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Abstract 

Transcriptomic imputation approaches offer an opportunity to test 

associations between disease and gene expression in otherwise inaccessible 

tissues, such as brain, by combining eQTL reference panels with large-scale 

genotype data. These genic associations could elucidate signals in complex 

GWAS loci and may disentangle the role of different tissues in disease 

development. 

Here, we use the largest eQTL reference panel for the dorso-lateral pre-

frontal cortex (DLPFC),collected by the CommonMind Consortium, to create a 

set of gene expression predictors and demonstrate their utility. We applied 

these predictors to 40,299 schizophrenia cases and 65,264 matched controls, 

constituting the largest transcriptomic imputation study of schizophrenia 

to date. We also computed predicted gene expression levels for 12 

additional brain regions, using publicly available predictor models from 

GTEx. We identified 413 genic associations across 13 brain regions. 

Stepwise conditioning across the genes and tissues identified 71 associated 

genes (67 outside the MHC), with the majority of associations found in the 

DLPFC, and of which14/67 genes did not fall within previously genome-wide 

significant loci. We identified 36 significantly enriched pathways, 

including hexosaminidase-A deficiency, and multiple pathways associated 

with porphyric disorders. We investigated developmental expression patterns 

for all 67 non-MHC associated genes using BRAINSPAN, and identified groups 

of genes expressed 

specifically pre-natally or post-natally. 

Introduction 

Genome-wide association studies (GWAS) have yielded large lists of disease-

associated loci.Despite this, progress in identifying the causal variants 

driving these associations, particularly for complex psychiatric disorders 

such as schizophrenia, has lagged much further behind. Interpreting 

associated variants and loci is therefore vital to understanding how 

genetic variation contributes to disease pathology. Expression Quantitative 

Trait Loci (eQTLs), which are responsible for a substantial proportion of 

gene expression variance, have been posited as a potential link between 

associated loci and disease susceptibility1–5, and indeed have yielded 

results for a host of complex traits6–9. Consequently, numerous methods to 

identify and interpret co-localisation of eQTLs and GWAS loci have been 

developed10–13. However, these methods require simplifying assumptions about 

genetic architecture (i.e., one causal variant per GWAS locus) and/or 

linkage disequilibrium, may be underpowered or overly conservative, 

especially in the presence of allelic heterogeneity, and have not yet 

yielded substantial insights into existing or novel loci. 

 



Biologically relevant information can be extracted by transcriptomic 

investigations, as recently described by the CommonMind Consortium14 (CMC), 

thanks to detailed RNA-sequencing in a large cohort of genotyped 

individuals with schizophrenia and bipolar disorder14. These analyses 

however are underpowered to detect with statistical confidence differential 

expression of genes mapping at schizophrenia (SCZ) risk loci, due to the 

small effects predicted by GWAS combined with the difficulty of obtaining 

adequate sample sizes of neurological tissues14. Still, such methods do not 

necessarily identify all risk variation in GWAS loci. Transcriptomic 

imputation is an alternative approach that leverages large eQTL reference 

panels to bridge the gap between large-scale genotyping studies and 

biologically useful transcriptome studies15,16. This approach seeks to 

identify and codify the relationships between genotype and gene expression 

in matched panels of individuals, then impute the genetic component of the 

transcriptome into large-scale genotype-only datasets, such as case-control 

GWAS cohorts, which enables investigation of disease-associated gene 

expression changes. This will allow us to study genes with modest effect 

sizes, likely representing a large proportion of genomic risk for 

psychiatric disorders14,17. 

The access to the large collection of dorso-lateral pre-frontal cortex 88 

(DLPFC) gene expression data collected by the CommonMind Consortium14 

affords us a unique opportunity to study and  codify relationships between 

genotype and gene expression. Here, we present a novel set of gene  

expression predictor models, built using CommonMind Consortium DLPFC 

data14. We compare different regression approaches to building these models 

(including elastic net15, Bayesian sparse  linear mixed models and ridge 

regression16, and using max eQTLs), and benchmark performance of these 

predictors against existing GTEx prediction models. We applied our CMC 

DLPFC predictors and 12 GTEx-derived neurological prediction models to 

predict gene expression in  schizophrenia GWAS data, obtained through 

collaboration with the Psychiatric Genomics Consortium (PGC) schizophrenia 

working group, the “CLOZUK2” cohort, and the iPSYCH GEMS schizophrenia 

working group. We identified 413 genome-wide significant genic  

associations with schizophrenia in our PGC+CLOZUK2 sample, constituting 67 

independent associations outside the MHC region. We demonstrate the 

relevance of these associations to schizophrenia aetiopathology using gene 

set enrichment analysis, and by examining the effects of manipulation of 

these genes in mouse models. Finally, we investigated spatio-temporal 

expression of these genes using a developmental transcriptome dataset, and 

identified distinct spatio-temporal patterns of expression across our 

associated genes. 

 
Results 
Prediction Models based on CommonMind Consortium DLPFC expression 



Using matched genotype and gene expression data from the CommonMind 

Consortium Project, we developed DLPFC genetically regulated gene 

expression (GREX) prediction models. We systematically compared four 

approaches to building predictors15,16 within a cross-validation framework. 

Elastic net regression had a higher distribution of cross-validation R2 

(RCV2) and higher mean RCV2 values (Supplementary Figures 1, 2A) than all 

other methods. We therefore used elastic net regression to build our 

prediction models. We compared prediction models created using elastic net 

regression on SVA-corrected and uncorrected data14. The distribution of Rcv2 

values for the SVA-based models was significantly higher than for the un-

corrected data14,18 (ks-test; p<2.2e-16; Supplementary figure 1B-C). In 

total, 10,929 genes were predicted with elastic net cross-validation Rcv2 > 

0.01 in the SVA-corrected data and were included in the final predictor 

database (mean Rcv2 = 0.076). 

 

To test the predictive accuracy of the CMC-derived DLPFC models, and to 

benchmark this against existing GTEx-derived prediction models, 

genetically-regulated gene expression (GREX) was calculated in an 

independent DLPFC RNA-sequencing dataset (the Religious Orders Study Memory 

and Ageing Project, ROSMAP19). We compared predicted GREX to measured 

ROSMAP gene expression for each gene (Replication R2, or RR2) for the CMC-

derived DLPFC models and twelve GTEx-derived brain tissue models15,20,21 

(Figure 1,Supplementary Figure133 2B). CMC-derived DLPFC models had higher 

average RR2 values (Mean RR2 = 0.056), more genes with RR2 > 0.01, and 

significantly higher overall distributions of RR2 values than any of the 

twelve GTEx models (ks-test, p<2.2x10-16 across all analyses; Figure 1). 

Median RR2 values were significantly correlated with sample size of the 

original tissue set (rho=0.92, p=7.2x10-6), the number of genes in the 

prediction model (rho=0.9, p=2.6x10-5), and the number of significant 

‘eGenes’ in each tissue type (rho=0.95, p=5.5x10-7; Figure 1C). Notably, 

these correlations persist after removing obvious outliers (Figure 1C). 

 

To estimate trans-ancestral prediction accuracy, genetically regulated gene 

expression was calculated for 162 African-American individuals and 280 

European individuals from the NIMH Human Brain Collection Core (HBCC) 

dataset (supplementary figure 2B). RR2 values were higher on average in 

Europeans than African-Americans (average 144 RR_EUR2 = 0.048, RR_AA2 = 

145 0.040), but were significantly correlated between African-Americans and 

Europeans (rho=0.78, p<2.2 x10-16, Pearson test; supplementary figure 3). 

 
Application of Transcriptomic Imputation to Schizophrenia 

We used CMC DLPFC and the 12 GTEx–derived brain tissue prediction models to 

impute genetically regulated expression levels (GREX) of 19,661 unique 

genes in cases and controls from the PGC-SCZ GWAS study22. Predicted 



expression levels were tested for association with schizophrenia. 

Additionally, we applied CMC and GTEx-derived prediction models to summary 

statistics from 11 PGC cohorts (for which raw genotypes were unavailable) 

and the CLOZUK2 cohort. Meta-analysis was carried out across all PGC-SCZ 

and CLOZUK2 cohorts using an odds-ratio based approach in METAL. Our final 

analysis included 40,299 cases and 65,264 controls (Figure 2A). 

 

We identified 413 genome-wide significant associations, representing 256 

genes in 13 tissues (Figure 3A). The largest number of associations were 

detected in the CMC DLPFC GREX data (Figure 3C; 49 genes outside the MHC, 

69 genes overall). We sought replication of our CMC DLPFC SCZ-associations 

in an independent dataset of 4,133 cases and 24,788 controls in 

collaboration with the iPSYCH-GEMS SCZ working group (Figure 2B). We found 

significant correlation of effect sizes (p=1.784 x10-04; rho=0.036) and –

log10 p-values (p=1.073 x10-05;rho=0.043) between our discovery 

(PGC+CLOZUK2) and replication (iPSYCH-GEMS) 

165 samples. Non-MHC Genes reaching genome-wide significance in our 

discovery sample (49 genes) were significantly more likely to reach nominal 

significance in the replication sample, and had significantly more 

consistent directions of effect than might be expected by chance (binomial 

test, p=2.42 x10-05, p=0.044). (Suppl. info). 

 

To identify the top independent associations within genomic regions, which 

include multiple associations for a single gene across tissues, or multiple 

nearby genes, we partitioned genic associations into 58 groups defined 

based on genomic proximity and applied stepwise forward conditional 

analysis within each group (Supplementary Table 1). In total, 67 genes 

remained genome-wide significant after conditioning (Table 1; Figure 3A-B). 

The largest signal was identified in the CMC DLPFC predicted expression 

data (24 genes; Figure 3C), followed by the Putamen (7 genes). 19/67 genes 

did not lie within 1Mb of a previously genome-wide significant GWAS locus22 

(shown in bold, Table 1); of these, 5/19 genes were within 1Mb of a locus 

which approached genome-wide significance (p<5x10-07). The remaining 14 

genes all fall within nominally significant PGC-SCZ GWAS loci (p<8x10-04), 

but did not reach genome-wide significance. 

 
Implicated genes highlight SCZ-associated molecular pathways and gene set 
analyses  
We tested for overlap between our non-MHC SCZ-associated genes and 8,657 

genesets comprised of 1) hypothesis-driven pathways and 2) general 

molecular database pathways. We corrected for multiple testing using the 

Benjamin-Hochberg false discovery rate (FDR) correction23. 

 

We identified three significantly associated pathways in our hypothesis-

driven analysis (Table 2). Targets of the fragile-X mental retardation 



protein formed the most enriched pathway (FMRP; p=1.96x10-8). Loss of FMRP 

inhibits synaptic function, is comorbid with autism spectrum disorder, and 

causes intellectual disability, as well as psychiatric symptoms including 

anxiety, hyperactivity and social deficits24. Enrichment of this large 

group of genes has been observed frequently, in the original CommonMind 

analysis14, by colleagues investigating the same PGC and CLOZUK2 samples26 

as well as by investigators studying autism24,27. There was a significant 

enrichment among our SCZ associated genes and genes that have been shown to 

be intolerant to loss-of-function mutations28 (p=5.86x10-5) as well as with 

CNVs associated with bipolar disorder29 (p=7.92x10-8), in line with a recent 

variant-based study of the same individuals26. 

 

Next, we performed an agnostic search for overlap between our 

schizophrenia-associated genes and ~ 8,500 molecular pathways collated from 

large, publicly available databases. 33 pathways were significantly 

enriched after FDR correction (Table 2, Suppl. Table 2), including a number 

of pathways with some prior literature in psychiatric disease. We 

identified an enrichment with porphyrin metabolism (p=1.03x10-4). 

Deficiencies in porphyrin metabolism lead to “Porphyria”, an adult-onset 

metabolic disorder with a host of associated psychiatric symptoms, in 

particular episodes of violence and psychosis30–35. Five pathways 

potentially 206 related to porphyrin metabolism, regarding abnormal iron 

level in the spleen, liver and kidney are also significantly enriched, 

including 2/5 of the most highly enriched pathways (p<2.0 x10-04). The 

PANTHER and REACTOME pathways for Heme biosynthesis and the GO pathway for 

protoporphyrinogen IX metabolic process, which are implicated in the 

development of porphyric disorders, are also highly enriched (p=2.2 x10-04, 

2.6 x10-04, 4.1 x10-04), although do not pass FDR-correction. 

 

 Hexosaminidase activity was enriched (p=3.47 x10-05) in our results; this 

enrichment is not driven by a single highly-associated gene; rather, every 

single gene in the HEX-A pathway is nominally significant in the SCZ 

association analysis (Supplementary Table 2). Deficiency of hexosaminidase 

A (HEX-A) results in serious neurological and mental problems, most 

commonly presenting in infants as “Tay-Sachs” disease36. Adult-onset HEX-

A deficiency presents with neurological and psychiatric symptoms, notably 

including onset of psychosis and schizophrenia37. Five pathways 

corresponding to Ras- and Rab- signaling, protein regulation and GTPase 

activity were enriched (p<6x10-05). These pathways have a crucial role in 

neuron cell differentiation38 and migration39, and have been implicated in 

the development of schizophrenia and autism40–43. We also find significant 

enrichment with protein phosphatase type 2A regulator activity (p=5.24x10-

05), which was associated with MDD and across MDD, BPD and SCZ in the same 



large integrative analysis44, and has been implicated in antidepressant 

response and serotonergic neurotransmission45. 

 
Predicted gene expression changes are consistent with functional validation 
studies 

 To test the functional impact of our SCZ-associated predicted gene 

expression changes (GREX), we performed two in-silico analyses. First, we 

compared directions of effect in our meta-analysis to those in the CMC 

analysis of differentially expressed genes between SCZ cases and controls. 

This analysis highlighted six loci where expression levels of a single gene 

putatively affected schizophrenia risk. All six of these genes are 

nominally significant in our DLPFC analysis, and two (CLCN3 and FURIN) 

reach genome-wide significance. In the conditional analysis across all 

brain regions, one additional gene (SNX19) reaches genome-wide 

significance. The direction of effect for all six genes matches the 

direction of gene expression changes observed in the original CMC paper, 

indicating that gene expression estimated in the imputed transcriptome 

reflects measured expression levels in brains of individuals with 

Schizophrenia. Further, this observation is consistent with a model where 

the differential expression signature observed in CMC is caused by genetics 

rather than environment. 

 

The original CMC analysis identified 21 eSNP genes using SHERLOCK14,46, of 

which 17 were present in our CMC DLPFC analysis. 14/17 genes reached 

nominal significance (significantly more than expected by chance, p=3.6x10-

16), and 11 reached genome-wide significance (binomial p-value 6.04x10-55). 

Additionally, 31 regions contained genes ranked highly by Sherlock in the 

original CMC analysis (supplementary data file 2 in Fromer, M. et al. Gene 

expression elucidates functional impact of polygenic risk for 

schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016)14). Of these, 14 regions 

lay near one of our CMC DLPFC associated genes,and 13/14 regions had common 

genes between SHERLOCK and PrediXcan analyses. Five loci included multiple 

SHERLOCK genes; in every instance we are able to specifically identify one 

or two associated genes from the longer SHERLOCK list. 

 

To understand the impact of altered expression of our 67 SCZ-associated 

genes, we performed an in-silico analysis of mouse mutants, by collating 

large, publicly available mouse databases47– 51. We identified mutant mouse 

lines lacking expression of 37/67 of our SCZ-associated genes,and obtained 

5,333 phenotypic data points relating to these lines, including 1,170 

related to behavioral, neurological or craniofacial phenotypes. 25/37 genes 

were associated with at least one behavioral, neurological or related 

phenotype (Supplementary table 3). We repeated this analysis for genes 

identified in 366 GWAS, including any GWAS for which at least ten mutant 

mouse lines exist (105 GWAS). SCZ-associated genes were more likely to be 



associated with behavior, brain development and nervous system phenotypes 

than genes in these GWAS sets (p=0.057). 

 
Spatiotemporal expression of SCZ-associated genes indicated distinct 
patterns of risk throughout development 

We assessed expression of our SCZ-associated genes throughout development 

using BRAINSPAN52. Data were partitioned into eight developmental stages 

(four pre-natal, four postnatal), and four brain regions29,52 (Figure 4A). We 

noted that SCZ-associated genes were significantly co-expressed, in both 

pre-natal and post-natal development and in all four brain regions, based 

on local connectedness53 (Figure 4B), global connectedness53 (i.e., average 

path length between genes, supplementary Figure 6), and network density 

(i.e., number of edges,  supplementary Figure 7). Examining pairwise gene 

expression correlation (suppl. Fig 8) and  gene co-expression networks 

(suppl. Fig 9) for each spatiotemporal point indicated that the same  genes 

do not drive this co-expression pattern throughout development; rather, it 

appears that separate groups of genes drive early pre-natal, late pre-natal 

and post-natal clustering. 

To visualize this, we calculated Z scores of gene expression for each SCZ-

associated gene, across all 32 time-points (Figure 5). Genes clustered into 

four groups (supplementary fig 10), with distinct spatio-temporal 

expression signatures. The largest cluster (Cluster A, Figure 5A; 29 genes) 

spanned early to late-mid pre-natal development (4-24 weeks post 

conception), either across the whole brain (22 genes) or in regions 1-3 

only (7 genes). 12 genes were expressed in late pre-natal development 

(Figure 5D; 25-38 pcw); 10 genes were expressed in regions 1-3, post-

natally and in the late pre-natal period (Figure 5C), and 15 genes were 

expressed throughout development (Figure 5B), either specifically in region 

four (nine genes) or throughout the brain (six genes). We used a stratified 

qq-plot approach54 to examine whether SNPs in cis-regions of genes in these 

four clusters are differentially enriched in psychiatric disorders. SNPs in 

cis regions of genes in the two pre-natal clusters are more highly enriched 

than SNPs in cis-regions of genes in post-natal clusters, and compared to 

all SNPs, in childhood-onset disorders (ASD and 

ADHD, supplementary figure 13), but not adult-onset disorders (BPD and MDD, 

data not shown). 

 

We noticed a relationship between patterns of gene expression and the 

likelihood of behavioral, neurological or related phenotypes in our mutant 

mouse model database. Mutant mice lacking genes expressed exclusively 

prenatally in humans, or genes expressed pre- and postnatally, were more 

likely to have any behavioral or neurological phenotypes than mutant mice 

lacking expression of genes expressed primarily in the third trimester or 

postnatally (p=1.7x10-04) (supplementary figure 11). 

 



Discussion 

In this study, we present gene expression prediction models for the 

dorsolateral pre-frontal cortex (DLPFC), constructed using Common Mind 

Consortium genotype and gene expression data. These prediction models may 

be applied to either raw data or summary statistics, in order to yield gene 

expression information in large data sets, and across a range of tissues. 

This has the significant advantage of allowing researchers to access 

transcriptome data for non-peripheral tissues, at scales currently 

prohibited by the high cost of RNA sequencing, and circumventing 

distortions in measures of gene expression stemming from errors of 

measurement or environmental influences. Since disease status may alter 

gene expression but not the germline profile, analyzing genetically 

regulated expression ensures that we identify only the causal direction of 

effect between gene expression and disease15. Large, imputed transcriptomic 

datasets represent the first opportunity to study the role of subtle gene 

expression changes (and therefore modest effect sizes) in disease 

development. 

 

There are some inherent limitations to this approach. The accuracy of 

transcriptomic imputation (TI) is reliant on access to large eQTL reference 

panels, and it is therefore vital that efforts to collect and analyze these 

samples continue. TI has exciting advantages for gene discovery as well as 

downstream applications15,55,56; however, the relative merits of existing 

methodologiesare as yet under-explored. Our analysis suggests that, 

overall, sparser elastic net models better capture gene expression 

regulation than BSLMM; at the same time, the improved performance of 

319 elastic net over max-eQTL models suggests that a single eQTL model is 

over-simplified2,15. 

Fundamentally, transcriptomic imputation methods model only the genetically 

regulated portion of gene expression, and so cannot capture or interpret 

variance of expression induced by environment or lifestyle factors, which 

may be of particular importance in psychiatric disorders. Given the right 

study design, analyzing genetic components of expression together with 

observed expression could open doors to better study the role of gene 

expression in disease. 

 

Sample size and tissue matching contribute to accuracy of TI results. Our 

CMC-derived DLPFC prediction models had higher average validation R2 values 

in external DLPFC data than GTEx328 derived brain tissue models. Notably, 

the model with the second highest percent of genes passing the R2 threshold 

is the Thyroid, which has the largest sample size among the GTEx brain 

prediction models. When looking at mean R2 values, the second highest value 

330 comes from the GTEx Frontal Cortex, despite the associated small sample 



size, implying at least some degree of tissue specificity of eQTLs 

architecture. 

 

We were able to compare TI accuracy in European and African-American 

individuals, and found that our models were applicable to either ethnicity 

with only a small decrease in accuracy. Common SNPs shared across 

ethnicities have important effects on gene expression, and as such we 

expect GREX to have consistency across populations. There is a well-

documented dearth of exploration of genetic associations in non-European 

cohorts57,58 We believe that these analyses should be carried out in non-

European cohorts. 

 

 We applied the CMC DLPFC prediction models, along with 12 GTEx-derived 

brain expression prediction models, to schizophrenia cases and controls 

from the PGC2 and CLOZUK2 collections, constituting the largest 

transcriptomic analysis of schizophrenia to date. Predicted gene expression 

levels were calculated for 19,661 unique genes across brain regions (Figure 

1C) and tested for association with SCZ case-control status. We identified 

413 significant associations, constituting 67 independent associations. We 

found significant replication of our CMC DLPFC associations in a large 

independent replication cohort, in collaboration with the iPSYCH-GEMS 

consortium. A recent TWAS study of 30 GWAS summary statistic traits55 

identified 38 non-MHC genes associated at tissue-level significance with 

SCZ in CMC- andGTEx-derived brain tissues (ie, matching those used in our 

study). Of these, 26 also reach genome-wide significance in our study, 

although in many instances these genes are not identified as the lead 

independent associated gene following our conditional analysis. Among our 

67 SCZ353 associated genes, 19 were novel, i.e. did not fall within 1Mb of 

a previous GWAS locus (including 5/7 of the novel brain genes identified in 

the recent TWAS analysis). 

 

 We used conditional analyses to identify independent associations within 

loci. These analyses clarify the most strongly associated genes and tissues 

(Table 1), while we note that nearly collinear gene-tissue pairs could also 

represent causal associations. The tissues highlighted allowed us to 

tabulate apparently independent contributions to SCZ risk from different 

brain regions, even though their transcriptomes are highly correlated 

generally. 360 We find DLPFC and Cerebellum effects, as well as from 

Putamen, Caudate and Nucleus Accumbens Basal Ganglia. 

 

We used these genic associations to search for enrichments with molecular 

pathways and gene sets, and identified 36 significant enriched pathways. 

Among novel pathways, we identified a significant association with HEX-A 

deficiency. Despite the well-studied and documented symptomatic overlap 



between adult-onset HEX-A deficiency and schizophrenia, we believe that 

this is the first demonstration of shared genetics between the disorders. 

Notably, this overlap is not driven by a single highly-associated gene 

which is shared by both disorders; rather, every single gene in the HEX-A 

pathway is nominally significant in the SCZ association analysis, and five 

genes have p < 1x10-03, indicating that there may be substantial shared 

genetic aetiology between the two disorders that warrants further 

investigation. Additionally, we identified a significant overlap between 

our SCZ-associated genes and a number of pathways associated with porphyrin 

metabolism. Porphyric disorders have been well characterized and are among 

early descriptions of “schizophrenic” and psychotic presentations of 

schizophrenia, as described in the likely eponymous mid-19th century poem 

“Porphyria’s Lover”, by Robert Browning59, and have been cited as a 

likely diagnosis for the various psychiatric and metabolic ailments of 

Vincent van Gogh60–65 and King George III66. 

 

Finally, we assessed patterns of expression for the 67 SCZ-associated genes 

throughout development using spatio-temporal transcriptomic data obtained 

from BRAINSPAN. We identified four clusters of genes, with expression in 

four distinct spatiotemporal regions, ranging from early pre-natal to 

strictly post-natal expression. There are plausible hypotheses and genetic 

evidence for SCZ disease development in adolescence, given the correlation 

with age of onset, as well as prenatally, supported by genetic overlap with 

neurodevelopmental disorders67–69 as well as the earlier onset of cognitive 

impairments70–73. Understanding the temporal expression patterns of SCZ-

associated genes can help to elucidate gene development and trajectory, and 

inform research and analysis design. Identification of SCZ-associated genes 

primarily expressed prenatally is striking given our adult eQTL reference 

panels, and may reflect common eQTL architecture across development, which 

is known to be partial74–76; therefore, our results should spur interest in 

extending TI data and/or methods to early development74. Identification of 

SCZ-associated genes primarily expressed in adolescence and adult-hood is 

391 of particular interest for direct analysis of the brain transcriptome 

in adult psychiatric cases. 

 

eQTL data have been recognized for nearly a decade as potentially important 

for understanding complex genetic variation. Nicolae et al1 showed that 

common variant-common disease associations are strongly enriched for 

genetic regulation of gene expression. Therefore, integrative approaches 

combining transcriptomic and genetic association data have great potential. 

Current TI association analyses increase power for genetic discovery, even 

while many open areas of TI remain to be developed, such as leveraging 

additional data types such as chromatin modifications77 (e.g. methylation, 

histone modification), imputing different tissues or  different exposures 



(e.g. age, smoking, trauma) and modeling trans/coexpression effects. It 

remains critical to leverage TI associations to provide insights into 

specific disease mechanisms. Here, the accelerated identification of 

disease associated genes allows the detection of novel pathways and 

distinct spatiotemporal patterns of expression in schizophrenia risk. 

 

Online Methods (Limit 3,000 words, at end of manuscript, c 407 urrently 2,064) 

 
Creating gene expression predictors for the dorso-lateral pre-frontal cortex 
eQTL Data 

Genotype and RNAseq data were obtained for 538 European individuals through 

the 

CommonMind Project14. RNA-seq data were generated from post-mortem human 

dorsolateral prefrontal cortex (DLPFC). The gene expression matrix was 

normalized to log (counts permillion) using voom. Adjustments were made for 

known covariates (including sample415 ascertainment, quality, experimental 

parameters, ancestry) and surrogate variables, using linear 416 modelling 

with voom-derived regression weights. Details on genotyping, imputation and 

RNA417seq generation may be found in the CommonMind Consortium flagship 

paper14. 

 

A 1% MAF cut-off was applied. Variants were filtered to remove any SNPs in 

high LD (r2>0.9), indels, and all variants with ambiguous ref/alt alleles. 

All protein coding genes on chromosomes 1-22 with at least one cis-SNP 

after these QC steps were included in this analysis. SNPs in trans have 

been shown not to provide a substantial improvement in prediction 

accuracy15 and were not included here. 

 
Building gene expression prediction databases 

Gene expression prediction models were created following the “PrediXcan” 

method15. Matched genotype and gene expression data were used to identify a 

set of variants that influence gene expression (Supplementary Figure 2A). 

Weights for these variants are calculated using regression in a ten-fold 

cross-validation framework. All cross-validation folds were balanced for 

diagnoses, ethnicity, and other clinical variables. 

 

All SNPs within the cis-region (+/- 1mb) of each gene were included in the 

regression analysis. Accuracy of prediction was estimated by comparing 

predicted expression to measured expression, across all 10 cross-validation 

folds; this correlation was termed cross-validation R2 or Rcv2. Genes with 

Rcv2 > 0.01 (~p<0.05) were included in our final predictor database. 

 

Prediction models were compared across four different regression 437 

methods; elastic net (prediXcan), ridge regression (using the TWAS 

method16), Bayesian sparse linear mixed modelling (BSLMM; TWAS), and linear 



regression using the best eQTL for each gene (Supplementary Figure 1A). 

Mean Rcv2 values were significantly higher for elastic net regression (mean 

Rcv2=0.056) than for eQTL-based prediction (mean Rcv2=0.025), BSLMM (mean 

Rcv2=0.021) or Ridge Regression (mean Rcv2=0.020). The distribution of Rcv2 

values was also significantly higher for elastic net regression than for 

any other method (ks-test, p<2.2x10-16). 

 
Replication of gene expression prediction models in independent data 

Predictive accuracy of CMC DLPFC models were tested in two independent 

datasets.First, we used data from the Religious Orders Study and Memory and 

Aging Project 

(ROSMAP19). This study included genotype data and DLPFC RNA-seq data78 for 

individuals of European descent (Supplementary Figure 2B). 

 

DLPFC genetically-regulated expression (GREX) was calculated using the CMC 

DLPFC predictor models. Correlation between RNA-seq expression and CMC 

DLPFC GREX (“Replication R2 values” or RR2) was used as a measure of 

predictive accuracy. RR2 was calculated including correction for ten 

ancestry components, as follows: 

 
Equation 1: RR2 calculation. 𝑅𝑅𝑅𝑅1 
 2 = (𝑀𝑀 ~ 𝐺𝐺𝑅𝑅𝐸𝐸𝑋𝑋 + 𝑃𝑃𝐶𝐶1 + 𝑃𝑃𝐶𝐶2 +⋯+ 𝑃𝑃𝐶𝐶10) 𝑅𝑅𝑅𝑅2 
 2 = (𝑀𝑀 ~ 𝑃𝑃𝐶𝐶1 + 𝑃𝑃𝐶𝐶2 + ⋯+ 𝑃𝑃𝐶𝐶10) 𝑅𝑅𝑅𝑅 2 = 𝑅𝑅𝑅𝑅1 
2 -𝑅𝑅𝑅𝑅2 
 2 
 

Where: 𝑀𝑀 Measured expression (RNA-seq) 𝐺𝐺𝑅𝑅𝐸𝐸𝑋𝑋 GREX imputed expression 𝑃𝑃𝐶𝐶𝑛𝑛 nth Principal Component 
 

A small number of genes (158) had very low predictive accuracy and were 

removed from further analyses. Cross-validation R2 (Rcv2) values and RR2 

values were highly correlated (rho=0.62,464 p<2.2e-16; Supplementary Figure 

3A). 55.7% of CMC DLPFC genes had RR2 values > 0.01. 

 

Prediction accuracy was also assessed for 11 publicly available GTEx 

neurological predictor databases, and RR2 values used to compare to CMC 

DLPFC performance. CMC DLPFC models had higher average RR2 values, more 

genes with RR2 > 0.01, and significantly higher overall distributions of 

RR2values than any of the twelve GTEx brain tissue models (ks-test, p<2.2e-

16;Figure 1A,B). 



 

To estimate trans-ancestral prediction accuracy, genetically regulated gene 

expression was calculated for 162 African-American individuals and 280 

European individuals from the NIMH Human Brain Collection Core (HBCC) 

dataset79 (Supplementary Figure 2C). Predicted gene expression levels were 

compared to DLPFC expression levels measured using microarray. There was a 

significant correlation between the European and African-American samples 

for RCV2 values and RR2 values (rho=0.66, 0.56; Supplementary figure 3B-C). 

RR2 values were higher on average in Europeans, but were significantly 

correlated between African-Americans and Europeans (rho=0.78, p<2.2e-16, 

Pearson test; supplementary figure 3D). 

 
Extension to Summary Statistics 

Transcriptomic Imputation may be applied to summary statistics instead of 

raw dosages, in instances where raw data is unavailable. However, this 

method suffers from slightly reduced accuracy, requires covariance matrices 

calculated in an ancestrally-matched reference population80 (usually only 

possible for European cohorts), and precludes testing of 

endophenotypes within the data, and so should not be applied when raw data 

is available. 

 

We assessed concordance between CMC DLPFC transcriptomic imputation results 

using summary-statistics (MetaXcan80) and raw genotypes (PrediXcan15) using 

nine European and three Asian PGC-SCZ cohorts22 for which both data types 

were available. Cohorts were chosen to encompass a range of case : control 

ratios, to test previous suggestions that accuracy isreduced in unbalanced 

cohorts80. Covariances for all variants included in the DLPFC predictor 

models were computed using MetaXcan80. For all European cohorts, Pearson 

correlation of log-10 p-values and effect sizes was above 0.95. The mean 

correlation was 0.963 (Supplementary Figure 4). There was no correlation 

between total sample size, case-control ratio, p-value or 

effect-size. Seven genes were removed due to discordant p-values. For 496 

the three Asian cohortstested, the mean correlation was 0.91 (Supplementary 

Figure 5). 

 

Concordance was also tested for the same nine European PGC-SCZ cohorts, 

across 12 neurological GTEx prediction databases. All correlations were 

significant (rho>0.95, p<2.2e-16).There was a significant correlation 

between p-value concordance and case-control ratio (rho=0.37, p=7.606 x10-

15). 114 genes had discordant p-values between the two methods and were 

excluded from future analyses. 

 
Application to Schizophrenia Dataset Collection 

We obtained 53 discovery cohorts for this study, including 40,299 SCZ cases 

and 65,264 controls (Figure 2). 52/53 cohorts (35,079 cases, 46,441 



controls) were obtained through collaboration with the Psychiatric Genomics 

Consortium, and are described in the 2014 PGC Schizophrenia GWAS22. The 

remaining cohort, referred to as CLOZUK2, constitutes the largest single 

cohort of individuals with Schizophrenia (5,220 cases and 18,823 controls), 

collected as part of an effort to investigate treatment-resistant 

Schizophrenia26. 

 

50/53 datasets included individuals of European ancestry, while three 

datasets include individuals of Asian ancestry (1,836 cases, 3,383 

controls). All individuals were ancestrally matched to controls. 

Information on genotyping, quality control and other data management issues 

may be found in the original papers describing these collections22,26. All 

sample collections complied with ethical regulations. Details regarding 

ethical compliance and consent procedures may be found in the original 

manuscripts describing these collections22,26. 

 

Access to dosage data was available for 44/52 PGC-SCZ cohorts. The 

remaining PGC cohorts, and the CLOZUK2 cohort provided summary statistics. 

Three European PGC cohorts were trio based, rather than case-control. 

 

Additionally, we tested for replication of our CMC DLPFC associations in an 

independent dataset of 4,133 cases and 24,788 controls obtained through 

collaboration with the iPSYCH-GEMS schizophrenia working group (effective 

sample size 14,169.5; Figure 2B, supplementary information). 

 
Transcriptomic Imputation and association testing 

Transcriptomic Imputation was carried out individually for each case-

control PGC-SCZ cohort with available dosage data (44/52 cohorts). 

Predicted gene expression levels were computed using the DLPFC predictors 

described in this manuscript, as well as for 11 other brain tissues 

prediction databases created using GTEx tissues15,20,21,81 (Figure 1C). 

Associations between predicted gene expression values and case-control 

status were calculated using a linear regression test in R. Ten ancestry 

principal components were included as covariates. Association tests were 

carried out independently for each cohort, across 12 brain tissues. 

 

For the 8 PGC cohorts with no available dosage data, the three PGC trio-

based analyses, and the CLOZUK2 cohort, a summary-statistic based 

transcriptomic imputation approach was used (“MetaXcan”), as described 

previously. 

 
Meta-analysis 

Meta-analysis was carried out across all 53 cohorts using METAL82. 

Cochran’s Q test for heterogeneity was implemented in METAL82,83, and a 

heterogeneity p-value threshold of p > 1x10-3 applied to results. A 



conservative significance threshold was applied to these data, correcting 

for the total number of genes tested across all tissues (121,611 gene-

region tests in total). This resulted in a genome-wide significance 

threshold of 4.1x10-7. 

 

 Effect sizes and direction of effect quoted in this manuscript refer to 

changes in predicted expression in cases compared to controls i.e., genes 

with negative effect sizes have decreased predicted expression in cases 

compared to controls. 

 
Identifying independent associations 

We identified a number of genomic regions which contained multiple gene 

associations and/or genes associated across multiple tissues. We identified 

58 of these regions, excluding the MHC, based on distance between 

associated genes, and verified them using visual inspection. In order to 

identify independent genic associations within these regions, we carried 

out a stepwiseforward conditional analysis following “GCTA-COJO” theory84 

using “CoCo” (https://github.com/theboocock/coco/), an R implementation 

of GCTA-COJO. CoCo allows the specification of custom correlation matrices 

by the user (for example, ancestrally specific LD matrices). For each 

region, we generated a predicted gene expression correlation matrix for all 

significant genes (p≤ 1x10-6), as the root-effective sample size (Neff, eqn 

2) weighted average correlation across all cohorts where we had access to 

dosage data. 
Equation 2: Effective Sample Size, 𝑁𝑁𝑒𝑒𝑓𝑓𝑓𝑓 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Forward stepwise conditional analysis of all significant genes was carried 

out using joint linear regression modeling. First, the top-ranked gene was 

added to the model, then the next most significant gene in a joint model is 

added if significant at a given p-value threshold, and so on until either 

all genes are added to the model, or no joint statistic reaches the 

significance threshold. 

 



We calculated effect sizes and odds ratios for SCZ-associated genes by 

adjusting “CoCo” betas to have unit variance (Table 1, eqn. 3). 

 
 Equation 3: GREX Beta adjustment 

 𝛽𝛽 = 𝛽𝛽𝐶𝐶𝑜𝑜𝐶𝐶𝑜𝑜 𝑥𝑥 √𝐺𝐺𝑉𝑉𝐴𝐴𝑅𝑅 

 

 

Where GVAR is the variance of the GREX predictor for each gene. 

 
Gene set Analyses 

Pathway analyses were carried out using an extension to MAGMA85. P-values 

were assigned togenes using the most significant p-value achieved by each 

gene in the meta-analysis. We then 

carried out a competitive gene-set analysis test using these p-values, 

using two gene sets: 

 

1. 159 gene sets with prior hypotheses for involvement in SCZ development, 

including loss of-function intolerant genes, CNV-intolerant genes, targets 

of the fragile-X mental retardation protein, CNS related gene sets, and 104 

behavioural 588 and neurological pathways from the Mouse Genome Informatics 

database14,26,67,86. 

2. An agnostic analysis, including ~8,500 gene sets collated from publicly 

available 

databases including GO87,88, KEGG89, REACTOME90, PANTHER91,92, BIOCARTA93 and 

MGI48. Sets were filtered to include only gene sets with at least ten 

genes. 

 

Significance levels were adjusted across all pathways included in either 

test using the Benjamini-Hochberg “FDR” correction in R23. 

 
Coexpression of SCZ genes throughout development 

We investigate spatiotemporal expression of our associated genes using 

publicly available developmental transcriptome data, obtained from the 

BRAINSPAN consortium94. We partitioned these data into biologically 

relevant spatio-temporal data sets95, corresponding to four general brain 

regions; the frontal cortex, temporal and parietal regions, sensory-motor 

regions, and subcortical regions (Figure 4A96), and eight developmental 

time-points (four pre-natal, four postnatal)95. 

 

First, we tested for correlation of gene expression for all SCZ-associated 

genes at each spatiotemporal time-point. Genes with pearson correlation 

coefficients >= 0.8 or <=-0.8 were considered co-expressed. 100,000 

iterations of this analysis were carried out using random gene sets with 

equivalent expression level distributions to the SCZ-associated genes. For 



each gene set, a gene co-expression network was created, with edges 

connecting all co-expressed genes. 

Networks were assessed using three criteria; first, the number of edges 

within the network, as a crude measured of connectedness; second, the 

Watts-Strogatz average path length between nodes, as a global measure of 

connectedness across all genes in the network53; third, the Watts- Strogatz 

clustering coefficient, to measure tightness of the clusters within the 

network53. For each spatio-temporal time point, we plotted gene-pair 

expression correlation (suppl. Fig 8) and co-expression networks (suppl. 

Fig 9). 

 

For each of the 67 SCZ-associated genes, we calculated average expression 

at each spatiotemporal point. We then calculated Z-Score of expression 

specificity using these values, and plotted Z-Scores to visually examine 

patterns of gene expression throughout 619 development and across brain 

regions. Clusters were formally identified using a dendrogram cut at height 

10 (Suppl. Fig 10). 

 
In-silico replication of SCZ-associated genes in mouse models 

We downloaded genotype, knock-out allele information and phenotyping data 

for ~10,000 mouse mutant models from five large mouse phenotyping and 

genotyping projects; Mouse Genome Informatics (MGI48), EuroPhenome47,97, 

Mouse Genome Project (MGP47,49), International Mouse Phenotyping Consortium 

(IMPC50), and Infection and Immunity Immunophenotyping (3I98). Where 

possible, we also downloaded raw phenotyping data regarding specific 

assays. In total, we obtained 175,012 phenotypic measurements, across 

10,288 mutant mouse models. We searched for any mouse lines with phenotypes 

related to behavior (natural, observed, stereotypic or assay-induced); 

cognition or working memory; brain, head or craniofacial dysmorphology; 

retinal or eye morphology, and/or vision or visual dysfunction or 

impairment; ear morphology or hearing dysfunction or impairment; neural 

tube defects; brain and/or nervous system development; abnormal 

nociception. 

 

We compared the prevalence of psychiatric phenotypes in mutant mice for our 

SCZ-associated genes to the prevalence among other disease-associated gene 

sets. We selected 366 GWAS gene sets, and removed any for which fewer than 

ten mutant mouse models were included in our databases, leaving 105 gene 

sets. We compared the prevalence of 13 different categories of psychiatric 

phenotypes, relating to adrenal gland, behavior, brain development, 

craniofacial dysmorphology, ear/auditory phenotypes, eye dysmorphology, 

head dysmorphology, nervous system development, abnormal nociception, 

seizures, thyroid gland, vision phenotypes. For each GWAS gene set, we 

counted the number of categories with at least one phenotype, and compared 



to the number in our SCZ-associated gene set to obtain an empirical p-

value. 

 
Data Availability 

Our CMC-derived DLPFC prediction models will be made publicly available. 
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Figure 1: Replication of DLPFC prediction models in independent data. 

Measured gene expression (ROSMAP RNA-seq) was compared to predicted 

genetically-regulated gene expression for CMC DLPFC and 12 GTeX predictor 

databases. Replication R2 values are significantly higher for the DLPFC 

than for the 12 GTEX brain expression models. 

 

A. Distribution of RR2 values of CMC DLPFC predictors in ROSMAP data. Mean 

RR 2 = 0.056. 47.7% of genes have RR 2 >= 0.01. 

B. Distribution of RR 2 values of 12 GTeX predictors in ROSMAP data. 

C. Table of sample sizes and p-val thresholds for CMC DLPFC and GTeX data. 

Number of samples, number of genes in the prediXcan model and number of 

eGenes are all significantlycorrelated with predictor performance in ROSMAP 

data. 

 



 

 
 

Figure 2: Analysis outline. 

A) Discovery Samples. 41 PGC-SCZ cohorts had available raw genotypes 

(i). Predicted DLPFC gene expression was calculated in each cohort using 

prediXcan (ii) and tested for association with case-control status 

(iii). 11 PGC cohorts (3 trio, 8 case-control) and the CLOZUK2 cohort 

had only summary statistics available (iv). MetaXcan was used to 

calculate DLPFC associations for each cohort (v). Results were meta-

analysed across all 53 cohorts (vi). This procedure was repeated for 12 

GTEx prediction models. 

B) Replication Samples. iPSYCH-GEMS samples were collected in 25 waves 

(i). Predicted DLPFC gene expression was calculated in each wave 

separately using prediXcan (ii) and merged for association testing 

(iii). A mega-analysis was run across all 25 waves, using wave 

membership as a covariate in the regression (iv) 



 

 
 
Figure 3: SCZ associations results 

A) 413 genes are associated with SCZ across 12 brain tissues 

B) 67 genes remain significant outside the MHC after stepwise conditional 

analysis 

C) Number of genome-wide significant loci, outside the MHC region, 

identified in each brain region. Abbreviations are as follows; CB- 

Cerebellum; CX- Cortex; FL- Frontal Cortex; DLPFC- Dorso-lateral pre-

frontal cortex; CB HEMI- Cerebellar Hemisphere; HIP- Hippocampus; PIT- 

Pituitary Gland; HTH- Hypothalamus; NAB- Nucleus Accumbens (Basal Ganglia); 

PUT- Putamen (Basal Ganglia); CAU- Caudate (Basal Ganglia); CNG- Anterior 

Cingulate Cortex 
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Figure 4: SCZ-associated genes are co-expressed throughout development 
and across brain regions 

A) Brain tissues selected for each of four BRAINSPAN regions. Region 1: 

IPC, V1C, ITC, OFC, STC, A1C; Region 2:S1C, M1C, DFC, VFC, MFC; Region 

3:HIP, AMY, STR; Region 4: CB 

B) Average clustering coefficients were calculated for all pairs of SCZ-

associated genes, and compared to permuted gene networks to obtain 

empirical significance levels. 

 



 

 

 

Figure 5: Gene expression patterns for SCZ-associated genes cluster into four 
groups, relating to distinct spatiotemporal expression. 

Brain regions are shown in figure 5a. 

A. 29 genes are expressed in the early-mid pre-natal period (4-24 post-

conception weeks) 

B. 15 genes are expressed throughout development; sub-clusters correspond 

to either specific expression in region 4, or expression across the brain 

C. Ten genes are expressed in the late-prenatal (25-38pcw) and post-natal 

period 

D. 12 genes are expressed in the late pre-natal period (25-39pcw) 









 



 

 


