010.01 0.010.01 0.030.01 0.020.01 0.000.00 0.030.01 0.180.01 1.450.55 0.120.03 0.010.01 0.010.01 0.080.01 0.050.01 0.040.01 0.010.00 0.010.01
BO 0.640.10 0.600.10 0.590.10 0.570.11 0.590.12 0.670.16 0.650.17 0.950.32 0.800.21 0.620.09 0.610.09 0.600.10 0.630.08 0.620.06 0.610.08 0.530.11

TO 0.050.02 0.060.03 0.060.03 0.060.03 0.070.03 0.060.03 0.080.03 0.980.04 0.060.03 0.020.01 0.020.01 0.960.07 0.110.03 0.050.02 0.020.01 0.050.02
EU 0.410.04 0.510.04 0.400.03 0.510.04 0.400.03 0.480.04 0.530.05 1.940.25 0.570.08 0.400.04 0.390.03 0.380.03 0.400.03 0.330.04 0.400.04 0.410.04
LE 0.400.03 0.410.03 0.410.02 0.410.03 0.400.03 0.410.03 0.410.03 0.410.03 0.420.03 0.410.02 0.410.02 0.410.03 0.510.04 0.420.03 0.410.02 0.430.03
AU 0.360.10 0.390.10 0.390.08 0.390.10 0.370.08 0.500.09 0.540.09 0.950.69 0.850.15 0.420.09 0.390.08 0.470.09 0.390.08 0.590.13 0.400.09 0.350.08

WI 0.410.02 0.420.02 0.420.02 0.420.02 0.410.02 0.440.02 0.430.02 0.440.02 0.450.03 0.420.02 0.420.02 0.440.02 0.390.02 0.420.02 0.420.02 0.370.02

ES 0.320.04 0.350.04 0.310.04 0.340.03 0.300.04 0.320.04 0.320.03 0.310.04 0.460.63 0.300.04 0.300.03 0.310.03 0.370.04 0.300.03 0.310.04 0.340.03
ER 1.290.07 2.020.12 1.220.05 1.910.15 1.240.04 1.180.02 1.240.04 1.220.05 1.260.06 1.210.06 1.210.04 1.220.04 1.780.10 1.240.05 1.220.04 1.250.04
ROR 6.4412 9.2941 7.0588 8.6471 5.8824 8.4706 12.5000 12.5000 13.1765 5.4118 6.4706 9.2647 9.2941 9.6471 4.8235 7.1176

The best result for each dataset is in bold face and the second one in italics

the best performing one, improving MAE and MZE
with respect to NNOP and ELMOP methods. ELMOP is
slightly better than NNOP in MAE, but the opposite
happens when observing MZE. However, ELMOP is
clearly the fastest ordinal binary decomposition method.
From the threshold methods, it is clear that GPOR is
the best performing one in MZE, REDSVM obtains the
lowest MAE (although with higher computational cost),
and the POM is the fastest one, followed by SVOREX.
SVORLin obtains very good MAE results, close to that
of SVORIM. Although one could have expected a lower
computational time for SVORLin, the pressure of obtain-
ing a low error rate using a linear model when C = 1000
makes convergence very difficult.

4.3 Ordinal regression datasets
This section presents the study performed on the or-
dinal regression datasets. The objective is to analyse

how the methods perform in more realistic situations,
where the underlying variable is really unobservable
and traditional classification problems appear (e.g. class
imbalance). Tables 6, 7 and 8 show the complete set of
results obtained, and Table 10 includes the Wilcoxon
tests. Its format is similar to that in Table 9, but the
number of comparisons is now 15×17 = 255. In general,
similar conclusions can now be obtained, but there are
some differences. SVC1V1 performance regarding MZE
is now better, when compared to the rest of methods.
The problems associated with these datasets (mainly
uneven distribution ratios) are generally better solved
by using this kind of decomposition. With this kind of
datasets, ELMOP is worse than NNOP for MZE and
MAE, although its computational time is the lowest
in binary decompositions. The best option from binary
decompositions is SVMOP.When analysing threshold
methods, our experiments show that the performance of
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TABLE 8
Average ranking of the total computational time for each

method.

Average computational time
Method RD5 RD10 RD ROR

SCV1V1 8.0833 8.0833 8.0833 6.1765
SVC1VA 6.8333 6.8333 6.8333 7.7647

SVR 12.0833 11.7500 11.9167 11.8235
CSSVC 6.3333 6.1667 6.2500 8.1765

SVMOP 9.5000 10.0000 9.7500 9.5294
NNOP 14.8333 9.3333 12.0833 12.4118

ELMOP 2.8333 2.7500 2.7917 3.0588
POM 1.0000 1.2500 1.1250 1.7059

NNPOM 15.9167 15.9167 15.9167 15.3529
SVOREX 4.0000 4.5000 4.2500 6.6471
SVORIM 4.9167 6.7500 5.8333 6.7059
SVORLin 6.6667 9.0000 7.8333 5.6471

KDLOR 12.5000 12.9167 12.7083 11.1765
GPOR 13.9167 12.8333 13.3750 13.5882

REDSVM 8.0000 9.8333 8.9167 9.2353
ORBALL 8.5833 8.0833 8.3333 7.0000

The best result is in bold face and the second
one in italics

TABLE 9
Wilcoxon tests over discretised regression datasets

(Q = 5 and Q = 10).

MZE MAE Time
Method w d l Method w d l Method w d l
GPOR 211 145 4 REDSVM 198 161 1 POM 357 0 3

SVOREX 149 205 6 SVORIM 195 162 3 ELMOP 314 11 35
SVORIM 137 208 15 GPOR 169 164 27 SVOREX 265 19 76

REDSVM 135 213 12 SVORLin 159 137 64 SVORIM 218 38 104
POM 118 169 73 SVOREX 156 177 27 SVC1VA 180 75 105

SVORLin 100 185 75 POM 152 136 72 SVORLin 171 55 134
SVMOP 76 219 65 SVR 146 165 49 CSSVC 169 95 96
SCV1V1 66 219 75 ORBALL 130 165 65 SCV1V1 156 52 152
KDLOR 65 225 70 SVMOP 96 154 110 ORBALL 152 70 138

ORBALL 65 193 102 KDLOR 75 186 99 REDSVM 134 66 160
SVR 59 213 88 SCV1V1 55 145 160 SVMOP 116 77 167

NNOP 35 195 130 ELMOP 54 135 171 NNOP 93 2 265
CSSVC 32 192 136 NNOP 52 159 149 SVR 79 42 239

SVC1VA 24 201 135 CSSVC 19 110 231 KDLOR 63 54 243
ELMOP 23 176 161 SVC1VA 17 106 237 GPOR 44 76 240

NNPOM 20 172 168 NNPOM 16 120 224 NNPOM 2 2 356

Best method of each family in the taxonomy is highlighted in bold face

GPOR is much lower in both MZE and MAE. SVM
based threshold models are the best performing ones
for both measures, SVOREX achieving the best results
in MZE and very close to the best performing method,
REDSVM, in MAE. In this case, the gap of performance
between SVORIM and SVORLin is higher. Discarding
POM and ELMOP, the lowest computationally time is
associated to SVORLin. For ordinal regression datasets,
the results of ORBALL are better with respect to the rest
of methods than when consider the discretised datasets.
With respect to REDSVM, its computational cost is high
when compared to SVOR, ORBoost and SVC methods.

4.4 Discussion
Several ordinal regression methods (see Tables 9 and
10) can be emphasised according to their error (GPOR,
SVOREX, SVORIM, REDSVM and SVMOP) or their com-
putational time (POM, SVORLin or ELMOP). However,
there are many factors that can influence the choice of
the method, and all of them should be considered.

TABLE 10
Wilcoxon tests over ordinal regression datasets.

MZE MAE Time
Method w d l Method w d l Method w d l

SVOREX 86 159 10 REDSVM 88 160 7 POM 241 6 8
SVORIM 79 162 14 SVOREX 88 159 8 ELMOP 219 2 34

REDSVM 76 166 13 SVORIM 85 163 7 SVORLin 171 11 73
SCV1V1 75 170 10 ORBALL 74 145 36 SVOREX 154 10 91
SVMOP 74 166 15 SVMOP 68 176 11 SCV1V1 153 21 81
ORBALL 63 163 29 SCV1V1 64 169 22 SVORIM 153 11 91

GPOR 59 114 82 SVR 62 163 30 ORBALL 148 9 98
SVR 51 166 38 GPOR 55 126 74 SVC1VA 125 30 100

CSSVC 50 167 38 KDLOR 50 108 97 CSSVC 114 47 94
SVC1VA 47 164 44 NNOP 45 159 51 REDSVM 104 20 131

NNOP 43 160 52 CSSVC 42 162 51 SVMOP 97 17 141
KDLOR 39 120 96 SVC1VA 41 162 52 KDLOR 72 14 169

SVORLin 34 155 66 SVORLin 40 152 63 SVR 66 7 182
ELMOP 23 145 87 ELMOP 22 134 99 NNOP 57 9 189

NNPOM 22 131 102 POM 21 94 140 GPOR 34 28 193
POM 13 104 138 NNPOM 19 120 116 NNPOM 11 0 244

Best method of each family in the taxonomy is highlighted in bold face

First of all, POM is a linear model and, as such, it is
very fast to train (with no associated hyperparameters),
but its performance is significantly low (except for MZE
in discretised regression datasets). This fact is important,
given that, excluding the machine learning area, the
POM and its variants are the most widely used ordinal
regression methods [25], [81], [84], [88].

When dealing with large datasets, we conclude that
POM is a good option, given the low computational cost
needed. The results achieved for MZE and MAE are
worse than those of other alternatives, but they are good
enough when computational time is a priority. SVORLin
can also be a good option, although a narrower range
of cross-validation for C should be selected. Neural
networks (NNPOM and NNOP) are generally beaten
by their SVM counterparts, both in MZE and MAE.
Moreover, the training time for these methods and GPOR
is generally the highest.

Our study shows that the naı̈ve approaches can obtain
competitive performance and be difficult to beat for
some datasets. SVC1V1 achieves very good MZE re-
sults for real ordinal regression datasets. However, SVM
threshold models improves MAE and MZE results,
as well as being simpler models. Indeed, all threshold
models allow the visualisation of predicted projections
together with the thresholds. This can be used for
various purposes, from ranking patterns to trying to
discover uncertain predictions (projections very close to
class thresholds). This kind of analysis is generally more
difficult with nominal models, such as SVC1V1. In gen-
eral, the SVC1VA alternative has been shown to achieve
worse results than SVC1V1 for the three measures evalu-
ated (as previously shown in other studies [59]). CSSVC
results are a bit better than those of SVC1VA, but still
far from SVC1V1.

Binary decomposition approaches are shown to be
good alternatives, especially SVMOP. However, as dis-
cussed in Subsection 3.2, their theoretical analysis is
more difficult, and it is necessary to decide how to



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 17

combine different binary predictions.
Of all the threshold models analysed, SVOREX and

SVORIM are the best. The computational time required
by SVOREX is slightly lower, and it always achieves
better results than SVORIM, except for MAE in dis-
cretised regression datasets. ORBALL shows a worse
performance than SVOR methods. REDSVM is very
competitive, but with a higher computational cost.

When comparing discretised regression datasets and
real ordinal regression ones, some performance differ-
ences can be highlighted. For example, GPOR perfor-
mance is seriously affected when dealing with real ordi-
nal classification datasets. In general, SVM and ORBALL
methods are more robust in the derived problems that
can appear with these datasets. This is an important
point, because many of the ordinal regression works in
the literature make use of discretised regression sets,
hiding some possible difficulties of the methods when
dealing with problems such as imbalanced distributions.

When real ordinal regression datasets are considered,
POM and GPOR performances decrease (both in MZE
and MAE) drastically. Both models have one feature in
common. They assume that their perturbation terms fol-
low certain distribution functions. These distributional
assumptions perform correctly in discretised regression
datasets, but not for real ordinal regression datasets.

5 CONCLUSIONS

This paper offers an exhaustive survey of the ordinal
regression methods proposed in the literature. The prob-
lem setting has been clearly established and differenti-
ated from other ranking topics. After this, a taxonomy
of ordinal regression methods is proposed, dividing
them into three main groups: naı̈ve approaches, binary
decompositions and threshold models. Furthermore, the
most important methods of each family (a total of 16
methods) are empirically evaluated in two kinds of
datasets, 24 discretised regression datasets and 17 real
ordinal regression ones.

The taxonomy proposed can help the researcher or
the practitioner choose the best method for a concrete
problem, considering also the empirical results herein
provided. It can also assist researchers in developing
and proposing new methods, providing a way to classify
them and to select the most similar ones. The results
presented in this paper confirm that there is no single
method which performs the best in all possible datasets
and problem requirements. However, these results can
be used to discard some of the methods, especially those
clearly presenting worse performance or too high com-
putational time. We would like to stress certain methods:
1) SVC1V1 as representative of the naı̈ve approaches,
achieving an especially good MZE because of the re-
cursive partitioning of all pairs of classes; 2) SVMOP
achieves the best results from ordinal binary decompo-
sition methods; 3) ELMOP or POM are a good option if
the computational cost is a priority; and 4) SVOREX and

SVORIM can be considered the best threshold models,
showing competitive accuracy, MAE and time values.
Finally, there is a website (http://www.uco.es/grupos/
ayrna/orreview) collecting the implementations of the
methods in this survey, the detailed results, the datasets
and the corresponding statistical analysis.
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the University of Córdoba, Spain, in 2008, the
M.Sc. degree in artificial intelligence from the
University of Málaga, Spain, in 2009 and the
Ph.D. degree in computer science and artifi-
cial intelligence from the University of Málaga,
in 2011. He is currently a Research Fellow in
computational management with the European
Space Agency, Noordwijk, The Netherlands. His

current research interests include neural networks, ordinal regression,
imbalanced classification and hybrid algorithms.

César Hervás-Martı́nez was born in Cuenca,
Spain. He received the B.S. degree in Statistics
and Operations Research from the “Universidad
Complutense”, Madrid, Spain, in 1978, and the
Ph.D. degree in Mathematics from the University
of Seville, Spain, in 1986. He is currently a Pro-
fessor of Computer Science and Artificial Intelli-
gence in the Department of Computer Science
and Numerical Analysis, University of Córdoba,
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