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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

Keywords: Assembly; Design method; Family identification

1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

The reliability model with covariates for machinery parts has been extensively studied by the proportional hazards model (PHM) and its variants. 
However, it is not straightforward to provide business recommendations based on the results of the PHM. We use a novel method, namely the 
Conditional Inference Tree, to conduct the reliability analysis for the automobile engines data, provided by a UK fleet company. We find that the 
reliability of automobile engines is significantly related to the vehicle age, early failure, and repair history. Our tree-structured model can be 
easily interpreted, and tangible business recommendations are provided for the fleet management and maintenance.     
 
© 2018 The Authors. Published by Elsevier B.V. 
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1. Introduction 

    During operation of a fleet, the condition of vehicles declines 
due to degradation and ageing, which may further cause 
failures. Maintenance is crucial in the fleet management in 
order to achieve the optimal availability of vehicles and also 
reduce the total cost, including maintenance cost and system 
cost due to idle time. Typically, the maintenance of vehicles in 
a fleet is scheduled based on a certain period of time or a certain 
number of miles, depending on which one comes earlier. In this 
work, we find that the reliability of automobile engines in fleet 
vehicles is not homogeneous and actually depends on other 
covariates. 

Identifying the key covariates can support the fleet manager 
in making maintenance decisions. In the present body of 
literature, the reliability analysis with covariates for machinery 
parts has been extensively studied by the Proportional Hazards 
Model (PHM) [1-4] and its variants [5-8]. However, 
transforming the estimation results from the PHM into tangible 
business recommendations tends not to be straightforward.  

The classification and regression tree model is introduced by 
Breiman et al. [9]. The results from tree-structured models can 
be interpreted in a straightforward way [10, 11]. However, an 
exhaustive search procedure for the tree model has two 
problems: overfitting and selection bias [9, 12, 13]. The 
Conditional Inference Tree, developed by Hothorn et al. [14],  
solved the two problems by applying the appropriate statistical 
test procedures to both variable selection and stopping criteria.  

In this paper, a novel method, namely the Conditional 
Inference Tree [14], has been employed in order to conduct the 
reliability analysis on a sizable dataset of automobile engines. 
There are mainly two contributions from this study. Firstly, our 
tree-structured model can be easily interpreted, facilitating 
more constructive communications with practitioners. 
Secondly, unlike most machine-learning based models, which 
lack a theoretical foundation, the Conditional Inference Tree 
employed in this study is based on a well-defined theory of 
conditional inference procedures. To the best of our 
knowledge, this is the first study to use a Conditional Inference 
Tree for the reliability analysis on automobile engines.  
    Our main findings include: i) vehicle age is the most 
important covariate in determining the reliability of automobile 
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engines; ii) early failure can largely deteriorate the reliability 
of automobile engines; and iii) engines with a large number of 
repair records in old vehicles have the least reliability. Based 
on the results of the Conditional Inference Tree, tangible 
business recommendations are provided for the fleet 
management and maintenance. 

2. Literature Review 

In the literature, the reliability models with covariates can 
be categorised into three groups: parametric, nonparametric 
models, and machine-learning based models.  

Parametric models assume that the time-to-event (duration, 
lifetime, failure time) of a system follows a specific parametric 
distribution, such as exponential, Weibull, lognormal, and log-
logistic. The accelerated failure time (AFT) models belong to 
the parametric category. The effect of a covariate in an AFT 
model is to act multiplicatively on the failure time or its 
transformations. The parametric models are only suitable for 
the cases in which the historical data follows the specified 
distribution. However, it is sometimes difficult to find a 
parametric distribution to fit the historical data in practice. If 
there is misspecification in the underlying distribution, the 
results from parametric models could be inaccurate. Newby [4] 
reported the impact of misspecification in the AFT models. 
Mettas [15] analysed the stress-type accelerated life data by the 
AFT models of the Weibull and lognormal distributions for 
different censoring schemes.  

In the nonparametric models, the PHM, suggested by Cox 
[16], is one of the most extensively used tools by the reliability 
analysis due to its flexibility that regression coefficients can be 
estimated using partial likelihood without the specification of 
the baseline hazard function. The effect of the covariates is 
assumed to act multiplicatively on the hazard rate or its 
transformations. This property is referred to as the 
proportionality property, which is the basic assumption of the 
PHM. The proportionality property should be carefully 
checked when using the PHM. Kumar and Klefsjo [1] provided 
a review of the literature on the PHM. Kumar and Westberg [3] 
discussed the effect of operating conditions on the lifetime of a 
system in both the PHM and AFT.  A discussion on choosing 
between the AFT and PHM is provided by Newby [4].  

A number of variants and extensions of the PHM are 
proposed in order to address the cases in which the 
proportionality property is violated. Anderson and 
Senthilselvan [5] extended the PHM to allow for time-varying 
covariate coefficients, which is referred to as the two-step 
regression model. They proposed the conditional log-
likelihood to estimate the regression coefficients. However, 
this model is likely to suffer a large number of breakpoints.  
The population can be divided into different strata according to 
a single covariate or a set of covariates. The Stratified PHM 
assumes that the hazard rate is proportional within the same 
stratum but not across different strata. Hence, the baseline 
hazard rate could be different for different strata. The 
coefficient in the Stratified PHM can be estimated by a similar 
likelihood method in Cox [16]. Kay [6] applied the Stratified 

PHM in the data from a clinical trial in medicine. Kumar [7] 
employed the Stratified PHM in the reliability analysis of 
repairable systems. One disadvantage of the Stratified PHM is 
that the estimated coefficients could be inaccurate in the case 
of a small sample size. The Extended Cox Regression Model 
extends the PHM to simultaneously analyse the effect of time-
independent and time-dependent covariates [17]. One flaw of 
this model is that the functional form on the time-dependent 
covariates must be defined over time. Fisher and Lin [8] 
demonstrated how to select the correct form of a time-
dependent covariate by four medial examples. Misspecification 
on the functional form could result in a great potential of bias 
[8]. Other variants of the PHM include: the Proportional 
Intensity Model [18], Proportional Odd Model [19], 
Proportional Covariate Model [20], etc. Gorjian et al. [21] 
provided a review of the literature on reliability models with 
covariates.  

Due to the increase of computational power, a large number 
of machine-learning-based methods have been applied in the 
field of reliability analysis. Chatterjee and Bandopadhyay [22] 
developed a neural network-based model to forecast reliability. 
Their model has two main components: selecting the input 
variables by maximising the mean entropy value and selecting 
the neural network parameters by a genetic algorithm. The 
authors demonstrated that their model was accurate in 
forecasting the failure of a load-haul-dump machine. 
Tamilselvan and Wang [23] applied the deep belief network to 
the aircraft engine health diagnosis and electric power 
transformer health diagnosis. Their method is constructed 
through a hierarchical structure with multiple stacked restricted 
Boltzmann machines. This entails the advantages of fast 
inference and encoding complex network structures. Wei et al. 
[24] conducted the reliability forecasting by the support vector 
regression with dynamically updating parameters when a new 
observation comes. The dynamical updating mechanism is 
implemented via particle filtering. Their four application 
results showed that their dynamic-version support vector 
regression is more robust than the static-version one. Another 
study also based on support vector regression is conducted by 
Nieto et al. [25]. They utilised particle swarm optimisation with 
kernel parameter settings in the training procedure in order to 
improve the regression accuracy. The method is applied to the 
prediction of the remaining useful life of aircraft engines. The 
advantage is that their model does not need the previous 
operation stats of the engine. Dai et al. [26] proposed a 
multiwavelet linear programming support vector regression 
method for the reliability analysis. The idea of their method is 
to construct the autocorrelation function of multiwavelets into 
a kernel, which is used in linear programming support vector 
regression. They demonstrated that the method is more 
efficient than the classical support vector regression. Other 
machine-learning based methods applied in the field of 
reliability analysis include: adaptive wavelet frame neural 
networks [27], complex-valued neural networks [28], least 
square support vector machine [29], evidential reasoning 
algorithm [30], accelerated Monte Carlo with support vector 
machine/logistic regression [31], etc. Huang et al. [32] 
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provided a review of the current research status and future 
trends in the literature on support vector machine applied in the 
estimation of the remaining useful life. 

However, most machine-learning based models suffer a lack 
of theoretical foundation and are usually regarded as a ‘black 
box’. It is sometimes dangerous to solely rely on the output of 
those models to make operational decisions because of data-
mining and over-fitting problems. In terms of the Conditional 
Inference Tree used in this study, Hothorn et al. [14] have 
shown that its recursive partitioning procedure is fully 
supported by a well-defined theory of the conditional inference 
procedure. The input variable selection and stopping criterion 
are based on formal hypothesis tests, mitigating the problems 
of over-fitting and selection bias in the exhaustive search 
algorithm in the tree-based models. In addition, although many 
machine-learning methods show good performance, the 
practitioners are still reluctant to employ them in the practical 
implementation of the reliability analysis because those 
methods are ‘too complex to explain’. Our tree-structured 
model can be easily interpreted, facilitating more intuitive 
communications with practitioners.  

Reliability analysis provides insights and implications for 
predictive maintenance and preventive maintenance. Zhou et al. 
[33] proposed a reliability-centred predictive maintenance 
policy that performs an imperfect preventive maintenance 
whenever the system reliability reaches the threshold. You et 
al. [34] employed the extended proportional hazards model to 
model the system reliability and further developed two 
component-level control-limit preventive maintenance policies. 
Xia et al. [35] assumed that the hazard rates are available and 
make the machine-level decision for availability-effective and 
cost-effective maintenance intervals. 

 

3. Data 

    The Time Between Failure (TBF) of the automobile engine 
data was collected from a sizable fleet service provider in the 
United Kingdom. Our analyses focused on most recent relevant 
subset of TBF data with a total sample size = 1430. Each engine 
repair event can be triggered by a scheduled service or an 
unscheduled fault. We distinguish between scheduled and 
unscheduled records. The TBF in a scheduled event will be 
treated as a right-censored record since the theoretical TBF 
could be longer without the scheduled service. The TBF in an 
unscheduled fault will be treated as an exact record.  

Table 1 shows the descriptive statistics of the TBF. There 
are 1,430 records of TBF. 911 out of the total records are due 
to unscheduled faults, and the remaining records are triggered 
by scheduled services, which are treated as right-censored data. 
The median is 476, with the confidence interval (440, 525) 
being estimated using Greenwood’s method [36]. According to 
the quantile values, 10% of all records are shorter than 61 days, 
and 10% of all records are longer than 1,538 days. 

 

 

Table 1 Descriptive Statistics 

number of records 1430 

number of events 911 

10% quantile 61 

30% quantile 236 

Median 476 

70% quantile 840 

90% quantile 1538 

median lower confidence limit 440 

median upper confidence limit 525 

4. Method 

In tree-structured regression models, the exhaustive search 
procedures of the recursive binary partitioning are associated 
with two structural problems: overfitting and selection bias 
towards covariates with many possible splits or missing values. 
An unbiased recursive partitioning was designed by Hothorn et 
al. [14] in order to tackle the two problems. They developed the 
theory of conditional inference trees leading to the estimation 
of a regression relationship by binary recursive partitioning in 
a conditional inference framework. Interested readers can refer 
to the mathematical details in Ref. [14]. We briefly explain the 
procedure of the algorithm here. 
 

Step 1) Conduct a global test of independence between 
all covariates and the response variable. If the 
outcome is ‘not reject’, the procedure needs to be 
stopped. Otherwise, the procedure proceeds to find the 
covariate with the strongest dependence to the 
response variable. 
 
Step 2) Conduct a binary split in the selected 
covariate. 
 
Recursively repeat Step 1) and Step 2) until the global 
test of independence is not rejected.   
 

In order to avoid the systematic tendency towards covariates 
with many possible splits, the key idea is the separation of 
variable selection in Step 1) and splitting procedure in Step 2). 
The stopping criterion is based on the global null hypothesis of 
independence between the response and any covariate, which 
is intuitive and statistically justified. It has been shown that the 
resulting trees by this algorithm have the predictive 
performance as good as that of established exhaustive search 
procedures but with lower computational costs [14]. 

As for our practical implementation, we choose the 
significance level at 5% for the independence test to determine 
the level of the covariates in the tree. Additionally, we set the 
minimal bucket in the terminal nodes at 50.    
    The next step is to identify the appropriate covariates, which 
may play a role in determining the TBF. We have identified the 
following potentially important covariates that may have a 
significant impact in determining the reliability of automobile 
engines. 
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 Vehicle age (VAge): the time difference (in years) 

between the repair date and the registration date of the 
vehicle. 

 Cumulative miles (CumM): the distance (in 1000 
miles) the vehicle has travelled from its registration 
date to the repair date. 

 Average miles (AvgM): the distance per unit time (in 
1000 miles/year) of the vehicle has travelled before 
the repair date (in 1000 miles/year). It is calculated by 
the cumulative miles divided by the vehicle age. 

 Job intensity (JobInt): the distance per unit time (in 
1000 miles/year) of the vehicle has travelled between 
the repair date and the next repair date. It is calculated 
by the miles travelled in the next TBF divided by the 
time length of the next TBF. 

 Number of repairs (nRepair): the number of times 
the vehicle engine has been repaired in the garage 
before the repair date.  

 
    Other covariates (e.g. drivers’ behaviour, operational 
information, geographical information, and environment 
information) can be considered. However, the record of that 
information is not available in our dataset.   

5. Empirical Results 

Figure 1 shows the results of the final tree-structured 
survival model for the automobile engine TBF data. The 
terminal nodes in the tree show the Kaplan-Meier estimates of 
the TBF (in days) of the partitioned groups. Interestingly, 
AvgM has been excluded from the tree models, implying that it 
is insignificant in affecting the survival function of automobile 
engines.  

Table 2 presents the median and its confidence interval for 
different nodes in all three levels. We can find that the most 
important covariate is VAge because it is located in the root 
node. With the cutting-point at 8.025 years old, the difference 
in the median of Node 2 (median 616) and Node 9 (median 240) 
is substantial, 616-240=376 days. Hence, a more suitable 
preventive maintenance policy could be taken with the engine 
used in vehicles more than 8.025 years old. In other words, the 
scheduled services for checking the engine could be more 
frequent for relatively old vehicles. 

Given the engine usage in vehicles less than 8.025 years old, 
the second important covariate is nRepair. If the engine has 
been faulty more than once, its TBF is significantly reduced, as 
can be shown by the difference between the median in Node 3 
(median 709) and Node 6 (median 446) is 709-446=263 days. 
Thus, the early failure in the automobile engines will 
dramatically reduce the TBF. Avoiding the early failure is 
necessary in order to enhance the reliability of engines. For the 
vehicles with early failure in the engines, predictive 
maintenance could be more suitable.     
    Comparing Node 4 (median 823) and Node 5 (median 463), 
we can draw the conclusion that the usage, CumM, plays an 
important role when the vehicle is relatively new (less than 
8.025 years old) and has no early failure. Compared to vehicles 
with more than 18.52K cumulative miles, vehicles with less 

than 18.52K cumulative miles have a higher survival function, 
with the difference in the median of 823-463=360 days. As can 
be observed in Figure 1, the survival function in Node 4 
decreases slowly, while the survival function in Node 5 has a 
relatively steeper downward slope. In order to enhance the 
reliability of the engine, preventive maintenance with less 
interval of time could be considered in the case of relatively 
new vehicles which have travelled more than 18.52K.       
 

Table 2 Kaplan-Meier estimates of different nodes 

n events median 95% LCL 95% UCL 

First level   
Node 2 1148 698 616 545 686

Node 9 282 213 240 203 261

Second level  
Node 3 732 419 709 631 770

Node 6 416 279 446 361 525

Third level  
Node 4 465 256 823 745 896

Node 5 267 163 463 370 596

Node 7 236 145 701 616 771

Node 8 180 134 256 164 341

Node 10 231 175 261 243 290

Node 11 51 38 74 55 101
 
     

When the vehicle has an early failure in the engine, the JobInt 
becomes critical in determining its survival function. The 
difference between the median in Node 7 (median 701) and 8 
(median 256) is significant, i.e. 701-256=445 days. Hence, it is 
sensible to assign relatively less intensive jobs to vehicles with 
early failures. Otherwise, the engine could have the next failure 
in a relatively short period of time. 

Comparing Node 10 (median 261) and Node 11 (median 74), 
the difference between the median of the TBF is large, 261-
74=187 days. The survival function of Node 11 in Figure 1 
fades to zero in a fast manner. Depending on the repair cost, the 
fleet manager could consider scrapping the engine used in this 
group of vehicles, which are more than 8.025 years and have 
been repaired more than six times. An alternative option is to 
remanufacture the engine.  

6. Conclusion 

A novel method, namely the Conditional Inference Tree, has 
been applied to the reliability analysis of automobile engines. 
Compared with the PHM and its variants, our tree-structured 
model has a straightforward interpretation, which can be 
transformed into tangible business recommendations for the 
fleet manager. Compared with other machine-learning based 
methods, the Conditional Inference Tree is based on the well-
defined theory of conditional inference procedures. 
Based on the estimated tree structure, tangible business 
recommendations are provided for the fleet management. It has 
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been revealed that the most important covariate is the vehicle 
age, with relatively important covariate being the number of 
repairs, the cumulative miles of the vehicle, and the job 
intensity. Avoiding early failure is necessary to enhance the 
reliability of engines.  Extra care should be taken with engines 
in relatively new vehicles which have travelled more than 
18.52K miles. It is sensible to assign relatively less intensive 
jobs to the vehicle with early failures. Fleet managers could 
consider scrapping or remanufacturing the engine if it has been 
repaired more than 5 times and it is being used in vehicles more 
than 8.025 years old.  

The limitation of our model is that the tree-structure might 
be unstable in different time periods. In other words, the 
estimated tree structure from the historical data might not be 
appropriate for future data. Hence, it is necessary to monitor 
the tree-structure with new coming observations in practice.  

Further research studies wish to explore the forecasting 
ability of the Conditional Tree Model, with the comparison to 
the PHM and its variants. It could also be potentially beneficial 
to use bootstrap aggregating (a.k.a. bagging) and random 
forecasts to improve the forecasting accuracy of the 
Conditional Tree Model.  
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Figure 1 Tree-structured survival model for the automobile engine data. The 
terminal nodes in the tree show the Kaplan-Meier estimates of the Time 
Between Failure (in days shown in the x-axis) of the partitioned groups. 
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