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ABSTRACT 

Health monitoring is essential in guaranteeing the safe, efficient, and correct 

operation of complex engineering systems. This PhD thesis presents a simulation 

of a non-linear, experimental-based model of a coupled tank apparatus CE105 

under LabVIEW environment. The consideration of a traditional simple tank 

system is extended via the inclusion of non-linear elements. The simulation is 

used to accelerate the timescales of the monitoring and controller signals for 

nominal and faulty behaviour for several operating scenarios. In this study, a 

detailed simulation with several sources of fault was produced and run with the 

variety of operating scenarios to study the nominal and faulty behaviour of such 

mechatronic system.  

It is concluded that the liquid level will not be affected by fault nature and intensity 

in the presence of PID controller that covers hidden faults until its signal reaches 

a certain threshold. Hence, the end of useful life can be predicted by tracking the 

PID signal at any stage of the operating scenario. 

 Technology advances have impacted upon monitoring, diagnostics and 

prognostics activities for increasingly sophisticated industrial systems and their 

operations. In particular, for integrated mechatronic systems, the facility provided 

by dynamic simulation models in presence of deteriorating faults has been 

investigated. For informed data-driven prognostic extrapolations, the long-term, 

time-varying operational profile of the mechatronic system requires recording and 

analysis. The contribution reported in this study relates to the simulation and 

experimentally validated, of a CE105 coupled-tank liquid level control system and 

three individual-thank liquid level system. A Sign Chart Algorithm (SCA) was 

developed and utilised as a novel controller-based health monitored (CBHM) 

system. Moreover, from the SCA and the PID signal trend, the remaining useful 

life of the system has been estimated. Results are reported and discussed for 

leakage or blockage and pump performance deterioration faults. 
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𝑎 Constant equal to the orifice cross-sectional area multiplied by 
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A PID signal trend parameter  
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B PID signal trend parameter 

C PID signal trend parameter 

D PID signal trend parameter 

E PID signal trend parameter 

F PID signal trend parameter 

F1 PID signal trend parameter 

F2 PID signal trend parameter 

𝑔 The acceleration due to gravity 𝑚. 𝑠−2 

ℎ Steady state liquid level mm 

ℎ̇ The rate of change of the liquid level (h) concerning time 𝑚. 𝑠−1 

𝐾 Discharge coefficient 𝑚2. 𝑠−1 

𝐾𝑐 The proportional gain of the PID controller 

𝑚̇ Liquid mass flowrate passes through the discharge valve 𝑘𝑔. 𝑠−1 

𝑃 Hydrostatic pressure 𝑁.𝑚−2 

𝑃𝑖  𝑎𝑛𝑑 𝑃𝑜 Pressure difference before and after the outlet restriction 

respectively 𝑁.𝑚−2 

𝑄𝐵𝑙𝑜𝑐𝑘𝑎𝑔𝑒 Blockage as a percentage of the nominated flowrate 

𝑞𝑖 Liquid inflow rate, 𝑙. 𝑚𝑖𝑛−1  

𝑄𝑖 Inlet liquid flow rate, 𝑚3. 𝑠−1 

𝑄𝑙𝑎𝑚 Laminar outflow rate through the drain valve m3. s−1 
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𝑄𝐿𝑒𝑎𝑘 Leakage as a percentage of the nominated outflow rate m3. s−1 

𝑄𝑜 Liquid outflow rate m3. s−1 

𝑄𝑝 The pump outflow rate 𝑙. 𝑚𝑖𝑛−1 

𝑄𝑡𝑢𝑟 Turbulent flowrate through the drain valve m3. s−1 

𝑅 Flow resistance through the outlet restriction. 

R2 Correlation coefficient to describe how well a trend equation 

describes the data in Microsoft Excel 

T Time in seconds 

𝑇𝑑 Derivative time of PID controller, 𝑚𝑖𝑛 

𝑇𝑖 Integral time of PID controller, 𝑚𝑖𝑛 

𝑉1𝑃𝐼𝐷 Linear term of the PID signal trend 

𝑉2𝑃𝐼𝐷 The exponential term of the PID signal trend 

𝑣𝑖  𝑎𝑛𝑑 𝑣𝑜 Liquid velocity at point (𝑖 𝑎𝑛𝑑 𝑜) respectivily 𝑚. 𝑠−1 

𝑉𝑃𝐼𝐷 PID signal 𝑣𝑜𝑙𝑡 

𝑥 Independent variable of a trend function 

𝑦 The dependent variable of a trend function 

𝑍𝑖 and 𝑍𝑜 The vertical position of point i and o respectively 𝑚 

𝜂𝑝 Pumping efficiency % 

∝ Scale parameter, ∝= 1 for laminar flow through the outlet 

restriction, and ∝= 2 for turbulent flow 

𝜌 Liquid density 𝑘𝑔.𝑚−3 
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1.1 Background and motivation 

System health monitoring is state of the art in many kinds of industrial 

processes. In-service system failure can be assumed as a nightmare of industrial 

activities. In the early monitoring system, people have often used their ears or 

screwdrivers for example, as a pick-up sensor of noise and vibration, while the 

machine was in operation. Typical modern condition-based monitoring systems 

consist of different kinds of sensors and data acquiring systems, integrated with 

computer software programmes, which analyse the relevant signals to assess 

the system health.  

Due to the increasing complexity of the modern systems under control and 

the interest to achieve optimal performance, the development and monitoring of 

control system have significantly grown in the past decades. Mechatronic 

systems can be defined as the synergistic integration of sensors, actuators, 

signal conditioning, power electronics, decision and control algorithms, and 

computer hardware and software to manage complexity, uncertainty, and 

communication in engineered systems. The vast majority of mechatronic systems 

are controlled by two types of well-known controller, Proportional – Integral- 

Derivative (PID) controller and Programmable Logic Controller (PLC).  

An effective and robust on-line monitoring and predictive maintenance 

technology are used to detect impending faults in machines and allow 

maintenance activities to be scheduled. To maintain systems operating at optimal 

levels, detection of faults in their critical components (e.g. valves and pumps) is 

essential. Any fault if it is not detected in time, will often progress to more severe 

failure affecting the other equipment of the system.  

Liquid level systems have a wide range of sensors and electrically or 

manually operated control valves and pumps. Rotary and diaphragm pumps 

components are commonly used in such systems. They are exposed to tension-

compression or repeated bending stresses developing cracks in their internal 

components that eventually lead to elements failure. Diaphragm fatigue and 

bearing degradation are well-known problems in many industrial applications. It 

will be essential to enhance the reliability and lifetime of equipment to run liquid 

level systems at optimal levels in industrial activities. This issue encourages 
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engineers and scientists to develop different approaches of condition-based 

monitoring and fault detection technologies for an early alert of incipient 

mechanical and/ or electrical faults occurrence. Reliable and robust monitoring 

systems can lead to plan maintenance activities according to the system health 

condition before component failure, thereby minimising inherent damage to 

related components. Scheduled maintenance activities can cover all preventive 

maintenance, including routine checks, periodic maintenance and periodic 

testing. Hence, if a health condition-based monitoring programme is successfully 

implemented, it will allow the system to operate up to its full capacity without 

having to halt the machine at fixed periods for inspection while it shows a healthy 

performance even with the presence of hidden faults. 

1.2 Controller-based monitoring (CBM) system 

Prognostics and health management (PHM) is a new engineering approach, 

which enables real-time health estimation of a system during its operating 

scenario. Moreover, it is possible to predict the system future state based on up-

to-date information by incorporating different fields such as sensing technologies, 

failure physics, control and machine learning, modern mathematical and 

statistical approaches and data acquisition. PHM enables engineers to use data 

and health state information to improve their knowledge of the system and 

provides a technique to maintain the system working in its healthy condition. 

Regardless, PHM has initiated at the aerospace industry; it is now expanded to 

be used in many applications including manufacturing and industrial activities, 

automotive, railway, energy power generation, and heavy industry (Kim, An et al. 

2017).  At first, PHM was started to reduce helicopters accident rate by the Civil 

Aviation Authority of the United Kingdom in the 1980s and has been developed 

in 1990s based on health and usage monitoring system (HUMS) that measures 

health conditions and performance of the helicopter. HUMS achieved excellent 

results to reduce accident rate by more than a half by being set on in-service 

helicopters (John Burt 2011). In recent years, prognostics and health 

management has revolutionised the perception of product reliability and has 

resulted in a wide range of applications. Commercial and military markets request 

even greater reliability from mechatronic systems where fault could lead to 
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catastrophic failures. As a result, there is an increasing demand for a significant 

change in reliability towards systems health assessment, fault diagnostics, and 

prognostics (the real-time prediction of reliability and estimating the remaining 

useful life) of mechatronic systems. Also, there is a particular need to address 

continuous faults and intermittent failures which are common degraders of 

system reliability.  

The goal of PHM is to minimise the possibility of time loss due to faulty 

operation, routine inspection, degradation of systems and maintenance. 

Industrial activities apply PHM to manufacturing processes and equipment 

management as a key part of proactive maintenance thrust that began several 

years ago. This approach was a natural improvement of preventive maintenance 

to performance or condition-based maintenance. Cost and benefit advantages 

are quite significant – savings in maintenance and spare parts costs, elimination 

of in-service stoppages, and final product quality and reliability improvements. 

PHM has been applied to aerospace and military systems for more than three 

decades.  

One of the main objectives of health monitoring is continuously observing 

the behaviour of a mechatronic system and estimate how health it is to 

accomplish the future required scenario. Condition-based maintenance is based 

on using real-time prognostics and health management data to arrange and 

optimise maintenance activities. It could be worth to track the control signal of 

feedback controlled mechatronic systems to estimate the whole system health 

condition, which can be called controller-based monitoring (CBM) approaches. 

By observing the health condition of a system, maintenance activities can be 

precisely scheduled in advance, which leads to maximising the remaining useful 

life of this equipment. Using CBM, maintenance personnel can decide when the 

right time to perform a specific maintenance activity. Ideally, CBM will allow the 

maintenance personnel to do only the right activity at the right time, minimising 

spare parts quantity and cost, system downtime and time spent on maintenance. 

The controller signal of a closed loop controlled mechatronic system can be 

continuously monitored to assess the equipment health condition and predict 

when this system will reach its end of life in the presence of faults. 
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1.3 System under study 

Liquid level tank system (LLTS) has a wide range of industrial application 

with different kinds of liquids, tanks size and shape, control approach, 

transducers and auxiliary components. A test rig CE105 was chosen to be used 

for this research purposes. The first stage is to build its model from the 

experimental data and then construct a comprehensive simulation under 

LabVIEW environment containing two types of proposed fault sources. The 

process of creating models from experimental data is called system identification. 

System identification involves building a mathematical model of a dynamic real-

time system based on a set of measured input and output data (raw data). It is a 

process of acquiring, formatting, processing and identifying mathematical models 

based on raw data from the real-world system. It is beneficial to start developing 

a system model, as a first step, to control the system precisely. The primary 

objective task of modelling is to obtain a useful and reliable tool that can be used 

for the requirements of analysis and control system development. 

In this PhD research, the system identification of real-time liquid level 

system is made using real-time data. From the calibration equations of the 

components of CE105 test rig, a detailed simulation was built and used as a 

virtual system to monitor its behaviour instead of the real system under different 

operating and faults scenarios. 

The result from CE105 coupled tank system was confirmed on a new three 

individual tank system.  

1.4 Health condition-based monitoring systems 

Health condition-based maintenance needs to have continuous monitoring 

of system data to provide an accurate assessment of the system health, or status, 

a component/ system and performing maintenance based on its observed health. 

It involves using real-time monitoring and data acquiring and processing. Another 

capability that may form part of CBM system is an ability to provide an estimation 

of the remaining useful life (RUL) of the system or component under-monitored. 

This type of functionality is known as prognostics. Meanwhile, diagnostics uses 

to assess the current condition of a monitored system. Health condition-based 
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maintenance approach promises a range of improvements over existing 

approaches. This improvement will lead to a significant reduction in overall 

maintenance costs, and hence, it becomes one of the primary drivers for 

developing such approach. Corrective maintenance approach has a relatively low 

maintenance cost because it leaves the system in service regardless of its health 

condition, i.e. the presence of fault until this fault becomes a failure. But this has 

high-performance costs associated with the high cost of operational failures. In 

contrast, preventative maintenance approach generally has a low operating cost, 

associated with the reduction in the probability of in-service failures. But, using a 

conservative estimation of a system failure probability increases the maintenance 

costs, associated with the removal of components before they have practically 

reached the end of their useful lives. It seems that the most cost-efficient 

approach is to undertake maintenance only when there is objective evidence of 

near failure, i.e. condition-based maintenance. The development of CBM 

approach has been enabled by the development of sensor technologies, data 

collection, storage and processing capabilities, and continuous improvements in 

algorithms and data analysis techniques. CBM systems are founded upon the 

ability to conclude equipment health condition using data acquired from the 

monitored systems. Ideally, a complete CBM system will be achieved by 

integrating both diagnostic and prognostic capabilities. The distinguishing factor 

between diagnostic and prognostic capabilities is the nature of the analysis. 

Diagnostics involves posterior event analysis (i.e. identifying the occurrence of 

an event which has already occurred), while prognostics is concerned with prior 

event analysis (i.e. predicting the future behaviour of the system under 

monitoring) (Jardine, Lin et al. 2006). 

1.5 Aim and objectives 

The main aims of this thesis are to develop continuous health monitoring 

approach and prognostics capabilities to predict when the monitored system will 

reach its end of useful life to be used for important equipment within the industrial 

domain. This thesis aims to exploit system data which is acquired as a result of 

experimental tests of a PID controlled liquid level system. Employing this 

collected data from a test rig as a real feedback mechatronic system is the 
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primary theme in achieving these aims. However, for continuous monitoring of 

the real system, the acquired data from different transducers of it becomes 

enormous, which in turn needs to prepare massive storage media and it may take 

a long time to be analysed. Moreover, it is not an easy task to send such amount 

of data via available communication networks, internet for example, abroad to a 

remote monitoring and analysis centre. Offshore wind and tidal stream turbines 

are two examples of such systems. This research aims to develop a new health 

monitoring approach, which returns simple and small in size but efficient to 

describe in-service system health. 

The first objective of this thesis is to build a detailed simulation under 

LabVIEW environment (virtual system) in collaborated with nonlinear system 

mathematical analysis. The developed health monitoring solutions have 

demonstrated capability and applicability to this virtual system at this stage. 

The second objective is to develop a comprehensive prognostic and health 

monitoring system for closed-loop controlled system, in particular, a PID control 

liquid level system. This continuous monitoring system is based on tracking the 

PID signal, and it has to return simple signal but clear and contains sufficient 

details to observe the in-service system health. The development of such 

controller-based health monitoring (CBHM) system for industrial applications has 

the potential to deliver significant advantages including reduction of the 

maintenance costs, reduce in-service failure and increased plant uptime. One of 

the most important benefits of the CBHM system is to observe the system health 

remotely via the internet by uploading only the CBHM signal because it has a 

small size, to the system analyser. Stored data on in-site storage media from the 

whole system’s transducers still need to be used in order to track the history of 

each signal during previous operating scenarios.   

The third objective of this thesis is to demonstrate how efficient the CBHM 

is going to detect and monitor the developed fault by adding different fault 

sources and intensity to the virtual system. Hence, it can be run for a broad scope 

of operating and fault scenarios; this is another objective of this thesis. 

The final objective is to estimate the remaining useful life of the system at 

each step of the operating scenario based on the CBHM signal. 
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1.6 Contributions of this research 

Equipment is usually used until failure occurrence and then having 

corrective maintenance. However, run-to-failure maintenance philosophy 

becomes a less-possible option if not impossible as systems complexity rapidly 

increased. System’s critical components become more expensive than they 

were. These factors have a direct influence on the total final production costs. 

Thus, this programme of research investigates the qualities of using a new health 

controller-based approach as a reliable, stable and practical continuous 

monitoring technique. This approach can be used for different sort of feedback 

controlled mechatronic systems. This thesis claims that this new approach offers 

the following original contributions: 

1. Early warning of slow progressed deterioration hidden faults.  

2. According to the CBHM system, preventive maintenance can be 

scheduled to increase the efficiency of the mechatronic system by 

minimising unwanted stoppages.  

3. Estimation of location and type of faults and their severity in real-time 

throughout continuous tracking the controller signal.  

4. A new system-health monitoring algorithm. 

5. The historical record of operating scenarios and any fault occurred in the 

past and how it was developed with the time. 

6. Estimation of the PID control signal trend due to different faults 

occurrence.  

7. Evaluation of the system end of life (EOL) and its remaining useful life 

(RUL). 

1.7 Thesis outline 

This PhD thesis includes seven chapters. These chapters and the research 

methodology are as shown in Figure 1.1. Chapter 2 summarises the literature 

studies that included an overview of different approaches to system health 

monitoring and maintenance. In Chapter 3, a non-linear liquid level system is 

mathematically analysed, and CE105 coupled tank system is discussed in 

details. Experimental calibration equations of the system components are 
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evaluated to build a detailed virtual system. Chapter 4 presents in details 

proposed fault sources of CE105 and implement them in a comprehensive 

simulation under LabVIEW environment. A novel Sign chart algorithm (SCA) is 

presented as a controlled-based health monitoring approach to diagnosing the 

monitored system. Estimating the control signal as a result of faults, predicting 

when the system will reach its end of life and evaluating the remaining useful life 

are presented in Chapter 5. The aim of Chapter 6 is demonstrating a new three 

individual-tank system designed and producing, laboratory experiments and the 

system simulation under LabVIEW. Chapter 7 provides concluding remarks and 

recommendations for future research.   
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Figure 1.1 Flow chart shows the outline of the thesis 
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2.1 Introduction 

This chapter presents a review of the background of system health 

monitoring, fault diagnostic and prognostic algorithms. The layout of this chapter 

is as follows.  

Section 2.2 reviews the background of the traditional maintenance 

philosophies and the reason behind the preference to choose any of them to use 

in a specific industrial application. Final product cost can be divided into two main 

parts; operational and maintenance costs. This section emphasises the need to 

utilise health condition-based monitoring to have an efficient maintenance 

approach and reducing the total cost of products as a result. The relationship 

between maintenance cost and operating cost is presented in Section 2.3 for both 

of the traditional philosophies and the condition-based maintenance. Health 

condition-based monitoring of a typical system failure goes through several 

stages from hidden a fault up to failure. During them, the system shows warning 

signal depending on how severe the fault is going to be. This section presents 

these stages and the effect of having a strict estimation and its impact on the 

suitable time to start maintenance activities. System fault diagnostic algorithms 

of high technology equipment are presented in Section 2.4. Meanwhile, 

prognostic as the second portion of system health management is explained in 

Section 2.5. It presents that having an efficient prognostic approach can provide 

advanced notification of the next required maintenance activities. Section 2.6 

defines the system health monitoring and its motivations parameters. Moreover, 

it presents the system health monitoring approaches and tools. Section 2.7 

presents several definitions of prognostic and health management and the 

activities that it consists. In Section 2.8 fault diagnostic methods of mechatronic 

systems and data processing procedures are reviewed. A literature review is 

separately presented for each of experience-based, model-based and data-

based prognostic approach in Section 2.9. Conclusions of this chapter are 

summarised at the end of it in Section 2.10. 

2.2 Maintenance philosophies       

There were two traditional well-established maintenance philosophies, 

Corrective Maintenance (CM) and Preventative Maintenance (PM), applied to 
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maintenance activities for critical parts, subsystem and systems. Maintenance 

management for industrial systems aims to reduce the overall maintenance cost 

and to improve the availability of the systems. The first philosophy is corrective 

maintenance approach, which involves running a system until it fails to achieve 

its task. Only then it is repaired and returned to a healthy condition. This approach 

is deemed appropriate for elements that are costly to repair or replace. The 

corrective maintenance approach could be suitable in such cases, with a normal 

condition that the element failures will not:  

• Damage to human safety. 

• Lead to subsequent massive damage. 

• Ultimately becomes expensive. 

 The second philosophy is preventative (or schedule-based) maintenance 

approach that utilises statistical methods. For example, the tracked or estimated 

mean time between failures of a given component will inform the future 

scheduling of the system maintenance events. Measuring the number of flight 

hours to have routine maintenance, inspection and repair of an aircraft engines; 

accordingly, is an example of the preventive maintenance approach.  

In choosing either preventative or corrective maintenance, any organisation 

will consider the financial implications. Briefly, some other aspects to be 

considered are as follows. The utilisation of worst-case failure statistics to 

schedule preventive maintenance usually will not give an accurate estimation 

relating to the probability of the system failure at any point in time. A more 

conservative approach leads to parts frequently being replaced long before the 

end of their useful life. As stated, a corrective maintenance approach will 

maximise the useful working life of elements within a system but may ultimately 

lead to more extensive damage to other elements or the entire system. On the 

broader picture, a significant increase in repair costs combined with more 

extended downtime and a loss of income may prevail. The actual condition of a 

system, ideally known or assessed just before the failure occurrence, does not 

need to be taken in mind when scheduling the maintenance activity. Nowadays, 

there is competition between industrial companies around the world to minimise 

equipment size and increase their efficiency, which makes the system and 

equipment more complicated and expensive. Moreover, this will increase the 
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reliance upon, and interest in system reliability and availability (Vachtsevanos 

2006). 

Unscheduled maintenance due to unexpected equipment failure can add 

significant extra costs, including any failure that may be caused by an in-service 

equipment failure. The time needed to accomplish unscheduled maintenance 

activities could be extended due to a shortage of necessary parts, equipment, 

and staff. Moreover, there is an extra time has to be added to repair secondary 

failures. In the United States, the degradation of revenue as a result of the 

reduction or halting electricity production during this extended repair time is 

estimated at approximately $1.25 million per day of plant downtime for an 

average nuclear power plant (Coble, Ramuhalli et al. 2015). There are economic 

dependencies between wind turbines for example and their components. Once a 

maintenance team is sent to the wind farm, it may be more cost-effective to take 

the opportunity to maintain multiple turbines. During a turbine downtime for 

maintenance, it is more economical to simultaneously maintain multiple 

components which show relatively high risks to fail in near future than just the 

damaged one. 

The operation and maintenance costs represent a significant portion of the 

total life-cycle costs of wind power generation systems, and so as other industrial 

systems (Hau 2013). For that, modern complex industries seek to reduce the 

overall products cost by: 

• Reducing the maintenance cost. 

• Maximising the useful life of machines and systems. 

•  Minimising the risk of massive failure. 

Modern maintenance methods for mechatronic systems can be classified 

into corrective maintenance, preventive maintenance and Condition-Based 

Maintenance (CBM) (Jardine and Tsang 2013). By utilising health condition 

monitoring data collected from critical components of a system under monitoring, 

CBM strategy can be used to reduce its operation and maintenance costs. 

Condition monitoring data, such as vibration, acoustic emission, oil analysis, 

power voltage, electrical current data, liquid level and oil temperature are some 

examples of data can be collected depends on the system function and structure, 

from wind turbine components (Liu, Tang et al. 2010), (Hameed, Ahn et al. 2010). 
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Accordingly, this led to thinking of a new maintenance philosophy. 

Industries may have a significant improvement in both efficiency and productivity 

by utilising appropriate condition-based monitoring and maintenance techniques. 

Maintenance cost analyses have shown that a corrective maintenance activity, 

usually costs more than the same maintenance activities when a condition 

monitoring accompanied by it. Additionally, there is an extra cost has to be added 

for every single day shutdown depending on the type of establishment activity as 

shown in Table 2.1. The objective of condition-based maintenance (CBM) 

approach is to optimise the availability of expensive systems, moreover 

minimising the total cost of maintenance activity and logistics requirements. So 

that, the maintenance activities are performed only when there is an indication of 

deteriorated behaviour. (Tian and Jin 2011) claimed that they developed an 

optimal condition-based maintenance solution to address the issues mentioned 

above. A simulation method is designed to evaluate the cost, as an important 

factor, of the CBM policy. CBM is an advanced maintenance approach that is 

based on the real-time performance and/or parameter of the system health 

monitoring approach (Jin and Mechehoul 2010). To have efficient condition-

based maintenance, some relevant data, such as temperature, pressure, 

electrical current, voltage, vibration level and oil temperature and quality needs 

to be collected and monitored  

 

Table 2-1 Economic losses from a one-day shutdown (VTT 2015) 

Establishment Activity 
Cost of every day 

shutdown in Euro 

Nuclear Power Plant 300,000 

Paper and Pulp Plant 200,000 

Chemical Factory 100,000 

Power Plant (Coal) 100,000 

Oil Refinery 50,000 

Cargo Ship 10,000 
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A system running, and maintenance costs have a significant impact on the 

final product cost. Therefore, for the wind turbine power generation plant so as 

any other mechatronic system, reliability and maintenance management have 

increasingly drawn interests for reducing the operation and maintenance costs 

(Martínez, Sanz et al. 2009). CBM programmes aim to reduce maintenance costs 

in the following ways: 

• Reducing any scheduled activities of preventative maintenance to a 

minimum number. 

• Minimising the unnecessary replacement of elements and hence reducing 

the cost of spare parts. 

• Preventing a possibility of massive failure of the system.   

The guarantee of decreasing maintenance costs and on the other hand 

extending the useful system life will lead away from the traditional either 

preventative or corrective maintenance philosophy, in the direction of more 

condition-based approach. 

2.3  Condition-based monitoring 

Competition between different industrial activities such as chemical 

industry, oil refinery, power plant and energy market to operate their plants as 

cheap as possible in collaboration with minimising maintenance costs. In order 

to provide an accurate health assessment of a component, or subsystem/system, 

there is a requirement to have continuous monitoring of the system variables 

within the condition-based monitoring system. Maintenance activity is then based 

on such system health observation and estimation, utilising real-time monitoring 

and associated data processing. In a related approach, the remaining useful life 

of the monitored system has to be estimated; this is the hearth of an approach 

called prognostics and health management (PHM). Overall maintenance cost 

reduction is the main driving factor in the development of condition-based 

maintenance methods. Fault diagnostic activities study the current health 

condition of a monitored system in order to detect and identify which faults in 

particular, have been discovered.  Figure 2.1 provides a representation of the 

costs associated with the preventive, condition-based and corrective 
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approaches. Generally, preventative maintenance will reduce the in-operation 

system failures, and the operational costs will be reduced.  

 

Figure 2.1 The relationship between activity costs and different maintenance 

approaches (Coble 2011) 

Because the modern systems have a significant of components and 

subsystems, the existing CBM methods deal with the system components 

separately. Hence, maintenance decisions are made on individual components, 

rather than the whole system (Sørensen 2009). 

However, replacing some components before they have achieved the end 

of their useful lives will raise the maintenance costs if a strict estimation 

procedure has been followed, as can be seen in Figure 2.2. (Rezvanizaniani, Liu 

et al. 2014) presented a review of prognostic and health management techniques 

to provide cost-effective solutions for health assessment of batteries. 

Extreme corrective maintenance will entail relatively low maintenance costs 

by maximising the equipment life until it fails to accomplish its task; repairing a 

sudden failure during the operation period is typically expensive particularly when 

costly unscheduled downtime is included. The desire to achieve a more optimal 

cost - maintenance activity ratio requires a willingness to do maintenance when 

any evidence of developing faults appear, while the system still shows a healthy 
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operational condition that leads to have condition-based maintenance methods. 

Figure 2.2 presents a typical machine-condition deterioration with the time. It 

shows that a machine, during its life from the first sign of its condition changing 

until the fault becomes a failure, passes through different stages. Some of these 

stations take months while the other may take only a few minutes. For that, 

machine condition monitoring is essential for any organisation because it 

provides valuable information to: 

• Optimise the machine performance, 

• Reduce the repairing time and prepare the required facilities which 

in turn leads to decreasing the overall maintenance costs. 

Figure 2.2 typical machine failure example and the warning signs (NI 2017) 

Maintenance costs for remote locations systems, such as offshore wind 

turbine and tidal stream turbines, are typically high. (Bahaj 2011) noted, from his 

study of marine current turbines for electricity production, that to achieve an 

applicable economic power extraction, it is crucial to minimise uncertainty routine 

investigation and predictive maintenance of such equipment. For such systems, 

route-based monitoring or using portable diagnostics systems are not applicable.  

Instead, online condition-based tracking is applied from a central location (NI 

2017). From another sector of electrical energy production, wind turbine, it was 

suggested that using an online health condition monitoring and fault detection 

could decrease overall maintenance costs and improve the availability of energy 
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extraction technology (Tian and Jin 2011), (Yang, Tavner et al. 2010) and 

(Hameed, Ahn et al. 2010). There are several hostile or severe working 

environments, for such environments, monitoring of systems health condition and 

fault diagnosis hardware and software architectures should at this stage seek to 

be general and adaptable (Grosvenor, Prickett et al. 2014). Sensors, data 

acquiring and analysing algorithms, online communication facilities need to be 

developed to achieve this task. The improvement of sensors technologies in 

collaboration with data collection, transformation, storage and processing ability 

develops CBM approaches. Concurrently on-going research in the field is leading 

to improved and extend algorithms and techniques to analyse the collected data 

as a part of enhancing the condition-based monitoring. Condition-based 

maintenance approach was established upon the capability of understanding the 

health condition of equipment based on the received data from the monitored 

system. It is assumed that an integrated CBM system needs to include the facility 

of both diagnostics and prognostics. 

These complementary activities are introduced in the following sections. 

Briefly, they can be distinguished as follows: Diagnostics contains prior event 

analysis, which means identifying the events that have already occurred in the 

past to establish a library or catalogue of information. Efficient diagnosis involves 

the detection, isolation and subsequent definition of the most likely faulty 

behaviour that has been captured. Prognostics is concerned with posterior 

occurrence analysis. Accordingly, the expected continuous deterioration of the 

monitored system in the future can be extrapolated forward in time, based upon 

recognition of the current health of the system and the operational profile. When 

the worst deterioration level is predefined and applied as a threshold that the 

system is predicted to fail at it, the Remaining Useful Life (RUL) can be estimated. 

2.4  Diagnostics 

During the last five decades, the efficiency of fault diagnostic algorithms has 

been applied and examined in different industrial applications. Aircraft equipment 

was the pioneer of applying some earliest generation of these algorithms. 

Robustness and reliability of a system faults diagnosis are the basis of any 

condition-based maintenance. As a system running during its life, some physical 
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properties or quantities have changed with the time according to some faults or 

ageing for example. Monitoring the deterioration of these properties is the primary 

purpose of designing fault diagnostic algorithms (Vachtsevanos 2006). A perfect 

diagnostic system needs to have an ability to identify the unhealthy system, 

subsystem or element. 

Usually, system fault diagnostic algorithms of the modern high technology 

equipment being complicated and accordingly need massive data – storage 

media. Nowadays, with high-power computers, stimulating the CBM to enhance 

these algorithms being available. It is possible in numerous developing 

application to identify the appearance of an ill-behaviour before the system 

failure. Accordingly, the maintenance staff has a valuable time to prevent 

catastrophic failure and to minimise the overall system downtime. Moreover, such 

abilities have driven the engineer efforts to improve the capacities beyond fault 

diagnostic activity, which is called prognostic. 

(Vachtsevanos 2006) stated an acceptable definition among many others 

of "fault diagnostics" as; the term fault means, without a suitable maintenance 

activity, the system cannot achieve its task efficiently forever. Hence, the fault 

diagnosis is related to detecting an ill - behaviour as soon as it starts; isolating 

the concerned fault signal from noise and any other fault possibilities and then 

identify the fault type and its strength before the system ceased to operate or 

goes to fail. 

2.5  Prognostics  

The term prognostics covers a narrow scope of systems health 

management in compare with diagnostics. It provides information about the future 

health of the monitored system. Depending on the current system health 

condition and the historical operation profile, the prediction of the remaining 

useful life of the system before one or more faults occur is an obvious and widely 

used of prognostics. The remaining useful life refers to the time left before the 

system ceased to operate (Jardine, Lin et al. 2006). Figure 2.3 illustrates the 

timeline of a failure progression of a typical system component. It is assumed that 

at the start of the system life, the system is working correctly. Because of ageing 

and long-term of working, some incipient fault is expected to be developed in 
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some critical component of the system. The severity of this fault is progressively 

increased with the time until the element fails to achieve its desired task or 

reached its end of life. Further damage to some equipment may lead to 

catastrophic damage to other components, subsystems or expose operators – 

life to a dangerous condition if the system is permitted to continue working in its 

ill – condition. It would be more desirable to predict whether the system capable 

of achieving the required future operating scenario without having a catastrophic 

failure or not. This estimation is a crucial task in nuclear power plants for example, 

before the next inspection interval (Jardine, Lin et al. 2006). Typically, diagnostics 

application occurs at the time when a component started developing a fault or 

beyond this until the system exposed to a comprehensive failure. 

Figure 2.3 Fault Progression timeline (Hess, Calvello et al. 2006) 

However, if a system developed a fault, which can be detected at an early 

stage, maintenance activity can be postponed until the fault progression reaches 

a more severe condition, but before failure occurs. The interval between the 

detection of a fault, condition and the occurrence of failure defines as prognostics 

application field. 

Maintenance staff need to evaluate the remaining useful life of a system 

under monitoring in order to estimate if the RUL is sufficient to cover the next 
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operation scenarios before the system failure. Assuming such a system during 

this interval of time has to continue working as usual before the diagnosed – fault 

deterioration becomes a failure.  

Applying an efficient prognostic approach is to provide advanced notification 

of upcoming maintenance. This warning is crucial to schedule the corrective 

maintenance activities in advance. The provision of necessary spare parts, the 

experienced maintenance personnel and all logistic requirements will be 

essential for reaping the benefits of applying effective condition-based monitoring 

and maximise the saving of time and cost. During the provision period, the system 

works continuously until a predefined time to have a planned maintenance work. 

In contrast to the traditional maintenance approach where the system failure 

occurs without prior alarm, which leads to a massive delay in preparing the 

required spare parts, organising the professional team to return the system to its 

working condition. Interrupting the operating scenario of a system usually leads 

to further delay recovering it. 

(Goode, Moore et al. 2000) utilised a Statistical Process Control (SPC) to 

divide the whole system life into two main intervals. They stated that the first 

interval starts directly after the system has been installed and run for the first time 

until a potential failure occurs, i.e., Installation–Potential failure (I–P), during this 

interval the machine shows a proper healthy condition. 

Figure 2.4 Machine life model (Goode, Moore et al. 2000) 
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While, the second interval as can be seen in Figure 2.4, Potential failure–

Functional failure (P–F), during this period, the system is continuously running 

but with some problems. (Clements 2011) presented the effect of the deviation 

of the fault model and the reliability of the failure threshold that based on them, 

the system end of life will be predicted, as can be seen in Figure 2.5. 

Figure 2.5 Potential failure–Functional failure (P–F) period (Clements 2011) 

  Practically, to monitor critical equipment, a regular examination is often 

utilised. A delay time analysis approach was developed by Christer and Waller in 

1984 and published in (Christer and Waller 1984) and (Christer and Waller 1984) 

for modelling the benefit of applying this policy. A period of time between the point 

at which a fault is considerable and that at which the fault increases to become a 

failure is called a delay time (Goode, Moore et al. 2000). 

The costs of the in-service system failure become much higher than the 

costs of repairing the failed elements. Unplanned shutdown due to an in-service 

failure occurrence of cooling water-pump within a nuclear power plant or large 

industrial factories for example, will add extra costs as shown in Table 2.1. 

Additionally, it takes longer time to recover it than the planned one. Moreover, 

this failure may lead to catastrophic damage to the plant and environment. If a 

major fault on a commercial aeroplane with passengers waiting at the gate, the 

cost can also surge beyond the ordinary repair costs. Such failure may lead to an 
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unplanned shutdown, which in turn may cause massive damage to some other 

parts.  

To achieve the desired benefit of prognostics, maintenance personnel 

needs to have a reliable estimation of how long the system will remain in safe 

operation, i.e. evaluating the remaining useful life of the system, until a predicted 

failure occurs. The development of efficient prognostic algorithms facing a 

challenge to generate an accurate prediction of remaining useful life. Prognostics 

involves a high degree of uncertainty by its inherent because it deals with 

predicting the future, as can be seen in Figure 2.5. By comparing the tasks of 

prognostics and diagnostics, it is considered that the former is harder than the 

latter, as the progress of the system fault conditions is subject to random 

processes that have not been occurred (Engel, Gilmartin et al. 2000). 

2.6 System health monitoring 

System health monitoring can be defined as a group of activities performed 

on a system to assess how fit to accomplish its required task. Monitoring may be 

limited to the observation of current system-states in addition maintenance and 

repair actions prompted by these observations. Alternatively, monitoring of 

current system states is being integrated with the prediction of future operating 

scenarios and predictive of future failure possibility. 

Such integrated health monitoring system is motivated by the requirements 

of industrial activities and operators of complex systems to optimise equipment 

performance and to reduce the overall product costs and unscheduled downtime. 

Prognosis is not an easy task because it deals with predicting the future 

equipment health condition. Numerous modelling techniques have been 

reviewed in the literature and implemented in practice. 

2.6.1 Maintenance strategies and motivations for health monitoring  

The oldest and most common maintenance and repair strategy is "fix it 

when it fails." The appeal of this approach is that no data analysis or maintenance 

planning is required. The problems with this approach include the occurrence of 

unscheduled downtime at times that usually be inconvenient, perhaps preventing 
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the accomplishment of required production tasks. Unscheduled downtime costs 

much more than scheduled and has more serious consequences in applications 

such as nuclear power plants and aircraft engines.  

Motivation is provided to perform maintenance and repair before the 

problem occurrence by these problems. The simplest approach is to perform 

maintenance and repair at the pre-planned time, defined regarding elapsed or 

operating hours. This approach can provide relatively high equipment reliability, 

but it tends to be costly because of unwanted downtime for inspections and 

unnecessary maintenance activities. A further problem with time-based 

approaches is that failures are assumed to occur at specific time intervals. 

The only way to minimise maintenance cost and the probability of failure is 

to implement continuous assessment of equipment health and continuous 

prediction of future failures. This procedure can be based on the system current-

health with the presence of any hidden faults, operating condition and 

maintenance history. This approach motivates the prognostics to minimise 

maintenance costs and associated operational disruptions, while also reducing 

the risk of costly unscheduled downtime or in-service failure.  

2.6.2 Health monitoring approaches 

Researchers have been focused on health monitoring and its related 

functions and implementation during the last a few years. Through these years 

they have significantly developed regarding controlling philosophy, 

implementation, and enabling advances in technology, modelling techniques, 

and emerging or re-defined requirements. A brief taxonomy of the various 

philosophies is given in Figure 2.6. 
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2.6.3  Health monitoring tools and techniques 

Preserving the system health is a complex task, which requires a 

comprehensive analysis of the system condition, principles involved, and their 

applicability and implementation strategies. Table 2.2 presents methods, analysis 

and modelling tools, and techniques to provide data for modelling and analysis. 

However, it is clear that most applications are a combination of the listed methods 

and techniques and the list is far from being exhaustive. For example, and 

because of their generalised applicability, parameter estimation techniques such 

as regression, maximum likelihood and expectation maximisation can be used in 

all of the listed categories. There is also a close association between reliability-

based maintenance and statistical maintenance techniques. 

 

 

 

 

 

 

 

Figure 2.6 Taxonomy of maintenance philosophies (Kothamasu, Huang et al. 2006) 
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Table 2-2 Maintenance tools and techniques 

Methods Tools 
Measurement 

techniques 

Reliability-based 

maintenance 

• Parameter estimation 

techniques.  

• Numerical analysis 

techniques 

• Markov chains 

• Vibration analysis 

• Thermography 

• Acoustic emission 

• Wear/debris 

monitoring  

• Lubricant analysis 

• Process 

measurements 

Model based failure 

detection and 

identification 

• State space parameter 

estimation  

• Artificial neural networks 

• Knowledge-based systems 

• Fuzzy inference systems 

• Neuro-fuzzy systems 

Signal-based failure 

detection and 

identification 

• Fourier analysis 

• Wavelet analysis 

• Wigner-Ville analysis 

• Diagnostic parameter 

analysis 

Statistical failure 

detection and 

identification/ 

maintenance 

• Bayesian estimation/ 

reasoning techniques 

• Markov chains 

• Hidden Markov models 

• Proportional hazards models 

 

• Reliability-based maintenance 

A popular maintenance approach of complex systems is going through 

estimating the reliability of the system. Traditionally, reliability is estimated from 

the time-to-failure distributions of the system. The most reasonable drawback of 

such approach is that multiple failure mechanisms often interact with each other 

in unpredictable ways and this affects the degradation rate of the system, causing 

it to deviate considerably from the predicted failure distribution. 
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• A model-based approach to failure detection and identification 

Model-based approaches to failure detection and identification are based 

on analytical redundancy or functional redundancy, meaning different signals are 

compared and evaluated to identify presented faults in the system or its 

components. This comparison between the measured signal and the estimated 

values is generated by the system’s mathematical-model. A general structure of 

model-based approaches is as presented in Figure 2.7. 

Residual generation is essential in a model-based approach. However, the 

involved techniques in model-based diagnosis differ in the production and 

definition of residual. For example, in some cases, it is a disagreement of the 

system output estimation and the error in the parameter of the system's estimated 

model itself. It is crucial that the generated residual be dependent only on faults 

in the system rather than on its operating condition. Several techniques have 

been presented in the literature for this residual generation are a modification or 

improvement of the following three principles. 

• Observer-based approaches (Beard 1971) and (Patton and Chen 

1997).  

• Parameter estimation technique (Kitamura 1980). 

• Parity space approach (Chow and Willsky 1984). 

Figure 2.6 General flow chart of model-based approaches (Simani, Fantuzzi et 

al. 2013) 
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• Signal-based failure detection and identification 

Signal-based failure detection and identification approaches focus on 

detecting the changes or variations in a signal and subsequently identifying the 

difference. In the literature, the change detection in a system has been 

extensively explored, and there are few effective techniques that have integrated 

various ideas from parametric modelling principles with signal-based principles 

such as spectral analysis. Some of these techniques are formulated around 

model-based approaches, i.e., generation of deviation from nominal signals and 

diagnosis of the residuals. Some of the detection algorithms are modelled in the 

form of hypothesis testing involving a change in the mean (known or unknown) 

such as the generalised likelihood ratio test and the Page-Hinkley stopping rule. 

• Statistical failure detection and identification/ maintenance 

A wide range of applications uses Bayesian statistics and Bayesian 

parameter estimation for failure detection and identification. Some other 

interesting algorithms are presented in (Berec 1998), (Won and Modarres 1998), 

(Wu, Chen et al. 2001), (Leung and Romagnoli 2000) and (Ray, Townsend et al. 

2001). Moreover, another important aspect is to identify the detection intervals, 

optimisation of cost and replacement decision-making. Markov chains seem to 

be widely used for optimising maintenance strategies, and some algorithms are 

reviewed in (Wang and Sheu 2003), (Al‐Hassan, Swailes et al. 2002) and (Zhang 

and Zhao 1999). Another interesting application of using hidden Markov models 

is given by Bunks et al. (Bunks, McCarthy et al. 2000). Proportional hazards 

modelling has also been used for reliability estimation and estimation of effects 

on failure rate ever since they were used by Feigl and Zelen (Feigl and Zelen 

1965). (Kobbacy, Fawzi et al. 1997)  and (Hollander and Peña 1995)  were both 

reported some interesting theoretical approaches and applications related using 

PHM. 

2.7  Prognostics and health management 

Researchers have studied prognostics and health management systems for 

different engineering applications to increase system reliability, availability, safety 

and to reduce the maintenance cost of engineering equipment. The term PHM 
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has been used to describe a system that developed to execute a condition-based 

maintenance philosophy. With the time, the term prognostics has a broad 

definition than only fault prediction. A comprehensive review, related to PHM of 

rotatory machinery is presented by (Lee, Wu et al. 2014). Nowadays, it is referred 

to some extra activities such as (Hess, Calvello et al. 2006): 

• Fault or failure detection. 

• Fault or failure isolation from other signals if there is any. 

• Diagnostic enhancement. 

• Material condition assessment. 

• Monitoring performance. 

• Prognostics. 

(Saxena 2010) presented a definition of PHM as an estimation of remaining 

useful life of a component or subsystem.  

Typically, in remedial maintenance work, damaged parts need to be 

replaced. Hence, organisations prepare a long list of spare parts to be ready 

when required for maintenance activities to save the ordering time. With an 

efficient health monitoring system that sends an alert of upcoming fault, the 

maintenance activity can be scheduled in advance. Any necessary resources can 

be prepared, and experienced maintenance staff needs to be ready at a specific 

time in the future, and only the required spare parts can be ordered. Accordingly, 

by integrated the PHM system into the organisation logistics system, the massive 

amount of pre-prepared spare parts becomes unnecessary. This system will 

order only the required components in suitable time according to the received 

fault alert. With this ability, the organisation may reap the benefits of efficient 

condition-based maintenance and receive maximum costs savings.  

(V, Medjaher et al. 2017) summarised the typical prognostics and health 

management steps as shown in Figure 2.8. 

It is claimed that while the benefits of utilising prognostics are obvious and 

in accompany with the growth of the related scientific research in recent years, 

this technology has not become commonly used for some reasons, uncertainty 

for example. The uncertainty is a fundamental drawback of developing the real 

predictive prognostics. Improving the certainty is the feature of prognostic 
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technology in future. From researchers experience within nuclear power plants 

sector, (Coble, Ramuhalli et al. 2015) presented prognostics and maintenance 

approaches for nuclear power plants components. 

 

Figure 2.7 Prognostic and health management steps (V, Medjaher et al. 2017) 

2.8 Fault diagnostics 

Different kinds of techniques for failure detection, isolation and identification 

have been developed and investigated by researchers and engineers during the 

last several decades across a wide range of applications. A complete survey of 

the strategies and techniques utilised as a part of fault diagnostics will not be 

discussed in this PhD thesis. As represented by (Vachtsevanos 2006) the variety 

of application fields in fault diagnostics is matched only by a majority of enabling 

technologies which have appeared throughout the years, in order to diagnose a 

system fault events. (Venkatasubramanian, Rengaswamy et al. 2003), 

(Venkatasubramanian, Rengaswamy et al. 2003), (Venkatasubramanian, 

Rengaswamy et al. 2003) and (Jardine, Lin et al. 2006) provided excellent series 

of review publications of introduction and reference source to the different 

techniques approaches used in fault diagnostics. Moreover, they presented 

various applications to which these approaches have been utilised. (Kandukuri, 

Klausen et al. 2016) presented diagnostics and prognostics methodologies under 

reliability centred maintenance and CBM for two critical components; planetary 

gearboxes and low-speed bearings of wind turbines as their case study. Authors 
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analysed different condition monitoring (CM) data for bearing and gearbox 

diagnostics, and they concluded that vibration signal is better in detecting 

gearbox faults and acoustic emission is suitable for bearing fault detection. 

2.8.1 Failure criticality analysis (FCA) studies 

The first step of a PHM system development is to analyse the criticality of 

failures. The objective of FCA studies is to label each failure to its reasons or 

roots cause (Vachtsevanos 2006). Moreover, and as a part of the FCA objective, 

it needs to investigate the possibility of any other problems in contact with the 

current fault. The failure severity models, their occurrence frequency, the system 

behaviour under different fault conditions are some investigations of FCA studies. 

Inputs from various sources such as system designers, field speciality experts, 

experienced maintenance personnel, and equipment specialists are some typical 

requirements of the FCA development study. (Vachtsevanos 2006) presented an 

adequate overview of the FCA studies.  

2.8.2 Feature extraction feature extraction 

Data pre-processing covers data cleaning and data analysis steps. 

Cleaning raw data from errors/noise increases the chance of getting error-free 

data for further investigations, as shown in Figure 2.9. The second step of data 

pre-processing is data analysis, which, involves feature extraction, feature 

evaluation, and selection processes. Cleaned sensory time series should 

undergo a feature extraction process to extract only the important and useful 

features that reflect system health condition being monitored. Extracted features 

should indicate the fault progression of the system. The feature extraction 

techniques are categorised in the literature into three categories; time-domain 

based, frequency-based and time-frequency based techniques (Jardine, Lin et 

al. 2006). The time-domain based feature extraction techniques (e.g. root mean 

square) are used to analyse the comprehensive characteristics of data and to 

extract the features in the time domain. The frequency-domain based feature 

extraction techniques (e.g. Fourier transform) transform the data into the 

frequency domain and are used to detect and identify faults which are not 

possible with time-domain based methods.  
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Figure 2.8 Data pre-processing procedure (V, Medjaher et al. 2017) 

The time-frequency domain-based techniques (e.g. Fourier transform) 

analyse the data in both time and frequency domains. Feature evaluation and 

selection process is the second crucial step of data analysis after extraction. A 

feature estimation can be defined as a feature goodness quantification process 

in feature selection. Different techniques are used to quantify the feature 

goodness (i.e. the trend of degradation) such as monotonicity, prognostability and 

trendability. Monotonicity characterises a parameter of general nature of 

increasing or decreasing. Prognosability measures the spread of the parameter's 

failure value for a population of systems. Finally, trendability indicates whether 

the parameters for a population of systems have the same underlying trend, and 

hence can be described by the same parametric function. (Coble and Hines 

2009). The best features, which have clear degradation trend, are further 

selected in a feature selection process after evaluation (Kimotho and Sextro 

2014). More information on data feature extraction techniques is presented in 

several publications such as (Sharma and Parey 2016); (Zhu, Nostrand et al. 

2014). This stage as a part of PHM algorithm is designed to identify the trend of 

the data, which can be utilised to assess the present fault situation of a monitored 

system. It is assumed that the creation of the data feature trend is normally 

application-dependent and it is supposed to be the most important stages in any 

PHM system. Generating data features that can be utilised to assess the current 

fault conditions of a monitored system is one of the primary purposes of designing 

a PHM system. For helicopter gearbox monitoring example, the extraction feature 

from the vibration acquired data might be utilised to recognise some critical 

magnitude. This value is regarding the value of a vibration signal of the critical 

magnitude of the gear – mesh frequency in the gearbox. 
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2.8.3 Fault diagnosis methods 

(An, Kim et al. 2015) reviewed a data-driven and physics-based prognostics 

algorithm regarding model definition, parameter estimation, robustness in noise 

and bias handling in condition monitoring data, to provide practical prognostics 

options for beginners so that they can select appropriate methods for their fields 

of application. According (Vachtsevanos 2006) the methodology of fault 

diagnosis can be classified into one of the sorts of approaches, model-based and 

data-based. 

• Model-based methodologies 

Model-based fault diagnostic approaches utilise a mathematical model of 

the system under monitoring. By using such a model, evaluations the outputs of 

the system or the process model are produced which are then, in turn, compared 

with the real system response to create a residual signal. Based upon a contrast 

between the model response and the real system output, possible fault conditions 

are recognised based on the magnitudes and properties of the generated residual 

signals. The generated residual signal is the difference between the process 

output signal and the model output signal for the same input, as can be seen in 

Figure 2.10, which represents the essential ideas of a typical model-based 

algorithm for fault diagnostics purposes. 

 

 

Figure 2.9 Model-Based Diagnostic algorithm 
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As shown in Figure 2.10, a correlation between the real system and the 

process model are utilised to create a residual signal. This procedure is 

commonly known as residual estimation. The magnitude of the residual signal 

should be equal to around zero during the operation of a healthy system. This 

value indicates that the model, which shows fault-free response precisely 

describes the healthy behaviour of the monitored system. In the circumstance 

where the estimation of the residual signal goes away from zero, suitable signal-

processing and analysing is connected to the estimated residual signal. The 

processed residual signal is then passed to a decision logic process, which is 

utilised to describe the behaviour of the residual signal onto a particular – fault 

condition. This procedure is usually depicted as remaining processing. While 

Figure 2.8 outlines the general principle of model-based fault diagnostics, 

traditional model-based fault diagnostic strategies can be further classified. 

(Isermann and Balle 1997) arranged particular methodologies into three sorts: 

parameter identification - based strategies; equality condition-based techniques 

and observer-based approaches. Each of these methodologies will briefly 

describe. 

i. Parameter identification – based strategies utilise a dynamic model 

of the monitored system in which the model parameters value can be 

estimated by using the input/ output information, employing suitable 

system identification procedures. The identified parameters values may 

change after at the time, and these deviations are used to recognise the 

presence of a fault condition.  

ii. State and output monitor – based method utilises a system model of 

healthy behaviour. For this situation, some state estimation algorithms 

such as Kalman filter are used to estimate the system variables as 

results of the system inputs. The estimation of state factors is then used 

to rebuild the outputs of the system and to compare them with the 

corresponding outputs of the pragmatic system to generate a residual, 

which in turn can be utilised to specify the faults.  

iii. Consistency equation- based approaches analyse the behaviour of a 

monitored system with a process model which depicts typical healthy 

behaviour. Checking the consistency of the mathematical model of the 

system under observation, using the measurements of the actual 
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system, is an essential principle. A fault is announced when its value 

reaches a predefined threshold. This strategy is as similar to the state 

and output monitor – based approaches (Patton and Chen 1994). 

The main aspect of a model-based strategy to fault diagnostics is the 

necessity for an accurate and robust mathematical model of the monitored 

system. These models are usually derived using ordinary differential equations 

regarding the physical properties of different elements of the system and the 

interactive relationships between these members. The Dynamic physical model 

of a monitored system is used as Laplace transformation model or converted into 

the state-space model, before applying the previously described approach. The 

main advantage of using a model-based fault diagnostic approaches is the ability 

to detect unexpected faults (Vachtsevanos 2006) because the utilised models 

are generally based on the physical theories of failure. In contrast, data-driven 

approaches are typically built on the historical scenarios of each fault condition 

which they are designed to recognise. However, for nowadays real world 

systems, it may not be practicable to apply mathematical modelling because 

many modern mechatronic systems are quite complicated or even impossible to 

derive accurate mathematical models of such the whole system. 

• Data-driven methodologies 

The universal fundamental of data-driven approach, which applied to deal 

with fault diagnostics is to use pattern recognition techniques to figure the 

measured data or highlight it to equipment fault within the fault space (Jardine, 

Lin et al. 2006). A wide range of procedures has been connected to fault 

diagnostic issues. (Jardine, Lin et al. 2006) classified data-driven methodologies 

into two types; statistical approaches and artificial intelligence – based 

approaches. Under these main categories, a different scope of procedures has 

been applied to a wide assortment of fault diagnostic issues. A brief overview of 

different approaches and application will be presented in the following sections.  

i. Statistical Approaches. A traditional statistical process control (SPC) 

approaches, which was originally developed for the quality control theory 

purpose, is widely utilised in fault diagnostics. The principle of SPC is to 

measure deviations of current signal behaviour from predefined limits of 
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the healthy normal condition. If a current signal falls out of the predefined 

control limits, this may be an indication of some fault condition. 

(Gallagher, Wise et al. 1997) presented an example of development 

multivariate SPC tools for monitoring and fault detection applied in a 

semiconductor etch chamber. 

(Fugate, Sohn et al. 2001) attempted to use statistical process control 

methods to vibration-based damage detection. They demonstrated that this 

statistical process control was applied to acquired data from vibration test of a 

concrete bridge column while the column was progressively damaged. Moreover, 

they stated a statistically significant number of error terms outside the control 

limits indicated a system transit from a healthy state to a damaged state.  

ii. Classification Approach. Both statistical methods and artificial 

intelligent-based methods have been utilised for data classification 

approaches, which are commonly applied techniques in data-driven fault 

diagnostics. The utilisation of these techniques depends on the 

availability of a fault style library or database of historical failure 

examples. These relate to extracted features from observed systems to 

particular fault conditions. Modelling the relationship between fault 

features, or fault indicator measurements and fault classes is the 

purpose of applying classification based approaches (Vachtsevanos 

2006). Such methodologies do not have the capability of model-based 

approaches which in turn utilise models, built upon the physics of failure, 

which can detect even unforeseen fault conditions. Despite the absence 

of the availability of a sophisticated mathematical model of the monitored 

system, data-driven classification approaches can be built. 

2.8.4 Novelty detection 

Novelty detection aims to identify the behaviours of collected data that are 

not consistent with normal expectations. Categorizing the received data that is 

deferred in some regard to the data that are available during the training period 

is the task of novelty detection algorithm. (Markou and Singh 2003) defined the 

novelty detection as the algorithm that uses to identify the new or unknown data 

or even signal that a machine learning system is not warned during the system 
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preparation period. (Pimentel, Clifton et al. 2014) provided a comprehensive 

updated and structured investigation of novelty detection review paper that has 

appeared in the machine learning literature. An equipment behaviour in 

association with fault conditions can be predicted depending on the availability of 

historical failure example, which leads to developing fault diagnostic capability, 

historical data-based approaches in particular. In pragmatic systems, there is a 

lack of data related to historical failure, particularly the data that covers all the 

imaginable behaviour that might be detected in the presence of a fault condition. 

On the other hand, there is plentiful of data describing the behaviour of a healthy 

system. The fundamental principle of novelty detection algorithms is to build a 

system model based on the acquired data of a healthy behaviour of the system 

during operation. Collected data from the future operation of the monitored 

pragmatic system will be compared with that of the pre-built fault-free model, 

measuring the deviation between them regarding a specified threshold, abnormal 

or novel events are identified which may indicate some fault conditions.  The 

ability to detect novel occurrences from data classification system is important. It 

is not a simple task to teach a machine learning system on all possible 

circumstances that the system may face in its service life. It might be essential 

for such system to distinguish among all known and unknown information during 

the application. It has been realised practically speaking through different studies 

that the novelty detection is a big challenge. Therefore, there exist some models 

of novelty detection that have been demonstrated good performance on different 

scope of data. It is evident; there is no particular best approach for novelty 

detection and the achieved success depends on the type of technique utilised as 

well as statistical properties of data dealt with. Novelty detection approach is 

assumed to be a sort of classifier. For some application requirements, the 

classifier needs to act as a detector rather than a classifier (Markou and Singh 

2003), because the requirement is to distinguish whether an input data is a piece 

of the information that the classifier was prepared on or it is a new unknown data. 

(Chandola, Banerjee et al. 2009) reviewed a structured and broad overview of 

extensive research on novelty detection techniques spanning multiple research 

areas and application domains. 



Chapter Two                                                               System Health Monitoring 
 

39 
 

2.9  Fault prognostic: 

To enable the benefits of an active condition-based monitoring approach, it 

needs to have real predictive prognostic capabilities. Mainly, there are two sorts 

in system prognostics. Apparently, the commonly used prognostics is to predict 

the remaining useful life, i.e., how much time is left before the system exposed a 

failure due to one or more faults. This ability is built to prepare information to 

maintenance staff about the system that has developed some fault giving them 

an adequate lead–time so that the required personnel, equipment, spare parts 

any other logistic requirements can be prepared and organised in advance. This 

preparation will lead to minimising the process downtime and maintenance costs. 

The truly predictive prognostics is the generation of long-term forecasts, 

depicting the signal progression or fault indication, for requirements of evaluating 

the remaining useful life (RUL) of an ill-behaved system or equipment (Orchard 

and Vachtsevanos 2009). 

For a deteriorated system, it is a significant challenge to develop prognostic 

abilities because of the inherent significant amount of uncertainty in connecting 

with the prediction of the system behaviour. Therefore, when selecting 

appropriate procedures for the advancement of prognostics abilities, there are 

two issues to consider: 

• Uncertainty representation means the ability to demonstrate different 

sorts of uncertainty deriving from various sources. 

• Uncertainty management is relevant to the approaches and instruments 

needed to continually compress the uncertainty limits while a fault is 

progressively developed (Vachtsevanos 2006). 

2.9.1 The remaining useful life 

Remaining useful life (RUL), or also in some literature called remaining 

service life, refers to the remaining time before the monitored system or some of 

its critical equipment stop performing the required task, or the future operation 

scenarios. To have an accurate translation of the RUL, it is crucial to find a proper 

definition of failure. Data on the failure mechanism must be ready in combination 

with the data on the failure progression to do prognosis. A trending model of some 
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particular condition variables is usually utilised to track the fault progression. 

Mainly, the failure mechanism can be described in two ways:  

• The first way assumes that the failure is a function of the condition 

variables only, which reflect the real fault level, in combination with 

predefined boundary condition. The failure is commonly defined according 

to this case as: It is assumed that the failure occurs if the fault level 

reaches a pre-defined limit (failure threshold). 

• The second one is, by utilising the available historical data, a model of the 

failure mechanism has been created. Accordingly, the failure has different 

definitions. For example, a failure can be defined as an event at which the 

system is running at an unsatisfactory performance, or it can be a 

functional failure when the system fails to achieve its required demand, or 

it can be just a breakdown when the system stops running.  

The prognostic approach can be categories into three main classes 

(Jardine, Lin et al. 2006): 

• Statistical procedures 

• Artificial intelligent approaches  

• Model-based approaches. 

Remaining useful life probability density function (RUL PDF) is the 

fundamental concept within prognostic. A prognostic algorithm creates the RUL 

PDF as an output, depicting the distribution in time of possible system failure 

times, as shown in Figure 2.11. Considering it, at time A, a prediction is made 

followed by an estimation of the RUL PDF. When the RUL PDF has been 

estimated, the following step is to schedule the required corrective maintenance 

activities. The destination time to have the maintenance action is built upon both: 

• Avoiding in-service system failure. 

• Maximising the system useful life. 
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Figure 2.10 The remaining useful life probability density function (Clements 2011) 

The maximum permissible Probability of Failure (POF) will be a considered 

key in the development of a necessities determination for a prognostic algorithm. 

The likelihood of failure value marks the maximum adequate danger level of a 

system failure, beyond this threshold; the system is unable to operate for an 

extended time because the risk of failure has increased considerably. From the 

maximum allowable probability of failure and the assessment of RUL PDF, the 

just in time point B, as an important term can be identified. This term can be 

defined as the latest point in the equipment lifetime which before it, the corrective 

maintenance must be activated in order to prevent the system from working 

beyond its maximum value of the permissible probability of failure, point C. 

Alternatively, in another word, before the system developing a catastrophic 

failure. There are some factors would usually be considered in the real industrial 

systems to select the maximum value of permissible probability of failure. Such 

factors contain safety, criticality and economic considerations. In order to have a 

plan for the next operation scenario, the system current condition needs to be 

considered. If the RUL of a system cannot cover the next operation scenario or 

accomplish the required task, then the corrective maintenance activity becomes 

crucial to avoid an in-service failure. In some individual systems and for particular 

operation scenarios where safety is a primary consideration, it needs to avoid an 

in-service failure as much as possible because the latter may lead to a 

catastrophic failure or put the system, operators and environment in dangerous 
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situations, for example, nuclear power plant. Accordingly, for the maximum 

allowable value of the probability of failure, a conservative value might be chosen. 

In contrast, for some expensive system or equipment, operators may accept a 

higher maximum allowable POF value to maximise the system service life by 

weighing the economic factor than avoiding the in-service failure, diamond 

headed cutting tool is an example of such sort of equipment. Figure 2.11 

illustrates an assumption maximum permissible POF of 5 per cent for 

demonstration. There is another key measure can be evaluated when the just in 

time point B has been recognised. This key is the Lead Time Interval (LTI), which 

is defined as a period of time between the point that the prediction is created 

point A and the just in time point, point B. 

In order to avoid operating the system beyond the maximum permissible 

POF, maintenance activities have to be done before the lead time interval LTI 

elapses. Because of the LTI gives a real-time estimation of the remaining life 

before the system works beyond the maximum permissible POF. While, the 

remaining useful life in combining with LTI values can be utilised to automate the 

maintenance decision system, both for the former are essential for the 

maintenance team to schedule the required activities to avoid the in-service 

system failure.  

Moreover, spare parts and instrument can be pre-ordered via the automatic 

logistics system when a predicting failure is oncoming; this could be achieved by 

estimating the RUL and LTI. The desired benefit out of this strategy is to have a 

small list of spare-parts and equipment on site and to reduce the shipping costs. 

2.9.2 Prognostic techniques 

There is a wide assortment of techniques have been utilised to predict the 

RUL of a monitored system that is applied to different applications. As illustrated 

in Figure 2.8, prognostic approaches can be classified into three categories 

(Vachtsevanos 2006):  

1. Experience-based approach. 

2. Data-driven approach. 

3. Model-based approach. 
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As can be seen in Figure 2.12, the experience – based prognostics 

approach has a wide range of system applicability. As it shows an increase in the 

cost and accuracy when moving forward the model-based prognostics approach, 

there is a similar reduction in the applicability of the different approaches. 

Increasing the complexity and/ or the cost of different approaches causes a 

reduction in the applicability scope. By modifying solutions to specific prognostic 

implications, improving the capability may be achieved. 

There is a narrow scope of prediction of this approach if we can say that, 

because it is assumed that the system follows the same historical failure time-

distribution model and hence to avoid in-service failure, a preventive 

maintenance activity is scheduled. 

Figure 2.11 Technical approaches to prognostics (Byington, Roemer et al. 2002) 

1. Experience-based prognostic approaches 

This technique is assumed to be one of the most straightforward prognostic 

approaches because it depends only on the statistical collected information from 

the historical failure rate of the system or equipment. Later, this data will be 

employed to create a life service model, i.e. the distribution of failure rate over 

working time. Accordingly, scheduling the preventative maintenance activities 

can be improved by utilising this methodology based on the mean time between 
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failures. While this approach cannot be presented as a real prognostic technique, 

there is a narrow scope of prediction, if we can say that, in this approach. 

Because it is assumed that the system will follow the same historical failure time 

distribution model regardless of its current condition and hence, to avoid in-

service failure, preventive maintenance activities are pre-scheduled accordingly. 

Nevertheless, this approach has a broad scope of applications in low cost and 

less critical systems. Moreover, this approach can be used in some applications 

where there is a lack of data from sensors, on it the system condition can be 

concluded. 

2. Model-based prognostic approaches 

Theory of failure models of systems under observation that derived from 

first physical principles is used in the most capable prognostic approaches. Until 

now, the main application scope of these approaches has to consist the model of 

crack initiation and propagation as a fault model in structure members (Ray and 

Tangirala 1996). The main advantages of using physics of failure models for 

model-based methodology purposes is the capability to integrate a physical 

model of an observed system and the capability to prognoses the degradation of 

the system under different operation conditions. There are some limitations on 

using model-based prognostic approaches due to the ability to improve highly 

reliable models of complex systems or processes. In many applications, it is 

acceptable to propose a particular dynamic model to describe the development 

of a degradation system if a physical model that built from the first principles is 

complex or unavailable. For some simple systems, liquid level process as an 

example, even it is understandable and easy to derive its physical model from 

the first principles, it is a significant challenge to build the system model 

consisting all actuators and sensors characteristics. Due to ageing and long-term 

of usage, the characteristic equation has changed with time, and hence, it is not 

fidelity to use the same characteristic formulae provided by the manufactural. 

Nevertheless, built a model based on current members’ condition and behaviour 

might be worth. Because of the collected data from the system under observation 

is utilised to create such prognostic models, this sort of prognostics approaches 

are described as hybrid approaches. 
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3. Data-based prognostic approaches 

For the purposes of prognostic and in many situations, it is impossible to 

derive robust and accurate models because of the complexity of systems under 

observation. Instead of this, historical acquired data that describe the system 

behaviour in the presence of some incipient faults are available. Accordingly, it 

might be worth to predict the RUL by using data-driven methods which describe 

how collected signals of a system developed with the time. There are two sorts 

of strategies that data-driven prognostic approaches are typically followed. 

• The first strategy consists of two stages, utilising a suitable 

dimensionality reduction, feature extraction, or pattern matching 

techniques to figure the system signals onto one-dimension index 

either damage, degradation, or health. 

Because this first step is concerned with the analysis of posterior events, it 

is assumed a part of fault diagnostic steps. When the current level of deterioration 

is identified and in the presence of a predefined threshold of fault limit, the 

extrapolation will be done. While modelling the relationship between the 

monitored signals and the remaining useful life of the system as a generated 

output of the model, be the second strategy.  A brief overview of data-based 

techniques that have been employed in prognostic problems is presented in the 

following section. Meanwhile, more comprehensive reviews of data based 

prognostic approaches have been presented in (Si, Wang et al. 2011), (Dragomir, 

Gouriveau et al. 2009), (Heng, Zhang et al. 2009) and (Tsui, Chen et al. 2015). 

Moreover, (Kan, Tan et al. 2015) presented data-driven prognostics approach for 

non-linear and non-stationary machine processes. They studied prognostics 

techniques that can deal effectively with non-linearity and non-stationarity 

systems and concluded with further improvements in prognostics. 

• Time series approaches This data-driven methodology depends upon 

projection techniques, which means extending the present level of 

deterioration into the future and hence it is assumed to be the least 

complicated data-driven method. This approach is a time series prediction 

method. Exponential smoothing techniques, which has been presented in 

(Byington, Roemer et al. 2002) and autoregressive models that have been 
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discussed in (Saha, Goebel et al. 2009), (Wu, Hu et al. 2007), are used to 

deal with this approach for prediction purposes.  

• Artificial neural networks this approach might be the most popular data-

driven techniques that applied for the prognostic requirement. This 

technique mimics the relationships between the input and the output 

variable according to a model structure built on the neural structure of the 

brain. The network weights and biases, which characterise the 

interconnections between the neurons, are adjusted during a training 

procedure to expand the appropriate between the input and output data 

on which the models are prepared. 

Other methodologies beyond time series and artificial neural network based 

methods, scope of different systems have been applied to prognostic 

applications. (Goebel, Saha et al. 2008) Compared to three data-driven 

techniques: artificial neural networks; Gaussian process regression; and a 

consistent vector machine approach for prognostics. Other data-based 

methodologies that have been utilised for prognostic problems include hidden 

Markov models (Zhang, Xu et al. 2005), and Neuro-Fuzzy networks (Wang, 

Golnaraghi et al. 2004).  

(V, Medjaher et al. 2017) summarised, in a table, some papers that can be 

used to understand the general concepts of condition monitoring systems. They 

presented in this table, important problems, the domain, the approach 

classification and remarks pointed out in the review papers synthesised from the 

publications. Moreover, this table contains beside the author names and the year 

of their publication, main issues and remarks studied by review papers in the 

literature. 

(Guillén, Gómez et al. 2013) presented the main topics of PHM integration 

framework regarding diagnostics and monitoring approaches by synthesising 

PHM review papers in several application fields. Then, they discussed the 

functionality of PHM, maintenance types, prognostics approaches and proposed 

the integration of PHM with e-maintenance for proactive decision making. 
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2.10 Summary and knowledge gaps identification  

Maintenance has a significant impact on the final product costs and the 

availability of industrial systems. Prognostic and health management of a whole 

system and predicting when it will reach its end of life is not an easy task and 

inherently has a high level of uncertainty. A typical prognostic and health 

management go through some essential steps as shown in Figure 2.6. Regarding 

safety, there are some critical systems in direct touch with human and 

environment safety such as; automotive, train, nuclear station, chemical and 

aerospace industries need to deal with. These need smart predictive 

maintenance systems with very high reliability due to the possibility of 

catastrophic failure consequences. Based on this, intelligent and reliable PHM 

technology development is urgently needed to deal effectively with maintenance 

optimisation activities of critical-complex systems efficiently. Subsequently, 

developing the PHM system should consider resources and system degradation, 

environmental effects, failure behaviours, failure interactions and related 

uncertainties (Qiao and Weiss 2016).  

A summary of the identified knowledge gaps is now given below. To reduce 

production costs and unrequired stoppage and increase the system useful life, 

an efficient prognostic and health monitoring approach needs to deal with the 

following: 

1. The amount of acquired data from modern systems, depending on the 

number of sensors and their signal types, becomes enormous. There is a 

significant challenge to analyse such a massive amount of data in-site or 

transfer to a remote instantaneous monitoring and data analysis centre via 

internet for example even with modern technology. 

2. It is believed that system failure occurs suddenly. In reality, there is slowly 

progression of faults deteriorate with the time. In the closed-loop control 

system, the controller allows the system shows a healthy behaviour 

regardless of the presence of faults while the control signal is less than a 

specific threshold. 

3. All real systems show nonlinear behaviour. 

To deal with this reality and to provide a contribution covering the health 

monitoring deficit, it is essential to develop: 
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I. A continuous health monitoring approach with the following specifications: 

• Continuous and instantaneous health assessment of the in-service 

system. 

• Undependable on historical knowledge and previous faults-occurrence 

to be a general approach and applicable for any feedback controlled 

mechatronic systems. 

• Provide simple but clear enough output signal to assign any change in 

the required demand and/ or the presence of any hidden fault. 

• The output signal needs to be small in size for the online monitoring 

and data transfer requirements. 

• This approach output signal does not need massive storage media 

because of its small size, and hence, it can be saved accumulatively 

to track the system health throughout a long time in the past. 

• The output signal capable of being implemented with the control 

system to have an integrated control and health monitoring system. 

• This monitoring approach capable of diagnosing the system faults and 

assigning the sort of fault, intensity and the fault location. 

II. Continuous evaluation of the system remaining useful life at any stage of 

the operating scenarios in the presence of faults by observing the control 

signal continuously via the health monitoring algorithm before the system 

reaches its end of useful life. 

Chapter 3 presents CE105 liquid level system as a test rig for this PhD 

research purposes. It reviews the system components and transducers, which 

for them the characteristic equations were experimentally prepared to build the 

virtual system and compare its behaviour with that of the real system. 
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3.1 Introduction 

Considering the gaps that presented in Chapter 2 of this thesis, a liquid level 

system model was built. As a typical nonlinear liquid level system, CE105 was 

mathematically analysed. Moreover, an experimental model that will be used for 

the purpose of this research was built according to the characteristic equation of 

each mechanical and transduces to verify the consistency between the pragmatic 

and its virtual system. 

This chapter presents a review of the background and the theory behind the 

mathematical analysis of the liquid level system, which is used as a case study 

in this chapter. Later, the experimental characteristic equations of the liquid level 

system will be used to build its virtual system. This PhD research is based on 

model-based diagnostic, prognostic and health monitoring approach; the virtual 

system is used for the development of controller-based health monitoring and 

prognostic algorithms that present in Chapter 4 and Chapter 5. The layout of this 

chapter is as follows.  

Section 3.2 reviews the background and the discharge water flow condition 

and its impact on the system linearity. Section 3.3 presents mathematical 

analysis principles of a liquid level system. While in Section 3.4, the mathematical 

model is expanded and discussed based on Bernoulli's Equation and Lavoisier 

law of mass conservation to describe liquid outflow rate through the system 

discharge restriction. Section 3.5 describes CE105 coupled tank system, which 

used in this PhD research as a test rig. It presents some important system 

parameters combined with the system components. Experimental test approach 

and the primary results and their discussions are presented in Section 3.6. This 

section presents a mismatch between experimental results and that of the 

mathematical model because of the reasons that presented in detail in this 

section. Section 3.7 describes the characteristics of the system discharge valve 

after taking the required arrangement to deal with its pre-discussed behaviour in 

Section 3.6. Section 3.8 reviews the experimental procedure to estimate the 

characteristic equation of each transducer and system components in order to 

use them in Section 3.9 to build a detailed simulation of the CE105 under 

LabVIEW environment. Section 3.10 presents the response consistency of 
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CE105 couple tank system and its simulation. This simulation will be used later 

as a virtual system for Chapter 4 and Chapter 5 purposes.  

3.2 Liquid level system 

Liquid Level Tank Systems (LLTS) are used in an extensive variety of 

industrial process applications, such as within water treatment industries, power 

plants, papermaking and petrochemical industries. Such systems often require 

liquid to be pumped, stored in tanks, and then allowed to flow to other tanks. 

The fundamental objective of the controller utilised within the liquid level 

system is to maintain the liquid level at its required height in a tank. Moreover, to 

be able to accept new set values in order to regulate the liquid level in the 

presence of liquid discharge from the tank. In many LLTS applications, the 

outflow rate needs to be constant during the processor to be changed to a new 

value by either modifying the controlled liquid level or manipulating the discharge 

valve opening. Controlling a liquid height in a tank and consequently, the liquid 

free outflow rate is of crucial importance for mixing reactant process, for example 

(Essahafi 2014).  

The control of liquid level systems has attracted the attention of many 

researchers around the world during the last few decades. (Mahapatro 2014) 

argued that the control of an LLTS be classified as one of the most challenging 

benchmark control problems because of its non-linear and non-minimum phase 

characteristics. The challenge is to keep the liquid level at its demand or change 

it to a new value by manipulating the pump voltage regardless of the outflow 

condition (Postlethwaite 1996). Here, it is assumed that the liquid is non-viscous 

and incompressible which means there is no change in density of the liquid during 

the process. Before designing a controller, it is essential to understand the 

system behaviour under different operating scenarios. An LLTS is commonly 

controlled by using a conventional Proportional- Integral- Derivative (PID) 

controller as a widely recognisable type of feedback controller. Currently, a PID 

controller is one of the most common control algorithms utilising to control 

processes. It is used in domestic and industrial applications, for example, heating 

and cooling systems, liquid level monitoring, flow and pressure control 
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application. Such a feedback controller minimises the difference between the 

required demand and the related plant measured variable through regulating the 

process-controlled inputs. Furthermore, every single element of a PID controller 

refers to a particular action taken on the error (Kumar and Dhiman 2011). 

(Hussein and Mishra 2014) investigated interconnected CE105 coupled 

tank system by using a proportional-Integral PI controller for the purpose of 

monitoring and control the liquid level system. They used the LabVIEW 

programme to implement a control algorithm to control the liquid level regarding 

the difference between the tank inlet and outlet flow rate. Their control algorithm 

was based on sending driving voltages to the pump in the range between 0 to 10 

volts depending on the system measure variable, i.e., the liquid level. They 

concluded that the CE105 has been successfully controlled using PI controller 

through LabVIEW software with a proportional gain equal 4 for each tank and 

(5 ∗ 10−5) and (1 ∗ 10−4) as an integral gain for tank 1 and tank 2 respectively.  

In considering the dynamic behaviour, and associated simulations, of liquid 

level control systems the outflow characteristics are usually considered as a 

primary nonlinear feature. However, (Ogata 1997) stated that an LLTS could be 

assumed linear if the free outflow can be considered laminar;  

𝑄𝑙𝑎𝑚 = 𝐾. ℎ (3-1) 

Where 𝑄 is a steady state liquid free outflow rate, (m3. s−1), K is a coefficient 

(𝑚2. 𝑠−1), and h is a steady state liquid head, (m). In contrast, when the flow 

through the discharge valve is turbulent, the steady state outflow rate is: 

𝑄𝑡𝑢𝑟 = 𝐾√ℎ (3-2) 

Often this characteristic can be linearised when the change in the system 

variables are kept small. For non-linear simulations, the square root characteristic 

is widely used to model the flow through hydraulic orifices as the discharge valve 

can be analogous to an orifice. This recruitment may cause numerical problems 

because the derivative of the flow concerning the pressure drop tends to infinity 

when the pressure drops approaches zero. Moreover, for small values of the 

pressure drop, it is more reasonable to assume that the flow depends linearly on 

the pressure drop (Borutzky, Barnard et al. 2002). Similarly, (Ogata 1997) stated 

that a system could be considered linear if the outflow is laminar. Even if the flow 
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is turbulent, the system can be linearised when the change in the variables are 

kept small. (Himanshu Gupta April 2012) stated that to achieve the desired 

output, it is essential to control the process variables in any process. Moreover, 

they stated that because of all real systems behave as nonlinear systems; 

conventional controllers are not always capable of providing satisfactory results. 

Accordingly, they suggested a design of a Fuzzy Logic Controller (FLC) to control 

the liquid level of a coupled tank system.  

For the current research, the aim is to include such primary non-linearity 

along with any non-linear effects.   

3.3  Mathematical analysis of liquid level system 

In order to study the time response of a control system, its dynamic 

differential equation needs to be solved. A schematic diagram of the considered 

system is shown in Figure 3.1. The basic assignment of that controller is to 

maintain the liquid level at its desired value and be able to accept new setting 

values. This purpose is accomplished for instance, by manipulating the inflow 

rate of the liquid by changing the electric power which supplied to the pump. Here, 

it is assumed that the liquid is a non-viscous and incompressible fluid, which 

means its density and viscosity are supposed to be constant during the process. 

The hydraulic capacitance of liquid is a term used to describe the potential energy 

stored as a liquid. the height of liquid in a container as shown in Figure 3.1, i.e. a 

so-called pressure head, is one form of such stored energy.  
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Figure 3.1 Schematic Diagram of a Single Tank System 

3.3.1 Lavoisier Law of mass conservation 

In general, the mass of liquid in the tank at any time is: 

𝑚𝑎𝑠𝑠 = 𝜌. ℎ. 𝐴𝑡  (3-3) 

The accumulated liquid in the tank is equal to the difference between the 

liquid masses entering and leaving the tank with respect to time. 

𝜌(𝑄𝑖 − 𝑄𝑜) = 𝜌. ℎ̇. 𝐴𝑡 = 𝑚̇ (3-4) 

Where; 

𝑄𝑖 = Inlet liquid flow rate, (𝑚3. 𝑠−1) 

𝑄𝑜 =  The outlet liquid flow rate through the discharge valve, (𝑚3. 𝑠−1) 

𝜌 = Density of the Liquid, (𝑘𝑔.𝑚−3)   

ℎ̇ = The rate of change of the liquid level (h) with respect to time, (𝑚. 𝑠−1) 

𝐴𝑡 = A cross sectional area of the uniform cross-sectional container, (𝑚2) 

ℎ = The liquid height in the tank, (𝑚) 
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While there is no change in the liquid density during this process, the level 

becomes: 

ℎ̇ =
𝑄𝑖 − 𝑄𝑜
𝐴𝑡

 (3-5) 

The liquid flow through the discharge valve is due to pressure difference 

between points (𝑖 𝑎𝑛𝑑 𝑜) which they are 𝑃𝑖 and 𝑃𝑜 respectively as seen in Figure 

3.1. The pressures are given by: 

𝑃𝑖 =
𝑚. 𝑔

𝐴𝑡
=
𝜌. ℎ. 𝐴𝑡 . 𝑔

𝐴𝑡
 

(3-6) 

𝑃𝑖 = 𝜌. ℎ. 𝑔 (3-7) 

Meanwhile, 𝑃𝑜 = 0, because the outlet pipe is open to atmospheric 

pressure. 

According to the Antoine Lavoisier law of conservation of mass, which 

states that mass in an isolated system is neither be created nor destroyed by 

chemical reactions or physical transformations. Thus, the amount of matter 

cannot change.  

The mass of liquid passes through the discharge valve (𝑚̇) between points 

(𝑖 𝑎𝑛𝑑 𝑜) is constant at any time, i.e., 𝑚𝑜̇ = 𝑚𝑖̇  , thus, 

𝑚𝑜̇ = 𝜌. 𝑄𝑜 =
∆𝑃

1
∝

𝑅
 (3-8) 

 

𝑚𝑜̇ =
(𝑃𝑖 − 𝑃𝑜)

1
∝

𝑅
 (3-9) 

Where; 

Scale parameter ∝= 1 for laminar flow through the outlet restriction. 

And ∝= 2 for turbulent flow. 

𝑅 = Flow resistance through the outlet restriction. 

𝜌 = Density of the liquid (𝑘𝑔.𝑚−3) 

𝑔 = The acceleration due to gravity (𝑚. 𝑠−2) 
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ℎ̇ = The liquid free surface velocity up and down (𝑚. 𝑠−1) 

𝑃𝑖  𝑎𝑛𝑑 𝑃𝑜 = The pressure difference before and after the outlet restriction 

respectively (𝑁.𝑚−2). 

Points 𝑖 𝑎𝑛𝑑 𝑜 are two points at the same horizontal level inside the tank 

before the discharge valve and after it, which open to atmospheric pressure 

respectively. 

𝑚̇ = 𝜌. 𝑄𝑜 =
(𝜌. 𝑔. ℎ)

1
∝

𝑅
 (3-10) 

 

𝑄𝑜 =
(𝜌. 𝑔. ℎ)

1
∝

𝜌. 𝑅
 (3-11) 

By substituting Equation (3-11) into Equation (3-5); 

𝑑ℎ

𝑑𝑡
= ℎ̇ =

𝑄𝑖 −
(𝜌. 𝑔. ℎ)

1
∝

𝜌. 𝑅

𝐴𝑡
 

(3-12) 

For laminar flow through the outlet control valve where ∝ is equal 1, 

Equation (3-12) becomes: 

𝑑ℎ

𝑑𝑡
= ℎ̇ =

1

𝐴𝑡
(𝑄𝑖 −

𝑔

𝑅
ℎ) (3-13) 

However, for turbulent flow, ∝ is equal to 2, and Equation (3-12) becomes: 

𝑑ℎ

𝑑𝑡
= ℎ̇ =

1

𝐴𝑡
(𝑄𝑖 −𝐾.√ℎ) (3-14) 

Where; 

𝐾 =
√𝜌. 𝑔

𝜌. 𝑅
 (3-15) 

Then, Equation (3-14) is a mathematical model that describes the behaviour 

of the liquid level system at any time. It is evident that the system model is 

nonlinear. For the tank level circumstance, the nonlinearity, if desired, could be 

smoothed or linearised around a particular operating liquid level(ℎ). Such 

linearity is achieved by using the slope of the nonlinear system behaviour at a 

specific liquid level. 
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3.3.2 Bernoulli’s Equation 

Bernoulli’s Equation applied to a liquid flow through an outlet valve is 

deemed to be analogous to sharp-edged small circular orifice behaviour. Such 

analogous consideration will not eliminate the difference in shape feature 

between an assumed circular orifice and the real valve opening, restriction shape. 

The liquid discharge velocity (𝑣𝑜) through the outlet valve at the bottom of the 

tank is deriving from Bernoulli’s Equation, Figure 3.1: 

𝑃𝑖
𝜌𝑔

+
𝑣𝑖
2

2𝑔
+ 𝑍𝑖 =

𝑃𝑜
𝜌𝑔

+
𝑣𝑜
2

2𝑔
+ 𝑍𝑜 (3-16) 

Where: 

𝑃𝑖 = A gauge pressure at point (𝑖) inside the tank (𝑁.𝑚−2). 

𝑣𝑖 = A liquid velocity at point (𝑖), (𝑚. 𝑠−1) 

𝑍𝑖 = The height of point (𝑖) measured from a horizontal level, (m). 

𝑃𝑜 = A gauge pressure at point (𝑜) which equal to zero because it is open to 

atmospheric pressure (𝑁.𝑚−2) 

𝑣𝑜 = A liquid velocity at point (𝑜), (𝑚. 𝑠−1) 

𝑍𝑜 = The height of point (𝑜) measured from the same horizontal level of point 

(𝑖), (m). 

It is usual to assume that points (i) and (o) are at the same horizontal level, 

as can be seen in Figure 3.1. Then, 

𝑃𝑖 = 𝑃 = 𝜌𝑔ℎ (3-17) 

with 𝑣𝑖 ≪ 𝑣𝑜 , 𝑍𝑖 = 𝑍𝑜 and 𝑃𝑜 = 0  

Consequently, Bernoulli’s Equation becomes: 

ℎ =
𝑣0
2

2𝑔
 (3-18) 

𝑣𝑜 = √2𝑔ℎ  (3-19) 

If the valve is assumed to behave as an ideal sharp-edged circular orifice, 

the flow through the valve will be related to a square root of the liquid level (h) in 

that tank.  
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The volumetric outflow rate through the discharge valve can be expressed 

as a function of the liquid level (h) in the tank by the following expression: 

𝑞𝑜 =  𝑎 √2𝑔ℎ  (3-20) 

Then the general dynamic equation will be: 

𝑑ℎ

𝑑𝑡
=  

1

𝐴𝑡
 (𝑞𝑖 −  𝑎 √2𝑔ℎ) (3-21) 

Now adopting the units more applicable to the experimental arrangements: 

ℎ = the liquid depth in the tank measured from the liquid free surface to the 

centre of the outlet valve at the bottom of the tank, (𝑚𝑚). 

𝐴𝑡 = the cross-sectional area of the uniform tank, (𝑚𝑚2). 

𝑞𝑖 = the inflow rate,(𝑙.𝑚𝑖𝑛−1). 

𝑎 = constant equals to the orifice cross-sectional area multiply by the 

discharge coefficient through this orifice.  

This coefficient depends on many things such as the orifice cross-sectional 

area, the size of the orifice, the material which made from and the puffer 

smoothness. Meanwhile, the liquid characteristics are considered to be constant. 

 (Dorf and Bishop 2005) stated that the vast majority of physical systems 

show linear behaviour within limited ranges of their variables. However, all 

systems become nonlinear when the variables are increased unlimitedly. The 

linearity of a system is defined according to the system excitation and response. 

If a system satisfies the properties of superposition and homogeneity, it 

considered a linear system. 

3.4  Description of CE105 coupled tank system 

In this study, a coupled tank apparatus CE105 was selected for the study of 

both its nominal and faulty behaviour. This plant is developed by TecQuipment 

(TQ) Education and Training Ltd, 2001. The functional schematic diagram of 

CE105 couple tank system is shown in Figure 3.2, the system key features are 

illustrated in Figure 3.3, and its specifications are summarised in Table 3.1.  
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(TecQuipment, Hussein and Mishra 2014) stated that the CE105 test rig 

had become a standard system for control laboratories equipment designed 

specifically for teaching and practical investigation of elementary and advanced 

process control engineering principles. Controlling a liquid level and 

consequently liquid outflow rate, as they would typically occur in process control 

industries might be studied using a CE105 coupled tanks apparatus. It may also 

utilise this test rig as an introduction to the design, operation and application of a 

PID controller. CE105 provides an ability to investigate the effect of each element 

(P, I and D) of the PID controller. The basic control challenge is to regulate the 

liquid level in one of the system tanks by manipulating the voltage of the liquid 

pump. 

 

Figure 3.2 Schematic functional diagram of CE105 coupled tank system 

(Hussein and Mishra 2014) 
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Table 3-1 Specification of a coupled tank liquid level system CE105 (TecQuipment) 

Tank 1 Cross-Sectional Area = 9350 mm2 

Tank 2 Cross Sectional Area = 9350 mm2 

Valve A, B, C 

10 mm Valve adjustable area a (Slot) 

Full Cross-Sectional Area = 78.5 mm2 

Liquid Level Sensor 

0 to 10 volt DC Output 

Corresponding to 0 to 250 mm as 

indicates on the front panel water level scales 

Pumping Flow 

Rate Sensor 

0 to 10 V DC Output 

Corresponding to 0 to 4.4 𝑙. 𝑚𝑖𝑛−1 as 

indicates on the front panel rotameter 

a the adjustable area of the valve is divided into five main positions. 

 

 

Figure 3.3 CE105 Coupled Tank System 
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Each tank is equipped with a pressure-sensing liquid level sensor that 

provides output signals proportional to the trapped air that in turn proportional to 

the water level in the tank. Moreover, the water level in each tank is clearly visible 

through transparent windows on the front panel. Also, there are two operator 

readable adjacent scales enable the actual levels to be determined for sensors 

calibration purposes. A variable speed DC motor and pump set utilises to pump 

the water from the system main reservoir into the left-hand tank, either under 

manual or automatic control. Alternatively, the right – hand tank can be filled from 

the left tank via valve A for the purpose of two – tank experiments. A traditional 

rotameter – variable area type flow meter was installed vertically on the main inlet 

tube to provide a direct flow rate indication in (𝑙. 𝑚𝑖𝑛−1) water. In addition, an in-

line impeller indicates the pumping water flow rate to electronic impulse 

transducer is utilised to indicate the pumping water flow rate.  

This system has two tanks mounted side by side. These tanks are 

interconnected by a flow channel, from every single tank to a common reservoir. 

This reservoir is situated below, through three regulator valves A, B and C. Valve 

A is mounted in the channel between the two tanks at the bottom of them to 

control the liquid flow between the two tanks, as can be seen in Figure 3.3. 

Meanwhile, valve B and C are mounted on the drainpipe of every single tank at 

level (46 mm) approximately, measured downward from the tank bottom. Such 

valves are used to control the liquid flow rate from each tank to the system 

reservoir. The liquid flow characteristics of the coupled tank system can be 

controlled and changed to a wide range of physical characteristics. This task can 

be achieved by changing the cross-sectional area of the valve (A, B and C), each 

of them can be varied over five main grades, i.e. from 0 to 4. 

The connections between the internal circuits of the CE105 and a CE120 

control panel which provides analogue and digital control and a computer-based 

controller are via circuits access mounted on the detailed front panel. This 

controller allows the system operator interactively to investigate a various aspect 

of control scenarios.  

The CE120 controller contains analogue facilities such as summing 

amplifiers, proportional and integral amplifiers, separate access to the three 

terms of a PID controller, variable potentiometers, a function generator and a DC 
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reference voltage supply. To produce the desired circuit performance, these 

might be connected to each other in different combination.  These facilities are 

directly accessed and controlled by utilising an external personal computer (PC) 

with suitable software, LabVIEW programme for example. Therefore, it is 

possible to control and monitor the performance of the CE105 under the control 

of the software provided to perform open and closed loop experiments.  

For the purpose of this research, some functions of this usual control panel 

were replaced with a PC interface. The LabVIEW control software was interfaced 

via a USB – NI 6008 DAQ data acquisition board. This test rig, as provided, has 

a pressure sensing liquid level sensor and a flow rate sensor.  

In this element of wider evaluations and testing, the left tank is used to 

control the liquid level in it and monitor the condition of the system health. The 

collocation of the water pump, a PC set, a data acquisition board, CE120 

controller and a control panel under LabVIEW environment was used to study the 

CE105 apparatus behaviour as an open and closed loop system, as can be seen 

in Figure 3.4.  
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 Figure 3.4 Schematic diagram of the system 
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3.4.1 Rotameter water flowmeter:  

A traditional rotameter water flowmeter is vertically mounted on the front 

panel of the system, as can be seen in Figure 3.3. The flow rate indicator consists 

of a float freely moves inside a graduated transparent – tapered glass tube where 

the internal cross-sectional area gradually becomes bigger downstream, as can 

be seen in Figure 3.5. This indicator has divided to measure a water flow rate in 

𝑙. 𝑚𝑖𝑛−1 at room temperature. As the flow through the tapered tube increases, the 

float is lifted by the liquid flow based on buoyancy and the pressure difference 

between the upper and the lower sides of the float. This sort of flow meter needs 

to be carefully mounted vertically because the force of the pressure difference 

acts against the gravity force which in turn pulls the float downward. It is ready to 

have a measurement value when the float reaches the equilibrium position as the 

upward force exerted by the liquid flow equals the weight of the float itself. For 

the same liquid which has a constant density and viscosity, there is a unique float 

position corresponds to a specific liquid flowrate. 

 Figure 3.5 Rotameter water flowmeter 

3.4.2 Pressure-sensing liquid level sensor 

Every single tank has fitted, via flexible tubing, to a piezo-resistive silicon 

differential-pressure sensor type SenSym 139-SX01DN. This transducer is 
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sensing the pressure difference between its two ports, P1 and P2, as shown in 

Figure 3.6 and provides output signals in the range of 0 to 10 volt in direct 

proportion to the trapped air pressure between the liquid in the tank and the 

sensor as a function of a water pressure head. 

 

Figure 3.6 differential pressure sensor type SenSym 139-SX01DN 

The pressure at any point below the free surface of a liquid in any direction 

has a direct proportion to the height of the liquid above this point. The pressure 

in a liquid, at any point, is influenced by three main factors: 

1. The depth of the liquid measured from the measurement point up to the 

liquid free surface. 

2. The pressure exerted on the liquid free surface. 

3. Liquid density. 

Accordingly, during the process, the pressure at a point is affected by the 

liquid depth rather than the container volume if the liquid density and the exerted 

pressure on the liquid surface are assumed to be constant. The measurements 

of the liquid level can be accomplished by using a pressure sensor with 

considering the variables mentioned above. If a liquid container is open to the 

atmospheric pressure, then the effect of the pressure exerted on the liquid free 

surface could be neglected by utilising a differential pressure sensor. 
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Mainly, there are two sorts of pressure sensor classified according to the 

type of the measurement:  

1.  Absolute pressure sensor:  

This kind of sensors measures the pressure relative to absolute vacuum 

pressure. An example of this sort of absolute vacuum is the pressure of the space 

above the mercury surface in the mercury (Hg) barometer. 

2.  Differential pressure sensor: 

It measures the difference between two pressures and introduces them as 

an input to the sensing unit. Some fluid flowmeter is an example of using a 

differential pressure sensor. There is a reduction in fluid pressure, as a result of 

increasing its velocity through a constricted cross-sectional pipe according to 

Venturi effect.  

A gauge pressure sensor is another type of differential sensor that is built 

to measure the relative pressure of space to atmospheric pressure. An example 

of this sensor is the pressure sensing liquid level sensor that used in the coupled 

tanks apparatus CE105. This sensor compares between the head pressure of a 

liquid in a tank and the atmospheric pressure and converts the result into an 

analogue voltage. 

Each tank of the CE105 coupled tanks system is connected to a differential 

pressure sensor via a calibration tube. This tube is open at its other end to the 

bottom of the tank. As the pressure sensor closes the other end of this tube, the 

pressure of the trapped air in the calibrator tube has a direct proportion to the 

liquid level in the tank if the ambient and medium temperature is assumed 

constant. 

The liquid level will be determined based on the hydrostatic pressure that is 

produced by a column of liquid on the bottom of the calibrator tube, i.e., the tank 

bottom. This pressure has the same amount of that on the sensor through the 

trapped air in the calibrator tube. The pressure sensor has two ports, one of them 

is opening to the atmospheric pressure, and the other end is connected to the 

calibrator tube. If the density of the liquid is assumed to be constant and will not 

change during the process, and the change of the acceleration due to gravity is 
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negligible. Hence, the hydrostatic pressure can be derived by a simple 

expression:  

𝑃 = 𝜌𝑔ℎ (3-22) 

Where; 

𝑃 = The hydrostatic pressure(𝑁.𝑚−2), 

𝜌 =Density of the liquid(𝑘𝑔.𝑚−3), 

𝑔 =The acceleration due to gravity (𝑚. 𝑠−2) and 

ℎ =The liquid depth in the tank (𝑚). 

Resolving the above equation for ℎ: 

ℎ =
𝑃

𝜌𝑔
 (3-23) 

There are some concerns hinder high-quality system performance. One of 

the major such concerns is a calibration experiment related to the thermal system 

equilibrium (Higuchi H., Takeda S.  et al. 2001). (Howell 2009) Stated that, in 

order to have an ideal calibration activity, it should be done at one temperature 

which it has to be the same as the pumped liquid, the receiving container and the 

surrounding environment. Moreover, the ambient temperature should not change 

significantly during the process. A system operator should take every opportunity 

to minimise the impact of the thermal equilibrium on the system behaviour 

whenever it possible. The experiments envisaged by using the CE105 tank 

system in the lab environment are unlikely to be performed under the previous 

conditions. 

Liquid density varies with changes in its temperature. For example, the 

maximum density of water is 999.972 (for pure water 1000) 𝑘𝑔.𝑚−3 at +4 °C. 

Meanwhile; it is 999.841 𝑘𝑔.𝑚−3 at 0°C. However, at room temperature, i.e., +22 

°C the density of water is 997.774 𝑘𝑔.𝑚−3. All measurements for the purpose of 

this study were done at room temperature around +22°C, ±3°C, where water 

density variation is about ±0.1% (Shtargot, Mirza et al. 2013).  

A wide range of industrial, commercial, and medical applications entail 

accuracy pressure measurements with ±1% up to ±0.1% or better, with 

reasonable cost, and often with very low power consumption. Because the 
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process environment temperature is within this range, the results are valid as 

they verify. 

3.4.3 Water pump 

The CE105 apparatus, which used for this study, is provided with, SHURflo 

Diaphragm Pump, Model No. 208 – 110 – 41 to pump the water into the system's 

left-tank.  This diaphragm pump, from its - nameplate, designed to pump an open 

water flow of (6.4 𝑙. 𝑚𝑖𝑛−1) at maximum voltage supplied of 10 DC volt. A DC 

motor - pump set is used to rise the water from the system reservoir to the left 

tank. This water pump is usually driven and controlled by connect it to a CE120 

control panel. For the purpose of this research, the CE105 apparatus has been 

connected to a PC via a data acquisition DAQ NI USB – 6008 and the controller 

CE120. The latter control panel was implemented to provide a sufficient power to 

drive the system water pump. CE120 has been used as a proportional amplifier 

to boost the PC signal to match the pump drive voltage and to provide the 

required DC electric current consumed to drive the water pump at different 

pumping rate. A control panel unit under LabVIEW environment was developed 

to study the open and closed loop system response. As can be seen in Figure 

3.4, a collocation of the water pump, a PC, NI USB-6008 data acquisition, CE120 

controller and the control panel unit under LabVIEW environment have been used 

to study the open and closed loop system behaviour. This collocation enables an 

operator to control the water pump discharge and hence the liquid level under 

different scenarios via a PID controller.  

3.5  Experimental tests: 

3.5.1 Discharge characteristic study: 

Experimental tests were done on CE105 apparatus to validate the 

developed mathematical model of the LLTS. Especially for the validation 

experiments; 

• Valve A that connects the two tanks was fully closed.  
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• The regulator valve B was set to be partially open at position 3. This partial 

opening allowed free water flow from the left-hand tank to the system 

reservoir.  

• Several open – loop experimental tests were accomplished on the CE105 

to evaluate the calibration equation of each indicator, transducer and the 

system elements.  

• While the discharge valve B was fixed at the same set position, to 

change the liquid level different drive voltages were applied to the DC 

motor – water – pump.  

• When a step change drive voltage was applied, the liquid level rose until 

it reached a steady – state level, and then the system parameters were 

recorded.  

The recorded parameters were the liquid level in mm and the corresponding 

liquid level sensor reading in volt; the pump drive voltage in volt; the tank inflow 

rate in 𝑙. 𝑚𝑖𝑛−1 and the corresponding flow rate sensor reading in volt. At steady 

– state, the inlet and outlet flows are in balance state with the water discharge, 

(for any exit valve setting) being a function of the head of water above the exit 

restriction. Further tests allowed the relationship between the drive voltage and 

the outlet valve setting to be established. A voltmeter mounted on the CE120 

control panel was utilised to measure the drive voltage and the voltage of any 

other transducer. Meanwhile, the liquid level could be measured directly by the 

operator in (mm) through the readable scale, as can be seen in Figures 3.2 and 

Figure 3.3.  

3.5.2 Results and discussions 

Figure 3.7 shows the experimental relationship between the liquid level and 

the outflow rate through valve B. The latter was evaluated by equating the outflow 

rate to the inflow rate at steady – state conditions.  

According to Equation 3-11;  

𝑄𝑜 =
(𝜌. 𝑔. ℎ)

1
∝

𝜌. 𝑅
 (3-24) 

Terms are as previously defined.  
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According to Bernoulli’s Equation, (Dorf and Bishop 2005) and (Ogata 

1997), the outflow rate is usually expressed as a power function of the liquid level, 

because of other variable are assumed to be constant during the process. 

Moreover, the liquid flow resistance R through the outlet restriction, which in turn 

a function of the exit cross-sectional area, is assumed constant. The power of 

this function is (
1

∝
), which depends on the kind of flow through the exit regulator 

valve. Where, ∝ equals 1, if the flow is laminar and accordingly, the relationship 

becomes linear. Meanwhile, ∝ equals 2, if the flow is turbulent and the 

relationship becomes non-linear.  

 

Figure 3.7 Experimental relationship between liquid level and the outflow rate 

through valve B when valve A is completely closed 

Despite what (Dorf and Bishop 2005) stated, that all systems become not 

linear when the variables are increased unlimitedly. This system, for this 

particular case, is not fitting a real system nature because it mostly shows a linear 

response, as shown in Figure 3.7. 

It was deemed that the following were of relevance: 

• The liquid level in this experimental test varied from zero up to the 

maximum tank height of 250 mm.  
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• The regulator valve B could not be assumed as a perfect sharp-edged 

circular diameter orifice.  

As shown in Figure 3.7, there are two trend lines describe the best curve 

fitting as a power function Qp and as a linear function QL. The power function 

trend, which is usually used to describe the hydraulic flow through an orifice, 

shows a correlation coefficient (R2 = 0.885). Meanwhile, for the linear trend the 

correlation coefficient shows (R2 = 0.991), which means that the linear trend is 

describing the relationship stronger than the power function trend. 

Accordingly, it was assumed that the water flow through valve B could not 

be defined as either perfect laminar nor perfect turbulent flow. Hence, a power 

function with power value between 1 and 0.5 be a reasonable expression to 

describe the relationship between the outflow rate and the liquid level, if the latter 

changed significantly. Moreover, this approach is convenient for Bernoulli’s 

equation that usually presents mathematically as a square root formula for 

turbulent flow. 

3.5.3 Time to evacuate the tank of CE105 coupled tank system 

To confirm the previous results, another set of experimental tests have been 

accomplished on the CE105. For the same outlet valve B setting (position 3). 

• The left-hand tank was filled to a specific liquid level.  

• The tank was allowed to settle at its steady-state level. 

• The water pump was then turned off, and the liquid was allowed to drain 

out of the tank. 

• The time to evacuate the tank was recorded. 

• The previous steps were repeated three times for the same liquid level, 

and then this test was repeated for other levels. 

The relationship between liquid level and the time of evacuation is shown in 

Figure 3.8. It is recognised that the relation is linear. 

From Figure 3.8 and for the best curve fitting, a linear function TL gives a 

correlation coefficient R2 = 0.997, which means the relationship between the 

liquid level and the time to evacuate the tank is a linear function. Despite that, the 
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power function TP trend gives (R2 = 0.999) and a liquid head power of 0.9122 

which can be assumed closely to be linear. Accordingly, the variation between 

the two trends is not reasonable.  

Figure 3.8 Time needed to evacuate the tank through valve B 

3.5.4  Passing the drain water through valve A 

In order to verify the behaviour of the regulator valve, valve A was chosen 

to study its characteristics as follows: 

• Valve B was turned out to be completely closed. 

• In contrast, valve A was again set at position 3. 

• Valve C was set to be completely open allowing the water passes through 

it directly to the main reservoir and avoiding any amount of accumulated 

water in the right-hand tank. 

• Several voltages were applied on the pump to reach a steady – state liquid 

level each time.  

• For each, the system parameters were recorded. 

1. The relation of the liquid outflow rate through valve A as a function of liquid 

level in the left-hand tank is as shown in Figure 3.9. On this figure, the best 

curve fitting as a power function QP and as a linear function QL can be 

shown. The power function with a power of a liquid level equal to 0.5211 
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is strongly describing the relationship rather than the linear with a 

correlation coefficient of R2 = 0.983 for the former and R2 = 0.903 for the 

latter. Accordingly, the system behaves like a real non-linear system 

following Bernoulli’s Equation with a power between 1 and 0.5.  

 

Figure 3.9 Experimental relationship of the outflow rate through valve A as a 

function of the liquid level when valve B is completely closed 

2. To validate the results that pre-discussed in (1) above for Figure 3.9, 

another set of experimental tests were accomplished following the same 

steps that presented in Section 3.4.3. The relationship between the liquid 

level in the tank and the time to evacuate it is shown in Figure 3.10. From 

this figure, it can be recognised that the trend of the relationship is more 

power function TP with a power of 0.629 and a correlation coefficient of R2 

= 0.999 than linear function TL with R2 = 0.978. Hence, all the next 

experimental tests were accomplished using the pre-discussed 

arrangements in Section 3.4.3. 
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Figure 3.10 Time needed to have the left tank empty through valve A, valve B 

was fully closed  

3.5.5 Results and discussions: 

The previous results have been discussed in this section, and test 

experiments procedure has been concluded accordingly. By comparing the 

results, which present the experimental relationship of the liquid outflow rate 

through different valves as a function of the liquid level, as can be seen in Figure 

3.7 to Figure 3.10. From Figure 3.7 and Figure 3.9 for the experimental 

relationship between the liquid level and the outflow rate through valve B and 

valve A respectively, it might easy to recognise that: 

• The flow through valve A shows a non-linear behaviour and its trend, 

which is estimated by Microsoft Excel 2016, is a power function. The 

power of the liquid level h in the function is 0.5211, and it is assumed to 

describe the relationship as a square root equation. This result is 

consistency to Bernoulli’s Equation.  

• In contrast, Figure 3.8 shows a linear relationship between the liquid level 

and the outflow rate. If a power function has been chosen to describe the 

trend, the power of the liquid level h = 0.1248. This value is farther away 

from the stated range, i.e., 1 to 0.5 according to Equation 3-11. 

Liquid level mm 
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• Meanwhile, if a linear trend has been chosen, then Figure 3.7 shows more 

linear behaviour with R2 = 0.99. Nevertheless, Figure 3.9 shows less 

linearity with (R2 = 0.9). 

• As can be seen in Figure 3.8, a linear behaviour to evacuate the liquid 

from the tank through valve B. Meanwhile, Figure 3.10 shows a not linear 

trend to discharge the liquid through valve A. 

These variations could be related to the following reasons: 

a. The discharge restriction (valve B) is a regulator valve. Which 

means, to control the outflow rate through it, it needs to adjust its 

cross-sectional area. Arguably, the analogy between a sharp-

edged circular orifice that is used in the mathematical analysis of 

the system and a regulator valve might not be completely satisfied. 

b. There is an eccentric vertical shift between the centre of the valve 

B, which is assumed to be the valve discharge constriction, and 

the zero measured liquid level in the tank. The pressure sensing 

liquid level sensor is mounted at the bottom of the tank, i.e., zero 

level. As can be seen in Figure 3.11, this eccentric distance is 

about 46 mm measured from the tank bottom downward. It is 

inapplicable to track the liquid level neither by level indicator nor 

by the pressure sensor, through this part of the system for the 

following reasons: 

• The water tube in this area is not transparent, and it is positioned 

behind the non-transparent system body. 

• The sensing-point of the liquid level sensor is at the base of the tank, 

i.e., zero level. 
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Figure 3.11 A single tank system with the outlet valve distance 

Accordingly, it is impossible to overcome the shape and/ or the opening of 

the valve type problem that represented in (a) above because, valves (A, B and 

C) have been built in the existing system. The possible solution is by designing a 

new system using changeable sharp-edged circular orifices. To study the liquid 

outflow rate through the discharge restriction, it may need to use different 

diameter orifices in combine with the liquid level as a function of accumulative 

liquid in the tank.  

Nevertheless, by shutting valve B completely (fully closed) and directing the 

liquid from the left-hand tank to the right one through the valve A which it is by 

design located at the zero level, the problem (b) might be overcome. 

Consequently, the liquid passes from the right tank to the system reservoir 

through the valve C. In order to prevent any accumulative liquid in the right-tank 

that leads to increase the liquid height in it and to eliminate any resistance caused 

by the discharge water restriction, valve (C) was set to be fully open. 

 The CE105 apparatus might reasonably be assumed a not linear system. 

Moreover, to eliminate the effect of the eccentric distance of valve B and for the 

purpose of the rest of this research, valve B was fully closed, and valve C was 

fully open. Valve A was set to a specific opening to give, in collaborated with the 

liquid level, the required discharge 
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3.6  Discharge valve characteristic:  

According to the previous discussion, the regulator valve A was chosen to 

be the system liquid discharge valve. Arguably, a regulator valve has endless 

setting positions. By changing its setting, it might not be easy to have the same 

previous characteristic again. Hence, to study the valve behaviour at different 

valve settings, there were sets of tests have been done. 

• Valve B was closed, and valve C was fully open. 

• Valve A was set at position 3 for the first time. 

• A DC voltage was applied gradually to drive the system water pump 

until it starts rising water to the tank level. 

• When the water starts accumulating in the tank, it needed to wait until 

it reached the steady – state and then the system parameters were 

recorded.  

• Another voltage was applied to increase the liquid level and when it 

reached a new steady – state level the parameters were re-recorded. 

This step was repeated several times until the nearly full. 

• The previous steps were repeated for different valve A main settings 2, 

3 and 4 and other three sub-positions, i.e., between 2–3, 3–4 and 4–5.   

The water outflow rate as a function of the liquid level in the tank for each 

set of valve A was demonstrated in Figure 3.12. 

As can be seen in this Figure 3.12, all positions of valve A are showing non-

linear power function trend of an outflow rate versus the corresponding liquid level 

in the tank. Moreover, there is a consistency between the mathematical model 

that was previously expressed in this chapter Equation 3-11, and the 

experimental result as a power function. There are still some minor variations 

might be due to the differences between the ideal orifice shape and real regulator 

valve depending on its setting, i.e. the valve opening. It is clear; there is a 

relationship between the parameters and powers of the characteristic equations 

of valve A in different settings. Figure 3.13 shows the linear relationship between 

the parameters and present its trend equation. Moreover, this figure shows a 

second order equation to describe the relationship between the powers of the 

characteristic functions. Consequently, at any random set of valve A and if a 
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steady – state liquid level and the corresponding outflow rate are known, then the 

valve set could be easily evaluated by interpolation from Figure 3.12. This set 

position could be employed in Figure 3.13 to evaluate the parameter and the 

power of the characteristic equation. This equation describes the liquid outflow 

through valve A at the existence opening. Which could provide a possible tool to 

predict the outlet valve setting by knowing only the steady – state liquid level and 

outflow rate. Consequently, the characteristic equation could be estimated for the 

unknown set position.   
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Figure 3.12 Liquid outflow rate as a function the liquid level for different valve A 

Liquid outflow rate 𝑙. 𝑚𝑖𝑛−1 
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To deal with the control problems of tank liquid level, it could be useful to 

have the following details: 

• The tank input flow rate. 

• The outlet flow rate. 

• The tank dimensions. 

• Transducers and sensors calibration equations.  

 Figure 3.13 Powers and parameters of the characteristic equations of valve A 

positions 

3.7  Calibration Equations 

Figure 3.14 presents a block diagram of a liquid level system to generate a 

closed-loop control system model. The system transducers and other elements 

could expose to have their characteristics change with the time. For simulation 

requirements, sensors and actuators need to have their calibration equations.   
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Figure 3.14 A block diagram of the liquid level system to generate 

the system model 
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In manual control systems, an operator needs to interrupt the indicator 

measurement and takes the appropriate action. Open loop control system is an 

example of such sort of systems with level measurement indicators. Usually, in 

closed loop systems, indicators are used to state calibration equations of each 

transducer in automatically controlled systems. Meanwhile, to have an electronic 

– controlled closed – loop system, it needs to have some electronic transducers 

to convert physical quantities into electronic signals. The pressure sensing liquid 

level sensors and a flow rate sensor have been added to drive and control the 

system. Even though, the indicators are utilised to state the calibration equations 

of each transducer. Sensors have manufactured to convert some physical 

quantity to an electronic signal with some precision of accuracy depending on the 

application this sensor will be used. Manufacturers usually provide a 

characteristic curve of the instrument showing the range and the relationship 

between the two quantities the equipment deals with. Changes in a sensor 

reading are usually related to some factors such as ambient and medium 

temperature and pressure; liquid viscosity; and some changes in dimension with 

the time. Calibration of a sensor is a primary process followed to preserve the 

sensor accuracy under the same condition that it produced for. Accordingly, the 

calibration of an instrument could be defined as a process followed to determine 

its accuracy. This process may consist of obtaining a reading from the sensor as 

an electronic signal and the corresponding physical quantity measured by using 

a standard instrument. Moreover, International Vocabulary of Metrology (VIM 3 

2008) defines the calibration as shown: “An operation that, under specified 

conditions, in a first step, establishes a relation between the quantity values with 

measurement uncertainties provided by measurement standards and 

corresponding indications with associated measurement uncertainties and, in a 

second step, uses this information to establish a relation for obtaining a 

measurement result from an indication“  

For the calibration purposes of the CE105 apparatus, valve B was set to be 

fully closed; valve C was set to be fully open and only valve A was set at position 

3. A voltage was supplied to the DC electric water – pump to have a related liquid 

flow rate. When the liquid reached its steady-state level, this level in mm; the 

corresponding pressure sensor reading in volt; the water inflow rate to left–hand 
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tank measurement through water flowmeter in 𝑙. 𝑚𝑖𝑛−1; the flow rate sensor in 

volt and the pump voltage were recorded. At steady state, the amount of water 

comes into the tank is equal to that goes out and hence, the change of the 

accumulated water in the tank is equal to zero. Consequently, there is no change 

in the water level with the time. 

3.7.1 Pressure – sensing liquid level sensor 

As can be seen in Figure 3.15, the relation between the liquid level and the 

pressure–sensing liquid level sensor reading, is a linear proportional relationship. 

The calibration equation, as the best curve fitting of the liquid level sensor, is: 

            𝑦 = 0.0386 𝑥 + 0.0131 + 𝐸𝑦 

OR    𝑦 = 0.0386𝑥 + 0.3231 

(3-25) 

Where; 𝐸𝑦 = zero error of the sensor. This error might be changed because 

of some reasons such as, the ambient and/or the liquid temperature, or changing 

of the sensor characteristics with time.  

Equation (3-25) will be used later in a simulation to set the set point in 

millimetres rather than volts. 

Figure 3.15 Calibration equation of the liquid level sensor mm to volt 
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3.7.2  Inflow rate sensor   

The correlation between the readings of the inflow rate sensor in volt and 

the corresponding liquid flow rate measured on the system rotameter in 𝑙. 𝑚𝑖𝑛−1 

is displayed in Figure 3.16. From this figure, it is apparent that the sensor output 

voltage is proportion linearly with the amount of liquid flows through the sensor. 

From the best curve fitting, the calibration equation of the inflow rate sensor is: 

𝑦 = 2.0954𝑥 + 0.2377 (3.26) 

 

Figure 3.16 Calibration equation of the liquid flowrate sensor 

3.7.3  The liquid pump calibration equation 

A liquid pump characteristic is usually being presented as a curve showing 

the liquid flow rate in (𝑙.𝑚𝑖𝑛−1) or (𝑙. 𝑠−1) as a function of the out – flow resistance, 

which is usually being presented as a liquid head in 𝑚 or the out pressure in 

(𝑁.𝑚−2). Sometimes, the inlet/ outlet differential pressure or head is used 

instead. Another relation might be presented to show the pump outflow rate as a 

function of the electric current in amp for the electric pump, in this case, it is 

assumed the voltage supplied is constant, or the power consumption in (kW). The 

characteristic curve of a Model No. 2088-403-144 (Aqua-King), which similar to 

that used in the CE105 apparatus, is shown in Appendix A. An alternative model 

Liquid flowrate 𝑙. 𝑚𝑖𝑛−1 
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data is presented here because of the data sheet of the system water – pump is 

not available neither in the lab nor online or even at the manufacturing company.  

For the control study, it needs to utilise a variable speed water – pump, for 

example. This sort of pump provides a variable outflow rate as a function of 

different voltages applied. But unfortunately, there is insufficient technical 

information about the pump “SHURflo Diaphragm Pump, model 208 – 110 – 41” 

even online or at the manufacturer. The dynamic differential equation of the 

Diaphragm pump needs to be expressed and prepare to implement in the system 

simulation under LabVIEW environment. The pump calibration equation could be 

divided into two parts, a steady – state part and a dynamic part, as follow: 

a. Water - pump steady – state equation: 

The water pump shows a nonlinear behaviour because there is no output 

flow when the drive voltage is less than 2.0 volt. Hence, for the purpose of 

simulation requirements, the active part of the steady-state behaviour of the 

pump was considered, as shown in Figure 3.17.  

The linear steady-state calibration equation of the water pump is:  

𝑦 = 0.515𝑥 + 0.0135 (3-27) 

 

Figure 3.17 Calibration equation of the water pump at steady – state  
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b. The dynamic characteristics equation: 

This section describes the instantaneous response of the water pump when 

its driving voltage was increased or decreased as a step function, as shown 

below. First of all, a driving voltage was supplied to the pump and waiting until it 

reached the corresponding steady – state. Secondly, a new voltage as a step 

function was supplied, and the instantaneous flow rate was recorded as a 

function of time taken to reach a new steady – state. This procedure was repeated 

several times to confirm the result for different driving voltages. Then, the pump 

dynamic-model was estimated by using MATLAB-System Identification Toolbox, 

which is utilised to create linear and nonlinear dynamic system models from the 

measured input-output data. Simulink results show the system water pump 

behaves as a second-order plant with the s-domain Laplace transfer function 

shown in Equation (3-28) and the response curve is as shown in Figure 3.18.  

𝑦 =
1

1 + 𝑆 + 0.29𝑠2
 (3-28) 

The Laplace transformation of the overall calibration equation of the DC 

electric water-pump becomes: 

𝑄𝑝 =
0.515𝑥 + 0.0135

1 + 𝑠 + 0.29𝑠2
 (3-29) 

Where; 

Vp is the pump drive voltage (𝑣𝑜𝑙𝑡),  

s is called the (complex) frequency variable in (𝑠−1), 

And 𝑄𝑝 is the pump outflow rate (𝑙.𝑚𝑖𝑛−1).  

This function is valid either the voltage supplied to the pump is increased or 

decreased as can be seen in Figure 3.19.  
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Figure 3.18 The pump dynamic response 

 

 

 

Figure 3.19 Dynamic response of the system electric-pump 

 
Time s 
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3.7.4  The drain valve characteristic equation: 

The characteristic equation of the water free outflow – rate through the 

discharge regulator restriction needs to be estimated. This valve was set to a 

specific opening, i.e., position 3. A set of voltages was applied to the water – 

pump and waited until the water in the tank reached its steady – state level 

corresponding to each voltage. The drain regulator valve opening was kept 

unchanged during this calibration process. The water-free outflow – rate as a 

power function of the liquid depth in the tank is as can be seen in Figure 3.20. 

The characteristics equation as the best curve fitting is: 

𝑞𝑜 = 0.2383 ℎ0.514 + 0.003 (3-30) 

From Figure 3.20 and the characteristics Equation 3-30, the free outflow-

rate equation is a non-linear equation, where h is the liquid height (mm). 

There is a significant similarity between Equation (3-30) and Bernoulli’s 

Equation. For the latter equation, it is assumed that the passing water through 

the outlet valve is incompressible, which means its characteristics (density and 

viscosity) will not be changed during the process.  

 

Figure 3.20 Calibration equation of the outflow rate through exit regulator 
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3.8  Simulation of CE105 under LabVIEW environment 

Under LabVIEW environment, the pre-evaluated calibration and 

characteristics equations from Section 3.6 were used to build: 

1. Graphical User Interface (GUI) to run the CE105 coupled tank system 

as can be seen in Figure 3.21. Figure 3.22 presents the block diagram 

of the GUI where a PID block, which will be discussed in detail in 

Chapter 6, was used to control the system response. The parameters 

of the PID controller are set to their default values by LabVIEW as 

shown in Table 3.2. The PID input signal is the required liquid level as 

a step function which, it set in millimetres on the GUI, and it then 

converted, for the purpose of the controller requirements, into a voltage 

according to the calibration equation of the liquid level sensor as shown 

in Figure 3.23. Meanwhile, the controller output is a driving voltage 

generated by the PID on the programme to the water pump through NI 

USB – 6008 DAQ and the control panel CE120 respectively, as can be 

seen in Figure 3.4. The feedback signal is the reading of the liquid level 

sensor as a voltage that sent to the PID controller on the programme 

via DAQ assistance board. A median filter, as shown in Figure 3.22, 

was added to smooth the noisy signal acquired from the pressure 

sensing liquid level sensor. The PID output range high was set to 10 

volts, and the low was set to 0 volts according to the pump driving 

voltages. While, for the purpose of this research, the PID gains were set 

to their default values set by LabVIEW programme, as can be seen in 

Table 3.2 and Figure 3.21. 

2. A simulation was built using the characteristic equation of the system 

elements as shown in Figure 3.25 and Figure 3.26 and the parameters 

shown in Table 3.2 with an option to choose either open or closed-loop 

control system. This virtual system was examined to study the 

consistency of its response with the behaviour of CE105 coupled-tank 

liquid level system. The front panel of the simulation under LabVIEW 

environment and its block diagram are as shown in Figure 3.24 and 

Figure 3.25 respectively. It is clear that the calibration equations, 
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Equations 3-25 to 3-27 are linear – first order equations with zero error 

while the other are non-linear equations. 

A PID controller attempts to correct the error between a measured process 

variable and a desired set-point by calculating and then outputting a corrective 

action that can adjust the process accordingly. The PID controller calculation 

involves three separate parameters; the proportional, the integral and derivative 

values. The proportional value determines the reaction to the current error; the 

integral determines the reaction based on the sum of recent errors and the 

derivative determines the reaction to the rate at which the error has been 

changing (Basilio and Matos 2002). 

 

Table 3-2 The parameters identification for the simulation model 

 The simulation parameters Range Note 

1 Liquid level set-point 0– 225 mm 
According to the tank 

height of the test rig CE105 

2 

PID gains: 

Proportional gain (Kc) 1.000 

Set by LabVIEW as default 

values 
Integral time (Ti, min) 0.010 

Derivative time (Td, min) 0.000 

3 
The tank cross-sectional 

area 
9350 mm2 

According to the tank 

cross-sectional area of 

CE105 apparatus 

4 PID output range high  10 volts According to the pump 

driving voltages 
5 PID output range low  0 volt 
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Figure 3.21 Front panel under LabVIEW programme environment to operate 

and data acquiring of CE105 coupled tank system 
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Figure 3.22 Block diagram under LabVIEW programme environment to operate and 

data acquiring of CE105 coupled tank system 
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Figure 3.23 Block diagram of the operating and data acquiring of CE105 

coupled tank system 
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Figure 3.24 Front panel of CE105 simulation under LabVIEW environment 
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Figure 3.25 Block diagram of the simulation of CE105 

2
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Figure 3.26 Block diagram of CE105 simulation 
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3.9  Controlling of CE105 

Controlling of (LLTS) is classified as one of the most challenging benchmark 

control problems because of its nonlinear and non-minimum phase 

characteristics (Mahapatro 2014). Comprehensive simulation of a system was 

built to give an adequate conception of how it behaves under different operation 

scenarios, including when some fault sources have been added. For that, it is 

considered that facts, such as those reported in Chapter 4 of this thesis, which 

was developed over prolonged periods. During these periods the tank level 

control system can be operated with varying permutations of operating demand 

profiles. These may range from a single set point demand for the duration through 

to a variety of time-varying operating profiles. The simulations reported are used 

to accelerate the timescales of evaluating the monitoring and tracking the system 

and controller signals. Such is to have prior knowledge of the system response 

due to different operational scenarios.  

Figure 3.27 and Figure 3.28 presents the system response when the 

required liquid level increased from 100 to 125 mm or decreased from 125 to 100 

mm respectively as a step function. The red line, in Figure 3.27 and Figure 3.28, 

refers to the instantaneous liquid level that measured using the pressure sensing 

liquid level sensor. This signal was measured in volts and then converted to mm 

before presenting in both figures according to the sensor characteristic equation. 

In these figures, the continuous blue line represents the simulation result of the 

liquid level system as a response to the same required demand. The dashed line 

refers to the required liquid level for the simulation and the test rig. On these 

figures, there is a reasonable similarity between the behaviour of the CE105 

apparatus as a real mechatronic system and the simulation result when 

increasing or decreasing the required liquid level.  
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3.10 Summary 

Liquid level system, which is usually presented as a linear system, is studied 

as a feedback-controlled non-linear mechatronic system. This system 

mathematical-model was derived depending on Bernoulli's Equation and 

Lavoisier law of mass conservation. CE105 coupled tank system consists of 

several types of transducers and components. The characteristic equation of 

 Figure 3.27 The response of CE105 liquid level system due to increase the 

required liquid level from 100 to 125 mm 

Figure 3.28 The system due to decrease the liquid level from 125 to 100 mm 
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each of them shows a nonlinear behaviour. From these calibration equations, a 

detailed simulation under LabVIEW environment was built. By comparing the 

response of the virtual system and the CE105 coupled tank system, the later was 

exceptional showed a linear behaviour, which is unusual for a real system. The 

investigation showed that the discharge valve position was behind this linearity, 

which it might be called mechanical design to linearise the system. By directing 

the drained water through another valve that was located in a consistent position, 

the system showed a nonlinear behaviour that consistent to its simulation results. 

This consistency was valid for different operating scenarios, and hence it can be 

satisfactory moved to next chapters and used this virtual system to study its 

prognostic and health condition monitoring due to several kinds of proposed fault 

sources.  

Chapter 4 presents a novel algorithm to diagnose the entire system health 

condition based on the system controller signal. 
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4.1 Introduction 

Chapter 4 presents fault diagnostics of closed-loop mechatronic systems in 

general and the liquid level system in particular. It is widely accepted in a closed-

loop controlled system that the controller masks any hidden fault developed with 

the time while the control signal is less than its maximum allowable value. The 

layout of Chapter 4 is as follows: 

Section 4.2 reviews literature related the diagnostic of a liquid level system 

and main steps of a health condition-based maintenance programme. Section 

4.3 presents the requirements to diagnose liquid level systems by dividing it into 

two main sides depending on the liquid pressure carried in each part. The 

expected fault sources that may occur in each of them is presented in Section 

4.4. Because of this chapter deals with the virtual system, Section 4.5 discusses 

the simulation of fault sources of CE105 under LabVIEW environment. Section 

4.6 reviews the simulation results with a degradation of the pumping efficiency 

and leakage at the low-pressure side as a step function. These results are 

discussed in detail in this section. Sign chart algorithm (SCA) as a new controller-

based health monitoring approach is presented in Section 4.7. Section 4.8 and 

Section 4.9 presents the virtual system response due to different fault sources as 

ramp functions. PID controller parameters are kept at their default values that set 

by LabVIEW. At the end of this chapter, Section 4.10 concludes the benefits of 

using the novelty monitoring tool (SCA) to snap the deterioration when it just 

starts, which provides an ability to evaluate the remaining useful life of the system 

and the type and severity of the hidden faults. 

Technology advances have impacted upon monitoring, diagnostic and 

prognostic activities for increasingly sophisticated industrial systems and their 

operations. For integrated mechatronic systems, the facility provided by a 

dynamic simulation model, as the system experiences deteriorating faults, has to 

be investigated. For informed data-driven prognostic extrapolations, the long-

term, time-varying operational profile of the mechatronic system requires 

recording and analysis. The contribution reported in this chapter is related to 

demonstrate an innovative Sign Chart Algorithm (SCA) operating in real time 

allows to monitor the liquid level system. This algorithm was implemented on a 

CE105 liquid level system with a PC running the actuators via NI USB-6008 data 
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acquisition device. The simulation is used to accelerate the timescales of 

evaluating the monitoring and tracking the system and controller signals for 

healthy and faulty behaviour for several operating condition scenarios. By utilising 

LabVIEW software, a graphical user interface (GUI) has been developed to 

acquire, operate and monitor the collected data from the system sensors and to 

display the instantaneous liquid level. A Sign chart algorithm was developed and 

used as a controller-based health-monitoring approach. The SCA depends on 

the PID output signal and the liquid level demand to monitor the system health. 

Results are reported and discussed for, leakage, blockage and deteriorating of 

the pump performance faults. 

4.2 Literature review 

Systems during the history of the rudimentary equipment up to nowadays 

modern complex systems need to have maintenance during their lives. The 

earliest sort of maintenance is called run to failure maintenance technique or 

corrective maintenance, which takes place when a system fails to accomplish its 

task efficiently. A later technique is a planned or time-based maintenance. This 

approach sets a statistical periodic interval time to have maintenance even the 

system is in a healthy status. According to the quick development of modern 

advanced technologies, systems have become progressively complex whereas 

higher reliability and better quality are still required. As discussed in Chapter 2, 

this makes the preventive maintenance more expensive in comparison with what 

it was in the past. Hence, to deal with such situation, a new maintenance 

approach based on the system health condition needs to be implemented. 

Accordingly, this approach is called Condition-Based Maintenance (CBM). 

(Jardine, Lin et al. 2006) briefly summarised and reviewed some modern 

research in diagnostics and prognostics of CBM implemented mechanical 

systems. They emphasised data processing and maintenance decision making 

with their models, algorithms and technologies. Moreover, they defined the CBM 

as a maintenance programme, which recommends maintenance decisions based 

on the information that collected from the condition-monitored system. Liquid 

Level Tank System (LLTS), as one of the real mechatronic systems, exposes to 

one sort of fault or more during its service life. 
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Before designing a controller, it is essential to understand the system 

behaviour under different operating scenarios. LLTS is commonly controlled by 

using a conventional Proportional – Integral – Derivative (PID) controller, this kind 

of controller will be discussed in Chapter 6. Such a feedback controller minimises 

the difference between the required demand and the related plant measured 

variable, which is called an “error”, by regulating the process-controlled inputs. 

Furthermore, every single element of a PID controller refers to a particular action 

taken on the error (Kumar and Dhiman 2011). 

Product costs are reduced by implementing an active maintenance 

programme. This proposed efficient approach could be achieved by decreasing 

the number of unnecessary planned preventive maintenance activities.  

Any CBM programme contains three main steps (Lee, Abujamra et al. 

2004), as can be seen in Figure 4.1: 

1. Data acquisition that means collecting data relevant to the system health 

monitoring. 

2. The second step is processing the collected data to understand the current 

system condition. 

3. Lastly, a decision-making algorithm to recommend a suitable maintenance 

activity. 

 

Figure 4.1 The main steps of a condition-based maintenance programme 

(Jardine, Lin et al. 2006) 

Accordingly, simulating a real system gives an adequate conception of how 

this system behaves, especially when some fault sources are added. For that 

and considering that facts, such as those reported in this chapter, develop over 

prolonged periods. During these periods, the tank liquid-level control system may 

be operated with varying permutations of operating demand profiles. These are 

ranged from a single set point demand for the duration through to a variety of 
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time-varying operating patterns. Simulations provide a prior knowledge of the 

system behaviour for different operational scenarios. Furthermore, faults 

diagnosis and a remaining useful life estimation could be achieved in advance 

with the aim of reducing uncertainties of predicting the future behaviour of the 

system.  

(Luo, Pattipati et al. 2008) stated that monitoring the instantaneous health 

condition of each single element prognosis (degradations tracking and a 

remaining useful life estimation) of a whole system is recognised as a difficult 

task because of: 

1. The uncertainty of the result in the inference processes. 

2. Fault propagation of the cross-subsystems. 

3. The system complexity. 

High technology machines become increasingly complex with several kinds 

of actuators and sensors. Modern aeroplanes, automobiles, high-technology 

products manufacturing lines are some examples of complex mechatronic 

systems. For them, it is not easy to monitor the entire system health condition by 

only observing their outputs. Meanwhile, an efficient approach to a whole system 

health monitoring and tracking the remaining useful life might be achieved by 

observing a limited number of critical components; this then infers the remaining 

useful life of the entire system. Several physical properties have been used in 

model-based health assessment, such as crack propagation and vibration. 

Monitoring a crack propagation of gear for a helicopter transmission gear system 

is a critical element of health monitoring system to predict the remaining useful 

life of the entire aeroplane (Luo, Pattipati et al. 2008). Serious failures in complex 

machines of industrial factories can be caused by cracks in the system 

mechanical components. (Pennacchi and Vania 2008) presented a model-based 

diagnostics approach for gas turbines failure identification. From their analysis of 

shaft vibrations caused as result of crack propagation during load coupling of gas 

turbines, they successfully obtained good diagnostics results that lead to prevent 

catastrophic failures. Filters are an important component in industrial activities 

that deal with fluid. The filtration process is using to clean and/ or trapping 

suspended particles from a served fluid. This important process is used in many 
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engineering applications, such as automotive, chemical industry, nuclear plants 

and water treatment. A physics-based model for filter clogging phenomena was 

presented in (Jennions, Camci et al. 2015). (Zio and Peloni 2011) presented 

particle filters based prognostics framework for crack propagation due to dynamic 

fatigue. (An, Choi et al. 2013) provided a tutorial on particle filters with the 

implementation of MATLAB code. Moreover, (Jouin, Gouriveau et al. 2016) 

presented a comprehensive review. Similarly, liquid level system, as a part of a 

cooling unit, assumed to be a critical component of petrochemical industries, 

chemical reactors, thermal power plants and nuclear reactors for example.  

In condition monitoring tasks of closed-loop controlled systems, it is widely 

accepted that the control actions will initially mask the early stages of progressive 

faults. A PID-based feedback control system will mask any degradation in the 

plant measured variable caused by faults. A liquid level for example, in the 

presence of a PID controller, will not be affected by a fault type and strength until 

it reaches a certain threshold. Accordingly, monitoring the behaviour of the 

controller output signal could be a key to monitor the overall system condition. 

Such because the PID signal has been affected as a result of set-point changing 

and faults progression (Al-Khafaji and Grosvenor 2016).   

A wide range of application strategies and approaches over the past several 

decades have been developed. Moreover, they are applied to perform manual, 

semi-automated, or fully automated system health monitoring (i.e., fault diagnosis 

and system prognosis) on critical systems in defence and commercial markets 

(George, Frank et al. 2006). 

 (Daigle, Kulkarni et al. 2014) emphasised the importance of a model that 

describes the nominal and faulty behaviour of a system, and how the latter 

progresses with the time causing the end of useful life of the system. They built 

their study on a pneumatic-actuated valve. They developed a new model-based 

valve prognostics approach that estimates fault progression and predicts 

remaining useful life based only on valve timing measurements.  

(Luo, Pattipati et al. 2008) developed an integrated prognostic process 

based on data collected from model-based simulation under healthy and faulty 

conditions.  
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The healthy behaviour of CE105 coupled tank system that shown in Figure 

4.2 was presented in Chapter 3. In the following sections, diagnosis of this system 

is presenting including a new diagnostic tool. 

Figure 4.2 Simulation front panel of healthy CE105 with fault sources 

4.3  Diagnosis requirements for CE105  

CE105 coupled tank system as a mechatronic test rig of this study was 

described in detail in Section 3.3. In order to study the faulty behaviour of this 

system, it needs to divide it into two main sub-systems, a high-pressure section 

and a low-pressure section.  
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4.3.1 High-pressure section 

The high-pressure section contains the system pump, the rotameter, liquid 

flowrate sensor and the tank inlet pipe, as can be seen in Figure 3.3. These parts, 

which form the tank inlet components, are exposed to a relatively higher pressure 

caused by the pump, which depends on the pump characteristics, than the rest 

equipment. 

4.3.2 Low-pressure section 

The low-pressure section consists of the system tank, drain line and the 

outlet (drain) valve. It so called, because these components are exposed to a 

pressure of the liquid head in the tank, which is assumed to depend only on liquid 

level and the liquid characteristics.  

4.4  Fault sources of LLTS 

As a result of ageing or long-term usage, the system behaviour might be 

deteriorated due to one or more, abrupt and/ or incipient faults. It needs to 

consider the diagnosis requirements that presented in Section 4.3 to classify the 

LLTS fault sources. 

A. Faults in the high-pressure section can be classified into two categories: 

1. Abrupt fault: an example of such kind of fault is leakage due to a 

breakdown of the tank inlet pipe to the atmosphere. If this fault occurs, 

and because of this part is connected to the pump outline, which 

provides relatively high pressure and high flow rate depending on the 

outline resistance, it may lead to a massive leakage and progress in a 

high pace with the time.  

2. Incipient fault: this type of fault is progressing slowly with the time. The 

pump internal leakage or impeller wear are examples of such fault, 

which are represented as progressive degradation in the impeller area 

(Biswas and Mahadevan 2007); (Daigle and Goebel 2011). Bearing 

wear can be considered as an incipient fault progression in whichever 

type of bearings are used, e.g. radial or thrust bearing (Daigle and 

Goebel 2011). 
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B. It is assumed that a fault in the low-pressure section, i.e. tank, drain lines 

and the outlet valve, occurs in two different ways.  

1. The first sort of fault occurs when the outlet valve setting has been 

unintentionally changed to a new set position, which means it has set 

by an operator or an accident to cause a significant change of outflow 

rate. This sort of fault may occur alone or couple with a breakdown of 

the drain line, which leads to a massive leakage. While this portion 

carries a low-pressure liquid, there is a possibility to develop an abrupt 

failure. 

2. The second type of fault is assumed to be time-dependent, and usually, 

this fault has a slow progression pace. A minor leakage is due to wear 

at internal elements of the outlet valve and /or other parts of this 

section. Moreover, any blockage leads to increase the resistance to 

the liquid flow through the outlet restriction are some examples of this 

sort of faults. Table 4.1 reviews two types of fault and their proposed 

sources and how to simulate each of them in the simulation. 
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Table 4-1 Faults types and sources and how to simulate them in the simulation  

Fault Simulation as Fault strength 

Degradation of the pumping 

efficiency that caused by: 

Abrupt or incipient 

function depending on 

the fault severity and its 

progression rate with 

the time. Continuous 

progression rate can be 

simulated as a ramp 

function with an 

adjustable slope to 

represent the 

deterioration speed. 

But the abrupt fault that 

is terminating or 

changing suddenly and 

settled at its new value 

can be represented as 

a step function 

Impeller wear due to 

corrosion of a 

centrifugal pump is an 

example of an incipient 

fault because it is 

deteriorated with the 

time. Meanwhile, 

broken and lose a piece 

of the impeller can be 

simulated as incipient 

fault due to the previous 

definition. 

 

The different slope 

value of a ramp 

function simulates 

different 

deterioration speed.  

While the step 

function value 

mimics a sudden 

fault strength. 

1 Degradation of the 

electrical pump 

efficiency 

2 Degradation of the 

mechanical efficiency 

3 Bearing deterioration 

4 Pump internal leakage 

5 Seal deterioration 

6 Pump internal wear 

7 Leakage at the high-

pressure side 

8 Blockage at the high-

pressure side 

Leakage or blockage fault at 

low-pressure side caused 

by: 

9 Leakage at the 

discharge pipeline 

10 Blockage at the 

discharge pipeline 

11 Damage to the internal 

parts of the drain valve 

(increasing the 

discharge) 

12 Leakage from the tank  

4.5 Simulation of fault sources of CE105 under LabVIEW 

environment 

A system simulation gives a reasonable conception of how this system 

behaves under a healthy condition or when some fault sources are added. 
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Simulation is used to accelerate the timescales of monitoring and tracking the 

system condition and controller signals for normal and faulty behaviour at several 

operating and condition scenarios.  

Degradation of the pumping efficiency, mechanical and/ or electrical, which 

is affecting the pump performance has been represented in this research as a 

percentage of nominal pumping efficiency. The current pumping efficiency can 

be evaluated by comparing the current liquid pumping rate with its nominal value 

at the same operating conditions according to Equation (4.1). 

𝑃𝑢𝑚𝑝𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑢𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑝𝑢𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑒
∗ 100% (4-1) 

This efficiency value as a constant can be feed to simulation as an initial 

value, as can be seen in the simulation front panel Figure 4.2 and monitor the 

system behaviour due to any other faults. 

At the first time of use, the efficiency might be 100%, and hence it is 

introduced to the simulation programme as a constant value. Later on, the 

recorded efficiency when the simulation was halted needs to introduce to the 

programme instead of the 100% for the next run if there is any change. The 

estimated value of the fault ramp function, which will be discussed in Section 4.8, 

is subtracted from the nominal efficiency and the resulting multiply by the PID 

signal to prepare the voltage supplied to the system water pump. 

Similarly, faults, leakage or blockage, at the low-pressure or drain section 

is represented as a per cent out of the nominal tank outflow rate, as shown in 

Figure 4.2. 

4.6  Result and discussion 

Parts of results and their discussion are presented in the following: 

1. For a healthy system where the pumping efficiency is 100% of its nominal 

value and the outflow rate equals its designed value and as can be seen 

in Figure 4.2, the system reached its steady-state at its set point (100 mm) 

after about 400 sec. This figure reveals that the inflow rate is equal to the 

outflow rate and the power supplied to the pump is about 4.91 volt, which 

is calibrated to be about 2.54 𝑙. 𝑚𝑖𝑛−1. 
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2. As revealed in Figure 4.3, the system reached its set point regardless of 

the reduction of the pumping efficiency by 25%. On the other hand, the 

pump worked hard and consumed a higher amount of electricity to 

achieve the system requirements and reach the required demand. As this 

figure reveals, the pump power supply increased to be 6.54 volt in 

comparison with the nominal voltage of 4.91 volts. When the pumping 

efficiency decreases by 25% for example, the PID controller output signal 

will be increased by the same ratio to mask this degradation. 

Figure 4.3 CE105 simulation response at 25% pumping efficiency reduction 

 



Chapter Four                                             Diagnostics of a Liquid Level System 

112 
 

3. For 100 mm liquid level demand, if the pumping efficiency reduces by 

55% for example, from its nominal value, the drop in liquid level will be 

15.7% from its demand, as it presents by Figure 4.4. Moreover, as can be 

seen in this figure, the pump worked at its maximum power or in other 

words, the PID controller reached its saturation output voltage, i.e. 10 

volts. Additionally, at the steady-state, the outflow rate is equal to the 

inflow rate, but both of them are less than the desired amount. 

Figure 4.4 CE105 simulation response when the pumping efficiency 

degraded by 55% 
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4. Now, if the pumping efficiency was at its nominal value, i.e. 100%, and if 

the outflow rate increased as a result of leakage at the low-pressure side 

by 40% for example, the liquid level would achieve its set point. 

Meanwhile, the water-pump worked hard as the PID output voltage 

increased in order to mask the difference between the healthy and ill 

system, as depicts in Figure 4.5. 

Figure 4.5 CE105 simulation response due to leakage at the drain side by 40% of 

the nominal discharge 
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5. Figure 4.6 illustrates that the liquid level would be affected when the 

amount of leakage at the low-pressure portion increased by 120% of the 

required outflow rate, the reduction in the liquid depth would be only 

14.57% to be 85.43 mm. Here, the pump worked hard as the PID provided 

an additional voltage until it reached its saturation value (10 volts). 

 

Figure 4.6 CE105 simulation response due to leakage at the drain side by 

120% of the nominal discharge 
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Figure 4.6 reveals that, while the pump worked at its maximum pumping 

rate of 5.16 (𝑙. 𝑚𝑖𝑛−1), it could not be able to cover the required free out flowrate 

2.54 (𝑙. 𝑚𝑖𝑛−1) at 100 mm liquid level in the presence of a greater than 103% 

leakage. 

6. In reality, if the liquid discharge is reduced to be a half of the nominal drain 

value at 100 mm due to a blockage at the low-pressure side of the system, 

for example, the required liquid level will not be affected, as can be seen 

in Figure 4.7. For such kind of faults, it needs to set a minimum allowable 

PID output low voltage to 2 volts, for example, depending on the minimum 

acceptable driving voltage of the pump at which it starts pumping.  

Accordingly, in the presence of a PID controller for closed loop LLTS, the 

liquid level will not be affected by faults such as a degradation of the pumping 

efficiency and leakage or blockage until the fault intensity reaches a specific 

threshold. This threshold depends on the PID output rage, the high and the low 

output, which can be predefined on the programme GUI according to the pumping 

driving voltages.  

7. Figure 4.8 reveals that at 100 mm required a liquid level, as the pumping 

efficiency reduced downward to 49%, the PID controller hastens to mask 

the lack of the liquid inflow rate following Equation (4-2). 

𝑉𝑃𝐼𝐷 =
491.33

𝜂𝑝
                 (4-2) 

𝑊ℎ𝑒𝑟𝑒, 𝑉𝑃𝐼𝐷 is the output voltage of the PID controller. When the PID signal 

reaches its saturated value, i.e. 10 volt which corresponding to 49% pumping 

efficiency, the output voltage will remain at this maximum value for any further 

reduction of the pumping efficiency, as can be seen in Figure 4.8. 
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Figure 4.7 CE105 simulation response due to a blockage at the drain side by 

50% of the nominal discharge 

8. At the same time, the liquid level settled at its required demand until the 

PID signal reaches its saturation value. As the pumping efficiency 

continue degraded after this threshold, the liquid level is decreasing 

accordingly, as shown in Figure 4.8, following Equation (4-3). 

ℎ = 0.0394𝜂𝑝
2 + 0.1058𝜂𝑝 − 0.225    (4-3) 

Where h, is the liquid level in mm and 𝜂𝑝 is the pumping efficiency. 



Chapter Four                                             Diagnostics of a Liquid Level System 

117 
 

Figure 4.8 PID signal and liquid level as functions of the pumping efficiency 

9. As can be seen in Figure 4.9, the PID output voltage depends on the 

output leakage at the low-pressure side as a percentage out of the 

nominal discharge, which the latter is a function of the liquid level as 

discussed in Chapter 3. As the amount of leakage increases as shown in 

Figure 4.9, the PID output voltage increases linearly following Equation 

(4-4). 

𝑉𝑃𝐼𝐷 = 0.0494𝑄𝐿𝑒𝑎𝑘 + 4.915  (4-4) 

Where, 𝑄𝐿𝑒𝑎𝑘 is the leakage percent.  

Figure 4.9 Liquid level and PID signal as functions of leakage per cent 
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When the leakage per cent equals 103% the nominal discharge, the PID 

output voltage will reach its saturation value of 10 volts. However, if the leakage 

amount becomes more than the nominal outflow rate by 3% or more, the PID 

output voltage will not be able to cover the deficiency of liquid level caused. 

Accordingly, and as can be seen in Figure 4.9, the degradation of the liquid level 

will follow the following Equation (4-6). 

ℎ =
8159.854

𝑄𝐿𝑒𝑎𝑘
0.9138 − 17.56   (4-6) 

A blockage, at either low-pressure or high-pressure side, as a fault is similar 

to leakage, but the amount of liquid goes into the tank becomes greater than it 

needs to settle the liquid level at its required demand. In such situation, the 

controller hastens to reduce its output signal to have a convenient pumping rate. 

Accordingly, the PID voltage will be degraded continuously as a result of 

discharge deterioration according to Equation (4-7) until the controller reaches its 

saturation minimum value, in this case, 2 volts at blockage of 58% of the nominal 

discharge value, as can be seen in Figure 4.10. 

𝑉𝑃𝐼𝐷 = 4.983𝑄𝐵𝑙𝑜𝑐𝑘𝑎𝑔𝑒 − 0.06 (4-7) 

The liquid level will not be changed as a result of blockage as shown in 

Figure 4.10.  

Figure 4.10 Liquid level and PID signal as functions of blockage per cent 
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It can be concluded that the PID controller could mask any fault occurs at 

the high-pressure or the low-pressure side of the closed loop controlled LLTS 

until the PID signal reaches its maximum or minimum saturated values or 

predefined limits.  

4.7  Sign chart algorithm  

In literature, most PHM research are based on component health condition 

rather than the whole system. However, modern complex engineering systems 

contain individual interactive components that can impact the system behaviour 

exceptionally severely when they fail. Hence, developing a whole system PHM 

methodology is as important as component and subsystem prognostic and health 

management methodology (Sankavaram, Kodali et al. 2016). As the system PID 

controller is sensitively response to any change in the system behaviour, Sign 

chart algorithm can be assumed as a whole system health-condition monitoring 

tool as discussed in Chapter 4. Modern industrial processes contain a wide range 

of elements, sub-systems and transducers. The entire system health can be 

monitored by collecting and analysing the acquired data from these elements. 

Usually and according to the system complexity, data from a process under 

continuous monitoring may become huge, especially when it contains analogue 

signals sampled at a high rate. Data acquisition systems have been developed 

over time from limited electromechanical recorders, which contain no more than 

four channels to fully electronic systems capable of measuring hundreds of 

variables simultaneously. Recording signals in early systems was done by using 

permanent media such as paper charts or magnetic tapes. Nowadays and since 

the advent of computers, particularly widely-used personal computers, the 

amount of available data and the speed with which they could be collected 

increased dramatically (Measurement 2012).  

It seems to be that equipment may fail unexpectedly, but in fact, machines 

usually go through some measurable processes of deterioration before their 

failure. For these operator-invisible degradation steps, significant efforts of 

researchers and technology have been spent to develop this field to make such 

information being visible. According to the modern technology, many advanced 

sensors and computer-aided equipment be able to deliver information about the 
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system condition. Unfortunately, these data have only small practical 

applications. While there are some applicable smart devices, there is a lack of 

continuous flow of information from condition-monitored systems. The reason 

beyond this could be the acquired raw data are not in a comfortable form to be 

used. It might not apply to provide each equipment with a high-technology 

computer to deliver, analyse and decision-making purposes. A network that 

connects all the electronically monitored equipment with one master computer 

could be a suitable choice to have an entire system performance and condition 

monitoring. For existing modern machines, there is a deficiency of infrastructure 

for acquiring data over a network, managing and analysing them even the system 

devices were networked. Problems may occur during data transformation 

between the system and the processing computer. Because these raw signals 

are inherently carrying a significant level of noise that confuses the analyser. 

Moreover, data transformation and processing speed are some additional 

examples of such problems. If smart machines are connected to have a remote 

condition monitoring; and if their acquired data is cleaned, modelled and analyse 

continuously via smart systems then it might be possible to upscale from 

traditional preventive maintenance to an intelligent prognostic approach. 

(Lee, Ni et al. 2006) defined this intelligent prognostic as “a systematic 

approach that can continuously track health degradation and extrapolate the 

temporal behaviour of health indicators to predict risks of unacceptable behaviour 

over time as well as pinpointing exactly which components of a machine are likely 

to fail”. 

(Tian, Feng et al. 2014) Investigated a motor current signal from electric 

control systems for fault diagnosis of centrifugal pumps without installing 

additional measurement instruments. They concluded that the impeller fault of a 

centrifugal pump could be diagnosed using remotely measured electric current 

signals.  

For a PID-based control system, it will be worth to create a new efficient 

algorithm to track the PID signal as it is sensitively being affected by any changing 

in the system parameters.  

Sometimes, collecting and processing all the acquired data to monitor a 

health condition of a system is not necessary. It needs to think of a new 
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monitoring methodology to save time, power consumption and effort. An 

algorithm depends on continuous monitoring of the controller output signal might 

be helpful. A Sign Chart Algorithm (SCA) may provide a useful monitoring tool to 

track a closed-loop system health-condition, as shown in Figure 4.11. This 

algorithm compares the controller output signal at a time (t) with that at the time 

(t-1) and returns the result as a simple chart to have visual monitoring tool. Figure 

4.12 shows the principle of the SCA. This novel algorithm returns zero if the two 

signals are equal to each other, which means the system is at a steady-state and 

in a healthy condition. Meanwhile, it returns different values (+1, -1) according to 

the trend of the controller signal to point the related part of data that the system 

analyser needs to deal with. For a liquid level system, the SCA can be used for 

any operating scenario to track the following:  

1. Increasing the required demand, (human-made or unintentionally). 

2. Decreasing the required demand, (human-made or unintentionally). 

3. Degradation of the pumping efficiency, high-pressure side. 

4. Leakage or blockage at the low-pressure side. 

5. Leakage or blockage at high-pressure side. 

This algorithm can be used to monitor a PID output signal by comparing the 

current voltage 𝑉𝑃𝐼𝐷(𝑡) with the previous value 𝑉𝑃𝐼𝐷(𝑡 − 1) , as follows: 

𝑆𝑖𝑔𝑛 =

{
 
 

 
 
+1    𝑖𝑓  𝑉𝑃𝐼𝐷(𝑡) > 𝑉𝑃𝐼𝐷(𝑡 − 1)

  0     𝑖𝑓  𝑉𝑃𝐼𝐷(𝑡) = 𝑉𝑃𝐼𝐷(𝑡 − 1)

−1    𝑖𝑓  𝑉𝑃𝐼𝐷(𝑡) < 𝑉𝑃𝐼𝐷(𝑡 − 1)

 (4-8) 

The SCA, according to Equation 4.8, returns zero if the system at its steady 

state when there is no change in the controller instantaneous output signal as 

can be seen in Figure 4.11. Such algorithm returns other values (+1, -1) several 

times depending on the fault type and its progression pace (fault intensity). 

Accordingly, when a fault occurs, it could be easy to diagnose the type of fault 

and the trend of it regarding time. The SCA provides a summarised operating 

profile, e.g. how often a fault occurred and for how long it stayed; and how often 

the liquid level was changed during an operating period. 
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Figure 4.11 The principle of a closed-loop control system with a Sign chart 

algorithm 
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Figure 4.12 Sign Chart Algorithm 
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In a PID closed-loop controlled system, it needs to specify a process 

variable and a set point. The process variable, for this system, is an 

instantaneous liquid level which it needs to be controlled and monitored. 

Meanwhile, the setpoint is the desired liquid level and consequently the liquid 

outflow rate. A PID controller determines its output signal by comparing the set 

point with the process variable value, which is so-called “error”. This output value 

as a voltage supplied to the system liquid electric-pump, which in turn drives the 

process variable to achieve the setpoint value. 

In this study, a non-linear single tank system was simulated under LabVIEW 

environment. Additionally, some fault sources were added in order to study their 

impact on the overall system nominal and faulty behaviour. 

In complex systems, Maintenance and repair have an enormous impact on 

the total cost of the final products. Efficient techniques for diagnosis and 

prognosis have to be adapted to detect, isolate and anticipate faults. A simulation 

of a liquid level system, for example, gives a reasonable conception of how this 

system behaves when some faults could happen in different parts of this system. 

There is a shortage in studying the characteristics of this system when it exposed 

to a fault, i.e. a healthy and ill-behaviour condition. 

(Al-Khafaji and Grosvenor 2017) stated that the liquid level in a PID-

controlled tank system, for example, will not be affected by either the fault type 

and strength until the latter reaches a certain threshold. This threshold could be 

a saturation output voltage of the PID controller; the maximum permissible 

pumping rate; or an operator predefined limit. As the system works correctly, any 

change due to its parameters value or some faults progression will be resulted 

based on the PID output signal.  

Sign Chart algorithm (SCA) provides an ability to diagnose system faults, 

monitor the system health and may use predict the remaining useful life. 

4.8  Case Study 

In this study, a PID controller under LabVIEW environment was used to 

preserve the desired liquid height and hence the required discharge. Liquid level 

and outlet valve opening have a direct interactive impact on the liquid free outflow 
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rate. The specifications of the coupled tanks apparatus CE105 were used to build 

a detailed closed-loop simulation incorporated with the system elements’ 

calibration equations that described in Chapter 3. Simulation parameters, which 

need to be set to run the simulation are as shown in Table 4.1. PID parameters 

were set by LabVIEW as default values. For the purposes of this PhD research, 

these values would not be changed because it dealt with the health monitoring 

rather than the system response to achieve the required demand. But, the PID 

output high and low voltages were set according to their corresponding values 

using to drive the system's water pump. This simulation shows response as 

similar to the test rig CE105 does at the same system’s parameters, as shown in 

Figure 3.24 and Figure 3.26.  

Table 4-2 The parameters were used for the simulation purpose 

The liquid level set point 100 and 125 mm 

  
 P

ID
 p

a
ra

m
e
te

rs
 Proportional gain (𝐾𝑐) 1 

Set as default values 

by LabVIEW 
Integral time (𝑇𝑖, min) 0.01 min 

Derivative time (𝑇𝑑, min) 0 min 

Output high and low voltage 10 and 2 volts respectively 

4.9  System response due to different fault sources 

Figure 4.13 presents a detailed flowchart of the virtual system that can be 

used for a wide range of operation and fault scenarios as shown below: 

1. The input function (required demand) as a step or ramp function with a 

changeable slope. 

2. A closed loop control system using PID. 

3. Degradation of the pumping efficiency as a fault source (incipient and 

abrupt). 

4. Sign chart algorithm. 

5. Incipient and abrupt leakage or blockage at the low-pressure side as a 

fault source. 

A ramp function with an ability to change its slope has been implemented in 

simulation to mimic the degradation in the pumping efficiency. When this function 
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activates at any time during the simulation, it will subtract the slope value of the 

ramp function from the amount of voltage supplied to the water pump every single 

cycle. The control and simulation loop iterates the simulation under LabVIEW 

environment according to the pre-defined step size, which is equal to 0.01 sec 

for the purpose of this research.  In the high-pressure section, a ramp function 

was used to simulate a time-dependent fault progression. This degradation in the 

pumping efficiency occurs according to the deterioration in the pump electrical 

and/ or mechanical efficiency and an internal leakage at the pump due to wear in 

its elements, for example. The reduction in the pumping outflow rate is a result of 

such fault for the same supplied voltage. Consequently, liquid level will drop even 

for a short distance, the operator may not recognise it by a necked eye. In a 

closed-loop control system, the controller hastens to increase the supplied 

voltage to reparation the lack of liquid flow rate. In the simulation of this research, 

reducing the pump voltage is analogous to the flowrate deterioration. Running 

the simulation continuously in the presence of such fault as a ramp function leads 

to accumulating the reduction of the pumping efficiency even minimal values.  

The incipient fault progression for each side was represented as a ramp 

function with an ability to change its slope as shown in Figure 4.14. Changing the 

slope of the ramp function gives an ability to simulate different paces of the fault 

deterioration rate.  
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Figure 4.13 A detailed flow chart of the virtual system 
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Figure 4.14 Simulation block diagram under LabVIEW environment 



Chapter Four                                             Diagnostics of a Liquid Level System 

129 
 

1. When a liquid level in a tank of a healthy system changed from its steady-

state height at (100 mm) to (125 mm) as a step input function, the system 

response started fluctuating depending on the setting of the PID 

parameters. For the purpose of this study, PID parameters were kept at 

their default values, set by LabVIEW 2014 programme, as shown in Table 

4.1. Because of the fluctuation that is shown in Figure 4.14, the SCA 

returns (+1, 0, -1) values, as can be seen in Figure 4.15. When the system 

reaches the new steady-state, the Sign algorithm returns zero 

uninterruptedly.  

Figure 4.15 Increasing the liquid level 

2. Similarly, if the required demand at steady-state decreases from (125 mm) 

to (100 mm), The SCA will provide an inverse shape of that when the 

demand increases, as can be seen in Figure 4.16 and Figure 4.17. 

Figure 4.16 The Sign chart and the PID signal as a response to increasing the liquid 

level 
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Figure 4.17 Decreasing the required demand 

It seems to be easy to realise whether the demand has been increased or 

decreased, at any operation stage, by tracking the Sign chart. 

3. At steady state, where the liquid level is 125 mm and when leakage fault, 

which was simulated as a ramp function with a slope equals to (1*10-5). 

When this fault was started at the low-pressure side, applied at the time 

(130 s), there was no change apparent in the liquid level, as shown in 

Figure 4.18. The chosen slope of the ramp function was to speed up the 

simulation only, and it does not reflect any practical deterioration of a real 

system. The reason for the liquid level stability could be attributed to; the 

PID controller masks the liquid level deficiency by increasing the pump 

voltage, as can be seen in Figure 4.19. By contrast, the SCA responded 

immediately by returning (+1) as a result of the PID signal increment, as 

shown in Figure 4.19.  

Figure 4.18 The Sign chart and the PID signal as a response to decreasing 

the required demand 
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4. Similarly, if the fault is a blockage rather than leakage at the low-pressure 

part of the system, the SCA returns (-1) as a result of the controller signal 

reduction, as can be seen in Figure 4.20 and Figure 4.21. By comparing 

Figure 4.19 and Figure 4.21, it might easily recognise whether the fault is 

leakage or blockage.  

Fixed spaces between the vertical lines of the Sign chart in Figure 4.19 and 

Figure 4.21 refer to a linear system-response due to this sort of fault in 

particular.   

Figure 4.19 The required and the instantaneous liquid level during a leakage fault at 

low-pressure side with a progression slope = 1 ∗ 10−5 

 

Figure 4.20 The Sign chart and the PID signal during a leakage fault at low-pressure 

side with a progression slope = 1 ∗ 10−5 
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Figure 4.21 The liquid level during a blockage fault at low-pressure side with a 

progression slope =−(1 ∗ 10−5) 

 

Figure 4.22 The sign chart and the PID signal as a result of a blockage fault at low-

pressure side with a progression slope =−(1 ∗ 10−5) 

5. Moreover, Figure 4.18 and Figure 4.20 show that the liquid level will not 

be affected by the fault progression until the PID signal reaches its 

maximum set value, i.e., (10 volts) or its minimum set value, i.e., 2 volts 

for example. Beyond this threshold in Figure 4.18, the PID controller fails 

to mask the fault and hence, the liquid level drops as a result of the leakage 

deterioration. Meanwhile, when the PID signal reaches its saturated output 

low value, the PID fails to cover the blockage effect. For these two kinds 

of faults, the SCA returns a continuous (+1 or -1) for the leakage or 

blockage faults respectively. 
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6. Figure 4.22 and Figure 4.23 show the same previous fault, but its 

deterioration rate is five times slower than it was in point 3 above. Figure 

4.18 and Figure 4.22 show that the liquid level will not be affected because 

of the fault progression until the PID controller reaches its maximum 

voltage, i.e., (10 volts). Beyond this threshold, the PID controller failed to 

mask the fault, and hence, the liquid level drops as a result of this fault 

deterioration. When the PID voltage reaches its saturation value, the SCA 

returns (+1) continuously, as shown in Figure 4.23. 

Figure 4.23 Liquid level during a leakage fault at low-pressure side with a 

progression slope = 5 ∗ 10−6 

7. A fault at the high-pressure part of CE105 was represented as a 

deterioration of the pumping efficiency. This degradation was mimicked as 

a ramp function with a slope equal to 5 ∗ 10−6 for the purpose of 

simulation. The behaviour of the liquid level is as shown in Figure 4.24 and 

the SCA and the PID signal response is as shown in Figure 4.25. The 

trend of the PID signal is as similar as that when a fault occurred at the 

low-pressure side. The PID hastens to cover any change due to a fault 

until the controller reaches its high saturated value.  
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Figure 4.24 The sign chart and the PID signal as a result of a leakage fault at low-

pressure side with a progression slope = 5 ∗ 10−6 

 

Figure 4.25 The liquid level response as a result of the degradation of the pumping 

efficiency, the ramp function slope = 5 ∗ 10−6 

8. While the progressive fault function at the low pressure and the high-

pressure side was mimicked as a linear ramp function, the system 

response due to this fault at the drain side is linear. Meanwhile, the system 

shows a nonlinear response due to a linear fault at the high-pressure side, 

as can be seen in Figure 4.23 and Figure 4.25 for the same fault intensity. 

Accordingly, the SCA provides a new system health-monitoring tool to 

diagnose its deterioration.  
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Figure 4.26 The liquid level response as a result of the degradation of the 

pumping efficiency, the ramp function slope = 5 ∗ 10−6  

9. If the pumping efficiency deteriorates at five times slower than that shown 

in Figure 4.24 and Figure 4.25, the system shows a corresponding 

response as can be seen in Figure 4.26 and Figure 4.27. The distances 

between the vertical lines of the Sign chart become shorter with the time 

to indicate that the PID signal is not linear. It could be easy to recognise 

this difference by having a quick look at the two figures.  

 

Figure 4.27 The liquid level response as a result of the degradation of the 

pumping efficiency, the ramp function slope = 1 ∗ 10−6 
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Figure 4.28 The Sign and the PID signal response due to deterioration of the 

pumping efficiency, the slope = 1 ∗ 10−6 

10. By comparing Figure 4.27 where the ramp slope is 1*10-6 with Figure 4.25 

where the slope is 5*10-6, it can be concluded that the system behaves 

similarly in both cases. Despite this, the total time taken by the PID 

controller to reach its saturation value, i.e., (10 volts) is much longer in the 

former than in the latter. Consequently, this can provide an ability to 

estimate the type and the deterioration rates of faults. Moreover, there is 

an ability to evaluate the remaining useful life of a closed loop-controlled 

system associated with the Sign chart algorithm and the PID signal as 

demonstrated in Chapter 5. 

4.10 Disturbance 

The disturbance is unwanted input signal that has an effect on the output 

signal. One of the most important effects of feedback in control system is to 

reduce the impact of such disturbances. Any unintentional temporary change of 

the liquid properties or the flow characteristic or valve status and its setting can 

be considered as a disturbance. It is crucial to deal with such possible 

disturbance to have an efficient control system. Moreover, an effective health 

monitoring system needs to deal with this situation to diagnose and recognise it. 

Many control systems are subject to external disturbance signals that cause the 

system to provide an inaccurate output. The effect of distortion, noise and 

unwanted disturbance can be effectively reduced by using feedback systems 

(Dorf and Bishop 2005). The disturbances as an unwanted input signal will affect 
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the liquid outflow rate, for the purpose of this research, the disturbance was 

simulated as a percentage of the outflow rate as can be seen in the flowchart and 

block diagram that are shown in Figure 4.11, Figure 4.13 and Figure 4.14. 

The simulation was run and waited until the system reached its steady state, 

and the disturbance was activated with 10% of the nominated liquid outflow rate. 

Because the PID signal was less than its output high range and in the presence 

of disturbance, the system response is similar to an abrupt fault occurred at low-

pressure side. A shown in Figure 4.29, the liquid level was fluctuated depending 

on the system and PID parameter when a disturbance applied, but it settled at its 

required liquid level. The system showed the same response when the 

disturbance was deactivated.  

By comparing Figures (4.19 – 4.28) and Figures (4.29 and 4.30), it can be 

easily recognised that the liquid level changing in the latter was because of 

disturbance rather than a fault as in the formers. The Sign chart in Figure 4.30 

shows that there was an abrupt increasing and then decreasing of the PID signal 

as a result of activating the disturbance generator and deactivating it.  

 

 

 

 

Figure 4.29 Instantaneous liquid level due to disturbance 
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4.11 Summary 

Depending on the system parameters and for a closed-loop PID controlled 

liquid level system, the liquid level will not be affected by any fault regarding the 

pumping efficiency and leakage or blockage and their intensity until the controller 

reaches a specific threshold. The PID controller hastens to increase or decrease 

the driving voltage supplied to the system water pump in order to rise or decline 

the pumping rate to cover any changes at the liquid level out of its demand. This 

behaviour is applicable until the controller reaches its saturated high or low value, 

or in reality, the maximum or minimum permissible pumping rate. When the 

controller reaches or exceeds this threshold, the liquid level will decrease as a 

result of the fault sort, trend and strength. 

The PID controller increases the driving power supplied to the pump in order 

to boost the liquid pumping rate to mask any reduction in the required liquid level. 

This change could be a human-made mistake or caused by faults. The SCA 

converts the PID signal into a simple chart with sufficient details to have an 

efficient long-term health monitoring system. From this chart, the system health 

condition can be easily monitored and tracked any change that caused by 

operator or fault. Traditional monitoring algorithms depend on a massive amount 

of data collected from the system sensors combined with complex analytical 

Figure 4.30 PID signal and the Sign chart as a result of disturbance 



Chapter Four                                             Diagnostics of a Liquid Level System 

139 
 

approaches. In contrast, this novel Sign chart algorithm provides a simple chart 

with values (+1, 0, -1) depending only on the controller signal trend and the 

required demand changing, rather than install additional measuring instruments, 

to monitor the system performance efficiently. As the SCA provides zero at 

steady-state, it could be easy to track the system operation history. Moreover, 

this monitoring algorithm can be automated to monitor a system continuously 

while it is in-service and sent an alarm or a report when something novel occurs. 

The report file can be easily sent via internet for its small size in comparison with 

that of the enormous amount of data acquired from all sensors. 

The novelty of this chapter is to snap the deterioration when it just starts via 

the Sign chart algorithm in order to assess the system remaining useful life. 

Additionally, by using the SCA, there is an ability to diagnose the sort of fault, 

intensity and any other changes in the required demand. Moreover, on the SCA, 

it can easily differentiate between different kinds of controller response due to 

changing the set point or fault or even a disturbance.  

After flagging an unusual event on the controller signal by SCA even hidden 

faults, it needs to track the signal trend and extrapolate it to a specific threshold 

to evaluate the remaining useful life as presentes in next chapter. 
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5.1 Introduction 

This chapter presents a review of the background and theory behind the 

prognostic of the liquid level system based on the control signal for the 

development of health monitoring and prognostic algorithm. The layout of this 

chapter is as follows. 

Section 5.2 reviews a brief introduction of prognostic of mechatronic 

systems and the difficulties behind tracking the degradation and estimation of the 

remaining useful life of an entire system. Moreover, it reviews the prognostic 

definition that usually used in literature. The relationship between diagnostics and 

prognostics as the main parts of prognostic and health management is presented 

in Section 5.3. Section 5.4 discusses the benefit of applying suitable prognostic 

approaches. CE105 coupled tank system is controlled using PID controller. 

Section 5.5 describes the PID signal as a key to monitor the system health 

condition and evaluate its trend. Section 5.6 presents a test operating scenario, 

which consists of different kinds of liquid level requirements and several fault 

sources and severity. Then Section 5.7 presents the results by simulating the 

previous section and discuss them in detail. Depending on the PID signal trend, 

the evaluation of the remaining useful life is presented in this section at every 

single stage of the operating scenario.  

5.2 Prognostic of mechatronic systems  

Reliability and robustness of any system can be increased through 

modelling and simulate the process at its design stage. This advancement leads 

to the integration of system model-based diagnostics and prognostics. Generally, 

real systems inherently examine some failure, due to wear for example, during 

their working life (Barbera, Schneider et al. 1996).  

(Coble, Ramuhalli et al. 2015) stated that, operation and maintenance costs 

cover approximately 60–70% of the overall generating cost in nuclear power 

plants, while fuel costs only 15–30%. Furthermore, labour costs approximately 

80% of the operation and maintenance costs in the United States nuclear power 

plant. 
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According to this significant facts, using PHM has potential to impact the 

economics of maintenance for active components (e.g., pumps, valves, motors) 

and passive structures (e.g., concrete structures, reactor vessels, buried pipes)    

(Bond, Doctor et al. 2008). 

Liquid level tank systems, for example, have many pieces of equipment, 

including a water pump, pipes, tanks, sensors, and valves that each may exhibit 

various types of performance degradation as a result of mechanical and/ or 

electrical faults. These faults may be caused by ageing, dirt or debris 

precipitation, erosion, friction, internal damage, blockage, cracks.  

Prognostics considers the current health condition of a system and predicts 

its remaining useful life based on features that capture the incipient degradation 

in the operation of the system. Predictive capability is essential to improve safety, 

plan successful working scenarios, schedule maintenance activities, and reduce 

the overall maintenance costs (Brotherton, Jahns et al. 2000). Prognostics is a 

relatively new field in comparison with diagnostics, and it has become necessary 

for condition monitoring based maintenance. (Mathur, Cavanaugh et al. 2001) 

discussed the purpose of failure-based modelling in the overall decision-making 

problem and they proposed an approach to integrate model-based diagnosis and 

prognosis.  

In general, the prognostic methods can be classified into three categories, 

data-driven, model-based that presented in (Chiang, Russell et al. 2001), and 

experience or knowledge-based that demonstrated in (Byington, Roemer et al. 

2002) and (Byington, Watson et al. 2003). Each one of these approaches has its 

advantages and disadvantages, for that they are often used in combination in 

many applications where available. Tracking the degradation and estimating the 

remaining useful life, i.e. the prognosis of an entire system is infeasible because 

of: 

• The model complexity,  

• The uncertainty and  

• sub-system fault propagation.  

Typically, the system prognosis is assumed to be designed upon some 

critical components where their number and positions are depending directly on 



Chapter Five                                              Prognostics of a Liquid Level System 

143 
 

the system structure. Tracking these critical elements and estimate their 

remaining useful life provide a measure of the end of useful life of the entire 

system. In an individual part, the deterioration level and the remaining useful life 

are estimated according to the physical properties of these elements. For 

example, the theory of failure is utilised to study the crack propagation in 

structural components.  

Developing prognostic models lead to a considerable amount of research 

has been achieved. These models can be used to predict the end of the 

engineering system useful life (EOL) and consequently the remaining useful life 

(RUL). Unfortunately, applying these models have limited success for industrial 

applications because of the above-described difficulties. During system design, 

models are subject to specific assumptions and approximations. Some of them 

are mathematical, while others relate to practical application issues such as the 

required amount of data to validate and verify a proposed model. Accordingly, a 

suitable model selection to have an effective practical application needs more 

than a mathematical understanding of each model type. It needs to know how a 

particular application intends to use this model and its required outputs.  

In the contribution reported in this chapter, a Sign Chart Algorithm (SCA), 

which has been presented in Chapter 4, was developed. The SCA provides an 

ability to diagnose the system faults, monitor the system health and predict 

remaining useful life by using a mathematical data processing. The testing of the 

approach reported in this chapter relates to the simulation, which already has 

been experimental validated of a CE105 coupled-tank liquid level system in 

Chapter 3. The simulation created used the real-time control toolbox with 

LabVIEW 2014 software as discussed in Chapter 3 and Chapter 4. 

There are several different definitions of prognostics in the available 

literature. (Sikorska, Hodkiewicz et al. 2011) proposed eleven different definitions 

of prognostics. Communally, those definitions stated that:  

• prognostics is, or should be, applied at the component or sub-component 

level, as it is a difficult task to prognosis a whole system as a single unit. 

• Prognostics contains predicting the deterioration time of a specific failure-

mode from the fault start until the time of EOL. For a condition monitoring 
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system, it is assumed that there are completion rules between diagnostic 

and prognostic, as shown in Figure 5.1. 

Figure 5.1 Prognostics and health management integrated parts (Clements 2011) 

As soon as an indication of a fault has been triggered through the diagnostic 

approach, the remaining useful life RUL estimation should start from this point of 

time upward to the end of the system useful life.  

(Saxena, Balaban et al. 2010) presented the prognostic and health 

management society PHM definition of prognostics as the estimation of 

remaining life of a component or subsystem. Prognostics evaluates the current 

health condition of equipment or subsystem and based on the condition of the 

future proposed operation scenario (load) and environmental exposure, the 

prognostics estimate the end of the equipment useful life. At which, this 

equipment will no longer operate within its stated specifications. These 

predictions are based on the following: 

1. The failure mode analysis. 

2. Early signs of fault and its condition triggered and an assessment of 

the current damage state. 

3. Describing how the damage is expected to develop at the time. 

4. Describing the effect of loads and operating conditions on the 

system. 
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5.3  Diagnostics and prognostics relationship  

Condition-Based monitoring of a system consists of two main parts, 

diagnostic and prognostic. There is a slight difference in the literature as they are 

accepted that prognostics is related to diagnostics and highly dependent upon it, 

as can be seen in Figure 5.1. However, a separation limit between these two 

fields is not defined precisely. Diagnostics involves identifying and quantifying the 

damage that has occurred in the past up to this assessment time, while 

prognostics is concerned with predicting the damage that may occur in the future 

(Sikorska, Hodkiewicz et al. 2011). Diagnostics provide useful outputs by its own. 

Meanwhile, prognostic depends on diagnostic outputs (e.g. fault indicators, fault 

strength and rates of degradation) and therefore, prognostic cannot be performed 

in isolation, as shown in Figure 5.1. 

This PhD thesis presents SCA as a tool used to capture a fault in the LLTS 

system as soon as it occurs while it is still showing a healthy behaviour. 

Meanwhile, prognostics will be activated after identifying and quantify the fault by 

the diagnostics approach to describe the trend of the system response due to a 

fault and accordingly estimates the remaining useful life.  

When a new event triggered during operation within a system useful life, as 

shown in Figure 5.2, which leads to increase or decrease the fault degradation, 

and while this proposed prognostic approach is estimating the EOL, it can adapt 

its trend. As soon as a new abnormal event has been triggered, this approach 

starts evaluating its parameters and determining an updated EOL. 
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Figure 5.2 Description of different health degradation curves (Sikorska, Hodkiewicz 

et al. 2011) 

5.4 Benefits of prognostics application 

A significant amount of research has been done to develop different 

prognostic models, which can be applied to predict the remaining useful life of 

industrial systems. Nevertheless, the industrial applications of such approaches 

have had restricted success.  

There is a wide range of objectives can be achieved with a suitable 

prognostics approach. Because there are different solutions and strategies are 

applicable for a different user application, users according to their perspective 

need to define the prognostic goals. (Saxena 2010) from his work at NASA Ames 

research centre presented the prognostics goals, at the annual conference of 

PHM society PHM 2010, in two main categories according to different views of 

management, as can be seen in Figure 5.3. 
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Figure 5.3 The prognostics goals tend to be achieved (Saxena 2010) 

5.5  The PID signal trend: 

5.5.1 Describing the PID signal  

Sign chart algorithm provides a continuous health monitoring tool based on 

the PID signal as any change in its trend; the SCA will flag it. The contribution 

presented in Chapter 4 was about a novel approach to catch any variation of the 

controller signal and its intensity caused by manipulating the liquid level, faults 

even hidden one and any disturbance. Meanwhile, the contribution of this chapter 

is a controller-based prognostic approach. This algorithm is continuously 

observing the PID signal trend to build its mathematical model and then 

extrapolate it to a specific threshold to evaluate the remaining useful life of the 

system. A liquid level tank system has several kinds of elements, sensors and 

actuators, as described for CE105 in Chapter 3. Quantities and types of these 

transducers depend on the size and complexity of the process and operating 

scenario. For modern computerised systems, information from sensors and 

actuators can be electronically recorded and monitored. Although nowadays-

technology provides massive electronic data storage media that can be used in 

the site, transferring a massive amount of this data online is still not applicable or 

takes a long time. Fortunately, all necessary acquired data can be saved on a 

local storage medium; and an only particular piece of information needs to be 

transferred to a remote receiver via the internet network for analysis or monitoring 

purposes and a remote maintenance decision making. Moreover, SCA, as 
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presented in Chapter 4, can provide a clear indication and sufficient information 

about the system condition during a continuous system health monitoring. For 

that, only SCA data, when it flags some unusual event, needs to be transferred 

online. This algorithm returns zero if the system shows a healthy behaviour and 

there is no change in the required demand in the absence of any disturbance. 

Once this value becomes +1 or -1, which indicates that something has occurred, 

a fault or the required demand has a human-made or accidentally changed or 

disturbance. This ill-behaviour according to SCA can be diagnosed using the 

time-based corresponding data of the controller and sensors signals. This 

amount of data has been already acquired and saved on a local medium for 

detailed analysis purposes.  

When the SCA pointed there is a sign of a control signal change; the PID 

controller signal needs to be analysed. This analytical approach can be achieved 

by either data analyser algorithm integrated with the main monitoring LabVIEW 

programme or moving this piece of information to a separate data analyser 

software to estimate the controller signal trend to evaluate its best-fit equation. 

To evaluate the system EOL, the controller trend function needs to be 

extrapolated to a specific predefined threshold. This threshold was defined in 

Chapter 4. 

A PID signal trend depends on, in addition to its parameters, the fault 

sources and the fault intensity. For CE105 apparatus, it may easily recognise two 

different features as follows: 

• An incipient fault, which is starting and growing slowly with the time, at the 

drain part of the CE105, the tank, exit valve and the connection pipeline 

component gives a linear PID signal trend. 

• Degradation of the pumping efficiency makes the PID controller showing 

a nonlinear behaviour (an exponential trend). 

The trend of these faults is developed linearly with the time, and hence each 

of them was mimicked as a ramp function with an ability to set its slope to mimic 

different fault intensity.  According to these two different PID signals, the 

proposed prognostics approach for this system, in particular, has two terms, 

linear and exponential to cover the above PID response features. 
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• Linear Term 

A power function can be used as a curve fitting formula to describe both 

linear and power function trend. If the power of Equation 5-1 is equal to one, the 

function becomes a linear function. Meanwhile, if it equals zero, in this case, the 

PID output signal is equal to the same value with the time, which means that the 

system is in excellent condition with no change in the process parameters.  

𝑉1𝑃𝐼𝐷 = 𝐴𝑇
𝐵 + 𝐹1 (5-1) 

Where, A, B and F1 are the function parameters, T is the time in seconds, 

and 𝑉1𝑃𝐼𝐷  is the corresponding PID output voltage in volt. 

• Exponential Term 

Equation 5-2, as an exponential equation, covers a range of a nonlinear PID 

signal trend according to its parameters, as shown below: 

𝑉2𝑃𝐼𝐷 = 𝐶𝑒
𝐷𝑇𝐸 + 𝐹2 (5-2) 

Where, C, D, E and F2 are the function parameters, T is a time in seconds, 

and 𝑉2𝑃𝐼𝐷 is the corresponding PID output voltage in volt.   

These two terms need to be added to each other in one function to cover all 

the possible PID response,  

𝑉𝑃𝐼𝐷 = 𝑉1𝑃𝐼𝐷 + 𝑉2𝑃𝐼𝐷 (5-3) 

And hence, 

𝑉𝑃𝐼𝐷 = 𝐴𝑇𝐵 + 𝐶𝑒𝐷𝑇
𝐸
+ 𝐹 (5-4) 

5.5.2  PID signal trend evaluation 

At early stages of a fault age, the PID hastens to mask any deterioration in 

the system condition while its output signal is less than the maximum permissible 

value or a predefined threshold. As the fault grows with the time, the PID signal 

is interacting correspondingly with the fault degradation as described in Chapter 

4. Hence, the incremental deviation pace and trend of the PID signal depend on 

the fault degradation speed and its severity, and the current condition of the 

system. As concluded in Chapter 4, the liquid free outflow rate depends directly 

on the liquid level if there is no change in the other system parameters, the setting 
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of the exit valve for example. Either in the presence of a fault or no, the liquid 

level will not be changed because of faults if the PID signal is less than its 

saturation value. Accordingly, tracking this signal and estimating its trend 

equation is essentially needed to set an early alert of nearly predictive failure and 

by extrapolating this equation to a predefined threshold, the system EOL can be 

evaluated, as shown in Figure 5.4. The PID signal and its corresponding time, for 

the purposes of this PhD thesis, was transferred to Microsoft Excel programme. 

This transferred data should cover the period from that the fault was just 

appeared up to the current time. On this programme and for the series of time 

and the corresponding PID voltage during this fault period, the curve needs to be 

plotted, and the data trend has to be estimated according to Equation 5-4. This 

equation has six parameters, all of them need to be evaluated to build the trend 

equation. Data solver algorithm as one of Microsoft Excel numerical solving block 

can do this evaluation. Once these parameters have been evaluated, the data 

trend becomes known. By substituting the threshold value in this equation, the 

corresponding time can be estimated, and this is the end of the system useful life 

according to the current health condition. But solving this equation needs to use 

numerical methods and fortunately, there are many mathematical packages 

available online can be used.  

Figure 5.4 Trend evaluation of a degraded system (Sikorska, Hodkiewicz et al. 2011) 
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5.6  Case study 

To study the proposed prognostic approach, simulation of the CE105 

apparatus under LabVIEW environment that described in Chapter 4, was run. 

Data from different sources such as SCA; liquid level; the tank inflow and outflow 

rate; pump driving voltage; the required and instantaneous liquid level and the 

PID signal were presented on the simulation front panel and saved on the PC 

hard drive to deal with them later. By analysing these groups of data, it could be 

possible to track the system health condition; estimate the trend of the PID signal 

and evaluate the EOL according to Equation 5-4 by extrapolation, and/ or the 

RUL from the estimation point of time. An operation scenario with different 

activities was followed for the purpose of this case study, as can be seen in Figure 

5.4. The total time taken for this run is 4621s, which is equal to one hour and 17 

minutes. Such is an accelerated time for the purpose of this study in the absence 

of a practical data regarding the fault progression speed and operating scenarios. 

Steps of the proposed operation scenario will be presented in Section 5.8. 
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Figure 5.5 The proposed operation scenario 
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5.7 Results and discussions 

1. The required liquid level was set to 100 mm at the starting point, 

where the absolute time is considered to be zero. Figure 5.5 shows 

that the liquid level reached its steady state and settled at its 

required demand after some fluctuation according to the controller 

parameters. This behaviour was repeated whenever the required 

liquid level was changed for the stated parameters.  

2. At the time 538 s from the starting point, the liquid level was changed 

from its current height, 100 mm to a new demand of 125 mm. In the 

absence of any fault, the PID signal settled at its steady-state value 

(4.915 volts) corresponding to required liquid level. Theoretically, 

this health system has an endless useful life. During this period of 

time, the SCA returned zero continuously.    

3. The system showed a healthy behaviour as the SCA returned zero 

continuously when it settled at its required demand, which it can be 

approved from the liquid level curve. At about 1139 s from the 

starting point, the pumping efficiency start being degraded gradually, 

which was mimicked in this simulation as a ramp function with a 

slope of 1*10-6. At that time, the SCA start pointing to the faulty 

system behaviour and sending the first fault indication. As the 

pumping efficiency degraded, the pumped liquid flow rate was 

decreased as a result, which led to having a liquid level drop. Even 

this drop was tiny and not visualised by an operator; the controller 

hastened to mask this deficiency through increasing the pump 

driving voltage continuously by an amount corresponding to what 

lost because of this fault to maintain the liquid level at its required 

demand, as can be seen in Figure 5.6.  
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Figure 5.6 Degradation of the pumping efficiency at 125 mm liquid level 

Now, it is time to analyse the PID signal of the period between point 1135 

s, where the fault was started upward to the current time before having any 

unusual event, as shown in Figure 5.2, say the 1600 s. The PID signal trend 

needs to be evaluated, and from it, the EOL can be estimated, at which the PID 

signal will reach its maximum allowable value, i.e. 10 volts. As much data 

becomes available, the trend evaluation becomes more precise. The system will 
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reach its EOL according to the current system conditions at 6400 s measured 

from the starting point. 

4. After 550 s from the first sign of fault initiation, the required liquid 

level was increased to be 150 mm. From the SCA, as discussed in 

Chapter 4, it is easy to recognise that the demand has been changed 

to a new level. After a period of fluctuation and because of the fault 

has been still existing at the same intensity level, the SCA went back 

to its feature before this step, as can be seen in Figure 5.6. A new 

trend evaluation was done when the liquid level reached its demand, 

and consequently, the new EOL was estimated. According to the 

current system condition, the EOL will be reached at 6059 s from the 

starting point. The reduction of the predicted EOL is about 5.33%, if 

the liquid level, according to current health condition changed from 

125 mm to 150 mm. This degradation is a result of increasing the 

required demand, which means the PID controller needs to work 

harder by increasing its output voltage. 

During this period of time and at the 2200 s, a novel event occurred. The 

fault was duplicated to be 2*10-6 as a slope of the fault-mimicked ramp function. 

It is inapplicable to identify when the fault was changed by tracking only the liquid 

level curve. On the PID signal curve, it might not be easy to do this either. But on 

the Sign chart, it can be easily recognised when the change has occurred either 

in Figure 5.5 or Figure 5.7. The evaluation of the PID signal trend parameters for 

this period was done from the time the 2230 s forward to the current evaluation 

time according to Equation 5.4. From this equation, the evaluated EOL is 3915 s. 

There is a reduction in the EOL by about 38.83% in comparison with the previous 

time, which caused by the increasing of the fault strength.  

In the presence of a fault, the SCA returns a series of positive ones with 

periods of zeros between them as the PID signal was increased, as shown in 

Figure 5.7. These periods became smaller and smaller with the time, which refers 

to the nonlinear controller response, such response was described in Chapter 4, 

is related to a fault at tank feeding side of the system. Meanwhile, these periods 

have a constant length; if the controller response is linear, such response is 

regarding a fault at the system drainage side. At this estimation time, the 2230 s 
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the remaining useful life is 1685 s. The RUL of a system is the period between 

the current estimation time and the predicted EOL. It might be worth to decrease 

the liquid level to increase the remaining operation time, without having any 

maintenance activity.  

Figure 5.7 Changing the intensity of the pumping efficiency fault at 150 mm 

liquid level 
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5. At the time 3180 s from the starting point, the liquid level was 

decreased to be 125 mm. The new evaluation was started at time 

3500 s, and accordingly the estimated EOL was 4140 s. Because of 

the benefit of the predicted EOL is only 3.52%, it might be worth to 

decrease the liquid level again to a new height in order to have an 

extra operating time. 

6. The liquid level was reduced for the third times, and the new height 

was 100 mm. The estimation time started at 4100 s upward to 4325 

s, and it showed that the EOL would be after only 368 s. In the 

simulation, the PID signal reached its maximum value, i.e. 10 volts 

at 4468 s.  

7. When the system reached its EOL, the PID signal returned its 

maximum set value, i.e., 10 volts continuously, the SCA returned 

uninterrupted positive one. Because the system has developed a 

continually progressive fault and the PID reached its saturation 

maximum value, which means it cannot mask the fault anymore, the 

liquid level started dropping as a result, as can be seen in Figure 

5.8.  

For the liquid level tank system, in particular, CE105 test rig, the proposed 

linear–exponential equation with a numerical method solver gives a precise 

estimation of the end of the system useful life and accordingly the remaining 

useful life.  
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Figure 5.8 The simulation result of the liquid level system at the end of its 

useful life 
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5.8 Summary 

It is widely accepted for closed-loop control systems that the controller 

works to cover any fault and disturbance while the control signal is less than its 

maximum allowable value. This maximum limit can be pre-defined as a threshold. 

Accordingly, these closed-loop systems show healthy behaviour regardless of 

the presence of any hidden fault occurs as the controller manipulate its signal 

trend to achieve the system required demand. By tracking the controller signal 

trend and extrapolate it forward in the future to reach a specific threshold, the 

system end of life can be evaluated, and the remaining of its useful life can be 

calculated. As pre-discussed in Chapter 4, CE105 as a liquid level system shows 

linear and exponential PID signal trend due to leakage at the low-pressure side 

and a deterioration of the pumping efficiency respectively. For that, a couple of 

terms function, linear and exponential, was used to describe the PID signal trend. 

Form the current time and backward in the past, the function parameters were 

evaluated and then it was extrapolated to a specific threshold to estimate when 

this system will reach its end of life in future. This approach can be automated as 

a part of an integrated continuous monitoring system to evaluate the remaining 

useful life at any time where the system is in-service.  

Tracking the PID signal trend to build its mathematical model followed by 

extrapolating it to a predefined threshold to evaluate when the under-monitoring 

system will reach its end of useful life is the main contribution presented in this 

chapter. 

To verify the results of applying the approaches and algorithms that pre-

discussed in previous chapters, a new design of a three individual-tank system 

(TTS) is designed and examined. Chapter 6 presents the TTS requirement 

design and its examination under different operating and faults scenarios. 
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6.1 Introduction 

This Chapter presents a review of the background and theory behind a new 

design of a three individual tank system (TTS). This system was designed to 

confirm the experimental results from CE105 and to overcome its limitations. 

CE105 was built with regulator drain valves that located away from the tank zero 

level, i.e., tank base. The layout of Chapter Six is as follows: 

Section 6.2 describes the three individual-tank system (TTS), overall 

dimensions and its main components. The system’s mathematical model is 

presented in Section 6.3. TTS as a closed-loop mechatronic system is controlled 

by using a PID controller under LabVIEW environment as presented in Section 

6.4 to achieve the required demands and to apply a wide range of operating 

scenarios. Section 6.5 presents data acquisition (NI myRIO), which is used to 

interface between the LabVIEW programme on a PC and the TTS. Section 6.6 

describes pulse width modulation DC motor control to drive the system water 

pump via L298N driver board. This dual H-Bridge motor driver is presented in 

Section 6.7. Section 6.8 presents the system controlling programme; LabVIEW 

programme front panel design and the design of the block diagram. Section 6.9 

presents the estimation of characteristic equation of the TTS components, i.e., 

transducer and the drain orifice. The PID controller as a closed-loop control 

algorithm that uses to control this system is presented in Section 6.10. Section 

6.11 and Section 6.12 present the simulation of the TTS under LabVIEW 

environment to build a virtual system in the former section and discusses the 

results of running the simulation for different requiring demands.  

6.2 Description of three individual-tank system 

This chapter presents a new mechanical design of a three individual-tank 

liquid system. It includes modelling, analysing and condition health monitoring of 

the system. A PID closed-loop controller was implemented in this system to 

obtain the desirable performances. Moreover, the controller-based health 

monitoring can be tracked of this system under different operating and fault 

scenarios. To implement a control algorithm for the liquid level concerning the 

inlet and outlet liquid flow rate of the tank, LabVIEW environment was used. Pulse 
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Width Modulation (PWM) was used to control a DC electric water-pump by 

receiving a specific signal from the control algorithm in range of 0 to 100%, for 

the drive voltage of 12 volts.  

TTS is a typical liquid level system that consists of one or more of the 

following fundamental components: 

1. Liquid tank. 

2. Liquid feeder such as a liquid pump or prior tank system. 

3. Discharge restriction such as circular diameter sharp-edged orifice or 

manual operated or solenoid valve. 

4. Liquid level and flow rate sensors. 

5. Liquid. 

A Three Individual-Tank System (TTS) was designed to overtake the 

limitations of CE105, which shown in Table 6.1 and verify the results that were 

presented in Chapter 3, 4 and 5. Figure 6.1 presents the components of the three-

individual-tank system. This apparatus consists of three separate liquid level 

systems in one compacted test rig. This overall system dimensions are 588 mm 

height, and its width and depth are 150 mm each. 
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Table 6-1 Differences between TTS and CE105 liquid level system 

Item CE105 TTS 

1 It has coupled of interacted tanks It has three individual tanks 

2 It can be used as a single tank 

system. 

It consists of three independent 

systems 

3 One liquid pump to control the 

system input 

Three submerged pumps, a pump 

for each tank 

4 One flowrate sensor Three flow rate sensors 

5 The drain restriction is a regular 

valve, which can be analogous to 

an orifice in its mathematical 

model 

The drain restriction of each tank is 

a real circular diameter sharp-

edged orifice  

6 Fibreglass tank with a transparent 

window 

Circular clear Plexiglass tanks 

7 By changing the drain valve 

setting, the liquid outflow rate can 

be changed, by changing the valve 

setting it is impractical to get back 

the same previous condition.  

Each tank has its own changeable 

real fixed diameter orifice. It is 

capable to run three different tests 

condition at a time and easy to re-

run any previous settings. 

8 One operating scenario at a time Three different operating scenarios 

at the same time. 

9 There is an eccentric distance of 

about 46 mm between the tank 

base the drain restriction centre, 

as discussed in Section 3.5.5  

The discharge orifice is mounted at 

the base of the tank to overtake the 

eccentric.  

10 Accordingly, this test rig shows 

more linear than nonlinear 

behaviour as such all real systems 

do. 

It behaves like a real nonlinear with 

a reasonable consistency to its 

mathematical model. 
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In particular, this nonlinear PID-controlled mechatronic system consists of 

three separate plexiglass cylinders, which are used as individual vertical-tanks 

T1, T2 and T3 with a cross-sectional area of A=1257 mm2 each. The liquid 

(coloured tap water) flows from each tank downward to the main common 

cylindrical reservoir from which submerged pumps 1, 2, and 3 supply tank T1, T2 

and T3 respectively. Every single tank is equipped with piezoresistive pressure 

sensing transducer for measuring the liquid level. A digital PID controller can 

control the inflow rate Qi such that the level in the tank T1 can be pre-assigned 

independently. The liquid level in the tank is always related to the liquid 

properties, and its flow rate goes into the tank; and the discharge orifice diameter, 

which are considered to be constant during the process. The system connecting 

pipes and the tanks are not equipped with any adjustable valves neither manually 

nor electrically controlled.  

The flow characteristics of the TTS can be controlled and changed to a wide 

range of physical characteristics by changing the cross-sectional area of the 

discharge orifice, which can be varied over a wide range of diameters up to 10 

mm and shapes. The inlet channel is connected to a variable speed electrical 

pump which works with 12 volt and varied according to pulse width modulation 

(PWM) in the range from 0 to 100%. Every single tank is considered as a Single 

Input Single Output (SISO) system where the inlet flow enters directly to the tank 

only as a single input to the system with a single drain for each tank via its outlet 

orifice. Other tanks have their own drain orifices with difference sharpness, shape 

and cross-sectional area to examine different outflow characteristics.  

The pressure sensing liquid level sensors are located on the upper plate of 

the system, as shown in Figure 6.1. The liquid level sensor gives its output signals 

as a voltage proportional to the water level in its tank as it senses the differential 

pressure of the trapped air between the base of the tank and the sensor port in 

comparison with the atmospheric pressure. This sensor can be calibrated by 

comparing its measurement in volt on the system’s operating programme under 

LabVIEW environment with the actual liquid level by using an available scale that 

mounted on the tank surface. 

NI myRIO is used as an interface between the three individual-tank system 

and the LabVIEW programme on the PC. 
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Figure 6.1 Three-individual tank liquid level system 
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A LabVIEW programme was prepared to manage the TTS, which on its 

graphical user interface (GUI), the PID parameters were set. Moreover, the 

system parameters such as the required liquid level and the input function, step 

or ramp function with a different slope, can be determined on the GUI. The 

graphical output can be tracked on the waveform chart on the front panel. The 

recorded data was sent to an Excel programme for analysis purposes.  

The TTS qualifies for use in research projects in control and system 

prognostics and health monitoring research. It is nominated to be used at the 

department of measurement and control at Cardiff University to study and teach 

different methods of control and model-based diagnostic and health monitoring 

approaches.  For such projects, the plant was equipped with facilities to connect 

to a PC via NI MyRIO data acquisition. An H-bridge card L298N was used to 

provide the required pulse width modulation signal to control the liquid pumping 

rate. 

This chapter is focused on modelling of a three individual-tank system. It 

contains detailed description of a process of developing a computer model under 

LabVIEW environment. The model design process starts with measurement of 

characteristics, in real-time, of the three individual-tank system. An initial 

mathematical model based on first physical principles approach was derived and 

discussed in Chapter 3. The nonlinearities of the real-time system are identified 

and included in the final mathematical model and the simulation.  

6.3 Mathematical model 

This system can be assumed as a typical liquid level system with a typical 

circular diameter sharp-edged orifice as a drain restriction. The general block 

diagram of a liquid level system that presented in Figure 3.14 was followed to 

generate the three individual tank system model. The TTS mathematical analysis 

was build according to Section 3.2. But the TTS virtual system was built based 

on experimental characteristic equations of its transducer and mechanical 

elements. This experimental procedure will be discussed later in Section 6.9.  
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6.4  Controlling the TTS 

The objective of many electrical or electronic control system is to measure, 

monitor and control process variable. It can be accurately controlled the process 

by tracking the output and feeding this signal back to compare the actual output 

with the desired output to reduce the error and if disturbed, bring the output of the 

system back to the original or desired response. 

The quantity of the output being measured is called the feedback signal, 

and the type of control system which uses feedback signal to both controls and 

adjusts itself is called a closed loop system. 

A closed loop control system also is known as a feedback control system is 

a control system which uses the concept of an open loop system as its forward 

path but has one or more feedback loops, hence its name, or paths between its 

output and its input. The reference to feedback means merely that the signal of 

the output is returned to the input to be a part of the excitation of the system. 

Closed loop systems are designed to automatically achieved and maintain 

the required demand by comparing it with the actual condition. It does this by 

generating an error signal which is the difference between the output and the 

reference input. In other words, a closed loop system is a fully automatic control 

system in which its control action being dependent on the output in some way.  

Most of the control algorithms are model-based of a controlled process. A 

plant model can also be used to study the system response and behaviour of the 

modelled plant without danger of a catastrophic deterioration (Chalupa, Novák et 

al. 2012). They classified the basic approaches of obtaining plant model into two 

types: 

• A black box approach of modelling is based on the analysing of input 

and output signals of the system, and hence, it is possible to use the 

same identification algorithm for a wide range of different controlled 

applications. Also, there is no requirement to have a knowledge of 

physical principles of the controlled system. 

• The first physical principles modelling (mathematical-physical 

analysis of the plant). The model obtained by black box approach is 

generally valid only for particular signals that it was built on. 
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Meanwhile, the first principle modelling provides a general model 

that is valid for a whole range of system inputs and condition. 

The model is created by analysing the modelled plant and combining 

physical laws (Jeffrey and Jim 2013). In reality, there may be multiple unknown 

parameters and relations, when performing analysis of a plant. Accordingly, 

modelling a system based on its mathematical-physical analysis is usually 

suitable for simple controlled processes with a small number of parameters. 

6.5 Computer interface board NI myRIO 

A computer interface board, as shown in Figure 6.2, is available in the 

laboratory of the School of Engineering, Cardiff University as is to be used in the 

stated research and teaching activities. This board is used to interface between 

LabVIEW programme and the three individual-tank system and for many other 

purposes. The output port is used to send PWM to the pump according to the 

PID controller output signal via H-Bridge L298N, and the input ports are used to 

return the feedback signals about the water level of the tank and the flow rate of 

the pump. One of the available ground ports should connect to the ground port 

on the TTS. LabVIEW programme can distinguish all the signals easily, and the 

designed programme converts these signals to visible graphs and numeric data.  

Figure 6.2 NI myRIO 
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6.6  Pulse width modulation DC motor control 

Pulse Width Modulation (PWM) is a technique which allows adjusting the 

average value of the voltage that is going to the electronic device by turning ON 

and OFF the power at a fast rate. The average voltage depends on the duty cycle, 

or the amount of time the signal is ON versus the amount of time the signal is 

OFF in a single period of time, as shown in Figure 6.3. 

Depending on the size of the motor, the LabVIEW software PWM output 

can simply connect to the L298N H-bridge, as shown in Figure 6.4 

Figure 6.3 Pulse width modulation (Mechatronics 2017) 

 

Figure 6.4 L298N driver PWM effect (Mechatronics 2017) 
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6.7 L298N driver  

The L298N is a dual H-Bridge motor driver which allows speed and direction 

control of two DC motors at the same time, as shown in Figure 6.5. The module 

can drive DC motors that have driving voltages between 5 and 35 V, with a peak 

current up to 2 A.  

This module has two screw terminal blocks for the motor A and B, and 

another screw terminal block for the Ground pin, the voltage common collector 

VCC for motor and a 5 V pin which can either be an input or output. A Velleman 

DC LAB POWER SUPPLY LABPS3020 was used as a DC regulator power 

supply to provide 12 volts to the H-bridge as an input while the output is PWM. 

Figure 6.5 L298N DC motor drive 

6.8 LabVIEW environment 

According to National Instruments, “LabVIEW is a graphical programming 

platform that helps engineers scale from design to testing and from small to large 

systems”. It offers excellent integration with existing tradition software, Internet 

Protocol IP, and hardware while capitalising on the latest computing 

technologies. This programme offers different tools to solve today’s problems. It 

integrates all the tools that engineers and scientists need to build a wide range 

of applications in dramatically less time and has the capacity for continual future 



Chapter 6                                                               Three Individual-Tank System 

171 
 

innovations faster and more effective. For these reasons, LabVIEW is considered 

as ideal software for any measurement or control system and is at the heart of 

the NI design platform. Moreover, it provides an ability to build a system 

simulation with a graphical user interface GUI. As shown in Figure 6.7, GUI 

contains all mimicked instruments to run the simulation or the real system as 

similar to real instruments. 

Figure 6.6 graphical user interface to drive the TTS 

6.8.1 Front panel design 

The front panel is considered as a control and feedback panel of the 

programme. Through this panel, the input parameters can be set and updated, 

and the output of the system can be displayed graphically and numerically. It 

needs to design the front panel to make the graphical user interface friendly and 

enables the inexperienced operator to use the system easily, as shown in Figure 

6.7. The system is running in single tank system mode, in which the system 

behaves as a single tank, and the other tanks are totally neglected at this stage. 
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6.8.2 Block diagram design 

The block diagram includes interfacing the level sensors to have the status 

of water level in the tank and interfacing the pump to send the proper driving 

voltage to run the system according to their characteristics equations. To design 

a system that meets the requirements, a PID controller is used but set as a PI 

controller. All calculations are wired together in a while loop to have an integrated 

system with fast response and high accuracy (Jeffrey and Jim 2013), (Essick 

2016).  

 

Figure 6.7 Block diagram to run the TTS 

6.9 Characteristics equations of the TTS components 

The pre-discussed procedure in Chapter 3, Section 3.6 was utilised to 

estimate the characteristics equations of the TTS components. 

6.9.1  Liquid level sensor 

A pressure sensing liquid level sensor (SensorTechnics 142SC01D-PCB 

D/C) was used to measure the pressure of the trapped air between the tank base 

and the sensor port A at the upper plate of the system, as shown in Figure 6.1.  
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Datasheet of this sensor, Appendix B, shows that it can be used to measure an 

absolute gauge or differential pressure through its two ports A and B, as shown 

in Figure 6.9,  in range of 1 up to 150 psi which is equal to (0.0689 to 10.342*105 

pascal). As can be seen in Figure 6.10, shows a linearly proportional relationship 

between the real liquid level, measured on a ruler mounted on the transparent 

tank wall in mm, and the sensor reading in volt. The experimentally obtained 

calibration equation as the best curve fitting of the liquid level sensor is: 

 

Figure 6.8 Pressure-sensing liquid level sensor 

 

𝑦 = 0.0061𝑥 + 0.0531 (6-1) 

Where 𝑥 is the liquid level in mm, and 𝑦 is the sensor reading in volt.  

Figure 6.9 Calibration curve of the liquid level sensor mm to volt 

6.9.2  Liquid flowrate sensor 

Figure 6.11 shows a liquid level flowrate sensor (RS 508-2704), which was 

used to measure the liquid flowrate that went into the tank. It produces a pulse 
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train output (frequency), which is proportional to the flow through the sensor. It 

covers a liquid flowrate range between 0.05 and 10 𝑙. 𝑚𝑖𝑛−1.  An experimental 

test correlation between the readings of the inflow rate sensor in Hz and the 

corresponding liquid flow rate on the rotameter in 𝑙. 𝑚𝑖𝑛−1 are shown in Figure 

6.12. From this figure, it is apparent that the sensor output frequency is linearly 

proportion with the liquid flowrate passing through the sensor. From the curve 

fitting, the calibration equation of the inflow rate sensor is: 

 

Figure 6.10 Liquid flowrate sensor 

 

𝑦 = 21.934𝑥 − 0.8882 (6-2) 

Where 𝑥 is the water flow rate in 𝑙. 𝑚𝑖𝑛−1 through the flow rate sensor while 

𝑦 is the sensor reading in Hz.  

Figure 6.11 The calibration equation of the liquid flow sensor 

 

Water flowrate 𝑙. 𝑚𝑖𝑛−1 
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6.9.3  The characteristic equation of the liquid pump 

For each tank of the TTS, a Whale self-venting submersible water-pump 

GP1352 with a flow rate up to 13 𝑙. 𝑚𝑖𝑛−1, Figure 6.13, was used to pump water 

from the system main reservoir up to the tank. As stated on the datasheet of the 

Whale premium pump, Appendix C, is available in 12 volts, and it should install 

this pump to have its outlet be higher than the inlet. In the TTS, this pump was 

installed vertically and always fully submerged even the three tanks were fully 

filled.  

Figure 6.12 Whale premium submerged pump 

6.9.4 Open loop calibration 

There is a direct relationship between the liquid level in a tank and the drain 

flow rate when the outlet orifice diameter and the liquid characteristics are 

constant.  

To study this relationship, a series of power supplied in percentage as duty 

cycle to the pump and investigated the stable liquid level in the absence of a 

(whalepumps 2017) 
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controller effect (open-loop test). The result is as shown in Figure 6.14. The best 

fit for this relationship is as shown in Equation 6.3. 

𝑦 = 0.0009𝑥 + 0.1503 (6-3) 

 

Figure 6.13 System open loop behaviour 

6.9.5 Drainage orifice behaviour 

The behaviour of the outlet restriction as a circular sharp-edged orifice, 

Figure 6.15, is presented in Figure 6.16, for 6 mm diameter of the orifice, the best 

fit for his relationship is as shown in Equation 6-4 at steady-state where the inflow 

rate equal to the outflow rate. 

𝑦 = 5.376𝑥0.5031 (6-4) 

Where 𝑥 is liquid level in the tank and 𝑦 is the free outflow rate measured in 

Hz by using the flow sensor at steady-state where the inflow rate equal to the 

outflow rate. 

Figure 6.14 A circular sharp-edged orifice  
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Figure 6.15 A 6 mm diameter orifice calibration equation  

6.10 PID controller 

Proportional- Integral- Derivative (PID) controller is widely recognisable 

sorts of feedback controllers. Currently, a PID controller is one of the most 

common control algorithms utilising to control processes. It is used in domestic 

and industrial applications, for example, heating and cooling systems, liquid level 

monitoring, flow and pressure control application. In a PID feedback control 

system, it needs to specify a process variable and a set – point. The output of 

this feedback controller is a control signal, and it is generally, based on the error 

between some user-defined set-point and some measured process variable. 

Liquid level systems are commonly controlled by using a conventional PID 

controller because of its simple structure and application. Such a feedback 

controller minimises the error between the required demand and the related plant 

measured variable through regulating the process-controlled inputs. 

Furthermore, every single element of a PID controller refers to a particular action 

taken on the error value to achieve the required demand (Kumar and Dhiman 

2011).  

(Kumar and Dhiman 2011) argued that the liquid level system has some 

limitations and it is hard to have optimal control using only PID controller because 

the parameters of the system are varying continually. Accordingly, they took the 

liquid level of three water tank for an object, and utilise MATLAB to design 

Genetic Algorithm and Particle Swarm Optimisation control. (Almutairi and Zribi 
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2006) suggested a static and dynamic sliding mode control scheme for a coupled 

tank system. From their simulation and experimental results, they illustrated the 

effectiveness of the proposed controllers. These controllers provided an 

advantageous sensitivity to the variations in the parameters and external noises 

of the system. On the other hand, Fuzzy Logic Controller (FLC) is also commonly 

implemented in many pragmatic industrial applications.  (Gaurav 2012) analysed 

the performance of the system by using a conventional PID controller and fuzzy 

logic controller through MATLAB and Simulink. Gaurav made a comparison 

among various time domain parameters to confirm that the FLC has a small 

overshoot and fast response as compared to a conventional PID controller. 

6.11 Simulation of TTS under LabVIEW environment 

The differential pressure sensing liquid level sensor generates an analogue 

electronic signal that is proportional to the liquid height in the tank. A controller in 

a closed loop liquid level system receives signals from the liquid level sensor, 

and by comparing them with a pre-defined set point, the controller sends a proper 

signal to drive the water pump. The latter, which in turn, pumps an amount of 

water proportional to the voltage supplied. This water goes into the tank to 

achieve the desired liquid level and consequently the liquid outflow rate from it. 

Even a closed loop or automatically controlled tank system needs to have a 

readable scale to track the liquid level, at least for the calibration purpose of the 

level sensor.  

Applying the Sign chart algorithm on a real system needs to deal with high 

level of noise that the PID signal has. This noise comes from several internal and 

external sources. It could be worth to have an extra study to eliminate this noise 

before using SCA to monitor a real system. Two main fault sources were added 

to build a comprehensive virtual system of the TTS under LabVIEW environment. 

This virtual system could cover several proposed fault and operating scenarios. 

Degradation of the pumping efficiency and leakage or blockage at the low-

pressure side are the main two categories of fault simulated to monitor the health 

condition of the TTS. Each category is caused by several reasons as summarised 

in Table 4.1. This simulation was built based on the experimental characteristic 

equations, as shown in Figure 3.23 and Figure 3.26.  
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The pre-discussed characteristic equations were used to build a closed loop 

simulation under LabVIEW environment to study the system behaviour when 

some proposed faults occur.  

6.12 Results and discussions 

6.12.1 TTS response  

When the three individual-tank system run under closed loop controller of 

the GUI that discussed above, the result was as presented in Figure 6.17. PID 

controller parameters were at their default values set by the LabVIEW 

programme. Liquid level was changed from 0 to 150 mm as a step function, and 

the response was as shown in Figure 6.17. The continuous dark blue line refers 

to the instantaneous liquid level measured by using the liquid level sensor. The 

dashed red curve refers to the smoothing data by evaluating the mean value of 

each 25 points. Due to this smoothing algorithm, it could be easy to recognise an 

offset between the raw, and its smoothing data. For that, the controller feedback 

signal is the raw data, not the smoothed.  

 

Figure 6.16 The TTS response when the required demand is 150 mm 

In Figure 6.17 the mentioned area A refers to a water jet inside the tank 

when it was empty at the beginning of applying the driving voltage. The reason 

for this turbulent is due to the variation between the tank cross-sectional area 

(1256 mm2, where the diameter is 40 mm) and the pump discharge (13 𝑙. 𝑚𝑖𝑛−1). 
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When the tank is empty as in Figure 6.17, the water goes from the pump as a 

vertical water jet into the empty tank, but after a while, when the accumulated 

water in the tank reaches about 60 mm it works as a damper. Controller signal, 

sensor and system response will be affected because of this temporary 

tumultuous behaviour. 

6.12.2  Simulation response 

Similarly, when the liquid level was changed from 0 to 150 mm on the 

simulation, all other parameters at their default values. The response of the 

simulation of TTS is as shown in Figure 6.18. 

 

Figure 6.17 The response of the TTS simulation under LabVIEW environment 

By comparing Figure 6.17 with Figure 6.18, there is a significant similarity 

between them. In both, the liquid level settled at its required demand after the 

same overshoot and fluctuation response. On simulation, the TTS health 

condition can be studied to diagnose a different kind of fault sources and 

intensity. It can be confirmed that the three individual-tank system is a robust 

mechatronic design with a robust simulation to monitor the system health 

condition using this system and its simulation as future work. 
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6.13 Summary 

In order to confirm the results of the CE105 liquid level system, a new three 

individual-tank system was designed and fabricated. Each tank can be assumed 

as a complete standalone system. It can be run, controlled, and health monitored 

separately. There are two important limitations of CE105 that the new system 

dealt with.  The regulator drain valve of CE105 was replaced by a real sharp-

edged circular orifice, and the eccentric of the valve position was eliminated by 

locating the orifice at level zero, i.e., directly at the bottom of the tank. The same 

procedure to build a virtual system that pre-discussed in Chapter 3 was followed 

to express the new system transducers and components characteristic equations 

and used them later to build the virtual system. Moreover, fault sources were 

added to the simulation to monitor the system behaviour for a wide range of 

operating scenarios and fault sources and different strength. The Sign chart 

algorithm was added to the simulation to monitor the system health condition. 

The examination of the virtual system under different operating conditions 

showed an effective and high efficiency of the SCA to monitor the health condition 

of the system for any change of the required demand in the presence of hidden 

faults. The result shows a reasonable similarity to that presented in Chapter 4 for 

diagnostic and monitoring and Chapter 5 for prognostics and evaluation of the 

system remaining useful life.  

Chapter 7 conclude this PhD research and presents some 

recommendations for extending this study in the future.  
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7.1 Conclusions 

This thesis has investigated prognostics and health monitoring, and 

maintenance strategies of feedback controlled mechatronic systems. As 

presented in Chapter 2, while maintenance has a significant impact on final 

product costs, monitoring the whole system health and predicting when it will 

reach its end of useful life as a contribution to reducing the costs is not an easy 

task. Developing health monitoring approaches of critical equipment in industrial 

activities is of major interest to manufacturers and operators. The benefits of 

these approaches include maintenance costs reduction, reducing in-service 

failure, reduction of ongoing scheduled maintenance activities, time and costs 

and increasing the system useful life. 

Key to enabling such benefits to be realised are via robust algorithms 

capable of operating within the real-world system. In this thesis, the demonstrated 

algorithms were developed using acquired data from test rigs as pragmatic 

systems operated in a real-time environment. This data was used to build 

nonlinear virtual systems that can be run with the variety of operating and fault 

scenarios faster than real time to evaluate how good faults detection is going to 

be. Thus, these developed approaches have shown the applicability to be used 

for virtual systems for which they were developed and provided future opportunity 

to be used with real systems in future health monitoring technologies. Robust 

monitoring algorithm that returns clear with sufficient details and small in size 

output signal, which can be transferred via internet facilities to abroad monitoring 

and analysis centre, makes a significant contribution.  

Chapter 3 presented a nonlinear mathematical model of the liquid level 

system and incorporated with the characteristic equation of each member of 

CE105 coupled tank system; its virtual system was built. This detailed virtual 

system was run in a real-time environment for a variety of operating scenarios. It 

can be concluded that there is reasonable consistency between a pragmatic 

system and its virtual for different operating requirements as presented in 

Chapter 3. 

In Chapter 4, the development of a new approach based on the required 

demand and the control signal to monitor the behaviour and health condition of 
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entire feedback controlled mechatronic systems was presented. The presented 

conclusion in this chapter is a novel approach that was built to track the controller 

signal is efficient and capable to assigning any change in the required demand, 

and any abrupt or slowly progressed deteriorating faults. This health monitoring 

approach deals with the earliest possible, yet reliable, detection of deteriorating 

faults, in particular slowly progressed faults which are often hard to be detected 

especially in their early stages. Moreover, this approach provides an ability to 

diagnose the sort, location and intensity of different kinds of faults. While the Sign 

chart algorithm returns a digital signal with only (-1, 0, +1) values, it can be 

integrated with the control system to have an automated comprehensive 

operating and health monitoring system.  

In Chapter 5, the development of remaining useful life estimation that based 

on the controller signal was presented. This estimation approach uses a 

mathematical model of two terms, linear and exponential, to describe the trend 

of the control signal at any stage of the operating scenario in the presence of 

faults. It can be concluded that this approach provides a continuous and updated 

estimation of the remaining useful life while the system is in-service regardless 

faults deterioration model, intensity, number of presence faults and their 

progression speed. This approach can be implemented with the operating and 

monitoring system to have an integrated prognostic, and health monitoring of 

feedback controlled mechatronic systems.  

In Chapter 6, a new design of three individual-tank system was presented. 

This liquid level system, in comparison with CE105, has different tank size, 

discharge restriction, water pumps and sensors. This new system was designed 

to overtake the limitations of CE105 regarding its discharge restriction location 

and shape, which discussed amply in Chapter 3. The key conclusions of Chapter 

6 are the applicability of both SCA health monitoring algorithm and the estimation 

procedure of the remaining useful life for new feedback controlled mechatronic 

system. 

The novelty of this PhD thesis is to bring controller-based health monitoring 

of an entire system together with on-going monitoring of operational conditions 

and thus to enable more informed prognostic projections.   
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7.2  Future Works 

• Building a system model by using singular or multiple perturbation 

techniques of control theory. Increasing the noise level, power 

supply fluctuation from the source and changing the liquid 

properties, i.e. density and viscosity are some examples of this 

disturbance. 

• The Sign chart algorithm has been applied in virtual system level 

successfully. Now, it needs to apply it for a real system after having 

an efficient noise-removal filter. 

• In developing a prognostic algorithm, there is a benefit of using real-

world data. Such data captures and illustrates how different sources 

of uncertainty affect how a fault progresses over time. For that, it 

may need to use real-world data to develop the proposed prognostic 

algorithm. 

• It needs to verify the ability to diagnose a closed loop controlled 

mechatronic system by estimating the number of the vertical lines 

per unit time in the SCA and their distribution. Through this proposed 

study, type of fault and its intensity may be recognised without 

installing any extra measuring instruments or approach. 
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