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OPTIMAL QUADRATURE-SPARSIFICATION FOR INTEGRAL OPERATOR

APPROXIMATION

BERTRAND GAUTHIER<§† AND JOHAN A.K. SUYKENS‡†

Abstract. The design of sparse quadratures for the approximation of integral operators related to symmetric positive-

semidefinite kernels is addressed. Particular emphasis is placed on the approximation of the main eigenpairs of an initial operator

and on the assessment of the approximation accuracy. A special attention is drawn to the design of sparse quadratures with

support included in fixed finite sets of points (that is, quadrature-sparsification), this framework encompassing the approximation

of kernel matrices. For a given kernel, the accuracy of a quadrature approximation is assessed through the squared Hilbert-

Schmidt norm (for operators acting on the underlying reproducing kernel Hilbert space) of the difference between the integral

operators related to the initial and approximate measures; by analogy with the notion of kernel discrepancy, the underlying

criterion is referred to as the squared-kernel discrepancy between the two measures. In the quadrature-sparsification framework,

sparsity of the approximate quadrature is promoted through the introduction of an l
1-type penalisation, and the computation of

a penalised squared-kernel-discrepancy-optimal approximation then consists in a convex quadratic minimisation problem; such

quadratic programs can in particular be interpreted as the Lagrange dual formulations of distorted one-class support-vector

machines related to the squared kernel. Error bounds on the induced spectral approximations are derived, and the connection

between penalisation, sparsity and accuracy of the spectral approximation is investigated. Numerical strategies for solving

large-scale penalised squared-kernel-discrepancy minimisation problems are discussed, and the efficiency of the approach is

illustrated by a series of examples. In particular, the ability of the proposed methodology to lead to accurate approximations of

the main eigenpairs of kernel matrices related to large-scale datasets is demonstrated.

Key words. sparse quadrature, spectral approximation, RKHS, squared-kernel discrepancy, l1-type penalisation, convex

quadratic programming, one-class SVM.

AMS subject classifications. 47G10, 41A55, 46E22

1. Introduction. This work addresses the problem of designing sparse quadratures for the

approximation of integral operators related to symmetric positive-semidefinite kernels. In parallel,

we investigate the computation of accurate approximations of the main eigenpairs of a given initial

operator (i.e., the pairs related to the largest eigenvalues) and the assessment of the accuracy of these

approximations. From a numerical perspective, we pay a special attention to quadrature-sparsification

problems, which consist in designing a sparse quadrature from a fixed finite set of candidate support

points; this framework in particular encompasses the column-sampling problem (or landmark-selection

problem) for the approximation of large-scale kernel matrices, see for instance [7, 10, 1].

1.1. Motivations. The spectral decomposition of an operator defined from a discrete measure

supported by n points involves the diagonalisation of a n ù n matrix; in the general case, the amount

of computations required to perform this task scales as O(n3) and becomes numerically intractable

for large values of n (not to mention storage issues). In practice, dealing with sparse quadratures, that

is discrete measures supported by a small number of points, is therefore specially important when one

aims at computing the spectral decomposition of an approximate operator in order to approximate the

eigendecomposition of an initial operator. Due to this sparsity constraint, the choice of the quadrature

can strongly impact the quality of the induced approximation, naturally raising questions relative to

the characterisation and the construction of quadratures leading to accurate spectral approximations,

and to the assessment of the accuracy of the induced approximations.

Following for instance [22, 23], under a trace-class condition, integral operators defined from a

same positive-semidefinite kernel can be interpreted as Hilbert-Schmidt operators on the reproducing

kernel Hilbert space (RKHS, see for instance [3]) associated with the kernel. In this framework,

the squared Hilbert-Schmidt norm of the difference between the initial and approximate operators

appears as a natural criterion to assess the approximation accuracy. Since the considered squared

Hilbert-Schmidt norm can be expressed from integrals involving the square of the kernel, and by
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OPTIMAL QUADRATURE-SPARSIFICATION

analogy with the notion of kernel discrepancy (see for instance [5, 21] and Appendix A), we refer to

this criterion as the squared-kernel discrepancy between the initial and approximate measures (i.e., the

measures defining, in combination with the kernel, the initial and approximate operators). The squared-

kernel discrepancy can in addition be interpreted as a “weighted spectral sum-of-squared-errors-type

criterion”, further highlighting the interest of low squared-kernel-discrepancy configurations for

spectral approximation.

For a given initial measure and for a fixed quadrature size n, the search of an approximate

measure minimising the squared-kernel discrepancy among all measures supported by n points is

generally a difficult non-convex optimisation problem. Nevertheless, for approximate measures with

support included in a fixed finite set of points, the squared-kernel discrepancy can be expressed

as a convex quadratic function, and sparsity of the approximate measure can be promoted through

the introduction of an l
1-type penalisation. In such a quadrature-sparsification framework, the

induced penalised squared-kernel-discrepancy minimisation problems consist in convex quadratic

programs (QPs) that can be solved efficiently in the range of relatively sparse solutions, even for large-

scale problems. From a matrix-approximation perspective, penalised squared-kernel-discrepancy

minimisation defines a deterministic, QP-based, weighted column-sampling scheme, and appears as a

complement to the existing column-sampling-based methodology for kernel-matrix approximation;

see, e.g., [7, 26, 14, 25, 4, 10] for an overview.

1.2. Contribution and organisation of the paper. This work aims at investigating the relevance

of the penalised squared-kernel-discrepancy-minimisation framework for the computation of accurate

approximations of the main eigenpairs of integral operators related to symmetric positive-semidefinite

kernels. We are thus addressing two different, but nevertheless strongly intricate, problems: the design

of sparse quadratures, and the computation of accurate approximations of the main eigenpairs of a

given initial operator. We present a careful analysis of the approach, and describe numerical strategies

to tackle large-scale penalised squared-kernel-discrepancy minimisation problems.

To assess the accuracy of an approximate eigendirection (that is an eigendirection of the approxi-

mate operator), we rely on the notion of geometric approximate eigenvalues (see Definition 3.2; we

also use the orthogonality test, see Remark 3.1). For a given approximate eigendirection, the geometric

approximate eigenvalues consist in four different approximations of the underlying eigenvalue. These

approximations verify various optimality properties, and are equal if and only if the related approxi-

mate eigendirection is an eigendirection of the initial operator; furthermore, the concordance between

these four approximations is directly related to the accuracy of the approximate eigendirection, as

detailed in Theorem 3.1.

As an important feature, the so obtained approximate eigenpairs are invariant under rescaling of the

approximate measure, i.e., proportional approximate measures lead to the same spectral approximation

of a given initial operator (see Lemma 3.1). Motivated by this invariance property, we introduce

the notion of conic squared-kernel discrepancy, consisting in the minimim of the squared-kernel

discrepancy on the rays of proportional approximate measures. The conic squared-kernel discrepancy

is directly related to the overall accuracy of the spectral approximation, as detailed in Theorem 3.2.

For quadrature-sparsification problems, Theorem 5.1 gives an insight into the impact of the

penalisation on the trade-off between sparsity and accuracy of the spectral approximation. This result

indeed provides a sufficient condition under which increasing the amount of penalisation tends to

increase the sparsity of the approximate measures (more precisely, this decreases an upper bound on

the number of support points of the optimal approximate measures), at the expense of reducing the

overall accuracy of the induced spectral approximations.

In the quadrature-sparsification framework, the l
1-type penalisation can be introduced under

the form of a regularisation term or of a constraint, and is based on the definition of a penalisation

direction. A penalisation direction of special interest consists for instance in penalising the trace of the

approximate operators, leading to an interesting parallel with the approximation by spectral truncation;

altenative choices for the penalisation direction are nevertheless possible, and the definition of relevant

problem-dependent penalisation directions is discussed. The regularised and constrained formulations

are equivalent, and the properties of the corresponding QPs are investigated. In particular, these QPs

can be interpreted as the Lagrange duals of distorted one-class support-vector machines (SVMs, see,
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e.g., [24]) defined from the squared kernel, the initial measure and the penalisation term, so that the

points selected through penalised squared-kernel-discrepancy minimisation correspond to the support

vectors of these SVMs.

The paper is organised as follows. Section 2 introduces the theoretical framework considered

in this work, and Section 3 discusses the approximate eigendecomposition of an operator. Section 4

focuses on approximate measures with support included in a fixed finite set of points (i.e., quadrature-

sparsification) and on kernel-matrix approximation. For quadrature-sparsification problems, the QPs

related to penalised squared-kernel-discrepancy minimisation are introduced in Section 5, and the

underlying SVMs are described in Section 6. Numerical strategies to handle large-scale penalised

problems are investigated in Sections 7 and 8. Section 9 is devoted to a discussion relative to

the selection of relevant penalisation directions. Some numerical experiments are carried out in

Sections 10 and 11, and Section 12 concludes.

We have tried to make the paper as self-contained as possible; for the sake of readability, the

proofs are placed in Appendix B.

2. Notations, recalls and theoretical background. We consider a general space X and a

symmetric and positive-semidefinite kernel K : X ù X ô R; we denote by H the underlying

RKHS of real-valued functions on X (see for instance [3]). We assume that H is a separable Hilbert

space.

2.1. Integral operators. We assume that X is a measurable space and we denote by A the

underlying �-algebra. We suppose that the kernel K(�, �) is measurable on X ù X for the product

�-algebra A‰A (see for instance [24, Chap. 4]), so that H consists of measurable functions on X .

We also assume that the diagonal of K(�, �), i.e., the function x≠ K(x, x), is measurable on (X ,A).

We denote by M the set of all measures on (X ,A) and we introduce

T (K) =
�
� À MÛÛ⌧� = î

X
K(x, x)d�(x) < +ÿ

�
.

For � À T (K), we have K(�, �) À L2(� ‰ �) since in particular (from the reproducing property

of K(�, �) and the Cauchy-Schwarz inequality for the inner product of H)

ÒKÒ2
L2(�‰�)

= î
X ùX

�
K(x, t)

�2
d�(x)d�(t) Õ ⌧2�.

In addition, for all h À H, we have h À L2(�) and ÒhÒ2
L2(�)

Õ ⌧�ÒhÒ2H , i.e., H is continuously

included in L2(�). We can thus define the symmetric and positive-semidefinite integral operator T�
on L2(�), given by, for f À L2(�) and x À X ,

T�[f ](x) = î
X
K(x, t)f (t)d�(t).

In particular, for all f À L2(�), we have T�[f ] À H œ L2(�), and for all h À H,

�
hÛÛT�[f ]

�
H =

�
hÛÛf

�
L2(�)

, (2.1)

where (��)H and (��)L2(�) stand for the inner products of H and L2(�), respectively; see for instance

[8, 9] for more details.

We introduce the closed linear subspaces H0� =
�
h À HÛÛÒhÒL2(�) = 0

�
and H� = HÚH

0�
(i.e.,

H� is the orthogonal of H0� in H), leading to the orthogonal decomposition H = H� ®H0�.

We denote by {�k}kÀI+� the at most countable set of all strictly positive eigenvalues of T� (repeated

according to their algebraic multiplicity), and let {õ'k}kÀI+� be a set of associated eigenfunctions, chosen

to be orthonormal in L2(�), i.e., õ'k À L2(�), T�[õ'k] = �kõ'k in L2(�), and (õ'kõ'k® )L2(�) = �k,k®

(Kronecker delta). For k À I+� , let 'k =
1

�k
T�[õ'k] À H be the canonical extension of õ'k (the

eigenfunctions õ'k are indeed only defined �-almost everywhere, while the extensions 'k are defined
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for all x À X ). From (2.1), we obtain that {
˘
�k'k}kÀI+� is an orthonormal basis (o.n.b.) of the

subspace H� of H, and the reproducing kernel K�(�, �) of H� is thus given by, for all x and t À X ,

K�(x, t) =
≥
kÀI+�

�k'k(x)'k(t). (2.2)

We also recall that ⌧� =
≥
kÀI+�

�k is the trace of the integral operator T� on L2(�).

Remark 2.1. Consider any measure � À T (K); for c > 0, the strictly positive eigenvalues of the

operator Tc� (i.e., the operator defined by the kernel K(�, �) and the measure c�) are c�k, with k À I+� ,

and the associated (canonically extended) eigenfunctions, orthonormalised in L2(c�), are 'k_
˘
c. In

particular, we have H� = Hc�, and K�(�, �) = Kc�(�, �). /

2.2. Hilbert-Schmidt norm and squared-kernel discrepancy. In view of Section 2.1, for

� À T (K), the operator T� can also be interpreted as an operator on H (see, e.g., [22, 23]); with a

slight abuse of notation, we keep the same notation for “T� viewed as an operator on L2(�)”, and

“T� viewed as an operator on H”. In both cases, T� is an Hilbert-Schmidt operator.

We denote by HS(H) the Hilbert space of all Hilbert-Schmidt operators on H. Let � and

⌫ À T (K); for an o.n.b. {hj}jÀI of H (with I a general, at most countable, index set), the Hilbert-

Schmidt inner product between the operators T� and T⌫ on H is given by

�
T�

ÛÛT⌫
�
HS(H)

=
≥
jÀI

�
T�[hj]

ÛÛT⌫[hj]
�
H ,

and we recall that the value of
�
T�

ÛÛT⌫
�
HS(H)

does not depend on the choice of the o.n.b. of H, see,

e.g., [20]. The underlying Hilbert-Schmidt norm (for operators on H) is given by

ÙÙT�ÙÙ
2

HS(H)
=
�
T�

ÛÛT�
�
HS(H)

=
≥
jÀI

ÙÙT�[hj]ÙÙ
2

H .

Definition 2.1. The squared-kernel discrepancy DK2 (�, ⌫) between � and ⌫ À T (K) is defined as

DK2 (�, ⌫) = ÒT� * T⌫Ò2HS(H)
.

Proposition 2.1. For � and ⌫ À T (K), we have (T�
ÛÛT⌫)HS(H) = ÒKÒ2

L2(�‰⌫)
, so that

DK2 (�, ⌫) = ÒKÒ2
L2(�‰�)

+ ÒKÒ2
L2(⌫‰⌫)

* 2ÒKÒ2
L2(�‰⌫)

,

where ÒKÒ2
L2(�‰⌫)

= î
X ùX

�
K(x, t)

�2
d�(x)d⌫(t).

In particular, notice that ÒKÒ2
L2(�‰⌫)

Õ ⌧�⌧⌫ , and that ÒT�Ò2HS(H)
=
≥
kÀI+�

�2
k
, where {�k}kÀI+�

is the set of all strictly positive eigenvalues of T�. By definition, we always have DK2 (�, ⌫) Œ 0, and

DK2 (�,�) = 0. We can also remark that if � and ⌫ À T (K) are such that H� and H⌫ are orthogonal

subspaces of H, then ÒKÒ2
L2(�‰⌫)

= 0.

Lemma 2.1. We denote by G the RKHS associated with the squared kernel K2(�, �) =
�
K(�, �)

�2
, and

for all � À T (K), we introduce the function g�(x) = î
X
K2(x, t)d�(t), with x À X . For all � and

⌫ À T (K), we have g� and g⌫ À G, and

(T�T⌫)HS(H) = (g�g⌫)G = ÒKÒ2
L2(�‰⌫)

= î
X
g�(t)d⌫(t) = î

X
g⌫(t)d�(t),

so that, in particular, DK2 (�, ⌫) = Òg� * g⌫Ò2G.

The terminology “squared-kernel discrepancy” is motivated by the analogy with the notion of

“kernel discrepancy” discussed for instance in [5, 21] (see Appendix A). Interestingly, the kernel

discrepancy is related to approximate integration of functions in the RKHS H, while the squared-

kernel discrepancy is related to the approximation of integral operators defined from the reproducing

kernel K(�, �) of H; by definition, the squared-kernel discrepancy is thus also related to approximate

integration of functions in the RKHS G associated with the squared kernel K2(�, �).

4



B. GAUTHIER AND J.A.K. SUYKENS

Lemma 2.2. Let � and ⌫ À T (K) be such that H⌫ œ H� (i.e., for h À H, if ÒhÒL2(�) = 0, then

ÒhÒL2(⌫) = 0), and denote by {
˘
�k'k}kÀI+� an o.n.b. of H� defined by the spectral decomposition of

T�. We have

DK2 (�, ⌫) =
≥
kÀI+�

�k
ÙÙT�['k] * T⌫['k]ÙÙ

2

H , (2.3)

and, in addition,
≥
kÀI+�

�k
ÙÙT�['k] * T⌫['k]ÙÙ

2

L2(�)
Õ ⌧�DK2 (�, ⌫).

In the framework of Lemma 2.2, and assuming that one aims at approximating T� (the initial

operator) by T⌫ (the approximate operator), the squared-kernel discrepancy can, in view of (2.3), be

interpreted as a “weighted spectral sum-of-squared-errors-type criterion”, the eigenvalues �k playing

the rule of penalisation weights. WhenDK2 (�, ⌫) is small, we can thus expect the main eigendirections

of T⌫ to be accurate approximations of the main eigendirections of T� (and reciprocally), see in

particular the forthcoming Theorem 3.2.

Remark 2.2. In Lemma 2.2, if the condition H⌫ œ H� is omitted, then the term
≥
mÀJ ÒT⌫[hm]Ò2H =

(KK0�)L2(⌫‰⌫) = (K⌫K0�)L2(⌫‰⌫) Œ 0 needs to be added to the right-hand side of (2.3), where

{hm}mÀJ is an o.n.b. of the subspace H0� of H, and K0�(�, �) is the kernel of H0�, and K⌫(�, �) is

the kernel of the subspace H⌫ related to T⌫ . Also notice that, in Lemma 2.2, we have expressed the

squared-kernel discrepancy as function of the eigenpairs of T�, but we might as well have used the

eigenpairs of T⌫ ; see in particular Section 3 /

Since DK2 (�,�) = 0 (i.e., “the best approximation of T� is T� itself”), the unconstrained

minimisation of ⌫ ≠ DK2 (�, ⌫) on T (K) is of no interest. Furthermore, in the framework of sparse

pointwise quadrature approximation, we aim at obtaining a discrete measure ⌫ supported by a relatively

small number of points (in order to be able to compute the eigendecomposition of T⌫) and related

to an as low as possible value of DK2 (�, ⌫). However, for a given n À N<, the search of an optimal

discrete measure ⌫<n such that DK2 (�, ⌫<n ) is minimal among all measures ⌫n supported by n points

is in general a difficult (i.e., usually non-convex) optimisation problem on (X ù R+)
n. To avoid

this difficulty, we restrict the squared-kernel-discrepancy minimisation to measures ⌫ with support

included in a fixed finite set of points S = {xk}
N
k=1

(with, in practice, N large), see Section 4.2; in

addition, instead of fixing a priori the number n of support points, we promote sparsity through the

introduction of an l
1-type penalisation, as considered in Section 5.

3. Approximate eigendecomposition. We consider two measures � and ⌫ À T (K), corre-

sponding to an initial operator T� and an approximate operator T⌫ .

3.1. Geometric approximate eigenvalues. Following Section 2.1, we denote by {
˘
�k'k}kÀI+�

an o.n.b. of H� defined by the eigendecomposition of T�. In the same way, let {
˘
#l l}lÀI+⌫ be an o.n.b.

of the subspace H⌫ of H related to T⌫ , i.e., T⌫[ l] = #l l À H, with #l > 0 and ( l l® )L2(⌫) = �l,l® ;

in particular, the reproducing kernel K⌫(�, �) of the subspace H⌫ of H thus verifies

K⌫(x, t) =
≥
lÀI+⌫

#l l(x) l(t), for all x and t À X . (3.1)

We shall refer to the functions  l as the approximate eigendirections of T� induced by T⌫ . We recall

that, from (2.1), we have

Ò lÒ2L2(�)
=
�
 l
ÛÛT�[ l]

�
H and ÒT�[ l]Ò2H =

�
 l
ÛÛT�[ l]

�
L2(�)

.

Definition 3.1. For all l À I+⌫ such that Ò lÒL2(�) > 0 (i.e.,  l À H�), we introduce ö'l =

 l_Ò lÒL2(�), and we refer to ö'l as a normalised approximate eigenfunction of T� induced by

the spectral decomposition of T⌫ .

We introduceõI+⌫ = {l À I+⌫  l À H�}, so that the functions ö'l are well defined for all l À õI+⌫ .

Notice that if H⌫ œ H�, then we haveõI+⌫ = I+⌫ . In particular, if  l À H0�, then T�[ l] = 0 and such a

direction  l is therefore of no use in approximating the eigendirections related to the strictly positive

eigenvalues of T�.
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Remark 3.1 (Orthogonality test). The normalised approximate eigenfunctions ö'l are by definition

orthogonal in L2(⌫) and in H, and verify Òö'lÒL2(�) = 1. Controlling the orthogonality, in L2(�),

between the approximations ö'l, with l À õI+⌫ , appears as a relatively affordable way to assess their

accuracy. Indeed, from (2.1) and due to their orthogonality in H, accurate normalised approximate

eigenfunctions ö'l should be almost mutually orthogonal in L2(�). Notice that this condition is

however only a necessary condition. See Sections 10 and 11 for illustrations; a further insight into the

relevance of the orthogonality test is given in Remark 3.2. /

It is very instructive to try to estimate the eigenvalue, for the operator T�, related to an approximate

eigendirection  l induced by T⌫ , as discussed hereafter.

Definition 3.2. For all l À I+⌫ such that Ò lÒL2(�) > 0 (i.e., l ÀõI+⌫ ), we define

ö�[1]
l

=1_Òö'lÒ2H = #lÒ lÒ2L2(�)
=
�˘

#l l
ÛÛT�[

˘
#l l]

�
H =

�
T⌫[ l]

ÛÛT�[ l]
�
H ,

ö�[2]
l

=ÙÙT�[
˘
#l l]

ÙÙH ,
ö�[3]
l

=
�
ö'l
ÛÛT�[ö'l]

�
L2(�)

= ÙÙT�[ö'l]ÙÙ
2

H =
�
ö�[2]
l

�2
_ö�[1]

l
,

ö�[4]
l

=ÙÙT�[ö'l]ÙÙL2(�) =
ÙÙT�[ l]ÙÙL2(�)_

ÙÙ lÙÙL2(�),

and if Ò lÒL2(�) = 0, we set ö�[1]
l

= ö�[2]
l

= ö�[3]
l

= ö�[4]
l

= 0.

We refer to ö�[1]
l

, ö�[2]
l

, ö�[3]
l

and ö�[4]
l

as the four geometric approximate eigenvalues of T� related to

the approximate eigendirection  l induced by T⌫ .

The intuition behind these four approximate eigenvalues ö�[�]
l

is further discussed in the proof of

Theorem 3.1 (Appendix B); see Remark 3.3 for comments relative to their computation. The various

expressions characterising ö�[1]
l

, ö�[3]
l

and ö�[4]
l

follow form (2.1) and Definition 3.1; in particular, notice

that if Ò lÒL2(�) > 0, then

t
ö�[1]
l
ö'l =

˘
#l l.

Theorem 3.1. For all l ÀõI+⌫ , we have ö�[1]
l

Õ ö�[2]
l

Õ ö�[3]
l

Õ ö�[4]
l

, with equality if and only if  l is an

eigendirection of the operator T� (on L2(�) or on H). In case of equality, the approximation ö�[�]
l

corresponds exactly to the eigenvalue of T� related to the eigendirection  l; in particular, equality

between the four geometric approximate eigenvalues occurs as soon as two of them are equal.

In addition, for � À R, the function

�≠
ÙÙ�

˘
#l l * T�[

˘
#l l]

ÙÙ
2

H = �2 * 2�ö�[1]
l

+
�
ö�[2]
l

�2
(3.2)

reaches its minimum at � = ö�[1]
l

. In the same way, the function

�≠
ÙÙ�ö'l * T�[ö'l]ÙÙ

2

L2(�)
= �2 * 2�ö�[3]

l
+
�
ö�[4]
l

�2
(3.3)

reaches its minimum at � = ö�[3]
l

.

In view of Theorem 3.1, for l À õI+⌫ (so that ö�[1]
l

> 0), one may assess the accuracy of an

approximate eigendirection  l (as eigendirection of T�) by checking how close to each other are the

approximations ö�[1]
l

, ö�[2]
l

, ö�[3]
l

and ö�[4]
l

. From (3.2) and (3.3), we for instance have

ÙÙ
˘
#l l * T�[

˘
#l l]_ö�

[1]

l
ÙÙ
2

H =
�
ö�[2]
l
_ö�[1]

l

�2
* 1 and (3.4)

ÙÙö'l * T�[ö'l]_ö�
[3]

l
ÙÙ
2

L2(�)
=
�
ö�[4]
l
_ö�[3]

l

�2
* 1, (3.5)

so that the closer (3.4) and (3.5) are from zero, the more accurate is the approximate eigendirection

 l; see Sections 10 and 11 for illustrations. Notice that we have 0 < ö�[1]
l
_ö�[2]

l
Õ 1, and that

this ratio corresponds to the inner product, in H, between the normalised functions
˘
#l l and

T�[
˘
#l l]_

ÙÙT�[
˘
#l l]

ÙÙH . In the same way, we have 0 < ö�[3]
l
_ö�[4]

l
Õ 1, and this ratio corresponds

to the inner product, in L2(�), between the normalised functions ö'l and T�[ö'l]_ÒT�[ö'l]ÒL2(�).

6
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Remark 3.2. Consider the spectral approximation of the initial operator T� induced by the approximate

operator T⌫ , see Definitions 3.1 and 3.2. From (3.1), we obtain

ÒK *K⌫Ò2L2(�‰�)
= ÒK� *K⌫Ò2L2(�‰�)

=
≥
kÀI+�

�2
k
+
≥
lÀI+⌫

�
ö�[1]
l

�2
* 2

≥
lÀI+⌫

ö�[1]
l
ö�[3]
l

+
≥
lël®ÀõI+⌫

ö�[1]
l
ö�[1]
l®

�
ö'l
ÛÛö'l®

�2
L2(�)

.

(3.6)

Equation (3.6) further illustrates the conclusions drawn from Remark 3.1 and Theorem 3.1. We can

indeed for instance remark that if we have ö�[1]
l
ö�[3]
l

˘
�
ö�[1]
l

�2
, for all l À õI+⌫ , and if the normalised

approximate eigenfunctions ö'l are almost mutually orthogonal in L2(�), then the kernel K⌫(�, �)

is an accurate low-rank approximation of the kernel K(�, �) in L2(� ‰ �), i.e., the kernel K⌫(�, �)

accurately approximate a low-rank approximation of K�(�, �) obtained by truncation of the expansion

(2.2). Notice that the reciprocal of this reasoning also holds, and that this remark can be extended to

the approximate kernels obtained by truncation of the expansion (3.1) of the kernel K⌫(�, �). /

Remark 3.3. Once #l and  l are known, we obtain the normalised approximate eigenfunction ö'l and

the approximate eigenvalue ö�[1]
l

by simply evaluating Ò lÒ2L2(�)
. Computing the other approximate

eigenvalues ö�[2]
l

, ö�[3]
l

and ö�[4]
l

requires the knowledge of T�[ l]. We can then obtain ö�[3]
l

and ö�[4]
l

by

evaluating an inner product in L2(�), and derive ö�[2]
l

from the relation ö�[2]
l

=

t
ö�[1]
l
ö�[3]
l

.

Remark that we have to compute T�[ l] (which may prove challenging) only when we are

interested in assessing precisely the accuracy of an approximate eigendirection  l of T�. Otherwise,

we might simply consider the approximate eigenpairs {ö�[1]
l
, ö'l}lÀõI+⌫

(see also Remark 3.4), while

eventually checking the orthogonality, in L2(�), between the normalised approximate eigendirections

(orthogonality test, see Remark 3.1).

The computation of the geometric approximate eigenvalues when � is a discrete measure with

finite support is further discussed in Section 4.3. /

Following Remark 2.1, for any ⌫ À T (K) and for any c > 0, we have K⌫(�, �) = Kc⌫(�, �) and

H⌫ = Hc⌫ ; also notice that, as operators on H, we have Tc⌫ = cT⌫ . The following Lemma 3.1 points

out the invariance of the spectral approximations induced by proportional approximate measures; this

invariance follows directly from Remark 2.1 and Definitions 3.1 and 3.2 (so that we don’t further

detail the proof).

Lemma 3.1. For any approximate measure ⌫ À T (K) and for a given initial operator T�, the

approximations ö'l, ö�
[1]

l
, ö�[2]

l
, ö�[3]

l
and ö�[4]

l
remain unchanged if we replace ⌫ by c⌫, for any c > 0.

3.2. Conic squared-kernel discrepancy. In the framework of Section 3.1 and in view of

Lemma 3.1, proportional (non-null) approximate measures lead to the same spectral approxima-

tion of T�. For a given measure ⌫ À T (K), we can thus search the value of c Œ 0 for which

DK2 (�, c⌫) is minimal.

Theorem 3.2. Consider � and ⌫ À T (K), with ⌫ such that ÒKÒ2
L2(⌫‰⌫)

> 0. We denote by c⌫ the

argument of the minimum of the function � : c ≠ �(c) = DK2 (�, c⌫), with c À R, c Œ 0. We have

c⌫ =
ÒKÒ2

L2(�‰⌫)

ÒKÒ2
L2(⌫‰⌫)

, and �
�
c⌫
�
= ÒKÒ2

L2(�‰�)
*

ÒKÒ4
L2(�‰⌫)

ÒKÒ2
L2(⌫‰⌫)

.

In particular, Tc⌫⌫ is the orthogonal projection, in HS(H), of T� onto the linear subspace spanned by

T⌫; in addition, ÒTc⌫⌫ *
1

2
T�Ò2HS(H)

=
1

4
ÒT�Ò2HS(H)

, so that, in HS(H), the approximate operator Tc⌫⌫

lies on a sphere centered at
1

2
T� and with radius

1

2
ÒT�ÒHS(H). We also have

≥
lÀõI+⌫

ö�[1]
l
ÙÙT�[ö'l] * ö�[1]

l
ö'l
ÙÙ
2

H Õ
≥
lÀõI+⌫

ö�[1]
l
ÙÙT�[ö'l] * c⌫#lö'lÙÙ

2

H Õ DK2 (�, c⌫⌫), and (3.7)

≥
lÀõI+⌫

ö�[1]
l
ÙÙT�[ö'l] * ö�[3]

l
ö'l
ÙÙ
2

L2(�)
Õ
≥
lÀõI+⌫

ö�[1]
l
ÙÙT�[ö'l] * ö�[1]

l
ö'l
ÙÙ
2

L2(�)
Õ ⌧�DK2 (�, c⌫⌫). (3.8)

7
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In Theorem 3.2, we are exploiting the positive cone structure of T (K); we thus refer to �
�
c⌫
�
=

DK2 (�, c⌫⌫) as the conic squared-kernel discrepancy between � and ⌫ (notice that the measure

� is fixed); to avoid confusion, we shall sometimes refer to DK2 (�, ⌫) as the raw squared-kernel

discrepancy between � and ⌫. The operator Tc⌫⌫ is the best approximation of T� (in terms of squared-

kernel discrepancy) among all operators defined from measures proportional to ⌫, i.e., of the form c⌫,

with c Œ 0. In view of (3.7) and (3.8), the conic squared-kernel discrepancy DK2 (�, c⌫⌫) is directly

related to the overall accuracy of the spectral approximation of T� induced by the operator T⌫ .

Remark 3.4. In view of Theorem 3.2 and following Remark 2.1, in order to approximate the eigen-

values of the initial operator T� induced by the eigendecomposition of T⌫ , we could also define the

“globally rescaled” approximate eigenvalues {c⌫#l}lÀI+⌫ ; in comparison, the approximate eigenvalues

{ö�[1]
l
}lÀI+⌫ are “individually rescaled”. /

4. The discrete case. We now investigate in more detail the case of discrete measures with finite

support. We pay a particular attention to the situation where the initial measure � is discrete and the

support of ⌫ is included in the support of �.

4.1. Discrete measures and kernel matrices. We first recall the connection between kernel

matrices and integral operators related to discrete measures with finite support. Let � =
≥N
k=1 !k�xk

be a discrete measure supported by S = {xk}
N
k=1

, with ! = (!1,5 ,!N )T À RN , !k > 0 for all k (in

what follows, we use the notation ! > 0), and where �xk is the Dirac measure (evaluation functional)

at xk À X ; we have � À T (K), and for f À L2(�) and x À X , using matrix notation,

T�[f ](x) =
≥N
k=1 !kK(x, xk)f (xk) = kT (x)Wf ,

with W = diag(!), and k(x) =
�
K(x1, x),5 ,K(xN , x)

�T
, and f =

�
f (x1),5 , f (xN )

�T
À RN .

We can identify the Hilbert space L2(�) with the space RN endowed with the inner product (��)W,

where for x and y À RN , (xy)W = xTWy. In this way, f À L2(�) corresponds to f À RN , and the

operator T� then corresponds to the matrix KW, where K À RNùN is the kernel matrix with i, j

entry Ki,j = K(xi, xj); in particular, we have KWf =
�
T�[f ](x1),5 , T�[f ](xN )

�T
.

We denote by �1 Œ 5 Œ �N Œ 0 the eigenvalues of KW, and by v1,5 , vN a set of associated

orthonormalised eigenvectors, i.e., KW = P⇤P*1, with ⇤ = diag(�1,5 , �N ) and P = (v15 vN ).

The vectors {v1,5 , vN} form an orthonormal basis of the Hilbert space
�
RN

, (��)W
�

, i.e., PTWP =

IdN , the N ùN identity matrix; since ! > 0, we also have

PPT = W*1
, and K = P⇤PT . (4.1)

For �k > 0, the canonically extended eigenfunctions of T� are given by 'k(x) =
1

�k
kT (x)Wvk, and

we in particular have vk = ('k(x1),5 ,'k(xN ))T .

For a general ! > 0, the matrix KW is non-symmetric; however, since KWvk = �kvk, we have

W1_2KW1_2W1_2vk = �kW
1_2vk.

The symmetric matrix W1_2KW1_2 thus defines a symmetric and positive-semidefinite operator on

the classical Euclidean space {RN
, (��)IdN }, with eigenvalues �k and orthonormalised eigenvectors

W1_2vk. We can thus easily deduce the eigendecomposition of the matrix KW viewed as an operator

on {RN
, (��)W} from the eigendecomposition of the symmetric matrix W1_2KW1_2.

Remark 4.1. Let � =
≥N
k=1 !k�xk , with ! > 0, and consider the kernel K�(�, �) of the subspace H�

of H, see (2.2); also, introduce the N ùN kernel matrix K�, with i, j entry [K�]i,j = K�(xi, xj).

From (4.1) and by definition of the eigenfunctions 'k, we have K� = P⇤PT = K. /

4.2. Restricting the support of the approximate measure. We consider a general measure

� À T (K) and a fixed set S = {xk}
N
k=1

of N points in X . For a measure ⌫ with support included in

S , i.e., ⌫ =
≥N
k=1 �k�xk , with � = (�1,5 , �N )T Œ 0 (that is, �k Œ 0 for all k), we have

ÒKÒ2
L2(⌫‰⌫)

= �T S� and ÒKÒ2
L2(�‰⌫)

= gT��,

8
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where S is the matrix defined by the squared kernel K2(�, �) and the set of points S , i.e., with i, j

entry Si,j = K2(xi, xj) Œ 0 (the kernel matrix S is therefore non-negative and symmetric positive-

semidefinite), and where g� = (g�(x1),5 , g�(xN ))T À RN , with g�(xk) = î
X
K2(xk, t)d�(t) Œ 0.

Notice in particular that S = K < K (Hadamard product), where we recall that K is the kernel matrix

defined by K(�, �) and S , i.e., Ki,j = K(xi, xj).

For such a discrete measure ⌫, we obtain

DK2 (�, ⌫) = ÒKÒ2
L2(�‰�)

+ �T S� * 2gT��, (4.2)

and ⌫ ≠ DK2 (�, ⌫) can in this way be interpreted as a quadratic function of � À RN (i.e., the vector

of the weights characterising ⌫). We shall refer to g� as the (dual) distortion term.

Minimising � ≠ �T S� * 2gT�� under the constraint � Œ 0 leads to the best approximation of �,

in terms of squared-kernel discrepancy, among all discrete measures supported by S . In practice, this

minimisation requires the knowledge of the vector g� À RN , which might be problematic for general

measures � (in this case, an approximation might be considered). In this work, we nevertheless more

specifically aim at computing approximate measures supported by a number of points significantly

smaller thanN , so that we do not consider such a minimisation; instead, we add an l1-type penalisation

term to the squared-kernel-discrepancy, as detailed in Section 5.

4.3. The discrete-operator framework. Hereafter, we only consider measures with support

included in a fixed set S = {xk}
N
k=1

. More precisely, we assume that � =
≥N
k=1 !k�xk , with

! > 0, and that ⌫ =
≥N
k=1 �k�xk , with � Œ 0, so that H⌫ œ H� for all � Œ 0, and g� = S!, and

ÒKÒ2
L2(�‰�)

= !T S!. In the framework of Section 4.1, the operator T� thus corresponds to the matrix

KW, with W = diag(!), and the operator T⌫ corresponds to the matrix KV, with V = diag(�).

For such measures � and ⌫ (related to vectors ! > 0 and � Œ 0, respectively), we have

DK2 (�, ⌫) = (! * �)T S(! * �), (4.3)

where we recall that S = K < K, see Section 4.2.

Remark 4.2. Considering equation (4.3), we have, for instance,

!T S� =
≥N
i,j=1

�˘
!iKi,j

˘
�j
�2

= ÙÙW1_2KV1_2ÙÙ
2

F ,

where Ò � ÒF stands for the Frobenius norm.

In particular, in the {0, 1}-sampling case, i.e., assuming that ! = 1 and that the components of �

are either 0 or 1 (so that the components of ! * � are also either 0 or 1), and introducing the index

sets I = {i�i > 0} and Ic = {1,5 ,N}\I = {i�i = 0}, we can remark that

(! * �)T S(! * �) = ÙÙ(IdN *V)K(IdN *V)ÙÙ
2

F = ÙÙKIc ,Ic
ÙÙ
2

F ,

where KIc ,Ic stands for the principal submatrix of K defined by the index set Ic . In this framework, if

we fix to n < N the number of landmarks (i.e., the number of components of � equal to 1), minimising

the squared-kernel discrepancy thus amounts in searching for the (N*n)ù(N*n) principal submatrix

of K with the smallest Frobenius norm (the principal submatrix KIc ,Ic is indeed “omitted” by the

approximation process). /

Following Section 3, we now illustrate how to compute the approximate eigendecomposition of

the matrix KW related to T� induced by the matrix KV related to T⌫ .

We assume that � ë 0 and we introduce the index set I = {i�i > 0}; let n = card(I) be the

number of strictly positive components of �. We have ⌫ =
≥
iÀI �i�xi (i.e., we discard the points

xk such that �k = 0); following Section 4.1, the strictly positive eigenvalues {#l}lÀI+⌫ of T⌫ and the

associated canonically extended eigenfunctions  l À H, orthonormalised for L2(⌫), can be obtained

from the eigendecomposition of the n ù n (symmetric and positive-semidefinite) principal submatrix

[V1_2KV1_2]I ,I , i.e., the principal submatrix of V1_2KV1_2 defined by the index set I . Notice that

since V is diagonal, we have [V1_2KV1_2]I ,I = V
1_2

I ,I
K
I ,I

V
1_2

I ,I
. Let al À Rn, with l À I+⌫ , be a set

9
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of eigenvectors, orthonormalised in {Rn
, (��)Idn}, associated with the strictly positive eigenvalues

{#l}lÀI+⌫ of [V1_2KV1_2]I ,I . Introducing the N ù n matrix K÷,I defined by the n columns of K with

index in I , the canonically extended eigenvectors ul of KV are given by

ul =
�
 l(x1),5 , l(xN )

�T
=

1

#l
K

÷,I
V
I ,I

(VI ,I )
*1_2al =

1

#l
K

÷,I
V
1_2

I ,I
al;

they satisfy KVul = #lul and uT
l
Vu

l®
= �l,l® . Notice that [ul]I = (VI ,I )

*1_2al, where [ul]I À Rn

consists in the components of ul with index in I .

For all l À I+⌫ , we have Ò lÒ2L2(�)
= ÒulÒ2W = uT

l
Wul, and the induced normalised approximate

eigenvectors of KW are given by (we have Ò lÒL2(�) > 0, since H⌫ œ H�)

övl =
�
ö'l(x1),5 , ö'l(xN )

�T
= ul_ÒulÒW.

Following Remark 3.3 and starting from a pair {#l, (VI ,I )
*1_2al}, the amount of computations

required to obtain the extended components of the eigenvector ul scales as O(n(N * n)). The measure

� being supported by N points, computing an inner product in L2(�) requires O(N) operations. The

computation of the normalised approximate eigenvector övl and of the approximate eigenvalue ö�[1]
l

is

therefore relatively inexpensive. To obtain ö�[2]
l

, ö�[3]
l

or ö�[4]
l

, we need to compute

KWul =
�
T�[ l](x1),5 , T�[ l](xN )

�T
,

the complexity of the underlying matrix-vector product thus scales as O(N2) and is therefore costly;

this operation can nevertheless be easily parallelised.

4.4. Kernel-matrix approximation. In the framework of Section 4.3 (we use the notations

introduced in this section), the approximate operator T⌫ is related to the matrix KV (and thus also to

V1_2KV1_2, as discussed in Section 4.1); notice that since V is diagonal, KV can be interpreted as a

weighted sample of columns of K.

Considering the reproducing kernel K⌫(�, �) of the subspace H⌫ of H, see (3.1), and following

Remark 4.1, we introduce the N ù N kernel matrix K⌫ defined by K⌫(�, �) and S , i.e., with i, j

entry [K⌫]i,j = K⌫(xi, xj). From the eigendecomposition [V1_2KV1_2]I ,I = A⇥AT (with A a n ù n

orthogonal matrix), we deduce that

K⌫ =
≥
lÀI+⌫

#lulu
T
l
=
≥
lÀI+⌫

Ç�[1]
l
Çv
l
ÇvT
l
= K

÷,I
V
1_2

I ,I
A⇥†ATV

1_2

I ,I
K
I ,÷
,

with K
I ,÷

= KT
÷,I

, and where ⇥† is the Moore-Penrose generalised inverse of the diagonal matrix ⇥,

see for instance [2] (i.e., ⇥† is the diagonal matrix whose diagonal entries are the generalised inverses

of the eigenvalues of [V1_2KV1_2]I ,I ; that is 1_#m if #m > 0, and 0 if #m = 0). The matrix A⇥†AT

is the Moore-Penrose generalised inverse of [V1_2KV1_2]I ,I ; since the matrix V is diagonal and by

definition of the index set I , we also obtain

K⌫ = K
÷,I
V
1_2

I ,I

�
[V1_2KV1_2]I ,I

�†
V
1_2

I ,I
K
I ,÷

= KV1_2
�
V1_2KV1_2

�†
V1_2K,

and in particular, V1_2K⌫V
1_2 = V1_2KV1_2. Following for instance [7, 10], the matrix K⌫ corre-

sponds to the Nyström approximation of the kenel matrix K induced by the approximate operator

T⌫ (i.e., induced by the weighed column-sample defined by �). Low-rank approximations of K⌫ can

classically be obtained by spectral truncation, i.e., by considering a subset I+⌫,trc of I+⌫ (the truncation

subset usually corresponds to the largest eigenvalues of T⌫), and by defining K⌫,trc =
≥
lÀI+⌫,trc

#lulu
T
l

;

in practice, in view of Section 3, one should in this case favour a truncation subset corresponding to

accurately approximate eigendirections.

For ! = 1, the approximate eigenpairs { Ç�[1]
l
, Çvl} correspond to approximations of the eigenpairs

of KW = K. In this case, the matrix K⌫,trc approximates a low-row rank approximation of K obtained

by spectral truncation (i.e., obtained by truncating the spectrum of K, see, e.g., [7, 10]); following

Remark 3.2, we can also notice that for ! = 1, we have ÒK *K⌫Ò2L2(�‰�)
= ÒK *K⌫Ò2F .

10



B. GAUTHIER AND J.A.K. SUYKENS

5. Optimal quadrature-sparsification as quadratic programming. We consider the frame-

work of Section 4.3. From (4.3), for a fixed discrete measure � supported by S (i.e., ! > 0 is fixed),

we define, for � À RN (and in practice � Œ 0),

D(�) =
1

2
(! * �)T S(! * �),

the scalar 1/2 being added for simplification purpose. To promote sparsity of the approximate measure

and discard the trivial minimun at � = !, we now introduce squared-kernel-discrepancy-minimisation

problems involving an l
1-type penalisation.

Notice that we could as well consider the framework of Section 4.2; in this case, the term S!

has to be replaced by g�, and !T S! by ÒKÒ2
L2(�‰�)

. For simplicity, we however do not discuss

quadrature-sparsification problems involving a general initial measure � À T (K) in the remainder of

this article.

5.1. Regularised squared-kernel-discrepancy minimisation. For a given penalisation direc-

tion d = (d1,5 , dN )T À RN , with d > 0 (see Section 9 for a discussion on the choice of relevant

penalisation directions), and for ↵ Œ 0, we introduce the minimisation problem, for � À RN ,

minimise
�

D↵(�) =
1

2
(! * �)T S(! * �) + ↵dT � subject to � Œ 0. (5.1)

A solution to (5.1) always exists (see for instance Section 5.2); we also recall that, for a given ↵ Œ 0,

the set of all solutions is convex. The gradient of D↵(�) at � À RN is (D↵(�) = S(� * !) + ↵d.

Proposition 5.1. Denote by �<↵ a solution to (5.1) with ↵ Œ 0, we have:

(a) for ↵ = 0, �<↵ = ! is a solution to (5.1),

(b) if ↵ Œ maxk
�
[S!]k_dk

�
, then �<↵ = 0 (with [S!]k the k-th component of S!),

(c) for all ↵ Œ 0, we have 0 Õ ↵dT �<↵ Õ ↵dT! * (! * �<↵)
T S(! * �<↵),

(d) (D↵(�
<
↵) Œ 0 and (�<↵)

T(D↵(�
<
↵) = 0,

(e) if õ�<↵ is another solution to (5.1), then Sõ�<↵ = S�<↵ and dTõ�<↵ = dT �<↵ ,

(f) if [↵d * S!]k > 0, or if [↵d * S!]k = 0 and Sk,k > 0 (see Remark 5.1), then [�<↵]k = 0,

(g) the maps ↵ ≠ D(�<↵), and ↵ ≠ D↵(�
<
↵) are increasing,

(h) the maps ↵ ≠ dT �<↵ , and ↵ ≠ (�<↵)
T S�<↵ , and ↵ ≠ !T S�<↵ are decreasing.

Remark 5.1. Assuming Sk,k = K2(xk, xk) > 0 for all k À {1,5 ,N} (what we shall denote by

diag(S) > 0) is equivalent to assuming K(xk, xk) > 0 for all k; we recall that for all x À X , we have

K(x, x) = ÒK(x, �)Ò2H Œ 0. This assumption is thus non-restrictive: indeed, if K(xk, xk) = 0, then

h(xk) = 0 for all h À H; if � and ⌫ are supported by S (Section 4.3), then such a point xk can be

removed from S without inducing any modification of the operators T� and T⌫ . /

Since � Œ 0, the term dT � can be interpreted as a weighted l
1-type regularisation, and ↵ as a

regularisation parameter. For appropriate d and ↵, we can therefore expect a solution �<↵ to (5.1) to be

sparse, and sparsity of the solutions should tend to increase with ↵ (see, e.g., [13]). This intuition is

confirmed by Proposition 5.1-(f), which shows that the number of strictly positive components of �<↵
is bounded from above by the number of negative components of ↵d * S! (this bound is however

generally not tight).

5.2. Constrained squared-kernel-discrepancy minimisation. Instead of considering (5.1),

for z Œ 0 (and, in practice, z Õ dT!, see Proposition 5.2), we can equivalently introduce, for � À RN ,

minimise
�

D(�) =
1

2
(! * �)T S(! * �) subject to � Œ 0 and dT � = z. (5.2)

Notice that problem (5.2) consists in minimising a convex function on a convex compact domain.

Proposition 5.2. Let �<↵ be a solution to problem (5.1) with ↵ Œ 0; then �<↵ is a solution to problem

(5.2) with z = dT �<↵ . Reciprocally, assume that �<z is a solution to problem (5.2) with 0 < z Õ dT!,

then �<z is a solution to problem (5.1) with ↵ = (�<z )
T S(!*�<z )_z. For z = 0, we have �<z = 0, which

is the solution to problem (5.1) for ↵ Œ maxk
�
[S!]k_dk

�
. For 0 Õ z Õ dT!, the maps z ≠ D(�<z )

and z ≠ (�<z )
T S(! * �<z )_z are decreasing.

11
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Remark that, in view of Proposition 5.2, if �<z is a solution to problem (5.2) with 0 Õ z Õ dT!,

then �<z is also solution to

minimise
�

D(�) =
1

2
(! * �)T S(! * �) subject to � Œ 0 and dT � Õ z. (5.3)

Problem (5.2) can be efficiently solved thanks to a sparse-descent-direction QP solver (and without

storing the matrix S), like for instance the vertex-exchange strategy, see [18, Chap. 9] and Section 8.1.

A sequential strategy (based on the notion of regularisation path) for solving problems (5.1) and (5.2)

is discussed in Section 7

5.3. Penalisation and conic squared-kernel discrepancy. We now investigate the properties

of the solutions to penalised squared-kernel-discrepancy minimisation problems in the light of Theo-

rem 3.2 (i.e., in terms of conic squared-kernel discrepancy).

We consider the solutions �<↵ to (5.1) for ↵ Œ 0; results related to the solutions to (5.2) for

0 Õ z Õ dT! can be obtained readily through Proposition 5.2. Following Theorem 3.2, we denote

by c↵ the argument of the minimum of the function c ≠ D(c�<↵). From Proposition 5.1-(e), we can

remark that, even in case of non-uniqueness of the solution, c↵ and D(c↵�
<
↵) are unique.

Theorem 5.1. For 0 Õ ↵ < maxk
�
[S!]k_dk

�
= ↵0, we have dT �<↵ Õ c↵d

T �<↵ Õ dT!; in addition,

if the map ↵ ≠ !T S�<↵_d
T �<↵ is increasing on the interval [0, ↵0), then the maps ↵ ≠ D(c↵�

<
↵) and

↵ ≠ c↵d
T �<↵ are respectively increasing and deceasing on this interval.

Theorem 5.1 thus gives a sufficient condition for the conic squared-kernel discrepancy of the solu-

tions to the regularised problem (5.1) to increase with the regularisation parameter ↵; in combination

with Proposition 5.1-(f), this result therefore shows that increasing the amount of penalisation tends

to increase the sparsity of the approximate measures (more precisely, this decreases the upper bound

on the number of support points of the optimal approximate measures), at the expense of reducing the

overall accuracy of the induced spectral approximations; see Sections 10 and 11 for illustrations. This

sufficient condition is further discussed in Section 7.1; notice that it is for instance always verified

when the matrix S is non-singular.

6. Analogy with one-class SVM. Following for instance [19], problems (5.1) and (5.2) can be

interpreted as the dual formulations of one-class distorted SVMs defined from the squared kernel, the

initial discrete measure � and the penalisation direction d.

We recall that we denote by G the RKHS associated with the squared kernel K2(�, �), and that for

� À T (K), the function g� À G is defined as g�(x) = î
X
K2(t, x)d�(t), see Lemma 2.1.

6.1. One-class SVM related to the regularised problem. We first describe the SVM related

to problem (5.1) with ↵ Œ 0. For g À G, we consider the convex minimisation problem

minimise
g

1

2
ÒgÒ2G + (gg�)G

subject to g(xk) Œ *↵dk for all k À {1,5 ,N}.
(6.1)

We shall refer to g� as the primal distortion term; we recall that, in (5.1), � =
≥N
k=1 !k�xk . The

application g ≠ ÒgÒ2G being strictly convex, a solution to problem (6.1) is necessarily unique.

Proposition 6.1. If �<↵ is a solution to (5.1) with ↵ Œ 0, then g<↵(x) =
≥N
k=1[�

<
↵ *!]kK

2(x, xk) is the

solution to (6.1). For all k À {1,5 ,N} such that [�<↵]k > 0, we have g<↵(xk) = *↵dk.

Notice that for all k, we have g<↵(xk) = [S(�<↵ * !)]k. By introducing the change of variable

äg = g + g� À G, problem (6.1) leads to, up to an additive constant,

minimise
äg

1

2
Ò ägÒ2G

subject to äg(xk) Œ g�(xk) * ↵dk for all k À {1,5 ,N},
(6.2)

which is an equivalent formulation for (6.1), with solution äg<↵(x) =
≥N
k=1[�

<
↵]kK

2(x, xk). In view

of Lemma 2.1, if we denote by ⌫<↵ the discrete measure supported by S related to a solution �<↵ to

problem (5.1), then äg<↵ = g⌫<↵
.

12
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6.2. One-class SVM related to the constrained problem. We now describe the SVM related

to problem (5.2) with z > 0. For g À G and � À R, we introduce the problem

minimise
g,�

1

2
ÒgÒ2G + (gg�)G * �

subject to g(xk) Œ �dk_z for all k À {1,5 ,N}.
(6.3)

Again, a solution to problem (6.3) is necessarily unique.

Proposition 6.2. If �<z is a solution to (5.2), then g<z (x) =
≥N
k=1[�

<
z * !]kK

2(x, xk) and �<z =

(�<z )
T S(�<z * !) is the solution to (6.3). For all k À {1,5 ,N} such that [�<z ]k > 0, we have

g<z (xk) = �<zdk_z.

In view of Proposition 5.2, for 0 < z Õ dT!, we know that �<z is a solution to (5.1) for ↵ = *�<z_z;

since ↵ Œ 0, we have �<z Õ 0.

Remark 6.1. Following the analogy with SVM models, we could also define soft-margin-type

extensions of problems (6.1) and (6.3), i.e., we may consider models where the inequalities appearing

in the constraints can potentially be violated, the level of violation being penalised. To be more precise,

in (6.1) for instance, instead of considering the contraints g(xk) Œ *↵dk, we may consider the relaxed

constraints g(xk) Œ *↵dk * ⇠k, with ⇠ = (⇠1,5 , ⇠N )T À RN , while penalising the values taken by

the slack variables ⇠k; the considered penalisation corresponds to the choice of a loss function, see for

instance [24]. Soft-margin extensions appear as a possible way to further constrain or penalise the

optimal approximate measures. /

7. Regularisation path. In this section, we further discuss the properties of the solutions to

problem (5.1); following for instance [17, 12], we also describe the regularisation-path method (or

homotopy method) for solving the regularised problem. Results related to the constrained problem

(5.2) can be obtained from Proposition 5.2.

7.1. Generalities. Let �<↵ be a solution to (5.1) for ↵ Œ 0; we introduce the index sets

J↵ = {k[(D↵(�
<
↵)]k = 0} and J c↵ = {1,5 ,N}\J↵ ,

so that, from Proposition 5.1, [(D↵(�
<
↵)]k > 0 for all k À J c↵ ; in addition, the index set J↵ is unique

(i.e., for a given ↵, in case of non-uniqueness of the solution to (5.1), J↵ does not depends on the

solution considered). We shall refer to J↵ as the sparsity pattern of the solutions to problem (5.1)

for ↵ Œ 0. From Proposition 5.1-(d), if [�<↵]k > 0, then k necessarily belongs to J↵; in addition, the

solutions to (5.1) are characterised by the conditions

�<↵ Œ 0, and [�<↵]J c↵ = 0, and SJ↵ ,J↵ [�
<
↵]J↵ = [S! * ↵d]J↵ , (7.1)

where SJ↵ ,J↵ stands for the n↵ ù n↵ principal submatrix of S corresponding to the index set J↵ , with

n↵ = card(J↵), and where, for instance, dJ↵ À Rn↵ stands for the vector defined by the components

of d with index in J↵ .

Proposition 7.1. Let �<↵1
and �<↵2

be solutions to problem (5.1) with ↵1 and ↵2 Œ 0, respectively.

Assume that J↵1 = J↵2 = J , then for all ✓ À [0, 1], �<↵ = ✓�<↵1
+ (1 * ✓)�<↵2

is a solution to problem

(5.1) with ↵ = ✓↵1 + (1 * ✓)↵2, and J↵ = J .

Proposition 7.1 thus shows that the set of all solutions �<↵ related to a same sparsity pattern

J œ {1,5 ,N} is convex, and that the values of ↵ such that J↵ = J belongs to a convex interval.

When ↵ varies, we refer to a change in the sparsity pattern J↵ as an event; in particular, since there

cannot exist more than 2N different subsets of {1,5 ,N}, Proposition 7.1 implies that the number

Mev of events related to problem (5.1) necessarily satisfies Mev Õ 2N * 1. We also call kinks the

values of ↵ where an event occurs; more precisely, the kinks consist in the strictly positive infima and

suprema of the intervals of ↵ related to a same sparsity pattern (see Remark 7.1).

Remark 7.1 (Right and left sparsity patterns). Assume that ↵ > 0 is a kink for (5.1); for all ✏ > 0

such that ↵ * ✏ Œ 0, we therefore have J↵+✏ ë J↵*✏ . We refer to the limits when ✏ tends to 0 of J↵+✏
and J↵*✏ as the right and left sparsity patterns at ↵, denoted by R↵ and L↵ , respectively. The “true”

sparsity pattern J↵ at a kink ↵ is either its left or right sparsity pattern (if ↵ is not a kink, the left and

13
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right sparsity patterns are identical). In particular, since a change in the sparsity pattern only involves

null components of �<↵ , if ↵ is a kink for (5.1), then (7.1) holds for both the left and right sparsity

patterns at ↵; in other words, if ↵ is a kink, then in (7.1), we may replace J↵ by R↵ or L↵ . /

We assume that the events occurs at the kinks ↵0 > ↵1 > 5 > ↵Mev*1
> 0. From Proposition 5.1,

for ↵ Œ maxk [S!]k_dk, we have �<↵ = 0. We can thus deduce that ↵0 = maxk [S!]k_dk, and that

J↵0 = {k[S!]k_dk = ↵0}; for ↵ > ↵0, the sparsity pattern J↵ is the empty set, and J↵0 is thus also

the left sparsity pattern at the kink ↵0. Since (D(!) = 0, the kink ↵Mev*1
is the supremum of the

set of all ↵ such that J↵ = {1,5 ,N}, and {1,5 ,N} is thus also the left sparsity pattern at the kink

↵Mev*1
. More generally, for all ↵ À (↵p+1, ↵p), with p À {0,5 ,Mev*2}, we have J↵ = L↵p = R↵p+1 ,

where L↵p stands for the left sparsity pattern at the kink ↵p, and R↵p+1 is the right sparsity pattern at

the kink ↵p+1, as detailed in Remark 7.1.

We conclude this section with a result related to the sufficient condition appearing in Theorem 5.1.

Proposition 7.2. For ↵ Œ 0, the maps ↵ ≠ dT �<↵ and ↵ ≠ !T S�<↵ are continuous and piecewise

linear. In addition, if for all ↵ À [0, ↵0) such that ↵ is not a kink for (5.1), there exists a solution

�<↵ such that [�<↵]J↵ = G[S! * ↵d]J↵ , with G symmetric and positive-semidefinite, then the map

↵ ≠ !T S�<↵_d
T �<↵ is increasing on the interval [0, ↵0).

The sufficient condition in Proposition 7.2 is in particular always verified when the matrix S is

non-singular. Indeed, any principal submatrix of a symmetric and positive-definite matrix is also

symmetric and positive-definite; in addition, for any ↵ Œ 0, since the the solutions to (5.1) are in this

case unique, we have G = (SJ↵ ,J↵ )
*1.

7.2. Computing the path. The regularisation-path method consists in iteratively computing the

kinks ↵0, ↵1, etc., while keeping track of the evolution of the sparsity pattern of the solutions to (5.1).

Hereafter, we consider a kink ↵p, for p À {0,5 ,Mev * 2}, with related left sparsity pattern L↵p
(see Remark 7.1). We describe how to compute the next kink ↵p+1 < ↵p, and how to characterise the

related left sparsity pattern L↵p+1 (we recall that, by definition, R↵p+1 = L↵p ). For simplicity, we use

the notation J = L↵p , and we assume that the submatrix SJ ,J is invertible (numerical strategies to

deal with singular submatrices exist, but they are out of the scope of this study).

From (7.1), we introduce the vector �↵ such that [�↵]J c = 0 and [�↵]J = (SJ ,J )
*1[S! * ↵d]J .

By definition, ↵p+1 corresponds to the smallest ↵ such that 0 Õ ↵ < ↵p and

[�↵]J Œ 0 and [S(�↵ * !) + ↵d]J c Œ 0. (7.2)

Lemma 7.1. Consider a kink ↵p with left sparsity pattern L↵p = J ë {1,5 ,N}, and assume that

the submatrix SJ ,J is invertible. We introduce the (N * n↵p ) ù n↵p matrix M = SJ c ,J (SJ ,J )
*1, with

n↵p = card(L↵p ), and we define

↵+ = max
l

�⌅
M[S!]J * [S!]J c

⇧
l
_
⌅
MdJ * dJ c

⇧
l
ÛÛ
⌅
MdJ * dJ c

⇧
l
< 0

�
, and

↵* = max
m

�⌅
(SJ ,J )

*1[S!]J
⇧
m
_
⌅
(SJ ,J )

*1dJ
⇧
m
ÛÛ
⌅
(SJ ,J )

*1dJ
⇧
m
< 0

�
.

The next event occurs at ↵p+1 = max{↵+, ↵*}. If ↵p+1 = ↵+, then the indices in J c corresponding

to the maximum defining ↵+ are transferred from J c to L↵p+1; if ↵p+1 = ↵*, then the indices in J

corresponding to the maximum defining ↵* are transferred from J to Lc↵p+1
.

If SL↵p+1 ,L↵p+1
is invertible, we can next compute ↵p+2 and L↵p+2 in exactly the same way, and we

may potentially iterate like this until we reach the last event, or at least as far as we do not encounter

numerical issues.

7.3. Computational complexity. The preliminary computation of the distortion term S! is

relatively challenging, with a worst-case complexity scaling as O(N2); notice that the underlying

matrix-vector product can nevertheless be very easily parallelised. Importantly, we shall not store

the kernel matrix S, but rather compute on the fly any required entry. Generally speaking, in the

quadrature-sparsification framework, obtaining the distortion term g� appears as the main bottleneck

of the penalised squared-kernel-discrepancy-minimisation approach.
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In view of Lemma 7.1, once a kink ↵p and its left sparsity pattern J = L↵p are known, defining the

next event (i.e., computing ↵p+1 and L↵p+1 ) involves the calculation of (SJ ,J )
*1dJ and (SJ ,J )

*1[S!]J
(i.e., solving a linear system); without taking into account the computations already performed to

obtain the information relative to the kink ↵p, and using a direct method (by for instance considering

the Cholesky decomposition of the symmetric and positive-definite matrix SJ ,J ), the computational

complexity of this task scales as O(n3↵p ), with n↵p = card(L↵p ). Update formulae can nevertheless be

used to reduce this complexity, by for instance iteratively updating the Cholesky decomposition of

SJ ,J ; in the favourable cases, the computational complexity may thus reduce to O(n2↵p ); an alternative

might also consist in using an indirect iterative approach, like for instance a conjugate gradient method

(but numerical errors could then quickly lead to precision issues). Finally, the complexity of the

two matrix-vector products involving the matrix SJ c ,J scales as O(n↵p (N * n↵p )). As a result, the

computation of the regularisation path becomes intractable once large values of n↵p are reached. When

N is large, the regularisation-path method may therefore only be used to explore the range of very

sparse approximate measures. See Sections 10 and 11 for illustrations.

8. Numerical solver for the constrained problem. In this section, we discuss a strategy to

compute approximate solutions to (5.2), i.e., the constrained problem, for any z > 0. We also propose

two greedy exchange-type strategies aiming at enhancing the sparsity of a given approximate measure

while keeping the squared-kernel discrepancy as low as possible.

8.1. Vertex-exchange QP solver. Consider problem (5.2); for z > 0, we can define the change

of variable õ� = D�_z, with D = diag(d), so that d = D1. Problem (5.2) is thus turned into (up to an

additive constant), for õ� À RN ,

minimise
õ�

C(õ�) =
1

2
õ�TAõ� * bTõ� subject to õ� Œ 0 and 1Tõ� = 1, (8.1)

with A = z2D*1SD*1 and b = zD*1S!. Since Ai,j = z2K2(xi, xj)_(didj), any entry of A can

be easily obtained from z, the squared kernel K2(�, �), the set S and the penalisation direction d.

Importantly, we shall not store the matrix A, but rather compute on the fly any required entry of A; in

this way, problems involving large N may be considered. Once b is known (requiring the knowledge

of S!, see Section 7.3), the gradient (C(õ�) = Aõ� * b can be easily obtained for any sparse vector õ�.

The extreme points of the polytopes defined by the constraints in (8.1) are the vectors {ei}
N
i=1

,

where ei À RN is the i-th element of the canonical basis of RN (that is [ei]i = 1, all the other

components being 0). For a feasible õ�, let Iõ� = {kõ�k > 0} be the index set defined by the strictly

positive components of õ�. An iteration of the vertex-exchange algorithm consists in searching

i< = argmin
i

[(C(õ�)]i and j< = argmax
jÀIõ�

[(C(õ�)]j ,

defining the sparse descent direction � = ei< * ej< (i.e., weight is transferred from the j<-th to the i<-th

component of õ�); in case of non-uniqueness of the extrema, an index is simply selected at random

among the ones satisfying the condition. The step size is then classically obtained by line search, the

optimal step size % being given by % = min
�
õ�j< ,*

�
�T(C(õ�)

�
_(�TA�)

�
. Since the descent direction

� is sparse, the computation of the optimal step size is numerically affordable, and the same holds for

the gradient update. Indeed, we have (C(õ� + %�) = (C(õ�) + %A�, so that the gradient update only

involves two columns of A. The complexity of an iteration thus scales as O(N).

Denoting by õ�< a solution to (8.1), the convergence of the vertex-exchange algorithm can be

easily verified (see, e.g., [11]) by simply remarking that since õ� Œ 0 and 1Tõ� = 1, by definition of j<,

we have õ�T(C(õ�) Õ eT
j<
(C(õ�), and thus (distance from optimality)

C(õ�) * C(õ�<) Õ *(ei< * õ�)
T(C(õ�) Õ *(ei< * ej< )

T(C(õ�).

In Sections 10 and 11, the accuracy of an approximate solution õ� is indicated by the Frank-Wolfe

error bound ✏ = (õ� * ei< )
T(C(õ�) Œ 0.
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8.2. Enhancing sparsity through components merging. The formulation introduced in Sec-

tion 8.1 offers a convenient framework to enhance the sparsity of an approximate measure ⌫ while

trying to keep its squared-kernel discrepancy as low as possible. Let õ� Œ 0 (with õ� À RN ) be

such that 1Tõ� = 1. In practice, õ� will be an exact or approximate solution to problem (8.1), or any

vector related to an interesting low-squared-kernel-discrepancy configuration � through the change of

variable õ� = D�_z, with D = diag(d) and z = dT �, see Section 8.1. We assume that õ� has n = n0
strictly positive components and we introduce I = {iõ�i > 0}. As illustrated in Sections 10 and 11, it

is generally possible, to a certain extent, to merge together some components of õ� while inducing a

negligible increase of the cost C(�). In what follows, we discuss two simple greedy heuristics based

on the sequential merging of pairs of components of õ�.

We assume that n > 1. For an ordered pair {i, j}, with i and j À I and i ë j, we define

õ�{i,j} = õ� + õ�j(ei * ej). The vector õ�{i,j} thus has n * 1 strictly positive components, the i-th

component of õ� having absorbed the j-th. We have

C(õ�{i,j}) = C(õ�) +
1

2
õ�2
j
(ei * ej)

TA(ei * ej) + õ�j(ei * ej)
T(C(õ�).

Thus, knowing (C(õ�), the computation C(õ�{i,j}) only involves four entries of the matrix A and two

entries of (C(õ�).

We can then search for the merging associated with the smallest value of C(õ�{i,j}), with i and

j À I , and i ë j. Depending on n0 and the computational power at disposal, we may either

- strong-pairwise-merging: search for the best ordered pair {i<, j<} = argminiëj = C(õ�{i,j}),

the amount of computations involved scaling as O(n2); or

- weak-pairwise-merging: fix j< = argminjÀI õ�j , and search for i< = argminiëj< = C(õ�{i,j<}),

the amount of computations involved scaling as O(n).
We thus obtain the “best” pairwise merging {i<, j<} for õ�. We next update all the involved objects,

i.e., õ� } õ�{i<,j<}, I } I\{j<}, n} n* 1 and (C(õ�) } (C(õ�{i<,j<}), and we may potentially iterate

like this until n = 1 (i.e., after n0 * 1 iterations), or at least, until we have reached a satisfactory

sparsity-discrepancy trade-off.

We thus obtain a sequence of merged vectors {õ�[0],õ�[1],5}, where õ�0 is our initial vector, õ�[1]
results from the merging of two components of õ�[0], etc.; by construction, õ�[m] Œ 0 and 1Tõ�[m] = 1

for all m, and õ�[m] has n0 * m strictly positive components. Finally, instead of considering the

approximation induced by � = zD*1õ�[0], we may consider a sparser vector �[m] = zD*1õ�[m]; see

Sections 10 and 11 for illustrations.

9. Penalisation direction. In Section 5, the sparsity of the approximate measures is promoted

through the introduction of an l
1-type penalisation played by the term dT �, for a given d À RN with

d > 0. In practice, we aim at obtaining measures which are both as sparse as possible and with a low

(conic) squared-kernel discrepancy, naturally raising questions related to the choice of the penalisation

direction d. The impact of the penalisation direction on the trade-off between sparsity and (conic)

squared-kernel discrepancy is illustrated in Sections 10.5 and 10.6.

Lemma 9.1 (Penalisation direction inducing no sparsity). If d = ✓S!, with ✓ > 0, then for ↵ Õ 1_✓,

�<↵ = (1 * ↵✓)! Œ 0 is a solution to (5.1); for ↵ > 1_✓, we have �<↵ = 0.

Thus, for d ◊ S!, the solutions to (5.1) are non-sparse, and such a choice for d is of no practical

interest; in order to promote sparsity through penalised squared-kernel-discrepancy minimisation,

one therefore has to check that the considered penalisation direction does not correspond to this

pathological case. More generally (and as a proof for Lemma 9.1), we can remark that if d = S⌘ Œ 0,

with ⌘ À RN , then for all ↵ such that ! * ↵⌘ Œ 0, we have (D↵(! * ↵⌘) = 0, and �<↵ = ! * ↵⌘ is in

this case a solution to (5.1); notice that in the framework of Section 7.1, this situation corresponds to

solutions with full sparsity parttern, i.e., J↵ = {1,5 ,N}.

In the examples presented in Sections 10 and 11, considering d = 1 leads to satisfactory results

(notice that ⌫(X ) = 1
T �); it is nevertheless possible to define problem-dependent penalisation

directions, leading to models inheriting interesting interpretations. Following Remark 5.1, we recall

that we can reasonably assume that diag(K) > 0, so that, in particular, S! > 0 (since ! > 0). In

the following Remarks 9.1, 9.2 and 9.3, we discuss specific penalisation directions defined from the

vectors S! and diag(K).
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Remark 9.1 (Penalising the trace). For d = diag(K), we have dT � = trace(T⌫); by analogy with

spectral truncation, from Proposition 5.1-(c) and Theorem 5.1, a solution �<↵ to the regularised problem

(5.1) then satisfies, for 0 Õ ↵ < ↵0,

trace(T⌫<↵
) Õ trace(Tc↵⌫<↵

) Õ trace(T�).

Also notice that the parameter z of the constrained problem (5.2) corresponds in this case to the trace

of the approximate operator. /

Following Section 6, if �<↵ is a solution to the regularised problem (5.1) (with related measure

⌫<↵), then g⌫<↵
=
≥N
k=1[�

<
↵]kK

2
xk

is the solution to, for g À G,

minimise
g

1

2
ÒgÒ2G subject to g�(xk) * g(xk) Õ ↵dk for all k À {1,5 ,N}, (9.1)

with g�(xk) = î
X
K2(t, xk)d�(t) = [S!]k; in addition, if [�<↵]k > 0, then g�(xk) * g⌫<↵

(xk) = ↵dk.

Remark 9.2 (Inverse-distortion-based penalisation). In view of (9.1), considering a penalisation

direction d such that dk = 1_[S!]
p

k
, with p > 0, results in a SVM where the upper bound on

g�(xk) * g(xk) is inversely proportional to a positive power of g�(xk), so that the larger is g�(xk),

the smaller is the bound on g�(xk) * g(xk). Since the most constrained inequalities in (9.1) are more

likely to be active, and since we have (g�g⌫)G =
≥N
k=1 �kg�(xk) for any measure ⌫ supported by S

and with related weights �k (see Lemma 2.1), such a penalisation tends to promote large values of the

inner product between g� and g⌫<↵
in G. /

Remark 9.3 (Inverse-kernel-diagonal-based penalisation). For all x À X , from the reproducing

property in G and the Cauchy-Schwarz inequality, we have

≈� and ⌫ À T (K), ÛÛg�(x) * g⌫(x)ÛÛ Õ
˘
DK2 (�, ⌫)K(x, x). (9.2)

In view of (9.1) and (9.2), by considering a vector d such that dk = 1_(K(xk, xk))
p, with p > 0, we

enforce the bound on the difference g�(xk)* g⌫<↵
(xk) to be small at the points xk where this difference

can potentially be large, so that we can thus expect g�(xk) * g⌫<↵
(xk) to be relatively small for all the

points in S . /

10. Two-dimensional example. We assume that S = {xk}
N
k=1

consists of the N = 2016 first

points of a uniform Halton sequence on [*1, 1]2 (see [16]), as illustrated in Figure 10.2. We set

! = 1_N , so that the measure � =
≥
k !k�xk appears as a quadrature approximation of the uniform

probability measure on [*1, 1]2. We consider the Gaussian kernelK(x, y) = exp(*lÒx*yÒ2), where

Òx * yÒ is the Euclidean norm on R2, and we set l = 1_0.16 (a different kernel is considered in

Section 10.6). An overview of the spectrum of the operator T� (obtained from the eigendecomposition

of the matrix K_N) is given in Figure 10.1. We first consider the penalisation direction d = 1.
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0
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0
.1

0 eigenvalues �k

k

-1.0
-0.5

0.0

0.5

1.0-1.0

-0.5

0.0

0.5

1.0-1

0

1

eigenfunction 'k for k = 11

FIG. 10.1. For the two-dimensional example (Gaussian kernel and ! = 1_N), eigenvalues �k of the integral operator T�
(sorted in decreasing order, only the 62 largest eigenvalues are presented), and graph, on [*1, 1]2 of the canonically extended

eigenfunction 'k for k = 11.
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10.1. First experiment. Figure 10.2 shows the (approximate) solution �< to problem (5.2) with

z = 0.81, or equivalently, to problem (5.1) with ↵ ˘ 8.354214ù10*3 (for ! = 1_N and d = 1). The

vector �< has 160 strictly positive components, and the support of the related measure ⌫< inherits an

interesting “four-concentric-squares” structure. We have D(�<) = 7.631887 ù 10*4 (for comparison,

notice that D(ze1) = 3.041066 ù 10*1, with e1 the first element of the canonical basis of RN ).

In the framework of Section 8.1, the presented solution is related to a Frank-Wolfe error bound

✏ = 3.989864 ù 10*17.

The solution has been obtained using the regularisation-path strategy (see Section 10.2 for more

details). Considering the regularisation path for problem (5.1) with decreasing values of ↵, the

underlying value of ↵ ˘ 8.354215 ù 10*3 satisfies

↵p+1 = 8.352970 ù 10*3 Õ ↵ Õ ↵p = 8.355244 ù 10*3, with p = 4 047;

correspondingly, for problem (5.2) (with increasing values of z), the value z = 0.81 satisfies

zp = 0.8099788 Õ z Õ zp+1 = 0.8100256.

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

solution �
< for z = 0.81 or ↵ ˘ 8.354215 ù 10*3

FIG. 10.2. Graphical representation (two-dimensional example, Gaussian kernel, ! = 1_N and d = 1) of the solution

�< to problem (5.2) with z = 0.81, or equivalently, to problem (5.1) with ↵ ˘ 8.354215 ù 10*3. The grey crosses represent the

points in S and the filled dots are the strictly positive components of �< (surface being proportional to �<
k
).

The accuracy of the approximate eigendecomposition of T� induced by the solution �< presented in

Figure 10.2 (i.e., z = 0.81) is illustrated in Figure 10.3. In view of the similarity between the geometric

approximate eigenvalues ö�[�]
l

, and more particularly of the ratios
�
ö�[1]
l
_ö�[2]

l

�2
and

�
ö�[3]
l
_ö�[4]

l

�2
(see

Section 3), we observe that the 21 main eigendirections of the operator T⌫< (i.e., for l À {1,5 , 21})

lead to remarkably accurate approximations of the eigenpairs of T� related to the 21 largest eigenvalues

�k. The accuracy of the approximate eigenpairs decreases for l À {22,5 , 44}, and becomes very

poor for k > 44. The orthogonality, in L2(�), between the normalised approximate eigenfunctions ö'l
is in perfect agreement with this observation, as illustrated in Figure 10.4 (see Remark 3.1).

A comparison between the true eigenvalues of T� and their approximations induced by the

solution �< of Figure 10.2 is presented in Figure 10.3; we for instance observe that for 1 Õ l Õ 8,

the approximate eigenvalues ö�[4]
l

are the most accurate. Table 10.1 gives the errors Òö'l * 'lÒ2L2(�)

for 1 Õ l Õ 20; in accordance with our previous conclusions, these approximations are remarkably

accurate. Since orthonormalised sets of eigenfunctions are not unique, to perform this comparison,

notice that we have when required replaced ö'l by *ö'l, and applied a two-dimensional rotation to pairs

of eigendirections related to the approximation of an eigensubspace of dimension two (corresponding

to the case where the operator is defined with respect to a uniform measure on [*1, 1]2).
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FIG. 10.3. Approximate eigenvalues ö�[1]
l

, ö�[2]
l

, ö�[3]
l

and ö�[4]
l

induced by the solution �< presented in Figure 10.2 (left);

ratios
�
ö�[1]
l
_ö�[2]

l

�2
and

�
ö�[3]
l
_ö�[4]

l

�2
highlighting the accuracy of the approximate eigendirections  l of T� (right).
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FIG. 10.4. Graphical representation of the matrix with l, l® entry ÛÛ
�
ö'l
ÛÛö'l®

�
L2(�)

ÛÛ for the 160 normalised approximate

eigendirections induced by the solution �< presented in Figure 10.2 (i.e., z = 0.81).

1
2

3
4

most accurate approximate eigenvalue

0 50 100 150

-1
e-

0
3

-5
e-

0
4

0
e+

0
0

5
e-

0
4

1
e-

0
3

ö�
[4]

l
− �l

ö�
[3]

l
− �l

ö�
[2]

l
− �l

ö�
[1]

l
− �l

l

FIG. 10.5. Errors ö�[�]
l
* �l for the geometric approximate eigenvalues induced by the solution �< presented in Figure 10.2

(bottom), and indication of the most accurate (smallest absolute error) approximation among ö�[1]
l

, ö�[2]
l

, ö�[3]
l

and ö�[4]
l

(top).

Following Theorem 5.1, we denote by cz and c↵ the argument of the minimum of the functions

c ≠ D(c�<z ) and c ≠ D(c�<↵). For the solution presented in Figure (5.2) (i.e., z = 0.81), we obtain

cz = 1.177289, and D(cz�
<
z ) = 1.633391 ù 10*4, and czd

T �<z = 0.9536041.

10.2. Regularisation path. Following Section 7, we compute the 12 818 first events of the

regularisation-path related to problem (5.1) with decreasing values of ↵; we have in particular ↵0 =

6.310163 ù 10*2 and ↵12817 = 1.495359 ù 10*5. Correspondingly, for problem (5.2) and increasing

z, we have z0 = 0 and z12817 = 0.9995482 (we recall that dT! = 1).
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TABLE 10.1

Approximation error Òö'l * 'lÒ2L2(�)
, with 1 Õ l Õ 20, for the normalised approximate eigendirections induced by the

solution �< presented in Figure 10.2 (i.e., z = 0.81); the values of l grouped together correspond to pairs of eigendirections

related to the approximation of an eigensubspace of dimension two.

l 1 2 and 3 4 5 and 6 7 and 8 9 and 10

ö�[1]
l

0.10861 0.08747 0.08737 0.07028 0.06103 0.06089 0.04907 0.04895 0.03706 0.03692

Òö'l * 'lÒ2L2(�)
0.00017 0.00035 0.00035 0.00056 0.00054 0.00120 0.00115 0.00117 0.00245 0.00243

l 11 12 and 13 14 and 15 16 and 17 18 and 19 20

ö�[1]
l

0.03418 0.02976 0.02971 0.02073 0.02070 0.01954 0.01954 0.01573 0.01571 0.01251

Òö'l * 'lÒ2L2(�)
0.00196 0.00128 0.00448 0.00438 0.00456 0.00773 0.00685 0.00843 0.00830 0.00711

Figure 10.6 shows that the number of strictly positive components of the solution �<z to problem

(5.2) tends to increase when z increases. As expected from Proposition 5.1-(g), the function z ≠

D(�<z ) is decreasing; in the same way, when z increases, the corresponding value of the regularisation

parameter ↵ decreases (see Propositions 5.1 and 5.2). We also represent the evolution of conic

squared-kernel discrepancy of the various solutions �<z ; in accordance with Theorem 5.1, the function

z ≠ D(cz�
<
z ) is decreasing.
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FIG. 10.6. For the two-dimensional example (Gaussian kernel, ! = 1_N and d = 1), graphical representation of the

12 818 first events of the regularisation path related to problem (5.2) for increasing z; number of strictly positive components

of �<z as function of z (left); graph of z ≠ D(�<z ) and z ≠ D(cz�
<
z ) (middle), and relation between z and the parameter ↵ of

problem (5.1) (right).

For 51 values of z evenly spread between z0 and z12817, Figure 10.7 shows the evolution of the

ratio
�
ö�[1]
l
_ö�[2]

l

�2
for the approximate eigendecompositions induced by the various solutions �<z . As

expected, the number of accurately approximate eigendirections increases with z. Remarkably, the

number of eigendirections approximated with a high accuracy appears to be in close relation with

the decay of the spectrum of T�; we recall that we have trace(T⌫<z
) = z, since diag(K) = 1 for the

Gaussian kernel.

10.3. Components merging. We now perform the strong-pairwise-merging (see Section 8.2)

of the solution �< presented in Figure 10.2 (i.e., problem (5.2) with z = 0.81). As illustrated in

Figure 10.8, for the first merging iterations, D(�[k]) stays very close to D(�<) = 7.631887 ù 10*4.

After 90 iterations, we have D(�[90]) *D(�<) = 3.494809 ù 10*5 (i.e., increase of 4.58%), and �[90]
is supported by 70 points (instead of 160 for �<); a graphical representation of �[90] is given in the

left-hand part of the figure. The accuracy of the approximate eigendecomposition induced by �[90] is

presented in the right-hand part of Figure 10.8. We observe that although being slightly less accurate

than the approximate eigendecomposition induced by �<, the approximation induced by �[90] remains

very satisfactory while being related to a vector more than two times sparser. Notice that the conic

squared-kernel discrepancy of the merged solution is D(c↵�[90]) = 2.091099 ù 10*4, where c↵ stands

for the optimal rescaling parameter c related to �[90], see Theorem 3.2.
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FIG. 10.7. Evolution of the accuracy of the approximate eigendecomposition of T� induced by �<z for 51 values of z
between z0 = 0 and z12817 = 0.9995482; the accuracy of the approximate eigendirections is measured trough the ratios�
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l
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; for illustration purpose, the map z ≠ max

�
lÛÛ
≥l
k=1 �k Õ z

�
is also presented (two-dimensional example,

Gaussian kernel, ! = 1_N and d = 1).
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FIG. 10.8. Graphical representation of the merged solution �[90] (two-dimensional example with ! = 1_N and d = 1)

obtained after 90 iterations of the strong-pairwise-merging strategy applied to the solution �< presented in Figure 10.2; the

grey diamonds indicate the support of �< (left). Increase of the cost D(�) induced by each merging iteration, for the whole

159 iterations (top-middle), and zoom around the 90-th iteration (bottom-middle). Representation of the ratios
�
ö�[1]
l
_ö�[2]

l

�2

obtained from the merged vector �[90] and comparison with the same ratios for the solution �< (right).

10.4. Comparison with random sampling. We compute the approximate eigendecompositions

induced by random uniform samples, without replacement, of size nrand = 300, 600, 900 and 1200

(i.e., we randomly select nrand distinct points among the N = 2016 points in S , and we consider the

uniform probability measure supported by the points selected); for each sample size, we perform 100

repetitions. Figure 10.9 illustrates the accuracy of the obtained approximate eigendirections, measured

through the ratios
�
ö�[1]
l
_ö�[2]

l

�2
. As we could expect, the accuracy of the approximation increases with

the size of the sample. In terms of trade-off between sparsity and number of eigendirections accurately

approximated, the results are however far behind the ones obtained using penalised squared-kernel-

discrepancy minimisation (see Figures 10.6 and 10.7). For instance and in comparison to Figure 10.9,

penalised squared-kernel discrepancy minimisation leads to the following trade-offs:

- for z = 0.81, the solution �<z is supported by 160 points, and the numbers of approximate

eigendirections such that
�
ö�[1]
l
_ö�[2]

l

�2
Œ 0.8, 0.95 and 0.99 are 34, 25 and 15, respectively;

- for z = 0.98, we have 276 support points, and for the same tresholds, the numbers of

accurately approximate eigendirections are 66, 53 and 42;

- for z = 0.999, we have 407 support points, and again for the same tresholds, the numbers of

accurately approximate eigendirections are 100, 89 and 82.
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FIG. 10.9. For the two-dimensional example, accuracy of the approximate eigendecompositions induced by random

samples of size nrand (without replacement); for each values of nrand , Tukey’s boxplot, over 100 repetitions, of the number of

approximate eigendirections such that
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l
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10.5. Impact of the penalisation direction. For the two-dimensional example (Gaussian kernel

and ! = 1_N), we compute the regularisation path of problem (5.1) for seven different vectors d > 0.

We consider d = vmax(S) (i.e., the eigenvector related to the largest eigenvalue of the matrix S, see

the Perron–Frobenius theorem), (S!)2 (i.e., dk = [S!]2
k
),
˘
S! (i.e., dk =

˘
[S!]k), 1, 1_

˘
S!,

1_(S!) and 1_(S!)2. In Figure 10.10, we compare the trade-offs between sparsity and (raw and conic)

squared-kernel discrepancy yield by these penalisation directions. We recall that for the Gaussian

kernel, we have diag(K) = 1.

In terms of conic squared-kernel discrepancy and in accordance with Section 9, the results

obtained for d = 1 and d = 1_(S!)p (with in this case p = 1_2, 1 and 2) appears as the more

interesting; the trade-off obtained for d =
˘
S! is also very satisfactory; the performances for these 5

penalisation direction are very close. For this particular example, d = 1_(S!)2 nevertheless appears

as the best overall choice among the penalisations considered.
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FIG. 10.10. For the two-dimensional example (Gaussian kernel and ! = 1_N), number of strictly positive components

of the solution �<↵ to problem (5.1) as function of the squared-kernel discrepancy D(�<↵) (top), and of the conic squared-

kernel discrepancy D(c↵�
<
↵) (bottom) for various penalisation vectors d; all the curves have been obtained thanks to the

regularisation-path strategy.
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10.6. Modified kernel. We further illustrate the impact of the penalisation direction by now

considering an alternative kernel (same set S as in the previous experiments, and ! = 1_N). We

introduce the function, for x À [*1, 1]2, s(x) =
˘
0.1 + Òx * aÒ2, with a = (1, 1), and we define the

kernel (modified Gaussian kernel)

K(x, y) = s(x)s(y) exp(*lÒx * yÒ2); (10.1)

we still consider l = 1_0.16. We then in particular have K(x, x) = s2(x). We make the same analysis

as in Section 10.5, while considering d = 1, diag(K), 1_ diag(K), 1_(S!), 1_(S!)2 and (S!)2. The

results are presented in Figure 10.11. The overall trade-off between sparsity and conic squared-kernel

discrepancy obtained for d = (S!)2 is very poor in comparison to the trade-offs obtained for the five

other penalisation directions, in accordance with the remarks of Section 9. The best overall trade-off

is obtained for d = diag(K).
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FIG. 10.11. For the two-dimensional example (modified Gaussian kernel (10.1) and ! = 1_N), number of strictly

positive components of the solution �<↵ to problem (5.1) as function of the conic squared-kernel discrepancy D(c↵�
<
↵), for

various penalisation vectors d; all the curves have been obtained thanks to the regularisation-path strategy.

11. Application to medium/large-scale problems. This section aims at illustrating the ability

of the proposed framework to tackle relatively large-scale problems. The datasets have been obtained

from the UCI Machine Learning Repository, see [15]. All the computations have been performed

on a 2015 desktop endowed with an Intel Core i7-4790 processor with 16 GB of RAM; the various

methods have been entirely implemented in C.

11.1. MiniBooNE dataset. We consider the standardised entries of the MiniBooNE dataset

(without labels); S thus consists of N = 129 596 points in R50. We use a Gaussian kernel (same

expression as in Section 10) with l = 0.02, and we set ! = 1_N and d = 1 (notice that l = 0.02

belongs to the range of “good parameter values” for the SVM binary classification of this dataset).

We compute the 3 000 first events of the regularisation path related to problems (5.1) and (5.2).

We have ↵0 = 0.2188961 and ↵2999 = 3.546703 ù 10*3, and correspondingly z0 = 0 and z2999 =

0.655808 (notice that dT! = 1); a graphical representation of the properties of these solutions is

proposed in Figure 11.1. We can observe that for z Œ 0.5, the number of strictly positive components

of �<z increases quickly with z; the computation of the regularisation path then becomes intractable

(notice that the calculation of the 3 000 first events of the regularisation path took around 3 hours on

our aforementioned 2015 desktop).

From the regulation path, we build the solutions to problem (5.2) for z = 0.3 and z = 0.655

(i.e., for problem (5.1), ↵ ˘ 4.400276 ù 10*2 and ↵ ˘ 3.571413 ù 10*3); these solutions have 76

and 1 902 strictly positive components, respectively. The efficiency of the induced approximate

eigendecompositions is illustrated in Figure 11.2. For z = 0.3, we obtain a relatively accurate

approximation of the three main eigenpairs of T� while considering only 76 points (we recall that

N = 129 596); the approximation of the other eigendirections is relatively poor. For z = 0.655,

the eight main eigendirections of T� are approximate with high accuracy (i.e., 1 Õ l Õ 8), and the

approximations remains relatively accurate until l = 29. Interestingly, we observe that contrary to the

ratios
�
ö�[3]
l
_ö�[4]

l

�2
, the ratios

�
ö�[1]
l
_ö�[2]

l

�2
remain relatively high for all the values of l presented in

the graph (this behaviour could be a consequence of the decay of the spectrum).
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FIG. 11.1. For the MiniBooNE dataset (Gaussian kernel, ! = 1_N and d = 1), graphical representation of the 3 000

first events of the regularisation path related to problem (5.2) for increasing z: number of strictly positive components of �<z
as function of z (left); graph of z ≠ D(�<z ) and z ≠ D(cz�

<
z ) (middle), and relation between z and the parameter ↵ of the

regularised problem (5.1).
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FIG. 11.2. For the MiniBooNE dataset (Gaussian kernel, ! = 1_N and d = 1), approximate eigenvalues ö�[1]
l
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l

induced by the solution to problem (5.1) with z = 0.3 (top-left), and ratios
�
ö�[1]
l
_ö�[2]

l

�2
and

�
ö�[3]
l
_ö�[4]

l

�2
(top-right);

same things for z = 0.655 (bottom-left) and (bottom-right).

To explore the type of solutions obtained for larger values of z, we consider the vertex-exchange

strategy described in Section 8.1. We compute an approximate solution for z = 0.8; the vertex-

exchange algorithm is initialised at õ� = e1 and after 300 000 iterations, we obtain a Frank-Wolfe

error bound of ✏ = 1.692408 ù 10*8; the obtained approximate solution ö�
<

to problem (5.2) verifies

D(ö�
<
) = 4.934072ù10*5 and has 9544 strictly positive components (in terms of conic squared-kernel

discrepancy, we obtain D(c↵ö�
<
) = 4.672895 ù 10*5).

To enhance sparsity, we perform a weak-pairwise merging of the approximate solution ö�
<

for

z = 0.8 (see Section 8.2). After 5044 iterations, the merged solution �[5044] is supported by 4500

points and D(�[5044]) = D(ö�
<
) + 1.061787 ù 10*6 (i.e., increase of 2.15%).

We next compute the approximate eigendecompositions induced by ö�
<

and �[5044]; the results

are presented in Figure 11.3. In particular, in both case, the 31 main eigendirections of T� are

approximated with high accuracy. We also observe that for all the values of l presented in the graph,

the approximation induced by �[5044] is equivalent, in terms of accuracy, to the approximation induced

by ö�
<
, while being related to a solution more than two times sparser.

11.2. Test subsample of the SUSY dataset. We consider the standardised entries of the test

subsample of the SUSY dataset (without labels), so that S consists of N = 500 000 points in R18.

We still use a Gaussian kernel (same expression as in Section 10) with l = 0.4, and we set ! = 1_N

and d = 1. The computation of the distortion term S! took 5 665.6 seconds.
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FIG. 11.3. For the MiniBooNE dataset, accuracy of the approximate eigendecompositions induced by the solution ö�
<

to

problem (5.1) with z = 0.8 obtained from the vertex-exchange algorithm (left), and from the merged solution �[5044] (left).

We compute an approximate solution (vertex-exchange strategy) for the constrained problem

(5.2) with z = 0.3; we perform four consecutive batches of 50 000 iterations each, the solver being

initialised at õ� = e1. After 200 000 iterations (i.e., at the end of the fourth batch), the obtained

approximate solution ö�
<

verifies D(ö�
<
) = 3.931629 ù 10*5 and has n = 20 664 strictly positive

components. Execution times, evolution of the Frank-Wolfe error bound ✏ and of the sparsity of the

approximate solution are reported in Table 11.1. We observe that a batch of 50 000 iterations of the

vertex-exchange algorithm took around 19 minutes; the approximate solution obtained at the end of

the first batch is already relatively accurate.

TABLE 11.1

For the test subsample of the SUSY dataset, information relative to the approximate solutions to problem (5.2) with

z = 0.3 returned by the vertex-exchange algorithm for four consecutive batches of 50 000 iterations, the solver being initialised

at õ� = e1; for each batch, execution time, total number of iterations, Frank-Wolfe error bound ✏ and number n of strictly

positive components of the approximate solution.

batch 1 batch 2 batch 3 batch 4

time (in sec.) 1 148.7 1 158.3 1 158.5 1 159.1

total nb. of it. 50 000 100 000 150 000 200 000

✏ 3.1413 ù 10*7 6.5477 ù 10*8 2.7049 ù 10*8 7.0928 ù 10*9

n 19 721 20 619 20 693 20 674

To enhance sparsity, we perform a weak-pairwise merging of the approximate solution ö�
<
;

the computation of 20 673 merging iterations took 78.86 seconds. The merged solution �[13674]
is supported by 7 000 points and D(�[13674]) = D(ö�

<
) + 5.271960 ù 10*7 (i.e., increase of only

1.34%). We then study the approximate eigendecomposition induced by �[13674]. Computing the

300 first normalised approximate eigenvectors övl of KW induced by �[13674] (i.e., övl À RN is the

vector corresponding to ö'l, see Section 4.3) took 3 278.2 seconds (time for canonical extension and

rescaling), and we thus also obtain the approximate eigenvalues ö�[1]
l

. For l and l® À {1,5 , 300},

we have maxlël® (ö'lö'l® )L2(�) ˘ 0.003734, so that we can expect the approximations ö'l to be

relatively accurate. To access precisely their accuracy, we compute T�[ö'l] (i.e., KWövl) for these

300 first approximate eigendirections; this operation took 191 622.3 seconds (i.e., around 53 hours).

The results are presented in Figure 11.4. As already observed, the accuracy of the approximate

eigendirections decreases when l increases (we recall that the eigenvalues of the approximate operator

are stored in descending order); all the obtained approximate eigenpairs are remarkably accurate

(while considering only 7 000 points among 500 000).

12. Conclusion. We have studied a QP-based strategy to design sparse quadratures for the

approximation of integral operators related to symmetric positive-semidefinite kernels in a quadrature-

sparsification framework, i.e., when only quadratures with support included in a fixed finite set of

points are considered. The points selected through penalised squared-kernel-discrepancy minimisation

can in particular be interpreted as the support vectors of one-class distorted SVMs defined from the
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FIG. 11.4. For the test subsample of the SUSY dataset, graphical representation of the 300 first approximate eigenvalues
ö�[�]
l

induced by the merged solution �[13674] obtained from the approximate solution ö�
<

to problem (5.2) with z = 0.3 (top);

ratios
�
ö�[1]
l
_ö�[2]

l

�2
and

�
ö�[3]
l
_ö�[4]

l

�2
measuring the accuracy of the underlying approximate eigendirections (bottom).

squared kernel, the initial measure and the l
1-type penalisation term.

A special attention has been drawn to the approximation of the main eigenpairs of an initial

operator induced by the eigendecomposition of an approximate operator. To assess the accuracy

these approximations, the notions of geometric approximate eigenvalue and of conic squared-kernel

discrepancy have been introduced, and their properties have been investigated. We have in particular

demonstrate that, for a given penalisation direction, increasing the impact of the penalisation generally

tends to increase the sparsity of the approximate measure at the expense of reducing the overall

accuracy of the induced spectral approximation.

Numerical strategies to solve large-scale penalised squared-kernel-discrepancy minimisation

problems have been discussed. The regularisation-path approach can be used to explore the range

of very sparse solutions, with the interest of leading to a set of exact solutions (up to precision

errors); the vertex-exchange strategy permits the exploration of a wider range of solutions and offers

a numerically efficient approach to build approximate solutions. Two greedy heuristics based on

iterative pairwise-component merging have also been described, aiming at enhancing sparsity while

keeping squared-kernel discrepancy as low as possible.

The main numerical bottleneck of the approach is the preliminary computation of the dual

distortion term g� (i.e., in the discrete case, of S!); this operation can nevertheless be easily, and

potentially massively, parallelised. Once g� is known, sparse solutions can be obtained readily.

Assessing the accuracy of an approximate eigendirection trough the computation of the four associated

geometric approximate eigenvalues can also prove challenging (same complexity as the distortion

term); this operation is nevertheless optional, and the more affordable orthogonality test might be

performed to detect poorly approximated eigendirections.

We have observed that the penalisation direction can have a significant impact on the trade-off

between sparsity and (conic) squared-kernel discrepancy, and specific problem-based penalisation

directions have been discussed; the characterisation of efficient penalisation terms is however a widely

open problem. Investigating in more detail the relations between sparsity, (conic) squared-kernel

discrepancy, and accuracy of the induced spectral approximations also appears as an interesting

perspective. In the matrix-approximation framework, the study of the properties of the low-rank

approximations obtained by penalised squared-kernel-discrepancy minimisation should also deserve

further attention.
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Appendix A. Kernel discrepancy and integration in RKHS. Consider the framework of Sec-

tion 2 and introduce the subset I (K) of M, defined as

I (K) =
�
� À MÛÛ îX

˘
K(x, x)d�(x) < +ÿ

�
;

notice that what follows may be extended to signed measures on X .

From the reproducing property of K(�, �) and the Cauchy-Schwarz inequality, we have

≈h À H and ≈� À I (K), ÛÛ îX
h(x)d�(x)ÛÛ Õ î

X
h(x)d�(x) Õ ÒhÒH î

X

˘
K(x, x)d�(x).

The linear functional I� on H, defined as I�[h] = î
X
h(x)d�(x), is therefore continuous. Thus, from

the Riesz representation theorem, there exists h� À H such that I�[h] = (hh�)H , and for x À X ,

h�(x) = î
X
K(x, t)d�(t).

For � and ⌫ À I (K), we have (h�h⌫)H = î
X ùX

K(x, t)d�(x)d⌫(t). The kernel discrepancy

between two measures � and ⌫ À I (K) is defined as

DK (�, ⌫) = Òh� * h⌫Ò2H = Òh�Ò2H + Òh⌫Ò2H * 2(h�h⌫)H ,

and EK (�) = Òh�Ò2H is sometimes referred to as the energy of the measure � with respect to K(�, �).

For � and ⌫ À I (K), from the Cauchy-Schwarz inequality, we have, for all h À H,

ÛÛ îX
h(x)d�(x) * î

X
h(x)d⌫(x)ÛÛ = ÛÛ(hh� * h⌫)HÛÛ Õ ÒhÒH

˘
DK (�, ⌫).

Thus, when the integrands belong to the RKHS H, the error induced by approximating integrals

with respect to � by integrals with respect to ⌫ has a tight bound in terms of kernel discrepancy; to

approximate integrals with respect to �, it is therefore of interest to deal with a measure ⌫ such that

DK (⌫,�) is small; see for instance [5, 6] for a further discussion.

Appendix B. Proofs. This section groups together the proofs of the results stated in this work.

Proof of Proposition 2.1. See the erratum attached at the end of this document.

Proof of Lemma 2.1. From the properties of K(�, �), the squared kernel K2(�, �) is symmetric and

positive-semidefinite (see in particular the Schur product theorem); in addition the squared kernel is

non-negative, i.e., K2(x, t) Œ 0 for all x and t À X . Considering the framework of Appendix A, we

can remark that T (K) = I (K2), so that the result directly follows from the definition of g� and g⌫ ,

and from Proposition 2.1.

Proof of Lemma 2.2. The proof directly follows from the properties discussed in Sections 2.1 and 2.2.

In particular, (2.3) is obtained by considering the o.n.b. {
˘
�k'k}kÀI+� of H� defined by T� while

remarking that H⌫ œ H� implies T�[h] = T⌫[h] = 0 for all h À H0�. The inequality involving ⌧� is

consequence of the relation ÒhÒ2
L2(�)

Õ ⌧�ÒhÒ2H , for all h À H.

Proof of Theorem 3.1. We can first remark that if Ò lÒL2(�) = 0, then T�[ l] = 0 = ö�[�]
l
 l. For all

k À I+� , we have Ò
˘
�k'kÒH = 1. By analogy, for l À I+⌫ with Ò lÒL2(�) > 0 (i.e., l ÀõI+⌫ ), we define

ö�[1]
l

so that Ò
t
ö�[1]
l
ö'lÒH = 1. From the Cauchy-Schwarz inequality, we have

ö�[1]
l

=
�˘

#l l
ÛÛT�[

˘
#l l]

�
H Õ Ò

˘
#l l

ÙÙHÙÙT�[
˘
#l l]

ÙÙH = ÙÙT�[
˘
#l l]

ÙÙH = ö�[2]
l
,
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with equality if and only if  l and T�[ l] are collinear, i.e.,  l is an eigendirection of T�. In particular,

since Ò
˘
#l lÒH = 1, if  l is an eigendirection of T�, then ö�[2]

l
corresponds by definition to the

associated eigenvalue, i.e., T�[ l] = ö�[2]
l
 l (a similar argument also holds for ö�[4]

l
).

From ö�[1]
l

=
�˘

#l l
ÛÛT�[

˘
#l l]

�
H , we obtain the definition of ö�[3]

l
by considering the Hilbert

structure of L2(�) instead of the one of H (we recall that Òö'lÒL2(�) = 1). The inequality ö�[2]
l

Õ ö�[3]
l

,

with equality if and only if  l is an eigendirection of T�, directly follows from the relation ö�[3]
l

=
�
ö�[2]
l

�2
_ö�[1]

l
. Finally, from the Cauchy-Schwarz inequality, we have

ö�[3]
l

=
�
ö'l
ÛÛT�[ö'l]

�
L2(�)

Õ Òö'lÙÙL2(�)
ÙÙT�[ö'l]ÙÙL2(�) =

ÙÙT�[ö'l]ÙÙL2(�) =
ö�[4]
l
,

with, again, equality if and only if  l is an eigendirection of T�.

The expansions (3.2) and (3.3) follow from the definition of the four geometric approximate

eigenvalues related to an approximate eigendirection of T� induced by T⌫ , and the optimality properties

of ö�[1]
l

and ö�[3]
l

are obtained by minimising the underlying second degree polynomials.

Proof of Theorem 3.2. The expressions of c⌫ and �(c⌫) follow from Proposition 2.1 and from the

minimisation of the univariate convex quadratic function

c ≠ �(c) = ÒT� * cT⌫Ò2HS(H)
= ÒT�Ò2HS(H)

+ c2ÒT⌫Ò2HS(H)
* 2c(T�T⌫)HS(H).

The characterisation of Tc⌫⌫ as an orthogonal projection and the fact that all such operators lie on a

sphere in HS(H) is a direct consequence of the definition of c⌫ ; notice for instance that, in HS(H),

Tc⌫⌫ = c⌫T⌫ =
�
(T�T⌫)HS(H)_ÒT⌫Ò2HS(H)

�
T⌫ .

By definition, {
˘
#l l}lÀI+⌫ is an o.n.b. of H⌫ = Hc⌫⌫

, and we have

t
ö�[1]
l
ö'l =

˘
#l l for all l ÀõI+⌫ .

Introducing an o.n.b. {hm}mÀJ of the subspace H0⌫ of H, we obtain

DK2 (�, c⌫⌫) =
≥
lÀõI+⌫

ÙÙT�[
t
ö�[1]
l
ö'l] * c⌫#l

t
ö�[1]
l
ö'l
ÙÙ
2

H (B.1a)

+
≥
lÀI+⌫ \

õI+⌫
ÙÙc⌫#l

˘
#l l

ÙÙ
2

H +
≥
mÀJ

ÙÙT�[hm]ÙÙ
2

H . (B.1b)

Since all the terms appearing in (B.1b) are positive, (B.1a) can be turned into the required inequality.

We conclude by using the optimality properties of the approximate eigenvalues ö�[1]
l

and ö�[3]
l

described

in Theorem 3.1; for (3.8), we also use the inequality ÒhÒ2
L2(�)

Õ ⌧�ÒhÒ2H , for all h À H.

Proof of Proposition 5.1. Assertion (a) follows from DK2 (�,�) = 0 and DK2 (�, ⌫) Œ 0. From the

first order optimality condition, for ↵ Œ 0, a feasible �<↵ is solution to (5.1) if and only if, for any

feasible �, we have (� * �<↵)
T(D↵(�

<
↵) Œ 0. Considering �<↵ = 0 gives ↵d Œ S!, leading to (b), in

addition, since all the entries of S are positive, there cannot exist a vector " Œ 0 such that S" = 0 and

" ë 0, so that the solution is in this case unique; also, since ! is feasible for (5.1), we obtain (c) by

taking � = !. For assertion (d), we first remark that the first order optimality condition for � = 0

gives (�<↵)
T(D↵(�

<
↵) Õ 0. Next, if we assume that there exists k such that [(D↵(�

<
↵)]k < 0, then for

all � > (�<↵)
T(D↵(�

<
↵)_[(D↵(�

<
↵)]k Œ 0, we obtain (�ek * �<↵)

T(D↵(�
<
↵) < 0, and the first order

optimality condition would be violated for the feasible vector � = �ek (we recall that ek stands for the

k-th element of the canonical basis of RN , so that eT
k
(D↵(�

<
↵) = [(D↵(�

<
↵)]k). We thus necessarily

have (D↵(�
<
↵) Œ 0 and (�<↵)

T(D↵(�
<
↵) = 0 (since �<↵ Œ 0). To prove (e), we first remark that

D↵(õ�
<
↵) = D↵(�

<
↵) + (õ�<↵ * �<↵)

T(D↵(�
<
↵) +

1

2
(õ�<↵ * �<↵)

T S(õ�<↵ * �<↵).

Since D↵(õ�
<
↵) = D↵(�

<
↵) and (õ�<↵ * �<↵)

T(D↵(�
<
↵) Œ 0, we necessarily have (õ�<↵ * �<↵)

T(D↵(�
<
↵) = 0

and (õ�<↵ * �<↵)
T S(õ�<↵ * �<↵) = 0 (since the matrix S is symmetric and positive-semidefinite), and the
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result follows. Assertion (f) is a direct corollary of (d), since S�<↵ Œ 0. To obtain (g) and (h), we

consider ↵1 < ↵2, and we denote by �<↵1
and �<↵2

some corresponding solutions to (5.1). We have

D(�<↵1
) * D(�<↵2

) Õ ↵1d
T (�<↵2

* �<↵1
) and D(�<↵1

) * D(�<↵2
) Œ ↵2d

T (�<↵2
* �<↵1

), so that, necessarily,

dT (�<↵2
* �<↵1

) Õ 0, and therefore D(�<↵2
) * D(�<↵1

) Œ 0. Assuming that ↵2 = ↵1 + ✏, with ✏ > 0,

we can remark that D↵2
(�<↵2

) = D↵1
(�<↵2

) + ✏dT �<↵2
Œ D↵1

(�<↵1
). In addition, from (d), we can

deduce that D↵(�
<
↵) =

1

2

�
!T S! * (�<↵)

T S�<↵

�
, so that the map ↵ ≠ (�<↵)

T S�<↵ is decreasing (since

↵ ≠ D↵(�
<
↵) is increasing); finally, since ↵ ≠ 2D(�<↵) = !T S! + (�<↵)

T S�<↵ * 2!T S�<↵ is increasing

and ↵ ≠ (�<↵)
T S�<↵ is decreasing, the function ↵ ≠ !T S�<↵ is necessarily decreasing.

Proof of Proposition 5.2. If �<↵ is a solution to (5.1) with ↵ Œ 0, then by definition, �<↵ minimises

D(�) over the set {� Œ 0dT � = dT �<↵}, so that �<↵ is a solution to (5.2) with z = dT �<↵ .

The condition z Õ dT! follows directly from Proposition 5.1-(c): a solution �<↵ to (5.1) indeed

necessarily satisfies dT �<↵ Õ dT!. For z = 0, we have �<z = 0, which, from Proposition 5.1-(b) is

solution to (5.1) for ↵ Œ maxk{[S!]k_dk}. For 0 < z Õ dT!, from Proposition 5.1-(d), if �<z is a

solution to (5.1), then we necessarily have (�<z )
T(D↵(�

<
z ) = 0, leading to the expected value for ↵.

The last assertions follow directly from Proposition 5.1-(g) and (h), and the relations between the

solutions to the problems (5.1) and (5.2).

Proof of Theorem 5.1. For 0 Õ ↵ < maxk{[S!]k_dk} = ↵0, we have �<↵ ë 0, see Proposition 5.1-(b);

in addition, if ↵ is such that S(�<↵ * !) = 0, then c↵ = 1. We now assume that S(�<↵ * !) ë 0; from

Proposition 5.1-(d), we have (�<↵)
T S(�<↵ * !) + ↵dT �<↵ = 0, leading to c↵ = 1 +

↵dT �<↵
(�<↵)

T S�<↵
Œ 1. By

definition of c↵ , we also have c↵(�
<
↵)
T S�<↵ = !T S�<↵ , so that

(! * c↵�
<
↵)
T S(! * c↵�

<
↵) = !T S! * c↵!

T S�<↵ = (! * c↵�
<
↵)
T S(! * �<↵) Œ 0,

and thus c↵(�
<
↵)
T S(! * �<↵) Õ !T S(! * �<↵), i.e.,

c↵ Õ
!T S(! * �<↵)

(�<↵)
T S(! * �<↵)

= 1 +
(! * �<↵)

T S(! * �<↵)

(�<↵)
T S(! * �<↵)

.

Using Proposition 5.1-(d), we obtain ↵c↵d
T �<↵ Õ ↵dT �<↵ + (! * �<↵)

T S(! * �<↵) Õ ↵dT!, the last

inequality being consequence of Proposition 5.1-(c).

Consider 0 Õ ↵1 < ↵2 < ↵0; from Proposition 5.1-(d) and by definition of c↵ , we have

(c↵1�
<
↵2

* �<↵1
)T
⌅
S(�<↵1

* !) + ↵1d
⇧
= (c↵1�

<
↵2
)T S(�<↵1

* !) + ↵1c↵1d
T �<↵2

= (�<↵2
)T S(c↵1�

<
↵1

* !) + ↵1c↵1d
T �<↵2

* (c↵1 * 1)!T S�<↵2

= (�<↵2
)T S(c↵1�

<
↵1

* !) +
↵1

(�<↵1
)T S�<↵1

⌅
(!T S�<↵1

)dT �<↵2
* (!T S�<↵2

)dT �<↵1

⇧
Œ 0. (B.2)

Since (!T S�<↵2
)dT �↵1 Œ (!T S�<↵1

)dT �↵2 (we indeed assume that ↵ ≠ !T S�<↵_d
T �<↵ is increasing),

inequality (B.2) entails that (�<↵2
)T S(c↵1�

<
↵1

* !) Œ 0, so that (c↵2�
<
↵2

* c↵1�
<
↵1
)T S(c↵1�

<
↵1

* !) Œ 0,

and thus, by convexity, D(c↵2�
<
↵2
) Œ D(c↵1�

<
↵1
); we recall that (D(�) = S(� * !). For all ↵ Œ 0,

c Œ 0, and � Œ 0, from Proposition 5.1-(d), we also have,

(� * c�<↵)
T
⌅
S(�<↵ * !) + ↵d

⇧
Œ 0. (B.3)

We introduce ⌧ = !T S(c↵2�
<
↵2

* c↵1�
<
↵1
) = 2

�
D(c↵1�

<
↵1
) *D(c↵2�

<
↵2
)
�
, and � = dT (c↵2�

<
↵2

* c↵1�
<
↵1
).

From (B.3) and by definition of c↵ , we deduce that

(c↵1�
<
↵1

* c↵2�
<
↵2
)T S(�<↵2

* !) = ⌧ + (�<↵2
)T(D(c↵1�

<
↵1
)

= ⌧ +
1

c↵2
(c↵2�

<
↵2

* c↵1�
<
↵1
)T(D(c↵1�

<
↵1
) Œ ↵2�. (B.4)
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From the Taylor expansion of D(c↵2�
<
↵2
) at c↵1�

<
↵1

, we can also deduce that

*
1

2
⌧ Œ (c↵2�

<
↵2

* c↵1�
<
↵1
)T(D(c↵1�

<
↵1
). (B.5)

Since 0 < 1_c↵2 Õ 1 and ⌧ Õ 0, inequalities (B.4) and (B.5) imply � Õ 0, as expected.

Proof of Proposition 6.1. Define the closed linear subspace GS = span{K2(xk, �)}
N
k=1

of G, and let

G0 = GÚS be its orthogonal; by definition, g� À GS . For any gS À GS and g0 À G0, we have

1

2
ÒgSÒ2G + (gS g�)G Õ

1

2
ÒgS + g0Ò2G + (gS + g0g�)G =

1

2
ÒgSÒ2G + (gS g�)G +

1

2
Òg0Ò2G.

In addition, for any k À {1,5 ,N}, we have g0(xk) = 0, so that, necessarily, g<↵ À GS (representer

Theorem), i.e, there exists �< = (�<
1
,5 , �<

N
)T À RN such that g<↵ =

≥N
k=1 �

<
k
K2
xk

. Restricting

problem (6.1) to GS then yields, for � À RN ,

minimise
�

1

2
�T S� + �T S! subject to S� Œ *↵d. (B.6)

We then introduce the Lagrangian function, for � À RN with � Œ 0 (dual feasibility condition),

L(�, �) = 1

2
�T S� + �T S! * �T

⌅
S� + ↵d

⇧
.

The primal optimality condition gives S� = S(�*!), leading to the Lagrange dual (5.1) (written as a

minimisation problem). If �<↵ is a solution to (5.2), then a solution �< to (B.6) needs to satisfy S�< =

S(�<↵*!), so that we can in particular consider �< = �<↵*!. Notice that when S is non-invertible, other

choices for �< exist since for any " À RN such that S" = 0, we have S(�<+") = S�<, but the solution

g<↵ À GS does not depend on such a ". The equality g<↵(xk) = *↵dk for all k À {1,5 ,N} such that

[�<↵]k > 0 is consequence of the complementary slackness condition (�<↵)
T
⌅
S(�<↵ *!) + ↵d

⇧
= 0.

Proof of Proposition 6.2. We follow the same reasoning than in the proof of Proposition 6.1. By

restricting problem (6.3) to GS , we obtain, for � À RN ,

minimise
�,�

1

2
�T S� + �T S! * � subject to S� Œ �d_z. (B.7)

The underlying Lagrangian function is then given by, for � À RN with � Œ 0,

L(�, � , �) = 1

2
�T S� + �T S! * � * �T

⌅
S� * �d_z

⇧
.

The primal optimality condition gives S� = S(� * !) and dT � = z, leading to the Lagrange dual

(5.2). If �<z is a solution to (5.2), then a solution �< to (B.7) needs to satisfy S�< = S(�<z *!), so that

we can in particular consider �< = �<z * !. The expression of �<z follows form the complementary

slackness condition (�<z )
T
⌅
S(�<z * !) * �<zd_z

⇧
= 0, as well as the equality g<z (xk) = �<zdk_z for all

k À {1,5 ,N} such that [�<z ]k > 0.

Proof of Proposition 7.1. Let �↵ = ✓�<↵1
+ (1 * ✓)�<↵2

, and consider J = J↵1 = J↵2 ; we have

SJ ,J [�↵]J = SJ ,J [✓�
<
↵1

+ (1 * ✓)�<↵2
]J = [S!]J * ↵dJ ,

so that [S(�↵ * !) + ↵d]J = 0, and in the same way,

[S(�↵ * !) + ↵d]J c = ✓[S(�<↵1
* !) + ↵1d]J c + (1 * ✓)[S(�<↵2

* !) + ↵2d]J c > 0.

By construction, �↵ Œ 0, and if k is such that [�↵]k > 0, then k À J (since these conditions are

verified by both �<↵1
and �<↵2

). We therefore have �T↵

�
S(�↵ * !) + ↵d

�
= 0, so that for all � Œ 0, the

optimality condition (� * �↵)
T(D↵(�↵) Œ 0 holds, i.e., �↵ is a solution to (5.1), and J↵ = J .
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Proof of Proposition 7.2. We first recall that, from Proposition 5.1-(e), for a given ↵ Œ 0, the terms

!T S�<↵ and dT �<↵ are always unique. From (7.1), for any solution �<↵ to (5.1), there exists a n↵ ù n↵
matrix G such that

[�<↵]J↵ = G
�
[S!]J↵ * ↵dJ↵

�
, (B.8)

and G is a generalised inverse of SJ↵ ,J↵ (i.e., SJ↵ ,J↵GSJ↵ ,J↵ = SJ↵ ,J↵ ), see for instance [2]. Combined

with Proposition 7.1, condition (7.1) thus implies that the maps ↵ ≠ !T S�<↵ and ↵ ≠ dT �<↵ are

piecewise linear; in addition, since the indices of the strictly positive components of �<↵ always belongs

to J↵ , any change in the sparsity pattern only involves null components of �<↵ , so that these two maps

are also continuous. We then introduce ⇣ (↵) = !T S�<↵_d
T �<↵; on the interval [0, ↵0), the function

⇣ (�) is continuous (since, on this interval, ↵ ≠ !T S�<↵ and ↵ ≠ dT �<↵ are continuous, and dT �<↵ > 0).

From (B.8), and since [�<↵]J c↵ = 0, we have

!T S�<↵ = [S!]T
J↵
G[S!]

J↵
* ↵[S!]T

J↵
Gd

J↵
, and dT �<↵ = [S!]T

J↵
Gd

J↵
* ↵dT

J↵
Gd

J↵
.

Thus, if ↵ Œ 0 is not a kink for problem (5.1), we obtain that ⇣ ®(↵) Œ 0 if and only if

�
[S!]T

J↵
Gd

J↵

�2
Õ
�
[S!]T

J↵
G[S!]

J↵

��
dT
J↵
Gd

J↵

�
. (B.9)

If G is symmetric and positive-semidefinite, then inequality (B.9) corresponds to the Cauchy-Schwarz

inequality, and is therefore verified. Since the number of kinks is finite, we can thus conclude that

⇣ (�) is increasing on [0, ↵0).

Proof of Lemma 7.1. Let �↵ be such that [�↵]J c = 0 and [�↵]J = (SJ ,J )
*1([S!]J * ↵dJ ). Following

(7.2), from the condition [S(�↵ * !) + ↵d]J c Œ 0, we define ↵+ as the smallest ↵ satisfying the

constraint ↵
⌅
MdJ *dJ c

⇧
l
Õ
⌅
M[S!]J * [S!]J c

⇧
l
, for all l À {1,5 , card(J c)}. By definition (and in

view of Remark 7.1), this constraint is satisfied by ↵p; the components l such that
⌅
MdJ * dJ c

⇧
l
Œ 0

therefore carry no information. The problem thus consists in searching for the smallest ↵ such that

↵ Œ
⌅
M[S!]J * [S!]J c

⇧
l
_
⌅
MdJ * dJ c

⇧
l
, for all l such that

⌅
MdJ * dJ c

⇧
l
< 0.

In the same way, we define ↵* as the smallest ↵ such that ↵(SJ ,J )
*1dJ Õ (SJ ,J )

*1[S!]J .
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ERRATUM: OPTIMAL QUADRATURE-SPARSIFICATION FOR INTEGRAL

OPERATOR APPROXIMATION

BERTRAND GAUTHIER<§† AND JOHAN A.K. SUYKENS‡†

Abstract. Although all statements made in Proposition 2.1 of [B. Gauthier and J.A.K. Suykens, Optimal quadrature-

sparsification for integral operator approximation, SIAM Journal on Scientific Computing, 40(5):A3636-A3674, 2018] are

correct, the proposed proof contains an error. This erratum provides a valid proof of this result.

We consider the same framework and use the same notions as in [2]. This note aims at proving

the following result:

Proposition 2.1. For � and ⌫ À T (K), we have (T�
ÛÛT⌫)HS(H) = ÒKÒ2

L2(�‰⌫)
, so that

DK2 (�, ⌫) = ÒKÒ2
L2(�‰�)

+ ÒKÒ2
L2(⌫‰⌫)

* 2ÒKÒ2
L2(�‰⌫)

,

where ÒKÒ2
L2(�‰⌫)

= î
X ùX

�
K(x, t)

�2
d�(x)d⌫(t).

In order to prove [2, Proposition 2.1], we rely on the following Lemma 1. For all h À H, we

denote by h ‰ h the kernel on X ù X defined as (h ‰ h)(x, t) = h(x)h(t) for all x and t À X .

Lemma 1. We consider two measures � and ⌫ À T (K), and let {hj}jÀI (with I a general at most

countable index set) be any orthonormal basis (ONB) of H. The sum
≥

jÀI hj ‰hj converges to K in

L2(� ‰ ⌫).

Proof of Lemma 1. Since � and ⌫ À T (K), we have K À L2(� ‰ ⌫), and ÒKÒ2
L2(�‰⌫)

Õ ⌧�⌧⌫ . We

also have hj‰hj À L2(�‰⌫) for all j À I since H is both continuously embedded into L2(�) and into

L2(⌫). For all x and t À X , the sum
≥

jÀI hj(x)hj(t) converges to K(x, t) (pointwise convergence;

see for instance [1, Section 1.5]). Further, the sequence
�
hj(x)

�
jÀI

being square-summable for all

x À X , we have, for any subset J œ I,

ÛÛÛÛ

…

jÀJ

hj(x)hj(t)
ÛÛÛÛ
Õ
…

jÀJ

ÛÛhj(x)hj(t)ÛÛ Õ
…

jÀI

ÛÛhj(x)hj(t)ÛÛ Õ
˘
K(x, x)

˘
K(t, t), (1)

the last inequality being consequence of the Cauchy-Schwarz inequality.

When H is finite dimensional, the result follows directly. We thus assume that H is an infinite

dimensional separable Hilbert space, and we set I = N. For n À N, we then define

En(x, t) =
0
K(x, t) *

n…

j=1

hj(x)hj(t)

12

.

From (1), we have En(x, t) Õ K(x, x)K(t, t) for all x and t À X and for all n À N, and En(x, t) in

addition converges to 0 when n tends to +ÿ (pointwise convergence); further, we have

 
X ùX

K(x, x)K(t, t)d�(x)d⌫(t) = ⌧�⌧⌫ < +ÿ.
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The dominated convergence theorem therefore entails

 
X ùX

En(x, t)d�(x)d⌫(t) = ÙÙÙÙ
K(x, t) *

n…

j=1

hj(x)hj(t)
ÙÙÙÙ

2

L2(�‰⌫)

,,,,,,,,,,,,,,,,,,,,,,,,,,ô

nô+ÿ
0,

which concludes the proof.

Proof of Proposition 2.1. Let {hj}jÀI be an ONB of H; the Hilbert-Schmidt inner product between

the operators T� and T⌫ À HS(H) is given by

�
T�

ÛÛT⌫
�
HS(H)

=
…

jÀI

�
T�[hj]

ÛÛT⌫[hj]
�
H =

…

jÀI

�
T�[hj]

ÛÛhj
�
L2(⌫)

=
…

jÀI

�
KÛÛhj ‰ hj

�
L2(�‰⌫)

, (2)

and we recall that the value of
�
T�

ÛÛT⌫
�
HS(H)

does not depend on the choice of the ONB of H. By

combining (2) with Lemma 1, we obtain

�
T�

ÛÛT⌫
�
HS(H)

=

0
K
ÛÛÛÛ

…

jÀI

hj ‰ hj

1

L2(�‰⌫)

= ÒKÒ2
L2(�‰⌫)

,

which corresponds to the expected equality. The expansion of DK2 (�, ⌫) then follows readily.
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