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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

A demand matching oriented Multi-Criteria Decision-Making method is presented to identify the best collection mode for used components. In 
this method, the damage condition and remaining service life are incorporated into the evaluation criteria of reuse mode, then a hybrid method 
(AHP-EW) integrating Analytic Hierarchy Process (AHP) and Entropy Weight (EW) is used to derive the criteria weights and the grey Multi-
Attributive Border Approximation Area Comparison (MABAC) is adopted to rank the collection modes. Finally, a sensitivity analysis is used 
to test the stability of the method and a demands-matching method is proposed to validate the feasibility of the optimal alternative. The method 
is validated using the collection of used pressurizers as case study. The results of which show the effectiveness of the proposed method. 
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1. Introduction 

Reverse logistics (RL) is regarded as a means to deal with 
the End-of-Life (EOL) products in an environmental and 
friendly manner [1] and has attracted an increasing amount of 
attentions [2]. In RL, used components are firstly collected 
from end-users and then undergo a series of EOL management 
operations, decisions were made in terms of collection options. 
Each of these options has different economic and 
environmental impacts. To make a sound decision, it is 
essential to develop a criteria index to make a comprehensive 
assessment of conditions of EOL products for decision making 
of the collection strategy.  

Many studies on the evaluation criteria of RL were 
conducted focusing on environmental, economic, and social 
aspects. The characteristics of the RL were analyzed and a 
nonlinear integer programming model was proposed to 
determine the locations based on total cost [3]. A multi-

echelon commodity facility location problem was tackled 
considering carbon emissions and procurement costs [4]. A 
fuzzy-set based multi-criteria decision-making model was 
proposed with criteria including cost, legislative factors, 
environment, and market [5]. The aforesaid literatures were 
focused on the environmental and economic criteria in 
decision-making for RL. Regrettably, studies that 
meaningfully considered the quality and risk are rare. The 
uncertain quality and the risk complicate the decision-making. 
There is a need to alleviate the uncertainties during the 
decision-making process. To this end, identifying the quality 
condition (e.g., remaining life and damage degree) and risk 
(e.g., demands and price) becomes a vital means to reduce the 
uncertainty in terms of quality and quantity [6, 7].  

In addition to the determination of the evaluation criteria 
for decision-making of RL, it is necessary to assess the 
weights derivation of the criteria and provide the ranking of 
the decision-making options. To this end, a Multi-Criteria 
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Decision-Making (MCDM) method could be employed. For 
instance, an ANP (Analytic Network Process) method was 
employed to quantify the stakeholders’ decision-making in a 
survey combining stakeholders’ behaviors [8]. The ANP 
method was employed to investigate the relative importance of 
RL service requirements and to select an appropriate Third-
Party Logistics provider [9]. 

 The aforesaid work provided valuable guidelines for 
decision making in RL. However, the effectiveness of these 
work may be impacted by subjective factors, such as scores by 
experts and evaluation by decision-makers, which may have 
an influence on the objectivity of the decision-making 
processes. To bridge the gap, objective information such as 
the statue information and the demands of the used 
components are incorporated into the evaluation criteria. 

To summarize, an obstacle impeding the decision-making 
of RL strategy lies in a lack of objective methods that 
incorporate the objective information into decision-making 
process. The novelties of this paper are: (1) Reducing the 
uncertainties in terms of the quality and quantity of used 
products; (2) Incorporating the status information and the 
demands into the decision-making processes; and (3) 
Calculation of the demand matching level.  

2. Framework of multi-criteria decision-making for RL 

The proposed research framework of MCDM for RL is 
shown in Fig. 1.  

 

Fig. 1. Framework of multi-criteria decision-making for RL. 

 
The MCDM in Fig. 1 includes five steps: 
Step 1: Establishment of evaluation criteria. The 

evaluation criteria include status information of the used 
components (quality condition), impact on environment and 
people (sustainability), economic performance of the 
processing of EOL components (cost and profit), and 
uncertainties in terms of market and performance (risk). 

Step 2: Deriving of the criteria weights. This step is to 
determine the relative importance weights of criteria using a 
hybrid AHP-EW method. In this method, the subjective 
factors and objective factors are considered simultaneously. 

Step 3: Ranking of collection modes. This step is to rank 
the alternatives for collection using a grey MABAC method, 
which is based on the demands of used components. 

 Step 4: Sensitivity analysis and demands matching. The 
sensitivity analysis is to test the stability of the proposed 
ranking, and the demand matching is to inspect suitability 
between collection modes and recyclers. 

Step 5: Determination of the optimum collection mode. 
Through the proposed steps, the final optimum collection 

mode can be obtained, providing a decision-making reference 
for managers of manufacturing/remanufacturing companies. 

2.1. Criteria of decision-making for RL 

 The selection of criteria is significant for evaluation 
process and it has been acknowledged with a wide-ranging 
literature in introduction. This paper is focused on four types 
of factors including quality condition (B1), sustainability (B2), 
economy (B3), and risk (B4). There are three collection 
modes including Third Party Take-Back (TPT) (collection 
companies that focus on collecting used components with rich 
varieties and large volume), Manufacturer Take-Back (MT) 
(collection companies that are engaged in the collection of 
used parts with less varieties and large volume), and Retailer 
Take-Back (RT) (collection companies that collect the used 
components with less varieties and small volume), in which 
the details are shown in Fig. 2. 

 

Fig. 2. Evaluation criteria of decision-making for RL. 

 
The eight criteria were established to evaluate the RL for 

decision makers and the detail definitions of the evaluation 
criteria are shown in Table 1. 

 

Table 1. Evaluation criteria and its definition. 

Criteria  
No. Criteria Definition 

B11 Damage condition 
The damage level of fault features (e.g., 
wear, deformation and corrosion) of the 
used components. 

B12 Remaining service 
life 

The remaining usable time after the 
components has serviced for a period of 
time. 

B21 Energy 
consumption 

The energy consumption during the 
transportation and processing. 

B22 
Negative impact 
brought by 
collection point 

The impact from location of the collection 
points on usage points, and it is related to 
the distance between the collection point 
and usage point. 

B31 Cost Cost during remanufacturing processing and 
transportation process. 

B32 Profit The recovered value from used components 
through remanufacturing. 

B41 Performance 
degradation 

The phenomenon that the old machine fails 
to work due to certain processing demands 
for new products. 

B42 Demand risk The demand uncertainty due to the variable 
price of used components. 
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2.2. Mathematic modeling of criteria 

2.2.1 Quality condition 

The quality condition of used components can be reflected 
through the damage level and remaining service life. 

(1) Damage level 
The damage level of each used component may vary. In 

accordance with the references [10] and [11], the quantified 
damage condition can be obtained.  

(2) Remaining service life 
The remaining service life of the used component relates to 

the expected residual service time after being utilized for a 
period of time. According to the method in reference [12], the 
remaining service life for each used component (mechanical 
component) can be identified.  

2.2.2 Sustainability 

The sustainability of the reverse logistics can be revealed 
as the negative impacts brought by collection points and 
energy consumption during the transportation and 
remanufacturing processing. 

(1) Energy consumption 
 

1 1

p s

i i T j
i j

E e t E S
 

                            (1) 

 
where E is the total energy consumption during the 

transportation and processing (kJ); ie and it are the unit 
remanufacturing processing energy consumption (kJ/min) and 
mean remanufacturing processing time (min) for the ith 
component; p represents the total number of used 
components; TE  is the unit transportation energy consumption 
per kilometre (kJ/km), 

jS is the transportation distance for the 
jth transportation route (km), s is the total transportation route. 

(2) Negative impact brought by collection point 
The negative impact should be considered since the 

collection process of used components will deteriorate the 
environment of usage points. According to the equations in 
reference [13], the negative impact can be obtained. 

2.2.3 Economy 

The economy of reverse logistics is mainly related to the 
cost and profit, and the two criteria are shown as follow. 

(1) Cost 
The cost for reverse logistics is composed of the 

remanufacturing processing cost and transportation cost. 
 

1 1
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i i T j
i j

C c t C S
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                           (2) 

 
where C is the total cost during the remanufacturing 

processing and transportation (RMB) ic is the unit 
remanufacturing processing cost per hour for the ith type 
component (RMB/h); TC  is the unit transportation cost per 

kilometre (RMB/km); jS represents the distance from 
collection point to consumption area (km). 

(2) Profit 
The profit may be different due to the collection mode, 

recycle distance and collection demand etc. In accordance 
with the equations of reference [14], the profit for three 
recyclers/collection companies can be obtained. 

2.2.4 Risk 

The risk includes the performance degradation and demand 
risk. The performance degradation may happen when the 
return used parts/machines are not dealt with timely. With 
time going by, this leads to the performance degradation and 
increase the uncertainty of used components’ quality finally. 

(1) Performance degradation  
The performance degradation is greatly influenced by the 

environment condition. According to the reference [15], the 
performance degradation can be obtained. 

 (2) Demand risk 
The demand risk of the used components is primarily 

influenced by the price. The demand risk of the components 
can be obtained according to the reference [16]. 

3. Methods 

In order to accomplish the aforementioned aims, a novel 
MCDM method is presented. In this method, an AHP-EW 
method is developed to classify the criteria. Then a grey 
MABAC method is proposed to identify the optimum 
collection mode. Finally, a demand matching degree is 
introduced to validate the feasibility of the optimal alternative. 

3.1. AHP-EW for deriving the criteria weights 

This hybrid method aims to investigate the relationship 
between criteria and the details are shown as follow. 

Step 1: Standardization for indicator data. It is assumed 
that there are m collection modes and n evaluation indicators. 
The value of the evaluation indicators is derived from the 
status condition of the used components and practical 
operation condition of companies. The initial indicator matrix 
can be shown as follow: 

 

           

1

ij
ij m

ij
i

x
y

x





    1, 2, ..., ; 1, 2,...,i m j n           (3) 

 
Step 2: Determination of the indicators’ weights. This step 

considers two methods i.e., AHP and EW methods to 
determine the weight of each indicator jwand jw  respectively. 

Step 3: Determination of the comprehensive weights. A 
weight partition coefficient   is used to obtain the 
comprehensive weight which integrates the weights obtained 
from AHP with weights obtained from EW. The 
comprehensive weight can be expressed as: 
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 1j j jw w w       0 1                (4) 

3.2. Grey MABAC for collection modes decision making 

Once the weight coefficients of evaluation indicators have 
been obtained, the ranking of alternatives of the collection 
modes can be implemented through the grey MABAC method 
based on demands. According to [17], the process of 
implementing this method consists of the following steps: 

Step 1: Formation of the initial decision matrices based on 
demands. Consider the reverse logistics problems with m 
collection modes alternatives  , 1,2,...,iR i m , which are 
evaluated based on the n evaluation criteria  , 1, 2,...,jB j n . 
Consider 

ij m n
Y y


    is a decision matrix based on the 

demands of the collection points: 
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         (5) 
 

where ijy  represents the evaluation grade of 
iR in terms of 

the criteria 
jB ; ijy  and ijy  are the lower and upper limit (i.e., 

grey correlation border) of the ith criterion of jth collection 
mode respectively; m and n represent the amount of collection 
modes and the total number of criteria respectively. 

Step 2: Normalization of the grey decision-making matrix. 
The aim of this step is to obtain the dimensionless criteria. 
There exist two types of criteria, i.e., benefit and cost types. 

A. Benefit type criteria  
 

max max, ,ij ij
ij ij ij

j j

y y
z z z

y y
 
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                      (6) 

 
B. Cost type criteria 
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where  min

1
minj iji m
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1
maxj iji m
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 
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Step 3: Calculation of the grey decision-making matrix. 
The evaluation indicators of the weighted matrix can be 
calculated based on the following equations: 

 
   , ,ij ij ij j ij j ij j ijf f f z z z                     (8) 

 
where ijz  is the indicator of the normalized matrix and 
j  is the weight coefficients of the criterion j. The weighted 

matrix can be expressed as follow: 

Step 4: Determination of the grey border approximation 
area matrix. The grey border approximation area for each 
criterion can be obtained according to the equation as follow: 

 
1/ 1/

1 1
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m mm m

j j j ij ij
i i
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where ,ij ijf f  

 are the elements of the weighted matrix and 
m is the total number of collection modes. Once the value of 

ju  for each criterion function is obtained, a border 
approximation area vector can be formed. 

Step 5: Calculation of the preference indicators matrix. 
According to the Euclidean distance between the grey 
numbers 

ijf and
ju , the preference indicator matrix of the 

collection modes for the matrix elements can be obtained. 
Step 6: Ranking the collection modes alternatives. The 

ranking process of alternatives can be accomplished through 
calculating the sum of the elements in distance matrix, which 
is shown as below: 

 

    
1 1

, ; 1,2,...,
n n

i ij ij j
j j

RR R q d f u i m
 

         (10) 

4. Case study 

Consider three collection modes/companies: TPT, MT, and 
RT that are engaged in collecting used pressurizers, a key part 
of automobiles. During the service, pressurizers are damaged 
and worn under high pressure and high frequent impact. 
These three collection companies wish to recycle the used 
pressurizers according to their demands and the status 
information of used pressurizer. The data of this case study 
came from real data from industry partners of this proposed 
research, in which the demands are shown in Table 2. 

 

Table 2. Demands of the three companies for collecting used pressurizers. 

 B11 B12 B21 B22 B31 B32 B41 B42 
TPT M L M L L H M L 
MT L H M M M M L M 
RT L H L H M H L H 
Note: “H” means high; “M” means medium; “L” means low 

4.1. Deriving the relative importance weights  

The damage condition and the remaining service life 
information of the used pressurizer can be obtained through 
the mathematic equations and methods in Section 2.2.1. In 
accordance with the value in Table 3, the energy consumption 
and negative impact can also be obtained. According to Table 
4, the cost and profit can be determined.  

 

Table 3. Values of energy consumption and negative impact. 

Parameters 1e  
2e  

3e  
1t  

2t  
TE  

Value 390 348 372 18 19.5 3045.2 
Parameters 3t  

TC  
1S  

2S  
3S   

Value 15 2.64 10 7.5 6.5  
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Table 4. Values related to the equations of cost and profit. 

 
 
 

On the basis of aforementioned values of the parameters, 
the score of each criterion can be determined in Table 5. 

 

Table 5. Scores of the evaluation criteria. 

Criteria B11 B12 B21 B22 B31 B32 B41 B42 
TPT 3.86 1.28 8.60 3.24 8.25 4.50 4.71 5.98 
MT 3.86 1.28 3.19 3.38 3.42 0.63 4.71 5.98 
RT 3.86 1.28 0.25 3.47 0.59 5.76 4.71 5.98 

 
According to the scores in Table 5 and the hybrid method 

in Section 3.1, the criteria weighting can be obtained. Then 
the weight partition coefficient   is set as 0.5 and the 
normalized comprehensive weight is jw = (0.1277, 0.1244, 
0.0940, 0.1560, 0.1310, 0.1189, 0.1165, 0.1335).  

4.2. Evaluation of alternatives of collection  

According to the grey MABAC method in Section 3.2, the 
evaluation matrix value can be obtained, which are shown in 
Table 6. Based on the data in Table 7 and the method in 
Section 3.2, the results of eight scenarios can be obtained, 
which are shown in Table 8 and Fig. 3. 

 

Table 6. Closeness coefficients and rankings of collection modes. 

Collection modes  iRR R  Ranking 
TPT -0.0228 3 
MT -0.0009 1 
RT -0.0014 2 

 
On the basis of the values in Table 6, the initial collection 

modes can be ranked as MT>RT>TPT. 

 

Table 7. Eight scenarios of criteria weights. 

Scenarios Original Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 
B11 0.1277 0.1276 0.1226 0.1208 0.1310 0.1409 0.0932 0.1711 0.0586 
B12 0.1244 0.1225 0.1274 0.1292 0.1190 0.1158 0.1568 0.0789 0.1915 
B21 0.0940 0.1065 0.1330 0.1686 0.1832 0.0812 0.1028 0.0757 0.1436 
B22 0.1560 0.1436 0.1170 0.0815 0.0669 0.1688 0.1472 0.1743 0.1065 
B31 0.1310 0.0586 0.1156 0.1064 0.1582 0.0811 0.0996 0.1565 0.1837 
B32 0.1189 0.1914 0.1344 0.1436 0.0918 0.1689 0.1504 0.0935 0.0663 
B41 0.1165 0.1058 0.0817 0.1350 0.1558 0.1258 0.1158 0.1808 0.0734 
B42 0.1335 0.1440 0.1683 0.1149 0.0971 0.1175 0.1342 0.0692 0.1764 
 

Table 8. Ranking of collection modes for eight scenarios of criteria weights. 

Scenarios 
Original Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 

RRi(Rank) RRi(Rank) RRi(Rank) RRi(Rank) RRi(Rank) RRi(Rank) RRi(Rank) RRi(Rank) RRi(Rank) 

TPT -0.0228(3) -0.0244(3) -0.0182(3) -0.0108(3) -0.0117(2) -0.0184(1) -0.0239(3) -0.0172(3) -0.0387(3) 
MT -0.0009(1) -0.0010(1) -0.0029(2) -0.0014(1) -0.0017(1) -0.0206(3) 0.0014(1) -0.0071(1) 0.0076(1) 
RT -0.0014(2) -0.0014(2) -0.0018(1) -0.0098(2) -0.0138(3) -0.0187(2) -0.0004(2) -0.0072(2) 0.0012(2) 

 
4.3. Sensitivity analysis and demanding matching analysis 

4.3.1 Sensitivity analysis  

In order to test the robustness of the weighting method and 
the ranking modes, a sensitivity analysis is conducted. 
According to the reference in [18], the modified weights of 
the criteria can be obtained. 

 

 
Fig. 3. Results of sensitivity analysis. 

The sensitivity analysis is to test the stability of the 
proposed method, which has the benefit of reliability in 
decision-making process. Small changes were made on 
criteria, which have little impacts on the ranking of collection 
modes. The ranking sequence (MT>RT>TPT) accounts for 
the large percentage among the eight scenarios and only 
Scenarios 2, 4, and 5 are different from others. This is due to 
that the difference of the maximum and minimum among 
these three scenarios are larger than other scenarios, whilst the 
criteria values for three scenarios are smoothly changed.  

The ranking is still to be consistent except the large 
difference of the maximum and minimum values among 
criteria for one scenario. Otherwise, the test of the robustness 
shows the effectiveness in ranking sequence (see Table 8). 
MT and RT enjoy the top ranking in most scenarios, and the 
MT can be selected as the optimal collection mode since RT 
and TPT always follow the MT (see Fig. 3). 

Original

Scenario 1

Scenario 2

Scenario 3

Scenario 4Scenario 5

Scenario 6

Scenario 7

Scenario 8
TPT
MT
RT

Parameters   t  mc  k S     

Value 20 20 30 200 10 2 100 
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4.3.2 Demands matching 

The demands of the collection companies reflect the 
capabilities and conditions of handling the used components. 
The higher matching level between the collection company’s 
capabilities and the condition of the used components will 
lead to the higher profit and efficiency for the company. In 
order quantify the level, a demand match degree is proposed 
and it can be defined as follow: 

Step 1: Quantification of the demands matching level 
 

max min

min

, 1,2,...,j j
j

j j

DS DS
DM j n

CS DS


 


           (11) 

 
where 

jDM represents the quantified demands matching; 
maxjDS  and minjDS  represent the maximum and minimum 

demand score for the jth criteria respectively; jCS  represents 
the condition score of the used component. 

Step 2: Metric of demands match 
 

, 1,2,...,i
i

NMD i m
n

                           (12) 

 
where iMD  is the demands match degree; iN  represents 

the numbers of the satisfied criteria, we set that if 1jDM  , 
then 1iN  , otherwise 0iN  . 

In accordance with Eq. (12), the quantified value of 
demands matching level for the three collection modes can be 
shown as follow: 

 

Table 9. Quantified value of demands matching degree  

Collection  
modes B11 B12 B21 B22 B31 B32 B41 B42 

TPT 14.29 7.14 0.43 0.89 0.28 0.80 2.82 0.40 
MT 0.70 0.35 2.47 3.23 3.45 0.59 0.54 1.01 
RT 0.70 0.35 2.67 0.57 0.59 0.31 0.54 1.96 

 
According to Eq. (12) and Table 9, the demands matching 

degree can be obtained and the demands degree rank is 
MT>TPT>RT. The MT has a top demand matching degree for 
remanufacturing RL followed by TPT and RT. The results 
validate the applicability of the proposed MCDM method. 

According to the sensitivity analysis in Section 4.3.1 and 
the calculation of demands matching in Section 4.3.2, the best 
collection mode for used pressurizer is MT. In sum, the two 
procedures may be meaningful to evaluate the collection 
modes for used components. 

5. Conclusions and future work 

This research presents a novel hierarchical MCDM method, 
which considers the demands of the collection companies and 
the conditions of used components for optimal RL strategy. 
Without demands matching, the collection modes from 
MCDM may not achieve the maximum profit and efficiency 
for collection companies. Future work can be focused on the 
integration of intelligent techniques so as to construct an 
intelligent decision-making system for collection companies. 
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