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Abstract 

Recent developments in the field of intelligent manufacturing have led to increased levels of automation and robotic operators 
becoming commonplace within manufacturing processes. However, the human component of such systems remains prevalent, 
resulting in significant disturbance and uncertainty. Consequently, semi-automated processes are difficult to optimise.  
This paper studies the relationships between robotic and human operators to develop the understanding of how the human 
influence affects these production processes, and proposes a framework to integrate and implement knowledge of such factors, 
with the aim of improving Human-Machine-Interaction, facilitating bi-directional collaboration, and increasing productivity and 
quality, supported by an example case-study. 
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1. Introduction 

For several decades, the prevalence of automation has 
increased exponentially, to the extent that autonomous systems 
are ubiquitous [1], and automation has become an international 
talking point, that transcends the scientific community. This 
popularity is the result of multiple factors. Economically, 
manufacturing accounts for 25% of the German GDP, and 
represents a considerable portion of the GDP of several other 
European Countries [2]; the need to retain this industry has led 
to continued investments in automation to increase productivity 
and remain competitive. From a social perspective, many of 
these European Manufacturers are also facing a decreasing 
workforce due to an ageing population. 

Furthermore, the increased capability of automated systems 
has increased rates of adoption, as the related and dependent 
fields have grown and enjoyed their own successes and 
developments. The fields of computer science and AI, Control 
Systems, Machine Vision, and Robotics, to name a few, have 

all been subject to intense focus and investment, accelerated in 
part by the founding of international initiatives, including 
Industry 4.0 [3]. It is, however, the exponential increase in data 
generation, collection, and processing [4], which has 
undoubtedly facilitated this current paradigm shift, and new 
tools, methodologies and techniques continue to emerge 
present a number of opportunities to further improve 
manufacturing processes. 

This continued investment in automation has resulted in an 
interesting period of transition, whereby the presence of 
automated cells and processes within the manufacturing sector 
are far from uncommon, but in which the human element of 
such processes remains dominant. As a consequence, an 
environment exists, wherein the practices of automation and 
traditional manufacturing are employed within the same 
spaces, processes, and products; and human operators 
frequently collaborate with robotic counterparts within singular 
product processes. The resultant disparity in capability between 
robotic operators and their human counterparts is a source of 
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uncertainty and instability, which leads to less than optimal 
performance. Employing concepts of Intelligent 
Manufacturing to facilitate these working relationships, can 
seek to alleviate the effects of this uncertainty, by enabling 
adaptable behavior, improving Human-Machine-Interaction in 
such instances.  

2. Literature Review 

The current volume of literature in this area is extensive, and 
a large amount of work is being conducted on a global scale, to 
realize the benefits that the information age has to offer the 
manufacturing sector. Intelligent Manufacturing, as the field 
has come to be known, is dependent on a multitude of 
interconnected processes and systems, that exist within a wide 
range of technical disciplines. However, the unifying factor is 
the use of data and informatics, to enhance manufacturing 
processes [5]. The applications are varied, research focuses 
include: Novel automation control systems, with a focus on, 
decentralization, virtualization, reconfiguration, and 
adaptability [6-8]; the development and application of machine 
learning and artificial intelligences [9]; and virtual and 
augmented reality systems, which are being used to bridge gaps 
in geography, knowledge and skill level [10].  

Within Intelligent Manufacturing, the utilization of data and 
computational techniques to facilitate and enhance physical 
processes has resulted in the development of Cyber-Physical-
Systems(CPS); which combine digital processing and planning 
with physical manipulation. Such systems vary widely in 
design, but all focus on the utilization of collected data, to 
generate knowledge about the current process and surrounding 
environment. This knowledge can be used to influence machine 
behavior. CPS’s are typically defined by the degree to which 
they are able to leverage this knowledge to increase their 
capability. Simple implementations are able to respond 
appropriately to disturbances, and advanced systems able to 
achieve a level of cognitive autonomy capable of advanced 
planning, adaptation, and self-configuration [11, 12]. 
Knowledge generation and the use of knowledge to support 
decision making is typically provided within the CPS 
architecture, by machine learning elements. [13, 14]. Use of 
learning enables non-linear relationships to be modelled, and 
temporal trends uncovered more easily through the use of 
historical data. 

Collaboration presents several problems for conventional 
computer architectures which traditionally have centralized 
and hierarchal structures. As the system complexity grows, 
centralized processing inhibits the adaptability and autonomy 
of the system [18, 19]. Systems based on the principles of 
distributed control have been proposed to overcome this, as 
they enable complex problems such as task planning and 
optimization, to be divided into several small problems, 
distributed to a network of multiple intelligent agents. These 
agents require the capability to autonomously handle efficient 
and effective real-time communication and negotiation with 
other agents, which enables alignment of the behaviors of all 
constituent operators involved in the process to successfully 
complete the task [15-17].  

In such a way, the use of decentralized control facilitates 
collaborative behavior. It enables individual operators, to 
dynamically change their behavior autonomously, in response 
to external changes, in the behaviour of others and the 
environment [12, 20].  Providing the capacity for intelligent 
behaviour through agency necessitates the consideration of 
agent structure and multi-agent control, and how they can best 
be utilized to facilitate collaboration. To perform 
collaboratively, agents interact governed by their own 
individual goals, motivated by their individual beliefs; but also 
by collective goals; which must be achieved through 
cooperation with the other agents. [22]. 

Within a manufacturing system, intelligent agents may be 
software based, or, a combination of hardware and software 
forming a logical unit within the system, or holon, as defined 
by [21]. Each agent is autonomous, having its own sensory 
inputs, objectives, beliefs, knowledge, and skills, and 
awareness of distinct internal and external environments, 
which provides embodiment. The internal structure and 
behaviour of each agent can be expanded through internal 
intelligent functions, to provide different functionality, with 
respect to information received from the external environment.  

Embodiment refers to each agent being aware of only the 
information that it receives based on its own interactions, that 
is, different instances of agents with an identical structure, will 
act in different and respectively suitable ways based on their 
individual cumulative experiences [23]. Additionally, the 
structure of software-based agents closely resembles that of 
Object-Oriented programming languages, whereby individual 
agents may be represented by instances of an object, with 
internal structures and functions to facilitate their behaviour. 
Concepts of agency in manufacturing are not new, and detailed 
overview of the structure, capability, and application of 
Intelligent agents, can be found in [17, 24].  

The use of software to provide agency can be extended to 
provide the capacity for intelligent behaviour. The 
implementation of such behaviour and attempts to replicate 
ideas of cognition are referred to as Cognitive Architectures 
and provide an implementation for the management of 
information. Typically, cognitive architectures are structured 
around a central communication or cognitive control unit, 
which is responsible for managing the internal thought 
processes. This is enhanced by other extensible modules to 
facilitate necessary behaviors; such as Perception, Learning, 
Decision-Making, and Memory, as evidenced by existing 
examples: ACT [25], SOAR [26], and particularly, C4, 
originally developed for use in video games [27]. This modular 
structure mimics that of the human brain, and facilitates the 
integration of low-level perceptual and motor control systems 
(established standards and processes analogous to perception 
and motor control exist in the fields of data collection, and 
robotics respectively), with higher-level knowledge extraction 
and decision-making processes [28]. 

Extension of collaborative robotics and intelligent control to 
tasks involving human collaboration is well studied in terms of 
physical collaborative efforts. Handling tasks are improved 
through coordination of robotic and human operator motion. 
This can be used to increase human strength, enabling handling 
of large and unwieldy components [29], and facilitating safety 
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when sharing a common work area, through advanced collision 
detection. Methods of Direct-Teaching are also common, 
which combines the flexibility and configurability of humans 
with the strength, accuracy, and repeatability of their robotic 
counterparts. Applications enable autonomous replication of 
advanced manufacturing processes, such as composite layup, 
oversize component handling, and welding fabrication [30-33]. 

A much smaller volume of work has been conducted on 
more passive modes of collaboration, whereby knowledge of 
others, combined with context, may be used to inform behavior 
[34, 35]. As mentioned, the prevalence of human operators is a 
source of disturbance and prevents many of the traditional 
optimization techniques employed in automation from being 
effective. No two operators performing the same task will 
approach a robotic degree of repeatability in their performance. 
Humans are understood to rely on a finite reserve of cognitive 
resources, which in current models represent non-specific units 
used to complete cognitive tasks [36]; In addition, a number of 
factors are understood to affect the mechanisms by which these 
resources are consumed, contributing to changes in 
performance, notably: Fatigue [37-39]; Skill Level & 
Experience [40]; Stress Levels & Emotional State [41]; 
Environmental Conditions [42]; & Satiety [43]; are all found to 
have varying impact on task performance. Knowledge of these 
factors can be used to inform decision-making, and 
dynamically adjust behavior based on current and predicted 
performance, between multiple operators; and facilitates 
optimal control of the robotic elements of the system.  

3. A Framework for the Integration of Knowledge of 
Human-Factors 

The literature review highlights a number of areas within 
manufacturing which may present opportunities. Incorporating 
intelligence into manufacturing control systems can facilitate 
adaptable behavior in a complex and dynamic environment. 
Decentralizing manufacturing control systems, and providing 
individual robotic operators with their own agency and 
intelligence, can improve collaborative behavior; through 
appropriate response in action to observed variation and 
disturbance. 

One of the main gaps in the application of this to Human-
Machine Interaction is the consideration of human factors with 
respect to their influence on performance. This has been a focus 
of business planners and psychologists for many decades, 
however, limited work exists on integrating this knowledge 
into autonomous systems.  Providing this contextual 
knowledge of human factors can potentially be used to predict 
and adapt in response to changes and variation between Human 
Operators.   

Application of intelligence in this context requires the 
reconciliation of multiple domains. The following framework 
is proposed, to outline the necessary interactions and 
connectivity between different systems, to effectively collect, 
store, interpret, and act in an appropriate manner on data that 
can be extracted from a manufacturing process.  

Within a typical manufacturing control process, multiple 
elements can be identified. Typically, these elements can be 
divided into two areas, data collection, and Robotics. Existing 

control systems receive binary signals from sensors (data 
collection), which are passed to a PLC, which responds in a 
preprogrammed fashion(robotics). We propose the addition of 
an intermediary Cognitive Layer containing several modular 
elements, to implement additional data processing and 
analytical steps. This will provide the machine in the Human-
machine-interaction with agency, and enable intelligent 
response to changes in the perceived environment. These three 
layers can be reconciled into the illustrated framework shown 
in Figure.1, which illustrates the flow of information through 
the proposed system.   

The framework divides the control system of a robotic 
operator into three main layers, the first, concerned with data 
generation and collection, an intermediary Cognitive Layer, 
and a third layer that accounts for the elements of robotic 
control, connecting the virtual to the physical, through 
traditional robotics techniques.  

 
Data Collection: With intelligent systems, significant 
consideration must be given to the available data and its 
sources. The first layer of the framework encompasses data 
collection, which is a vast topic, with a large number of 
inherent problems. Within the scope of this framework, the 
specific method is not relevant, so long as the robotic operators’ 
data controller has the capacity to gather and transfer multiple 
data instances, and is compatible with the formats and 
interfaces demanded by the computational components. 

 The available data can be considered as being generated and 
collected from two main sources: Process data; The data 
elements directly related to the parameters of the process; and 
Environmental data; any supplementary data deemed relevant. 
Notable consideration must be given to capturing and 
appropriately recording the relevant Human Factors data at this 
stage, which may be included in either of the above categories. 

Almost all data collection systems will incorporate data 
storage. Reserves of historical data (which exists typically in a 
database format), must also be available to the data controller, 
and able to be passed through to the cognitive layer. The use of 
a corpus of historical data is necessary to enable the learning 
functionality. The vast majority of the capabilities of the 
previous three sections may be handled by existing data 
collection methods. 
 
Cognitive Layer: The intermediary cognitive layer is based 
on the modular structure seen in existing cognitive 
architectures. Each of the modules combines multiple 
functions and is responsible for a different area of cognition. 
The first of these modules, receives data from the data 
collector through an information retrieval or input 
mechanism, before additional functions perform the necessary 
preprocessing transformations for the data to be useful to the 
cognitive controller. This is analogous to Perception, whereby 
the observed data and the information it contains is affected 
by the beliefs and aims of the observer. These transformations 
may, for instance, take the form of establishing a cycle time, 
by looking at the separation of execution of two different 
sensor activations. Additional information not directly 
dependent on observations, such as knowledge of shift 
patterns etc. is included in the dataset here. 
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The decision-making module isolates the learning aspects of 
the cognitive layer. Isolation of the analytical cognitive 
processes more easily enables the integration with low-level 
control; the responsibility of the cognitive controller. The 
learning mechanism may be supported in decision making by 
additional knowledge, which is not directly observable by the 
agent. This may include additional contextual information, 
such as shift patterns or production targets. The Perception 
and Decision-Making modules are supported by an underlying 
Cognitive Controller, which manages the information flow 
through the cognitive layer. It manages requests for 
information and collates and exchanges the relevant data with 
the different modules to exhibit the necessary functionality, in 
addition to passing the relevant command instructions via an 
I/O controller to the robotic layer where they can be enacted. 
 
Robotics: The decision processed by the cognitive controller 
is passed through an I/O controller, to convert the information 
to the necessary format. It is then passed to the direct, Robotic 
Controller. Separating these steps provides a clear distinction 
between the digital and physical domains of the system, and 
isolates the elements of control planning, (one of the modular 
elements of cognition identified in existing cognitive 
architectures) which are necessary to effect the correct motion 
of the robotic operator. This reduces computational load and 
facilitates the division of cognition into higher-level reasoning, 
and preserves necessary elements of reactive action, that can 
still be enacted by sensors directly connected the robot 
controller (i.e. in the case of kill-switches and collision/fault-
detection). In many cases, these will be instructions sent to a 
Programmable Logic Controller (PLC) or another control 
system. By using established equipment from techniques from 
robotics and automation will facilitate implementation, and 
ensure legacy compatibility. 
The commands are then sent by the PLC to the motors and 
actuators to affect the relevant motion of the robot. This results 
in an action, which influences the system, which will affect the 
recorded environmental and process data, forming a feedback 
loop. 

The architecture proposed in this section demonstrates how an 
intermediary cognitive layer, can be integrated between the 
existing data acquisition and robotics elements of a 
manufacturing process, to provide intelligent, adaptive 
functionality, based on knowledge and real-time information of 
human factors. The presented case-study is intended to 
demonstrate the intended functionality of the framework and to 
assess the potential feasibility of inclusion of knowledge of 
human factors. The combined elements of the cognitive layer 
provide the necessary functionality to leverage this knowledge 
and improve production processes through adaptability. 

4. Case Study 

The following section of the paper seeks to apply the above 
framework to a generalized real-world scenario, to illustrate 
how the cognitive layer can be implemented into a production 
process. Simulation enables the testing of novel control 
systems, without the interference of real-world production. The 
case-study is based on a semi-automated production line, 
featuring human operators (HO) and robotic operators (RO), 
performing an assembly process in a sequential manner.  

The simulation model is designed to represent a simplified 
manufacturing process interaction with an upstream and 
downstream position, and a non-specific manufacturing 
operation defined only by its duration at each position. The two 
operators are separated by a conveyor that doubles as a buffer 
zone (Figure.2). Each Operator has an associated cycle time, 
which enables performance by different HO's to be compared. 

This simplified interaction is designed to assess the 
feasibility of our approach. This is a singular and dependent 
interaction, whereby the behavior of either individual can lead 

Figure.2. The model developed in AnyLogic, each cell contains a delay 
and data capture elements.   

Figure.1. The proposed framework illustrated in terms of information flow through the system. Divided into three functional layers. 
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to lagging or bottlenecking when unaddressed by the other, due 
to the relative difference in the two levels of performance.  

In such a scenario, intelligent behavior may be achieved by 
effecting changes in the behavior of the upstream RO, based 
on the performance of the HO working in the adjacent 
downstream position. By adjusting the RO's cycle time, a 
behavior can be effected in response to the actions of its 
partner, to counteract the lagging or bottlenecking that arises 
from disparity.  

In the proposed framework, the affected behaviour is 
determined by the decision-making module of the cognitive 
layer in response to the capture of data supplied via the 
perception module. The data instance is processed by the 
cognitive controller and passed to the decision-making module, 
where the proposed learning model produces an estimate for 
the HO performance, based on the observed state. This is a non-
trivial task, and the particular method will depend on the nature 
of the captured data. This information is passed back to the 
cognitive controller, where it is used to inform the instruction 
given to the Robotics layer to enact the relevant behavior; such 
as a change in the velocity of motion, to alter the cycle time of 
the RO to compensate as necessary.  

The process and environment data collected is sampled each 
time a product is completed by the HO, and contains the 
previous Cycle Time, and elapsed shift duration; in addition, to 
other necessary values. Using this dataset, models of HO 
performance with respect to these values can be developed by 
learning elements in the decision-making module, which can 
be used to predict the optimal RO performance targets, based 
on the current HO performance. These targets in this instance 
are the current productivity; the total number of products 
leaving the system, and time idle; where the buffer is full and 
the RO cannot continue until space becomes available.   

A model was developed for use with simulation software 
(AnyLogic), to represent and explore the interaction between 
and RO and HO, and investigate the impact of these factors. 
The modelled scenario consists of individual Cells, 
representative of each manufacturing station, the upstream cell 
having initially a fixed CT (CTR), based on real-world timings 
of 35 seconds. The second Cell in the process, representing the 
HO, has a nominal CT of 45s (CTH), which is normally 
distributed about the desired value, representative of variability 
in human performance between operations. The interstitial 
conveyor is modelled as a queue element, which contains a 
maximum of 10 products before becoming full, preventing any 
more products exiting the upstream cell. 

In the first instance, static RO behavior was considered. 
Three HO’s were defined, with varying CT’s, one faster than 
nominal (HO1 = 40s), one the same (HO2 = 45s), and one 
slower (HO3 = 50s), to represent variability amongst 
individuals. The impact of fatigue -both physical and cognitive- 
resulting from repetitive, precise action, was considered. This 
was incorporated by increasing the CTH, by 10% and 20% for 
HO2 and HO3 respectively; over the duration of the simulation. 
Each simulated shift represents 2 hours of real-world time. 
Figure.3a illustrates the RO productivity and time spent Idle for 
each of the three operators. 

The Figure illustrates the difference in productivity of the 
RO between operators, represented by the set of solid points. 

Which increases as expected with HO performance. The other 
set of crossed points illustrates the cumulative time spent idle 
by the RO. For all HO’s this value initially remains at zero, as 
the buffer between the two operators fills. Once this happens, 
the RO is forced to wait between operations, as there is 
nowhere for the current workpiece to go. The cumulative 
effects of small variations in performance can be seen in the 
diverging total idle time over the shift.   

The simulation was repeated to examine the impact of 
adaptable behavior. To simulate the predictive performance of 
the proposed decision-making module generating a value for 
the target RO cycle time, CTR is updated based on the CTH of 
the previous product, modified by a normally distributed error 
of ±10% to approximate errors in the learning model 
predictions. 

Adjustment of the RO behavior can be seen to minimize its 
overall idle time when used with the predicted HO values. 
However, the combined Cycle Time of each product is dictated 
by the downstream HO position, and as such, no benefits to 
productivity may be leveraged through alteration of RO 
behavior alone. Figure.4 shows that the conveyor is never filled 
during the shift, whilst some buffer is still required to account 
for variation and predictive errors, in the adaptable condition, 
bottlenecking can be reduced as at no point is the RO required 
to remain idle. 

5. Discussion & Conclusions 

The work presented in this paper proposes a framework 
which provides an implementation of intelligent behavior, 
within the context of a manufacturing process. Through the 
inclusion of a Cognitive Layer, factors influencing human 
behavior can potentially be accounted for, and the control 
instructions altered to provide adaptable behavior.  Through a 
case study, a generic, although not a representative application 
has been illustrated, which demonstrates how such a system 
may be implemented. Whilst the authors do concede that the 
current simulation model represents an ideally abstracted 

Figure.4. Screenshot from mid-simulation, the buffer element contains 
only 1 product, the free space resulting in no RO time spent idle. 

Figure.3. Effect of Variation and Fatigue in Human Operators on RO 
productivity and Idle Time over shift duration. 
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scenario, the work demonstrates that such behavior can 
beneficially impact production systems.  

The reconciliation of multiple domains leads to many 
inherited problems, and many of these will need to be 
overcome before the presented approach is a technically sound 
implementation. Comprehensive further work is planned to 
further understand how models of cognition and applications 
of intelligence, can be utilized, to facilitate the collaborative 
efforts between robotic operators and their human counterparts. 
This includes developing a functional model for the cognitive 
layer; including a greater investigation into data handling and 
processing; work on developing an effective and capable 
learning element, incorporating elements of memory, and the 
consideration of additional decision–making capabilities, such 
as task-scheduling. More study of the mechanisms of human 
collaboration will be conducted and concepts explored with the 
generation of real data, improving understanding of the 
interaction dynamics. Additionally, ongoing generation of data 
will enable consideration of the historical working relationship 
(Represented by the archived performance data), with multiple 
operators to be considered by the learning model. 
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