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ABSTRACT
We report the automatic detection of a new sample of very low surface brightness (LSB)
galaxies, likely members of the Virgo cluster. We introduce our new software, DeepScan,
that has been designed specifically to detect extended LSB features automatically using the
DBSCAN algorithm. We demonstrate the technique by applying it over a 5 deg2 portion of
the Next Generation Virgo Survey (NGVS) data to reveal 53 LSB galaxies that are candidate
cluster members based on their sizes and colours. 30 of these sources are new detections
despite the region being searched specifically for LSB galaxies previously. Our final sample
contains galaxies with 26.0 ≤ 〈μe〉 ≤ 28.5 and 19 ≤ mg ≤ 21, making them some of the faintest
known in Virgo. The majority of them have colours consistent with the red sequence, and have
a mean stellar mass of 106.3 ± 0.5 M� assuming cluster membership. After using ProFit to
fit Sérsic profiles to our detections, none of the new sources have effective radii larger than 1.5
Kpc and do not meet the criteria for ultra-diffuse galaxy (UDG) classification, so we classify
them as ultra-faint dwarfs.

Key words: galaxies: clusters individual: Virgo – methods: observational – galaxies: dwarf –
galaxies: clusters.

1 IN T RO D U C T I O N

The low surface brightness (LSB) universe is one that can be easily
overlooked due to observational biases (Disney 1976), yet remains
an important test-bed for the enduring paradigm of the �CDM
universe. It is theorized that a significant portion of the missing
baryon budget (Shull, Smith & Danforth 2012) may be hidden in
diffuse sources such as intra-cluster light (ICL) (Mihos et al. 2017),
tidal streams (Cooper et al. 2010; Mowla et al. 2017), and LSB
galaxies (LSBGs), an idea supported by the surprising abundance
of ultra-diffuse galaxies (UDGs) originally detected in the Coma
cluster (Koda et al. 2015; van Dokkum et al. 2015).

A great deal of effort has been devoted to searching for diffuse
sources in other cluster environments, including the Virgo cluster
(Mihos et al. 2005, 2015; Davies, Davies & Keenan 2016); the
Fornax cluster (Kambas et al. 2000; Muñoz et al. 2015), and others
(e.g. Janssens et al. 2017; Román & Trujillo 2017), as well as in
the vicinities of massive galaxies (Javanmardi et al. 2016; Müller,
Jerjen & Binggeli 2017). LSB galaxies are also expected to form
and exist in the field (McGaugh 1996; Amorisco & Loeb 2016; Di
Cintio et al. 2017) along with an ultra-diffuse intra-group baryonic
component (Driver et al. 2016).
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Of particular contemporary interest is the origin of the UDG. It is
a matter of ongoing debate whether they can be described as ‘failed
L∗ galaxies’ (van Dokkum et al. 2017), tidally puffed-up dwarfs
(Collins et al. 2013), or the natural expectation of high spin dwarfs
predicted from �CDM cosmology (Amorisco & Loeb 2016). What-
ever the case, the issue has prompted several authors to search for
LSB galaxies in a multitude of environments (van der Burg, Muzzin
& Hoekstra 2016; Román & Trujillo 2017; van der Burg et al. 2017).
One promising explanation has emerged indicating that UDGs may
originate from dwarf galaxies that were quenched early on (Beasley
& Trujillo 2016), but statistical significance has been hampered by
the inability to reliably detect very LSB objects other than by visual
inspection (Muñoz et al. 2015; Venhola et al. 2017).

Modern deep imaging surveys such as the Next Generation Virgo
Survey (NGVS) (Ferrarese et al. 2012), Next Generation Fornax
Survey (Muñoz et al. 2015), KiDS (de Jong et al. 2015), and HSC-
SPP (Aihara et al. 2017) provide deep multiwavelength data sets
capable of probing the LSB Universe. Such data sets may offer a
treasure trove of LSB objects, but it seems that current methodology
has limited the ability for them to be fully exploited. While by-eye
extraction of LSB sources currently has the very desirable advantage
of minimal contamination from artefacts in the data, the sheer size
of modern data means that only very small regions can be analysed
this way. Upcoming surveys such as Euclid and LSST make this
approach completely infeasible for the future.
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One of the main issues for LSB science is the quality of the
data and its reduction. Slater, Harding & Mihos (2009) have made
progress in removing artefacts caused by internal reflections of
bright stars by modelling the point spread function (PSF) to high
accuracy and out to wide radii. Further progress has been made in
constructing very deep image stacks with special attention to pre-
serving LSB features (Blanton et al. 2011; Fliri & Trujillo 2015;
Mihos et al. 2017). Despite these advances, many efforts to iden-
tify LSB features automatically have relied on methods that are
sub-optimal for the extraction of low signal-to-noise ratio (SNR)
sources. The most common of these is SExtractor (Bertin &
Arnouts 1996), which at its core identifies objects as contiguous
regions above the sky distribution at some confidence level. Davies
et al. (2016) have shown that it tends to systematically miss or
fragment large, diffuse objects even with settings optimized to the
detection of LSB objects.

Despite its popularity, there are alternatives to SExtractor.
Some examples include Clumpfind (Williams, de Geus & Blitz
1994), FellWalker (Berry 2015), and others, but again these
are not optimized to detect LSB objects and suffer from similar
issues to SExtractor. This has motivated several authors to cre-
ate their own algorithms such as Oddity (Butler-Yeoman et al.
2016, and references within), MTObjects (Teeninga et al. 2016),
and NoiseChisel (Akhlaghi & Ichikawa 2015). An increasingly
popular approach (e.g. Zheng et al. 2015) is to detect objects via
a watershed segmentation algorithm, whereby detections can grow
larger and larger until they reach a saddle point in intensity. This
approach is also used by the ProFound1 software (Robotham et al.
2018).

The above alternatives (with the exception of ProFound, which
is new) have not yet been widely used in the literature. Given the
current abundance of research into the LSB Universe, we have been
prompted to develop another detection package, called DeepScan.
This has been developed to meet the following criteria:

(i) The software should supersede SExtractor in its ability to
detect extended LSB structure.

(ii) Detection limits should be quantifiable so that the complete-
ness of samples can be estimated.

(iii) The algorithm should adapt to the various shapes of LSB
sources e.g. LSBGs and ICL.

(iv) The software should be intuitive and simple to use in a mod-
ern scripting language.

(v) The inputs and outputs of DeepScan should be compatible
with those of other software.

(vi) The algorithm should be as efficient as possible and be writ-
ten to take advantage of parallel processing methods.

Our software implementation has been developed to run as ef-
ficiently as possible in order to cope with present and futuristic
big-data challenges. The public availability of deep, wide-area sur-
vey data such as that of KiDS and VIKING (Edge et al. 2013) (each
covering thousands of square degrees with sub-arcsecond pixels)
means that DeepScan can be used immediately. Such survey data
will make good testing grounds for the software, which we hope to
apply to even larger surveys such as Euclid and LSST.

This paper is intended to inform the reader of the methodol-
ogy behind DeepScan. We will endeavour to provide an up-to-
date user’s manual where the code is hosted publicly at https:
//github.com/danjampro/DeepScan with a GPLv3 li-
cense. The paper is organized in the following way. In Section2,

1https://github.com/asgr/ProFound

we give an overview of the algorithm at the core of the detection
method. In Section3 we give a brief overview of the DeepScan
software, with the full documentation made available online. We
note that during the development ofDeepScan, Greco et al. (2017)
have also developed a pipeline aiming to detect LSB features using
SExtractor. While this work is quite similar in its objectives
and methods, some of the differences between the two pieces of
software are discussed in Section4. In Section5 we give an example
of its application to the publicly available NGVS data to reveal a
sample of exceptionally faint galaxies. The sample retrieved from
this analysis can provide a training set for comparisons with other
methods like ProFound. Finally we discuss plans to increase the
area of sky we have explored in this work.

While in this paper we primarily discuss the identification of LSB
galaxies, the detection method employed by DeepScan makes no
assumptions about the underlying morphologies of its detections. It
can therefore be used to detect other extended LSB sources such as
tidal streams or ICL.

2 D BSC A N IN A STRO N O MY

DBSCAN (density-based spatial clustering of applications with
noise; Ester et al. 1996) is a two-parameter algorithm that is de-
signed to identify regions of high density within an n-dimensional
data set. The algorithm has found recent use in astronomy through
the classification of eclipsing binaries (Kochoska et al. 2017) and
the morphological analysis of open clusters (Bhattacharya et al.
2017). Broadly speaking, our application of DBSCAN operates in
a similar way to SExtractor in that it builds detections by clus-
tering together nearby pixels above some brightness threshold. In
both cases, the detections are statistically unlikely to occur due to
fluctuations in the background.

The fundamental difference between our use of DBSCAN and
SExtractor is that a DBSCAN detection is based on the density
of pixels above an SNR threshold within its ε radius, whereas SEx-
tractor builds its detections by identifying contiguous regions
of pixels with significant flux, possibly on a smoothed image. (We
note that SExtractor can amalgamate non-contiguous sources
in its ‘cleaning’ stage, which attempts to remove noise peaks that
have been detected in the haloes of brighter objects).

The first parameter of DBSCAN is a clustering scale length (ε)
and the second (η) is the minimum number of data points required
within an ε radius for a cluster to form. The algorithm iterates over
every input data point. If the number of points φ within a circular
radius of length ε meets the condition φ ≥ η, the point is marked as
a core point; this is the basic building block of a cluster. Then, each
point enclosed within ε (known as secondary points) is checked to
see if they also meet the condition to be core points, and if so, then
they are added to the same cluster. Thus, a cluster can contain more
than one core point. This process repeats until there are no more
core points to add to the cluster and it is complete. The algorithm
then repeats the process to identify separate clusters within the data
set, if they exist. The clustering process is illustrated in Fig. 1.

Our approach is to use the spatial coordinates of pixels above a
brightness threshold as inputs to DBSCAN, essentially identifying
sources as overdensities of these pixels. This is analogous to how
resolved LSB galaxies are detected through overdensities of their
stars against the background. While we have not implemented usage
of the upper detection threshold Imax in DeepScan, we include it
in the modelling for completeness.

The circular nature of the search aperture used in DBSCAN
means that the algorithm has a ‘resolution’ determined by ε. This
limitation does not rule out the detection of elongated structures if
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Figure 1. A visualization of the DSBSCAN algorithm with η = 3. In (a),
the algorithm proceeds to identify a core point (blue). Then in (b) it checks
each of the secondary points (red) to see if they meet the criteria to be a core
point – this is true of one of the secondary points, which is also shown in
blue. The secondary points of the new core point are checked in (c), and the
final cluster, consisting of two core points, is shown in (d).

they are significant over scales similar to or larger than ε. The algo-
rithm therefore performs poorly in identifying objects significantly
smaller than the detection circle and in separating sources closer
together than 2ε. While the former point is addressed by allowing
the sensitivity of the algorithm to be set by the user, the latter could
be remedied with a de-blending or segmentation routine. We have
not implemented such a routine as instead we rely on the low spatial
density of LSB objects and a high-quality source mask to mitigate
source confusion (see Section3.3).

The sensitivity of DBSCAN is set by η. To derive a value for
η, a value of ε is assumed that remains a hyper-parameter of the
algorithm (i.e. a parameter that is set by the user). η is estimated with
the assumption that the noise brightness distribution is a zero-mean
Gaussian of standard deviation σ n, i.e.:

P (In) = P (In, μ = 0, σ = σn) (1)

for noise intensity In, mean μ, and standard deviation σ . If a bright-
ness threshold is applied with lower and upper boundaries Imin and
Imax (μmin and μmax in magnitudes per square arcsecond), respec-
tively, the pixel-to-pixel noise distribution can be used to predict
the probability Pthresh of a background pixel with a true brightness
of Ib lying within the threshold:

Pthresh = P (Imin ≤ I ≤ Imax) =
∫ Imax−Ib

Imin−Ib

P (I ′
n)dI ′ (2)

Thus, an accurate model of the background is also assumed. As the
amount of noise per pixel is modelled as an independent random
variable, the binomial distribution can be used to calculate the num-
ber of pixels expected to lie within the brightness threshold within a
circular region of radius ε. In the hunt for LSB objects, ε should be
large so that it encapsulates a high number of pixels. Therefore the
binomial distribution can be approximately represented by another
Gaussian,

P (ϕ) = P (ϕ,μϕ, σϕ) (3)

with

μϕ = PthreshNpix (4)

σϕ = (Pthresh(1 − Pthresh)Npix)
1
2 (5)

where Npix is the number of pixels enclosed by a circle of radius ε,
and ϕ is the number of those pixels within the threshold. Equation
(3) can be integrated between ϕ′ and Npix to find the probability P0

of φ′ or more pixels in the circle lying within the threshold:

P0 = 1

2

[
erf

(
Npix − μϕ

σϕ

√
2

)
− erf

(
ϕ′ − μϕ

σϕ

√
2

)]
(6)

Setting φ′ = η and rearranging for η, we obtain

η = σϕ

√
2 erf−1

[
erf

(
Npix − μϕ

σϕ

√
2

)
− 2P0

]
+ μϕ (7)

We can replace the hyper-parameter η with a new parameter2 κ ,
defined as the number of standard deviations (equation 5) above
the expected number of points enclosed within ε. We can therefore
write the somewhat simpler expression,

η = μϕ + κσϕ (8)

where κ is in one-to-one correspondence with the probability P0.
Equation (7) describes the number of pixels lying within the

brightness threshold, within a circle of radius ε embedded within
pure Gaussian noise. It is useful as it expresses η as a function of the
probability of that many pixels occurring due to noise, a probability
that can be set arbitrarily low by increasing κ . It also allows the
prediction of what should be detected by the algorithm. For example,
in the context of galaxy detection the detectable region on the central
surface brightness (CSB), magnitude plane can be calculated. The
brightness profiles of galaxies are often described by the Sérsic
profile (Graham & Driver 2005), which can be expressed as

I (r) = I0 exp

(−r

h

) 1
n

+ Ib (9)

for radius r, CSB I0 (μ0 in magnitudes per square arcsecond), scale
size h, and Sérsic index n. Ib is the background brightness. In analogy
to equation 2, the probability of finding a pixel within the brightness
threshold is

Pthresh(I (r)) =
∫ 
Imax


Imin

P (I ′
n)dI ′ (10)

with


Imin
max = Imin

max − I (r) (11)

Equation (10) can be integrated over a circular region to obtain

ϕs = π

∫ ε

0
r

[
erf

(

Imax

σn

√
2

)
− erf

(

Imin

σn

√
2

)]
dr (12)

The condition for the galaxy to be detected is then simply:

ϕs ≥ η (13)

Numerical approximations to this condition are shown for a va-
riety of values of ε in Fig. 2. We show similar plots for κ and the
Sérsic index n in the Appendix (Figs A1 and A2).

2Users of our software can still opt to specify η manually.
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Figure 2. Variation of the limits of detection with ε, ranging between
5 (blue) and 50 pixels (red), with a colour gradient showing intermediate
linearly spaced values of ε increasing with redness. These results were
obtained with κ = 10, Imin = σ n. The PSF and the effects of photon noise
are not considered in this plot.

The effects of the PSF have not been modelled here. While the
PSF is in general non-analytical and varies between data sets (and
even in the same data set), we probe the effects of a typical seeing
PSF for ground-based wide-area surveys in Section2.1 and have
found the effect to be negligible for our target sources.

2.1 Testing DBSCAN

In order to demonstrate the validity of the statistical modelling pre-
sented in Section2 we have performed artificial galaxy experiments,
wherein sets of randomly generated circular Sérsic profiles (n = 1)
were generated using ProFit3 (Robotham et al. 2017) and hidden
in random noise of RMS = σ n. n = 1 was used because it is a
fiducial value for dwarf galaxies (e.g. Koda et al. 2015) (but see
also Fig. A2). We also include the effects of photon noise in the
experiments and assume a gain of 1. A large grid of profiles was
produced and embedded into random noise, using CSBs defined
by their signal-to-noise ratio (SNR) (SNR logarithmically drawn
between 0.1 and 100). The profiles have effective (half-light) radii
between 1 and 15 pixels, where we have converted between Sérsic
quantities using the prescriptions of Graham & Driver (2005).

Individual profiles were spaced by eight times the maximum
effective radius of the sample, and were each truncated at 4 times
this radius. This was to ensure that extended profiles could not
contribute to their neighbour’s detections.

Our new DBSCAN implementation (see Section 3.1) was then
applied to the synthetic image, and any synthetic source that had an
object located (by the mean coordinate of the core points) within
twice its effective radius was regarded as detected. No two DB-
SCAN detections could be assigned to the same source and it was
asserted that there were no DBSCAN detections that did not have
matches. This check was to ensure that large portions of the image
had not been detected as one. Results from matching the detections
with their profiles are shown in Fig. 3 for κ = 10, ε = 5 pixels
and a lower detection threshold of 1σ n. Also on the plot is shown

3https://github.com/ICRAR/ProFit

Figure 3. Results of the synthetic profile experiment for n = 1 circular
Sérsic profiles. Each point represents a synthetic source; blue ones have
been detected and grey ones missed according to the criteria discussed in the
text. The red line shows the boundary of detection predicted in equation 13.
The sources presented here were not convolved with a PSF (see the text).

a numerical approximation (using the Nelder–Mead minimization
algorithm to the condition in equation13). Importantly, the detec-
tion boundary predicted through the modelling is in good agreement
with the observation of the synthetic data.

We have performed the same experiment after convolving the
Sérsic profiles with a mock Gaussian PSF with a full-width at half-
maximum (FWHM) of 5 pixels (typical for 1 arcsec seeing with a
0.2 arcsec pixel size). The results were practically identical, even
for the lower values of effective radii that we probed. This is easily
explained from the fact that ε was also 5 pixels. Of course, as the PSF
FWHM becomes larger than ε, we would expect to see a retraction
of the detection boundary. However, DeepScan is intended for
use on wide-area survey data (which typically has seeing and pixel
scales of the order of what is probed here) and relatively large values
of ε, so this effect is not considered important.

The preceding derivation of η also does not consider the effects
of correlated noise. This is noise that is ‘clumpy’, produced during
image stacking (interpolation, drizzling etc.) and from sources such
as faint background galaxies that have not been accounted for in the
sky modelling. In particular, this correlation will tend to make the
uncertainty in the number of points contained within ε due to the
sky distribution (equation 5) an underestimate. The degree of noise
correlation varies between data sets, making its effects difficult to
quantify in general. For our current purpose of getting an estimate
for η, the effects of underestimating σφ can be accounted for by
using higher values of κ , as can be seen in equation 8. To estimate the
degree to which κ should change to accommodate the correlation,
we generated independent random noise and applied a Gaussian
filter with σ = 1 pixel to create noise correlated over scales of two
pixels. In such a set-up, Monte Carlo trials suggest that the standard
deviation in equation5 is underestimated by a factor of ∼2.5 and
thus κ would have to be multiplied by this factor to obtain equivalent
behaviour to the uncorrelated case in terms of robustness against
the detection of noise peaks (this comes at the cost of sensitivity).

Despite this, the assignment of κ is likely to be done empirically
rather than derived statistically because even with a source mask
in place there will likely be unmasked sources contributing to a
non-Gaussian background (see Section 5.3).
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There are similarities between DBSCAN and conventional data
smoothing techniques because of the size of the search radius ε. One
major reason why very large smoothing kernels are not commonly
used for detection is that nearby objects become confused with each
other. Further, smoothing over bright, concentrated sources may
produce detections that appear similar to LSB galaxies. By applying
the source mask (Section3.3) before the detection algorithm, this
problem is alleviated and we can make use of the SNR obtained
over larger areas without significant source confusion. DBSCAN is
also more robust to the detection of small unmasked background
objects because the input pixels are not flux-weighted; sources are
forced to be significant over areas similar to the search area in order
to be detected.

3 TH E DEEPSCAN SOFTWARE

DeepScan is a PYTHON package intended to identify regions of
significant LSB light. The software uses a novel implementation of
the DBSCAN algorithm that was created in order to operate much
more efficiently than the standard. This efficiency is in part due to
many calls to integrated C code within numpy4 and scipy.5 One
of the goals of DeepScan has been to be compatible with other
pieces of software, and as such there is a lot of flexibility as to
what can be input to the software in terms of, for example, user-
generated background maps or object masks. Equally, the outputs
of DeepScan such as segmentation maps and initial guesses on
Sérsic parameters can be easily transferred and used by different
tools. If however the user does not have ready-made background
maps etc., the basic usage of DeepScan is as follows:

(i) Measurement of the sky distribution to produce sky and sky
RMS maps (implicit source masking).

(ii) Generation of a bright source mask (currently SExtractor
is used to create masks).

(iii) Source detection on masked frames using DBSCAN.
(iv) Automatic measurement of detections.

There are two notable issues with this pipeline. (1) There is
no source de-blending other than that of the source mask. The
justification for this is that following appropriate source masking
the spatial frequency of diffuse sources on the masked image is
assumed to be low enough so that no de-blending is necessary. (2)
Users are likely to want higher quality source measurements than
the approximate ones provided withDeepScan. We envisage these
measurements to serve as inputs into robust profile fitting algorithms
like ProFit.

3.1 Novel DBSCAN implementation

An important feature of any detection algorithm is the runtime.
Lower runtime helps users to fine-tune their parameters as well as
enabling large data sets to be analysed over accessible (CPU) time-
frames. Code optimization usually proceeds by reducing the most
significant time-consuming operation in the program; in the case of
DBSCAN this is the region query, whereby the number of points
within ε is counted for every data point. A simple implementation
of DBSCAN may perform the region query by directly measuring
the Euclidean distances from every input point to every other point
and storing these distances in a symmetric distance matrix. This

4http://www.numpy.org
5https://www.scipy.org

is inefficient in terms of memory as well as CPU time because
every unique element of the matrix requires checking for every
query. Indexing structures such as the R-tree (Guttman 1984) are
optimized for spatial queries and allow for a significant speed-up.
Many DBSCAN implementations use this method, including those
in scikit-learn6 and R.7

However, our implementation is done in a much different man-
ner that obtains equivalent results in notably shorter time-frames
through a convolution approach. The basic procedure is the follow-
ing:

(i) Create a binary image where pixels above the detection thresh-
old are assigned the value of 1 and all others 0. We term the detection
threshold as thresh, which is quoted in units of the background
RMS unless otherwise stated.

(ii) Convolve the result with a top-hat filter of unit height and
radius equal to ε. This step essentially counts the number of thresh-
olded pixels within an ε radius of every pixel.

(iii) Threshold the resulting image at η (derived from κ and
thresh), creating a binary image with non-zero pixels being DB-
SCAN core points.

(iv) Convolve the result with the same top-hat filter as in step 2.
This connects regions corresponding to unique DBSCAN clusters.
Set all non-zero pixels to 1.

(v) Run a contiguous pixel clustering algorithm over the result.
This assigns unique integer labels >0 to each DBSCAN cluster.
The result of this is known as segmap dilated, and bounds the
regions contained by all the DBSCAN core and secondary points.

(vi) Perform a binary erosion on each object in
segmap dilated to obtain the contiguous areas bounded
by the core points. The result is simply called the segmap. A
segmentation map of only the core points (corepoints) can also
be retrieved.

We note that an ‘erosion’ refers to contracting a source’s segment
with a kernel (in our case the top-hat filter of radius ε). For each pixel
making up a source’s segment, all pixels that are contained within
the kernel’s footprint centred on that pixel are removed from the
segment. A dilation is the opposite transformation. Hence the name
‘segmap dilated’ is appropriate because it can be obtained by
performing a dilation on the segmap. The only time an erosion
is performed by DeepScan is to create the segmap from the
segmap dilated.

The speed-up from the above approach compared to standard
implementations stems from the fact that (a) Fast-Fourier transform
techniques can be used for the convolution steps and (b) the need for
the DBSCAN region query is removed and is replaced by a much
more efficient contiguous-pixel clustering algorithm.

We have tested DeepScan v1.0 against the scikit-learn
and R DBSCAN implementations (versions 0.18.2 and 1.1–1, re-
spectively) on one processor, and find that this implementation is
faster than both. The tests were performed on a mid-2013 Mac-
Book Pro (2.5 GHz Intel Core i5) with 8GB of RAM, running OSX
10.12.6. We also note that we find the R implementation to be signif-
icantly faster than that in scikit-learn, but scikit-learn
gives the option to run DBSCAN in parallel whereas R does not. For
example, averaging over five runs for a 500 × 500 NGVS g-band
cut-out, the times are DeepScan: 0.3s, R: 0.3s, and scikit-
learn: 0.8s. Enlarging the image to 1000 × 1000 pixels gives

6http://scikit-learn.org/stable/
7https://cran.r-project.org/web/packages/dbscan/dbscan.pdf
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Figure 4. This shows a synthetic 1500 × 1500 pixel image, with an ex-
tended central source and some smaller ‘background’ objects. Contours of
the surface brightness profile are shown (blue) for the central profile, as well
as a contour showing the masked region (red). Clearly the mask extends to
very LSB (the RMS of the image is 26.2μ). The 500 × 500 pixel meshes
(black dashed lines) were median filtered over 3 × 3 regions. The actual sky
level of the image was set to zero ADU. Despite the presence of the domi-
nant LSB object in the frame, the maximum value of the sky was measured
to be 28.4μ – well below the RMS level. The RMS was recovered with an
accuracy of over 99 per cent.

DeepScan: 3.5s, R: 6.0s, and scikit-learn: 17.6s. Scaling up
once again to 4000 × 4000 pixels, this time letting DeepScan and
scikit-learn use four processors, the results are DeepScan:
12.8s, R: 27.6s, and scikit-learn: 89.5s. We tested whether
there was a difference between the output of DeepScan compared
to the other implementations and found that there was an exact
match between the results.

3.2 Sky measurement

DeepScan can produce sky and sky RMS maps if required. To
obtain an estimate of the sky, we iteratively make measurements
of the sky and the sky RMS, each iteration using DBSCAN with a
low detection threshold (default thresh= 0.5) to identify sources
(including LSB components) which are masked from the sky calcu-
lation in the following iteration. Using suitable values for ε (default
of 5 pixels – similar to a typical PSF FWHM for wide field optical
surveys) and κ (default a value of 5 – low enough to encapsulate
LSB components), this iterative masking reduces the bias incurred
from unmasked LSB components each time. The iterations termi-
nate when the sky level has converged to a user-specified tolerance.
We have provided Fig. 4 as an example of the sky-measurement
algorithm, which was generated with default parameters.

The sky and sky RMS levels are estimated in meshes. The mesh
size is a user-defined parameter. We maintain flexibility by allowing
custom estimators for the measurements, but by default use the me-
dian for the sky and a lower-quantile estimate of the RMS (i.e. the
level for which 15.9 per cent of the data are enclosed below the me-
dian). These are computed for each iteration, ignoring any masked

pixels. The meshes are then median filtered over a customizable
scale, before being interpolated over using a bi-cubic spline to the
full image resolution. Meshes with too-few pixels are ignored in the
interpolated over; by default at least 30 per cent of the mesh must be
unmasked to count. Following this, DBSCAN is run, and any pixel
identified within the segmap dilated is masked. The algorithm
then checks for convergence on a mesh-by-mesh basis; individual
meshes that have converged are ignored for further iterations and
their converged values are used in the interpolation. This process
repeats with the updated source mask, either until all the meshes
have converged or a maximum number iterations has been reached
(the default is 6).

We again emphasize that it is trivial to use sky and RMS maps
generated externally from DeepScan. We also note that custom
masks can be used as an input to the source masking routine, which
can be combined with the mask generated with DBSCAN or even
treated as the final mask, in which the iterative mask generation is
not applied.

3.3 Masking bright sources

A crucial requirement of our detection method is a source mask. The
mask must be created with the aim of eliminating all sources one
does not wish to detect right out to their LSB haloes. Our approach
here has been to use SExtractor to create the source mask. Mea-
surements from the output catalogue such as the FLUX RADIUS
were found to do a poor job, underestimating the source sizes
even with high values of PHOT FLUXFRAC (the fraction of light
contained within the flux radius). This prompted us to model
each source with a Sérsic profile and to size the ellipse accord-
ing to some isophotal radius below the DeepScan detection
threshold.

We estimated the Sérsic index without performing any additional
fitting from the ratio between the effective and Kron radii (Graham
& Driver 2005). This is useful as both of these measurements can
be efficiently retrieved by SExtractor with the KRON RADIUS
and the FLUX RADIUS key words and PHOT FLUXFRAC =
0.5. Combining these measurements with the total magnitude
(also measured using SExtractor’s MAG AUTO, by default with
PHOT AUTOPARAMS set to 2.5,3.5), the profile is fully charac-
terized. The source is then masked in an elliptical aperture (based
on SExtractor’s elliptical parameters) to the derived isopho-
tal radius. We note that SExtractor allows the possibility to
perform Sérsic fitting by requiring the SPHEROID SERSICN or
SPHEROID REFF IMAGE columns in the output file. While we
have not explored this in our current work, it is possible that this
would improve the fits at the expense of some computation time.

A caveat of the above approach is that galaxies typically have
non-elliptical LSB components and therefore may not be adequately
masked. It is likely that ProFound will eventually replace SEx-
tractor for the source masking as it offers the advantage of
non-parametric object masks as well as more reliable estimates of
parameters such as the half-light radius (Robotham et al. 2018).

3.4 Source measurement

The goal of DeepScan is not to provide accurate profile fitting, but
is rather to identify regions with significant LSB light. That said, we
do provide a basic function for 1-dimensional Sérsic profile fitting
in order to get initial estimates of parameters to input into robust
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2D fitting programs such as ProFit.8 The basic requirements for
the fit are the data and a segment corresponding to the source.

The initial task that is performed is the estimation of the centroid
position and elliptical parameters (axis ratio and position angle).
This is done using the same method of flux-weighted moments as
in SExtractor (see Bertin & Arnouts 1996 for detail), where the
user has the choice to calculate the moments on either a masked
or unmasked segmentation map. The user can choose which of the
three segmentation maps provided (segmap, segmap dilated,
or corepoints) to calculate these parameters.

The next step is to measure the average (default median) flux
within concentric elliptical annuli of fixed width centred on the
source, based on the measurements from the previous step. The
annuli iteratively increase their radius until a user-defined isopho-
tal surface brightness is reached (often a relatively robust method
of measuring large LSB galaxies) or a maximum radius has been
reached. If the isophotal level is reached before sufficient steps have
been performed, then more steps will be taken in order to achieve a
minimum number of data points (default is 5).

We then proceed to fit the profile using Scipy’s curve fit
routine, which by default uses the Trust Region Reflective algorithm
for parameter optimization in the case of constrained problems (each
Sérsic parameter is constrained by default to have positive values).
An initial parameter guess can be provided, but in its absence the
parameters are estimated as following: The index n is assumed as
1; the effective radius is assumed as the semimajor axis of the el-
lipse that bounds the segmentation map; the surface brightness at
the effective radius is estimated by measuring the average surface
brightness within the segmentation map, rescaling to effective sur-
face brightness using the default value of n.

We have not yet implemented methods to measure non-galaxy-
like objects. However, we suggest the segmentation images out-
putted by DeepScan can be used as inputs to non-parametric
measurement tools such as that offered in ProFound to provide
estimates on parameters like total magnitude etc.

4 DeepScan V E R S U S S O U R C E E X T R AC TO R

During our testing of SExtractor we have found that it can
perform fairly well in detecting LSB features provided specific input
parameters are used. In this section we describe some observations
about its usage and explain why DeepScan may be preferred to
detect specifically highly extended LSB objects. Our tests have
consisted of us using a cut-out from the publicly available NGVS
g-band data, which has a pixel size of 0.186 arcsec and typical
RMS of ∼26.9gμ with various combinations of SExtractor
settings. For the experiment, both SExtractor and DeepScan
used the same background mesh of 50 arcsec (∼270 pixels) that
was median filtered in 3 × 3 meshes (using the BACK SIZE and
BACK FILTERSIZE SExtractor key words). The cut-out used
had a size of 810 × 810 pixels so that the background estimation
was realistic. For this experiment, we have used SExtractor to
convolve the image with a Gaussian kernel of 5 pixelsRMS, as in
Greco et al. (2017).

It is thought that the de-blending can routinely fragment large
LSB features (Davies et al. 2016; Greco et al. 2017) (a.k.a. ‘shred-
ding’). Indeed we have observed the de-blending fragmentation
(Fig. 5a), which was observed with SExtractor’s de-blending
contrast parameter DEBLEND MINCONT= 0.005 (the default). A

8https://github.com/ICRAR/ProFit

way around the problem is to deactivate the de-blending by setting
DEBLEND MINCONT to 1 – this value is used for the remainder of
our tests. We have not experimented with different values of DE-
BLEND MINCONT in this work. We also note that it is important for
the CLEAN parameter to be switched on (default) in order to reduce
LSB source fragmentation, so it is activated in all our tests here.

Fig. 5b shows the result of increasing the value of DE-
TECT MINAREA (the minimum number of pixels required for a
detection to count) compared to (a). A much better job is done
of identifying the LSB source as a single object, but we note that
the detection suffers two problems: the shape of the segment corre-
sponding to the LSB source is significantly perturbed by background
objects; and spurious detections still exist around groups of back-
ground objects despite very high values of DETECT MINAREA.
Activating the de-blending here exacerbates the situation and the
LSB source is missed entirely, with its flux being solely attributed
to some of the background objects rather than any central object.

Herein lies a downside of using SExtractor to detect LSB
sources. The area of the segmentation image corresponding to LSB
objects detected on smoothed frames is made significantly unstable
because of the presence of background objects that either have not
been properly de-blended or have been erroneously assigned to the
source in the cleaning stage. This is made clear by the morphology of
the detection in Figs 5b and c. As this significantly affects the num-
ber of pixels an object contains, the usage of DETECT MINAREA
becomes an inherently unreliable tool to identify genuine LSB ob-
jects, yet is required to discriminate against background objects.

The problem is partially alleviated by applying a source mask
to the image before its input to SExtractor as is also done by
Greco et al. (2017) (note that there is no source mask handling
within SExtractor) in that now the only detection that appears
in the output catalogue seems to be associated with the LSB ob-
ject itself rather than brighter objects in its vicinity. However, the
problems associated with the LSB segment still exist – the segment
is irregular and contains several unmasked background objects that
significantly perturb its shape. It is also notable that the elliptical
fit (determined by SExtractor’s half-light FLUX RADIUS and
elliptical parameters) does not do a reasonable job at measuring
the object. This size underestimation can lead to the source being
missed, as it is typical for authors to perform a cut on the minimum
size of objects.

In contrast, the DeepScan detection (Fig. 5d) is much smoother
and does a better job of tracing the shape of the LSB structure.
It is arguable that this is because we used a large value of ε (10
arcsec= 50 pixels), but we note that DeepScan is designed to
work with such large kernels. The work of Greco et al. (2017)
has also shown that using much larger kernels than 1 arcsec is
not feasible in SExtractor because of blending with unmasked
faint/background galaxies (Koda et al. 2015; Sifón et al. 2018),
although this could be improved with a better masking strategy.
We also note in passing that SExtractor does not allow kernels
larger than 31 × 31 pixels, so it is impossible to use such a kernel
from SExtractor. A second point of consideration is that the
core points of the DeepScan detection define its shape, and these
are identified as pixels with relatively high SNR on the original
(i.e. non-smoothed) frame. Further, unmasked sources that cause
the perturbations in the SExtractor segmentation map have less
of an effect on the shape of the DeepScan detection because the
pixels aren’t flux weighted in the DBSCAN algorithm.

To summarize, while it might be preferable to use DeepScan to
trace extended LSB light it is also possible to use SExtractor to
detect very LSB objects, provided certain criteria are met:
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Figure 5. This is a real 810 × 810 pixel NGVS data cut-out with a synthetic LSB galaxy with a convolved CSB of ∼26.9gμ and an exponential profile (n = 1)
of effective radius 30 arcsec (roughly equivalent to the lower size limit of a UDG at Virgo). The black dotted ellipse represents this source out to one effective
radius. In frames (a) to (c), the light blue contour traces objects on the SExtractor SEGMENTATION check plot. The red ellipses represent SExtractor
estimates of the effective radius for each detection, measured in the same way as in Section 3.3. In figures (c) and (d), the orange ellipses bound the sources
that are masked. In figure (d), the green contour traces the DeepScan segmap, whereas the dashed red ellipse represents the effective radius as measured by
DeepScan. See the text.

(i) A ready-made source mask is provided.
(ii) Large smoothing kernels are used (we note that the largest

kernel size acceptable is 31 × 31 pixels).
(iii) Large values of DETECT MINAREA are used.
(iv) De-blending is deactivated.
(v) One treats parameters derived from the SEGMENTAION

check plot with some scepticism, particularly the FLUX RADIUS
as this seems to be systematically underestimated for large, diffuse
objects.

(vi) Cleaning is on (CLEAN = Y) to avoid spurious detections.

5 A P P L I C AT I O N TO TH E N G V S

To demonstrate the DBSCAN algorithm, we applied it to a sub-
set of the publicly available NGVS data that we acquired from the
Canadian Astronomy Data Centre.9 These data were taken with the
square-degree MegaCam instrument on the Canada–France–Hawaii
Telescope, and covers ∼100 square degrees of the Virgo cluster in
the u, g, r, i, and z bands. The NGVS was chosen because it offers
deep imaging of the Virgo cluster at high resolution ( 0.186 arcsec
pixels), and was the same data used by Davies et al. (2016) with
which we wish to compare. We use the g-band data as it has the
best coverage, a low maximum seeing FWHM (1arcsec) and an
extended-source limit of 29μ (Ferrarese et al. 2012). The subset
covers a 5-deg2 area projected radially eastwards from the centre
of the Virgo cluster (i.e. M87). The subset is made from five over-
lapping frames, each covering an area of 1 deg2 with corresponding
sizes of 21 000 × 20 000 pixels. The frames are each 1.74 Gbin size.
This area overlaps with part of the region explored by Sabatini et al.
(2005) so comparisons can also be made with their work. Objects
detected in this region likely belong to sub-cluster A, the largest
sub-cluster in Virgo (Mei et al. 2007).

Our general strategy is to use SExtractor to identify sources
for masking, before using DeepScan to search the remaining area
for LSB objects. The following processes were performed using
four 2.5 GHz Intel Core i5 processors with 8Gb of RAM. The
overall pipeline we used is as follows:

(i) SExtractor source masking
(ii) Sky modelling
(iii) Source detection

9http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/

Figure 6. Saturated star masking. The masked regions are contoured in
blue against a smoothed cut-out of NGVS g-band data. The image size is
4000 × 4000 pixels, or ∼12.5 × 12.5 arcmin. The large mask in the centre
successfully masks out the LSB ring around the saturated star and we find
no detections in its vicinity.

(iv) Source selection
(v) Human validation
(vi) Sérsic fits with ProFit

5.1 Source masking

The first stage in the mask generation was to run DBSCAN over the
raw data in order to identify saturated stars and their associated LSB
haloes. This is done because theSExtractormasks generated for
such objects were not sufficient to cover the sources. The parameters
we used were ε = 10 arcsec (∼50 pixels), thresh = 0, κ =
20. These are similar to those that we used for the actual LSB
detection, but were modified based on trial-and-error masking of
large saturated stars. Any detection that contained a saturated pixel
within its segmap dilated was masked within it. An example
of the result of this saturated star masking is shown in Fig. 6.

The masked regions were set to zero and these data were used as
the input to SExtractor. For this we used a DETECT THRESH
of 6 (see Section 5.3) and convolved the image with the default
filter (a 5 × 5 pixel Gaussian filter of FWHM 2 pixels). This makes
us sensitive to sources with surface brightnesses ≥∼25gμ for the
final DBSCAN run. We disabled de-blending in order to prevent
the fragmentation of sources close to the detection threshold as this
produced poor masks in their vicinities. We allowed SExtractor
to perform its own background and RMS estimates in small meshes
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of size 64 × 64 pixels to better detect smaller sources against their
local background. All other parameters were left to their defaults.
The isophotal radii were then calculated as described in Section 3.3
for the 29gμ isophote.

In a minority of cases, the initial SExtractor mask did not
cover the full source. This was particularly true for bright galaxies
with extended LSB haloes and bright unsaturated point sources
where the approximate Sérsic fits were inadequate. Requiring a
fainter masking isophote did not solve the issue, so we were forced
to enlarge the apertures by a factor of 1.5 for these sources (this was
determined empirically).

Each mask took approximately 30 min to generate. On average,
28 per cent of each frame was masked excluding the border regions.

5.2 Sky modelling

We use the source mask as an input to DeepScan’s sky mod-
elling routine. We add to the map by masking sources detected by
DBSCAN with the default paramters described in Section 3.2; this
allows sources to masked to well below the sky RMS level. We
only do one iteration of the DeepScan detection/masking process
as the mask is already quite complete. The sky itself was measured
in 500 × 500 pixels and is median filtered over 3 × 3 pixels. The
large sky-mesh along with the median filtering increases our ro-
bustness against bias in the sky measurement due to unmasked LSB
haloes. A second advantage is that 500 pixels (∼90arcsec) is large
compared to the sources we are searching for so they should not be
significantly subtracted with the sky.

5.3 Source detection

The relevant parameters for the segmentation map generation using
DBSCAN are the detection threshold, the search radius ε and κ . Our
approach for setting the parameters was to perform empirical tests
on a field image (this is an NGVS frame of an area of sky displaced
from Virgo where we expect a low density of LSB objects). The
detection threshold was set to 0.5 times the RMS (∼27.7gμ) because
lowering it much further made us sensitive to image artefacts such
as background defects. An ε value of 10 arcmin (∼50 pixels) was
used as this is the smallest aperture that can critically sample an
UDG at Virgo distance [UDGs have minimum size of 1.5 Kpc (van
Dokkum et al. 2015) so at 16.5Mpc this is ∼20arcsec]. With these
settings we can expect to detect UDGs with average SB within
their effective radii of ∼28gμ. We ran the field image through the
overall pipeline for several values of κ and SExtractor detection
thresholds (for the mask generation), with results shown in Fig. 7.

From the figure, it is clear that the results converge for high
values of κ . We select a value of κ = 32.5 based on this plot by
requiring less than five detections on the field image. With regard
to the SExtractor detection threshold, we were interested in
a value that was low enough in order to have a reasonably low
number of contaminant objects while being high enough not to
partially mask out LSB sources with shredded detections. We adopt
a DETECT THREHSH of 6 to lower the number of contaminant
sources. Note that we did not probe values lower than 6 for the
masking because this encroaches too far into the LSB regime, with
surface brightnesses fainter than ∼25 mag arcsec−2.

There is actually a significant difference in the background RMS
level between the frames which makes us sensitive to different sur-
face brightnesses from frame to frame. When we ran all the frames
with the same settings as above, we found there was much more
contamination of the output sample from spurious sources on some

Figure 7. DeepScan parameter tuning. Here we show the effect of varying
the SExtractor detection threshold DETECT THRESH and κ parameter
on the number of detections on a background NGVS frame. The number
of sources detected begins to level off for κ ≥ 30 for each value of DE-
TECT THRESH.

frames compared to others. We therefore normalized the threshold
for each frame to the absolute surface brightness corresponding to
that which was used on the field image, with settings as above.
This is because lowering the threshold (in SNR) for frames with
relatively high background RMS increases η sufficiently to protect
against the spurious detections.

After setting the parameters, DBSCAN was run and took approx-
imately 12 min per frame. In total, 67 objects were detected.

5.4 Detection analysis

Each source was assessed visually in order to determine whether
it was an astrophysical LSB source or miss-detection. We define
miss-detections to encompass data artefacts (such as stellar diffrac-
tion rings and satellite trails) and the real LSB component of bright
sources that have been inadequately masked. 14 of the raw detec-
tions were deemed to be miss-detections, leaving us with a sample
of 53 objects. Of the rejected sources, 5 were associated with bright
objects, 3 were unmasked stellar haloes, 3 were satellite trails, 2
were caused by artefacts from the data stacking procedure, and 1
was an extended LSB bloom caused by a bright source outside the
FOV. The rejected sources are shown for clarity in Fig. 8.

The remaining sources were cross-matched with the VCC
(Binggeli, Sandage & Tammann 1985), LSBVCC (Davies et al.
2016), and Sabatini et al. (2005) catalogues, using a search radius
of 20 arcsec (chosen so large to account for positional uncertainty
in other surveys). 23 of the sources had matches, leaving a sample
of 30 new LSB galaxies.

We used DeepScan to fit 1D Sérsic profiles to the detec-
tions ignoring masked regions. We used the segmap dilated
to estimate elliptical parameters and the centroid positions.
500 × 500 pixel cut-outs were obtained from the original data,
the sky, and RMS maps as well as the source mask and dilated
segmentation map, centred on these centroids.

The cut-outs were then used as inputs to the 2D Bayesian profile
fitting package ProFit, with initial parameter guesses given by
the 1D fits. We follow the methodology suggested by the ProFit
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Figure 8. Smoothed g-band cut-outs of the rejected detections. The maximum brightness of the dynamic range is approximately 25.5 mag arcsec−2. The red
contour shows the dilated segmentation maps produced with DBSCAN and the blue contour traces the mask.

team,10 which consists of a three-stage fitting process. First, a BFGS
gradient decent fit is obtained. The results from this are then used as
the initial parameters for a Laplace approximation using the method
of Levenberg–Marquardt (LM). Finally, the results are used as the
initial guesses for a more robust MCMC fit using the component-
wise hit-and-run metropolis (CHARM) algorithm, with 1000 iter-
ations. In the fitting we used a simple Gaussian PSF of FWHM 1
arcsec.

The residuals for each fit were judged by eye to ensure that they
were reasonable. In general they were, but for eight of the sources
we had to slightly modify the mask in order to get a good fit.
Taking the standard deviation of the posterior distributions for each
parameter result in uncertainty underestimates, likely because the
high quality of the initial parameter estimates and limited number
of iterations mean only a narrow region of parameter space can be
explored. To get a more realistic error, the upper and lower ranges of
the posterior distributions were used as the parameter uncertainties.

In Fig. B1 (Appendix), we show the cut-outs for our final sample
that contains new detections and those that had a match only in the
catalogue of Sabatini et al. (2005). We also provide a measurements
table for these sources in the Appendix. This is done because this
catalogue does not cover the whole of Virgo in the same way that the
VCC and LSBVCC do. These matches are of genuinely very LSB
and are obtained from a different data set using a matched filter
approach, making their re-detection a good coincidence test. We
denote the names of galaxies in our final sample that had matches
within the Sabatini catalogue with an asterisk after their name.
On the figure we also show the elliptical annuli corresponding to
the ProFit fits out to the effective radius. Note that the galaxy
VLSB23 does not have any measurements due to its highly unusual
morphology, an odd overdensity of point sources superimposed on
an LSB fuzz, and may be worth investigating further.

5.5 Results

We plot the effective radius (re) versus the mean surface brightness
within the effective radius (〈μe〉) based on our ProFit models in
Fig. 9 for the final sample (includes matching Sabatini et al. 2005
sources). On the plot we also show the LSBVCC sample. However,
the measurements presented in Davies et al. (2016) are in CSB

10http://rpubs.com/asgr/274695

Figure 9. Effective radius versus mean surface brightness within the ef-
fective radius for the new sample (red) and the extrapolated LSBVCC data
(grey-scale heatmap, see the text). The light blue points represent the com-
plementary sample. The blue box is the selection criteria used in van der
Burg et al. (2017), while the purple dashed line is the theoretical upper
limit of detection given our DBSCAN settings. The black dots represent the
catalogue of Yagi et al. (2016) projected at Virgo distance.

and exponential scale size units, and all assume a Sérsic index of
1. To try and quantify the uncertainty, this introduces on the re -
〈μe〉 plane, we take their initial results and calculate the relevant
parameters using Sérsic indices randomly generated based on our
sample (〈n〉 = 1.0 ± 0.4). We also plot the theoretical DBSCAN
upper detection boundary assuming n = 1.4 (i.e. 1σ above the mean)
which is consistent with our findings.

For context, we also show the selection criteria used by van der
Burg et al. (2017) in the figure, who used MegaCam imaging in
the search for UDGs around groups and clusters. Further, we plot
the sample of Yagi et al. (2016), who obtained a catalogue of LSB
galaxies in Coma with deep Subaru-R Suprime-Cam imaging, using
their single Sérsic Galfit (Peng 2002) fits. These results have been
mapped to Virgo g-band data by assuming a Virgo distance of 16.5
Mpcand a Coma distance of 99 Mpc. The Subaru-R to g conversion
was done using a fiducial (g − r) value of 0.45 (Roediger et al.
2017).
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Figure 10. Colour-magnitude diagram for galaxies in the VCC (grey),
LSBVCC (blue), and the new sample (red). Many of the new sample are
consistent with the Virgo red sequence, but there is a non-negligible sample
occupying bluer colour space. The rejected detections are shown in orange.

It is clear that the sample in this paper represents an extension
of the parameter space explored by other surveys towards the very
LSB regime, with 〈μe〉 > ∼26.5. It is perhaps surprising that no
larger LSB objects were found and this may be in part due to the
initial background subtraction performed on the public NGVS data,
which is done over scales of 20 arcsec. We are hesitant to draw
conclusions from this until we have a more complete sample, and
completeness estimates, which we intend to acquire in a follow-up
paper.

On the figure we also show the complementary sample, that
is the sources that we detected but had matches in the VCC or
LSBVCC. Two of these, VCC1331 and VCC1882, have measured
effective radii larger than 20 arcmin and therefore may warrant
reclassification to UDGs from their original classification of dwarf
ellipticals.

We measured the (g − i) colours of the sample in elliptical aper-
tures out to the effective radii measured in the g band with ProFit.
For these measurements, we ignored the masked pixels, the re-
sults of which are shown in Fig. 10. For the i-band data we again
used the publicly available NGVS data (Ferrarese et al. 2012). We
also show measurements from the VCC and LSBVCC obtained by
Keenan (2017). The general trend follows the Virgo red-sequence
with fainter sources having redder colours and a flattening of the
colour towards the faint end, as observed by Roediger et al. (2017).
Many of our final sample are consistent with this picture, but there
are exceptions. Most noticeably, a collection of sources seems to
depart the red sequence at the faint end, in favour of lower (g − i)
values. Note that this trend was still observed when recalculating
the colours taking into account masked pixels. Two of the sources
have unusually high values of (g − i). The source with the largest
value (VLSB30) may have a biased colour due to its proximity to a
star and the second (VLSB19) seems to be associated with a large
nucleated source.

Despite the red colours of the sources, they are generally better-
detected in the NGVS g-band because fiducially the RMS level of
g is ∼1.2 mag arcsec−2 fainter than that of i.

We briefly note that 10 of the 14 rejected detections have (g − i)
colours below the minimum measured from our final sample, as can
be seen in the figure. It may therefore be possible to increase the

Figure 11. Stellar masses versus effective radius for the final sample (red)
and complementary sample (blue) assuming a Virgo distance of 16.5 Mpc.
The heat map is the extrapolated data of Yagi et al. (2016) projected at
Virgo distance (see the text). The black dotted line represents the size of the
background estimation kernel in the original data reduction.

purity of the output automatically by applying a colour selection for
future surveys.

Fig. 11 shows the effective radii, in units of both arcseconds and
Kpc (at the Virgo distance of 16.5±1.1Mpc; Mei et al. 2007) against
the stellar mass calculated using the empirical relation derived by
Taylor et al. (2011). The galaxies have a mean (logged) stellar mass
of 106.3 ± 0.5 M�, making them fairly less massive than the sample
of UDGs presented in van Dokkum et al. (2015), which have a
median stellar mass of 6 × 107 M�. Note that if the colours are
measured without their source masks in place, the average stellar
mass rises only slightly to 106.4 ± 1.0 M�. There is an outlier in the
plot that corresponds to VLSB30 which is in proximity to a star. It
is likely that the colour has been considerably effected by the star
such that the stellar mass estimate may be erroneous.
galfitOn the figure we have also plotted estimates of the stellar

masses of the Yagi et al. (2016) sample projected at Virgo. Clearly
there are several uncertainties in this procedure, but to attempt to get
a representative picture, we have randomly generated a set of data in
which uncertain parameters have been perturbed within their errors,
including the original error estimates from the models as well as
uncertainties in distance and colour (we used (g − i) = 0.7 ± 0.2
based on Fig. 10). Our final sample seems to be both smaller in
terms of size and also stellar content compared to their sample.
It is interesting that some of our sources that matched with the
VCC/LSBVCC agree well with the projected distribution from the
Yagi sample, as it suggests that a re-inspection of the VCC/LSBVCC
may result in the reclassification of some objects to UDGs.

None of the final samples is larger than the 1.5 Kpc lower limit
required for UDG classification; there is a notable dearth of large
LSBs. Given their sizes and low stellar content, we classify them
as ultra-faint dwarfs (UFDs). It could also be that the UDG pop-
ulation is already present in the catalogues of the VCC and LSB-
VCC but has not been explicitly identified as such, an idea sup-
ported by the fact that two of the galaxies in the complementary
sample likely meet the UDG criteria. We note that the original
NGVS background subtraction over 20 arcmin may have the ef-
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fect of causing our measurements of the sizes of galaxies to be
underestimates.

6 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper we have introduced a new software package that we
have used to detect LSB features in wide area survey data. The
software is capable of measuring the background distribution and
producing source masks, currently based on SExtractor cata-
logues. The major novelty of DeepScan is that it uses a highly
efficient implementation of the DBSCAN algorithm to detect LSB
features using much larger search radii than has been done before,
allowing for the detection of extremely faint extended sources.

As with any detection process, there is a trade-off between com-
pleteness and the purity of the output sample. In DeepScan, this is
controlled by setting the DBSCAN input parameters: the clustering
radius ε, the confidence parameter κ , and the detection threshold
thresh. In general, larger values of ε allow for fainter objects to
be detected, but using excessively large values may result in source
confusion. κ must be chosen high enough to protect against spurious
detections of e.g. groups of background point sources, but setting it
too high may result in unacceptably low completeness.

The purity of the output sample is dependent on the quality of
the source mask. Creating a good mask is fairly difficult because of
the problems involved in masking out LSB components associated
with bright sources that do not adhere to elliptical profiles. Our
current approach is to use SExtractor to detect bright sources
and mask out to an isophotal radius derived based on fitting a Sérsic
profile using outputs from the SExtractor catalogue. This tech-
nique is successful in the majority of cases, but is not perfect. In the
example application, we masked the LSB components associated
with saturated regions using the segmap dilated produced us-
ing DBSCAN. A disadvantage of this is possible source confusion,
but is favourable because of its ability to mask large LSB features
of arbitrary shape. One promising future approach to creating the
source mask could be to use the dilation until convergence approach
used by ProFound, which can trace objects of arbitrary shape and
thus provide non-parametric source masks.

In the application to the NGVS data, the κ value was chosen by
measuring the number of objects detected on the frame as a function
of κ and choosing a value which had a low number of detections.
Using such a high value of 32.5 means we have been limited in
our capability to fully exploit DBSCAN because of the need to
mitigate against contaminant sources in the output sample. Even
with such a high value, we still reject 14 out of 67 detections, which
consist mainly of satellite trails and unmasked regions associated
with bright objects such as saturated stars. It is conceivable that
some of these objects may be removed automatically using a colour
analysis in future surveys on a larger scale.

Of the remaining 53 sources, 30 do not have matches in the VCC,
LSBVCC, or Sabatini catalogues. Keeping the Sabatini sources, we
are left with a sample of 39. These measure to have parameter ranges
of 26.0 ≤ 〈μe〉 ≤ 28.5gμ and 19 ≤ mg ≤ 21 following fitting of
Sérsic profiles with ProFit. Of this sample, none are large enough
to be classified as UDGs and we classify them as UFDs (assuming
cluster membership). Our current evidence for cluster membership
is that they are reasonably consistent with the colours of other Virgo
galaxies, and have angular sizes larger than the optimal selection
criterion of >3 arcminfor Virgo galaxies. Assuming cluster mem-
bership, the galaxies have very low stellar masses, with an average
of 106.3 ± 0.5 M�.

Comparing our final sample with those from other surveys, we
find that we have probed a different region of parameter space, char-
acterized by very low stellar mass estimates and surface brightness.
We hypothesize that the dearth of larger detections stems from the
initial background subtraction performed on the publicly available
NGVS data. Following measurements of two galaxies VCC1331
and VCC1882, it is further hypothesized that some of the UDG
population of Virgo may be contained within existing catalogues
such as the VCC and LSBVCC.

We have not made any efforts to estimate the completeness of our
new sample. In future work we plan to perform a similar analysis
on the whole of the NGVS. We aim to quantify the completeness
by injecting synthetic sources into the data and measuring what
we are able to recover in a similar way to that has been done by
van der Burg et al. (2017); only then do we plan on drawing any
astrophysical conclusions from our findings. The main conclusions
from the experiment we have performed here is that we are able to
detect new LSB features in areas that have specifically been searched
for them before, which are some of the most diffuse detected in
Virgo and reside in a different region in parameter space compared
with those in the VCC and LSBVCC catalogues.
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APPENDIX A : STATISTICAL LIMITS OF
DBSCAN

These figures are analagous to Fig. 2 but for the Sérsic index n and
the DBSCAN detection threshold κ .

Figure A1. Variation of the limits of detection with κ , ranging between 5
(blue) and 20 (red), with a colour gradient showing intermediate linearly
spaced values of κ increasing with redness. These results were obtained with
ε = 5 pixels, Imin = σ n.

Figure A2. Variation of the limits of detection with n, ranging between
0.5 (blue) and 2 (red), with a colour gradient showing intermediate linearly
spaced values of n increasing with redness. These results were obtained with
κ = 10, Imin = σ n, ε = 5 pixels.

A P P E N D I X B: SO U R C E C U T- O U T S

Smoothed data (g-band) cut-outs of our LSBG sample.
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Figure B1. Smoothed g-band cut-outs of our new detections. While some of the samples appear reasonably bright, the maximum brightness of the dynamic
range is approximately 25.5 mag arcsec−2, which is close to the faint end limit of detection for the LSBVCC. The red ellipses show the ProFit models out
to the effective radii. Sources with an asterisk following their name are also present in the catalogue of Sabatini et al. (2005).
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APPENDIX C : SOURCE MEASUREMENTS

A table listing measured parameters and their errors for our LSBG sample.

Name RA (deg) Dec. (deg) mag (g) 〈μe〉 (g) re (arcsec) n (g − i)

VLSB1 188.11080 11.62254 20.57 (0.13) 27.47 (0.26) 9.59 (1.04) 1.27 (0.16) 0.47 (0.06)
VLSB2 188.32165 11.62702 20.99 (0.08) 27.25 (0.19) 7.19 (0.55) 0.78 (0.10) 0.61 (0.02)
VLSB3 188.13531 11.70004 21.28 (0.13) 27.13 (0.25) 5.97 (0.62) 1.26 (0.15) 0.66 (0.02)
VLSB4∗ 188.12484 11.83312 19.64 (0.04) 26.99 (0.08) 11.79 (0.42) 0.94 (0.04) 0.84 (0.01)
VLSB5∗ 188.31528 11.86882 19.83 (0.05) 26.77 (0.11) 9.81 (0.41) 0.90 (0.06) 0.82 (0.01)
VLSB6 187.74268 11.97468 20.27 (0.09) 27.41 (0.24) 10.87 (1.11) 1.99 (0.07) 0.42 (0.02)
VLSB7 188.29238 12.08603 20.11 (0.03) 25.91 (0.07) 5.75 (0.15) 0.92 (0.07) 0.66 (0.01)
VLSB8 188.07065 12.12576 20.20 (0.08) 28.20 (0.37) 16.08 (0.20) 0.60 (1.11) 0.63 (0.05)
VLSB9 187.94944 12.30602 20.74 (0.15) 28.04 (0.33) 11.66 (1.57) 0.74 (0.16) 0.37 (0.06)
VLSB10 188.72908 11.60686 20.63 (0.13) 27.70 (0.27) 10.50 (1.11) 0.74 (0.16) 0.85 (0.03)
VLSB11 188.78022 11.65995 20.24 (0.06) 27.06 (0.25) 9.28 (1.10) 0.62 (0.06) 0.64 (0.02)
VLSB12 189.01353 11.71026 20.62 (0.11) 28.74 (0.64) 16.98 (0.21) 0.58 (1.15) 0.54 (0.08)
VLSB13 189.22741 11.84436 20.44 (0.02) 26.36 (0.05) 6.10 (0.12) 0.83 (0.04) 0.80 (0.01)
VLSB14 188.89157 11.91654 20.58 (0.09) 27.02 (0.21) 7.81 (0.68) 1.21 (0.12) 0.73 (0.01)
VLSB15∗ 189.07497 11.95334 19.96 (0.06) 27.58 (0.13) 13.31 (0.71) 0.73 (0.08) 0.82 (0.01)
VLSB16 189.39290 12.10761 19.83 (0.09) 27.83 (0.23) 15.84 (1.52) 0.97 (0.09) 0.39 (0.06)
VLSB17 190.24144 11.60283 20.97 (0.09) 27.52 (0.19) 8.19 (0.63) 0.67 (0.10) 0.77 (0.02)
VLSB18 189.60967 11.65298 20.44 (0.05) 27.14 (0.11) 8.78 (0.41) 1.01 (0.07) 0.29 (0.02)
VLSB19 190.01774 11.83603 20.03 (0.22) 27.44 (0.51) 12.44 (0.20) 1.33 (1.63) 1.40 (0.05)
VLSB20 189.68450 11.94874 21.16 (0.11) 27.20 (0.24) 6.47 (0.67) 1.13 (0.14) 0.59 (0.02)
VLSB21 190.25336 12.03853 20.34 (0.28) 28.10 (0.68) 14.55 (3.37) 1.32 (0.25) 0.52 (0.13)
VLSB22∗ 189.98940 12.11310 19.82 (0.02) 25.78 (0.05) 6.24 (0.14) 0.78 (0.03) 0.78 (0.00)
VLSB23∗ 189.75714 12.20416 – – – – –
VLSB24∗ 189.69605 12.23770 20.52 (0.09) 27.04 (0.21) 8.02 (0.66) 1.02 (0.15) 0.16 (0.07)
VLSB25 190.25519 12.28037 20.17 (0.04) 27.76 (0.18) 13.18 (0.19) 0.53 (1.08) 0.73 (0.03)
VLSB26 191.04250 11.57866 20.02 (0.10) 25.23 (0.16) 4.40 (0.27) 1.88 (0.34) 0.81 (0.02)
VLSB27 190.82000 11.62940 19.05 (0.03) 27.24 (0.07) 17.28 (0.46) 0.63 (0.03) 0.59 (0.01)
VLSB28 191.27329 11.66796 20.75 (0.18) 28.32 (0.34) 13.06 (1.79) 0.34 (0.07) 0.06 (0.07)
VLSB29 190.69944 11.69863 20.48 (0.05) 26.29 (0.12) 5.80 (0.28) 1.15 (0.08) 0.64 (0.02)
VLSB30 191.10218 11.94348 20.09 (0.03) 24.48 (0.14) 3.03 (0.18) 2.50 (0.00) 1.70 (0.00)
VLSB31∗ 191.31792 12.24813 19.08 (0.32) 26.20 (0.44) 10.70 (1.60) 1.44 (0.79) 0.60 (0.03)
VLSB32 190.89820 12.32410 21.02 (0.07) 27.40 (0.18) 7.55 (0.58) 1.03 (0.14) 0.63 (0.02)
VLSB33 191.07622 12.33591 20.23 (0.10) 27.49 (0.24) 11.31 (1.15) 1.86 (0.16) 0.31 (0.11)
VLSB34 190.55282 12.37594 20.27 (0.04) 26.82 (0.16) 8.15 (0.59) 0.92 (0.06) 0.71 (0.01)
VLSB35 192.03936 11.59721 21.14 (0.29) 26.05 (0.88) 3.92 (0.23) 0.89 (1.19) 0.75 (0.01)
VLSB36∗ 191.69418 11.65545 20.22 (0.03) 26.53 (0.07) 7.29 (0.21) 0.75 (0.05) 0.61 (0.01)
VLSB37 192.28541 11.91996 20.78 (0.06) 26.05 (0.12) 4.53 (0.25) 1.14 (0.12) 0.62 (0.01)
VLSB38 191.70495 11.94819 20.76 (0.08) 26.81 (0.18) 6.46 (0.43) 1.40 (0.11) 0.75 (0.01)
VLSB39∗ 191.70132 12.19595 19.51 (0.08) 27.43 (0.16) 15.34 (0.91) 0.71 (0.09) 0.80 (0.01)
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