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Abstract  

 

Background  

Cardiovascular mortality in patients with RA is 50% higher than the general population. 

Although well established that the incidence of CVD is increased, the precise cause is unclear. 

There is increasing recognition that systemic inflammation is a major driver of increased CV 

risk. IL-6 is implicated in CVD in the general population but its role in CVD in RA is undefined. 

Of the two modes of IL-6 signaling, evidence demonstrates that trans-signaling is pro-

inflammatory whereas classical signaling has regenerative or anti-inflammatory effects. The 

aim of this thesis is to examine the role of IL-6 trans-signaling in CVD in RA by experimental 

and translational studies. 

 

Methods  

Myography was used to determine the effect of IL-6 trans-signaling blockade, using 

sgp130Fc, on aortic constriction in mice with CIA. Serum CCL2 and VCAM-1 were measured. 

The effect of IL-6 trans-signaling, using Hyper-IL-6, on atherosclerotic plaque size and fibrous 

cap thickness was assessed in ApoE-/- mice. Arterial and plaque VCAM-1 expression was 

assessed. The relationship between sIL-6R-regulated CVD Candidate Proteins (SCCPs) and 

CVD in established RA was investigated in a cross-sectional study. An observational 

longitudinal study investigated whether SCCPs were associated with presence and 

progression of subclinical atherosclerosis in early RA, using carotid ultrasound to measure 

CIMT.  

 

Results  

Sgp130Fc reduced arthritis severity and restored vascular dysfunction in CIA.  This was 

associated with reduced serum CCL2 and VCAM-1. In ApoE-/- mice, Hyper-IL-6 increased 

plaque size and VCAM-1 expression in the brachiocephalic artery.  In established RA, VCAM-

1 correlated with disease activity and CV risk. In early RA, baseline RA disease activity was 

associated with CIMT change at 6 months. Patients that were ‘rapid progressors’, in terms of 

CIMT change at 12 months, had higher baseline VCAM-1, HbA1c, total cholesterol:HDL ratio 

and LDL cholesterol.  

 

Discussion  

IL-6 trans-signaling appears to play a pivotal role in vascular dysfunction and atherosclerosis 

in mouse models. In early RA, proteins regulated by IL-6 trans-signaling are associated with 

progression of subclinical atherosclerosis. Inflammation from RA onset in CVD susceptible 

individuals may accelerate atherosclerosis. Findings suggest that IL-6 trans-signaling 

blockade may be beneficial to RA patients, and perhaps for atherosclerosis in the general 

population.  
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1 Chapter 1- General Introduction 

 

1.1 Rheumatoid arthritis  

 

Rheumatoid arthritis (RA) is an inflammatory chronic polyarthritis that leads to joint 

destruction, deformity and loss of function. It is the most common inflammatory 

arthritis globally, affecting approximately 1% of the UK population (Symmons et al, 

2002). It is a systemic disorder but is predominantly characterised by symmetrical 

persistent synovial inflammation in diarthrodial joints (Tak and Bresnihan, 2000). 

Within the joint the inflamed synovial lining proliferates and forms pannus which 

erodes into cartilage and bone, leading to joint damage (Bartok and Firestein, 2010).  

Its consequences include pain, disability and increased mortality. Costs of RA in the 

UK, including indirect costs and work related disability, have been estimated at £3.8-

£4.75 billion per year (Pugner et al, 2000). Although its course is heterogeneous and 

variable, within two years of diagnosis patients usually experience moderate 

disability and after 10 years 30% are severely disabled (National Collaborating Centre 

for Chronic Conditions 2009). Extra-articular manifestations can include vasculitis, 

scleritis, pulmonary fibrosis, rheumatoid nodules, amyloidosis, serositis and 

lymphadenopathy (Cojocaru et al, 2010).  Systemic manifestations include anaemia, 

fatigue, depression, osteoporosis and cardiovascular disease (CVD) (Choy, 2012), the 

latter being responsible for the increased mortality in RA (Meune et al, 2009).   

 

1.2 Aetiology of RA  

 

The aetiology of RA is unknown, although some environmental and genetic factors 

have been associated with its development. These include specific human leucocyte 

antigen (HLA) alleles, smoking and viral infection. HLA-DR4 correlates strongly with 

RA (Fugger and Svejgaard, 2000). However, concordance rates in monozygotic twins 

are only around 15% (Silman et al, 1993), suggesting that environmental factors play 
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a large role. Smoking also appears to increase the risk of developing RA and to have 

an adverse effect on disease progression (Masdottir et al, 2000).  Numerous 

infectious agents have been suggested as potential causes or triggers for RA, 

including Epstein–Barr virus (EBV), mycoplasma organisms (Schaeverbeke et al, 

1997) and peridodontopathic bacteria (Routsias et al, 2011). Bacterial and viral 

products, such as EBV, have been found in the joints of RA patients at synovial biopsy 

(Takei et al, 1997). However, it has also been postulated that this may be due to 

persistence of infection due to altered T cell responses, rather than pathogens 

playing a causative role (Toussirot et al, 2000). It is well known that certain pathogens 

can lead to a reactive arthritis, but this usually remits spontaneously (Carter and 

Hudson, 2009). Hormonal factors are thought to play a role in the aetiology of RA; RA 

is 2-4 times more frequent in females than males (Kvien et al, 2006). RA also tends 

to improve during pregnancy and recur postpartum (Hazes et al, 2011).  RA is 

associated with the production of autoantibodies, notably rheumatoid factor and 

anti-citrullinated proteins (Song and Kang, 2010).   

 

1.3 The Normal Joint  

 

In order to understand the processes involved in RA, it is important to appreciate 

normal joint structure and environment and how these change in disease. There are 

three types of human joints: fibrous, synovial and cartilaginous. Joints affected in RA 

are predominately synovial. These are the most common joints in humans and 

include the metacarpophalangeal joints, hips, shoulders and knees. Synovial joints 

consist of the articular surfaces of two bones which are covered by hyaline cartilage. 

The cartilage functions in weight bearing, shock absorption and to reduce friction 

during movement. A fibrous capsule surrounds the joint and is comprised of two 

layers; an outer fibrous membrane and the inner synovial membrane. The joint 

capsule is filled with synovial fluid which provides lubrication and allows oxygen and 

nutrients to pass to the cartilage (Knedla et al, 2007). The synovial membrane is 

composed predominately of synovial fibroblasts and macrophages (Knedla et al, 

2007). The synovium is infiltrated by capillaries and venules and also has lymphatic 
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drainage. It is the central area of pathology in a number of inflammatory joint 

diseases, including RA (Smith, 2011). In the normal joint, bone turnover is carefully 

balanced. Osteoclasts resorb bone by attaching themselves to the periosteum and 

releasing proteolytic enzymes and acid, causing degradation of the bone and its 

membrane (Clarke, 2008). Osteoblasts synthesise bone; secreting bone extracellular 

matrix proteins which become mineralised to form bone (Clarke, 2008).   

1.4 Pathogenesis of RA 

 

The pathogenesis of RA is complex and not fully elucidated. However, several 

mechanisms underlying the development of the disease have been recognised. It is 

proposed that in genetically predisposed individuals the repeated activation of both 

the innate and adaptive immune system leads to the breakdown of self-tolerance, 

leading to autoantigen presentation and antigen-specific T and B cell activation 

(Picerno et al, 2015). Several cell types, most notably dendritic cells, express pattern-

recognition molecules, such as Toll-like receptors, which bind to various self and 

foreign structures and become activated. These then act on cells of the adaptive 

immune system. This culminates in synovial inflammation and hyperplasia, with 

leucocytes, predominately T-lymphocytes and macrophages, infiltrating the synovial 

compartment via activated endothelial cells expressing various adhesion molecules 

(Smolen et al, 2007). There is also angiogenesis and increased synovial fluid 

production, containing polymorphonuclear cells with some T cells and macrophages.  

The inflammatory exudate overlying synovial cells on the inside of the joint capsule, 

pannus, contains osteoclasts and this destroys bone, leading to bone erosion. Bone 

repair by osteoblasts usually does not occur in active RA (Smolen and Steiner, 2003). 

The growth of the synovial membrane is accompanied by neovascularisation. 

Cartilage is also degraded by enzymes secreted by chondrocytes, neutrophils and 

synoviocytes (Choy, 2012). 

Activated T and B cells produce cytokines and chemokines. Cytokines play key roles 

in the pathogenesis of RA, notably TNF-α and IL-6, both of which are used as 

therapeutic targets for treatment in RA. Other cytokines such as IL-1 and IL-17, 

although implicated in RA pathogenesis, have not been validated as successful 
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therapeutic targets in RA.. Chemokines, such as CXCL8 and CXCL9, also play 

important roles in RA, including cell-cell interactions, migration and chemoattraction 

(Koch, 2005).   These pathological changes are summarised in Figure 1.  

  

 

 

1.5 Cardiovascular risk in RA  

 

Mortality is increased in RA mainly due to CVD. Indeed, cardiovascular mortality in 

patients with RA is up to 50% higher than the general population (Meune et al, 2009; 

Avina-Zubieta et al, 2008; Peters et al, 2010; Solon et al, 2003; de Groot et al, 2010; 

Figure 1. Overview of a (A) Normal joint and (B) Joint affected by RA. In the RA joint inflammatory cells 
(macrophages, T and B cells, dendritic cells, plasma cells and mast cells) invade the synovium and surrounding 
areas. The synovial lining becomes hyperplastic, neovascularised and pannus erodes bone.  
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Gullick and Scott, 2011; Meune et al, 2010; Gabriel, 2008) and is of the magnitude 

seen in diabetes mellitus (Luqmani et al, 2006). Although it is well established that 

incidence of CVD is increased in RA, the precise cause is unclear. While traditional 

cardiovascular risk factors, such as smoking, diabetes and hypertension contribute to 

this increased mortality in RA patients, they do not fully explain the increase in risk 

(Dessein et al, 2005; del Rincon, 2001). The increased cardiovascular risk in RA is 

related to the severity and duration of inflammation (Kelt, 2009). Certain 

inflammatory cytokines, such as interleukin-6 (IL-6), have been implicated in the 

pathogenesis of both RA (Srirangan and Choy, 2010) and CVD (Hartman and 

Frishman, 2014).  

Cardiovascular events occur on average ten years earlier in RA patients than the 

general population (Bacon et al, 2002). Cardiovascular manifestations in RA include 

arrthymias, myocarditis, pericarditis, cardiac amyloidosis, coronary vasculitis, 

congestive heart failure, and atherosclerosis (Voskuyl, 2006). The focus of this thesis 

is atherosclerosis, which is the cause of the majority of cardiovascular deaths in RA. 

As well as having an increased incidence of CV events, RA patients also experience 

significantly lower survival rates after a myocardial infarction or stroke compared to 

those without RA (Solomon et al, 2006). Despite this, standardised admission rates 

for cardiovascular disease are not raised; suggesting either that CVD in RA goes 

unrecognised before the fatal event or has a higher case fatality than in the general 

population (Goodson et al 2005). In addition to an increase in actual cardiovascular 

events, RA patients have a higher prevalence of preclinical atherosclerosis than the 

general population, such as asymptomatic carotid artery atherosclerotic plaques 

(Roman et al, 2006). 

The term coronary microvascular dysfunction (CMD) has been introduced to describe 

abnormalities in the regulation of myocardial blood flow (MBF) which are not 

explained by disease of the epicardial coronary arteries. A study using PET to measure 

MBF found that patients with RA and SLE had reduced coronary flow reserve in the 

absence of significant coronary artery disease (Recio-Mayoral et al 2009).  There are 

also differences in the presentation and outcome of heart failure in those with and 

without RA. Despite RA patients having more subtle presentation of heart failure, 
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and having more preserved myocardial function, mortality from heart failure in RA 

patients is significantly higher (Davies et al 2008). 

 

The Trial of Atorvastatin for the Primary Prevention of Cardiovascular Events in 

Patients with Rheumatoid Arthritis (TRACE-RA) study was designed to assess whether 

atorvastatin 40mg daily was superior to placebo for the primary prevention of CVD 

events in patients with RA (Kitas et al, 2015). However, the study was terminated 

early, after more than 3,000 patients of the 4,000 target population had been 

recruited, due to a low incidence of the primary cardiovascular end point. This 

highlights the fact that using cardiovascular events as outcome for exploratory 

studies is not appropriate since sample size is prohibitively large. The following study 

therefore uses carotid ultrasound as a surrogate for determining subclinical 

atherosclerosis in RA.  

 

1.6 Hypotheses for increased CV risk in RA  

 

There are a number of theories put forward to explain the increased risk of CVD in 

RA patients. Firstly, RA patients have an increased prevalence of traditional 

cardiovascular risk factors. These include smoking and hypertension (Panoulas et al, 

2008). Secondly, due to the nature of the disease, some RA patients are less active 

than the general population, and inactivity in the general population has been linked 

to cardiovascular disease (Bijnen et al, 1994). Thirdly, some drugs used in the 

management of RA have been implicated, outlined in section 3 below. Lastly, there 

is increasing evidence that systemic inflammation plays an important role in the 

increased risk in RA patients. These theories are discussed in more detail below.  

1. Traditional CV risk factors are more prevalent in RA patients. Certain traditional 

cardiovascular risk factors, such as smoking (Wolfe, 2000; McEntegart et al, 

2001; Solomon et al, 2003), diabetes mellitus and reduced HDL cholesterol 

levels appear more prevalent in RA patients (Boyer et al, 2010). There is 

conflicting evidence in the literature regarding hypertension in RA patients; 
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some studies do not show a difference between RA patients and healthy 

subjects (Roman et al, 2006; Maradit-Kremers et al, 2005; Solomon et al, 

2003), while others have shown an increased prevalence in RA patients (Han 

et al, 2006). An important concept in RA patients is the ‘lipid paradox’. In the 

general population the risk of atherosclerosis development increases 

progressively with increasing LDL cholesterol levels and declines with 

increasing levels of HDL cholesterol, however, in RA, the presence of a 

proinflammatory state leads to a decrease of total cholesterol, HDL cholesterol 

and LDL cholesterol in patients (Robertson et al 2013). In contrast, reduction 

in inflammation coincides with increases in serum lipid values (Myasoedova et 

al 2011). These changes are complex and of importance are relative changes 

in the pro and anti-inflammatory lipoprotein components. Chronic 

inflammation leads to oxidative changes that alter HDL structure and reduce 

apolipoprotein-A-I in patients with active RA (Charles-Schoeman et al 2009). 

Several studies have shown an increased prevalence of diabetes mellitus in RA 

(Han et al, 2006; Dessein et al, 2002) but others have shown a similar 

prevalence to controls (Solomon et al, 2003). Several studies have found a 

higher prevalence of hyperlipidaemia in RA (Han et al, 2006). A recent large, 

retrospective cohort study of UK patients found that there were no differences 

in the frequency of testing and treatment of CV risk factors between RA 

patients and non-RA patients (Alemao et al, 2016). Thus, higher CV risk seen 

in RA patients is unlikely to be due to differences in traditional CV risk factor 

management.  

 

2. Inactivity of RA patients. Patients with RA have high levels of inactivity (Sokka 

et al, 2008) for various reasons, includuing physical pain, poor joint movement, 

fear of pain or joint damage, fatigue and mood disturbance. It is known that in 

the general population lack of exercise increases the risk of CV disease 

development and exercise reduces this risk (Gielen et al, 2009). However, this 

does not fully explain the increase in CV risk, which increases early in the 

disease course of RA, where inactivity may not be present, or may have only 
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been present for a short time period. Also, as treatments for RA improve, 

disease should become less disabling, such that levels of inactivity may reduce.   

 

3. Drugs used in RA management. Some drugs used in RA management have 

associated cardiovascular risk, such as NSAIDs and corticosteroids. Others 

seem to have a protective role.  

 

a. NSAIDS are commonly used for symptomatic treatment of RA, both 

before and after definitive diagnosis, to treat symptoms such as pain 

and swelling. Most NSAIDs act as nonselective inhibitors of the 

enzyme cyclooxygenase (COX), inhibiting both the cyclooxygenase-1 

(COX-1) and cyclooxygenase-2 (COX-2) isoenzymes. COX catalyses the 

formation of prostaglandins and thromboxane from arachidonic acid. 

Selective cyclo-oxygenase-2 (COX-2) inhibitors are selective inhibitors 

of the COX-2 isozyme (FitzGerald and Patrono, 2001). A meta-analysis 

reports that selective COX-2 inhibitors are associated with a moderate 

increase in the risk of vascular events, as are high dose regimens of 

ibuprofen and diclofenac, but high dose naproxen is not (Kearney et 

al, 2006).  

 

b. Glucocorticoids are often used as a means of rapidly reducing 

inflammation in RA. Adverse effects of long-term glucocorticoid use, 

especially at high doses, are well recognised in the general population. 

These include effects on body weight and fat distribution (Macfarlane 

et al, 2008), blood pressure (Whitworth et al, 2000) and insulin 

resistance (Andrews and Walker, 1999). There are conflicting reports 

of their effects on lipid profile (Choi et al, 2005). In RA the effects of 

glucocorticoids on cardiovascular risk are not fully elucidated, in part 

because glucocorticoids reduce systemic inflammation which is 

thought to play a major role in CV risk in RA. In an inception cohort 

study of low-dose prednisolone use during the first 2 years of RA 

disease, the incidence of ischaemic coronary artery events was similar 
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in those taking prednisolone and those not (Ajeganova et al, 2014). 

However, those taking prednisolone had an increased long-term risk 

of ischaemic cerebrovascular event and there was a trend towards 

reduced survival in the prednisolone group.  

 

c. Several disease modifying anti-rheumatic drugs (DMARDS) are used to 

treat RA. The most commonly used are methotrexate (MTX), 

sulphasalazine (SSZ) and hydroxychloroquine (HCQ.) A case control 

study found that MTX and, to a lesser extent, SSZ were associated with 

significantly lower CVD risk compared to RA patients who had never 

used SSZ, HCQ or MTX (van Halm et al, 2006) While another study 

found a protective effect of MTX on cardiovascular risk (Choi et al, 

2002), others have not (Singh and Cameron, 2012). Interestingly, 

there is an ongoing trial assessing MTX efficacy as secondary 

prevention in non-RA patients with established CVD (Everett et al, 

2013). Hydroxychloroquine has been found to have a favourable 

effect on lipid profiles (Morris et al, 2011) and insulin sensitivity 

(Mercer et al, 2012). Leflunomide has been associated with 

hypertension (Rozman et al, 2002). 

 

d. Biological therapies  

 

i. TNF-α blocking agents. Most studies have found that TNF-α 

blocking agents are associated with a reduced cardiovascular 

risk in RA (Solomon et al, 2013; Jacobsson et al, 2005; 

Greenberg et al, 2011; Naranjo et al, 2008). Other studies have 

shown no difference in risk with anti TNF (Solomon et al, 2006; 

Dixon et al, 2007) and some have shown that there may be an 

increased cardiovascular risk (Suissa et al, 2006). TNF-α 

blocking agents are contraindicated in RA patients with heart 

failure on the basis that clinical trials which used these drugs 

in non-RA heart failure produced disappointing results in 
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patients with moderate to severe heart failure (Cacciapaglia et 

al, 2011). A more recent study found that patients with RA 

receiving a TNF inhibitor had a decreased risk of MI compared 

with patients with RA receiving non-biologcial DMARDs over 

the medium term (Low et al 2017). A mouse model of arthritis, 

the Tg197 arthritis model, develops TNF- driven and 

mesenchymalsynovial fibroblast (SF)-dependent polyarthritis 

(Ntari et al 2018). These mice also develop heart valve disease 

alongside chronic polyarthritis. Both pathologies were 

dependant on TNF in this model. 

 

ii. Anti-IL-6R antibody (Tocilizumab).  In a study of patients 

receiving Tocilizumab there was an association between the 

baseline total cholesterol:HDL ratio and an increased risk of 

major adverse cardiovascular events (Rao et al, 2015). The risk 

of cardiovascular events while receiving treatment, however, 

was associated with control of disease activity but not lipid 

changes. Studies have consistently shown that tocilizumab is 

associated with increased lipid levels in the context of 

decreased inflammatory marker levels (Nishimoto et al, 2010; 

Emery et al, 2008). Although lipid changes alongside reduction 

in inflammation are seen with all biological and non-biological 

DMARDs, theses are most well described and are more 

apparent with Tocilizumab. The ENTRACTE study compared 

rates of major cardiovascular outcomes in RA patients treated 

with Tocilizumab or Etanercept (Giles et al 2016). By week 4, 

total cholesterol, LDL, HDL, and triglycerides increased 

significantly in the Tocilizumab arm compared with the 

Etanercept arm, but there was no significant difference in 

major cardiovascular events over a mean follow up of 3.5 

years. Data from phase 3 studies and extension studies have 

shown rates of MI were lower with tocilizumab versus placebo 
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(Schiff et al, 2011) and analysis of the long-term safety (n = 

4171; median treatment duration 3.9 years) found a stable 

rate of cardiovascular events over time with tocilizumab 

exposure (Genovese et al, 2013; Schiff et al, 2011). Also, 

tocilizumab does not appear to increase CIMT in RA (Kume et 

al, 2011). 

 

 

iii. Rituximab, a monoclonal anti-CD20 antibody which causes B 

cell depletion, does not appear to increase risk of 

cardiovascular events at 6 months and in longer term follow 

up (van Vollenhoven et al, 2010) and appears to have 

beneficial effects on lipid profile (Raterman et al, 2013). Ait 

Oufella et al (2010) showed that mature B cell depletion using 

a CD20-specific monoclonal antibody caused a significant 

reduction of atherosclerosis in mouse models of 

atherosclerosis. 

 

4. Systemic inflammation in RA. The excess cardiovascular burden in RA persists 

after adjustment for traditional CV risk factors (del Rincon et al, 2001; Maradit-

Kremers, 2005). There is accumulating data implicating systemic inflammation 

as the major driver of this increased CV risk (Gabriel, 2008; del Rincon et al, 

2001; Arts et al, 2014). Inflammation contributes to the onset and 

pathogenesis of CVD in the general population. Epidemiological studies have 

shown that circulating CRP (Ridker and Cook, 2004) and IL-6 (Ridker et al, 2000) 

are associated with higher risk of CVD in the general population, independent 

of known CVD risk factors. It should be noted that evidence indicates that the 

CRP does not cause CVD, whereas IL-6 appears to play a causative role (Welsh 

et al 2017). High IL-6 levels are associated with increased mortality in patients 

with acute coronary syndromes (Biasucci et al, 1999). Levels of CRP and IL-6 

are much higher in RA patients than the general population, indeed there is a 

significant association between inflammation measured by erythrocyte 
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sedimentation rate (ESR) or CRP, and risk of CVD in RA (Chung et al, 2008; Book 

et al, 2005; Crilly et al, 2009; Graf et al, 2009; del Rincon et al, 2005; Gonzalez-

Gay et al, 2005). There is also evidence that reducing inflammation in RA 

lowers CV risk (van Halm et al, 2006; Dixon et al, 2007; Choy and Sattar, 2005).  

 

RA is associated with anti-citrullinated proteins (anti-CCP) antibodies. Within 

atherosclerotic plaque citrullinated proteins are prevalent in non-RA patients 

(Sokolove et al 2013). Certain anti-CCP antibodies were associated with 

atherosclerotic burden. These observations suggest that citrullinated 

epitopes within atherosclerotic plaque may be targeted by RA-associated 

anti-CCP antibodies which may form immune complexes, locally increasing 

plaque inflammation and progression. This may in part explain the 

accelerated atherosclerosis observed in patients with RA. Citrullination has 

also been found to be higher in the myocardium of RA patients compared to 

non-RA patients (Giles et al 2012). 

 

Advances in basic science have established the fundamental role of 

inflammation in all stages of atherosclerosis, from plaque formation, to 

instability and eventual rupture (Gonzalez Gay et al, 2005; Hansson and 

Hermansson, 2011; Libby et al, 2011). The pathophysiology of atherosclerosis 

is discussed in section 1.13.1.  

 

1.7 Assessing Cardiovascular Risk in RA 

 

National and International guidelines, including those of the British Society for 

Rheumatology (Luqmani et al, 2009), National Institute for Health and Clinical 

Excellence (2009) and European League Against Rheumatism (EULAR) (Peters et al, 

2010) recommend annual assessment of cardiovascular risk in RA patients. EULAR 

recommendations for cardiovascular management were based on a systematic 

literature review. Traditional cardiovascular risk factor assessment equations, such 

as the Framingham risk score (FRS) and Systematic Coronary Risk Evaluation Score 
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(SCORE) (Conroy et al, 2003) models, underestimate cardiovascular risk in RA. 

Therefore, EULAR recommends multiplying such traditional cardiovascular risk 

scores by 1.5 for RA patients who meet two of three criteria consisting of (1) disease 

duration >10 years, (2) positive rheumatoid factor or anti-cyclic citrullinated peptide 

(anti-CCP) serology, and (3) presence of severe extra-articular manifestation, to 

account for the unexplained increased cardiovascular risk in RA (Peters et al, 2010). 

However, recent studies have shown that even modified cardiovascular risk scores, 

such as recommended by EULAR still underestimate overall cardiovascular risk (Arts 

et al, 2014; Rosales-Alexander et al, 2014). Thus, there is a need for a better means 

of risk stratification. EULAR guidelines were updated in 2016 and recommend 

optimal control of RA disease activity, CV risk assessment at least once every 5 years, 

consideration of carotid ultrasound as screening for asymptomatic atherosclerotic 

plaques as part of the CVD risk evaluation (Agca et al 2016).  

 

1.8 Cardiovascular risk algorithms 

See Table 1 for comparison of different cardiovascular risk algorithms.  

a) SCORE  

 

The SCORE model is based on gender, age, smoking, systolic blood pressure 

and total cholesterol (Conroy et al, 2003). There are different charts for 

patients from a high or low CV risk region of Europe. It is derived from a large 

dataset of prospective European studies and predicts fatal atherosclerotic 

CVD events over a ten year period.  

 

b) The Framingham risk score  

 

The Framingham Risk Score (FRS) was first developed based on data obtained 

from the Framingham Heart Study in the USA and was first published in 1998 

(Wilson et al, 1998) and the current version in 2002 (Third Report of the 

National Cholesterol Education Program (NCEP) Expert Panel on Detection, 

Evaluation, and Treatment of High Blood Cholesterol in Adults, 2002). It 
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performs well in North America (Eichler et al, 2007) but less so elsewhere 

(Brindle et al, 2003). The updated version includes age, gender, systolic BP, 

smoking status, total cholesterol and HDL cholesterol and whether the 

patient is on treatment for hypertension. The endpoint definition is angina 

pectoris and cardiovascular death.  

 

c) The QRISK2 score  

 

The QRISK2 is the only validated CV risk score to include RA as an independent 

CV risk factor. It includes age, systolic blood pressure, smoking status, total 

cholesterol:HDL ratio, body mass index, ethnicity, geographical measures of 

deprivation, family history of early CVD, chronic kidney disease, RA, atrial 

fibrillation, diabetes mellitus, and antihypertensive treatment. In the UK 

current National Institute for Health and Care Excellence (NICE) guidelines 

recommend using this to assess CV risk (NICE, 2014). The NICE guidelines 

state that if a patient has a greater than 10% risk of CVD event over the next 

ten years when calculated using the QRISK2 then primary prevention with 

lipid lowering therapy (such as statins) should be initiated (NICE, 2014). The 

algorithm is updated annually to reflect changes in populations, data quality 

and national guidelines. A prospective open cohort study found that the 

QRISK2 was better calibrated to the UK population than the FRS and has 

better discrimination (Hippisley-Cox et al, 2008).  

 

d) The Reynolds risk score (RRS) 

 

This score includes age, total cholesterol, HDL cholesterol, systolic blood 

pressure, diabetes mellitus assessed by haemoglobin A1c (for women only), 

current smoking, parental history of MI before age 60 years and serum high 

sensitivity CRP (hs-CRP) (Ridker et al, 2007). Endpoints assessed are 

cardiovascular death, nonfatal MI, non-fatal stroke and coronary 

revascularization.  
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e) The American College of Cardiology/American Heart Association (ACC/AHA) 

2013 guideline.  

This score includes age, gender, ethnicity, total cholesterol and HDL 

cholesterol, smoking status, diabetes, treatment for hypertension, systolic 

and diastolic blood pressure. Endpoints assessed are fatal and non-fatal MI 

and stroke.  

Risk algorithm   
 

SCORE 
 

Framingham Reynolds QRISK2 ACC/AHA 

Age 
 

     

Gender  
 

     

Systolic blood 
pressure 

     

Diastolic blood 
pressure  

     

Smoking 
 

     

Total Cholesterol 
 

     

HDL cholesterol 
 

     

Cholesterol:HDL ratio      

Rheumatoid arthritis        

Deprivation score 
 

 
    

On treatment for 
hypertension  

 
    

hsCRP 
 

 
    

Diabetes  
 

 
*    

Family history of early 
CVD 

 
    

CKD 
 

 
    

AF 
 

 
    

Ethnicity 
 

 
    

Endpoint definition Fatal 
atherosclerotic 
CVD events 

Angina 
pectoris, CV 
death 

MI, stroke, 
coronary 
revascularization, 
CV death 

MI AP, 
CAD, 
stroke, and 
TIA 

Fatal and 
non-fatal 
MI and 
stroke  
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Table 1. Summary of various cardiovascular risk algorithms. hsCRP (high sensitivity CRP), CKD 
(Chronic Kidney disease), AF( Atrial Fibrillation). *removed from updated version.   

 

Which risk score performs best in RA? 

The QRISK2 score is the only validated score to include RA as an independent risk 

factor for CVD. However, it does not factor in time since RA diagnosis as suggested 

by EULAR and may, therefore, over predict risk in patients recently diagnosed with 

RA. However, recent data suggests that patients with RA may have similar chances 

to develop CV events early and late in their disease course (Kerola et al, 2012a; Kerola 

et al, 2012b). 

One study used data collected prospectively from the Nijmegen early rheumatoid 

arthritis inception cohort in the Netherlands to assess the discriminatory ability of 

different cardiovascular risk algorithms in early RA (Arts et al, 2014). Algorithms 

assessed were SCORE, FRS, RRS and QRISK2. Discriminatory ability for CV risk 

prediction was estimated by the area under the receiver operating characteristic 

curve. Calibration was assessed by comparing the observed versus expected number 

of events. SCORE, FRS and RRS primarily underestimated CV risk at middle and low 

observed risk levels and mostly overestimated CV risk at higher observed risk levels. 

The QRISK2 primarily overestimated observed CV risk. Of note, depending on the 

model used, up to 32% of observed CV events occurred in RA patients who were 

classified as low risk for CV disease.  

It could be thought that the RRS may be good for assessing risk in patients with RA 

as it incorporates the inflammatory marker hs-CRP in addition to traditional risk 

factors. However, many patients with RA have high levels of CRP during the course 

of their disease (generally much higher than the general population) and thus it is 

unclear if adding hs-CRP to a CV risk algorithm improves the predictive performance 

in RA.  

In order to improve identification of patients at increased CV risk, different 

approaches have been suggested. The cut-off point for primary prevention could be 
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lowered. However, this could also lead to overtreatment, as most patients in low risk 

groups do not develop cardiovascular events (Arts et al, 2014). Alternatively, the CV 

risk score could be adjusted by a certain correction factor for patients with RA, such 

as suggested by the EULAR recommendations (Peters et al, 2010). This particular 

multiplicator was chosen as a meta-analysis showed a mean standardised mortality 

ratio (SMR) of 1.2 for inception cohorts (2 years’ disease duration) compared with a 

mean SMR of 1.9 for established disease (Ward, 2001). The EULAR guideline authors 

chose 1.5 as a multiplicator as available comparative studies did not adequately 

adjust for important confounders (including social class and physical activity), and 

few adjusted for all established CV risk factors using continuous data. Thus, it is 

possible that the excess CV risk in RA, over and above traditional risk factors, has 

been overestimated. Hence, a multiplication factor of 1.5 (rather than 2.0), was 

chosen on the basis of the evidence from observational SMR reporting studies as well 

as expert opinion (Peters et al, 2010). 

 

Drawback of current risk algorithms 

 

One problem with risk assessments are that they may be falsely reassuring for some 

patients who are defined as having low risk when they may actually have multiple 

marginal abnormalities. An important component of multivariate risk models for the 

estimation of CVD risk is that many of the risk factors (e.g. age, hypertension, serum 

LDL-cholesterol) are recognised as producing a graded increase in risk. In addition, 

the relative effects of traditional risk factors differ according to the particular vascular 

disease outcome being evaluated (Wilson, 2008). Some risk algorithms do not include 

patient important CVD outcomes such as stroke, heart failure or development of 

symptomatic peripheral artery disease. Therefore, there is a real need to better 

understand the aetiology of CVD in RA as current risk algorithms may lead to both 

over- and under-estimation of risk in different patients. Moreover, if a biomarker 

could be identified which could identify RA patients at high risk of CVD, they could be 

selected for more invasive investigation or management of risk.  
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1.9 Vascular function  

 

In order to understand vascular dysfunction it is important to understand the normal 

vascular structure and function.   

1.10 Normal structure of arteries  

 

To withstand regular pumping of the heart and thus high pressures, arteries have 

thick muscular walls. The artery wall consists of three layers, summarised in Figure 2.  

 

 

 Tunica Adventitia (or tunica externa) 

 

This is the outer layer rich in collagenous ECM molecules. It 

contains fibroblasts, blood vessels, and perivascular nerves. It 

also has a role in immune surveillance and inflammatory cell 

trafficking and contains the vasa vasorum, which maintains the 

Figure 2. A diagram of the normal arterial wall in cross section.  
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medial layer and provides access for macrophage and 

leukocyte migration into the intima (Majesky et al, 2011). 

 

 Tunica Media  

 

This consists of vascular smooth muscle cells (VSMCs) 

arranged concentrically with bands of elastin fibres between 

the layers. VSMCs enable blood vessels to constrict to allow 

vessel resistance (Rensen et al, 2007). When these cells 

contract they decrease the diameter of the blood vessel (i.e. 

vasoconstriction). When the VSMCs relax the blood vessel 

increases in diameter (i.e. vasodilation).  

 

 Tunica intima 

 

The innermost layer consists of a single layer of endothelial 

cells supported by an underlying internal elastic lamina. The 

endothelial cells are in direct contact with blood flow and form 

an interface between the circulating blood and the cells of the 

vessels (Rajendran et al, 2013). Intact endothelium 

mechanically separates platelets and their pro-coagulant 

products from intravascular, subendothelial and tissue 

coagulation factors, and also inhibits pro-coagulant proteins 

(Rajendran et al, 2013). It controls the passage of materials 

and white blood cells into and out of the circulation, reduces 

turbulence of blood flow and participates in fibrinolysis by the 

production of tissue plasminogen activator. The endothelium 

responds to numerous circulating factors, altering vascular 

tone and architecture. Several pathological conditions 

including hypercholesterolemia, diabetes mellitus and chronic 

inflammation disrupt the homeostatic mechanisms of the 

endothelial layer. This results in increased adhesiveness of the 
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endothelium to leucocytes and in altered permeability of the 

endothelium. This also leads to heightened reactivity of the 

adjacent vascular smooth muscle. Endothelial dysfunction is 

discussed in more detail in section 1.12.1.  

 

1.11 Vascular smooth muscle constriction  

 

Circulating endothelium-derived factors, hormones, neurotransmitters and shear 

stress all contribute to vascular smooth muscle tone, and thus lumen diameter 

(Wynne et al 2008). The final product is the control of blood pressure and organ blood 

flow. All VSMCs, regardless of the stimulus, produce contraction through cross-bridge 

cycling between actin and myosin filaments (Wynne et al 2008). In smooth muscle, 

this process is initiated by calcium-mediated change in the thick (myosin) filaments 

(Hilgers and Webb 2005). An increase in free intracellular calcium results from either 

increased flux of calcium into the cell through calcium channels or by release of 

calcium from internal stores, for example sarcoplasmic reticulum. The free calcium 

binds to calmodulin. Calcium-calmodulin activates myosin light-chain kinase, which 

phosphorylates myosin light chains (MLC) in the presence of ATP (Hilgers and Webb 

2005).  MLC phosphorylation leads to cross-bridge formation between the myosin 

heads and the actin filaments, and thus, smooth muscle contraction.  

 

1.12 Non-invasive assessment of vascular function and CVD in RA 

 

It is known that patients with RA have increased incidence of cardiovascular disease. 

There are various methods (invasive and non-invasive) used to measure both 

vascular function and structural abnormalities in RA and the general population.  

Coronary angiography is the gold standard test for identifying the presence and 

extent of atherosclerotic coronary artery disease. This invasive procedure is time 

consuming, costly and confers risk to the patient, such as bleeding, arrhythmia, 

infection, pain, blood vessel perforation and myocardial infarction. Non-invasive 
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techniques confer less risk. Each has its benefits and drawbacks, discussed in sections 

1.12.1 to 1.12.6. 

 

1.12.1 Endothelial dysfunction  

 

Endothelial dysfunction (ED) is one of the key early events in atherogenesis; it 

precedes structural atherosclerotic changes (Raitakari and Celermajer, 2000). 

However, it is also present in the late stages of atherosclerosis when it can lead to 

constriction or thrombosis of vessels (Raitakari and Celermajer, 2000). ED can be 

assessed invasively, by infusion of substances such as acetylcholine or substance P, 

which enhance the release of endothelial nitric oxide (Tousoulis et al, 2005). It can 

also be assessed noninvasively by measurement of endothelial-dependent flow-

mediated vasodilatation (ED-FMD) of peripheral arteries, measured by 

ultrasonography (Corretti et al, 2002). Here, arterial diameter is measured in 

response to an increase in shear stress (induced by inflation and then deflation of a 

sphygmomanometer cuff around the limb, distal to the scanned part of the artery), 

which causes endothelium-dependent dilatation. In the general population ED-FMD 

is a predictor of cardiovascular events (Bonetti et al, 2003), and is associated with 

risk factors of CVD. Endothelial dysfunction is a reversible disorder; interventions 

such as cholesterol lowering and smoking cessation can improve it (Bonetti et al, 

2003).  

ED-FMD is routinely expressed as the percentage change in arterial diameter (FMD%) 

from a resting baseline. Several studies have shown impaired FMD% in RA patients 

compared to controls (Fan et al, 2012; Chatterjee et al, 2012; Temiz et al, 2015). In 

one study median FMD% was significantly lower in RA patients compared to controls 

and according to the standard cut off value (FMD of 4.5%), 17 RA patients (48.57%) 

and 4 controls (11.43%) had abnormal FMD% (Chatterjee et al, 2012).  
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1.12.2 Arterial distensibility 

 

Arterial distensibility is a measure of vascular elastic behaviour, it measures arterial 

ability to contract and expand with cardiac relaxation and pulsation. Decreased 

arterial distensibility alters arterial flow dynamics and disturbs coronary perfusion. In 

animal models, a there is an alteration in arterial distensibility in the early stages of 

atherosclerosis of the aorta, before other vessel wall changes such as increased 

vessel wall thickness and plaque formation  (Hironaka et al, 1997). In humans, a 

decrease in distensibility (or increased artery wall stiffness) is related to risk factors 

for clinical vascular disease (Dart et al, 1991) and can predict those at increased risk 

of future coronary artery disease and stroke in apparently healthy individuals 

(Mattace-Raso et al, 2006). Of note, in the latter study, aortic pulse wave velocity 

was an independent predictor of coronary heart disease and stroke but carotid 

distensibility was not. However, this study used the brachial pulse pressure rather 

than the carotid pulse pressure, which may have led to an underestimation of the 

distensibility. In the atherosclerotic process, functional changes in the vascular wall 

may occur before anatomical changes such as intima media thickening or plaque 

formation. Previous studies have shown reduced carotid distensibility in women with 

RA compared to female controls and these changes correlated with disease severity 

(Turesson et al, 2005). There was no detected difference in men with RA compared 

to male controls.  

 

1.12.3 Echocardiography  

 

Transthoracic echocardiography (TTE) uses ultrasound to assess cardiac function and 

structure. It is safe, low cost and can also provide information on ischaemia when 

combined with pharmacological stress or exercise (Erhayiem et al, 2014). TTE is fairly 

easily available and well tolerated (Armstrong et al, 2012). However, adjacent 

structures can interfere with picture quality, obesity or acoustic shadowing from the 

lungs can be problematic, and reproducibility is limited by reporting variability 
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(Armstrong et al, 2012).  Studies using TTE have found that patients with RA have a 

higher incidence of valvular heart disease, pericarditis and aortic plaques than 

controls (Guedes et al, 2001), and also higher incidence of abnormal left ventricular 

remodelling than controls (Myasoedova et al, 2013). 

 

1.12.4 Cardiac MRI 

 

Cardiac magnetic resonance (CMR) imaging can assess both anatomy and function of 

the heart, as well as tissue characterisation. It can assess left ventricular mass, aortic 

distensibility, myocardial strain and myocardial ischemia (Erhayiem et al, 2014). 

There is no radiation exposure, it is a reproducible method and provides better 

accuracy than TTE for several measurements (Armstrong et al, 2012).  Unlike 

echocardiography, cardiac MRI can produce images without interference from 

adjacent bone or air. However, examination time is significantly longer than other 

non-invasive methods and requires more patient cooperation. Claustrophobic 

patients may have difficulty tolerating the procedure and installation and operation 

of the MRI equipment is expensive. Due to the magnets used in MRI, it is 

contraindicated in patients with ferromagnetic objects in situ, such as cardiac 

pacemakers and intracranial metal. In patients with RA mean left ventricular mass, 

left ventricular ejection fraction and cardiac output were both lower than in controls 

(Giles et al, 2010).  Other studies have shown myocardial abnormalities in RA patients 

without known cardiac disease and abnormal CMR findings were associated with a 

higher RA disease activity (Kobayashi et al, 2010). There are differences seen in the 

RA population compared to the general population in terms of LV mass; although 

there are conflicting results in the literature.  High LV mass in the general population 

is a poor prognostic indicator, but in RA patients, studies have shown reduced LV 

mass compared to pubished controls (Bissell et al 2014). 
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1.12.5 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed 

tomography (CT) 

 

Positron emission tomography (PET)/ computed tomography (CT) imaging of 

atherosclerosis using the metabolic marker fluorodeoxyglucose (FDG) allows 

quantification of arterial inflammation in vessels and plaques (Tawakol  et al, 2013). 

It was shown to improve prediction of future CVD events in the general population 

(Figueroa et al, 2013). However, resources are expensive and require advanced 

technical skill to perform and interpret, and not all centres will have the required 

equipment. RA patients were found to have significantly higher arterial FDG uptake 

compared with matched controls, after adjusting for atherosclerosis risk factors and 

statin use (Emami et al, 2014). In this study, arterial FDG uptake correlated with 

synovial activity. As well as arterial inflammation, a recent study has shown increased 

FDG uptake in the myocardium of RA patients compared to controls (Amigues et al, 

2016).  

 

1.12.6 Carotid Ultrasound Scan (USS) 

 

High-resolution B-mode ultrasound is a non-invasive method, used to assess the 

atherosclerotic process in various arteries. Atherosclerosis does not take place 

uniformly in the arterial tree, preferentially developing at arterial branches and 

opposite to flow dividers, as these sites are exposed to low or disturbed blood flow 

and low shear stress (Warboys et al, 2011). Regions exposed to unidirectional high 

flow are spared. These findings may be due to the fact that in areas of low blood flow, 

atherogenic cells or material have better access to the endothelium. Also, in areas of 

low shear stress, adhesion molecules are induced on endothelial cells (O’Keeffe et al, 

2009). Major sites for the atherosclerotic process are the coronary arteries, carotid 

and cerebral arteries, areas of the aorta and the large arteries to the lower 

extremities. The carotid arteries are easily accessible and atherosclerosis here 

reflects disease in other arteries such as the coronary arteries. Autopsy studies have 

http://imaging.onlinejacc.org/article.aspx?articleid=1901798#bib2
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shown positive correlations between carotid and coronary plaque burden (Mitchell 

and Schwartz, 1962). However, the presence of carotid plaque alone has not been 

sufficient to identify patients with inflammatory joints diseases at risk for CAD, and a 

combination of ultrasonographic measurements has been suggested for risk 

stratification in these patients (Svanteson et al 2017). Skeoch et al (2017) used 

Dynamic Contrast Enhanced MRI (DCE-MRI) and FDG-PET in RA patients. A higher 

prevalence of plaque calcification was noted in RA compared to controls, despite 

similar plaque size. There was also plaque inflammation detected in 12/13 RA 

patients scanned. 

US allows assessment of plaque and measurement of intima-media thickness (IMT). 

IMT is the combined width of the intima and media layers of an artery, measured 

from the border between the vessel lumen and the intima and the border between 

the media and adventitia (Urbina et al, 2006). Far-wall carotid IMT (CIMT) accurately 

represents the intima-media thickness compared with direct histological 

examination, whereas near wall CIMT measurements may underestimate the intima–

media thickness (Wong et al, 1993). Prospective longitudinal studies have shown that 

detection of plaque or CIMT thickening on USS are associated with an increased risk 

of myocardial infarction (Salonen and Salonen, 1991; van der Meer et al, 2004) and 

stroke (Gupta et al, 2015) in the general population. In RA, CIMT predicts 

development of CV events (Gonzalez-Juanatey et al, 2009). In this study RA patients 

without traditional CV risk factors who had CIMT values >0.90 mm had an increased 

risk of CV events over a 5-year follow-up period. Another study found that RA 

patients with carotid plaque had a higher risk of acute coronary syndromes (ACS); 

those with unilateral plaques had a 2.5 times increased risk and those with bilateral 

plaques had a 4.3 times increased risk (Evans et al, 2011). Also, mean CIMT has been 

shown to be significantly higher in RA patients (s (0.50 + 0.16 mm) compared to 

controls (0.44 + 0.09 mm) (Chatterjee et al, 2012). 

In view of its merits of low cost, reproducibility, non-invasiveness, good correlation 

with coronary atherosclerosis and good predictive value in terms of CV risk, this 

thesis used carotid USS and measurement of CIMT and plaque as a surrogate marker 

for atherosclerosis, as well as measures of arterial distensibility.  
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1.13 Inflammation and CVD atherosclerosis in the general population  
 
 
Although great progress has been made in the prevention and treatment of 

cardiovascular disease, it is still the leading cause of death in the Western world 

(Braunwald, 1997). Advances in basic science have established the fundamental role 

of inflammation in all stages of atherosclerosis, from plaque formation to instability 

and eventual rupture (Gonzalez-Gay et al, 2005; Hansson and Hermansson, 2011; 

Libby et al, 2011). Both the innate and adaptive immune responses are involved in 

atherosclerosis, regulated by various cytokines. To appreciate the role of 

inflammation in the atherosclerosis process it is important to understand the 

pathogenesis of atherosclerosis.  

 

  

1.13.1 Pathogenesis of atherosclerosis  

 

Lesions of atherosclerosis occur mainly in medium and large muscular and elastic 

arteries (Ross, 1999). As mentioned in section 1.12.6, atherosclerosis does not take 

place uniformly in the arterial tree, developing at arterial branches and opposite flow 

dividers, where there is often disturbed blood flow. Although thought of as a disease 

of aging, early lesions can develop in childhood. ‘Fatty streaks’, the earliest type of 

lesion, are seen in infants and young children (Napoli et al, 1997). These are in fact 

inflammatory lesions, consisting of T lymphocytes and monocyte derived 

macrophages (Stary et al, 1994).  

 

Atherosclerotic lesions start to develop under a dysfunctional and leaky endothelium 

(Falk, 2006), augmented by factors such as high plasma LDL concentration (Ramji and 

Davies, 2015). As the process advances, endothelial cells may disappear, leaving 

denuded areas. Certain molecules and lipoprotein particles extravasate through this 

leaky endothelium into the subendothelial space (Falk, 2006). Here, lipoproteins 

become oxidized and therefore atherogenic. Once activated by various stimuli, the 

endothelium becomes activated and the expression of adhesion molecules such as 
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VCAM-1, ICAM-1, E selectin and P selectin are upregulated (Falk, 2006). 

Consequently, leucocytes, namely monocytes and T cells, are recruited to the 

endothelium, attracted to it by chemokines, such as CCL2 (Deshmane et al, 2009). 

These cells then migrate through the endothelium into the intima. Once here, 

monocytes differentiate into macrophages and these then ingest modified LDL to 

become foam cells (Libby et al, 2002). Sustained accumulation of modified LDL plus 

disturbed lipid homeostasis causes apoptosis and necrosis of foam cells (Ramji and 

Davies, 2015). This results in a necrotic core of the plaque and amplification of the 

inflammatory response (Moss and Ramji, 2016).  

 

T and B lymphocytes are also found in the intima during lesion development. These 

lymphocytes, as well as vascular wall cells, secrete growth factors and cytokines that 

promote the migration and proliferation of smooth muscle cells (SMCs). SMCs also 

undergo characteristic phenotypical changes, can up-regulate adhesion molecules 

(Ikeda et al, 1993) and secrete cytokines (Ikeda et al, 1991). SMCs also express 

enzymes that can degrade the collagen and elastin in response to inflammatory 

stimulation (Libby et al, 2002). This allows SMCs to invade through the elastic laminae 

and collagenous matrix of the plaque (Libby et al, 2002). SMCs also secrete 

extracellular matrix (ECM) proteins that stabilise plaque by forming a fibrous cap over 

it.  

 

 

1.13.2 Plaque rupture  

 

As the plaque evolves, inflammatory mediators induce the expression of 

collagenases by foam cells within the intimal lesion and also inhibit collagen synthesis 

(Libby et al, 2002). This leads to thinning of the plaque fibrous cap, rendering it weak 

and susceptible to rupture (Bentzon et al, 2014). When a plaque ruptures, a gap in 

the fibrous cap exposes the thrombogenic core of the plaque to blood (Bentzon et al, 

2014). This then leads to platelet aggregation, coagulation and thrombus, which 

causes most acute complications of atherosclerosis (Libby et al, 2002).  
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1.14 Biomarkers of inflammation in risk prediction in the general population  

 

As suggested above, inflammation is involved in all stages of atherosclerosis. Several 

studies have shown relationships between various biomarkers of inflammation and 

cardiovascular risk, in apparently healthy individuals as well as in patients with 

cardiovascular disease. There are several biomarkers that have been studied. 

Epidemiological studies have shown that circulating CRP (Ridker and Cook, 2004), IL-

6 (Ridker et al, 2000) and fibrinogen (Danesh et al, 2005) are associated with higher 

risk of CVD in the general population, independent of known CVD risk factors. In RA, 

levels of these pro-inflammatory molecules and cytokines are increased.  

1.14.1 C-reactive protein (CRP)  

 

For several reasons, CRP has been studied as a biomarker of CVD for clinical 

application. In healthy individuals without inflammatory diseases or infections, levels 

of hsCRP remain stable over long periods of time (Danesh et al, 2004). Most 

laboratories in developed countries used for routine clinical care also measure CRP 

and there is no diurnal variation (Meier-Ewert et al, 2001). CRP can be found within 

the atherosclerotic lesion, in the vascular intima, where it co-localizes with foam cells 

(Torzewski et al 1998). Most clinical studies report that CRP is an independent 

predictor of cardiovascular events (Paffen and DeMaat, 2006), even after adjusting 

for other cardiovascular risk factors such as age, smoking, obesity, 

hypercholesterolemia and hypertension. However, others have reported that 

although CRP predicts risk of MI, the increase in risk could be largely explained by the 

presence of other risk factors (Doggen et al, 2000). However, in RA, levels of CRP are 

generally much higher than the general population and are more subject to 

fluctuations (Aotsuka et al, 2005).  
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1.14.2 Interleukin-6 (IL-6) 

 

Various studies have examined the association of IL-6 and cardiovascular risk and 

disease. Elevated IL-6 levels in healthy men were associated with increased risk for 

future MI independently of hs-CRP (Ridker et al, 2000). Levels of IL-6 are higher in 

those with acute coronary syndromes compared to those with stable angina 

(Ozdemir et al, 2008). High IL-6 levels are associated with increased mortality in 

patients with acute coronary syndromes (Biasucci et al, 1999). Among women with 

prevalent CVD, those with high IL-6 levels had >4-fold risk of death compared to 

women with low IL-6 levels (Volpato et al, 2001). There is an increasing 

understanding of the complexity of IL-6 signalling and several studies have studied 

the IL-6 receptor (IL-6R).  

 

1.15 Reduction of inflammation can reduce risk of CVD in the general 

population  

 

Large studies in the general population have highlighted that inflammation is a key 

driver of atherosclerosis. The JUPITER study (Ridker et al 2008), found that in a trial 

of over 15,000 apparently healthy individuals without hyperlipidaemia but with 

elevated high sensitivity CRP, statin reduced the number of major cardiovascular 

events. The CANTOS study found that Canakinumab, a monoclonal antibody 

targeting interleukin-1, led to a significantly lower rate of recurrent CV events then 

placebo, independent of lipid lowering (Ridker et al 2017).  

Studies have shown that statin therapy lowers CRP levels independently of lipid 

levels, supporting the notion that statins have anti-inflammatory effects (Zakynthinos 

et al, 2008). One study has shown that statins limit both protein and RNA levels of IL-

6-induced CRP in human hepatocytes (Arnaud et al, 2005). In vivo animal and human 

studies show that statins can improve endothelial function. This improvement may 

be partly due to reduced LDL levels, however several studies have found that 

endothelial function is restored before significant changes in serum cholesterol levels 
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are seen (Anderson et al, 1995). Statins also inhibit the expression of VCAM-1 and 

ICAM-1, therefore reducing immune-cell recruitment within the vessel wall and 

reducing inflammation (Jain and Ridker, 2005). Statins also induce eNOS 

accumulation within endothelial cells, therefore reducing the effects of reduced NO 

availability in the inflammatory setting (Jain and Ridker, 2005).  

 

1.16 Animal models of RA and atherosclerosis  

 

Animal models for both RA and atherosclerosis are well established. They provide 

crucial tools to investigate the pathophysiology of these diseases and to test 

therapeutic strategies in vitro prior to use in humans. Assessments of disease and 

treatment outcomes can be made in well-controlled environments, without having 

to allow for individual variability between human patients. It is also possible to obtain 

tissue from animal studies that would be difficult or impossible to obtain from living 

humans. Animal models of RA and atherosclerosis provide the unique opportunities 

to unravel the pathophysiological features of vascular dysfunction and cardiovascular 

disease in these settings. 

 

 

1.16.1 Animal models of arthritis  

 

Animal models have been used extensively in studies of rheumatoid arthritis. The 

aetiology of RA is multifactorial, with both genetic and environmental components. 

Presentation and progression of RA in humans is very variable. In animal models, 

conditions can be tightly controlled and thus results can be compared and data can 

be reproduced. Animal models of RA have significantly advanced our understanding 

of the pathogenesis of RA and contributed to several major advances in its treatment, 

most notably the development of anti-TNF agents.   
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In terms of studying the pathogenesis of cardiovascular disease in RA, it is not feasible 

to sample human vascular tissue. Therefore using animal models of RA allows us to 

gain a greater understanding of the functional and histological abnormalities within 

vascular tissue that may contribute to cardiovascular disease in RA.  Studies have 

shown that even 10 years before disease onset in RA, patients have serum 

abnormalities such as presence of rheumatoid factors (Nielen et al, 2004) and 

antibodies against citrinullated self-proteins (Mandl et al, 2005). Also, patients who 

go on to develop RA have dyslipidaemia with a more atherogenic lipid profile than 

matched blood donors at least 10 years before onset of symptoms (van Halm et al, 

2007). Patients with RA have rapid progression of CVD soon after RA onset (Innala et 

al, 2011). Animal models allow us to study the early, and even pre-disease RA phase.  

Several animal models of inflammatory arthritis exist, each with their own 

advantages and limitations. Models can be induced, such as antigen induced arthritis 

or collagen-induced arthritis (CIA), or animals can be genetically manipulated to 

spontaneously develop arthritis, such as the TNF-alpha-transgenic mouse, K/BxN 

mouse, and the Skg mouse (Asquith et al, 2009). Table 2 summarises several rodent 

models of arthritis and their key features. In this thesis the CIA model was used for 

several reasons; its systemic nature, ease of induction, reproducibility of results, and 

previous experience of this model in the department. Moreover, there are previous 

reports of vascular dysfunction in the literature in this model.  
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Table 2. Summary of animal models of RA and effects on vascular function 

Model Animal 
Strain 

Examples of 
arthritogens 

Arthritogenic 
effector 

mechanism 

Mechanism of 
action  

Pattern of 
joint 

involvement  

Pathological 
features  

Vascular function 

Adjuvant –
induced 
arthritis  

Male 
Wistar or 
Lewis rat 

Heat-
killed.M. 
tuberculosis 
H37Ra or M. 
smegmatis 

- 

T cell and 
neutrophil 
mediated   

Polyarticular Marked bone 
resorption, and 
periosteal bone 
proliferation 

Reduced acetylcholine 
(ACh)-induced 
endothelium-dependent 
vasorelaxation (Prati et al, 
2011) 

Antigen 
Induced 
arthritis  

Mouse/rat  Methylated 
bovine.serum 
albumin 
(BSA) 

- 

T cell mediated  Monoarticular Cartilage and bone 
destruction  

Unknown (no systemic 
manifestations) 

Collagen 
Induced 
arthritis  

Male 
DBA/1 
mice  

Type II 
collagen (CII) 

- 

T and B cell 
mediated, 
complement-
dependent 

Polyarticular  Cartilage and bone 
destruction, 
synovitis, and 
periosteal 
proliferation 

Reduced ACh-induced 
endothelium-dependent 
vasorelaxation (He et al, 
2013) 
Reduced aortic 
constriction (Reynolds et 
al, 2012)  

Streptococcal 
cell wall 
induced 
arthritis 

Rat  Group A/B/C 
streptococci 

- 

T‐cell and 
monocyte‐mediated 

Polyarticular Cartilage and bone 
destruction 

Unknown  

K/BxN Mouse 

- 

Crossreactive 
autoantibodies 
against glucose-6-
phosphate 
isomerase  

Complement 
activation 
and mast cell 
degranulation 

Polyarticular Cartilage and bone 
destruction 

Mild aortic valve 
inflammation (Binstadt et 
al, 2009)  
Vascular function 
unknown 

SKG Mouse  

- 

A defective thymic 
selection of T cells 
due to a mutation in 
the SH2 domain of 
ZAP 70 

T cell mediated  Polyarticular Cartilage and bone 
destruction 

Unknown   
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1.16.1.1 Collagen Induced Arthritis  

 

CIA has proven to be an important model of human RA, helping to define the role of 

many of its cellular and molecular mediators (Myers et al, 1997), and is the most 

widely studied model of RA. Murine CIA (mCIA) has been very important in the testing 

and development of numerous agents, such as tumour necrosis factor inhibitors. 

Arthritis is induced by immunisation with an emulsion of type II collagen (CII) (usually 

heterologous, chicken or bovine) and complete Freund's adjuvant; subsequently 

auto-antibodies to collagen II are produced.  

CIA shares several pathological features with RA. Both are polyarticular, systemic 

diseases. The target tissue in RA is cartilage, and collagen II is a key protein here.  In 

terms of histological findings, several shared pathological features between RA and 

mCIA include synovial hyperplasia, mononuclear cell infiltration, and cartilage 

degradation (Brand et al, 2007). In RA it is well established that inherited 

susceptibility is associated with genes encoding the human MHC class II molecules 

(HLA-DR4 and HLA-DR1 alleles) (Todd et al, 1988).  Similarly, susceptibility to CIA is 

linked to expression of specific MHC class II genes (Brand et al, 2007).  

 

Differences between mCIA and RA 

There are differences between RA and mCIA. In mCIA rheumatoid factor is not 

present. There is no female preponderance as there is in RA, and CIA is generally 

monophasic, although some relapsing models have been described (Boissier et al, 

1987). In mCIA animals develop antibodies to collagen, while this is not the case in a 

large proportion of patients with RA (Bevaart et al, 2010). Of note, neutrophils are 

abundantly present in the synovial tissue of mice with CIA (Suzuki et al, 1997), which 

is in contrast to RA synovium, where there are relatively few neutrophils, and more 

T cells, plasma cells, macrophages, and B cells (Tak et al, 1997). Also, in RA there are 

marked variations in the synovial cell infiltrate in biopsy specimens from different 

patients, even in early disease (Tak et al, 1997), reflecting the heterogeneity of RA.  
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Mechanisms of CIA development  

The pathogenesis of CIA involves both T-cell and B-cell-specific responses to collagen 

II, a major protein constituent of joint cartilage. B cells are of critical importance as 

they produce antibodies to collagen II. Indeed, B cell-deficient mice are resistant to 

CIA (Svensson et al, 1998). The role of T cells in CIA are twofold; they provide help to 

B cells for the production of anti-CII antibodies (Corthay et al, 1999) and also play a 

role in joint inflammation through activation of other cells, e.g. synovial 

macrophages.  

Anti-collagen II antibodies bind to collagen II in the joint, resulting in complex 

formation and complement activation, C3 deposition and cleavage of C5 (Wang et al, 

1995). These events trigger a local inflammatory response during which T cells, 

monocytes and granulocytes are attracted to the joint, resulting in further immune 

activation and production of chemokines (Luross and Williams, 2001). At the time of 

the clinical onset of arthritis, IL-1, IL-10, TNFα, and IL-6 can be detected at the site of 

inflammation in the joint. More recently described cytokines such as IL-17, IL-21, IL-

23, IL-32, and IL-33 have all been reported to aggravate CIA (Moudgil et al, 2011).  

The symptoms of CIA begin around day 21 post immunisation. Within a few days after 

arthritis onset the affected joint shows an inflammatory reaction. The synovium, 

which is normally hypocellular, becomes infiltrated with macrophages, neutrophils 

and B and T cells. The histopathology is similar to that observed in RA, with formation 

of an erosive pannus tissue which invades cartilage and bone. Cartilage is damaged 

by matrix-degrading enzymes and osteoclasts induce bone erosion. This can lead to 

remodelling and ultimately destruction of the joint. The severity of arthritis and 

disease course varies depending on mouse strain, type and dose of collagen 

immunised. These factors are discussed in more detail in section 3.1.1. Most mouse 

strains are more resistant to development of arthritis after immunization with 

homologous (mouse) CII. However, some studies have shown that immunisation with 

homologous CII can produce a more chronic form of CIA, with periods of remission 

and exacerbations (Boissier et al, 1987; Holmdahl et al, 1985).   
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CVD and CIA  

The risk of CVD associated with RA appears to precede the ACR criteria–based 

diagnosis of RA (Maradit-Kremers et al, 2005). Therefore the CIA model offers an 

excellent opportunity to identify early changes within the vasculature that lead to 

CVD. 

Reynolds et al found a relationship between arthritic disease in DBA/1 mice and 

contractile dysfunction in rings of isolated aorta (Reynolds et al, 2012).  However, 

contractile dysfunction was not accompanied by overt endothelial dysfunction as 

endothelium-dependent relaxation responses to acetylcholine were similar to those 

seen in tissues from non-immunized control mice. Also, relaxation responses to 

exogenous nitric oxide (NO) were unaffected. These findings suggest that there is 

sufficient endothelium-derived NO bioavailability during mCIA, and that vascular 

smooth muscle responds both to endogenous and exogenous NO to produce 

vasodilation. This is unexpected given the fact that endothelial dysfunction is found 

early in RA. However, the mouse model of CIA occurs over days rather than weeks or 

months, and it may possible be that if experiments were left to run for longer, 

endothelial dysfunction may have occurred.  

Other studies have shown that CIA is associated with increased aortic expression of 

VCAM-1 (Denys et al, 2016). VCAM-1 mediates the adhesion of lymphocytes, 

monocytes, eosinophils, and basophils to vascular endothelium and has been shown 

to play a crucial role in early atherosclerosis (Cybulsky et al, 2001).  Interestingly in 

this study by Denys et al, at 15 weeks after the first CIA immunisation, atherosclerotic 

plaque formation in the aorta was detected with CIA mice fed a high fat diet, and 

non-immunised mice fed a high fat diet, but not in CIA alone. Previous work in our 

department by Williams et al showed that CIA drives an increase in systemic 

inflammation, represented by increased macrophages in the aorta and perivascular 

adipose tissue (PVAT) of mice with CIA (Williams et al, 2016). This is relevant to RA 

patients, as they are known to have more inflammation in both their aorta 

(Greenburg et al, 2012) and in atherosclerotic plaques (Aubry et al, 2007) compared 

with non-RA controls. Also, we know that systemic inflammation in RA is associated 

with increased cardiovascular risk. Other work from our department has shown that 
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vascular calcification is not responsible for the vascular dysfunction seen in CIA.  This 

work also showed that aortic collagen and elastin become dysregulated during CIA 

and show a fibrosis like phenotype (unpublished yet).  

 

1.16.2 Animal models of atherosclerosis  

 

Mouse models of atherosclerosis have proved useful to study the development and 

progression of atherosclerotic lesions. Knockout and transgenic mouse models of 

atherosclerosis have been valuable in understanding the molecular and cellular 

mechanisms involved and in evaluating the effectiveness of treatment (Zadelaar et 

al, 2007). The predominant lipoprotein in wild type mice is HDL, making them 

relatively resistant to atherosclerosis (Getz et al, 2012). Therefore mice have been 

genetically modified to produce changes in lipid metabolism, making them prone to 

atherosclerosis. The extent to which these models serve as accurate models of 

human diseases is debateable.  Unlike humans, mice rarely develop atherosclerosis 

in the coronary arteries but more so in the aortic root (Getz and Reardon, 2012). Also, 

atherosclerotic lesions tend to be less complex than human lesions (Getz and 

Reardon, 2012). Despite these drawbacks, mouse models of atherosclerosis provide 

valuable insights into lesion pathogenesis and the effect of various drugs on the 

disease.  

There are several animal models of atherosclerosis. Large animal models include 

rabbits, pigs and nonhuman primates. Due to the relative ease of genetic 

manipulation and the relatively quick time frame for atherosclerosis development, 

mouse models are currently the most extensively used (Getz and Reardon, 2012). 

The most widely used knock out mouse models are the LDL receptor deficient mouse 

(LDLR-/-) and the ApoE-/- mouse.  The LDLR-/- mouse has delayed clearance of VLDL 

and LDL from plasma. They have a moderate increase of plasma cholesterol level and 

develop atherosclerosis slowly on normal chow diet (Zaragoza et al, 2011). Unlike the 

ApoE−/− mice, no systematic pathological analysis of lesion development in the 

LDLR−/− mice has been reported (Getz and Reardon, 2012), and they also do not 

develop a fibrous cap (Breslow, 1996). ApoE-/- mice have been created by 
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homologous recombination in embryonic stem cells (Nakashima et al, 1994). These 

mice develop a range of atherosclerotic lesions from fatty streaks to fibrous plaques, 

distributed throughout the arterial tree. Atherosclerotic lesions show several 

features of the inflammatory-fibroproliferative response characteristic of 

atherosclerosis in humans (Nakashima et al, 1994).  ApoE−/− mice do have some 

disadvantages; plasma cholesterol in this model is largely carried on lipoprotein 

remnants rather than the LDL, which is generally the most frequent carrier of 

cholesterol in human atherosclerosis (Getz and Reardon, 2012). Due to the complex 

lesions that develop rapidly and their comparability with human lesions, the ApoE−/− 

mouse was used in this thesis.  

 

 

Relevance to RA patients  

Although there are obvious differences in the ApoE-/- model and RA patients, RA 

patients are known to have dyslipidaemia more than ten years before the onset of 

arthritis, with higher total cholesterol, triglyceride and Apo B levels and lower HDLc 

levels than matched controls (van Halm et al, 2006). Interestingly, CRP had only a 

marginal influence on the differences in lipid levels between patients and controls in 

this study. Therefore, utilising the ApoE-/- model and enhancing systemic 

inflammation (for example by using tools to enhance IL-6 trans-signaling), presents a 

way to study the effect of dyslipidaemia and inflammation, processes that occur in 

early or even pre-RA. In addition, RA patients have increased inflammation in plaques 

and increased proportion of unstable plaques compared to non-RA patients at 

autopsy (Aubry et al, 2007). Using this mouse model also allows examination of other 

defined outcomes such as plaque size, expression of SCCPs in plaque and fibrous cap 

thickness.  
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1.17 IL-6 in RA and CVD 

 

1.17.1 IL-6  

 

IL-6 is a pleiotropic cytokine, a 26-kDa glycopeptide. It is produced by various cell 

types such as B cells, T cells, fibroblasts, osteoblasts, monocytes, and endothelial cells 

(Srirangan and Choy, 2010). It is involved in a wide range of biological activities 

including immune regulation, haematopoiesis and inflammation (Hunter and Jones, 

2015). IL-6 has hormone like characteristics that affect many systems and processes 

such as lipid metabolism (Glund and Krook, 2008), neuropsychological behaviour 

(Rohleder et al, 2012) and the neuroendocrine and vascular systems (Hou et al, 

2008).  IL-6 deficiency can lead to compromised innate and adaptive immunity in 

mice (Kopf et al, 1994) and in humans (Puel et al, 2008).   

Serum levels of IL-6 in a normal physiological state are low (2.6-6.5 pg/mL (Kim et al, 

2011) but can increase rapidly in inflammatory states, such as infection. In severe 

inflammatory states, such as septic shock, levels can reach the ng/ml range (Calandra 

et al, 1991). In RA, serum levels range from around 1.5–234.0 pg/ml (Robak et al, 

1998). In RA, IL-6 is seen at high levels in synovial fluid and IL-6 in the joint has been 

shown to induce pannus formation, osteoclast activation and mediate chronic 

synovitis (Srirangan and Choy, 2010). IL-6 can activate cells via two signaling 

pathways, IL-6 classical signaling and IL-6 trans-signaling, discussed in more detail 

below and outlined in Figure 3.  

 

1.17.2 IL-6 signaling  

 

In classical signaling, IL-6 binds to membrane bound IL-6R (mIL-6R). The complex of 

IL-6/mIL-6R then associates with another protein, gp130, which then dimerizes and 

instigates intracellular signalling (Jones et al, 2001).  IL-6R is only present on certain 

cells, these are hepatocytes, and some leukocyte subpopulations, including 

monocytes, neutrophils, and some T cells and B cells (Rose-John, 2012). Thus, 

classical signaling only affects certain cells. In addition to signal transduction through 
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mIL-6R, there is also ‘trans-signaling’. Here, soluble IL-6R (sIL-6R), which is generated 

by either alternative splicing or ectodomain shedding (Dayer and Choy, 2010), 

triggers gp130 signaling by first binding to IL-6 (Rose-John, 2012). As gp130 is 

ubiquitously expressed, trans-signaling enables IL-6/sIL-6R to activate cells that lack 

the IL-6R. SIL-6R is released by monoctyes and activated T cells (Briso et al, 2008). 

Importantly, unlike other soluble cytokine receptors such as soluble TNF-αR, sIL-6R 

does not act antagonistically, thus limiting the IL-6 cytokine activity, but rather acts 

as an agonist.  

 

 

 

 

Figure 3. Two modes of IL-6 signaling. IL-6 classic-signaling requires membrane bound IL-6R and is 
therefore restricted to cells that express this: hepatocytes, some epithelial cells and some leukocytes. 
IL-6 trans-signaling requires sIL-6R and can affect any cell of the body since gp130 is ubiquitously 
expressed. (Adapted from Rose-John, 2012) 
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A soluble from of gp130, (sgp130) is found in the circulation. This is formed from 

translation from alternatively spliced mRNA (Rose-John, 2012). Sgp130 blocks trans-

signaling by binding to the complex of IL-6/sIL-6R so that this cannot bind to gp130 

(Figure 4). IL-6 alone does not interact with sgp130, therefore signaling via 

membrane-bound IL-6R is not inhibited by sgp130 (Jostock et al, 2001). Serum levels 

of sgp130 are around 400 ng/mL (Narazaki et al, 1993). sIL-6R levels are around 

75ng/ml. As mentioned previously, serum IL-6 levels in a normal physiological state 

are 2.6-6.5 pg/mL.  Thus, sgp130 is the most abundant protein, followed by sIL-6R 

and then IL-6 at much lower levels. This implies that under physiological conditions, 

IL-6 will be bound to sIL-6R, which is in turn bound to sgp130, and is, therefore 

neutralised. In extreme conditions such as sepsis, levels of IL-6 will increase 

profoundly and levels of sIL-6R increase. These will exceed levels of sgp130 which 

change little during inflammation (Rose-John, 2012), and IL-6 can therefore act 

systemically, by classical signaling if levels exceed sIL-6R, or by trans-signaling if sIL-

6R levels are higher. What is not clear however, are specific levels of these cytokines 

and receptors at the sites of inflammation.  
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Figure 4. Blockade of IL-6 trans-signaling by sgp130. Sgp130 only binds to the complex of IL-6/sIL-6R 
and therefore only blocks IL-6 trans-signaling. Excess IL-6 will continue to bind to mIL-6R and 
classical trans-signaling will continue. Adapted from Rose-John, 2012.  

 

  

JAK/STAT pathway  

Once the complex of IL-6/IL-6R (either IL-6/mIL-6R or IL-6/sIL-6R) has bound to 

gp130, gp130 dimerises, leading to the activation of Janus Kinases and the activation 

of transcription factors of the STAT (signal transducers and activators of 

transcription) family. STATs are latent transcription factors that reside in the 

cytoplasm until activated. Gp130-associated kinases Jak1, Jak2, and Tyk2 become 

activated upon stimulation, and the cytoplasmic tail of gp130 is phosphorylated. This 

mediates the recruitment of STAT1, STAT3 and STAT5 proteins (Hunter and Jones, 

2015). Subsequently, STAT3 also becomes phosphorylated, forms dimers and 

translocates to the nucleus, where it regulates transcription of target genes (Heinrich 

et al, 1998). These genes include those that encode acute-phase proteins. STAT3 also 

upregulates the transcription of genes encoding the SOCS3 proteins, which inhibit 

STAT3 activation (Nishimoto and Kishimoto, 2006).  
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1.17.3 Pro and anti-inflammatory activities of IL-6  

 

There is increasing evidence that trans-signaling is pro-inflammatory whereas 

classical signaling has important regenerative or anti-inflammatory effects, such as 

regeneration of damaged intestinal epithelium and wound healing, discussed in more 

detail below. Two research tools have been developed to differentiate the activities 

of classical and trans-signaling. Hyper-IL-6 is a complex of IL-6/sIL-6R bound by a 

flexible peptide linker (Fischer et al, 1997).  This specifically induces trans-signaling. 

Sgp130Fc is an engineered fusion protein which consists of the extracellular portion 

of gp130 linked to the Fc domain of a human IgG1 antibody. Sgp130Fc blocks IL-6 

trans-signaling without affecting IL-6 classic signaling.  

Evidence that trans-signaling is pro-inflammatory  

In a mouse sepsis model using caecal puncture and ligation (CLP) classical versus 

trans-signaling was examined (Barkhausen et al, 2011). This model has a 60% 

mortality untreated. Mice given neutralising IL-6 antibody did not have a significant 

increase in survival but 100% of mice given sgp130Fc survived. CLP led to an 

upregulation of the acute phase protein serum amyloid A (SSA). This SAA induction 

was inhibited by global IL-6 blockade but was unaffected by treatment of the mice 

with sgp130Fc. Also, sgp130Fc inhibited epithelial apoptosis whereas anti IL-6 

antibody did not.  

In another experiment, mice were infected with Mycobacterium tuberculosis (Mtb) 

and administered either sgp130Fc or anti-TNF (Sodenkamp et al, 2012). With anti-

TNF antibody treatment there was a 10-100 fold increase in mycobacterial colony 

forming units in the lung, liver and spleen. In contrast, administration of sgp130Fc 

did not interfere with protective immune responses after infection with Mtb and 

there was no increase of bacterial burden. Sgp130Fc-overexpressing transgenic 

(sgp130Fctg) mice were also infected with Mtb. These mice were capable of 

controlling mycobacterial growth. This is of importance in RA as other biological 

agents, especially anti-TNF agents are associated with an increased rate of 

reactivation of tuberculosis (Stallmach et al, 2010).  
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Table 3 summarises the effect of sgp130Fc on animal models of human diseases  

 

Human disease Mouse model Effect of sgp130fc 

Rheumatoid arthritis  Antigen induced arthritis (Nowell 
et al, 2003) 
Collagen induced arthritis (Nowell 
et al, 2009) 
 

Reduced disease severity 
Reduced disease severity  

Sepsis  Caecal puncture and ligation 
(Barkhausen et al, 2011) 
 

Increased survival  

Tuberculosis  Pulmonary infection with 
mycobacterium tuberculosis 
(Sodenkamp et al, 2012)  
 

No interference with protective 
immune responses  

Acute inflammation  Air pouch model (Rabe et al, 2008)  Reduction in infiltrating 
inflammatory cells  

Atherosclerosis  LDLr-/- mice (Schuett et al, 2012)  
 

Reduction in atherosclerosis  

Ovarian cancer  Human ovarian tumour xenograft 
model in NOD/SCID mice (Lo et al, 
2010) 

Reduced ascites formation and 
enhanced tumour sensitivity to 
paclitaxel 

 

Table 3 Effect of sgp130Fc on animal models of human diseases 

 

Evidence that IL-6 has anti-inflammatory or regenerative effects  

IL-6-/- mice exhibited less tumours but more inflammation than wild type mice in an 

inflammatory colon cancer model (Grivennikov et al, 2009). The IL-6-/- mice had 

impaired regeneration of the irritated intestinal epithelium. Another mouse model 

found that IL-6-/- mice failed to control bacterial numbers 2-3 weeks after infection 

with Citrobacter rodentium and exhibited increased mortality (Dann et al, 2008).  

From these studies it was concluded that the regenerative activities of IL-6 are 

needed for wound healing in the intestine.  

IL-6-/- mice have impaired wound healing with reduced expression of IL-1, 

chemokines, adhesion molecules, transforming growth factor-β1, and vascular 

endothelial growth factor at the wound sites compared to wild type mice (Lin et al, 

2003). In IL-6-/- mice there was reduced leukocyte infiltration, re-epithelialization, 
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angiogenesis, and collagen accumulation. Wild type mice were also given neutralizing 

anti-IL-6 monoclonal antibody which significantly delayed wound closure. These 

findings suggest that IL-6 plays an important role in wound healing.  

 
 

1.17.4 IL-6 and sIL-6R in RA  

 

Serum IL-6 is higher in patients with RA than controls, correlates with CRP and 

duration of morning stiffness (Madhok et al, 1993). In RA, IL-6 is found at high levels 

in synovial fluid and IL-6 in the joint has been shown to induce pannus formation, 

osteoclast activation and mediate chronic synovitis (Srirangan and Choy, 2010). 

Several cell types within the joint can produce IL-6, but the main source is from 

fibroblast-like synoviocytes (Bartok and Firestein, 2010). Serum sIL-6R levels in RA 

patients have been found to be significantly higher than those of control subjects 

(Kohno et al, 1998). In this study, sIL-6R was detectable in synovial fluid, but at a 

lower level than in the serum, in contrast to IL-6 which was much higher in the 

synovial fluid than serum. One important source of sIL-6R is circulating neutrophils. 

Previous work by Jones et al (1999) found CRP causes a 3-fold increase in sIL-6R 

release by neutrophils. CRP levels are substantially elevated in patients with active 

RA. CRP-stimulated release of sIL-6R by circulating neutrophils could lead to an 

increase in circulating sIL-6R levels. 

Tocilizumab, a humanised monoclonal antibody against the IL-6R is a licensed 

treatment for RA. This is an effective treatment; reducing disease severity, 

inflammatory markers and slowing progression in terms of radiologic damage 

(Smolen et al, 2011). Tocilizumab blocks both classical and trans-signaling (Rose-

John, 2012). Although a very effective treatment for RA, several side effects have 

been reported. These include abnormalities in liver function tests (LFTs), increases in 

serum cholesterol levels, increase in infection rates, and a risk of gastrointestinal 

perforation if the patient has pre-existing diverticulitis (Navarro-Millán et al, 2012). 

These potential side effects are thought to be due to the blockade of classical 

signaling rather than trans-signaling.  
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1.17.5 IL-6 and sIL-6R in CVD 

 

Inflammation contributes to the onset and pathogenesis of CVD in the general 

population. Epidemiological studies have shown that circulating CRP (Ridker and 

Cook, 2004) and IL-6 (Ridker et al, 2000) are associated with higher risk of CVD in the 

general population, independent of known CVD risk factors. High IL-6 levels are 

associated with increased mortality in patients with acute coronary syndromes 

(Biasucci et al, 1999). Both IL-6 and sIL-6R levels are increased in patients presenting 

with acute myocardial infarction compared to controls and those with stable 

coronary artery disease (CAD) (Anderson et al, 2013), but sgp130 showed no 

significant change between AMI, CAD, and control patients. 

A non-synonymous allelic variant in the IL-6R gene (rs2228145):358Ala increases 

serum sIL-6R by 35% but reduces surface IL-6R expression (Ferreira et al, 2013). Two 

large-scale genetic and biomarker studies found a causal link between IL-6R gene 

polymorphism and development of CVD in the normal population (IL6R Genetics 

Consortium Emerging Risk Factors Collaboration, 2012; Interleukin-6 Receptor 

Mendelian Randomisation Analysis (IL6R MR) Consortium, 2012). However, in RA, IL-

6R polymorphism is not associated with CVD   (López-Mejías et al, 2011). This is not 

unexpected since sIL-6R level is 2-3 fold higher in RA patients than the general 

population (Usón et al, 1997), hence the impact of RA on circulating sIL-6R level is 

greater than IL-6R genotype. 

Although IL-6R is associated with atherosclerosis, human endothelial cells express 

gp130 but not IL-6R. sIL-6R mediated trans-signaling is known to activate endothelial 

cells to express vascular adhesion molecules and bind neutrophils (Modur et al, 

1997), inducing vascular inflammation. sIL-6R correlates with markers of endothelial 

function and inversely correlates with pulse wave propagation time (Weiss et al, 

2013). A study by Klouche et al (1999) describes an autocrine stimulation loop of IL-

6/sIL-6R. Human vascular SMC constitutively express only scant amounts of IL-6R and 

so do not respond to stimulation with IL-6. The study showed that SMC also do not 

constitutively express significant levels of gp130, so that they would not be 

appreciably sensitive to trans-signaling by the IL-6/sIL-6R complex. However, it was 
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found that treatment of SMC with IL-6/sIL-6R induced up-regulation of gp130 mRNA 

and surface protein expression. This was accompanied by secretion of IL-6 by the 

SMC. Alongside this, there was induction and secretion of CCL2, up-regulation of 

ICAM-1, and marked cell proliferation. Thus, presence of the IL-6/sIL-6R seems to 

drives an amplification loop that causes a proinflammatory state of SMCs. 

In animal models of atherosclerosis, there is evidence that IL-6 plays an important 

role, although specific pathways are not completely understood. Administration of 

exogenous IL-6 to ApoE-/- mice enhances atherosclerotic lesion formation, suggesting 

a pivotal role for IL-6 in plaque progression (Huber et al, 1999). In contrast, Schieffer 

et al showed that ApoE-/--IL-6-/- double knockout mice had higher serum cholesterol 

and increased atherosclerotic lesion formation compared to ApoE-/- mice (Schieffer 

et al, 2004). These experiments show that IL-6 plays a pivotal role in the 

atherosclerosis process but do not examine the role of classical versus trans-

signaling. Another study found that administration of sgp130Fc reduced 

atherosclerosis in LDLR-/- mice (Schuett et al, 2012).  

 

1.17.6 IL-6 effects of lipids  

 

IL-6 has various and complex effects on lipid metabolism. IL-6 increases VLDLR 

expression in several tissues and this decreases triglyceride levels (Hashizume et al, 

2009). In healthy volunteers administration of IL-6 caused an increase in total 

cholesterol (Lyngso et al, 2002). IL-6 was infused intravenously for 2.5 hours giving 

rise to circulating concentrations of approximately 35ngl-1. During infusion of IL-6 the 

heart rate, oxygen uptake and energy expenditure increased significantly and the 

respiratory quotient decreased significantly. The calculated lipid oxidation rate 

increased significantly while the carbohydrate oxidation rate decreased significantly. 

In the control study all parameters remained constant. IL-6 infusion gave rise to 

increased net glycerol release in subcutaneous adipose tissue while the net release 

of fatty acids did not change significantly. Conversely, administration of IL-6 to 

middle-aged and old rhesus monkeys (Ettinger et al, 1995), and cancer patients 

(Veldhuis et al, 1995) resulted in a decrease of total cholesterol levels.  



47 
 

 

In patients with myocardial infarction circulating IL-6 levels are correlated negatively 

with total cholesterol levels (Brugadas et al, 1996). The same is true of patients after 

major surgery (Akgun et al, 1998) and those on haemodialysis (Bologa et al, 1998). 

Interestingly, low serum cholesterol levels are among the most consistent predictors 

of mortality in patients with end-stage renal disease undergoing haemodialysis, 

thought to be due to cytokine-mediated acute-phase reaction to acute or chronic 

inflammation and in the latter study, IL-6 level was the strongest predictor of 

mortality.  

 

1.18 SIL6R-regulated CVD Candidate Proteins (SCCPs) 

 

As indicated in section 1.17.2, human endothelial and vascular smooth muscle cells 

do not express the IL-6R but can respond to the complex of IL-6/sIL-6R. Increasing 

data suggests that trans-signaling, which is regulated by sIL-6R, plays important roles 

both in RA and CVD. Previous work, using the human primary cell based BioMAP® 

system has examined biological pathways driven by sIL-6R (Tan et al, 2013).  The 

BioMAP® system uses human primary cell based cultures and puts them under 

various stimulation conditions. Biomarker responses are measured and stored in a 

database. They can be used to predict outcomes, for example of a drug or cytokine. 

The results are quantitative and reproducible. The effects of sIL-6R on cells implicated 

in the pathogenesis of atherosclerosis have been examined. These cells examined 

were endothelial, peripheral blood mononuclear and coronary artery smooth muscle 

cells. sIL-6R was found to regulate the release of several proteins, including VCAM-1, 

Interleukin-8 (CXCL-8), Monocyte Colony Stimulating Factor (M-CSF), CXCL9, CCL2, 

Thrombomodulin, Tissue Factor and Matrix Metalloproteinase-1 (MMP-1). I have 

collectively called these proteins sIL-6R-regulated CVD Candidate Proteins (SCCPs). 

While there are various other proteins that are regulated by sIL-6R, I have selected 

those that have been implicated in cardiovascular disease. Many of these SCCPs have 

also been linked to rheumatoid arthritis. Table 4 summarises what is known about 

their role in CVD and RA. This thesis uses this data to investigate the association of 
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these proteins in animal models of RA and atherosclerosis, and also in patients with 

RA, investigating their potential predictive role of CVD in RA.  

 
 

Protein regulated by 
sIL-6R  

Levels in RA Levels in CVD  

Matrix 
Metalloproteinase-1 

Increased, correlates with 
disease activity (Green et al, 
2003) 

Elevated MMP-1 predicts presence 
of advanced CVD  in normal 
population (Hwang et al, 2009) 

CCL2 Increased in serum and 
synovial fluid (Koch et al 
1992) 
Correlates with CIMT 
(Södergren et al, 2010) 

CCL2 gene inactivation decreases 
progression of atherosclerotic 
lesions (Linic et al, 2013) 
Increased expression in 
atherosclerotic lesions (Egashira, 
2003) 

M-CSF Increased in RA patients 
(Kawaji et al, 1995) 

Correlates with disease 
activity (Rioja et al, 2008) 

Found in atherosclerotic plaques 
(Ait-Oufella et al, 2011) 
Risk factor adverse outcomes in 
angina & elevated in acute coronary 
syndromes (Saitoh et al, 2000) 
Strong predictors of cardiac events 
in those with angina (Rallidis et al 
2004) 

CXCL9 Increased in synovium 
(Iwamoto et al, 2008), 
unknown in serum 

Increased expression in plaques 
(Mach et al, 1999) 

VCAM-1 Correlates with disease 
activity (Navarro-Hernández 
et al, 2009) 

Rapidly induced by 
proatherosclerotic conditions, 
including early lesions (O’Brien et al, 
1993)  

CXCL-8 Correlates with disease 
activity (Slavić et al, 2005) 

Correlates with carotid intimal 
thickness in RA patients (Benucci et 
al, 2013)  

Thrombomodulin  Conflicting data (Ichikawa et 
al 1993, Abdul-Monieum et 
al, 2001; Hanyu et al, 1999) 

Decreased (Wei et al, 2011) 
Expression reduced in 
atherosclerotic lesions (Lasik et al, 
2001) 

Tissue factor  Unknown (involved in pannus 
formation (Chen et al, 2013))  

Increased in plaques in unstable 
angina or myocardial infarction 
compared to stable angina (Annex 
et al, 1995). Serum levels higher in 
unstable than stable angina 
(Soejima et al, 1999) 

 

Table 4. SCCPs in RA and CVD 
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1.19 Project summary  

 
Patients with RA are at increased risk of cardiovascular disease compared to the 

general population. Atherosclerosis and RA are both diseases in which inflammation 

plays a pivotal role in pathogenesis and progression. IL-6 has been implicated in 

pathogenesis of both RA and CVD, in particular there is increasing evidence that IL-6 

trans-signalling is pro-inflammatory. Although several studies have examined 

relationships between IL-6 and cardiovascular disease and/or rheumatoid arthritis, 

none have examined the role of IL-6 trans-signaling in CVD in RA. In this thesis animal 

models of RA were used to examine the role of IL-6 trans-signalling in vascular 

dysfunction in RA.  

 

Patients with RA have increased markers of inflammation within atherosclerotic 

plaques compared to the general population. To examine the direct effect of IL-6 

trans-signalling on atherosclerosis, an animal model was used, the ApoE-/- mouse. 

Here, for the first time, the effect of trans-signalling versus classical signalling was 

examined on plaque size.  

 

Cardiovascular risk scores, even with modification as recommended by EULAR, 

underestimate CVD risk in RA patients. Previous work using the BioMAP® system has 

identified several proteins that are regulated by sIL-6R. Most of these SCCPs have 

been implicated in both CVD and RA. As CVD is increased in early RA, I have 

investigated the association of SCCPs with progression of subclinical atherosclerosis 

in this patient group. Potential candidate proteins may serve as predictors of 

progression of subclinical atherosclerosis or even as novel therapeutic targets for 

reducing CVD in RA. 

 

1.20 Hypothesis and Aims  

 

The overall aim of the thesis was to examine the role of IL-6 trans-signalling in 

cardiovascular disease in rheumatoid arthritis using both human and animal studies. 
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I hypothesise that sIL-6R-mediated trans-signaling is a major driver of CVD in RA. This 

hypothesis was addressed through the following aims: 

 

1. 

A. To investigate whether IL-6R KO mice are protected against vascular 

dysfunction in collagen-induced arthritis (CIA).   

B. To investigate whether blocking IL-6 trans-signalling using sgp130Fc restores 

vascular function in CIA 

 

2. To determine whether IL-6 trans-signaling accelerates atherosclerosis in Apo-E-/- 

mice.  

3. To determine whether SCCPs are associated with progression of CVD using carotid 

intimal thickness (CIMT) as a surrogate marker for subclinical atherosclerosis. 
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2 Chapter 2 - Materials and general methods  
 

2.1 Chemicals and buffers:  

 

Citrate buffer (0.2M): 8.4 g citric acid, was dissolved in 200 ml dH20 then pH adjusted 

to 3.95 by the addition of a potassium hydroxide solution. 

 

Tetramethylbenzadine (TMB): 240 mg of TMB was dissolved at a concentration of 

(0.1 M) in 5 ml of dimethyl sulphoxide (DMSO) and 5 ml of ethanol, and stored at 4°C. 

ELISA Developing Buffer: was freshly prepared on each occasion by the addition of 

10 µl Hydrogen Peroxide and 100 µl TMB to 10 ml of Citrate Buffer per 96 well plate. 

Miller’s elastin (Fisher Scientific catalogue number LAMB-1080-D): 1:1 dilution with 

distilled water. 

Oxalic acid (Fisher Scientific, catalogue number 75688): 1% oxalic acid (1 g in 100 mL 

distilled water).  

Potassium permanganate (Fisher Scientific catalogue number P/6520/53):  2 g of 

potassium permanganate was dissolved in 400 mL of distilled water.  

Van Gieson stain solution: (Fisher Scientific 88011)  

 

Ethylenediaminetetraacetic acid (EDTA) decalcification solution: 70g of (EDTA) in 

900ml of PBS (pH 7) 

S-nitrosothiol (SNO):  SNO was made by adding 500ul of n-acetlycyteine to 500ul 

nitrite. This was kept on ice in the dark. A spectrometer was used to calculate to the 

molar concentration. Serial dilutions were performed to get concentrations of 1nM 

to 10mM.  

 

 

 



52 
 

Krebs Buffer 

  

Reagent mM 

NaCl 
 

109.17 
 

KCl 
 

2.68 
 

KH2PO4 
 

1.18 
 

MgSO4.7H2O 
 

1.22 
 

NaHCO3 
 

25.00 
 

Glucose 
 

10.99 
 

CaCl2.H2O 
 

1.71 

Table 5. Composition of Krebs buffer 

 

High potassium Krebs buffer  

 

Reagent mM 

NaCl 
 

39.36 
 

KCl 
 

59.99 
 

KH2PO4 
 

1..18 
 

MgSO4.7H2O 
 

1.22 
 

NaHCO3 
 

25.00 
 

Glucose 
 

10.99 
 

CaCl2.H2O 
 

1.71 

Table 6. Composition of high potassium Krebs buffer 
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2.2 General methods  

 

Specific methods are detailed in methods sections in each chapter 

2.2.1 ELISA 
 

Levels of SCCPS were measured using duoset ELISA development kits from R&D 

systems in accordance with manufacturer’s instructions. Standards and samples 

were assayed in duplicate. Concentrations used in each ELISA are detailed in the 

relevant methods section in each chapter.   

 

Protocol for ELISA on murine serum  

 

Step 
 

Process Time 

1 96-well ELISA plate coated with 50µl of capture 
antibody  

Overnight  

2 Excess liquid was removed from the wells by 
inverting and blotting against paper towels. Plate 
washed three times with 150µl per well of 0.1% 
(v/v) Tween in PBS  

- 

3 300µl blocking buffer to each well 1 hour minimum  

4 Repeat step 2 - 

5 Add 50µl of standard and samples. Cover and 
incubate for 2 hours at room temperature 

2 hours  

6 Repeat step 2 - 

7 50µl detection antibody per well. Cover and 
incubate for 2 hours at room temperature 

2 hours  

8 Repeat step 2 - 

9 50µl of streptavidin-HRP, cover and place in the 
dark  

20 minutes  

10 50µl of substrate solution to each well, cover and 
place in dark  

Up to 10 
minutes-observe 
colour  

11 50µl stop solution to each well   

12 Immediately determine optical density of each 
well at 450nm. 

 

 

Table 7. Protocol for ELISA on murine serum 
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Protocol for ELISA on human serum  

 

Step 
 

Process Time 

1 96-well ELISA plate coated with 100µl of capture 
antibody  

Overnight  

2 Excess liquid was removed from the wells by 
inverting and blotting against paper towels. Plate 
washed three times with 150µl per well of 0.1% 
(v/v) Tween in PBS  

- 

3 300µl blocking buffer to each well 1 hour minimum  

4 Repeat step 2 - 

5 Add 100µl of standard and samples. Cover and 
incubate at room temperature 

2 hours  

6 Repeat step 2 - 

7 100µl detection antibody per well. Cover and 
incubate at room temperature 

2 hours  

8 Repeat step 2 - 

9 100µl of streptavidin-HRP, cover and place in the 
dark  

20 minutes  

10 100µl of substrate solution to each well, cover and 
place in dark  

Up to 10 
minutes-observe 
colour  

11 50ul stop solution to each well   

12 Immediately determine optical density of each 
well at 450nm. 

 

 

Table 8. Protocol for ELISA on human serum 
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3 Chapter 3 - Effect of IL-6R mediated trans-signalling on 

Vascular Function in CIA  
 

3.1 Introduction  

 

As discussed in the general introduction, CIA offers an excellent model to examine 

the systemic effects of RA.   

3.1.1 CIA in DBA-1 versus C57BL/6 mouse strains   

 

For this thesis both the DBA-1 and the C57BL/6 mouse strain were used. It was shown 

previously that susceptibility to CIA is linked to the H-2q haplotype (DBA-1 mice) and 

that H-2b (C57BL/6) mice were less sensitive to CIA development (Stevenson et al, 

2006). Several studies have since shown that it is possible to induce CIA in C57BL/6 

but there is both reduced incidence and reduced severity of arthritis, compared with 

DBA/1 mice (Bevaart et al, 2010). Generally, in DBA-1 mice arthritis starts at around 

day 25-28 and arthritis incidence reaches 80-100% (Brand et al, 2007). In C57BL/6 

mice arthritis can start at around day 30, but incidence is variable. Several groups 

have induced CIA in C57BL/6 mice (Campbell et al, 2000; Campbell et al, 1998; Kai et 

al, 2006), although there have been difficulties with reproducibility in this strain (Pan 

et al, 2004). Table 9 summarises the literature on mCIA in C57BL/6, in terms of 

reagents used to induce arthritis, time course and arthritis incidence. Some groups 

have also used lipopolysaccharide (LPS) to boost arthritis incidence and severity in 

C57BL/6 mice. 

The main advantage of using the C57BL/6 strain is that most transgenic and knockout 

strains of mice are on his background.  Indeed, the in-house colony of IL-6R knockout 

mice was on this background. However, CIA in DBA-1 mice is more reproducible and 

onset of arthritis is quicker than in C57BL/6. An ideal scenario would be to back-cross 

the genetically modified strain onto the DBA/1 background but this is time 

consuming and costly. C57BL/6 mice with CIA can develop a chronic form of CIA 

which resembles human RA in terms of disease course, histological findings, and 
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response to drugs commonly used in RA (Inglis et al, 2007). In DBA-1 mice the T-cell 

proliferative response to type II collagen in immunised mice peaks before the onset 

of arthritis and is in decline by the time of disease onset; in C57BL/6 however the T 

cell response is strong and sustained (Inglis et al, 2007). Hence, the C57BL/6 strain 

may be more useful to assess T-cell activity and to evaluate T-cell-targeted therapies 

(Inglis et al, 2007). 

For this chapter, we used both C57BL/6 and DBA-1 mice; IL-6 and IL-6KO mice are 

only available on the C57BL/6 background and DBA-1 mice were used as CIA in this 

model is better characterised than in C57Bl/6, and arthritis in C56BL/6 mice takes 

approximately 60 days to appear. 

 

3.1.2 Vascular function in CIA  

 

Investigating the effect of RA on vascular function is challenging to conduct on human 

vascular tissue. The CIA model offers a useful tool to assess early changes within the 

vasculature that lead to CVD. Previous work by Reynolds et al (2012) found a 

relationship between arthritic disease in DBA/1 mice and contractile dysfunction in 

rings of isolated aorta.  Here, we were able to assess the effect of absence of IL-6 and 

IL-6R, and also the effect of selective blockade of IL-6 trans-signalling, on contractile 

dysfunction in CIA.
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Paper Age CIA induced, sex 
& source of mice 

Reagents used and route given Dose TB per 
mouse 

Type collagen Dose collagen per mouse Incidence of arthritis Time stopped Used 
LPS? 

Inglis et al, 
2007 

10-12wks male Harlan ID Bovine, chicken, or mouse T2 
collagen in CFA with M. 
tuberculosis. 

150ug on day 0 Type II 
bovine, 
mouse or 
Chicken 

 200ug  on day 0 Only chicken collagen induced 
arthritis - incidence 61.7%  

2wks after 
onset (early 
arthritis) or 6-
8wks after 
onset (late 
arthritis) 

No 

Campbell et 
al, 2000 

>8wks, male & female, 
in house (B6, B6/N11, 
B6:129c, 
B6:C3HeB/FeJd) 

ID T2 Chicken collagen and CFA 
with M. tuberculosis.  

250ug on day 0 
and 21 

Type II 
Chicken  

100ug on day 0 and 21 
 

incidence of 60–70% by day 
60 

100 days No  

Asquith et al, 
2010 

12 wks, male, Harlan 
(Indianapolis) 

T2 chicken collagen/ CFA  ID day 
0. T2 chicken collagen/PBS day 
21 IP.  

150ug on day 0 Type II 
chicken  

200ug of collagen on d0 and 
200ug in PBS on day 21 

75% of mice receiving a 
normal diet and 54% of mice 
on high-fat diet developed 
diseaseby day 42. 

Day 42  Yes (20-
40ug on 
D26 if no 
arthritis 

Bäcklund et 
al, 2012 

7-12 wks male, in 
house  

ID chicken or rat in CFA with 
Mycobacterium butyricum, or in 
IFA with M. tuberculosis.  

166.5ug ( M. 
butyricum or  M. 
tuberculosis) 

chicken or rat 
Type II  

100 or 200ug on day 0. Some 
mice were boosted 5 weeks 
later with 50ug of CII in IFA  

all three CII preparations 
induced arthritis in with a 
comparable phenotype (28% 
incidence) 

50 days  No 

Chu et al, 
2003  
 

8-10wks  female,  
Jackson 

ID Bovine CII and CFA with M 
tuberculosis.  

125ug on day 0 Bovine type II 100ug bovine cII on day 0  3/30 (10%) 65  No  

Pan et al, 
2004 

8-10  weeks  male, 
Jackson 
(Bar Harbor, pathogen 
free 

ID Bovine CII and CFA 
containing M. Tuberculosis. 

200ug on day 0 Bovine type II 100ug on day 0 and then 
100ug in IFA on day 21  
 

5/35 Bl6 mice had arthritis by 
day 35 (14%) 

Day 35 all 
stopped  

No  

Mould et al, 
2008 

Female 8-12 weeks. 
C57bl6/J 

ID Chicken T2 collagen and CFA 
with M. tuberculosis.  

125ug on day 0 
only   

Chicken type 
II  

100ug . Then on day 8 OR 
day 21, 100ug collagen with 
IFA only (100ul).  

First arthritis evident on day 
25. 89% incidence in  control 
c57bl6 mice . 

Day 69  No  

Geboes et al 
2009 

Female, Ludwig 
institute cancer 
research. Age unclear  

Followed Campbell et al 
protocol  

250ug on day 0 
and 21 

Chicken type 
II  

100ug on day 0 and 21  
mouse 

60% incidence (5/9 wild type 
c57bl6), mean day of onset 27 

Day 37  No  

Table 9 Summary of CIA induced in C57BL/6 mice in the literature 



58 
 

3.1.3 Tools to investigate the role of IL-6 signalling on vascular function in CIA  

 

Using IL-6-/- and IL-6R-/- mice allows us to investigate the complete absence of IL-6 

and IL-6R on vascular function in CIA. As functions mediated by IL-6R require binding 

to its receptor, it may be expected that IL-6-/- and IL-6R-/- mice would have the same 

phenotype. Although they do share similarities, there have also been differences 

observed phenotypically. For example, whereas IL-6-/- mice have impaired wound 

healing, IL-6R-/- mice heal almost as well as WT mice (McFarland-Mancini et al, 2010). 

Here in Cardiff there are in-house colonies of IL-6-/- and IL-6R-/- mice. It has been 

shown that IL-6-/- mice have delayed CIA onset and reduced CIA severity (Saiai et al, 

1999), others have shown that IL-6-/- mice are completely protected from CIA (Alonzi 

et al, 1998). Vascular function in CIA in these mice has not been previously assessed. 

In this chapter, for the first time, we assess the induction of CIA in IL-6R-/- mice and 

compare with IL-6-/- mice. We also assess, for the first time, the effect of CIA induction 

in these mice on vascular function. The advantage of using knock-out mice is the 

knowledge that there is a complete absence of IL-6 or IL-6R. However, in these mice, 

both IL-6 signalling pathways are redundant and thus we cannot gather information 

about the role of classical versus trans-signalling in vascular function in CIA in this 

setting. Also, using knock-out mice has reduced clinical relevance as these mice have 

a total lack of cytokine activity, compared to a reduction in cytokine activity; the 

latter seen generally with anti-cytokine therapies.  Also, the complete absence of IL-

6 or IL-6R from conception may result in other cytokines being overexpressed. As 

mentioned in section 1.17.3, using sgp130Fc allows us to investigate the effect of 

selective blockade of IL-6 trans-signalling. However, using antibody blockade has 

several possible disadvantages in terms of practicalities: how well the antibody works 

depends on multiple factors including binding affinity of the antibody, dosing, tissue 

penetrance and technical ability of the investigator e.g. performing intraperitoneal 

injections.  
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3.2 Hypothesis and Aims 

 

As can be seen from Table 9, there is variable penetrance and incidence of CIA in 

C57BL/6 mice. Therefore it was necessary to characterise CIA in these mice in our 

facility before inducing CIA in knockout strains and assessing vascular function. The 

vascular constriction response was also determined in these animals to assess the 

impact of CIA on vascular function. IL-6-/- and IL-6R-/- mice were also used alongside 

sgp130Fc treatment to characterise the role of IL-6 and IL-6 trans-signaling in both 

CIA progression and associated vascular dysfunction. This chapter details 

methodology, results and discussion under the following hypothesis and objectives: 

Hypothesis: IL-6R mediated trans-signalling is a major driver of vascular dysfunction 

in CIA.  

  

In order to address this hypothesis the following five aims were identified: 

 

1. To establish a protocol for the induction of CIA in C57BL/6 WT mice.  

a. Further, to characterise CIA in C57BL/6 mice in terms of incidence, 

time course, and severity of arthritis. 

 

2. To assess vascular constriction and relaxation responses in aortic tissue from 

age and sex matched C57BL/6 mice with CIA and without CIA.  

 

3. To assess the effect of complete absence of IL-6 signalling on CIA induction, 

using IL-6R-/- and IL-6-/- mice, and compare arthritis time course, severity and 

penetrance with CIA induction in wild-type age-and sex matched C57BL/6 

mice.  

 

4. To assess the effect of complete absence of IL-6 signalling on vascular 

constriction and relaxation responses in aortic tissue, using IL-6R-/- and IL-6-/- 
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mice immunised with CIA compared with wild type immunised/arthritic 

C57BL/6 mice and non-immunised controls.  

 

5. To assess the effect of blocking IL-6 trans-signalling using sgp130Fc on 

vascular function in DBA-1 mice with CIA.   

 

 

3.3 Materials and methods  

 

3.3.1  Sgp130Fc  

 Spgp130Fc was obtained from two sources, both of which had been used 

previously in the department. The first was from a gift from Professor Rose Jose in 

Kiel University. The second was from R&D systems (Q6PDI9). 

  

 

3.3.2 Etanercept  

 

The TNF receptor fusion protein, etanercept, was used as a positive control 

in experiments. This is an established treatment for rheumatoid arthritis and its 

efficacy has been proven in both mouse and human studies. It is a combination 

protein consisting of the extra-cellular portion of two of the 75 kd-TNF receptors 

(TNF-R2) for TNF combined with a human Fc portion of human lgG1 (Horiuchi et al, 

2010). Etanercept (Enbrel®, Amgen) was sourced from the clinical rheumatology 

department in the University Hospital of Wales.  

 

3.3.3   Mice  

All work with mice was performed in accordance with the United Kingdom 

Animals (Scientific Procedures) Act 1986 and under the authority of the Home Office 

Personal (I56CC73C0) and Project (30/2928) Licences. Wild type C57BL/6 mice 

(specific strain C57Bl/6JOlaHsd) were sourced from Harlan, UK. DBA-1 mice were 

sourced from Charles River, UK. Mice had free access to normal chow diet and water 
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and had a light dark cycle of 12 hours. The temperature range in the animal house 

was 19-23°C and humidity 55 + 10%. Mice were purchased at 7 weeks of age and 

allowed a 1 week settling in period before arthritis was induced at 8 weeks, unless 

otherwise stated. Mice were euthanised under schedule 1 of the United Kingdom 

Animals (Scientific Procedures) Act 1986 by inhalation of carbon dioxide and death 

confirmed by palpation. 

 

3.3.4 Knockout mice  

 

Specific knock out strains used (IL-6-/- and IL-6R-/-) were sourced from in-house 

colonies. Due to breeding difficulties within these colonies, and in keeping with the 

ethical principles of replacement, reduction and refinement, both female and male 

mice were used to utilise available mice. Age and sex matched wild type C57BL/6 

mice were used as controls. Knock out mice were 18 weeks old at day 0. Control wild 

type C57BL/6 mice (specific strain C57Bl/6JOlaHsd) were sourced from Harlan, UK at 

17 weeks and were 18 weeks old at day 0.  

Numbers, gender and strain immunised, along with age and sex-matched control are 

shown in Table 10.  

 
Strain Gender Age at day 0 Number immunised 

with CIA 
Number not 

immunised with CIA 

C57BL/6 
WT 

Male 18 weeks 2 2 

IL-6R-/- Male 18 weeks 2 0 

C57BL6 
WT 

Female 18 weeks 5 5 

IL6-/- Female 18 weeks 3 0 

IL-6R-/- Female 18 weeks 3 0 

 

Table 10. Characteristics of knockout mice and matched wild-type mice undergoing CIA protocol 
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3.3.5 Establishing a protocol for induction of CIA in C57BL/6 mice  

 

Two strengths of type II collagen (CII)/complete Freund’s adjuvant (CFA) were used 

in this chapter. See Table 11 for a summary of the concentration/doses used in each 

protocol.   

3.3.5.1 Preparation of CII/CFA (low dose) 

 

Type II collagen (CII) from chicken sternal cartilage (Sigma Aldrich Ltd) (5mg) was 

dissolved overnight in 2.5ml of 10mM acetic acid and kept on a cold plate overnight 

at 4°C with continuous stirring. CFA was prepared by grinding 100mg heat-killed 

Mycobacterium tuberculosis H37Ra to a fine powder using a pestle and mortar, in a 

fume hood. To this, 20ml Freund’s incomplete adjuvant was added, providing a final 

concentration of 5mg/ml. This was stored at -20°C.  

 

3.3.5.2 Preparation of CII/CFA emulsion  

 

At the time of immunisation an equal volume of CII solution and CFA were mixed and 

passed through a glass syringe 20 times to ensure thorough mixing. To check that an 

emulsion had formed a drop was placed on in water; if it floated it was of the correct 

consistency.  

 

 

 Low dose CII High dose CII 

Dose per mouse 
on day 0 and 21 

Concentration 
per injection 
per mouse 

Dose per 
mouse on day 

0 and 21 

Concentration 
per  injection 

per mouse  

Type II collagen  100ug 1mg/ml 250ug 2.5mg/ml 

Mycobacterium 
tuberculosis 

250ug 2.5mg/ml 500ug 5mg/ml 

Table 11. Doses of collagen and mycobacterium tuberculosis in low and high dose CII/CFA 
preparations. 
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3.3.6 Injection of mice with emulsion 

 

Mice were anesthetised with isoflurane (4L/min) and oxygen (2-4L/min) and 

immunised with the collagen and CFA emulsion. Mice were injected on day 0 via the 

intradermal route. 50 µl was injected twice at adjacent sites, on the right lateral side 

of the tail base. From day 0 to day 21 mice were inspected at least 3 times per week 

to check general health status and injection sites. Two booster injections of 50 µL 

were given on day 21, on the left lateral side of the tail base. From day 20, as an 

analgesic, Temgesic (400 mcg/L) was crushed and suspended in the drinking water of 

the mice and changed daily.  

3.3.7  Assessment of arthritis severity 

 

 Animals were observed daily from day 21 for the development of arthritis except 

where specified.  

 Clinical gradation of arthritis severity  

Arthritis severity was scored in each paw using a scale from 0 to 5, see Table 12. The 

sum of the four paw scores was calculated for each mouse, this was the total paw 

score. Paw swelling was also measured in hind paws daily for each mouse using a 

spring calliper gauge. Mice were also weighed and inspected daily. 

 

Severity limits  

If any mouse reached any one of the following at any point in the experiment it would 

have been removed from the experiment and killed. These humane end points were 

defined by the procedure project licence:  

 A paw score of 5 in one paw or a combined score above 14 

 A greater than 20% weight loss in two consecutive weigh-ins  
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Scoring arthritis severity  

Individual paw score Clinical features 

0 
No evidence of erythema or swelling  

1 
Erythema and mild swelling confined to the 
tarsals or ankle joint  

2 
Erythema and mild swelling extending from 
the ankle to the tarsals 

3 
Erythema and moderate swelling extending 
from the ankle to metatarsal joints  

4 
Erythema and severe swelling encompasses 
the ankle, foot and digits 

5 
Deformed paw/ankylosis  

 

Table 12. Individual Paw Scoring System in mCIA 

 

 

3.3.8 Isolating blood serum 

 
Once palpation had confirmed death of the mouse a cardiac puncture was performed 

to remove blood. Using a 25 gauge needle, approximately 1ml of whole blood was 

taken. This was placed into vacutainers coated with clot activator and stored on ice. 

Samples were then centrifuged at 1600g for 10 minutes at 4°C. The serum was then 

aliquoted in 50ul aliquots and stored at -80°C.  

 

3.3.9 Dissection technique  

 

The dorsal skin, peritoneum, ribs and lungs were removed to expose the heart. The 

abdominal aorta was observed and snipped distally. The left ventricle of the heart 

was perfused slowly with 1ml of Krebs solution to gently flush the aorta. The thoracic 

aorta was exposed and carefully dissected so that any force on it was kept to a 

minimum. This was placed in fresh Krebs buffer for use in myography. Under a 

dissecting microscope, fat was removed from half of the aorta and two 2mm rings of 

thoracic aorta were cut for use in myography. The rest of the aorta was placed in 70% 

(v/v) methanol for 1 week for use in histology.  
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Hind paws were removed, and then fixed in neutral buffered formal saline for 1 week 

prior to processing for immunohistological evaluation. 

 

 

3.3.10 Assessment of Vascular Function- Myography 

 

Isometric tension studies using a myograph were used to assess vascular function ex 

vivo in isolated aortae. The thoracic aorta was cut into rings of 2 mm length, using a 

ruler for scale. Each ring was mounted in separate wells of a Mulvany myograph 

(Danish Myo-Technology, Aarhus, Denmark) and bathed in Krebs buffer for 20 

minutes. Each ring was held between two prongs, one connected to a force 

transducer to allow ring tension measurement and the other connected to a 

micrometer to allow manual increase in tension. Each well was continually gassed 

with 95% oxygen/5% carbon dioxide. The temperature was maintained at 37°C by 

the steel block that the myography well was placed on. Myograph output was 

recorded and analysed using Myodaq and Myodata (Aarhus, Denmark) software 

respectively.  

 

After mounting, the rings were subjected to equilibration for 20 minutes and it was 

ensured there was no tension on the rings. Each ring was then zeroed (the tension 

set at 0 mN). Then, over a period of 10 minutes, the tension on each ring was 

increased by 0.5mN per minute to reach a baseline tension of 5mN. This baseline 

tension had been used previously in DBA-1 mice by Reynolds et al (2012). Tissues 

were then rested for 20 minutes and the tension adjusted so that it was maintained 

at 5 mN. Tissues were then exposed to 60 mM K+ for 5 minutes to condition the 

vessels to contraction. Baths were then emptied and refilled with fresh Krebs buffer 

8 times to wash them, and then left to re-equilibrate for a further 20 minutes in 5 ml 

fresh Krebs. If the baseline tension had altered during this time then the tension was 

manually adjusted to reach 5 mN. Tissues were then sequentially exposed to 

increasing concentrations of 5-hydroxytryptamine (5-HT) (10-9 to 10-5M) in half log 

increments.  
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For experiments also examining relaxation responses tissues were then washed 8 

times, left to re-equilibrate for 20 minutes and then re-constricted to using 5-HT to 

reach 80% of their maximal constriction established previously. This was usually 

achieved with a final 5-HT well concentration of 10-7. Once the vessel constriction 

had reached a plateau at 80% of their maximal constriction, increasing 

concentrations were added of Acetylcholine (ACh) (10-9 to 10-5M), in half log 

increments. ACh causes relaxation of the vessel via endothelium-derived nitric oxide 

generation. Tissues were then washed and reconstricted to 80% maximal with 5-HT. 

Increasing concentrations of S-nitrosothiol (SNO) (see Section 2.1 in general 

methods) were then added (10-9 to 10-5M ), in half log increments. SNO causes 

relaxation of the vessel via exogenously donated nitric oxide.  

 

 

 

3.3.11 Myography analysis  

 

The myodata programme was used to record constriction and relaxation responses. 

5-HT-induced contraction responses were calculated as the increase in tension above 

the resting tension. Relaxation responses to ACh and SNO were measured and 

expressed as a percentage of the 5-HT-induced tone.  

 

3.3.12 Histological assessment of arthritis severity  

 

 Sample preparation  

Hind paws were cut so that the knee and ankle were separated at the mid tibia. 

Excess fat and connective tissue was removed and then joints were placed into 

histocassettes.  

 Decalcification  
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In order to section the joints for histology they were decalcified with EDTA for 2 

weeks at 4°C. The EDTA solution was changed every 2-3 days. In order to ensure 

bones were decalcified, radiographs were taken of the joints using a Kodak FX-Pro 

after 2 weeks.   

 Shandon tissue processor cycles  

Joints were dehydrated using a Thermoshandon Tissue Processing Path Centre 

machine. The paws were immersed in increasing concentrations of ethanol; 70% 

(v/v) for 30 minutes, 90% (v/v) for 90 minutes, 100% ethanol for 60 minutes 

(repeated 3 times). Paws were then immersed in xylene for three incubation of an 

hour each. Joints were then immersed in four changes of wax and then removed from 

the tissue processor.  

Tissue embedding  

After removal from the tissue processor joints were set in paraffin wax using the 

Thermoshandon Histocentre.  

 Sectioning of embedded joints 

Serial 7µm thick sections of wax-embedded joints were cut using a microtome and 

mounted on Superfrost Plus glass slides. Slides were then placed for 3 hours in the 

oven at 56°C to ensure adherence of the tissue to the slide and also remove paraffin 

from tissue sections. 

 

3.3.13 Haematoxylin and Eosin Staining  

 

This staining method allows grading of severity of arthritis histologically. 

Haematoxylin stains nuclei purple and eosin stains cytoplasm and connective tissue 

pink. This allows distinction between different parts of the joint and identification of 

changes in the normal structure.  

After sectioning and baking of the slides were treated as follows:  
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3.3.14 Grading of arthritis severity histologically  

  
Sections were scored for synovial hyperplasia, cellular infiltration, cellular exudate, 

and cartilage and bone degradation, with 0 representing a normal joint, outlined in 

Table 14. The maximal score for each joint was 14. 

 

 

 

 

 

 

 

 

Process Rationale Time 

3 X xylene washes  Slide rehydration and wax 
clearing  

3 X 5 minutes  
 

2 X 100% IMS washes  Slide rehydration  2 X 3 minutes  

90% IMS wash  Slide rehydration  3 minutes 

Distilled water Equilibrate  5 minutes  

Haematoxylin  Nuclear stain  1 minute  

Running tap water  Removal of excess 
haematoxylin 

Until water runs clear 

Distilled water  Equilibrate  1 minute  

Eosin  Eosinophilic structure stain  30 seconds  

Running tap water  Removal of excess eosin  Until water runs clear  

Distilled water  Equilibrate 1 minute  

90% ethanol  Slide dehydration and wax 
clearing 

3 minutes  

2 X 100% ethanol  Slide dehydration and wax 
clearing 

2 X 3 minutes  

3 X xylene  Slide dehydration and wax 
clearing 

3 X 5 minutes  

Mount with DPX and 
coverslip  

Preservation of staining   

Table 13. Haematoxylin and Eosin Staining protocol 
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Component  Subcomponent  Grade  

Subsynovial 
inflammation  
 

 Normal  

 Focal inflammatory infiltrates, adiposity hardly 
affected (10% inflammatory cells, 90% adipose 
tissue)  

 Focal inflammatory infiltrate equals adiposity 
(50% inflammatory cells, 50% adipose tissue)  

 Random inflammatory infiltrates dominating 
cellular histology (70% inflammatory cells, 30% 
adipose tissue)  

 Substantial inflammatory infiltrate with severe 
loss of adiposity (90% inflammatory cells, 10% 
adipose tissue)  

 Ablation of adiposity due to inflammatory 
infiltrate (100% inflammatory cells, 0% adipose 
tissue) 

0 
1 
 

2 
 

3 
 

4 
 

5 

Synovial exudate  
 

 Normal  

 Evidence of inflammatory cells in space  

 Moderate numbers of inflammatory cells in 
space, possibly with evince of fibrin deposits.  

 Substantial number of inflammatory cells with 
large fibrin deposits 

0 
1 
2 
 

3 

Synovial hyperplasia 
and pannus 
formation  
 

 Normal (1-3 layers thick)  

 Over three–layer thick synovial lining, showing 
evidence of thickening and/or invasion of joint 
space  

 Over three–layer thick synovial lining ‘creeping’ 
over cartilage surfaces and/or finger-like 
processes into joint pace  

 Over three layer thick synovial lining showing 
substantial covering of cartilage surfaces with 
evident cartilage loss 

0 
1 
 

2 
 
 

3 

Cartilage/bone 
erosion  
 

 Normal  

 Detectable loss of cartilage  

 Detectable erosion of underlying bone by 
pannus activity  

 Pannus has destroyed a significant part of the 
bone 

0 
1 
2 
3 

 

Table 14. Histological grading system for arthritis severity in mCIA 

 
 

3.3.15 Immunohistochemistry  

 

The following protocol was used for immunohistochemistry to determine expression 

of pSTAT3 (Table 15). Antibody concentrations are outlined in Table 16. Identification 
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of pSTAT-3 (phosphorylated STAT3) was carried out. pSTAT3 was measured to allow 

identification of tissues activated by IL-6; in response to IL-6 (either classical signaling 

or trans-signaling), STAT3 is phosphorylated.  

 
Process Rationale Time 

Xylene  Rehydration and wax clearing  2 X 5 minutes  

100 % ethanol  Slide rehydration  2 x 5 minutes  

90% ethanol Slide rehydration  5 minutes  

70% ethanol  Slide rehydration  5 minutes  

Distilled water  Equilibrate 5 minutes  

Citrate buffer in water bath 
at 95°C 

Antigen retrieval 60 minutes 

Allow to cool on bench   30 minutes  

Distilled water  Wash  2 x 5 minutes  

3% H2O2 Peroxidase block  10 minutes  

Distilled water Wash  5 minutes 

Distilled water Wash  5 minutes 

10% normal goat serum  in 
TBS/T 

Decrease non-specific binding of antibody  
 

60 minutes  

Avidin block Decrease non-specific binding of antibody  
 

10 minutes  

TBS-T  Wash  5 minutes  

Biotin block  Decrease non-specific binding of antibody  
 

10 minutes  

TBS/ T  Wash  5 minutes  

Primary antibody or isotype 
control antibody  

Identification of target protein and control 
IgG staining  
 

Overnight  

TBS/T  Remove excess antibody  3 x 5 minutes  

Detection antibody  Identification of bound primary antibody 1 hour  

TBS/T Remove excess antibody 3 x 5 minutes 

Streptavidin-HRP  Identify bound Antibody in sections  20 minutes  

TBS/T Wash  3 x 5 minutes  

DAB substrate  Allow identification of positive staining  1-20 minutes  

Distilled water Rinse  1 minute 

Harris Haematoxylin Nuclear stain  1-15 seconds  

Running tap water Remove excess stain Until water runs 
clear  

70% ethanol Dehydration of slides and clearing 5 minutes 

90 % ethanol  Dehydration of slides and clearing  5 minutes  

2 x 100 % ethanol  Dehydration of slides and clearing 2 x 5 minutes  

2 x Xylene  Dehydration of slides and clearing 2 x 5 minutes  

Mount with DPX and 
coverslip  

Preservation of staining   

 

Table 15. Immunohistochemistry protocol for pSTAT3 
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Reagent pSTAT3 

Primary antibody  Rabbit anti mouse pSTAT3 (cell 
signalling technologies) 40ug/ml 

Primary antibody 
concentration 

1:50 

Isotype Rabbit IgG 1.622mg/ml 

Isotype concentration  1:50 

Secondary antibody  Biotinylated Goat Anti-Rabbit IgG 
Antibody (vector laboratories) 

 

Table 16. pSTAT3 immunohistochemistry reagents and concentrations for ELISA 

 
 
 

 

3.3.16 Assessing the effect of blockade of IL-6 trans-signaling on CIA  

 

3.3.16.1 Establishing a concentration, dosing schedule, source and 

route of administration of sgp130Fc to inhibit CIA  

  
 
For all CIA experiments in DBA-1 mice, low dose CII/CFA emulsion was used and mice 

were immunised on day 0 and day 21, in the same method as in C57BL/6 mice.  

 

Figures 5, 6 and 7 are schematic representations of the experimental approach and 

Table 17 summarises the experimental approach.  

 
 

3.3.16.2 Dose and dosing schedule of sgp130Fc  

 

Sgp130Fc has been previously used in the department to inhibit CIA. Previous studies 

by Nowell et al 2009 were used to calculate the dose of sgp130Fc. The half-life of 

sgp130fc is 72 hours (Sommer et al, 2014). In experiment 1 Sgp130Fc at 2.5mg/kg 

was given from day 21, on alternate days, for 7 doses (see Figure 5 for schematic 

representation). An age and sex-matched group were immunised with CIA and 

administered sterile PBS 100ul IP on alternate days from day 21 for 7 doses. Mice 

were sacrificed on day 34 and myography was performed. As these myography 

experiments were time consuming and required great accuracy, 3 mice were killed 

per day. Therefore to ensure mice were all sacrificed on day 34, day 0 and day 21 
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were staggered so that 2 mice were immunised with low-dose type II collagen and 

CFA on each day 0 and 21. 

 

As previous work in DBA-1 mice in the department found that arthritis severity can 

increase rapidly from day 21, another dosing schedule of sgp130Fc was used, with 

increased frequency of administration. Here (Experiment 2, Figure 6), sgp130Fc 

2.5mg/kg was administered daily from day 21 to day 27. An age and sex-matched 

group were immunised with CIA and administered sterile PBS 100ul IP daily from day 

21 to day 27. All mice were sacrificed on day 28. As myography was performed on all 

mice, to ensure accuracy whilst performing experiments, 3 mice were killed per day. 

Therefore day 0 and day 21 were staggered so that 2 mice were immunised with low 

dose type II collagen and CFA on each day 0 and 21.  

 

  

3.3.16.3 Route of sgp130Fc administration  

 

Previous work in the department has administered sgp130Fc intraperitoneally. 

Sgp130Fc is a large protein, its molecular weight is 186kDa. Previously studies have 

also administered sgp130Fc intravenously with good effects in monkeys with CIA 

(unpublished). Therefore, in Experiments 1 and 2, sgp130Fc was administered 

intraperitoneally. Following this, as IP sgp130Fc did not work as was previously 

found, in experiment 3, spg130Fc was administered intravenously.  

 

In experiment 3 (Figure 7), sgp130Fc was administered at 2.5mg/kg on day 21 and 

again on day 28. In this experiment, etanercept served as a positive control and mice 

were immunised with CIA and administered 2.5mg/kg etanercept on day 21 and day 

28. Mice were sacrificed on day 30. So that myography could be performed 

accurately, the experiment was run in two batches and the immunisation days for 

each batch were staggered. 

 

 



73 
 

3.3.16.4 Control mice  

 

For all experiments, a group of mice served as age and sex-matched non –immunised 

controls.  

 

 

 
 

 
 

Figure 5. Representation of experimental procedure for treatment of mice with sgp130Fc IP, 
Experiment 1 

Figure 6. Representation of experimental procedure for treatment of mice with sgp130Fc IP, 
Experiment 2. 
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Figure 7. Representation of experimental procedure for treatment of mice with either IV sgp130Fc, 
PBS or etanercept, experiment 3.  

 
 
 
 

 
Experiment 1 Experiment 2 Experiment3 

Concentration of 
sgp130Fc  

2.5mg/kg 2.5mg/kg 2.5mg/kg 

Source of 
sgp130Fc  

Kiel University R&D systems Kiel University 

Day of first 
sgp130Fc 
administration    
 

21 21 21 

Frequency of 
administration  

Alternate days Daily Weekly  

Route of sgp130Fc 
administration  

IP IP IV 
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Number of doses 
of sgp130Fc 

7 7 2 

Day experiment 
ended  

34 28 30 

Number mice 
immunised with 
CIA and 
administered 
sgp130Fc 

4 4 10 

Number mice 
immunised with 
CIA and 
administered PBS 

4 4 10 

Number of non-
immunised 
controls  

4 4 10 

 

Table 17. Summary of experimental approach of blocking IL-6 trans-signaling using sgp130Fc in CIA 
in DBA-1 mice. 

 
 

3.3.17 ELISA measurements of CCL2, VCAM-1 and sgp130 

 
It has been shown in human studies that CCL2 and VCAM-1 are associated with both 

rheumatoid arthritis and cardiovascular disease. Both are SCCPs and have been 

found, using the Biomap system, to be regulated by IL-6 trans-signaling. To determine 

whether sgp130Fc was detectable in the circulation of mice to whom it was 

administered, human sgp130 was measured in mouse serum.   

 

Approximately 1ml of whole blood was obtained from mice after sacrifice, from 

which 200 µl of serum was aliquoted after centrifuging at 4°C at 10,000 rpm for 10 

minutes. Serum CCL2, VCAM-1 and sgp130 were measured using duoset ELISA 

development kits from R&D systems in accordance with manufacturer’s instructions, 

at concentrations in Table 18. See Table 7 in general methods for ELISA protolol for 

murine serum.   
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The optical density was then immediately measured at 450nm. A standard curve was 

plotted, and protein concentrations were calculated from this. 

 
 

Protein 
measured  

Capture antibody 
working 

concentration 

Detection antibody 
working 

concentration 

High standard 
concentration 

Mouse 
CCL2 

200 ng/ml 50 ng/ml 250 pg/ml 

Mouse 
VCAM-1 

1 µg/ml 100 ng/ml 8000 pg/ml 

Human 
Sgp130 

4 µg/ml 400 ng/ml 10000 pg/ml 

 

Table 18. Antibody and standard concentrations used in ELISA in CIA experiments 

 
 

 

3.3.18 Statistics  

 

Statistics used were dependant on the experiments performed. Where two groups 

were compared the paired means student’s t-test was used. Where multiple groups 

are compared, a one way ANOVA and post hoc Bonferroni test were performed. All 

results were expressed as the mean + SEM.  Differences that were considered 

significant were p < 0.05.   

 

Sample size estimation  

 

This was based on a previous study in CIA in C57BL/6 mice showing 75% of animals 

developed an inflammatory arthritis (Asquith et al, 2010). A reduced incidence of 

arthritis in 30% of animals is considered biologically relevant. A group size of 12 

animals is necessary to achieve 90% statistical power p<0.05 in a primary ANOVA 

screen followed by post-hoc Bonferroni corrected T-test. However, taking into 

consideration the principles of reduction in animal studies, less animals were used in 

the first instance.  
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3.4 Results  

 

All results including text, tables and error bars in figures are mean + SEM.  

 

Establishing a protocol for CIA induction in C57BL/6 mice  

 

3.4.1 No clinical or subclinical arthritis in C57BL/6 mice using low dose collagen and 

CFA 

 

 

There was no clinical sign of arthritis 66 days after the initiation of the CIA protocol 

using low dose CII/CFA regimen. Non-immunised control mice had a trend towards 

greater weight gain than immunised mice from day 0 to 66 (7.1 + 0.65 g versus 5.7 + 

0.5 g) but this was not significant (Figure 8). Although there was no arthritis clinically, 

four hind paws were taken from four immunised mice and four control mice to check 

for subclinical inflammation. There was no difference in histology between 

immunised mice and controls, all paws were scored as 0. Figure 9 shows examples of 

knee and ankle joint from C57BL/6 non-immunised control mice and immunised, 

non-arthritic mice.  

 
 

 

 
 
 
 
 
 

Figure 8. Mean weight gain for control mice versus C57BL/6 mice immunised with CIA. No significant 
difference between mean weight gain in C57BL/6 non-immunised control mice (7.1 + 0.65 g), n=4 and 
immunised, non-arthritic mice (5.7 + 0.5 g), n=8.  
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3.4.2 No significant difference in constriction or relaxation responses in immunised 

C57BL/6 non-arthritic mice and control mice    

 

 

In C57BL/6 mice immunised with low dose collagen and CFA there was no significant 

difference in maximal developed tension to 5-HT in control (9.8 + 1.1 mN), and 

immunised, non-arthritic mice (7.11 + 1.1) (Figure 10A). Similarly, there was no 

statistically significant difference in percentage relaxation to ACh in control (123 + 

 
Figure 9. H&E staining of knee and ankle from C57BL/6 non-immunised control mice and immunised, 

non-arthritic mice. (A1) non-immunised control mouse knee. (B1) immunised, non-arthritic mouse knee. 

(A2) non-immunised control mouse ankle. (B20 immunised, non-arthritic mouse ankle. All given score of 

0, representing a normal joint. Scale bar represents 0.5 mm. M = meniscus, S = synovium  
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22%) and immunised non-arthritic mice (95 + 8%) (Figure 10B).  There was also no 

statistically significant difference in percentage relaxation to SNO in control (100 + 

1.7%) and immunised non-arthritic mice (97 + 1.4 %) (Figure 10C).  

 

 

 

 

 
 
 

Figure 10. Vascular responses of aorta of C57BL/6 mice.  (A) Constriction responses to 5-HT in C57BL/6 control 
mice compared to immunised, non-arthritic mice. No significant difference in maximal developed tension to 5-
HT in vessels from control (9.8 + 1.1 mN), n = 4 and immunised, non-arthritic mice (7.11 + 1.1 mN), n = 8. (B) 
Relaxation responses to ACh in C57BL/6 control mice compared to immunised, non-arthritic mice. Vessels were 
constricted to 70-80% of their previously induced maximal contraction using 5-HT and then relaxed using ACh. 
No significant difference in percentage relaxation to ACh in control (123 + 22%) and immunised non-arthritic 
mice (95 + 8%). (C) Relaxation responses to SNO in C57BL/6 control mice compared to immunised, non-arthritic 
mice. Vessels were constricted to 70-80% of their previously induced maximal contraction using 5-HT and then 
relaxed using SNO. No significant difference in percentage relaxation to SNO in control (100 + 1.7%) and 
immunised non-arthritic mice (97 + 1.4 %) 
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3.4.3 Arthritis induction in C57BL/6 mice using high dose collagen and CFA  

 

In total 10 of 16 C57BL/6 mice developed an arthritis (62.5%). This experiment was 

run in two batches so that myography could be performed at the same time points, 

as only a certain number of myography experiments could be run on the same day. 

In the first experiment 7 of 8 mice developed arthritis (87.5%), and in the second 

experiment 3 out of 8 mice developed arthritis (38%) (Figure 11). One mouse 

developed arthritis (maximal paw score 1) which then spontaneously resolved, thus 

at the time of sacrifice, 9 out of 16 mice had an arthritis. Arthritis onset in those mice 

that developed arthritis was between day 26 and 43. Mice with CIA had significantly 

lower weight gain (2.0 + 0.7g) than control mice (4.9 + 2.5g), p = 0.015 (Figure 12A). 

There was a significant negative correlation between total paw score and weight gain 

at the time of sacrifice for C57BL/6 mice, R = -0.86, p < 0.0001 (Figure 12B).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Incidence of arthritis in C57BL/6 mice immunised with high dose collagen and CFA. 10 out of 
16 mice (62.5%) developed an arthritis. Results are presented from two experiments combined  
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3.4.4 Induction of arthritis confirmed histologically in C57BL/6 mice immunised with 

high dose collagen and CFA 

 

Five knees from control mice and five knees from immunised mice scored as having 

arthritis clinically were stained with H&E to check for histological signs of arthritis 

(Figure13). This confirmed findings in keeping with CIA, with subsynovial 

inflammation, synovial exudate, synovial hyperplasia, pannus formation and 

cartilage and bone erosions.  

 

Figure 12. (A) Mean weight gain significantly higher in C57BL/6 non-immunised control mice (4.9 + 2.5 g)  

compared to arthritic mice (2.0 + 0.7g), p < 0.05 (B) Significant negative correlation between total paw score 

and weight gain at the time of sacrifice for C57BL/6 mice immunised with CIA using high dose collagen and 

CFA protocol. (R -0.87, p <0.0001).  
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Figure 13. Arthritis confirmed histologically by H&E staining in C57BL/6 mice immunised with high 
dose collagen and CFA. A) Control mouse knee, score 0. B) Arthritic mouse knee, score 4. * 
represents erosion of underlying bone by pannus activity, ∆ focal inflammatory infiltrates in 
synovium. Scale bar represents 0.5mm. M = meniscus, S = synovium.  

 

 

3.4.5 Arthritis significantly reduces the vascular constriction response in aortic tissue 

but does not alter relaxation responses  

 

Mice with clinical arthritis had significantly lower mean maximal aortic contraction 

(7.8 + 3.1 mN), compared to non-immunised control mice (11.4 + 2.7 mN), p < 0.05 

(Figure 14). There was no significant difference between maximal relaxation in 

control (93 + 6.9 %), arthritic (77 + 13 %) and immunised non-arthritic mice (91 + 18 

%). There was no significant difference in maximal relaxation to SNO between control 

(99.5 + 7.0 %), arthritic (98.0 + 4.8 %) and immunised non-arthritic mice (101.7 + 5.5 

%). Of the nine mice that had a clinical arthritis at the time of termination, there was 

no significant correlation between maximal developed tension and total paw score 

(Figure 15).  
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R= -0.58 p= 0.10 

Figure 14. Vascular responses in the aorta of control, immunised and arthritic C57BL/6 mice to 5-HT, ACh and 
SNO. (A) Mean maximal contraction for control (11.4 + 2.7 mN), n =8 was significantly higher than arthritic 
mice, n= 9 (7.8 + 3.1 mN) p < 0.05, but not immunised non-arthritic mice (9.1 + 2.5 mN), n=7. (B) No significant 
difference between maximal relaxation in control (93 + 6.9 %), arthritic (77 + 13 %) and immunised non 
arthritic mice (91 + 18 %). (C) No significant difference in maximal relaxation to SNO between control (99.5 + 
7.0 %), arthritic (98.0 + 4.8 %) and immunised non arthritic mice (101.7 + 5.5 %). 
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3.4.6 Complete absence of IL-6 signalling using IL-6-/- and IL-6R-/- mice confers 

resistance to CIA  

 

 No IL-6-/- or IL-6R-/- mice developed arthritis when immunised with CIA using high 

dose CII/CFA (Figure 16). One of five (20%) immunised WT females developed 

arthritis on day 23, developed a moderate arthritis by day 33 but then regressed to 

mild at day 49. The plan was to allow the arthritis to progress to severe but in view 

of an improvement clinically the mouse was sacrificed on day 49. One of two (50%) 

immunised WT male mice developed CIA.   

 

Figure 15. No significant correlation between maximal developed tension and total paw score 
in C57BL/6 arthritic mice, n= 9.  
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3.4.7 Female immunised IL-6-/- and IL-6R-/- mice have reduced aortic constriction 

compared to wild type mice.   

 
Mean maximal developed aortic tension for female control wild-type mice (13.5 + 0.6 

mN) and wild type immunised-non arthritic mice (12.3 + 0.6 6 mN) was significantly 

higher than IL-6-/- (8.5 + 0.5 mN) and IL-6R-/- (6.4 + 0.7 mN) mice, p < 0.01 (Figure 17). 

Maximal developed tension for the single wild type arthritic mouse was 12.2 mN. 

There was no significant difference in percentage relaxation to ACh between the 

groups (Figure 18). The mean percentage relaxation to ACh for control mice was (89.3 

+ 2.3 %), immunised non arthritic mice (75.7 + 9.1 %), IL-6-/- mice (90.8 + 6.1 %), IL-

6R-/- mice (85.4 + 1.3 %) and for the wild type arthritic mouse was 83.2 %. There was 

also no significant difference in percentage relaxation to SNO between the groups 

Figure 16. Incidence of arthritis for C57BL/6 WT and IL-6 KO and IL-6R KO mice in (A) female and (C) male 
mice. No IL-6-/- or IL-6R-/- mice developed arthritis. Mean total paw score for (B) females, n = 3 per group 
in IL-6-/- and IL-6R-/- and n = 5 WT and (D) males, n = 2 per group. 
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(Figure 19). Mean percentage relaxation to SNO for control mice (101.9 + 1.1 %), 

immunised non-arthritic mice (103.0 + 1.5%), IL-6-/- mice (97.0 + 7.0 %), IL-6R-/- mice 

(101.0 + 2.8 %) and the wild type arthritic mouse 106.1%.  

 
 
 
 
 
 
 
 

 
  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. (A) Vasoconstriction concentration–response curves to 5-HT in aortic rings from female non-
immunised control and female wild type arthritic mice. Maximal developed tension for the single wild type 
arthritic mouse was 12.2 mN and for control mice (13.5 + 0.6 mN). (B)  Vasoconstriction concentration–
response curves to 5-HT in aortic rings from female immunised non arthritic wild type IL-6-/-and IL-6R-/- mice. 
Mean maximal developed tension for female wild type immunised-non arthritic mice (12.3 + 0.6  mN) was 
significantly higher than IL-6-/- (8.5 + 0.5 mN) and IL-6R-/- (6.4 + 0.7 mN) mice **p < 0.01.  
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Figure 18. (A) Relaxation–response curves to ACh following pre-constriction to 70–80% of their appropriate 
Rmax response to 5-HT in aortic rings from female non-immunised control and wild type arthritic mice. No 
significant difference in mean percentage relaxation to ACh for control mice (89.3 + 2.3 %) and the wild type 
arthritic mouse (83.2 %). (B) Relaxation–response curves to ACh following pre-constriction to 70–80% of 
their appropriate Rmax response to 5-HT in aortic rings from female immunised, non-arthritic wild type,  IL-

6-/-and IL-6R-/- mice. No significant difference in mean percentage relaxation to ACh for immunised WT non 

arthritic mice (75.7 + 9.1 %) immunised IL-6-/- mice (90.8 + 6.1 %) and immunised IL-6R-/- mice (85.4 + 1.3 %)  

 

Figure 19. (A) Relaxation–response curves to SNO following pre-constriction to 70–80% of their 
appropriate Rmax response to 5-HT in aortic rings from female wild type non-immunised control, and 
arthritic mice. No significant difference in percentage relaxation between control mice (101.9 + 1.1 %) and 
the wild type arthritic mouse (106.1%). (B) Relaxation–response curves to SNO following pre-constriction 
to 70–80% of their appropriate Rmax response to 5-HT in aortic rings from female immunised, non-arthritic 
wild type, IL-6-/-and IL-6R-/- mice. No significant difference in percentage relaxation between percentage 
relaxation to SNO for WT immunised non-arthritic mice (103.0 + 1.5%), immunised IL-6-/- mice (97.0 + 7.0 
%) and immunised IL-6R-/- mice (101.0 + 2.8 %)  
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3.4.8 Trend for reduced aortic constriction in male IL-6R-/- mice compared to non-

immunised control wild type 

 

Mean maximal constriction to 5-HT in the male control WT mouse was 12.4 mN and 

male WT arthritic mouse 3.1 mN (Figure 20A). Although numbers in each group were 

only 1 or 2, there appears to be a trend for higher mean maximal constriction to 5-

HT in the immunised non-arthritic mouse (11.0 mN) compared to the IL-6R-/-  mice 

(3.0 + 2.1 mN) (Figure 20B).  There was no significant difference in percentage 

relaxation to ACh between the groups; percentage relaxation to ACh in the control 

mouse was 92.7%, immunised non arthritic mouse 77.3%, arthritic mouse 82.4% and 

mean for IL-6R-/- mice was 75.9 + 1.9 % (Figure 21). There was also no difference in 

percentage relaxation to SNO; percentage relaxation to SNO in the control mouse 

was 115.4%, immunised non arthritic mouse 110.4%, arthritic mouse 104.7% and 

mean for IL-6R-/- mice was 105.2 + 0.2 % (Figure 22). The male mouse experiment did 

not have an IL-6-/- mouse included as there were none available.  

 

 

Figure 20. (A) Vasoconstriction concentration–response curves to 5-HT in aortic rings from male 
wild type non-inmmunised control, and wild type arthritic mice. Mean maximal developed tension 
in the control mouse (12.4 mN) and wild type arthritic mouse (3.1 mN). (B) Vasoconstriction 
concentration–response curves to 5-HT in aortic rings from male immunised non-arthritic wild 
type and IL-6R-/- mice. Mean maximal developed tension to 5HT was significantly higher in the 
wild type immunised non arthritic mouse (11.0 mN) compared to the IL-6R-/- mice (3.0 + 2.1 mN) * 
p < 0.05.  

 

* 
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Figure 21. Relaxation–response curves to ACh following pre-constriction to 70–80% of their 
appropriate Rmax response to 5-HT in aortic rings from (A) Male non-immunised control wild type 
mice and male wild type arthrititc mice and (B) Male immunised non arthritic wild type mince and IL-
6R-/- mice. No significant difference in percentage relaxation between the groups. Mean percentage 
relaxation to ACh in WT control mouse 92.7 %, WT arthritic mouse 82.4 %, immunised non-arthritic 
mouse 77.3 %, and IL-6R-/- immunised mouse (75.9 + 1.9 %) 

Figure 22. Relaxation–response curves to SNO following pre-constriction to 70–80% of their appropriate 
Rmax response to 5-HT) in aortic rings from (A) Male non-immunised control wild type mice and male 
wild type arthritic mice and (B) Male immunised non arthritic wild type mince and IL-6R-/- mice. No 
significant difference in percentage relaxation between the groups. Percentage relaxation to SNO in the 
WT control mouse was 115.4 %, WT arthritic mouse 104.7 %, WT immunised non arthritic mouse 110.4%, 
and mean for IL-6R-/- mice was 105.2 + 0.2 %.  

 

 

 

 

* 
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3.4.9 The effect of blockade of IL-6 trans-signaling on CIA using sgp130Fc  

 

3.4.9.1 No effect of sgp130Fc on arthritis incidence or severity in DBA-1 mice when 

administered intraperitoneally  

 

In experiment 1 and 2, where mice were administered sgp130Fc intraperitoneally, 

there was no effect on arthritis onset, incidence or severity (Figure 23). Of those mice 

immunised with CIA and administered PBS, in experiment 1 arthritis incidence was 

100% and in experiment 2 was 75%. There was no effect whether sgp130Fc was 

administered on alternate days (Experiment 1) or daily (Experiment 2); there was no 

significant difference in mean total paw score on day 34 for mice administered IP 

sgp130Fc in Experiment 1 (8.5 + 1.7) and those administered PBS (8.3 + 1.5) (Figure 

24). Mean total paw score on day 28 for IP sgp130Fc in Experiment 2 was 3.8 + 1.5, 

PBS (2.0 + 1.4), not significant.  

 

 

Figure 23. Arthritis Incidence in DBA-1 mice treated with IP sgp130Fc. (A) Experiment 1: 100% 
arthritis incidence in DBA-1 mice immunised with CIA and administered either PBS or sgp130Fc on 
alternate days from day 21, n =4 in each group. (B) Experiment 2: 100 % incidence in DBA-1 mice 
immunised with CIA and administered sgp130Fc daily from day 21 and 75% arthritis incidence in 
those administered PBS, n = 4 in each group.  
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Figure 24. Mean total paw score over time for mice immunised with CIA and administered sgp130Fc 
IP. (A) Experiment 1: IP sgp130Fc or PBS IP from day 21 on alternate days for 7 doses, no significant 
difference, n = 4 in each group. (B) Experiment 2: IP sgp130Fc or PBS from day 21 daily for 7 doses, 
no significant difference, n = 4 in each group 

 

 

3.4.9.2 No effect on aortic constriction responses in mice with CIA administered IP sgp130Fc  

 

There was no statistically significant difference in maximal developed tension in mice 

with CIA administered sgp130Fc compared to PBS. In Experiment 1 there was no 

difference in maximal developed tension in those administered sgp130Fc (mean 

maximal developed tension 7.88 + 1.0 mN) compared to those administered PBS 

(6.55 + 1.0 mN), but mean maximal developed tension was statistically significantly 

higher in non-immunised control mice (11.3 + 0.7 mN), p < 0.05 (Figure 25A). There 

was no difference in maximal developed tension in those treated with sgp130Fc in 

Experiment 1 (mean maximal developed tension 6.0 + 0.9 mN), compared to those 

administered PBS (5.2 + 1.0 mN), or non-immunised control mice (7.89 + 0.7 mN) 

(Figure 25B). 
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3.4.9.3 Detection of sgp130Fc in serum in DBA-1 mice administered IP or IV sgp130Fc  

 

ELISA was performed to measure human sgp130 in mouse serum from those mice 

administered both sgp130Fc from Kiel and from R&D systems. In all mouse serum 

samples where  sgp130Fc was administered intraperitoneally, all absorbance values 

for sgp130 were below the lower limit of detection (0.23 OD), indicating absence in 

serum. In the same ELISA, human samples were also tested, and all samples tested 

contained sgp130. In mice administered intravenous sgp130Fc, human sgp130 was 

detectable in the serum (mean concentration 205 + 36 pg/ml, taken 48 hours after 

administration), but not in mice administered PBS or etanercept), n = 4 per group 

(Figure 26).  

 

* 

Figure 25. Vasoconstriction concentration–response curves to 5-HT in aortic rings from DBA-1 mice 
immunised with high dose collagen and CFA and administered IP sgp130Fc or PBS. (A) Sgp130Fc sourced from 
Kiel, Germany. No difference in mean maximal developed tension in those administered sgp130Fc (7.88 + 1.0 
mN) compared to those administered PBS (6.55 + 1.0 mN), but mean maximal developed tension was 
significantly higher in non-immunised control mice (11.3 + 0.7 mN), *p < 0.05. n = 4 in each group (B) sgp130Fc 
sourced from R&D systems. No significant difference in maximal developed tension in mice administered 
agp130Fc or PBS. n = 4 in each group.  
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3.4.9.4 Intravenous sgp130Fc reduced arthritis incidence and severity in immunised DBA-1 

mice   

 

Intravenous sgp130Fc reduced arthritis incidence in DBA-1 mice immunised with low 

dose collagen and CFA compared to those administered PBS. Arthritis incidence on 

day 29 was 90% for PBS-administered mice, 50% for sgp130fc-administered mice and 

50% for etanercept-administered mice (Figure 27A). Mean total paw score for PBS–

administered mice (4.3 + 3.4) was significantly higher than sgp130Fc–administered 

mice (1.5 + 1.8), and etanercept-administered mice (1.2 + 1.7), p < 0.05 (Figure 27B) 

  

 

 

 

 

Figure 26. Measurement of human sgp130 in serum in mice administered human sgp130Fc IV. Human 
sgp130 was detected in serum from mice administered sgp130Fc (mean concentration 205 + 36 pg/ml), 
but not in etanercept or PBS administered groups (n=4 in each group). Blood was collected 48 hours 
after the second intravenous dose of sgp130Fc. 



94 
 

 

 

 

 

 

3.4.9.5 Intravenous sgp130Fc restored vascular function in CIA  

 

There was a significant reduction in maximal developed tension in mice with CIA 

administered PBS (5.8 + 2.4 mN) compared to non-immunised control mice (8.5 + 1.8 

mN), p < 0.05. There was no significant difference in mean maximal developed 

tension between sgp130Fc (8.1 + 2.0 mN), etanercept treated mice (7.7 + 1.9 mN) 

and non-immunised controls (Figure 28).  

 

 

 

 

Figure 27. (A) Arthritis incidence and (B) Paw score over time for mice immunised with CIA and 
administered intravenous sgp130Fc, etanercept or PBS. Significant reduction in mean total paw score at 
day 30 in mice administered sgp130Fc (1.5 + 1.8),  or etanercept (1.2 + 1.7), compared to those 
administered PBS (4.3 + 3.4), *p <0.05. n = 10 in each group 
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3.4.9.6 IV sgp130Fc reduced serum CCL2 and VCAM-1 levels in immunised mice compared 

to those administered PBS 

 

Serum CCL2 was significantly higher in mice with CIA treated with PBS (117.3 + 14.5 

pg/ml) compared to those treated with IV sgp130Fc (41.87 + 12.1 pg/ml), p < 0.001 

and non-immunised controls (16.9 + 4.8 pg/ml) p < 0.001 (Figure29A). CCL2 was 

significantly higher in CIA mice administered etanercept (116.7 + 36.7 pg/ml) 

compared to those treated with IV sgp130fc (p < 0.01) and non-immunised controls 

(p < 0.001).  

Serum VCAM-1 was significantly higher in PBS-administered mice (3144 + 366 ng/ml) 

compared to controls (1861 + 160 ng/ml), mice administered etanercept (2077 + 173 

ng/ml) and mice administered IV sgp130Fc (1979 + 136 ng/ml), p < 0.01 (Figure29B). 

There was no significant difference in serum VCAM-1 between etanercept or 

Figure 28. Effect of IV sgp130Fc on aortic constriction in DBA-1 mice immunised with CIA and administered 

either sgp130FC, PBS or etanercept, compared with non-immunised controls. Graphs show vasoconstriction 

concentration–response curves to 5-HT (following pre-constriction to 80% of their appropriate Rmax response 

to 5-HT) in aortic rings N = 10 in each group. Significant reduction in maximal developed tension in mice with 

CIA administered PBS (5.8 + 2.4 mN) compared to non-immunised control mice (8.5 + 1.8 mN), p < 0.05. No 

significant difference in mean maximal developed tension between sgp130Fc (8.1 + 2.0 mN), etanercept 

treated mice (7.7 + 1.9 mN) and non-immunised controls. 
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sgp130fc treated groups compared to non-immunised controls. In immunised DBA-1 

mice there was a significant positive correlation between paw score and both serum 

VCAM-1 and serum CCL2 level (Figure30). 

 

 

 

 
 

 

Figure 29. Serum levels of (A) CCL2 and (B) VCAM-1 in DBA-1 mice. (A) Significantly higher CCL2 in mice with CIA 
administered PBS (117.3 + 14.5 pg/ml) compared to sgp130Fc (41.87 + 12.1 pg/ml), and non-immunised controls 
(16.9 + 4.8 pg/ml). Significantly higher CCL2 in mice immunised with CIA and administered etanercept (116.7 + 36.7 
pg/ml) compared to sgp130Fc and controls, n = 9 in each group. (B) Serum VCAM-1 was significantly higher in PBS 
treated mice (3144 + 366 ng/ml) compared to controls (1861 + 160 ng/ml), mice administered etanercept (2077 + 
173) and mice administered sgp130Fc (1979 + 136). There was no significant difference in serum VCAM-1 between 
etanercept or sgp130fc treated groups compared to controls, n = 10 in each group. *p <0.05, ** p <0.01, *** p < 
0.001 
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Figure 30. Correlations between serum CCL2 or VCAM-1 and total paw score in DBA-1 mice 

immunised with low dose collagen and CFA. Significant positive correlation between serum CCL2 

and total paw score, R = 0.54, p = 0.004. Significant positive correlation between serum VCAM-1 and 

total paw score, R = 0.3749, p = 0.00187 

 

 

3.4.9.7 PSTAT3 not detected in the aorta of arthritic mice  

 

PSTAT3 was present in the synovium of arthritic joints of mice with CIA (Figure 31).  pSTAT3 

was not present in the aorta of control mice or in the aorta of mice with CIA (Figure 32).  

 



98 
 

 

 

 

Figure 31. pSTAT3 staining in synovium from arthritic joints in DBA-1 mice with CIA. (A) Positive 
staining for pSTAT3 in synovium at X 20 magnification (B) Isotype control at X 20 magnification. (C) 
Positive staining for pSTAT3 in synovium at X 40 magnification (D) Isotype control at X 40 
magnification 
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.  

 

 

Figure 32. No pSTAT3 staining in the aorta of control DBA-1 mice and arthritic DBA-1 mice. (A) 
Negative staining for pSTAT3 in arthritic mouse aorta, X 20 magnification. (B) Isotype control aorta 
from arthritic mouse, X 40 magnification. (C) Negative staining for pSTAT3 in control mouse aorta, 
X 20 magnification (D) Negative staining for pSTAT3 in control mouse aorta, X 40 magnification (E)  
Isotype control aorta from arthrtitic mouse, X 20 magnification (F) Isotype control aorta from 
arthrtitic mouse, X 40 magnification.  
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3.5 Discussion  

 

3.5.1 Arthritis induction in wild type C57BL/6 and DBA-1 mice  

 

When using the same doses of collagen and CFA that are used to induce CIA in DBA-

1 mice (low dose collagen and TB) no C57BL/6 mice developed arthritis.  When using 

high dose collagen and CFA, CIA was successfully induced in C57BL/6 mice but with a 

variable severity and time course. This is in keeping with the literature, in which there 

are differing reports of arthritis incidence and severity of CIA in C57BL/6 mice. It is 

known that this reduced susceptibility to CIA is linked to the H-2b haplotype in 

C57BL/6 mice, and that the H-2q haplotype in DBA-1 mice confers greater 

susceptibility to CIA, with greater clinical scores and more paw swelling  than C57BL/6 

mice (Bevaart et al, 2010). Of note, in the two experiments using high dose collagen 

and CFA, the first incidence of arthritis was 87.5% and the second 38%. These mice 

were sourced from the same company, were the same age, were housed in the same 

environment and the same methods were used to induce arthritis. Possible factors 

in this variability in incidence could involve the quality of collagen preparation, 

quality of immunisation injections and slight changes in environment, such as noise 

level. It has previously been observed that fighting amongst male mice reduces the 

incidence of arthritis (Inglis et al, 2007). Although no fighting was reported and no 

wounds were observed, we cannot rule out the possibility of fighting amongst mice. 

In DBA-1 mice, arthritis was induced successfully with low dose collagen and CFA, 

with an incidence of 100% in the first experiment and 75% in the second. This is in 

line with the literature on arthritis incidence in DBA-1 mice (Brand et al, 2007).  

 

3.5.2 Effect of CIA on weight gain  

 

Mice with CIA had significantly lower weight gain than control mice; this is in line with 

previous literature (Yongfeng et al, 2016; Filippin et al, 2013). There was a significant 

negative correlation between weight gain and arthritis severity for immunised mice. 

From day 21 onwards food pellets were left in the bottom of the cage, as well as in 
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the food hopper of the cage lid, to ensure that arthritic mice could reach these easily 

and were not disadvantaged by having to reach up to get food on their hind paws. 

Therefore ability of the mice to reach food should not have impacted on their weight 

gain. The cause of reduced weight gain in arthritic mice may be anorexia or systemic 

inflammatory response causing inflammatory cachexia. Studies have found that daily 

food intake did not differ between controls and CIA animals (Filippin et al, 2013). 

Another study found that in adjuvant arthritis induced in rats, pair fed animals (mice 

with arthritis and controls fed the same amount), those with adjuvant arthritis lost 

20% of their body weight at the end of experimentation, and pair-fed animals lost 

only 5% body weight, indicating that anorexia alone does not explain inflammatory 

cachexia (Roubenoff et al, 1997). In these mice, weight loss correlated with TNF-α 

production by spleen mononuclear cells.  

What is unknown in this chapter is the components of the mass weighed, and 

whether the reduction in weight gain is due to less fat or less muscle gain. Previous 

studies in CIA have shown that there is a correlation between arthritis score and 

locomotion; mice with more severe arthritis scores had reduced locomotion (Hartog 

et al, 2009). Those with higher levels of locomotion had higher muscle weight. 

Studies in patients with RA have shown that energy and protein intake were similar 

to control patients but body cell mass (the mass of all the metabolically active tissue 

of the body) was lower in RA patients (Roubenoff et al, 1994). 

 

3.5.3 Effect of CIA on vascular responses in WT C57BL/6 mice 

 

In line with previous work in DBA-1 mice (Reynolds et al, 2012), arthritic C57BL/6 

mice had impaired vasoconstriction to 5-HT compared to non-immunised control 

mice. Contractile dysfunction was not accompanied by overt endothelial dysfunction; 

endothelium-dependent relaxation responses to Acetylcholine were similar between 

groups. Moreover, relaxation responses to exogenously donated nitric oxide (using 

SNO) were unaffected. This again is in line with previous work by Reynolds et al 

(2012).  There was no significant relationship between maximal developed tension 
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and arthritis severity at the time of sacrifice, although there was a trend towards 

higher maximal developed tension with lower total paw score. However, the number 

of mice that developed an arthritis was relatively small (nine) and so this may have 

become significant with a greater group numbers. Previous work by Reynolds et al 

found there was a significant reduction in maximal developed tension in mild and 

moderate graded mice compared to the severe grade. See Reynolds et al (2012) for 

information about arthritis severity grading. Due to the variable day of onset of 

arthritis and variable progression of arthritis severity for each mouse, at the time of 

sacrifice mice had variable total paw scores (although all were in the mild category 

except for one). Mice also had had arthritis for a variable number of days at the time 

of sacrifice. In view of this, constriction responses may have differed between 

arthritic mice.  

The reason for the observed reduction in aortic constriction in CIA has been 

examined previously in our department. Aortic and plasma levels of MMP-9 were 

increased with increasing contractile dysfunction (Williams et al, 2016). MMP-9 is 

type IV collagenase enzyme, and thus can degrade the extracellular matrix in the 

aorta. A previous study found that inhibition of cytokine-induced NO expression in 

rat aortic smooth muscle cells was associated with a selective, dose-dependent 

increase in MMP-9 expression and synthesis (Upchurch et al 2001). Other work in our 

department has found that aortic collagen and elastin become dysregulated during 

CIA and show a fibrosis like phenotype (unpublished yet).  

 

3.5.4 CIA and vascular responses in IL-6-/- and IL-6R-/- mice  

 

No IL-6-/- mice developed arthritis, in line with previous work in IL-6-/- mice (Alonzi et 

al, 1998). Here, for the first time, we show that IL-6R-/- mice are resistant to CIA. This 

is in line with the evidence that the action of IL-6 is necessary for the development 

of CIA. 

Although small numbers, there appears to be impaired vasoconstriction in 

immunised IL-6-/- and IL-6R-/- mice. This is interesting, as there is much evidence that 
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IL-6 is implicated in the pathogenesis of CVD and correlates with CV risk in humans 

(Hartman and Frishman, 2014). Previous work found no significant difference in 

phenylephrine induced constriction between WT and IL-6-/- mice (Coles et al, 2007), 

but constriction responses have not been assessed in IL-6R-/- mice previously. 

Another previous study has found that IL-6-/- mice were protected against 

angiotensin II induced endothelial dysfunction and hypertrophy in carotid arteries 

(Schrader et al, 2007). Unfortunately, breeding of the in-house IL-6-/- and IL-6R-/- 

colonies was poor and no further mice were available to increase numbers to assess 

constriction responses. It would be of interest to assess constriction responses in 

non-immunised IL-6-/- and IL-6R-/- mice and compare with immunised IL-6-/- and IL-6R-

/- mice; perhaps baseline constriction responses would be unaffected, but the 

addition of an inflammatory insult, such as immunisation with CFA, could promote 

the vascular dysfunction seen in this experiment. We know from several previous 

studies that IL-6 plays homeostatic roles in lipid metabolism and atherosclerosis 

(Schieffer et al, 2004). What has not been fully elucidated is the role of IL-6 in 

homeostatic vascular function. It is known that IL-6 is needed for epithelial cell repair, 

for example in the gastrointestinal tract. Perhaps IL-6 is also needed for vascular 

endothelial cell repair and to protect against early insult to the vasculature. IL-6 is 

known to play a role in lipid metabolism and ApoE-/--IL-6-/- double knockout mice have 

greater atherosclerosis than ApoE-/- mice. If complete absence of IL-6 promotes 

atherosclerosis then perhaps IL-6-/- and IL-6R-/- mice have early atherosclerotic 

changes such as fatty streaks which may be contributing to reduced aortic 

constriction. One way to assess this would be to histologically examine the aortas of 

both immunised and non-immunised IL-6-/- and IL-6R-/- mice for early atherosclerosis.  

As mentioned, although IL-6-/- and IL-6R-/- mice share similarities, some differences 

have been seen phenotypically. Whereas IL-6-/- mice have impaired wound healing, 

IL-6R-/- mice heal almost as well as WT mice (McFarland-Mancini et al, 2010). In this 

study, 100% of IL-6-/- mice developed ulcers at the wound boundary, compared to 

just 18% of IL-6R-/- mice and 8% of WT mice. It is unclear whether these ulcers were 

provoked by persistent irritation from an open wound, phenotypic defects in wound 

contraction or psychological/stress-induced from defects in IL-6. Surprisingly, mice 
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deficient in both IL-6 and IL-6R, or IL-6-/- mice treated with an IL-6R blocking antibody, 

showed better wound healing than IL-6-/- mice. This suggests that absence of IL-6R is 

beneficial to wound healing. The reasons for this is unclear but there are other 

members of the IL-6 family; ciliary neurotrophic factor (CNTF) ( Schuster et al, 2003) 

and IL-27 (Crabe et al, 2009), which can bind to IL-6R in vitro but with lower affinity 

than IL-6. The relevance of these findings remains unclear in vivo. 

 A disadvantage of using IL-6-/- or IL-6R-/- mice in this model is that these mice are 

resistant to arthritis. Therefore, we cannot be sure if any change in vascular response 

is just due to the absence of arthritis and its associated systemic inflammation. IL-6-

/- mice do produce antibodies to collagen II in response to CIA, but levels peak later 

and are reduced compared to IL-6+/+ mice (Sasai et al, 1999). In addition, IL-6-/- mice 

have a complete lack of IL-6 and so any effect on the vasculature could be due to 

absence of either IL-6 classical or trans-signaling, or both. Similarly with IL-6R-/- mice 

there is neither classical IL-6 signaling, nor IL-6 trans-signaling, as there is no IL-6 or 

sIL-6R available.  Therefore, it was decided that to further understand the role of 

trans-signaling on vascular function in mCIA, sgp130Fc would be used to specifically 

block IL-6 trans-signaling, whilst allowing classical signaling to continue.  

 

 

3.5.5 Effect of sgp130fc on arthritis severity and vascular function 

 

When administered intraperitoneally, there was no effect of sgp130Fc on arthritis 

incidence or severity compared to PBS controls. This is in contrast to previous work 

(Nowell et al, 2006).  Sgp130Fc consists of the extracellular portion of gp130 linked 

to the Fc domain of a human IgG1 antibody. Its molecular weight is 186kDa. Since 

these previous experiments were performed, the production process of sgp130Fc 

has changed. Human sgp130 was undetectable, when checked by ELISA, in mice 

administered given sgp130Fc IP, suggesting it did not reach the vasculature. One 

reason for this may be that the change in sgp130Fc production process may have 

changed its structure, perhaps conferring a greater propensity to aggregate and 
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making it unable to cross the peritoneal membrane. There was also no difference in 

maximal aortic developed tension in those given IP sgp130Fc, probably as this did not 

affect arthritis severity. When administered intravenously, human sgp130 was 

detectable in the serum. Therefore the reason for IP sgp130Fc having no effect is 

likely to be due to its route of administration. Other possible reasons for sgp130Fc 

being ineffective when administered IP are poor administration skill, although this 

seems less likely as previous experiments with the same investigator using IP 

injections have been successful. 

When administered intravenously, both sgp130Fc and etanercept reduced arthritis 

severity in CIA compared with mice administered PBS. Paw scores were more than 

double in the PBS group compared to sgp130Fc and etanercept groups. Sgp130Fc and 

etanercept each reduced arthritis incidence by 55%. This is similar to the literature; 

Wooley et al (1993) found a 61% reduction in CIA incidence in anti-TNF treated mice 

on day 55. Carty et al found a 50% reduction in incidence of mCIA when mice were 

administered sgp130Fc compared to PBS (from thesis but not published). Rose et al 

(2013) developed a mouse model called K/BxAg7 which develop an erosive 

inflammatory arthritis, followed by atherosclerosis after 12 weeks. These mice have 

dyslipidaemia and increased IL-6 levels. The study found that etanercept reduced 

arthritis and atherosclerotic burden in these mice. 

For the first time this chapter demonstrates that both sgp130Fc and etanercept 

prevented the reduction in constriction responses seen in PBS treated mice. As both 

of these drugs also improved the arthritis severity, it is difficult to know whether this 

effect on the vasculature is related to reduced arthritis severity, or whether the drugs 

are having a direct effect on the blood vessels. Interestingly, although the arthritis 

incidence in sgp130Fc and etanercept groups was 50%, constriction responses in 

these mice were not significantly different from non-arthritic control mice, perhaps 

suggesting a greater effect of both drugs on the vasculature than on the joints. Within 

individual groups: sgp130Fc, etanercept and PBS there was no significant correlation 

between paw score and maximal developed aortic contraction. There was a trend 

within each group for a negative correlation, and this was most pronounced in the 

PBS group. Therefore, we cannot say that there is a direct relationship between 
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improvement in arthritis severity and improvement in vascular function with 

sgp130Fc and etanercept.  

Serum CCL2 was significantly higher in mice with CIA administered PBS than those 

administered sgp130Fc. CCL2 recruits monocytes, memory T cells and dendritic cells 

to sites of inflammation and is known to be increased in serum and synovial fluid of 

RA patients (Koch et al, 1992). CCL2 levels also correlate with CIMT in RA patients 

(Södergren et al, 2010). CCL2 gene inactivation significantly decreases progression of 

atherosclerotic lesions (Linic et al, 2013) and CCL2 expression is increased in 

atherosclerotic lesions and injured arteries (Egashira et al, 2003). CCL2 is produced 

by many cell types, including endothelial, fibroblasts, epithelial, smooth muscle, 

mesangial, astrocytic, and microglial cells. However, monocytes and macrophages 

are the major source of CCL2 (Deshmane et al, 2009). Macrophage numbers in the 

aorta have been shown to be increased in CIA (Williams et al, 2016). The reduction 

in CCL2 in mice administered sgp130Fc seen in this work is in line with the literature; 

work by Nowell et al (2003) has shown that IL-6 trans-signaling (via Hyper-IL-6) 

increased arthritis severity and controlled intrasynovial mononuclear leukocyte 

recruitment through CCL2. In the same study, treatment of IL-6+/+ mice with sgp130Fc 

significantly reduced the intensity of CCL2 staining to levels comparable with that 

seen in IL-6−/− mice. Treatment with etanercept did not reduce CCL2 levels compared 

to PBS. Previous studies have found that TNF-α enhances the expression of CCL2 in 

astroctyes (Barna et al, 1994) and human proximal tubular epithelial cells (Ho et al, 

2008) but to my knowledge, there are no studies reporting the effect of TNF-α on 

expression of CCL-2 on the vascular endothelium. As both sgp130Fc and etanercept 

restored vascular function but etanercept did not reduce serum CCL2, we cannot 

conclude that the improvement in vascular responses with these drugs is solely due 

to reduced CCL2.  

 

Serum VCAM-1 levels were significantly higher in mice with CIA administered PBS 

than those administered IV sgp130Fc, etanercept or non-immunised control mice.  

Previous work using the Biomap® system has shown that IL-6 trans-signaling 

regulated the release of VCAM-1 from endothelial cells, PBMCs and coronary artery 
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smooth muscle cells. Thus, the reduction seen in serum VCAM-1 levels in those 

administered sgp130Fc compared to PBS would fit with this. Mice administered 

etanercept also had lower VCAM-1 than those administered PBS. TNF-α is known to 

increase the expression of VCAM-1 in human endothelial cells (Kim et al, 2001; 

Haraldsen et al, 1996) and a study in patients with RA found that serum VCAM-1 

levels were significantly lower after treatment with infliximab, an anti-TNF antibody 

(Klimiuk et al, 2004). Previous work in CIA has shown that qRT-PCR VCAM-1 

expression in the aorta was higher in CIA versus non immunised mice (Denys et al, 

2013). Interestingly, the expression of IL-6 in the aorta was similar in all groups. 

VCAM-1 induces immune-cell recruitment within the vessel wall and therefore 

inflammation. Thus, the improved vascular constriction response seen with both 

sgp130Fc and etanercept could be due to the reduction in VCAM-1 and therefore 

reduction in recruitment of inflammatory cells into the aorta. 

 

pSTAT3 was not detected in the aorta of either control or arthritic mice in this study, 

but was present in the arthritic joints. This positive staining in the joint is in keeping 

with previous work in AIA which has reported rapid activation of STAT-3 following 

arthritis induction, with pSTAT3 staining in arthritic joints (Nowell et al, 2009). In this 

study, activation of STAT-3 was significantly impaired in IL-6-/- mice. A previous study 

in human aortic tissue has shown that pSTAT3 staining only occurred in aneurysmal 

tissue, and not in non-aneurysmal tissue (Liao et al, 2010). Studies in ApoE-/- mice 

have shown positive staining for pSTAT3 in the aorta (Madrigal-Matute et al, 2010). 

As blockade of trans-signalling restored vascular function in CIA, it could be proposed 

that in the aorta of arthritic mice, IL-6 trans-signaling pathways should be at play, and 

thus pSTAT3 should be detectable in the aorta of arthritic mice. However, this maybe 

time dependant and perhaps if mice were culled earlier, this may have been 

detectable. Another reason for the lack of pSTAT3 staining in the aortic tissue could 

be tissue dependant; the pSTAT3 stain has been used previously in the laboratory 

with good results in joints, but has not been used previously in aortic tissue.  
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3.6 Conclusion  

 

This work confirms the variable penetrance and severity of CIA in C57BL/6 mice. The 

work in this chapter also shows validation of previous findings of vascular dysfunction 

in CIA, in that arthritic wild type mice have reduced aortic constriction to 5-HT. In line 

with previous work, IL-6-/- were resistant to CIA. For the first time, we show that IL-

6R-/- are also resistant to CIA. Interesting trends for reduced vascular constriction in 

immunised IL-6-/- and IL-6R-/- have been presented. We have shown that selective 

blockade of IL-6 trans-signalling using intravenous sgp130Fc reduces arthritis severity 

and restores the vascular dysfunction associated with CIA. We have also shown that 

blockade of TNF-α also restores vascular dysfunction in CIA. Blockade of IL-6 trans-

signaling was associated with a reduction in serum CCL2 and VCAM-1. This work 

demonstrates the importance of IL-6 trans-signaling in vascular dysfunction in an 

animal model of CIA. However, the relevance of this in human RA remains to be 

established. Also, the role of IL-6 trans-signaling in the ‘end points’ of vascular 

dysfunction, namely atherosclerosis, remains to be elucidated. Therefore the 

following chapters will explore the role of IL-6 trans-signaling in atherosclerosis in an 

animal model and the association of IL-6 trans-signaling-regulated proteins with 

progression of atherosclerosis in patients with RA.  
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4 Chapter 4 – The Effect of IL-6R mediated trans-signalling on 

Atherosclerosis in the ApoE-/- Mouse   

 
4.1 Introduction  

 

Cardiovascular risk is increased in RA and strongly associated with inflammation. This 

increase in cardiovascular risk and cardiovascular events is present soon after RA 

diagnosis. This suggests that inflammation in RA could accelerate pre-existing 

subclinical atherosclerosis. By using an animal model of atherosclerosis we can 

examine the effect of inflammation, specifically the effect of IL-6 trans-signaling, on 

atherosclerosis development in susceptible animals. As mentioned in section 1.16.2 

of the general introduction, there are several animal models of atherosclerosis. 

However, the ApoE-/- mouse model detailed in this chapter was chosen because of 

its lesion comparability with humans and the timescale of lesion development in this 

model (Asquith et al, 2010).   

 

4.1.1 The ApoE-/- mouse 

 

Apolipoprotein E (ApoE) is a class of apolipoprotein found in chylomicrons and 

intermediate density lipoproteins and functions primarily as a lipid transporter. It 

plays a protective role in atherosclerosis. ApoE has three major isoforms; ApoE2, 

ApoE3 and ApoE4. It functions as a ligand for receptors that clear very low–density 

lipoprotein (VLDL) remnants and chylomicrons. ApoE is predominantly synthesized in 

the liver but is also found in the brain, spleen, lung, kidney, ovary, testis, peripheral 

nerves and muscle (Zhang et al, 2011). It is also synthesized by macrophages and 

monocytes in vessels, and has local effects on inflammatory reactions in 

atherosclerotic vessels (Curtiss, 2000), such as inhibiting SMC proliferation and 

migration induced by oxidised LDL and platelet-derived growth factor (Ishigami et al, 

2000). ApoE exerts its biological functions by binding to the low-density lipoprotein 

receptor (LDLR) family, effectively mediating the uptake of lipoproteins by cells 
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(Mahley, 1988). Therefore, ApoE-/- mice have delayed clearance of lipoprotein 

particles and even on a normal chow diet have increased cholesterol and triglyceride 

levels compared to their normal litter-matched controls (Jawieri et al, 2004).  

The initial stages of atherosclerosis in the ApoE-/- mouse develop after 5-6 weeks on 

a normal chow diet. This involves the attachment of monocytes to the endothelial 

wall, then subsequent passage into the endothelial space. After 10 weeks, fatty 

streaks appear and at around 20 weeks fibrous plaques develop. Lesions in ApoE-/- 

mice on Western-type diet occur earlier and contain more lipid than those on chow 

diet (Nakashima et al, 1994). On a western diet fatty streaks occur at around 8 weeks 

and by 15 weeks early fibrous plaques are seen (Nakashima et al, 1994).  

 

 

4.1.2 The effect of IL-6 on atherosclerosis on the ApoE-/- mouse  

 

In humans, long term IL-6 levels are associated with CVD risk as strongly as some key 

established CV risk factors (Danesh et al 2008). There are conflicting results of the 

effect of IL-6 on atherosclerosis in ApoE-/- mice. A study by Huber et al showed that 

IL-6 increased atherosclerotic lesion size in both C57BL/6 and ApoE-/- mice 1.9- to 5.1-

fold compared to saline-treated animals (Huber et al, 1999). Mice were administered 

recombinant IL-6 (5000u) weekly whilst fed either high fat or normal chow diet for 6 

to 21 weeks. In contrast to this, ApoE-/--IL-6-/- double knockout mice had higher serum 

cholesterol and increased atherosclerotic lesion formation compared to ApoE-/- mice 

(Schieffer et al, 2004). Therefore these studies have shown an increase in 

atherosclerosis when IL-6 is administered above physiological levels, but also in the 

complete absence of IL-6. However, the studies do not specifically examine the role 

of IL-6 trans-signaling versus classical IL-6 signalling in atherosclerosis.  

One study has examined the role of IL-6 trans-signaling in atherosclerosis 

development in LDLR-/- mice (Schuett et al, 2012). Here, blockade of IL-6 trans-

signaling, by administration of sgp130Fc, reduced atherosclerosis in LDLR-/- mice 

without affecting serum lipid levels. This study addressed the effect of blocking IL-6 
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trans-signaling on atherosclerosis in a non-inflammatory setting. These mice do not 

have inflammatory disease so their IL-6 and IL-6R levels will be similar to normal 

individuals and patients with ischaemic heart disease. However, in RA patients levels 

of IL-6 and IL-6R are 10 fold higher. This chapter uses Hyper-IL-6 to reflect these 

increased IL-6/IL-6R levels and examines their effect on atherosclerosis in the ApoE-

/- mouse model.  

 

4.1.3 Assessment of atherosclerosis in mice 

 

Assessment of atherosclerosis has mostly been made by quantifying the area of 

plaques, usually in the aorta, aortic root or brachiocephalic artery. Two main 

methods have been used, the en face method and cross sectional analysis. The en 

face method involves spitting the aorta down its entire length and pinning it to 

expose the luminal endothelium. The aorta can then be stained for lipids, e.g. with 

Oil red O.  In cross sectional analysis, the brachiocephalic artery or aortic root are 

most often used. This allows serial quantification of cross sections, and also staining 

for other uses, such as immunohistochemistry. Imaging software can be used for 

both methods to accurately measure plaque size.  

As well as plaque size, other measures are necessary to assess plaque stability. 

Plaque stability is a key factor in atherosclerosis assessment as this is directly linked 

to risk of a rupture, which in turn can lead to occlusive thrombosis and death. 

Markers of plaque stability include thickness of fibrous cap, and presence and extent 

of intraplaque hemorrhage, inflammation and necrotic core (van der Wal and Becker, 

1999) (Figure 33). There is increasing data that the brachiocephalic artery is a useful 

site to examine plaque size and stability in mice (Jackson et al, 2007; Teupser et al, 

2003). The brachiocephalic artery is a short vessel which arises from the arch of the 

aorta (Figure 34). It branches into the right subclavian and right common carotid 

arteries. In this chapter, we also examine the effect of Hyper-IL-6 and IL-6 on fibrous 

cap thickness in the brachiocephalic artery in the ApoE-/- mouse.  
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Figure 34. A schematic diagram of the brachiocephalic artery. This branches 
off the arch of the aorta and then divides into the right subclavian artery and 
the right common carotid artery. 

Figure 33. A schematic diagram of an artery showing a ruptured unstable plaque versus a stable 
plaque. Unstable plaques are characterised by increased numbers of inflammatory cells and 
mediators, large necrotic cores and thin fibrous caps. When the fibrous cap is eroded, 
prothrombotic material leaks out, resulting in thrombus formation. In contrast, stable plaques 
have less inflamamtion, smaller necrotic core and thicker fibrous cap. (MACE = major adverse 
cardiac events)  Taken from Charo et al, 2011.   
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4.2 Hypothesis and aims  

 

The aim of this chapter was to determine the effect of IL-6 trans-signaling on 

atherosclerosis development in the ApoE-/- mouse. Using this model allows 

examination of other defined outcomes such as plaque size, expression of SCCPs in 

plaque and fibrous cap thickness.  

This chapter details methodology, results and discussion under the following 

hypothesis and aims:  

Hypothesis: IL-6 trans-signaling accelerates atherosclerosis in ApoE-/- mice.  

In order to address this hypothesis the following four aims were identified:  

1. To determine the effect of IL-6 trans-signaling, using Hyper-IL-6, on aortic 

plaque size and to compare any effect with that caused by IL-6 and PBS using 

ApoE-/- mice 

2. To determine the effect of IL-6 trans-signaling, using Hyper-IL-6, on 

brachiocephalic plaque size and to compare any effect with that caused by IL-

6 and PBS using ApoE-/- mice 

3. To analyse the effect of IL-6 trans-signaling  on fibrous cap thickness by 

treating ApoE-/- mice with Hyper-IL-6 and comparing against results obtained 

by IL-6 and PBS administration. 

4. To measure levels of VCAM-1 in serum and the brachiocephalic artery from 

ApoE-/- mice treated with Hyper-IL-6, IL-6 and PBS.  

 

 

4.3 Specific methods  

 

4.3.1 Mice 
 

All ApoE−/− mice were purchased from Charles River, UK at 7 weeks of age. A previous 

study demonstrated no significant difference in lesion size formation between 
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C57BL/6 mice housed under two conditions that inferred a range of infective states 

(Mallat et al, 1999). There are many variables that could potentially affect 

atherosclerosis development other than pathogen status, for example sterilisation 

status of food, water source, and bedding composition. As RA patients are exposed 

to multiple environmental agents, including infectious agents, it was felt that 

conventional housing was more likely to mirror this environment than pathogen-free 

housing.  

 

At 8 weeks of age mice were fed high-fat diet containing 21% (wt/wt) pork lard and 

supplemented with 0.15% (wt/wt) cholesterol for 8 weeks. Experiments were 

performed in accordance with the home office approved project licence (PL 302822). 

Mice had free access to water and had a light dark cycle of 12 hours. The temperature 

range in the animal house was 19-23°C and humidity 55 + 10%. 

To ensure atherosclerosis development in our facility over this time period, under 

the above conditions, 6 mice were initially sourced and fed as above. This test batch 

was then sacrificed and atherosclerosis was quantified. Once it was shown that these 

conditions produced atherosclerosis the following experimental approach was taken. 

Mice were divided into three groups and drugs were administered intraperitoneally 

as follows:  

 

 
Group  

N 
number 

Drug Dose 
per 

mouse 

Volume per 
administration  

Frequency of 
administration  

Duration  

1A 
 

6 
Hyper-IL-

6 
0.5µg 100µl Twice weekly 8 weeks 

1B 
 

6 IL-6 0.16µg 100µl Twice weekly 8 weeks 

1C 
 

6 PBS N/A 100µl Twice weekly 8 weeks 

 

Table 19. Drugs and doses administered to ApoE-/- mice in Experiment 1. See section 4.3.2 for 
rationale for drug doses 
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In order to check the reproducibility of the initial result a second experiment was 

undertaken (Experiment 2). An additional experimental group was introduced in this 

experiment; 1 µg Hyper-IL-6 was tested in order to assess whether the effect upon 

IL-6 trans-signalling was concentration dependent. 

 

 

Group 
N 

number 
Drug 

Dose  
per 

mouse 

Volume per 
administration 

Frequency of 
administration  

Duration 

2A 
 

6 
Hyper-IL-

6 
0.5µg 100µl Twice weekly 8 weeks 

2B 
 

6 IL-6 0.16µg 100µl Twice weekly 8 weeks 

2C 
 

6 PBS       N/A 100µl Twice weekly 8 weeks 

2D 
 

6 
Hyper-IL-

6 
1µg 100µl  Twice weekly 8 weeks 

 

Table 20. Drugs and doses administered to ApoE-/- mice in Experiment 2. 

 

4.3.2 Rationale for drug doses  

 

No previous studies in the literature could be found which had administered Hyper-

IL-6 to mice over a period of 8 weeks; most studies administered Hyper-IL-6 only as 

one dose (Nechemia-Arbely et al, 2008; Rakemann et al, 1999). Therefore an 

approximate equivalent dose was chosen to that of levels of circulating IL-6/sIL-6R 

complex in human inflammatory arthritis. In a study by De Benedetti et al (1994), 

levels of circulating IL-6/sIL-6R complex in systemic JIA were 6.8-8.9 ng/ml. From my 

own work in patients with RA, serum levels of IL-6/sIL-6R complex were between 0-

16.5 ng/ml (n= 83).  Peters et al (1998) administered 0.4 µg IP of Hyper-IL-6 to mice 

and sacrificed them 4 hours after administration. Serum levels of Hyper-IL-6 were 

approximately 10 ng/ml, thus for this experiment 0.5 µg of Hyper-IL-6 was thought 

to be an appropriate dose. An equivalent molar concentration of IL-6 was used; the 

molecular weight of IL-6 is 20kDa and Hyper-IL-6 60kDa therefore 0.16 µg of IL-6 was 

chosen.  
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Hyper-IL-6 was a gift from Professor Rose John in Kiel University and IL-6 was sourced 

from R&D systems (206-IL).  

 

4.3.3 Monitoring of mice  

 

Mice were weighed twice weekly and monitored at least 3 times per week for general 

health status. A side effect that can occur with high fat feeding in ApoE−/− mice is skin 

irritation, manifest as scratching and scaly skin which can lead to ulceration. This 

tends to occur after several months of high fat feeding. If mice in this experiment had 

developed ulcers from these effects then they would have been euthanised using a 

humane method. 

 

 

4.3.4 Collection of Experimental Samples  

 

Mice were culled using a schedule 1 approach and blood collected by cardiac 

puncture for serum analysis. The chest cavity was opened and the heart continuously 

perfused with PBS. The right atrium was snipped to allow blood to flow out. The chest 

and neck were dissected to allow observation of the brachiocephalic and carotid 

arteries. The brachiocephalic artery was carefully dissected and removed with a piece 

of the aortic arch. This was immediately embedded in OCT and snap frozen in liquid 

nitrogen (Figure 35). The heart was removed, cut and placed in OCT and immediately 

frozen.  
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4.3.5 Sectioning of cardiac tissue and brachiocephalic artery 

 

The OCT-embedded heart was mounted in a cryostat set at -22°C. Serial aortic root 

cross-sections of 7μm thickness were taken at the level of all three leaflets of the 

aortic valve and mounted on glass slides (Superfrost Pink). Slides were then stored at 

-80°C.  

 

The OCT-embedded brachiocephalic artery was mounted in a cryostat set at -22°C. 

The section was orientated so that the aortic arch was cut first. Sections were cut 

through the aorta until the brachiocephalic artery was reached. Serial section of 7um 

thickness were cut and mounted on glass slides (Superfrost pink).  

 

 

 

Figure 35. Diagram of mounting procedure of the brachiocephalic artery. After dissection the 
brachiocephalic artery, along with a piece of the aortic arch was suspending into OCT which is 
mounted on a frozen stand. This was then immersed in liquid nitrogen to snap freeze it.   
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4.3.6 Staining tissue with Oil-red O for lipid content 

 

 

Oil red O stock was prepared by dissolving Oil red O (2mg/ml) (Sigma UK) in Isopropyl 

Alcohol (Fischer scientific). Then an equal concentration of Oil red O stock was mixed 

with 30% Isopropyl Alcohol and filtered through a 0.22 micron filter. This was allowed 

to stand for 15 minutes before use.  

Slides were air dried for 20 minutes. Then the protocol was performed as below.  

 

Procedure  Duration  Purpose  

Distilled water  Dip in   Remove residue 

30% Isopropyl Alcohol 5 minutes  Rinse 

Working Oil Red O 20 minutes Stains lipids  

30% Isopropyl Alcohol Dip in  Differentiate  

Distilled water Dip in  Rinse  

Harris Haematoxylin 1 minute  Stains nuclei  

Distilled water Until Haematoxylin stops 
leaching out 

Remove excess stain 

Mounted in glycerol and 
coverslip  

 Keep moist and preserve 
stain 

 

Table 21. Protocol for Oil Red O staining of frozen sections 

 

 

4.3.7 Determination of plaque size  

 

Lesion size was determined by computer-assisted morphometry on stained sections. 

Morphometry was performed using Image ProPlus™ software version 4.0 (Media 

Cybernetics). 

 

4.3.8 Immunohistochemistry 
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Immunohistochemistry of the brachiocephalic lesions was performed to examine 

staining for VCAM-1. VCAM- was stained for as in human RA patients this correlated 

with disease activity and CV risk and in CIA models CIA is associated with increased 

aortic expression of VCAM-1 (Denys et al, 2016). Slides were taken out of the freezer 

and left at room temperature before the following protocol was performed.   

 

Process Rationale Time 

Acetone at -20°  To fix slide  5 minutes  

PBS  Wash  5 minutes  

10% H202   Block endogenous peroxide 15 minutes  

PBS Wash 5 minutes  

10% normal goat serum  in 
TBS/T  

Decrease non-specific binding of antibody  
 

15 minutes  

Remove serum    

Avidin block Decrease non-specific binding of antibody  
 

10 minutes  

TBS/T Wash  5 minutes 

Biotin block  Decrease non-specific binding of antibody  
 

10 minutes  

Remove biotin   60 minutes  

TBS/T Wash  5 minutes 

Primary antibody or isotype 
control antibody  

Identification of target protein and control 
IgG staining  
 

Overnight (at 4°C) 

Allow to stand at room 
temperature  

 1 hour  

PBS Remove excess antibody 3 X 5 minutes  

Detection antibody : 
biotinylated anti-rabbit IgG, 
affinity purified from goat, 
Vector labs #BA-10000) at 
1:200 dilution in TBS/T 

Identification of bound primary antibody 60 minutes   

TBS/T Remove excess antibody 3 x 5 minutes 

ABC reagent from kit 30 mins  
 

Identify bound Antibody in sections  30 minutes  

TBS/T Wash  3 x 5 minutes  

DAB substrate  Allow identification of positive staining  1- 20 minutes  

Distilled water Rinse  1 minute 

Harris Haematoxylin Nuclear stain  10 seconds  

Distilled water Remove excess stain Until water runs clear  

Cover with glycerol and 
coverslip  

Prevent drying   
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Table 22. Protocol for immunohistochemistry for staining for VCAM-1 on frozen brachiocephalic 
sections. 

4.3.9 Analysis of VCAM-1 staining  

 

Firstly the brachiocephalic artery and plaque was examined to determine the location 

of the most intense VCAM-1 staining. In order to do this, specific areas of the same 

artery were examined, for example the arterial wall underlying plaque, the plaque 

itself and the arterial wall opposite the plaque. Photoshop was used to determine 

the total number of pixels in the selected area of the picture (Figure 36A). The 

number of brown pixels, representative of positive staining, was then calculated. 

To compare the percentage staining of VCAM-1 in brachiocephalic arteries and 

plaque in the different experimental groups the entire brachiocephalic arterial wall 

and plaque of individual slides were examined (Figure 36B). The number of brown 

pixels, representative of positive staining, was then calculated. The positive staining 

was calculated as a percentage of the total region and was corrected for isotype 

control values. 
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Figure 36. Examples of brachiocephalic artery sections stained for VCAM-1 and approach to 
measurement of staining. (A)  VCAM-1 staining measured in specific areas of brachiocephalic artery 
or plaque. (B) VCAM-1 staining measured in the brachiocephalic artery and plaque  
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4.3.10 Elastin Van Geison (EVG) stain  

 

 EVG was used to stain elastin and collagen. This allows identification on the fibrous 

cap. Slides were taken out of the freezer and the following protocol was performed.  

Procedure  Duration  Purpose  

Air dry sections  30 minutes  

70% ethanol  15 minutes  Hydration  

Distilled water  1 minute   Rinse  

Potassium permanganate  10 minutes  Oxidising agent 

Distilled water  Until stain runs clear  Rinse  

1 % Oxalic acid  10 minutes  Decolourise  

Distilled water  5 minutes  Rinse  

Miller’s elastin  Overnight on Rocker  Stains elastic fibres 
blue/black 

70% ethanol Dunk 7 times   

Distilled water  1 minute  X 2  Rinse  

Van Gieson Solution  10 minutes Stains collagen red 

Blot slides dry   Get rid of most of stain  

Oven bake at 60°C 30 minutes  Increases adherence to 
slide 

70% ethanol 3 minutes  Dehydration 

90% ethanol 3 minutes Dehydration 

100% ethanol 3 minutes Dehydration 

100 % Xylene  5 minutes  Dehydration  

Mount with DPX and 
coverslip  

 To preserve stain 

 

Table 23. Protocol for Elastin Van Gieson Stain. 

 

4.3.11 Fibrous cap thickness analysis  

 

Image Pro-Analyser was used to measure the fibrous cap thickness, after staining 

with EVG. Five separate measurements were taken for each individual fibrous cap 

and the mean value was calculated for the best estimate. Fibrous cap thickness at 

the widest and thinnest part of the plaque were also recorded.  
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4.3.12 Serum 

 

Using a 25 gauge needle, approximately 1ml of whole blood was taken by cardiac 

puncture. This was placed into vacutainers coated with clot activator and stored on 

ice. Samples were then centrifuged at 1600g for 10 minutes at 4°C. The serum was 

then aliquoted in 50ul aliquots and stored at -80°C. Serum CCL2 and VCAM-1 were 

measured using duoset ELISA development kits from R&D systems in accordance 

with manufacturer’s instructions, at concentrations in Table 24. See Table 7 in 

general methods section for ELISA protolol for murine serum.  Serum was sent for 

analysis of total cholesterol, HDL, LDL, triglycerides and free fatty acids at the Medical 

Research Council Harwell laboratory, UK.  

 

 

Table 24. Concentrations of CCL2 and VCAM-1 antibodies and standards for ELISA. 

 

4.3.13 Statistical Analysis 

 

Analysis of statistical difference between the groups was carried out using a one way 

ANOVA with a Bonferroni post hoc test. p < 0.05 was considered significant. 

 

4.3.14 Sample Size Estimation 

 

Previous studies have shown that ApoE−/− increases atherosclerotic plaque by 0.4 + 

0.05 mm2 (Asquith et al, 2010). Six animals per group will have 90% statistical power 

to demonstrate a significant difference with p <0.05. 

Protein 
measured  

Capture antibody 
working 

concentration 

Detection antibody 
working 

concentration 

High standard 
concentration 

Mouse 
CCL2 

200 ng/ml 50 ng/ml 250 pg/ml 

Mouse 
VCAM-1 

1 µg/ml 100 ng/ml 8000 pg/ml 
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4.4 Results  

 

4.4.1 Lipid rich plaques present in ApoE-/- mice after 8 weeks of high fat feeding  

 

After 8 weeks of high fat feeding, 6 of 6 mice had plaques in the aortic root (Figure 

37) and brachiocephalic artery (Figure 38). In the brachiocephalic artery the mean 

plaque area was 0.014 + 0.0047 mm2 and mean plaque percentage was 7.72 + 1.51%. 

In the aortic root mean plaque size was 0.22 + 0.007 mm2and mean plaque 

percentage was 19.8 + 1.46%.  

 

 

 

 

 

 

 

 

 

 

Figure 37. Aortic root section from ApoE-/- mouse and wild type C57BL/6 mouse stained with Oil red O (A) 
Aortic root from ApoE-/- mouse fed high fat diet from 8 weeks and sacrificed at 16 weeks, lipid rich plaques 
seen. (B) Wild type C57BL/6 mouse at 16 weeks at the same level of the aortic root, no plaque seen. Both at 
X 4 magnification. P (Plaque), AVL (Aortic valve leaflets). Scale bars = 200 μm 

Figure 38. Brachiocephalic artery from ApoE-/- mouse stained with Oil red O. Lipid in plaque can be seen 
stained red. At X 10 magnification.  
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4.4.2 Skin irritation in mice administered Hyper-IL-6   

 

The following results are grouped for experiments 1 and 2. Three of 12 mice (25%) 

mice in the Hyper-IL-6 0.5 µg group and 1 of 6 (16.7%) of mice in the Hyper-IL-6 1 µg 

group developed signs of skin irritation that required the application of clay 

treatment. No other mice in other groups developed signs of skin irritation.  

 

4.4.3 Lower weight gain in mice administered Hyper-IL-6 1 µg 

 

Mice administered Hyper-IL-6 1 µg (mean weight gain 3.5 + 1.0 g) had significantly 

lower weight gain than those administered PBS (6.1 + 2.2 g), IL-6 (6.5 + 1.6 g) or 

Hyper-IL-6 0.5 µg (7.4 + 1.8 g) (Figure 39). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Weight gain in 16 week old ApoE-/- mice fed a high fat diet from 8 weeks and 
administered either PBS, IL-6, Hyper-IL-6 0.5µg or Hyper-IL-6 1µg twice weekly for 8 weeks. 
Weight gain was significantly lower in mice administered Hyper-IL-6 1µg than those 
administered PBS, IL-6 or Hyper-IL-6 0.5 µg.  *p < 0.05, **p < 0.01, ***p < 0.0001 
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4.4.4 No significant difference in aortic root plaque size between mice administered 

PBS, IL-6 or Hyper-IL-6  

 

There was no difference in aortic root plaque area or aortic plaque percentage 

between the groups. Mean plaque area for PBS (0.225 + 0.01 mm2), IL-6 (0.217 + 0.01 

mm2), Hyper-IL-6 0.5 µg (0.228 + 0.011 mm2), Hyper-IL-6 1 µg (0.218 + 0.001 mm2) 

(Figure 40A). Similarly, there was no significant difference in percentage plaque in 

the aortic root; mean percentage plaque for PBS (21.9 + 1.9 %), IL-6 (22.9 + 1.1 %), 

Hyper-IL-6 0.5 µg (25.0 + 1.5 %) , Hyper-IL-6 1 µg (24.1 + 0.1 %) (Figure 40B).  

 

 

 

4.4.5 Significantly larger plaque and plaque percentage in the brachiocephalic 

arteries of mice administered Hyper-IL-6 compared to IL-6 and PBS 

 

Mice treated with Hyper-IL-6 1µg had significantly larger brachiocephalic plaque size 

(0.73 + 0.04 mm2) than those administered PBS (0.018 + 0.01 mm2), p < 0.001, and 

IL-6 (0.033 + 0.017 mm2), p = 0.015 (Figure41A). Mice administered Hyper-IL-6 1µg 

Figure 40. No difference in aortic plaque area (A) or aortic plaque percentage (B) in ApoE-/- mice aged 16 
weeks fed a high fat diet and administered either PBS, IL-6, Hyper IL-6 0.5µg or Hyper-IL-6 1µg twice weekly 
for 8 weeks.  
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had significantly higher percentage plaque in the brachiocephalic artery (45.3 + 18.1 

%) compared to those administered PBS (10.38 + 6.7 %), p < 0.001 or IL-6 (20.1 + 10.2 

%), p = 0.002 (Figure 41B). Mice administered Hyper-IL-6 0.5µg had significantly 

higher percentage plaque (27.7 + 16.2 %) than PBS administered mice, p= 0.015. 

Examples of brachiocephalic cross sections from each group are shown in Figure 42. 

There was a significant negative correlation between weight gain and 

brachiocephalic plaque size and brachiocephalic plaque percentage area (Figure 43).  

 

 

 

Figure 41. Brachiocephalic plaque size and plaque percentage in 16 week old ApoE-/- mice fed high fat diet 
from age 8 weeks and administered either PBS, IL-6 or Hyper-IL6. (A) Significantly higher brachiocephalic 
plaque area in mice administered Hyper-IL- µg (mean plaque area 0.73 + 0.04 mm2) compared to those 
administered PBS (0.018 + 0.01 mm2), p < 0.001 or IL-6 (0.033 + 0.017 mm2), p = 0.015. (B) Significantly higher 
percentage plaque area in mice administered Hyper-IL-6 1 µg (45.3 + 18.1 %) compared to those administered 
PBS (10.38 + 6.7 %), p < 0.001or IL-6 (20.1 + 10.2 %), p = 0.002. Significantly higher percentage plaque in mice 
administered Hyper-IL-6 0.5 µg (27.7 + 16.2 %) compared to mice administered PBS p= 0.015. 
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Figure 42. Examples of cross sectional images from brachiocephalic arteries from ApoE-/- mice aged 16 weeks fed 
a high fat diet from age 8 weeks and administered the following drugs twice weekly for 8 weeks from age 8 weeks 
(A) Mice administered PBS (B) Mice administered IL-6 (C) Mice administered Hyper-IL-6 0.5 µg (D) Mice 
administered Hyper-IL-6 1 µg. 
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4.4.6 VCAM-1 staining in the brachiocephalic artery  

 

Firstly, brachiocephalic arteries of the same mouse were examined for VCAM-1 

staining. VCAM-1 staining was mostly localised to the artery wall underlying plaque. 

Some VCAM-1 staining was observed within plaque (especially the plaque cap) and 

in the arterial wall opposite the plaque (Figure 44). This was quantified in 8 mice, 2 

from each group. Mean percentage staining for VCAM-1 was significantly higher in 

the artery wall underlying plaque (33.7 + 11.0 %), then in the plaque itself (13.65 + 

7.0 %) and lowest in the arterial wall opposite the plaque (2.0 + 2.5 %) , p < 0.001 

(Figure 45).  

 Percentage VCAM-1 staining in the brachiocephalic artery from all mice in all groups 

was then compared. For this analysis the entire arterial wall and entire plaque in 

cross section was examined. Percentage VCAM-1 staining in the brachiocephalic 

sections (including vessel wall and plaque) was significantly higher in mice 

administered Hyper IL-6 0.5 µg and Hyper-IL-6 1 µg (mean percentage staining 11.7 

+ 4.07 % and 12.8 + 4.24 %) compared to mice administered PBS (mean 5.7 + 1.1 %) 

Figure 43. A) No significant correlation between weight gain and brachiocephalic plaque area in ApoE-/- 
mice aged 16 weeks fed high fat diet for 8 weeks R = -0.27, p = 0.08. (B) Significant negative correlation 
between weight gain and brachial plaque percentage in ApoE-/- mice aged 16 weeks fed high fat diet for 
8 weeks, r = -0.33, p= 0.03. 
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but not mice administered IL-6 (mean 10.2 + 2.5 %) (Figure 46). There was a 

significant positive correlation between percentage VCAM-1 staining in the 

brachiocephalic artery and both brachiocephalic plaque area (R = 0.44, p = 0.03) and 

brachiocephalic plaque percentage (R = 0.47, p = 0.02) (Figure 48). 

 

 

 

 

 

 

Figure 44. Brachiocephalic artery stained for VCAM-1 at (A) X 4 magnification. VCAM-1 
staining (brown) can be seen mostly in the arterial wall underlying the plaque, in the 
fibrous cap and some in the plaque. Little VCAM-1 staining in the arterial wall opposite 
plaque. (B) X 20 magnification. VCAM-1 staining (brown) can be seen mostly in the 
arterial wall underlying the plaque, in the fibrous cap and some in the plaque. 
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Figure 45. Comparison of percentage VCAM-1 staining in different areas of the brachiocephalic 
artery. Mean percentage staining for VCAM-1 was significantly higher in the artery wall underlying 
plaque (33.7 + 11.0 %), then in the plaque itself (13.65 + 7.0 %) and lowest in the arterial wall 
opposite the plaque (2.0 + 2.5 %) , *p < 0.05, *** p < 0.0001. 
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Figure 46. Percentage VCAM-1 staining in brachiocephalic artery and plaque in ApoE-/- mice aged 16 

weeks and fed a high fat diet for 8 weeks and administered either IP PBS, IL-6, Hyper-IL-6 0.5 µg or 

Hyper-IL-6 1 µg. Percentage staining for VCAM-1 significantly higher in mice administered Hyper IL-6 

0.5 µg and Hyper-IL-6 1 µg (mean percentage staining 11.7 + 4.07 % and 12.8 + 4.24 % respectively) 

compared to mice administered PBS (mean 5.7 + 1.1 %) but not mice administered IL-6 (mean 10.2 + 

2.5 %). 

 

Figure 47. Significant positive correlation between percentage VCAM-1 staining in the brachiocephalic 
artery of 16 week old ApoE-/- mice fed high fat diet for 8 weeks and (A) brachiocephalic plaque area R = 
0.44, p = 0.03 and (B) brachiocephalic plaque percentage R = 0.47, p = 0.02 
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4.4.7 Fibrous cap thickness  

 

There was no significant difference the in average fibrous cap thickness between the 

groups; mean fibrous cap thickness for PBS (5.08 + 1.4 µm), IL-6 (2.86 + 0.6 µm), 

Hyper-IL-6 0.5 µg (4.69 + 0.7 µm) and Hyper-IL-6 1 µg (10.5 + 3.6 µm) (Figure 48A). 

There was no significant difference in mean thickness of the widest part of the fibrous 

cap between groups; PBS (7.37 + 2.0 µm), IL-6 (4.17 + 1.3 µm), Hyper-IL-6 0.5µg (5.05 

+ 0.9 µm), Hyper-IL-6 1µg (10.54 + 2.6 µm) (Figure 48B). Mice administered Hyper-IL-

6 1 µg had significantly greater mean fibrous cap thickness at the thinnest part of the 

fibrous cap (5.21 + 0.9 µm) compared to mice administered IL-6 (1.94 + 0.5 µm), p = 

0.04 (Figure 48C). 

There were significant positive correlations between the mean fibrous cap thickness 

and mean brachiocephalic plaque size (R = 0.57, p = 0.0034) and brachiocephalic 

plaque percentage (R = 0.61, p = 0.0015) (Figure 49). There was a significant negative 

correlation between mean fibrous cap thickness and weight gain (Figure 50).  

Figure 51 shows examples of EVG staining of the fibrous cap. It was also noted that 

some large plaques also had fibrous cap internally and a necrotic core. (Figure 52).  
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Figure 48. Fibrous cap thickness measurements in ApoE-/- mice fed high fat diet for 8 weeks and administered 
either PBS, IL-6, Hyper-IL6 0.5µg or Hyper-IL-6 1µg. (A) No significant difference the mean fibrous cap thickness 
between PBS (5.08 + 1.4 µm), IL-6 (2.86 + 0.6 µm), Hyper-IL-6 0.5µg (4.69 + 0.7 µm), Hyper-IL-6 1µg (10.5 + 3.6 
µm) . (B) No significant difference in mean thickness of the widest part of the fibrous cap between groups; PBS 
(7.37 + 2.0 µm), IL-6 (4.17 + 1.3 µm), Hyper-IL-6 0.5µg (5.05 + 0.9 µm), Hyper-IL-6 1µg (10.54 + 2.6 µm). (C) 
Mean thinnest fibrous cap thickness was significantly greater in mice administered Hyper-IL-6 1µg (5.21 + 0.9 
µm) compared to mice administered IL-6 (1.94 + 0.5 µm), * p = 0.04.  
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Figure 49. Significant positive correlation between mean brachiocephalic fibrous cap thickness and (A) 
brachiocephalic plaque area, R = 0.57, p = 0.003 and (B) brachiocephalic plaque percentage, R = 0.61 p = 
0.0015 in ApoE-/- mice aged 16 weeks fed a high fat diet for 8 weeks. 

Figure 50. Significant negative correlation between weight gain and mean brachiocephalic fibrous 
cap thickness in 16 week old ApoE-/- mice fed high fat diet for 8 weeks. R = -0.52, p = 0.009 
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Figure 51. Brachiocephalic artery from ApoE-/- mice aged 16 weeks, fed high fat diet for 8 weeks. 
Arteries stained with EGV. (A) Example of larger plaque with thicker fibrous cap at X 10 and (B) X 20 
magnification. (C) Example of smaller plaque with thinner fibrous cap at X 10 and (D) X 20 
magnification. FC = fibrous cap 



137 
 

 

 

4.4.8 Lipid levels  

 

There was no significant difference in total cholesterol (Figure 53A), HDL (B), LDL (C), 

triglycerides (D), free fatty acids (E) or cholesterol: HDL ratio (F) between mice 

administered PBS, IL-6, or Hyper-IL6.  Mean lipid levels are shown in Table 25.   

 

 PBS 
Mean + SEM 

IL-6 
Mean + SEM 

Hyper-IL-6 0.5 µg 
Mean + SEM 

Hyper-IL-6 1µg 
Mean + SEM 

Total cholesterol 
(mmol/L) 

22.3 + 2.6 27.0 + 1.8 25.9 + 1.4 27.2 + 2.1 

HDL  (mmol/L) 
1.7 + 0.1 1.9 + 0.1 1.9 + 0.1 2.0 + 0.1 

LDL(mmol/L) 
16.7 + 1.8 20.0 + 1.2 19.1 + 0.9 20.6 + 1.5 

Triglycerides 
(mmol/L) 

1.7 + 0.3 1.8 + 0.2 1.8 + 0.2 1.7 + 0.2 

Free fatty acids 
(mmol/L) 

0.73 + 0.05 0.93 + 0.09 0.92 + 0.05 0.90 + 0.03 

Cholesterol:HDL 
ratio  

12.6 + 0.5 14.3 + 0.8 13.5 + 0.6 13.5 + 0.6 

 

Table 25. Mean lipid levels of ApoE-/- mice fed high fat diet for 8 weeks from age 8 weeks and 
administered either PBS, IL-6, Hyper-IL-6 0.5 µg or 1 µg. no significant differences 
between the groups. 

Figure 52. Brachiocephalic artery from ApoE-/- mouse aged 16 week fed high fat diet for 8 weeks. (A) Example 
of a complex plaque with internal fibrous material with the plaque at X 10 magnification and at (B) X 20 
magnification 
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Figure 53. No significant difference in (A) total cholesterol, (B) HDL, (C) LDL, (D) triglycerides, (E) 
free fatty acids or (F) Cholesterol: HDL ratio in 18-week-old mice fed high fat diet for 8 weeks and 
administered either PBS, IL-6, Hyper-IL-6 0.5 µg or Hyper-IL-6 1 µg IP twice weekly for 8 weeks. 
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4.4.9 No significant difference in serum VCAM-1 or CCL-2 between mice 

administered PBS, IL-6 or Hyper-IL-6  

 

There was no significant difference in serum VCAM-1 levels across the groups (Figure 

54). Mean serum VCAM-1 for mice administered PBS (4617 + 1393 ng/ml), IL-6 (4622 

+ 983 ng/ml), Hyper IL-6 0.5 µg (4648 + 1338 ng/ml), Hyper-IL-6 1 µg (4563 + 1618 

ng/ml), p = 0.999. There was no significant correlation between serum VCAM-1 and 

brachiocephalic plaque area or brachiocephalic percentage plaque (Figure 55) or 

significant correlation between VCAM-1 level and lipid levels. There was no 

significant correlation between serum VCAM-1 and brachiocephalic percentage 

staining of VCAM-1.  

There was no significant difference in serum CCL2 levels across the groups (Figure 

56). Mean serum CCL2 for mice administered PBS (124 + 41 pg/ml), IL-6 (149 + 77 

pg/ml), Hyper-IL-6 0.5 µg (88 + 40 pg/ml), Hyper-IL-6 1 µg (101 + 20 pg/ml) p = 0.051. 

There was a significant negative correlation between serum CCL2 and brachial plaque 

area (r = -0.3348, p = 0.030) and brachial percentage plaque (R= -0.362, p = 0.024) 

(Figure 57).  There was a significant positive correlation between serum VCAM-1 and 

serum CCL2, r = 0.355, p = 0.027. There was a significant negative correlation 

between serum CCL2 levels and serum triglyceride levels (r= -0.0343, p = 0.041) 

(Figure 58).   
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Figure 54. No significant difference in serum VCAM-1 between the groups. Mean serum 
VCAM-1 for PBS (4617 + 1393 ng/ml), IL-6 (4622 + 983 ng/ml), Hyper IL-6 0.5 µg (4648 + 1338 
ng/ml), Hyper-IL-6 1 µg (4563 + 1618 ng/ml), p = 0.999 

Figure 55. No significant correlation between serum VCAM-1 and percentage staining for 
VCAM-1 in the brachiocephalic artery in 16 weeks old ApoE-/- mice fed high fat diet for 8 
weeks 
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Figure 56. No significant difference in serum CCL2 between the groups. Mean serum CCL2 for ApoE-

/- mice administered PBS (124 + 41 pg/ml), IL-6 (149 + 77 pg/ml), Hyper-IL-6 0.5 µg (88 + 40 pg/ml), 
Hyper-IL-6 1 µg (101 + 20 pg/ml) p = 0.051 

Figure 57. Significant negative correlation between serum CCL2 and brachiocephalic plaque area (R = -
0.35, p = 0.03) and brachiocephalic plaque percentage (R = -0.36, p = 0.024) in ApoE-/- mice 
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4.5 Discussion  

 

We have shown that in our facility 18 week old ApoE-/- mice develop plaques in the 

brachiocephalic artery and the aortic root after 8 weeks of high fat feeding. The size 

of plaque seen in the aortic root is comparable with other centres under similar 

conditions (Jones et al, 2014). No information on plaque size in the brachiocephalic 

artery was found in the literature for the conditions used in this study.   In this 

chapter, mice were housed in conventional units which were not pathogen free. This 

was chosen to reflect the environment of RA patients.  

Mice administered Hyper-IL-6 1 µg had significantly reduced weight gain compared 

with those administered either PBS, IL-6 or Hyper-IL-6 0.5 µg. This could be due to 

systemic inflammation; in RA, chronic inflammation and reduced physical activity 

leads to muscle wasting but maintenance of the fat mass (Masuko, 2014). This is 

termed rheumatoid cachexia.  It is proposed that cytokines such as TNF-α and IL-6 

play pivotal roles here by activating NF-κB and leading to an increase in muscle 

proteolysis via the ubiquitin-proteasome pathway (Morley, 2006). Thus, the lower 

weight gain seen in mice administered Hyper-IL-6 in this experiment may be due to 

a reduction in muscle mass. To investigate this further it would be interesting to 

0 100 200 300
0

1

2

3

4
r = -0.3430, p = 0.0405

CCL2

T
ri

g
ly

c
e
ri

d
e
s
 (

m
m

o
l/

l)

Figure 58. Significant negative correlation between serum CCL2 and serum triglycerides, r = -0.3430, 
p = 0.00405 in ApoE-/- mice  
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measure the body composition of these mice at the time of sacrifice. Weight gain 

correlated negatively with brachiocephalic plaque percentage, so those mice with 

more weight gain had less atherosclerosis in the brachiocephalic artery. This perhaps 

reflects the role of inflammation on both parameters, high levels of inflammation are 

known to reduce weight gain and increase atherosclerosis. RA patients treated with 

Tocilizumab show both reduced levels of inflammation (as reflected by disease 

activity and CRP), and weight gain (Hirabayashi et al, 2010). Tocilizumab blocks both 

IL-6 classical and trans-signalling. Thus, IL-6- driven inflammatory pathways seem to 

play a role in body mass in both atherosclerosis-prone mice and in patients with RA.   

Here, for the first time, we demonstrate that enhanced IL-6 trans-signaling using 

Hyper-IL-6 increases atherosclerosis in an animal model. In the brachiocephalic 

artery Hyper-IL-6 significantly increased plaque percentage compared to PBS and IL-

6. IL-6 did not increase plaque size compared to PBS. Therefore, in this model, IL-6 

trans-signaling, rather than IL-6 classical signalling increased atherosclerosis. Our 

finding of no increase in plaque size when IL-6 was administered is conflicting to some 

reports in the literature. A previous study in ApoE-/- mice found that IL-6 

administration increased atherosclerotic lesion size in the aortic sinus (Huber et al, 

1999). The dose used in this study was 5000u weekly, less than the dose in this 

chapter.  However, in this study mice were fed high fat diet earlier than in this thesis, 

starting at 3 weeks of age for 6 weeks. Another study found that in a mouse model, 

serum cholesterol levels and atherosclerotic lesion formation were significantly 

increased in ApoE-/--IL-6-/- mice compared with ApoE-/- and wild-type (WT) mice 

(Schieffer et al, 2004). Plaques of ApoE-/--IL-6-/- mice showed significantly reduced 

transcript and protein levels of matrix metalloproteinase-9, tissue inhibitor of 

metalloproteinase-1, collagen I and V, and lysyl oxidase. Recruitment of 

macrophages and leukocytes into the atherosclerotic lesion was significantly reduced 

in ApoE-/--IL-6-/- mice. The transcript and serum protein levels of IL-10 were 

significantly reduced. Thus, from the literature, the role of IL-6 in atherosclerosis 

appears complex, with increased atherosclerosis in above physiological levels of IL-6, 

but also in the complete absence of IL-6. For the first time, the work in this chapter 
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shows that IL-6 trans-signaling, rather than IL-6 classical signaling, increases 

atherosclerosis in a mouse model.  

There was no difference in plaque size in the aortic root in those administered Hyper-

IL-6 (both doses) or IL-6 compared to PBS. A possible reason for the significant 

increase in plaque size in the brachiocephalic artery with Hyper-IL-6 but not in the 

aortic root may be that plaque develops in the aortic root before the brachiocephalic 

artery in ApoE-/- mice . In one study, at 10 weeks in ApoE-/- mice fed a high fat diet, 

atherosclerotic lesions were identified in 100% of all aortic roots and in 57% of 

brachiocephalic arteries (McAteer et al, 2004). Perhaps if mice had been sacrificed at 

an earlier age or fed a high fat diet for a shorter period, there may have been a 

difference in plaque size in the aortic root. In another study which compared plaque 

size in the aortic root with brachiocephalic artery, variables such as diet and strain of 

mouse used had greater effects on plaque size in the brachiocephalic artery than the 

aortic root (Teupser et al, 2003). Therefore, in the timeframe used in this thesis, the 

lesions in brachiocephalic artery may have been more sensitive to drug 

administration as they were likely to have been at earlier stages of atherosclerosis 

than those in the aortic root.  

From this work the brachiocephalic artery appears to be a useful site for 

quantification of atherosclerosis for the time point used in this work. However, using 

a cross sectional method has drawbacks, mainly that this does not show the volume 

of plaque. Although sections were taken at the same relative points in mice, it is 

possible that a short plaque could have been missed, or in fact the end of a plaque 

may have been sectioned, rather than its centre.  However, the cross sectional 

method has the advantage that other parameters can be measured, such a fibrous 

cap thickness and immunohistochemistry, which cannot be used with the en face 

method.  

The increase in plaque size in mice administered Hyper-IL-6 was associated with 

increase in expression of VCAM-1 in the artery of those administered Hyper-IL-6. 

There was no difference in VCAM-1 expression between those administered IL-6 and 

PBS. This suggests that IL-6 trans-signaling, rather than classical signalling, increases 

the expression of VCAM-1 in the vessel wall. VCAM-1 mediates the adhesion of 
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lymphocytes, monocytes, eosinophils, and basophils to vascular endothelium. 

VCAM-1 is of critical importance in the development of atherosclerosis, and VCAM-1 

has been shown to be rapidly induced by proatherosclerotic conditions (O’Brien et 

al, 1993). The ligand for VCAM-1 is Very Late Antigen Activation-4 (VLA-4), also called 

α4β1 integrin. Studies have shown that recruitment of peritoneal macrophages into 

atherosclerotic lesion of ApoE–/– mice can be inhibited by an α4 blocking antibody 

(Ley and Huo, 2001). Studies have attempted to investigate the effect of complete 

absence of VCAM-1 by using VCAM-1-/- mice. However, this has been very difficult as 

no or very few mice homozygous for the null allele are born; it appears this is 

necessary for placental development (Gurtner et al, 1995). Another study has 

disrupted its fourth Ig domain, producing the murine VCAM-1D4D allele (Cybulsky et 

al, 2001). VCAM-1D4D/D4D mice had significantly reduced atherosclerotic lesions, 

compared to wild type mice and ICAM-1-/- mice.   

In this chapter, we have shown that plaque size in the brachiocephalic artery 

correlates with arterial VCAM-1 expression. We have found that VCAM-1 staining in 

the brachiocephalic artery was highly prevalent in the artery wall underlying plaque. 

This is in agreement with the literature, O’Brien et al (1993) found high VCAM-1 

staining in inflammatory infiltrate at the base of plaques and also in areas of 

neovascularization.  This suggests that adhesion of monocytes, mediated by VCAM-

1, and subsequent infiltration of plaque occurs from the vasa vasorum of the arterial 

adventitia and media.  

Interestingly, there was no difference in serum VCAM-1 in mice administered Hyper-

IL-6 or IL-6 compared to PBS. This is unexpected, as VCAM-1 expression was higher 

in the brachiocephalic artery in mice administered Hyper-IL-6. Serum levels of VCAM-

1 were high in all groups, in fact mean levels in ApoE-/- mice were up to 4 times higher 

than serum levels seen in RA patients in Chapter 5 and approximately 1.5 times those 

seen in mice with CIA in Chapter 3. We have shown that in patients with RA, serum 

VCAM-1 is higher in those with high CV risk. What is not well defined is the 

relationship between soluble VCAM-1 and VCAM-1 on the endothelial cell surface. In 

this chapter there was no significant correlation between serum VCAM-1 and 

expression of VCAM-1 in the brachiocephalic artery. In vitro, soluble VCAM-1 levels 
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correlate with surface expression (Kjaergaard et al, 2013), however the relationship 

between the two in vivo, and the effect of soluble VCAM-1 appears to be context 

dependant. It has been proposed previously that soluble VCAM-1 could act as a 

competitive inhibitor of ligand binding (Rose et al, 2000); if there is an abundance of 

serum soluble VCAM-1 then this could bind to VLA-4 on monocytes, preventing their 

adhesion to cell surface VCAM-1 on the endothelium. Of note, Kitani et al (1996) 

found that in RA synovial fluid, the binding of soluble VCAM-1 to T cells inhibited their 

activation.  

There was no significant difference in serum CCL2 in mice administered IL-6, Hyper-

IL-6 or PBS. There was a significant negative correlation between serum CCL2 and 

brachiocephalic plaque size. This is unexpected given that CCL2 has been shown to 

correlate with CIMT in RA patients (Södergren et al, 2010) and elevated serum CCL2 

levels are found in patients with coronary artery disease or increased coronary risk 

factors (Martinovic et al, 2005). It would be interesting to measure CCL2 expression 

the brachiocephalic artery but this was not possible for this thesis due to time 

constraints.  

There was no difference in mean fibrous cap thickness in mice administered Hyper-

IL-6, IL-6 or PBS. Mice administered Hyper-IL-6 1 µg had greater mean fibrous cap 

thickness at the thinnest point of the cap compared to PBS and IL-6. This may be 

explained by the fact that there was also a positive correlation between fibrous cap 

thickness and plaque size, and plaque size was greater in those administered Hyper-

IL-6. To investigate this further mice could be grouped into those with similar sized 

plaques i.e. small, medium and large plaques, and then mean fibrous cap thickness 

compared within these plaque-size subgroups for PBS, IL-6 and Hyper-IL-6 

administered mice. However, numbers in these experiments were too small to make 

this comparison and very few plaques in the PBS groups were similar size to those 

administered Hyper-IL-6.  

Interestingly, there was no difference in the lipid profiles of mice administered IL-6 

or Hyper-IL-6 compared with PBS. It has previously been shown that IL-6 plays a role 

in lipid metabolism, though there are variable reports in the literature. For example 

in healthy volunteers, administration of IL-6 increased total cholesterol (Lyngso et al, 
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2002). However in middle-aged and old rhesus monkeys (Ettinger et al, 1995), and 

cancer patients (Veldhuis et al, 1995) IL-6 administration reduced total cholesterol 

levels. In patients with myocardial infarction (Brugada et al, 1996), those who have 

undergone major surgery (Akgun et al, 1998) and those on haemodialysis (Bologa et 

al, 1998), serum IL-6 levels correlate negatively with total cholesterol levels. In 

patients with renal disease undergoing haemodialysis low IL-6 levels have been 

shown to be the strongest predictor of mortality (Bologa et al, 1998). Overall, it 

appears that the effect of IL-6 on lipid levels depends somewhat on the inflammatory 

state of the patient or animal. Perhaps in the ApoE-/- mice used in this thesis, lipids 

levels (mostly LDL cholesterol) are already considerably raised so that the effect of 

additional inflammation in negligible. The absence of difference in lipid levels in mice 

administered Hyper-IL-6 compared to PBS is in keeping with previous work in LDLR-/- 

mice, where blockade of IL-6 trans-signaling, by administration of sgp130Fc, reduced 

atherosclerosis but did not affect serum lipid levels (Schuett et al, 2012). 

IL-6 increases VLDLR expression in several tissues (Hashizume et al, 2009) and this 

decreases triglyceride levels. Interestingly, in an in vitro study, IL-6 and sIL-6R 

significantly induced expression of VLDLR mRNA in VSMC but IL-6 or sIL-6R alone and 

TNF-α did not do so (Hashizume et al, 2009). In the same study IL-6 injection into 

mice increased the expression of VLDLR in heart, adipose tissue and liver and 

decreased TC and TG levels. This suggests that IL-6 trans-signaling in vitro, rather than 

IL-6 classical signaling, increases VLDLR expression. In the in-vitro part of this study, 

the administration of IL-6 may have increased both classical and trans-signaling, as 

there would have been sIL-6R in the circulation to bind to the IL-6, and therefore it is 

unclear which signaling mechanism is influencing this increase in VLDLR expression.  

Dyslipidaemia is commonly observed in patients with active RA. They have lower 

total cholesterol, HDL and LDL than people without RA (Robertson et al, 2013). When 

inflammation is supressed in these patients, for example with the use of DMARDs or 

biological agents, these lipid fractions increase. These changes in lipid profile can 

differ depending on the drugs used. It has been shown that IL-6 blockade using 

Tocilizumab increases serum total cholesterol, HDL, LDL and triglyceride levels in RA 

patients (Choy et al, 2014). Importantly LDL:HDL and Total cholestrerol:HDL ratios 
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remain relatively stable. These ratios have been shown to be more closely associated 

with CV risk than individual lipid measures (Natarajan et al, 2003).  

Previous research found that ApoE-/- mice were resistant to CIA (Asquith et al, 2010). 

In this study, ApoE-/- mice did not develop articular inflammation, but did develop 

anti-collagen antibody responses that are similar to those observed in C57BL/6 wild 

type mice that developed CIA. The authors concluded that the inflammatory burden 

of polyarticular disease may be crucial for vascular disease acceleration.  However, it 

is possible that as a result of the deletion of the ApoE gene, there are changes to 

serum proteins which may influence CIA development. In this study the authors 

found significantly lower IL-17 levels in the sera of ApoE−/− mice than in the sera of 

wild type C57BL/6 mice after CIA induction. Previous studies have shown that IL-17 

plays a crucial role in CIA development (Nakae et al, 2003).  Another possible reason 

for the lack of CIA development in ApoE-/- mice may be that hyperlipidaemia 

supressed CIA development. However, in the same study, high fat diet did not change 

arthritis severity compared to normal chow diet in wild type C57BL/6 mice. In 

addition, previous work has shown that in DBA-1 mice immunised with CIA, injection 

of 3H-cholesterol was associated with greater severity of CIA (Hamer et al, 2002). To 

further investigate the role of lipids in CIA development, CIA could be induced in 

other models, such as the LDLR-/- mouse.  

 

4.6 Conclusion  

 

Here, for the first time, we have shown that IL-6 trans-signalling using Hyper-IL-6 

increases plaque size in ApoE-/- mice. This accelerated atherosclerosis was not seen 

with IL-6 alone. This increase in plaque size with Hyper-IL-6 may be partly driven by 

the increased arterial and plaque expression of VCAM-1 in those administered Hyper-

IL-6. IL-6 trans-signaling did not effect fibrous cap thickness or lipid levels.  
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5 Chapter 5: The role of sIL6R-regulated CVD Candidate 

Proteins (SCCPs) in progression of subclinical atherosclerosis 

in patients with early RA and in cardiovascular risk in 

established RA. 

 

 

5.1 Introduction  

 

It has been shown that rapid progression of CVD occurs soon after RA onset (Kerola 

et al, 2012). Cardiovascular risk scores, even with modification as recommended by 

EULAR, underestimate CVD risk in RA patients (Rosales-Alexander et al, 2014). A 

prospective study of patients with early RA (classified as symptoms of less than 12 

months) followed up 442 patients over 5 years (Innala et al, 2011). At 5 years, 10.9% 

of patients had experienced a new cardiovascular event, 12 of these 48 events were 

fatal.  

 

Using cardiovascular events as an outcome for exploratory studies in this thesis is not 

appropriate, since the required sample size is prohibitively large. Several validated 

non-invasive imaging techniques are now available as surrogate markers for 

determining subclinical atherosclerosis in RA and were recently reviewed by Kerekes 

et al (2012). Of these, ultrasonographic assessment of carotid intima media thickness 

(CIMT) and the presence of plaques have been identified as most useful for stratifying 

RA patients with high CV risk. In a recent study, approximately 60% of patients 

identified as having moderate cardiovascular risk, according to the modified EULAR 

cardiovascular SCORE, had evidence of carotid plaques and/or CIMT >0.90 mm 

(Corrales et al, 2013)  (both considered factors indicative of poor cardiovascular 

prognosis in the general population). Furthermore, the proportion of patients 

identified as having high or very high cardiovascular risk increased from 9.2% with 

the modified EULAR SCORE to 47.7% with additional carotid ultrasound results 

(Corrales et al, 2013). However, the feasibility of performing these ultrasound 
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assessments within rheumatology clinics or in partnership with specialist cardiology 

clinics remains to be established. In particular, most cardiology departments do not 

have capacity to scan over 1000 RA patients annually. In this study, CIMT thickness 

and CIMT progression over time were used as a surrogate marker of CVD and CVD 

progression. If SCCPs are associated with progression of CVD then they could be used 

to identify high-risk patients; these patients could then be selected for more 

intensive investigation and treatment. This project will examine this hypothesis in a 

longitudinal study of patients with early RA using CIMT as a surrogate of CVD. In this 

chapter, CIMT > 0.90 mm and/or carotid plaques were used as the gold standard test 

for subclinical atherosclerosis and high CV risk (Corrales et al, 2013). However, this is 

a surrogate marker for CVD, thus there are limitations in applying this to other or 

additional CVD pathologies that RA patients can experience. Wald et al (2009) found 

that neither carotid plaque nor CIMT has a CVD screening performance that is 

sufficiently discriminatory between affected and unaffected individuals to be a 

worthwhile screening test in the general population.  

 

Due to inherent problems with recruitment and retainment of patients over a 

prolonged period of follow up, it was decided that both a cross sectional study in 

patients with established RA and a prospective study in patients with early RA would 

be performed. This enabled greater patient numbers to be recruited. In addition, 

differences in SCCPs could be assessed in those who had a history of CVD versus those 

that did not. 

 

 

5.2 Hypothesis and Aims  

 

Hypothesis: SCCPs are associated with cardiovascular risk in patients with established 

RA and progression of subclinical atherosclerosis in patients with early RA.  

 

In order to address this hypothesis the following aims were identified: 
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1. To investigate whether SCCPs are associated with RA disease activity in 

patients with established RA.  

2. To investigate whether SCCPs are associated with cardiovascular risk in 

patients with established RA.  

3. To investigate whether SCCPs are associated with previous CVD in established 

RA.  

4. To investigate whether SCCPs are associated with RA disease activity and with 

progression of disease activity in early RA.   

5. To investigate whether SCCPs are associated with presence and progression 

of subclinical atherosclerosis, using CIMT, in early RA. 

 

5.3 Methods  

 

5.3.1 Established RA recruitment and data collected 

 

Patients with established rheumatoid arthritis (duration greater than 1 year) were 

recruited from general rheumatology clinics in University Hospital of Wales (UHW).  

Research Ethics Committee for Wales ref no 12/WA/0045. After written consent 

was gained the following was collected: 

Data collected:  

 Gender 

 Age 

 Height  

 Ethnicity  

 Postcode  

 RA disease duration  

 Concomitant diseases  

 Family history of cardiovascular disease or stroke  

 History of chronic kidney disease (also checked by looking at renal 

function on the UHW clinical portal)  
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 History of atrial fibrillation  

 Smoking status  

 Alcohol intake  

 Medications 

 History of cardiovascular disease (ischaemic heart disease including 

angina and acute coronary syndrome, cerebrovascular accident or 

transient ischaemic attack, peripheral vascular disease) 

 

Data measured: 

 Blood pressure  

 Weight  

 Height  

 DAS28 

 As part of routine care ESR, CRP and lipid profile were requested via the 

laboratories at UHW.  

 

5.3.2 Early Arthritis Study recruitment and data collected  

 

Patients with early RA, defined by ACR/EULAR 2010 criteria (Aletaha et al 2010) and 

symptoms of less than 6 months were identified from rheumatology clinics and 

referral letters to the rheumatology department at UHW. Patients were assessed 6-

monthly for 12 months. Ethics and R&D approval was in place for a larger study: 

Inflammation and Immune Regulation in Early Inflammatory Arthritis (Research 

Ethics Committee for Wales ref no 11/WA/0326). An amendment to the protocol was 

successfully made to add carotid ultrasonography to assessments to determine CIMT 

and presence of plaques.  

 

Inclusion criteria  
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 Age 18 or over  

 Able and willing to give written consent and comply with the requirements of 

the study protocol  

 Duration of symptoms 4 weeks to 6 months 

 Synovitis in at least one joint    

 Meets criteria of 2010 Rheumatoid arthritis classification criteria: an 

American College of Rheumatology/European League Against Rheumatism 

collaborative initiative (Aletaha et al, 2010). 

 

 

Exclusion criteria  

 

 Definite other autoimmune rheumatic disease e.g. SLE, MCTD, scleroderma, 

polymyositis.  

 Functional class IV, defined by the ACR Classification of Functional Status in RA  

 Previous treatment with any biological agent.  

 Treatment with intravenous gamma globulin, plasmapheresis or Prosorba TM 

column within the past 6 months. 

 Current other inflammatory joint disease (e.g. gout, reactive arthritis, Lyme 

disease). 

 Previous cardiovascular disease (ischaemic heart disease including angina and 

acute coronary syndrome, cerebrovascular accident or transient ischaemic 

attack, peripheral vascular disease) 

 Concomitant diabetes mellitus 

 

Patients that fulfilled inclusion criteria were assessed in the Clinical Research Facility 

in UHW.  

 

Data collected:  

o Gender 

o Age 
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o Ethnicity  

o Postcode  

o Symptom duration  

o Concomitant diseases  

o Extra articular features i.e. rheumatoid nodules, eye, lung, cardiac or 

skin symptoms, Sjogren’s syndrome, neuropathy, vasculitis, back pain  

o Family history of cardiovascular disease or stroke  

o History of chronic kidney disease (also checked by looking at renal 

function on the UHW clinical portal)  

o History of atrial fibrillation  

o Smoking status  

o Alcohol intake  

o Employment status  

o Medications  

o Patient Visual Analogue Scale for arthritis severity  

 

Data measured:  

o Height  

o Weight  

o Body mass index  

o Blood pressure was measured in both arms while sitting, after the 

patient had rested for at least 30 minutes  

o Tender joint count  

o Swollen joint count  

o US 7 and 10 score  

o CIMT and presence of plaque using carotid US 

 

5.3.3 Assessment of cardiovascular risk   
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CV risk was calculated for each patient using the QRISK2, Framingham and SCORE 

algorithms. These risk algorithms are described in section 1.8, including the variables 

each uses to calculate risk.  

 

5.3.4 Calculation of DAS28  

 

From the tender and swollen joint counts, ESR and CRP, the DAS-28(ESR) (Prevoo et 

al 1995) and DAS-28(CRP) (Fransen et al 2003) were calculated using the standard 

formula. Patients were grouped by DAS28 (Prevoo et al, 1995) into severity, see Table 

26. 

 

DAS28 Score DAS28 group 

< 2.6 Remission 

2.6 –  3.2 Mild 

3.2 - 5.1 Moderate 

> 5.1 Severe 

 

Table 26. Stratification of disease activity by DAS28 score 

 

5.3.5 Musculoskeletal Ultrasound (US) assessments  

 

Ultrasound was performed of patients’ hands and feet, by two rheumatology 

registrars trained in musculoskeletal ultrasound (RD and CR). Images or clips were 

stored and later scored blind by both RD and CR using 7-joint ultrasound (Backhaus 

et al, 2009) (Figure 59) and 10-joint ultrasound (Larché et al, 2010) (Figure 60) scores. 

The US10 score was adapted from Larché et al (2010), to include semi quantitative 

measures of synovial thickness and vascularity. The original score also includes a 

quantitative measure of vascularity, the authors using an automated measurement 

of the number of colour pixels in a region of interest (ROI). However, we did not have 

access to this software and therefore this was omitted.  
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Figure 59. US7 score. Gray-scale ultrasound and power Doppler (PD) US performed 
for synovitis, tenosynovitis/paratenonitis, and erosions from the dorsal, palmar, and 
ulnar aspects of the wrist, metacarpophalangeal (MCP), proximal interphalangeal 
(PIP), and metatarsophalangeal (MTP) joints. From Backhaus et al, 2009.  

Figure 60. US 10 score. Gray-scale ultrasound and power Doppler US performed for 
synovial thickening and power Doppler activity for 10 MCP joints. Adapted from 
Larché et al, 2010. 
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5.3.6 Training in carotid ultrasound  

 

I was trained in carotid ultrasound by a senior vascular scientist with a strong track 

record in study set up, training and project management of vascular studies. I had 40 

hours of training over several weeks and 2 meetings per month to cover data review, 

quality control and trouble shooting. 

  

 Reproducibility of scanning  

 

To ensure reproducibility of images 5 healthy volunteers were scanned 

twice, approximately a week apart. Each scan was analysed. These were 

checked by a senior vascular scientist for:  

 

•         Correctly labelled images 

 

•         Images recorded in the correct order – i.e. right carotid first, starting 

with the   cross sectional loop. 

 

•         Image set up appropriately – suitable gain, focus point in appropriate 

position. 

 

•         Correct zoom 

 

•         Image quality - intima visible on both walls, presence of an analysable 

area, straight image 

 

•         Similarity of two images  

 

Reproducibly of analysis  

 

To ensure reproducibility of analysis 10 images were analysed twice, 1 week 

apart.  The following were checked by a trained vascular scientist:  
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•         Calibration 

 

•         Appropriate choice of waveforms (3 consecutive waveforms, all end-

diastolic diameters and systolic diameters within 0.1 mm of each other)  

 

•         Size of the analysis box  

 

•         Location from the carotid bifurcation  

 

•         Correct placement of detection lines 

  

 Coefficient of variation 

 
 

5.3.7 Assessment of CIMT using carotid ultrasound  

 

Patients were positioned supine after resting for at least 30 minutes. The left and 

right common carotid arteries were imaged longitudinally 1 cm proximal to the 

carotid bifurcation. Images were focused on the posterior (far) wall of the artery and 

then magnified. Several ten-second cine loops were recorded in DICOM format and 

then downloaded for offline analysis.  

 

5.3.8 Analysis of CIMT 

 

An automated carotid analyser (Carotid Analyzer, Medical Imaging Applications, Iowa 

City, IA) was used to measure CIMT. Three end-diastolic frames were selected and 

CIMT measured, defined as the interface between lumen-intima and media-

adventitia, for both right and left carotid arteries. The mean of the three end-diastolic 

frames was calculated, and then the mean of the left and right-sided readings was 

calculated. The internal and external carotid arteries and bifurcation were also 

scanned and presence or absence of plaque was noted.  
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CIMT > 0.90 mm and/or carotid plaques were used as the gold standard test for 

subclinical atherosclerosis and high CV risk (Corrales et al, 2013). These patients were 

classed as ‘US positive’. Those patients who did not have plaque or CIMT > 0.9 mm 

were ‘US negative’, Table 27. Plaque was defined as a focal structure that encroaches 

into the arterial lumen of at least 0.5 mm or 50% of the surrounding IMT value or 

demonstrates a thickness of > 1.5 mm as measured from the media-adventitia 

interface to the intima-lumen interface (Touboul et al, 2004). 

 

 

Carotid US positive Carotid US negative 

Plaque present or CIMT > 0.9 mm No plaque and CIMT < 0.9 mm 
 

Table 27. Definition of carotid US positive and US negative patients. 

 
 

5.3.8.1 Definition of rapid progressor 

 

A previous study by Södergren et al (2010) in 27 patients with early RA found that 

mean increase in CIMT at 18 months was 0.05 + 0.15mm (mean + SD). For this study, 

rapid progression was defined as increase in CIMT >0.05 mm and patients were 

defined as per Table 28. 

 

 

Non-rapid Progressor  Rapid Progressor 

Increase in CIMT < 0.05mm  Increase in CIMT > 0.05mm  
 

Table 28. Definition of non-rapid and rapid progressor according to change in CIMT  

 
 

5.3.9 Measurement of carotid distensibility  

 

 

The Carotid Analyzer software was used as above. Three consecutive frames were 

selected and the end-diastolic and systolic diameters were recorded for left and right 

carotid arteries. The mean of these readings was calculated. Right and left arm blood 
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pressure was recorded and the respective pulse pressure calculated.  The following 

equation was used to calculate the distensibility coefficient (DC) in 10−3 kPa−1 (from 

Dijk et al, 2005):  

 

 

((2 X ΔD/ Dd)/ PP) X 1000  

 

 

ΔD = Mean carotid distension. (Systolic diameter- end diastolic diameter) 

Dd = End-diastolic diameter   

PP= Pulse pressure (in kPa)  

 

 

5.3.10 Assessment of cardiovascular risk status  

 

 

For each patient the SCORE, QRISK2, ACC/AHA and Framingham 10 year risk of 

cardiovascular event was calculated. Thresholds have previously been set by risk 

algorithm authors to define ‘high risk’ patients as per Table 29. If the patient’s 10-

year risk of cardiovascular event was greater than 10% using the QRISK2 then a letter 

was sent to the patient’s general practitioner to inform them, along with information 

about the patient’s blood pressure, lipid profile and BMI. Current NICE guidelines 

state that people with a greater than 10% ten year risk of cardiovascular disease 

should be offered atorvastatin 20 mg for the primary prevention of CVD (NICE 

guideline CG181, 2014). The patient was informed about their risk status and advised 

to make an appointment with their GP to discuss this further.  
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Variable  
Threshold used to 

define ‘high risk’ 

SCORE (Perk et al 2012)  > 5% 

QRISK2 (NICE  guideline 

CG181) 
>10% 

ACC/AHA (Goff et al 2013) >7.5% 

Framingham (National 
Cholesterol Education 
Program 2012) 

> 20% 

 

Table 29. Cardiovascular risk scores and thresholds used to define ‘high risk' for each score. 

 
 

5.3.11 Blood sampling  

 

Blood was sent to the laboratory at UHW for measurement of rheumatoid factor, 

anti-CCP antibodies, lipid profile (Total cholesterol, HDL cholesterol, LDL cholesterol, 

triglycerides), ESR and CRP. Anti CCP and Rheumatoid factor groups were included as 

there is data that citrullination is found in plaques. Also Pratt et al (2012) identified 

IL-6 mediated STAT-3 signalling in CD4 T cells  during the earliest clinical phase of RA, 

and was most prominent in anti-CCP negative patients who developed RA.  At the 

same time, blood was also taken for SCCP measurement. Blood was taken into 

Vacutainer® serum separation tubes (BD) and then centrifuged at 1500rpm for 5 

minutes at 4°C. Serum was aliquoted and frozen at -70°C.  

 

5.3.12 ELISA 
 

Levels of IL-6, sIL-6R, IL-6/sIL-6R complex and SCCPS were measured using duoset 

ELISA development kits from RnD Systems (Abingdon) in accordance with 

manufacturer’s instructions. See Table 8 in general methods section for protocol for 

ELISA on human serum. All ELISAs were read in a plate reader at OD 450 nm. 
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Standards and samples were assayed in duplicate. See Table 30 for concentrations 

used in each ELISA.  

 

Protein Capture antibody 
working 

concentration 

Detection antibody 
working 

concentration 

High standard 
concentration 

IL-6 
2 µg/mL 50 ng/mL 600 pg/mL 

sIL-6R 
2 µg/mL 100 ng/ml 1000 pg/ml 

Il-6/sIL-6R 
complex  

2 µg/mL   0.5 µg/mL  5000 pg/mL 

VCAM-1 
2 µg/mL 200 ng/ml 1000 pg/ml 

CCL2 
1 ug/ml 50 ng/ml 1000 pg/ml 

Tissue Factor 
4 ug/ml 200 ng/ml 500 pg/ml 

CXCL8 
4 ug/ml 20 ng/ml 2000 pg/ml 

M-CSF 
2 µg/mL 200 ng/ml 1000 pg/ml 

CXCL9 
1 µg/mL 200 ng/mL 4000 pg/mL 

Thrombomodulin 
2 µg/mL 1 µg/mL 2000 pg/mL 

MMP-1 
2 µg/mL 100 ng/mL 4000 pg/mL 

 

Table 30. Antibody and standard concentrations for SCCPs used in ELISA for human serum 

 

5.3.12.1 Statistics  

 

Statistics used were dependent on the data analysed. Where two groups were 

compared the paired means student’s t-test was used. Where multiple groups were 

compared, a one-way ANOVA and post hoc Bonferroni test were performed. All 

results were expressed as the mean + SEM. Binary logistic regression was used to 

examine the effect of multiple variables on particular outcomes.  Differences that 

were considered significant were p < 0.05.   
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Sample size estimation. A previous study showed that in early RA patients CIMT 

increased by 0.05 + 0.15 mm. For this study, rapid progression will be defined as 

increase in CIMT >0.05mm/year. In the absence of a biomarker, 50% of patients will 

have CIMT increase of at least 0.05mm. We expect SCCPs to improve the proportion 

of predicted patients by 50%. A sample size of 77 patients will give 80% power to 

detect an increase in the proportion of correctly predicted patients with an increase 

of CIMT >0.05 mm from 50% to 75%. Allowing 10% lost to follow up, we aim to recruit 

85 patients.  

 

 

5.4 Results 

 

5.4.1 Established rheumatoid arthritis 

 

182 patients with established RA were recruited, of which 67% were female. Patient 

characteristics are shown in Table 31. 27% of patients were in remission, 16% had 

mild disease activity, 35% had moderate disease activity and 22% had severe disease 

activity defined by the DAS28 score (Figure 61). 49% were taking Methotrexate and 

10% were taking Tocilizumab. Mean SCCP levels and comparison with those in the 

literature for RA are shown in Table 32.  

 

 

Variable 
 

Mean 

Age (years) 60 + 1.2 

Disease Duration (years) 13.1 + 1.0 

Rheumatoid factor 
positive (%) 

63.9 

Anti-CCP antibody 
Positive (%) 

66.3 

CRP 11.9 + 2.1 
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ESR (mm/hr) 22 + 1.7 

DAS28 3.6 + 0.2 

Systolic BP (mmHg) 129 + 2.2 

Cholesterol : HDL ratio 3.8 + 0.1 

QRISK2 (%) 16 + 1.5 

Framingham (%) 13 + 0.9 

 

Table 31. Demographics details for cross sectional study of 182 patients with established RA. 
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 Figure 61. DAS28 group in patients with established RA. 27% of patients were in 
remission, 16% had mild disease activity, 35% had moderate disease activity and 
22 % had severe disease activity. 
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SCCP 
 

Mean in this study  Value in RA in literature  

IL-6 (pg/ml) 19.8 + 2.9 1.5-234 (Robak et al 1998) (range) 

sIL-6R (ng/ml) 126 + 46 153.9 + 56.9 (Kohno et al 1998) 

IL-6/sIL-6R complex 
(pg/ml)  

348 + 201 
6800-8900l (De Benedetti et al 
1994) (range in systemic JIA, RA 

unknown) 

CCL2 (pg/ml) 199 + 14 
<0.08 – 179 (Green et al 2003)  

(range) 

CXCL8 (pg/ml) 40 + 8 17 – 49 (Slavić et al 2005) (range) 

CXCL9 (ng/ml) 0.8 + 0.1 
3.1 (1.2–4.9) (Kaun et al 2010) 

median and IQR 

MCSF (pg/ml) 4.3 + 1.8 
1.32 + 0.50 (Kawaji et al 1995) 

(mean) 

MMP-1 (ng/ml) 5.9 + 0.4 41.8 (Green et al 2003) (mean) 

Thrombomodulin 
(ng/ml) 

4.8 + 0.1 
5.9 + 2.2 (Abdul-Moniem et al 

2009) (mean) 

Tissue Factor (pg/ml) 29 + 7 unknown 

VCAM-1 (ng/ml) 855 + 53 
475 ± 258 (Navarro-Hernández et al 

2009) (mean) 
 

Table 32. Mean SCCP levels in patients with established RA in cross sectional study and in the 
literature 

 

 

5.4.1.1 Association of SCCPS with disease activity in established RA 
 

There was a significant positive correlation between DAS28 and VCAM-1 (Figure 62) 

but not with other SCCPs. There was no significant difference between DAS28 groups 

(remission, mild, moderate or severe) when IL-6, sIL-6R, IL-6/sIL-6R complex, CRP, IL-

8, MCSF, CCL2, CXCL9, thrombomodulin, MMP-1, or tissue factor were compared. 

ESR was significantly higher in severe RA groups compared to moderate, mild and 

remission groups and VCAM-1 was significantly higher in severe RA compared to 

moderate RA (Figure 63). 
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Figure 63. Significant difference in ESR and VCAM-1 between DAS28 groups. (A) ESR was significantly 
lower in RA remission (7.9 + 9.1 mm/hr), compared to mild (8.2 + 10.5 mm/hr), moderate (18.5 + 
12.2 mm/hr) and severe RA (40.3 + 26.4 mm/hr), p = 0.000. (B) VCAM-1 was significantly lower in 
moderate RA (780 + 412ng/ml) compared to severe RA (1349 + 880 ng/ml), p = 0.023. Mean VCAM-
1 for those in remission was 825 + 358 ng/ml and 955 + 865 ng/ml in mild RA.  
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Figure 62. Significant positive correlation between VCAM-1 and DAS28 in 
patients with established RA, r = 0.27, p = 0.017 
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5.4.1.2 Association of SCCPS with cardiovascular risk in established RA 
 

There was a significant positive correlation between the QRISK2 score and serum 

MMP-1 (r = 0.35, p = 0.0014), thrombomodulin (r = 0.32, p = 0.0034) and VCAM-1 (r 

= 0.32, p = 0.0025) (Figure 64). There was a significant positive correlation between 

the Framingham risk score and serum MMP-1 (r = 0.32, p = 0.0026) and 

thrombomodulin (r = 0.31, p = 0.0034) (Figure 65, Table 32). There was a significant 

correlation with age and MMP-1 (r = 0.25, p = 0.013), thrombomodulin (r = 0.318, p 

= 0.001) and VCAM-1 (r = 0.27, p = 0.002).  The QRISK2 and Framingham scores were 

significantly moderately correlated, r = 0.7, p < 0.0001 (Figure 66). Patients were 

classified according to the QRISK2 as having a low risk (< 10%) or high risk (> 10%) of 

cardiovascular event over the next 10 years. 52% of patients were high risk according 

to the QRISK2. Those classified as low risk had a significantly higher CRP than those 

at high risk (19.7 + 34.8 mg/L versus 8.2 + 8.5 mg/L), Table 33. Those classified as low 

risk had significantly lower serum thrombomodulin (4.6 + 1.2 ng/ml versus 5.4 + 1.6 

ng/ml) and VCAM-1 (977 + 600 ng/ml versus 1247 + 289 ng/ml) (Figure 67) than those 

classified as high risk (Table 34). 

 

 

Figure 64. Significant positive correlations between QRISK2 and (A) MMP-1 (r = 0.35, p = 0.0014), 
(B) Thrombomodulin (r = 0.32, p = 0.0034) and (C) VCAM-1 (R = 0.32, p = 0.0025). 



168 
 

 

 

 

Variable Correlation 
with QRISK2 ( 

r value) 

p value Correlation with 
Framingham  (R 

value) 

p Value 

CRP (mg/L) -0.139 ns -0.107 ns 

ESR (mm/hr) 0.211 ns 0.101 ns 

IL-6 (pg/ml) -0.078 ns 0.004 ns 

sIL-6R (ng/ml) 0.119 ns 0.128 ns 

IL-6/sIL-6R complex 
(pg/ml) 

-0.063 ns -0.021 ns 

CCL2 (pg/ml) 0.204 ns 0.098 ns 

CXCL8 (pg/ml) 0.113 ns 0.069 ns 

CXCL9 (ng/ml) 0.183 ns 0.054 ns 

MCSF (pg/ml) 0.111 ns 0.171 ns 

MMP-1 (ng/ml) 0.347 0.001 0.321 0.003 

Thrombomodulin 
(ng/ml) 

0.319 0.001 0.313 0.003 

Tissue Factor (pg/ml) -0.084 ns -0.241 ns 

VCAM-1 (ng/ml) 0.324 0.002 0.134 ns 

QRISK2  1  0.698 0.000 

Framingham  0.698 0.000 1  

Chol/HDL ratio -0.0076 ns 0.315 0.008 

Age  (years) 0.879 0.000 0.637 0.000 

Disease Duration (yrs) 0.054 ns 0.068 ns 

DAS-28 0.09          ns 0.011 ns 

BP (mmHg) 0.496 0.000 0.588 0.000 
 

Table 33. Correlation between SCCPs and CV risk variables with QRISK2 and Framingham scores 

Figure 65. Significant positive correlation between the Framingham risk score and (A) serum MMP-
1 (r = 0.32, p = 0.0026) and (B) serum thrombomodulin (r = 0.31, p = 0.0034) 
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Figure 66. Significant positive correlation between the QRISK2 and the Framingham score 
in patients with established RA, r = 0.7, p < 0.0001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 67. Serum VCAM-1 was significantly higher in those with a > 10% CV risk over the 
next 10 years according to both the QRISK2 and the Framingham score, compared to those 
with < 10% risk in patients with established RA. * p < 0.05  

R = 0.7, p < 0.0001 
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Table 34. Differences in SCCPs in those classified as low risk versus high risk of CVD according to 
the QRISK2 

 

 

5.4.1.3 Association of SCCPs with history of cardiovascular disease in established RA 

 

Twelve patients (9.6%) had previous CVD. Of these, seven (58.3%) were female. In 

those patients with a history of CV disease, mean serum CRP (3.9 + 5.7 mg/L versus 

13.3 + 24.5 mg/L), ESR (20 + 13.2 mm/hr versus 22 + 19.6 mm/hr), IL-6 (5.1 + 10.6 

pg/ml versus 22 + 39.8 pg/ml), sIL-6R (107 + 22 versus 128 + 53), MCSF (0 + 0 pg/ml 

versus 4.8 + 18.0 pg/ml) and tissue factor (0 + 0 pg/ml versus 50 + 82 pg/ml) were 

significantly lower than those with no history of CVD (Figure 68 and Table 35). All 

patients with a history of CVD had undectable levels of MSCF and tissue factor. There 

was no significant difference in serum VCAM-1 levels in those with history of CVD 

(1029 + 607 ng/ml) compared to those with no history of CVD (947 + 442 ng/ml). A 

further analysis of the subgroup of patients with previous CVD revealed that most 

Variable  Low risk QRISK2 High risk QRISK2 P value 

CRP (mg/L) 19.7 + 34.8 8.2 + 8.5 0.046 

ESR (mm/hr) 21.5 + 17.4 23.7 + 21.9 ns 

IL-6 (pg/ml) 24.0 + 46.8 16.2 + 29.1 ns 

SIL-6R (ng/ml) 123 + 51 113 + 42 ns 

Ratio IL-6 : sIL-6r 0.12 + 0.2 0.15 + 0.3 ns 

IL-6/sIL-6R complex 
(pg/ml) 

239.7 + 521 519 + 2630 ns 

CCL2 (pg/ml) 258 +134 242 + 146 ns 

CXCL8 (pg/ml) 27 + 28 42 + 70 ns 

CXCL9 (ng/ml) 0.78 +1.0 1.0 + 1.0 ns 

MCSF (pg/ml) 2.3 + 6.3 6.7 + 23.6 ns 

MMP-1 (ng/ml) 5.3 + 4.1 6.7 + 4.1 ns 

Thrombomodulin (ng/ml) 4.6 + 1.2 5.4 + 1.6 0.009 

Tissue Factor (pg/ml) 50.1 + 83.7 46.8 + 81.7 ns 

VCAM-1 (ng/ml) 977 + 600 1247 + 289 0.039 
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were on secondary prevention for CVD; 92% of patients with CVD were taking a 

statin, 80% were taking an antihypertensive. 

 

 

 

Figure 68. Significantly lower (A) CRP (3.9 + 5.7 mg/L versus 13 + 24.5 mg/L, p = 0.002), (B) sIL-6R 
(107 + 22 ng/ml versus 128 + 53 ng/ml p = 0.015 (C) IL-6 (5.1 + 10.6 pg/ml versus 22 + 39.8 pg/ml, p 
= 0.009) in those with history of CVD compared to those without history of CVD. (D) No significant 
difference in serum VCAM-1 levels in patients with history of CVD (1029 + 607 ng/ml) compared to 
those with no history of CVD (947 + 442 ng/ml). 
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Variable  History of CVD n = 
12 

No history of CVD n 
= 113 

P value 

CRP (mg/L)  3.9 + 5.7 13 + 24.5 ns 

ESR (mm/hr)  20 + 13.2 22 + 19.6 0.002 

IL-6 (pg/ml) 5.1 + 10.6 22 + 39.8 0.009 

Sil-6R (ng/ml) 107 + 22 128 + 53 0.015 

IL-6/sIL-6R complex 
(pg/ml) 

144.6 + 51.5 251.4 + 140.0 0.14 

CCL2 (pg/ml) 243 + 93 196 + 112 ns 

CXCL8 (pg/ml) 91 + 164 36 + 56 ns 

CXCL9 (ng/ml) 0.924 + 0.94 0.91 +  1.01 ns 

MCSF (pg/ml) 0 + 0 4.8 + 18.0 0.019 

MMP-1 (ng/ml) 5.0 + 5.2 5.9 + 4.1 ns 

Thrombomodulin (ng/ml) 4.5 + 0.7 5 + 1.5 ns 

Tissue Factor (pg/ml) 0 + 0 50 + 82 0.00 

VCAM-1 (ng/ml) 1029 + 442 947 + 607 ns 

QRISK2 score (%) 19 + 5.2 16 + 15 ns 

Framingham score (%) 18 + 8 13 + 9 ns 

Chol/HDL ratio 5.4 + 1.8 3.7 + 0.9 ns 

Age  (years) 61 + 10 60 + 14 ns 

Disease Duration (years) 12.8 + 6.5 13.4 + 11.2 ns 
 

Table 35. Levels of SCCPs in those with a history of cardiovascular disease and those without in 
patients with established RA  

 

 

5.4.1.4 Lower CRP in those taking statin  

 

As all patients who had CVD were taking a statin, a subgroup analysis was performed 

to investigate whether there was any difference in SCCP levels in those taking or not 

taking a statin. Mean serum CRP was significantly lower in those patients taking a 

statin (CRP 7.0 + 1.5 mg/L) compared to those not taking a statin (13.5 + 2.7 mg/L), p 

= 0.037 (Figure 69). There was no significant difference in SCCPs or disease activity in 

those taking statins and those not, Table 36. 
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Variable  Statin (n = 36) No Statin (n = 105) P value 

CRP (mg/L) 7.1 + 8.2 13.6 + 26.2 0.039 

ESR (mm/hr) 18.3 + 13.6 22.5 + 19.4 ns 

IL-6 (pg/ml) 21.8 + 31.9 19.3 + 40.1 ns 

Sil-6R (ng/ml) 132.4 + 69 124.2 + 44 ns 

Ratio IL-6 : sIL-6R 0.16 + 0.3 0.13 + 0.2 ns 

IL-6/sIL-6R complex (pg/ml) 130.5 + 212.5 491.5 + 2345 ns 

CCL2 (pg/ml) 227 + 123 255 + 142 ns 

CXCL8 (pg/ml) 76 + 129 30 + 33 ns 

CXCL9 (ng/ml) 1.29 + 1.3 0.76 + 0.88 ns 

MCSF (pg/ml) 9.5 + 30.5 2.8 + 10.1 ns 

MMP-1 (ng/ml) 5.0 + 4.1 6.0 + 1.2 ns 

Thrombomodulin (ng/ml) 5.4 + 1.7 4.8 + 1.3 ns 

Tissue Factor (pg/ml) 28.7 + 75 33.0 + 68 ns 

VCAM-1 (ng/ml) 1012 + 409 919 + 625 ns 

DAS28 3.57 + 1.43 3.60 + 1.76 ns 

 

Table 36. Differences in SCCPs and other variables in those taking and not taking a statin in 
patients with established RA. 
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Figure 69. Mean serum CRP levels significantly lower in patients taking a 
statin (7.0 + 1.5) than those not taking a statin (13.5 + 2.7) p = 0.037 in 
patients with established RA 
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5.4.1.5 Effect of methotrexate and tocilizumab on SCCPs 

 

There was no difference in SCCPs or DAS28 between those taking methotrexate and 

those not taking methotrexate (Table 37). Those patients on tocilizumab had 

significantly lower DAS28 (2.5 + 0.4 versus 3.8 + 0.2) (Figure 70) and serum ESR (8.7 

+ 3 mm/hr versus 24.3 + 1 mm/hr) than those not on tocilizumab (Figure 71, Table 

38). IL-6 was significantly higher in those taking tocilizumab than those not (845 + 27 

pg/ml versus 14 + 3 pg/ml, p = 0.034) (Figure 72). There was no difference in CRP 

between patients taking tocilizumab (mean CRP 11.3 + 6.3 mg/L) and patients not 

taking tocilizumab (mean CRP 12.0 + 2.2 mg/L).  
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Figure 70. DAS28 significantly higher in established RA patients not taking 
tocilizumab than those taking tocilizumab (3.8 + 0.2 versus 2.5 + 0.4) p = 
0.017  
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Figure 72. Serum IL-6 levels significantly higher in established RA patients taking 
tocilizumab than those not taking tocilizumab (845 + 27 versus 14 + 3 pg/ml, p = 
0.034). 

Figure 71. Serum ESR levels significantly higher in established RA patients 
not taking tocilizumab than those taking tocilizumab (24 + 2 mm/hr 
versus 9 + 4 mm/hr) p < 0.000 
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Variable  No Methotrexate (n = 67) Methotrexate (n = 75)  P value 

CRP (mg/L) 16 + 24 20 + 26 0.259 

ESR (mm/hr) 25 + 20 20 + 15 0.227 

IL-6 (pg/ml) 23 + 44 16 + 31 0.362 

SIL-6R (ng/ml) 119 + 51 116 + 43 0.728 

Ratio IL-6 : sIL-6R 0.13 + 0.2 0.14 + 0.3 0.884 

IL-6/sIL-6R complex (pg/ml) 217 + 493 541 + 2736 0.490 

CCL2 (pg/ml) 256 + 139 236 + 137 0.479 

CXCL8 (pg/ml) 32 + 34 48 + 94 0.317 

CXCL9 (ng/ml) 0.98 + 1.00 0.83 + 1.01 0.493 

MCSF (pg/ml) 2.5 + 6.7 6.2 + 23.2 0.312 

MMP-1 (ng/ml) 5.9 + 4.1 5.7 + 4.2 0.822 

Thrombomodulin (ng/ml) 4.99 + 1.6 4.9 + 1.2 0.854 

Tissue Factor (pg/ml) 40.3 + 83 24.5 + 56 0.340 

VCAM-1 (ng/ml) 1047 + 491 1184 + 673 0.268 

DAS28  3.65 + 1.61 3.54 + 1.74 0.78 

Cholesterol : HDL ratio  3.84 + 1.1 3.76 + 1.1 0.76 
 

Table 37. SCCP and other variables in established RA patients taking methotrexate versus those 
not taking methotrexate 

 

Variable  No Tocilizumab (n = 123) Tocilizumab (n = 19)  P value 

CRP (mg/L) 12 + 2 11 + 6 0.924 

ESR (mm/hr) 24 + 2 9 + 3 0.000 

IL-6 (pg/ml) 14 + 3 85 + 27 0.034 

SIL-6R (ng/ml) 124 + 5 148 + 16 0.172 

IL-6/sIL-6R complex (pg/ml) 359 + 253 564 + 323 0.625 

CCL2 (pg/ml) 194 + 14 258 + 30 0.107 

CXCL8 (pg/ml) 39 + 8 55 + 22 0.526 

CXCL9 (ng/ml) 0.8 + .1 1.3 + 0.5 0.368 

MCSF (pg/ml) 4.1 + 1.7 8.0 + 4.7 0.459 

MMP-1 (ng/ml) 6.1 + 0.4 4.1 + 1.5 0.241 

Thrombomodulin (ng/ml) 4.7 + 0.1 6.0 + 0.6  0.073 

Tissue Factor (pg/ml) 29.6 + 7.3 27.0 + 13.7 0.872 

VCAM-1 (ng/ml) 968 + 60 877 + 95 0.424 

DAS28  3.8 + 0.2 2.5 + 0.4 0.017 

Cholesterol : HDL ratio  3.7 + 0.1 4.0 + 0.4 0.567 
 

Table 38. SCCP and other variables in established RA patients taking tocilizumab versus those not 
taking tocilizumab 

 

 

 



177 
 

5.4.1.6 Effect of Rheumatoid Factor and anti–CCP status on SCCPs 

 

SIL-6R and MMP-1 were significantly higher in patients that were rheumatoid factor 

positive compared to those that were negative (Table 39). There was no significant 

difference between other SCCPs. Those patients that were anti-CCP positive had 

significantly lower CRP than those that were negative. There was no difference in 

other SCCPs (Table 40). 

 

Variable  RF positive (n = 78) RF negative (n = 44) P value 

CRP (mg/L) 9.8 + 18.4 15.4 + 30.4 0.284 

ESR (mm/hr) 20.3 + 14.9 23.4 + 21.4 0.401 

IL-6 (pg/ml) 21.5 + 24.2 18.2 + 33.5 0.687 

SIL-6R (ng/ml) 137 + 55 103 + 39 0.002 

Ratio IL-6 : sIL-6r 0.15 + 0.04 0.12 + 0.04 0.699 

IL-6/sIL-6R complex (pg/ml) 602 + 2577 99 + 290 0.223 

CCL2 (pg/ml) 250 + 142 245 + 129 0.877 

CXCL8 (pg/ml) 45 + 90 35 + 36 0.493 

CXCL9 (ng/ml) 0.82 + 0.95 0.88 + 1.07 0.789 

MCSF (pg/ml) 6.5 + 22.7 1.9 + 4.8 0.182 

MMP-1 (ng/ml) 7.0 + 4.6 4.7 + 3.5 0.008 

Thrombomodulin (ng/ml) 4.8 + 1.4 4.7 + 1.5 0.884 

Tissue Factor (pg/ml) 18.9 + 48.3 55 .5 + 95.2 0.071 

VCAM-1 (ng/ml) 943 + 560 936 + 649 0.955 

DAS28 3.65 + 1.71 3.39 + 1.54 0.496 
 

Table 39. SCCP and DAS28 levels in rheumatoid factor positive and negative established RA 
patients 

  

Variable  Anti-CCP  positive (n = 55) Anti-CCP  negative (n = 28) P value 

CRP 8.4 + 12.6 27.3 + 42.9 0.036 

ESR 18.3 + 14.7 27.5 + 23.6 0.074 

IL-6 (pg/ml) 15.3 + 26.3 26.5 + 57.8 0.367 

Sil-6R (ng/ml) 135 + 60 111 + 52 0.071 

Ratio IL-6 : sIL-6r 0.16 + 0.06 0.10 + 0.03 0.312 

IL-6/sIL-6R complex 
(pg/ml) 

525 + 2734 60 + 150 0.315 

CCL2 (pg/ml) 260 + 149 236 + 131 0.483 

CXCL8 (pg/ml) 32 + 37 30 + 30 0.751 

CXCL9 (ng/ml) 0.82 + 0.92 0.87 + 0.99 0.836 

MCSF (pg/ml) 3.86 + 15.01 1.97 + 5.51 0.463 

MMP-1 (ng/ml) 5.74 + 4.29 5.99 + 4.33 0.820 
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Thrombomodulin 
(ng/ml) 

4.96 + 1.27 4.68 + 1.34 0.411 

Tissue Factor (pg/ml) 10 + 23 48 + 84 0.075 

VCAM-1 (ng/ml) 989 + 528 1170 + 697 0.236 

DAS28 3.7 + 1.52 3.88 + 1.59 0.748 
 

Table 40. SCCPs and DAS28 levels in anti-CCP positive and negative established RA patients.  

 

 

5.4.2 Early Arthritis Study (EAS) results  

 

Forty-five patients were recruited. The baseline characteristics of the participants are 

presented in Table 41. 35 patients were followed up at 6 months, and 23 patients at 

12 months. 91% were Caucasian, 4% Indian, 2% Pakistani, and 2% Czech. Figure 73 

shows RA treatment at baseline, 6 months and 12 months. At baseline 63% were 

taking any DMARD, 58% of patients were taking methotrexate, 30% were taking two 

DMARDs, 26% were taking corticosteroids and 9% were taking two DMARDs plus 

corticosteroids (Figure 73). At 6 months, one patient and at 12 months, 2 patients 

were taking a biological drug (Tocilizumab). 52% of patients were not taking NSAIDs, 

26% were taking occasional NSAIDs and 22% were taking regular NSAIDS.  

 

 

Variable Mean 

Age (years) 56.1 + 2.2 

Female Sex (%) 75 

Disease Duration  
(months) 

4.0 + 0.2 

Rheumatoid factor positive (%) 59 

Anti-CCP antibody positive (%) 75 

CRP (mg/L) 11 + 2 

ESR (mm/hr) 24 + 3 
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DAS28 3.87 + 0.20 

Extra articular features (%) 15 

Systolic BP  
(mmHg) 

136 + 3.2 

QRISK2 (%) 16.9 + 2.5 

Smoking (%) 
      Never smoked  
      Former  
      Current 

 
39.5 
34.9 
25.6 

BMI 27.3 + 0.9 

HbA1c 40.2 + 1  

Family history of CVD  
< 60 years (%)  

18  

 

Table 41. Baseline characteristics of patients recruited in the early arthritis study. 

 

 

 

 

 

 

Figure 73. Medication for RA taken by early RA patients at (A) baseline, (B) 6 months and (C) 12 months 
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5.4.2.1 Association of SCCPs with disease activity in early RA  

 

Patients were grouped by DAS28 into severity, as in Table 26, Section 5.3.4. At 

baseline 18% were in remission, 43% had moderate disease activity, 18% had mild 

disease activity and 20% had severe disease activity (Figure 74). There was no 

significant correlation between baseline DAS28 and baseline IL-6, sIL-6R or SCCPs. To 

further assess the relationship between IL-6 and sIL-6R in this cohort, patients were 

grouped according to these serum cytokine concentrations, as per table 42. The 

mean serum level was calculated for IL-6 and sIL-6R and those below the mean were 

‘low’ and those above the mean were ‘high’.   

 

 Group 1 Group 2 Group 3 Group 4 

IL-6  Low  High Low High 

sIL-6R Low Low  High High  
 

Table 42. Patients with early RA grouped according to IL-6 and sIL-6R level. 

  

 

As expected, those in DAS28 remission at baseline had significantly lower ESR (10 + 

3 mm/hr) than those not in remission (27 + 3 mm/hr). However, there was no 

significant difference in CRP or IL-6 between these groups (Figure 75). There were 

significant positive correlations between DAS28 and ESR and CRP (Figure 76). There 

was a significant positive correlation between DAS28 and US7 score (Figure 77). 

There was no correlation between the DAS28 and US10 score. There were no 

significant correlations between either the US7 score or US10 score and SCCPs. There 

was no significant difference in CRP, ESR or SCCPs in those taking methotrexate and 

those not taking methotrexate. CXCL9 was significantly lower in those taking 

corticosteroids at baseline versus those not taking corticosteroids (119 + 48 pg/ml) 

versus 922 + 169  pg/ml), Figure 78. There was no difference in CRP, ESR or other 

SCCPs in these groups.  
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Mean SCCPs in early and established RA are shown in Table 43. In early RA, mean IL-

6, sIL-6R, CXCL8, thrombomodulin and VCAM-1 were significantly lower than 

established RA. MMP-1 and tissue factor were significantly higher in early RA than 

established RA. There was no significant difference in CCL2, CXCL9 or MSCF between 

early and established RA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Baseline

R
em

is
si

on
M

ild

M
oder

at
e

S
ev

er
e

0

10

20

30

40

50

P
e
rc

e
n

ta
g

e
 o

f 
P

a
ti

e
n

ts
 (

%
)

Figure 74. Percentage of patients in DAS28 categories at baseline. 18% of patients 
were in remission, 18% had mild disease activity, 43% had moderate disease 
activity and 20% had severe disease activity. 
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Figure 75 (A) No significant difference in baseline CRP in those in DAS28 remission (5 + 2 mg/L) and 
those not (35 + 2 mg/L). (B) Baseline ESR significantly lower in those in DAS28 remission (10 + 3 
mm/hr) compared to those not in remission (27 + 3 mm/hr), p < 0.05. (D) No significant difference 
in baseline IL-6 in those in remission (11 + 11 pg/ml) and those not at baseline (29 + 7 pg/ml).  

 

 

 

 

Figure 76. Significant positive correlation between baseline DAS28 and baseline ESR (r= 0.64, p <0.0001) and 
CRP (r= 0.53, p = 0.0003) in patients with early RA. 



183 
 

 

 

 

Figure 77. (A) Significant positive correlation between DAS28 and US7 score at baseline in patients 
with early RA, r = 0.37, p = 0.015. (B) No correlation between DAS28 and US10 score at baseline in 
patients with early RA, r =0.04, p = 0.82. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 78. Baseline CXCL-9 significantly lower in patients with early RA taking 
corticosteroids (119 + 48 pg/ml) compared to those not taking corticosteroids 
(922 + 169 pg/ml), p < 0.05 
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SCCP 

 
Mean in EAS  

Mean in 
established RA  

P value  

IL-6 (pg/ml) 7.7 + 2.5 19.8 + 2.9 <0.0001 

sIL-6R (ng/ml) 95 + 7 126 + 46 0.0002 

IL-6/sIL-6R complex 
(pg/ml)  

364 + 101 348 + 201 ns 

CCL2 (pg/ml) 209 + 21 199 + 14 ns 

CXCL8 (pg/ml) 2 + 2 40 + 8 0.0059 

CXCL9 (ng/ml) 788 + 144 826 + 92 ns 

MCSF (pg/ml) 15 + 13 4.3 + 1.8 ns 

MMP-1 (ng/ml) 11 + 1.5 5.9 + 0.4 P<0.0001 

Thrombomodulin 
(ng/ml) 

4.3 + 0.1  4.8 + 0.1 P<0.0001 

Tissue Factor (pg/ml) 50 + 25 29 + 7 P<0.0001 

VCAM-1 (ng/ml) 708 + 60 855 + 53 0.0115 

 

Table 43. Differences in serum SCCPs in early and established RA 

 

 

5.4.2.2 Disease activity and US10 score significantly reduced over time in patients 

with early RA 
 

DAS28 significantly reduced over time and was significantly lower at 12 months (2.75 

+ 0.39) and 6 months (3.02 + 0.22) compared to baseline (3.87 + 0.20), (Figure 79). 

At 6 months, those in DAS28 remission (DAS28 < 2.6) had significantly lower baseline 

CRP, ESR and IL-6 compared to those not in remission at 6 months (Figure 81). There 

was no significant difference in baseline CRP, ESR, IL-6 or other baseline SCCPs in 

those in remission versus those not in remission at 12 months. There was a significant 

reduction in mean US10 score at 12 months (2.3 + 0.7) compared to baseline (4.4 + 
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0.5) (Figure 82). There was no significant reduction in US7 score over time. Table 44 

summarises change in DAS28, US7 and US10 scores over time. There was a moderate 

positive correlation between baseline IL-6 and US7 score at 12 months (r=0.57, p = 

0.013) and strong positive correlation between baseline IL-6 and US10 score at 12 

months (r = 0.61, p = 0.0078) (Figure 83). There was no other significant correlation 

between baseline SCCPs and US scores at 12 months.  
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Figure 79. Mean DAS28 was significantly lower at 6 months (3.02 + 0.22) and 12 
months (2.75 + 0.39) than baseline (3.87 + 0.20) in patients with early RA * p < 
0.05, ** p < 0.01. 
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Figure 81. Significantly lower baseline CRP, ESR and IL-6 in patients with early RA in remission at 6 
months compared to those not in remission at 6 months. (A) Mean baseline CRP in remission was 
3.8 + 1.2 mg/L versus 12.1 + 2.6 mg/L. (B) Mean baseline ESR in remission was 14.5 + 3 mm/hr versus 
30.7 + 6 mm/hr. (C) Mean IL-6 in remission was 0.9 + 0.4 pg/ml versus 10.7 + 3.8 pg/ml, * p < 0.05. 

 

Figure 80. Percentage of patients in DAS28 groups at baseline, 6 month and 12 months 
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Variable Baseline 
n =  44 

6 months 
n = 35 

12 months 
n = 23 

P  

DAS28 
3.87 + 0.20 3.02 + 0.22 2.75 + 0.39 

0.0016 

US7 Score 
6.7 + 0.6 5.1 + 0.7 5.5 + 1.2 

ns 

US10 Score  
4.4 + 0.5 3.2 + 0.4 2.3 + 0.7 

0.03 

 

Table 44. Mean DAS28 and US 7 and US 10 scores at baseline, 6 and 12 months in patients with 
early RA. 

Figure 82. Ultrasound scores over time in patients with early RA. (A) No significant change in US7 
score over time. (B) Significant reduction in US10 score at 12 months (2.3 + 0.7) compared to baseline 
(4.4 + 0.5), p < 0.05 
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5.4.2.3 Baseline CV risk scores and correlations with CIMT  
 

A summary of the CV risk scores and carotid ultrasound findings of patients at 

baseline is shown in Table 45. Table 46 summarises the percentage of EAS patients 

classified as high risk according to each CV risk algorithm. 58% of patients had a 

QRISK2 greater than 10% and according to NICE guidelines, should be offered a statin. 

Consequently, these patients and their General Practitioners were informed of this, 

if not already on a statin.  Of these patients with > 10% risk who returned at 6 months, 

29% were newly prescribed a statin, 50% were already on a statin and 21% should 

have been offered at statin but were not prescribed one. Table 47 shows the 

sensitivity and specificity of the risk scores in carotid US positive patients. The QRISK2 

score had the highest sensitivity and the SCORE had the highest specificity.   

All risks scores had a significant positive correlation with CIMT (Figure 84). The 

strongest correlation was with the Framingham risk score.  

 

Figure 83. Significant positive correlation between baseline IL-6 level and US7 (r = 0.57, p < 
0.05) and US10 score at 12 months (r = 0.61, p < 0.01) in patients with early RA. 
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Variable Mean  

QRISK2 
17.2 + 2.5 % 

SCORE 
2.1 +  0.4 % 

Framingham 
14.5 + 2.2 % 

ACC/AHA 
13.8 + 2.8 % 

% patients with 
CIMT > 0.9mm 

21.6 

Carotid plaque (% patients with 
plaque) 

29.7  

% patients classified as carotid US 
positive 

40.5  

% patients classified as carotid US 
negative 

59.5 

 

Table 45. CV risk scores and carotid US characteristics of EAS patients at baseline 

 

 

 

Variable  
Threshold used to 

define ‘high risk’ 

Percentage EAS patients 

classified as high risk (%) 

SCORE  > 5% 8 

QRISK2 >10% 54 

ACC/AHA >7.5% 43 

Framingham  > 20% 35 

 

 

Table 46. Cardiovascular risk scores, high CV risk definition according to algorithm used and 
percentage of patients with early RA defined as high risk. 
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Variable  US positive  
sensitivity (CI) 

US positive  
specificity 

QRISK2 > 10% 
87 (60-98%) 68 (45-86%) 

Framingham > 20% 
53 (27-79%) 77 (55-92%) 

SCORE  > 5%  
27 (8-55%) 95 (77-99.8%) 

ACC/AHA > 7.5% 
66 (38-88%) 94 (70-99.8%) 

 

Table 47. Sensitivity and specificity of cardiovascular risk scores in predicting carotid US 
positive patients in patients with early RA.  

 

 

 

 

Figure 84. Significant positive correlation between cardiovascular risk scores and CIMT in patients 
with early RA at baseline. Significant positive correlation between CIMT and (A) QRISK2 r = 0.74, p 
< 0.0001 (B) QRISK2 without adjustment for RA, r = 0.73, p < 0.0001 (C) Framingham r = 0.76 p < 
0.0001, (D) SCORE r = 0.66, p < 0.0001 and (E) ACC/AHA, r = 0.68, p < 0.0001 
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5.4.2.4 Association between CIMT and serum lipid levels and HbA1c 
 

There was a significant positive correlation between total cholesterol: HDL ratio (r = 

0.44, p < 0.01), total cholesterol (r = 0.38, p < 0.05) and LDL cholesterol (r = 0.47, p < 

0.01) and CIMT at baseline. There was no significant correlation between HDL 

cholesterol and CIMT. (Figure 85). There was a significant positive correlation 

between CIMT and HbA1c (r = 0.40, p = 0.04), Figure 86. 

 

 

Figure 85. Significant positive correlation between total cholesterol:HDL ratio (r = 0.44, p < 0.01), 
total cholesterol (r =  0.38, p < 0.05) and LDL cholesterol (r = 0.47, p < 0.01) and CIMT in patients 
with early RA. No significant correlation between HDL cholesterol and CIMT (r = -0.12, p =0.46).   

 



192 
 

 

Figure 86. Significant positive correlation between CIMT and HbA1c in patients with early 
RA, r = 0.397, p = 0.04 

 

 

5.4.2.5 Correlation of cardiovascular risk scores with distensibility coefficient 
 

There was a significant negative correlation between the distensibility coefficient and 

all cardiovascular risk scores at baseline (Figure 87). There were also significant 

negative correlations between the distensibility coefficient and CIMT, total 

cholesterol and LDL cholesterol at baseline (Figure 88) but no significant correlation 

between distensibility coefficient and CRP, ESR, SCCPs or DAS28.  

There was a significant negative correlation between baseline CXCL9 and 

distensibility coefficient at 12 months (Figure 89).  
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Figure 87. Significant negative correlations between distensibility coefficient and cardiovascular risk 
scores in patients with early RA. Significant negative correlation between distensibility coefficient 
and (A) QRISK2 r =-0.56, p < 0.0003, (B) QRISK2 without adjustment for RA, r = -0.55 p = 0.0005, (C) 
Framingham r = -0.59, p = 0.0002, (D) SCORE r= -0.49, p = 0.0019 and (E) ACC/AHA r= -0.52 p = 0.0051.  

 

 

Figure 88. Significant negative correlations between distensibility coefficient and CIMT (r = -0.51, p 
= 0.0011), Total cholesterol (r = -0.51, p = 0.0017) and LDL cholesterol (r = -0.49, p = 0.003) in 
patients with early RA. 
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Figure 89. Significant negative correlation between baseline CXCL9 and distensibility coefficient at 
12 months (r = -0.61, p = 0.0069).  

 

 

5.4.2.6 Differences in traditional risk factors and SCCPs in carotid US positive and 

negative patients 

 

41% of patients were carotid US positive. These patients had significantly higher age, 

BMI, systolic BP, total cholesterol, cholesterol: HDL ratio, LDL cholesterol, QRISK2, 

Framingham, SCORE, ACCAHA, thrombomodulin and CXCL9 than US negative 

patients (Table 48). Multivariate logistic regression analysis including age, BMI, 

systolic BP, total cholesterol, cholesterol:HDL ratio, LDL cholesterol, ESR and CXCL9 

as covariates found that total cholesterol, LDL cholesterol, age, BMI, systolic BP, 

thrombomodulin and CXCL9 were significant independent variables.  

 

Baseline variable  US negative n = 22 US positive n = 15 P value 

Age (years) 49 + 3 64 + 2 0.000 

BMI 24.6 + 0.8 30.8 + 1.8 0.005 

Systolic BP (mm 129 + 3 143 + 5 0.030 

Total Cholesterol (mmol/L) 5.0 + 0.3 5.9 + 0.2 0.011 

Cholesterol: HDL ratio 3.5 + 0.3 4.4 + 0.3 0.048 

LDL cholesterol (mmol/L)  2.9 + 0.2 3.8 + 0.2 0.002 

HDL cholesterol (mmol/L) 1.5 + 0.1 1.4 + 0.1 0.4080 

Triglycerides (mmol/L) 1.4 + 0.2 1.6 + 0.1 0.419 

Arterial distention coefficient 23 + 3 16 + 2 0.071 
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HbA1c 39.2 + 1 39.5 + 1.3 0.857 

QRISK2 8.3 + 2 26.9 + 5 0.003 

Framingham  8.8 + 2 22.2 + 4 0.007 

SCORE 1.2 + 0.4 3.2 + 0.8 0.028 

ACC/AHA 5.4 + 1.8 19.9 + 5.3 0.018 

Disease duration (months) 4.1 + 0.2 3.9 + 0.3 0.645 

DAS28 3.8 + 0.3 4.0 + 0.3 0.663 

CRP (mg/L)  8 + 2 14 + 4 0.212 

ESR (mm/hr) 19 + 3 32 + 7 0.086 

IL-6 (pg/ml) 6.8 + 4 11.7 + 15 0.432 

sIL-6R (ng/ml) 86 + 9 105 + 14 0.299 

IL-6/sIL-6R complex (pg/ml)  280 + 99 371 + 174 0.653 

CCL2 (pg/ml) 201 + 18 219 + 56 0.765 

CXCL8 (pg/ml) 5.2 + 5.2 1.4 + 1.4 0.494 

CXCL9 (ng/ml) 20 + 129 1122 + 284 0.043 

MCSF (pg/ml) 31.2 + 31 8.4 + 8.4 0.494 

MMP-1 (ng/ml) 12 + 2 11 + 4 0.810 

Thrombomodulin (ng/ml) 4.2 + 0.1 4.7 + 0.2 0.017 

Tissue Factor (pg/ml) 80 + 60 29 + 26 0.449 

VCAM-1 (ng/ml) 657 + 95 834 + 93 0.193 
 

Table 48. Difference in baseline variables and SCCPs in carotid US positive and US negative 
patients. 

 

5.4.2.7 No significant difference in CIMT at 12 months in patients with early RA  
 

There was no significant difference in CIMT at 12 months (0.706 + 0.048 mm) 

compared to 6 months (0.729 + 0.041 mm) or baseline (0.708 + 0.033 mm) ( Figure 

90).  Table 49 summarises the change in variables at baseline, 6 and 12 months.   
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Variable Baseline 
n =  44 

6 months 
n = 35 

12 months 
n = 18 

CIMT (mm) 
0.708 + 0.033 0.729 + 0.041 0.706 + 0.048 

Systolic BP (mmHg) 
136 + 3.2 132 + 3.8 132 + 4 

QRISK2 (%) 
16.9 + 2.5 14.1 + 3.1 12.4 + 2.8 

Distensibility 
coefficient (10−3 kPa−1) 

19.8 + 2.0 22.3 + 2.6 18.3 + 1.7 

Percentage taking 
statin 

12 % 24 % 19 % 

Cholesterol: HDL ratio 
3.8 + 0.2 4.0 + 0.3 3.7 + 0.3 

BMI 
27.3 + 0.9 27.1 + 1.3  27.0 + 1.5 

 

Table 49. Summary of characteristics at baseline, 6 and 12 months in patients with early RA. 
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Figure 90. No significant difference in mean CIMT at baseline (0.708 + 0.033 mm), 
6 months (0.729 + 0.041 mm) and 12 months (0.706 + 0.048 mm) in patients with 
early RA. 
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5.4.2.8 Baseline disease activity correlates with change in CIMT at 6 months in 

patients with early RA   
 

There were significant positive correlations between baseline DAS28, baseline CRP, 

baseline ESR and baseline QRISK2 and change in CIMT at 6 months (Figure 91). There 

was a significant difference in change in CIMT at 6 months (but not 12 months) in 

those in different IL-6 and sIL-6R groups (Figure 92), with the largest increase in those 

who had high IL-6 but low sIL-6R.  

 

 

 

 

Figure 91. Significant positive correlation between change in CIMT at 6 months and (A) Baseline 
DAS28 r = 0.50, p = 0.006, (B) Baseline CRP r = 0.51, p = 0.006, (C) Baseline QRISK2 r = 0.42, p = 
0.02, (D) Baseline ESR r = 0.45, p = 0.016. 
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Figure 92. Significant difference in change in CIMT at 6 months in patients with early RA in different 
IL-6/sIL-6R groups. G1 (IL-6 low and sIL-6R low), G2 (IL-6 high and sIL-6R low), G3 (IL-6 low and sIL-
6R high), G4 (IL-6 high and sIL-6R high). Largest increase in CIMT at 6 months in patients with a high 
IL-6 and low sIL-6R at baseline  

 

5.4.2.9 Rapid progressors at 12 months  

 

Rapid progressors were defined as those who had an increase > 0.05mm in CIMT. 3 

of 18 patients (17%) were classified as rapid progressors at 12 months. There was no 

significant difference in baseline BP, HDL cholesterol, triglycerides, CIMT, Age, BMI, 

disease duration, DAS28, CRP, IL-6, sIL-6R, IL-6/sIL-6R complex, CCL-2, CXCL8, CXCL9, 

Tissue factor, MCSF, Thrombomodulin and MMP-1 in rapid versus non-rapid 

progressors at 12 months (Table 50). Baseline total cholesterol, cholesterol:HDL 

ratio, LDL cholesterol, HbA1C and VCAM-1 were significantly higher in rapid 

progressors compared to non-rapid progressors (Figure 93). Baseline QRISK2, 

Framingham and SCORE were significantly higher in rapid progressors but ACC/AHA 

was not. Arterial distension coefficient was significantly lower in rapid progressors 

versus non-rapid progressors (Figure 93E). There was no significant difference in 

change in CIMT or change in distensibility coefficient in smokers at baseline versus 

non-smokers at baseline. Multivariate logistic regression analysis including baseline 

cholesterol, cholesterol:HDL ratio, age, VCAM-1 and HbA1c as covariates found that 

total cholesterol,, triglycerides and HbA1c were significant independent factor while 

VCAM-1 just failed to reach statistical significance at p=0.055. 
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Figure 93. Significantly higher baseline (A) Total cholesterol (6.7 + 0.2 versus 5.2 + 0.3 mmol/L) , (B) 

Cholesterol: HDL ratio (3.7 + 0.3 versus 5.5 + 0.7), (C) LDL cholesterol 3.1 + 0.3 mmol/L versus 4.4 + 

0.3 mmol/L) (D) VCAM-1 (734 + 126 ng/ml versus 1328 + 28 ng/ml) in rapid progressors compared 

to non-rapid progressors. (E) Significantly lower arterial distension coefficient in rapid progressors 

(18.8 + 1.8) compared to non-rapid progressors (11.2 + 2.2). *p < 0.05, ** p < 0.01, *** p < 0.001 

 

 

 
Baseline value 

 

Non-rapid 
 Progressor (n= 15) 

Rapid  
Progressor ( n = 3) 

P value  

CRP (mg/L)  9.5 + 2.5 5 + 3.1 0.30 

ESR (mm/hr) 22.4 + 3.8 11 + 3.0 0.2 

Systolic BP (mm 127 + 4 148 + 10 0.176 

Total Cholesterol (mmol/L) 5.2 + 0.3  6.7 + 0.2 0.002 

Cholesterol: HDL ratio 3.7 + 0.3 5.5 + 0.7 0.004 

LDL cholesterol (mmol/L)  3.1 + 0.3 4.4 + 0.3  0.018 

HDL cholesterol (mmol/L) 1.5 + 0.1 1.3 + 0.1 0.19 

Triglycerides (mmol/L) 1.3 + 0.2 2.4 + 0.4 0.08 

Arterial distention coefficient 18.8 + 1.8 11.2 + 2.2 0.04 
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Table 50. Baseline variables in rapid and non-rapid progressors in early RA patients 

 

 

5.4.2.10 Disease activity and CIMT in seropositive versus seronegative patients 

 

There was no significant difference in DAS28 at 12 months in either RF or anti-CCP 

positive or negative patients. There was no significant difference in CIMT at 0, 6 and 

12 months, or change in CIMT at 12 months in seropositive and seronegative 

patients, Table 51.  

 

 

 

 

HbA1c (mmol/mol) 38.7 + 1.4 47.7 + 1.3 0.002 

Baseline CIMT (mm) 0.64 + 0.05 0.84 + 0.14 0.30 

Age (years) 52.9 + 3.5 67.3 + 4.0 0.038 

BMI 27.4 + 2.0 27.4 + 2.3 0.995 

Disease duration  (months) 4.0 + 0.3 4.5 + 0.3 0.26 

DAS28 3.7 + 0.3 3.2 + 0.8 0.56 

QRISK2 (%) 10.5 + 2.9 25.8 + 3.1 0.01 

Framingham (%)  8 + 2 20 + 3 0.00 

SCORE (%) 1.1 + 0.5 4.3 + 0.6 0.00 

ACC/AHA (%) 6.5 + 2.2  22.4 + 2.9 0.10 

IL-6 ( pg/ml) 9 + 4 23 + 23 0.61 

SIL-6R (ng/ml)  96 + 8 120 + 37 0.59 

IL-6/sIL-6R  complex (pg/ml) 383 + 172 167 + 167  0.39 

VCAM-1 (ng/ml) 734 + 126 1328 + 28  0.000 

CCL2 (pg/ml) 181 + 25 197 + 80 0.78 

CXCL8 (pg/ml) 1.55 + 1.55 0 + 0  0.35 

CXCL9 (ng/ml) 843 + 287 658 + 258 0.65 

Tissue factor (pg/ml) 37 + 28 221 + 383 0.49 

MCSF (pg/ml) 9.3 + 9.3 0 + 0 0.35 

Thrombomodulin (ng/ml) 4.2 + 0.2 4.4 + 0.4 0.72 

MMP-1 (ng/ml) 12.5 + 2.5 14.1 + 5.1 0.78 
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RF negative RF positive p value  
Anti-CCP  
negative 

Anti-CCP  
positive 

p value  

DAS28 0 
months  

3.7 + 0.3 4.0 + 0.3 0.5 3.8 + 0.5 3.9 + 0.2 0.8 

DAS28 6 
months  

3.2 + 0.4 2.9 + 0.3 0.7 2.7 + 0.3 3.1 + 0.3 0.4 

DAS28 12 
months  

2.7 + 0.6 2.7 + 0.47 0.9 3.1 + 0.8 2.7 + 0.45 0.7 

Change in 
DAS28 at 12 
months  

-0.87 + 0.5 - 0.93 + 0.5 0.9 -0.55 + 0.94 - 0.99 + 0.42 0.4 

CIMT 0 
months 
(mm) 

0.77 + 0.04 0.66 + 0.05 0.1 0.822 + 0.07 0.67 + 0.19 0.07 

CIMT 6 
months 
(mm)  

0.81 + 0.05 0.66 +0.05 0.06 0.87 + 0.10 0.69 + 0.04 0.17 

CIMT 12 
months 
(mm)  

0.76 +0.07 0.66 + 0.07 0.3 0.73 + 0.14 0.70 + 0.05 0.84 

Change in 
CIMT at 12 
months 
(mm) 

0.03 + 0.02 0.01 + 0.01 0.4 0.03 + 0.02 0.02 + 0.01 0.80 

 

Table 51. Effect of RF and anti-CCP status on change in DAS28 and CIMT over time 

 

5.4.2.11 Effect of medication at baseline on change in DAS28 and CIMT  

 

Mean change in DAS28 at 12 months (but not 6 months) was greater in those taking 

methotrexate at baseline (-1.52 + 0.40) compared to those not taking methotrexate 

at baseline (0.31 + 0.63), p = 0.03 (Figure 94A). There was no significant difference in 

change in CIMT at 12 months in those taking methotrexate at baseline versus those 
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not taking methotrexate at baseline. Patients taking corticosteroids at baseline had 

a significantly greater change in DAS28 at 12 months (-2.2 + 0.7) (but not at 6 months) 

compared to those not taking corticosteroids at baseline (-0.39 + 0.4), p = 0.047 

(Figure 94B). There was no difference in change in CIMT at 12 months in those taking 

or not taking corticosteroids at baseline. There was no difference in change in CIMT 

or distensibility coefficient in those taking NSAIDS at baseline versus those not taking 

NSAIDS at baseline.  

At 6 months 1 patient was prescribed tocilizumab. There were no patients taking 

other biologic drugs e.g. anti-TNF.  At 12 months 2 patients were prescribed 

tocilizumab. Those on tocilizumab at 12 months had a greater reduction in DAS28 at 

12 months (-2.62 + 0.3) compared to those not taking tocilizumab (-0.80 + 0.4), p = 

0.010. Those taking tocilizumab had an increase in cholesterol/HDL ratio at 12 

months (0.6 + 0.1) compared to those not taking tocilizumab (-0.24 + 0.4), p = 0.045. 

There was no difference in change in CIMT in these patients.  

There was no significant difference in DAS28 or CIMT at 12 months or change in these 

variables in those taking or not taking statin at baseline. At 6 months, 4 patients were 

prescribed a statin that was ‘new’, i.e. statin introduced since baseline. As expected, 

these patients had a greater reduction in cholesterol: HDL ratio at 6 months than 

those who were not newly prescribed a statin (Figure 95). There was no significant 

difference in disease activity or change in CIMT in those newly prescribed a statin. At 

12 months, a further 2 patients were newly prescribed a statin compared to baseline. 

There was no significant difference in change in cholesterol: HDL ratio, CIMT or 

DAS28 at 12 months compared to baseline in those newly prescribed a statin 

compared to those not newly prescribed a statin.  

 

 



203 
 

 

 

Figure 94. (A) Patients with early RA taking methotrexate at baseline had a significantly greater 
change in DAS28 at 12 months (-1.52 + 0.4) compared to those not taking methotrexate at baseline 
(0.31 + 0.63), p = 0.03. (B) Patients taking corticosteroids at baseline had a significantly greater 
change in DAS28 at 12 months (-2.2 + 0.7) compared to those not taking corticosteroids at baseline 
(-0.39 + 0.4), p = 0.047 

 

 

Figure 95. Significantly greater reduction in mean cholesterol: HDL ratio at 6 months in those 
prescribed a new statin at 6 months (-1.4 + 0.4) compared to those not newly prescribed a statin 
(0.2 + 0.2) in patients with early RA * p < 0.05.  
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5.5 Discussion 

 

5.5.1 Established RA study 

 

The patient cohort was similar to those seen in the general population in the UK, in 

terms of age, gender and levels of inflammatory markers (Humphreys et al 2012). 

There was a significant but weak positive correlation between serum VCAM-1 and 

DAS28. This supports results from Chapter 3; there was a positive correlation 

between arthritis severity in mice and serum VCAM-1. Other studies in RA patients 

have shown correlations between serum VCAM-1 and ESR, CRP, number of swollen 

joints (Klimiuk et al 2002), and DAS28 (Navarro-Hernández et al 2009). As expected, 

ESR was highest in those with severe RA according to the DAS28. Those with severe 

RA also had higher VCAM-1 levels. 

There were significant positive correlations between the QRISK2 and serum MMP-1, 

thrombomodulin and VCAM-1. The Framingham risk score correlated positively with 

MMP-1 and thrombomodulin. In the general population, elevated MMP-1 was found 

to predict the presence of advanced CVD (Hwang et al 2009). However, 

thrombomodulin was shown to be reduced in CVD (Wei et al 2011) and its expression 

was reduced in atherosclerotic lesions compared to control arteries (Lasik et al 2001). 

In this thesis thrombomodulin (and VCAM-1 and MMP-1) correlated significantly but 

weakly with age, which may account partly for the discrepancy between my data and 

the literature on thrombomodulin.  

Over 50% of patients in this cohort were classified as high risk of having a CV event 

according to the QRISK2. This observation is supported by published literature that 

show RA patients have increased atherosclerosis in early RA (Hannawi et al 2007). 

Interestingly, in this thesis, those classified as low CV risk had a significantly higher 

CRP than those at high risk. This contradicts epidemiological studies which report 

that circulating CRP is associated with higher risk of CVD in the general population 

(Ridker and Cook 2004) and in RA (Graf et al 2009).  However, in this thesis, of those 

high risk patients, 34% were on a statin, while only 9% of low risk patients were taking 
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a statin. It is known that statins reduce the CRP (Zakynthinos and Pappa 2009), which 

may partly account for the difference seen here.  Patients with a low CV risk had 

significantly lower serum thrombomodulin. Studies of serum thrombomodulin in CV 

disease are conflicting: some found that soluble thrombomodulin showed a strong, 

inverse association with incident coronary heart disease (Salomaa et al 1999) and 

others that raised soluble thrombomodulin was predictive of the progression of 

atherosclerosis in patients with ischaemic heart disease. Another study reported that 

thrombomodulin expression reduced in atherosclerotic lesions (Lasik et al 2001). The 

role of thrombomodulin in predicting risk of CVD in RA or the general population is 

unclear in the light of such conflicting data.  

Patients classified as high CV risk had significantly higher VCAM-1 than those 

classified as low CV risk. A previous study found that VCAM-1 was higher in those 

who go on to develop CV events in the general population (Schmidt et al 2008). 

However, several other studies of the general population found VCAM-1 did not 

provide significant improvement in CVD risk assessment beyond conventional CVD 

risk factors (Kunutsor et al 2017) and was not significantly different in apparently 

healthy individuals that went on to develop CVD compared to those that did not (Luc 

et al 2003). However, these studies were in a non-RA population. It may be that in 

RA patients, atherosclerosis pathogenesis differs slightly to the general population. 

For example, previous studies have shown that RA patients have more inflammation 

in both their aorta (Greenberg et al 2012) and in atherosclerotic plaques (Aubry et al 

2007) compared with non-RA controls.  

In those patients with established RA and a history of CV disease serum CRP, ESR and 

sIL-6R, IL-6/sIL-6R complex, MCSF and Tissue factor were significantly lower than 

those with no history of CVD. There was no difference in VCAM-1 between these 

groups. These findings were unexpected because inflammation is a factor 

acknowledged for increasing CV risk. However, as these patients were known to have 

a history of CV disease most were on secondary prevention for CVD; 92% were taking 

a statin and 80% were taking an antihypertensive. Those taking a statin had a lower 

CRP. Other SCCPs were unchanged. It may also be the case that patients with a prior 
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history of CVD are treated more aggressively by their rheumatologists for RA, due to 

the increasingly well-recognised association of inflammation and CVD.   

There was no difference in SCCPs, IL-6, sIL-6R, IL-6/sIL-6R complex, CRP or ESR in 

those taking or not taking methotrexate. Serum IL-6 was higher in those prescribed 

Tocilizumab. This has been shown in previous studies (Nishimoto et al 2008). It is 

thought that this increase in serum IL-6 is due to the binding of Tocilizumab to sIL-

6R; therefore reducing the availability sIL-6R for IL-6 to bind to. Thus, more unbound 

IL-6 is detectable in the serum (Nishimoto et al 2008). Interestingly, CRP was not 

lower in those taking Tocilizumab. This is at odds with the literature whereby CRP is 

significantly reduced by Tocilizumab (Genovese et al 2008). However, in order to 

meet the criteria for Tocilizumab treatment, patients had by definition severe disease 

activity, and therefore likely higher CRP to begin with.  

SIL-6R and MMP-1 were significantly higher in those that were rheumatoid factor 

positive compared to those that were negative. A previous study did not show an 

association with sIL-6R level and rheumatoid factor positivity (Nishina et al 2013). It 

could be hypothesised that IL-6 and sIL-6R levels are higher in rheumatoid factor 

positive patients as IL-6 stimulates B cells to differentiate into plasma cells to produce 

immunoglobulins (Hirano et al 1988). There was no significant difference between 

other SCCPs. Those patients who were anti-CCP positive had significantly lower CRP 

than those who were negative. There was no difference in other SCCPS.  

 

 

5.5.2 Early arthritis study  

 

75% of those recruited were female, in line with female prevalence of RA in the 

general population (Humphreys et al 2012). Mean disease duration at the baseline 

visit, defined as the time from which the patient first developed symptoms of RA, 

was 4 months. However, there was a variable time between first diagnosis with RA 

and time recruited to the study. Therefore some patients were seen before DMARD 
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therapy was initiated, others after. This could have had a bearing on level of 

inflammation and progression of subclinical atherosclerosis before the patient was 

assessed. 52% of patients were followed for 12 months. Those who were lost to 

follow up included those who were uncontactable, had moved away, or did not reach 

the 12 month visit by the end of the study. Recruitment was lower than hoped; a 

large factor in this was that many patients were not eligible for recruitment as they 

had had symptoms of RA for greater than 6 months.   

Current UK NICE guidelines for RA state that patients should be offered a 

combination of DMARDs including methotrexate and short term glucocorticoids as 

first line treatment. This is the current practice in the early arthritis clinic in UHW. 

However, due to patient co-morbidities and patient choice this was not always 

possible. Only 9% of patients at baseline were taking this combination therapy but 

information about what was offered to patients in clinic was missing. Most patients 

at baseline were taking methotrexate. 

There was no significant correlation with baseline DAS28 and IL-6, sIL-6R or SCCPs. In 

the cross sectional study there was a significant positive correlation between DAS28 

and VCAM-1, perhaps reflecting greater patient numbers. There were also no 

significant correlations with baseline ultrasound scores and baseline SCCPs. There 

was a significant correlation between the DAS28 and US7 score but not US10 score. 

Interestingly, the US7 joint score has less joints in common with the DAS28 (5 joints 

in common) than the US10 score, which has 8 joints in common. However, the US7 

score includes more variables; tenosynovitis, paratenonitis, erosions, synovial 

thickening and vascularity, whereas the US10 score includes synovial vascularity and 

thickening only. Perhaps these extra markers included in the US7 reflect more closely 

the RA disease process, which may be reflected by the ESR and the patient VAS, both 

of which form part of the DAS28.  Of note, the original US10 score from Larché et al 

(2010) also includes a quantitative measure of vascularity which we did not include 

in this study as the software was not available.  

Disease activity significantly reduced at month 6 and 12. This was to be expected 

given treatment with DMARDs. At baseline there was no significant difference in CRP 

or IL-6 in those in DAS28 remission versus those not in remission. Those in DAS28 
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remission had significantly lower ESR, to be expected given that the ESR forms part 

of the DAS28. Interestingly, at 6 months those in DAS28 remission had significantly 

lower baseline CRP, ESR and IL-6. This may simply reflect the increased numbers of 

those in remission at 6 months compared to baseline (14 patients in remission at 6 

months versus 9 at baseline).  In addition, baseline IL-6 correlated significantly with 

US7 and US10 score at 12 months. These observations suggest the importance of 

inflammation at baseline in propagating the inflammatory response.  

There was no difference in CRP, ESR, IL-6 or SCCPs at baseline in those in remission 

at 12 months versus those not in remission. Baseline ESR, CRP and SCCPs were not 

significantly different in patients taking methotrexate versus those not taking 

methotrexate at baseline. CXCL9 at baseline was lower in those taking 

corticosteroids, other SCCPs, ESR and CRP were not different. In a study of patients 

with Adult Onset Stills disease, CXCL-9 fell significantly after treatment with 

corticosteroids (Han et al 2017). It may be expected that those taking corticosteroids 

would have lower CRP and ESR. However, those patients prescribed corticosteroids 

by a physician were likely to have had higher disease activity.  

54% patients had a greater than 10% risk of CV event over 10 years. This was similar 

to the rate found in the cross sectional study. These patients were advised to see 

their GP and a letter sent to the GP explaining this. Of these, only half were then 

subsequently started on a statin. Although no formal questionnaire was used to 

assess patients’ understanding of why no statin was prescribed, some stated that 

they discussed it with their GP and did not feel it was necessary, some did not visit 

their GP and some were not sure. The NICE guidelines were updated in 2014 to 

reduce the threshold for statin consideration from QRISK2 > 20% risk of CVD over 10 

years, to > 10% risk CVD over 10 years. Some GPs may not have been aware of the 

change in guidelines.  

CIMT > 0.90mm or the presence of plaques are predictors of CV events in RA as well 

as the general population (Gonzalez-Juanatey et al 2009). This definition was used to 

classify patients as carotid US positive in this study. A significant proportion (41%) of 

patients in this study were carotid US positive. Carotid US positive patients had 

several traditional risk factors which were significantly higher than carotid US 
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negative patients: age, BMI, systolic BP, total cholesterol, cholesterol:HDL ratio and 

LDL cholesterol. The QRISK2, Framingham, SCORE, ACCAHA were all significantly 

higher in carotid US positive patients. Of the SCCPs, only CXCL9 was higher in US 

positive patients. A previous study in the Yonsei Cardiovascular Genome Centre 

cohort measured CXCL9 and CIMT in 164 apparently healthy patients (Yu et al 2015) 

Of note, patients with cardiovascular disease, inflammatory disease and use of 

inflammatory medications were excluded. The authors found that CXCL-9 correlated 

significantly with CIMT after adjusting for confounding factors such as age, diabetes 

and smoking status, and medication. Patients with plaque on carotid US had 

significantly higher CXCL-9 than those without plaque. However, CXCL9 did not 

correlate with change in CIMT over the 2 year follow up. This is similar to the findings 

of this thesis. CXCL9 is a T cell chemoattractant which is produced by dendritic cells, 

B cells and macrophages and is induced by IFN-γ (Rosenblum et al 2010).  T cells 

contribute to atherosclerosis by propagating inflammation and plaque growth 

(Robertson and Hansson 2006).  

All cardiovascular risk scores had a strong correlation with CIMT. Interestingly, the 

Framingham risk score had a stronger correlation than the QRISK2, which is the only 

risk score to include RA as an independent risk factor for CVD. There was a very 

similar correlation between CIMT and QRISK2 value (r = 0.74) and CIMT and QRISK2 

value without adjustment for RA (r = 0.73) in patients with early RA. Of the CV risk 

scores, QRISK2 had the highest sensitivity but lowest specificity to detect carotid US 

positive patients. The SCORE had the lowest sensitivity but highest specificity to 

detect carotid US positive patients. Although the Framingham risk score had a strong 

correlation with CIMT, it did not perform well in sensitivity for US positive patients. 

This is likely to be due to the cut off used to define ‘high risk’ patients of > 20%.  

Another study by Ozen et al, 2016 found that the ACC/AHA score better identified 

high risk patients (using the same definition of carotid US positive patients as this 

thesis) compared to the QRISK2 and SCORE. They did not examine the Framingham 

risk score. However, this study was performed in patients with established RA in 

Turkey. Of note, the QRISK2 includes the Townsend deprivation index using a UK 

postcode, and such a measure would not have been included in the Turkish study.   
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There was no significant difference in CIMT at 6 and 12 months compared to baseline. 

There was a trend for CIMT to increase at month 6 and then reduce at month 12 

compared to baseline. Similarly, there was a trend for arterial stiffness and 

cholesterol:HDL ratio to increase at 6 months and then reduce at 12 months, again 

this was not significant. There are variable reports in the literature regarding changes 

in CIMT over time in RA patients. In a study of early RA patients in India, CIMT 

decreased significantly at 12 months from baseline, by an average of 0.07mm (Guin 

et al 2013). However, in this study RA patients had significantly higher DAS28 at 

baseline (5.61) and after 1 year (4.01) than in this thesis. In the study by Södergren 

et al (2010), mean CIMT increased by 0.05mm over 18 months, a longer period of 

time. The baseline mean DAS28 was 3.62, slightly lower than this thesis.  

This study found a moderate correlation between CIMT and cholesterol:HDL ratio 

and LDL cholesterol and a weak correlation between CIMT and total cholesterol. CV 

risk scores correlated more strongly with CIMT than with arterial distensibility. 

Distensibility coefficients were inversely associated with all cardiovascular risk 

scores, CIMT, total cholesterol and LDL cholesterol. Studies in animals have shown 

changes in arterial distensibility in the early stages of atherosclerosis (Hironaka et al 

1997). In humans, reduced distensibility is associated with CV risk factors (Dart et al 

1991) and can predict those at increased risk of future CV disease in healthy 

individuals (Mattace-Raso et al 2006). In Chapter 3 we found reduced aortic 

constriction in mice with CIA. There was a moderate inverse relationship between 

baseline CXCL9 and distensibility coefficient at 12 months. This finding has not been 

shown previously. Previous studies have shown that patients with acute coronary 

syndromes, those who developed events (death, nonfatal acute MI, and refractory 

unstable angina) had significantly higher CXCL9 than those who did not develop 

events (Dusi et al 2016). Studies have also shown increased expression of CXCL9 in 

human atherosclerotic plaques (Mach et al 1999).  

There was a significant relationship between change in CIMT at 6 months and 

baseline disease activity measured by DAS28, CRP and ESR. This suggests that 

inflammation is contributing to subclinical atherosclerosis progression in early RA. A 

study in the Netherlands found that while baseline DAS28 in patients with early RA 
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was not significantly different in those who had a CV event at 10 years versus those 

who did not, time-averaged DAS28 did have a significant effect on the risk of CVD 

(Arts et al 2014). In a prospective study in patients with inflammatory polyarthritis, 

CRP at baseline was found to predict death due to CVD (Goodson et al 2005). In 

another study of patients with longstanding RA, CRP correlated directly with the 

presence of atherosclerosis, as measured by CIMT, over an extended follow-up 

(Gonzalez-Gay et al 2005). In this thesis there was no difference in seropositivity and 

change in CIMT or DAS28 at 6 or 12 months. Interestingly, we found that increase in 

CIMT at 6 months was highest in those with high IL-6 and low sIL-6R level. The 

relationship between IL-6 and sIL-6R is complex and it is difficult to know whether 

this state would favour IL-6 classical or trans-signaling. Physiologically, there is more 

sIL-6R available in the serum than IL-6. IL-6 binds to sIL-6R and this complex is 

immediately neutralized by sgp130. Therefore, the sIL-6R and sgp130 constitute a 

buffer in the blood for circulating IL-6, which will only act systemically once the 

capacity of the buffer is exceeded (Calabrese and Rose-John 2014). Thus in this group 

of patients with high IL-6 and low sIL-6R, IL-6 trans-signaling may be more prominent. 

There did not seem to be a relationship between the complex of IL-6/sIL-6R and IL-6 

and sIL-6R individually. We found the IL-6/sIL-6R complex to be more unstable than 

other proteins detected by ELISA, for example more variation in levels measured by 

ELISA using the same sample at different time points. It may be more susceptible to 

environmental factors such as change in temperature. Also, IL-6/sIL-6R complex 

binds to sgp130 and therefore there may be more IL-6/sIL-6R complex in serum than 

detected by ELISA. 

 

Rapid progressors in this study had significantly higher baseline HbA1c, total 

cholesterol, cholesterol:HDL ratio, LDL cholesterol and VCAM-1. In a study by Arts et 

al RA patients who developed a CV event had significantly higher baseline (at the 

time of RA diagnosis) total cholesterol: HDL ratio (but not total cholesterol or LDL 

cholesterol) (Arts et al 2015). A complicating factor here is the lipid paradox; 

inflammation reduces total cholesterol, HDL cholesterol and LDL cholesterol in 

patients with RA (Gonzalez-Gay et al 2005). When inflammation improves, serum 
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cholesterol improves. This phenomenon was seen with tocilizumab treatment in this 

thesis and other studies have consistently shown that tocilizumab is associated with 

increased lipid levels in the context of decreased inflammatory markers (Ito and 

Takagi 2010, Emery et al 2008). The study by Arts et al (2015) also found significantly 

higher DAS28, ESR and CRP at baseline in those who developed CV events. Several of 

these variables, which are higher in rapid progressors (HbA1c and lipid levels) form 

part of the ‘metabolic syndrome’. The metabolic syndrome is defined most recently 

by the International Diabetes Foundation criteria (2005) (Zimmet et al 2005). This 

includes obesity, impaired fasting glucose, dyslipidaemia and hypertension. Central 

obesity is a prerequisite for this definition, which I did not measure. In this thesis, 

change in CIMT and change in distensibility over 12 months was not associated with 

smoking at baseline or ethnicity. Also, surprisingly, several of the traditional risk 

factors such as age, BP, BMI and serum triglyceride levels were not significantly 

higher in rapid progressors compared to non-rapid progressors. A prospective 5-year 

study of patients with early RA (classified as symptoms of less than 12 months) found 

that at 5 years, 10.9% of patients had experienced a new cardiovascular event, 12 of 

48 events were fatal. An increase in the hazard rate of a new CVE during follow up 

was predicted by some traditional risk factors: treated hypertension, higher 

triglyceride level, diabetes mellitus, greater age at disease onset, being male, having 

had a previous CV event, but also with higher cumulative disease activity and 

progression of extra articular disease. In this study, ESR at baseline had an 

unfavourable prognostic significance for a new CV event when evaluated together 

with CV risk factors and DMARD treatment (Innala et al 2011).  

This thesis found rapid progressors had significantly higher VCAM-1 than non-rapid 

progressors. This is a novel finding in RA patients. In the general population VCAM-1 

has been associated with CV disease. As previously mentioned, there are conflicting 

data in the literature regarding VCAM-1. In a six year observational study men with 

CV events during follow-up had higher baseline median serum ICAM-I and VCAM-I 

than those without CV events (Schmidt et al 2008). When the median serum ICAM-I 

and VCAM-1 were used as a cut off, those with levels above the cut-off value had an 

increased risk of having a plaque in the femoral artery. Another study found a 
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correlation between serum ICAM-1 and VCAM-1 and carotid IMT in the general 

population (Kondo et al 2005). However, a prospective cohort study found no 

association between elevated VCAM-1 and risk of future acute coronary event or 

angina pectoris in apparently healthy men aged 50-59 years over a 5 year follow up 

(Luc et al 2003). Studies have shown that VCAM-1 is rapidly induced by 

proatherosclerotic conditions, including early lesions. A study of 24 atherosclerotic 

plaques found that all contained some VCAM-1, compared to 45% of control 

segments (O’Brien et al 1993). The majority of VCAM-1 was found in areas of 

neovascularization and inflammatory infiltrate in the base of plaques compared to 

endothelial cells at the arterial lumen in control segments and in plaques. Most 

VCAM-1 was expressed by subsets of plaque smooth muscle cells and macrophages.  

 

There was no difference in change in CIMT at 1 year and methotrexate, 

corticosteroids or NSAID use. A prospective study of patients with early RA found that 

treatment with COX-2 inhibitors was significantly predictive of a new CV event at 5 

year follow up (Innala et al 2011). Another prospective study over 3 years of patients 

with established RA found no difference in CVD risk for patients taking NSAIDs but 

patients with RA who developed CVD were significantly more often treated with COX-

2 inhibitors (Peters et al 2009).  Another study found that in RA patients with no 

history of CVD, corticosteroid use was associated with a 78% increased risk if CV 

death compared to those who did not receive corticosteroids (Maradit-Kremers et al 

2005b). However, in RA patients with a previous history of CVD, the risk of CV death 

was lower in those who received corticosteroids compared to those who did not. 

There is evidence that patients with RA have evidence of more unstable plaque and 

more inflammation within plaques, compared to controls (Aubry et al 2007). 

Perhaps, in this setting, corticosteroids play a role in plaque stabilisation.  

 

A few drawbacks of the present studies should be mentioned. There are inherent 

drawbacks with one-off measurements of SCCPs; they may change over a matter of 

days and can be altered by other medical conditions and intercurrent illness such as 

infection. To control for diurnal variation in several of the serum markers measured, 
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e.g. IL-6, patients were assessed in the morning between the hours of 9am and 11am. 

However, there is still some variability within this timeframe. In addition, there was 

a variable duration of RA at the time of baseline assessment. However, there were 

no correlations between disease duration and disease activity or atherosclerosis. We 

did not record physical activity levels of patients and this may also contribute to CV 

risk.  

There are several limitations to the methods used in this chapter. These are non-

controlled observational cohorts and disease is heterogenous. Also, patients were 

treated with different DMARDs, and some were treated with corticosteroids or 

NSAIDs. Thus, the sample may not be representative of the general RA population. 

In hindsight, the MSK US assessments (US7 and US10 scores) probably do not add 

much to information risk of CVD disease or subclinical atherosclerosis and the time 

used to perform these procedures may have been better used on other 

measurements of CV risk such as aortic pulse wave velocity. The definition of a rapid 

progressor (CIMT increase > 0.05mm) was made using results from Sodergren et al 

in the RA population. This is a fairly arbitrary cut off and is taken from a cohort of RA 

patients, not from the evidence base in the general population. 

 

5.6 Conclusions 

 

1. Over 50% of patients with established RA and early RA (at the time of 

diagnosis) are classified as being high risk of CVD according to the QRISK2.  

2. VCAM-1 correlated with disease activity and cardiovascular risk in patients 

with established RA.    

3. Several traditional CV risk factors predict CIMT progression. Inflammation 

from disease onset in CV susceptible individuals may accelerate 

atherosclerosis. In early RA baseline disease activity correlated significantly 

with change in CIMT at 6 months.  

4. Rapid progressors had significantly higher serum VCAM-1 at baseline than 

non-rapid progressors.  
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6 General discussion  
 

Cardiovascular mortality in patients with RA is up to 50% higher than the general 

population (Gabriel 2008). Although it is well established that incidence of CVD is 

increased in RA, the precise cause is unclear. There is increasing recognition that 

systemic inflammation is a major driver of this increased CV risk (Gabriel 2008, del 

Rincon et al 2001, Arts et al 2014). IL-6 has been implicated in CVD in the general 

population but its role in CVD in RA is not well defined. Of the two modes of IL-6 

signaling, there is increasing evidence that trans-signaling is pro-inflammatory 

whereas classical signaling has important regenerative or anti-inflammatory effects. 

In chapter 3, I show that IL-6 trans-signaling is implicated in vascular dysfunction in 

CIA. In chapter 4, I show that IL-6 trans-signaling leads to accelerated atherosclerosis 

in a susceptible animal model. In chapter 5, I show that VCAM-1, regulated by IL-6 

trans-signaling, is associated with progression of subclinical atherosclerosis in 

patients with early RA.  

 

Prior to the work carried out in this thesis it was known that CIA was associated with 

aortic contractile dysfunction. The work in this thesis validates this finding but, for 

the first time, I show that selective blockade of IL-6 trans-signaling, using intravenous 

sgp130Fc, reduces arthritis severity and restores the vascular dysfunction associated 

with CIA. This improvement in vascular function may be due to the effect of IL-6 

trans-signaling on macrophage recruitment into the vessel wall and surrounding 

adipose tissue. Previous work by Williams et al (2016) found mice with CIA have 

increased macrophages in the aorta and perivascular adipose tissue (PVAT). Another 

study by Kraakman et al (2015) found IL-6 trans-signaling recruited macrophages to 

adipose tissue in high fat diet-induced obesity in mice and that blocking IL-6 trans-

signaling with sgp130Fc in these mice prevented macrophage accumulation in 

adipose tissue.  The improvement in vascular function in mice treated with sgp130Fc 

in this thesis was associated with a reduction in serum CCL2 and VCAM-1. CCL2 
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recruits monocytes to sites of inflammation; these then differentiate into 

macrophages (Yang et al 2014). VCAM-1 induces immune-cell recruitment within 

vessel walls.  Previous work using the Biomap® system found that CCL2 and VCAM-1 

were regulated by IL-6 trans-signaling (Tan et al 2013). Thus, sgp130Fc may restore 

vascular function by decreasing CCL2 and VCAM-1-driven recruitment of 

macrophages into the aorta and PVAT. To further explore this hypothesis I could 

examine the effect of blockade of IL-6 trans-signaling on VCAM-1, CCL2 and 

macrophage expression in the aorta and PVAT in CIA.  

 

Also for the first time, I have shown that IL-6 trans-signaling using Hyper-IL-6 

increases plaque size in ApoE-/- mice. This accelerated atherosclerosis was not 

observed with IL-6 alone. There is conflicting evidence of the role of IL-6 in 

atherosclerosis in the literature. A previous study in ApoE-/- mice reported that IL-6 

administration increased atherosclerotic lesion size in the aortic sinus (Huber at al 

1999). However, another study found that serum cholesterol levels and 

atherosclerotic lesion formation were significantly increased in ApoE-/--IL-6-/- mice 

compared with ApoE-/- and wild-type mice (Schieffer et al 2004). Previous work in 

LDLr-/- mice showed that blockade of IL-6 trans-signaling, using sgp130Fc, reduced 

atherosclerosis (Schuett et al 2011). Overall, the role of IL-6 in atherosclerosis is 

complex; while a potent pro-inflammatory cytokine, IL-6 can have anti-

atherosclerotic effects, and its opposing effects may be explained in part by its two 

modes of signaling. For the first time, the work in this chapter shows that IL-6 trans-

signaling, rather than IL-6 classical signaling, increases atherosclerosis in a mouse 

model. This increase in plaque size with Hyper-IL-6 may be partly driven by the 

increased arterial and plaque expression of VCAM-1 in those administered Hyper-IL-

6. This increase in VCAM-1 was not seen with IL-6 administration. Plaque size in the 

brachiocephalic artery correlated with arterial VCAM-1 expression but not serum 

VCAM-1. The increase in plaque with Hyper-IL-6 was not accompanied by an increase 

in serum lipid levels. This is similar to findings in LDLr-/- mice, whereby sgp130Fc 

reduced atherosclerosis but did not affect serum lipid levels (Schuett et al 2011).  In 

RA patients, IL-6 blockade using Tocilizumab increases serum total cholesterol, HDL, 
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LDL and triglyceride levels (Choy et al 2014). In the ApoE-/- model used in this thesis 

lipid levels were considerably higher than in RA patients (total cholesterol 

approximately 4 times higher in ApoE-/- mice than in RA patients), so that any increase 

in lipid levels with additional inflammation may be negligible.  

 

In chapter 5, I found that over half of patients with established RA were classified as 

high risk of CVD over the next 10 years. These patients had significantly higher VCAM-

1 than those classified as low CV risk. This is a novel finding in RA. In the general 

population, there is conflicting evidence of the role of VCAM-1 in predicting those at 

high risk of CV events. Schmidt et al (2008) reported higher VCAM-1 in those who 

developed CV events in the general population. However, other studies of the 

general population found VCAM-1 did not provide significant improvement in CVD 

risk assessment beyond conventional CVD risk factors (Kunutsor et al 2017, Malik et 

al 2001) and was not significantly different in apparently healthy individuals that 

went on to develop CVD compared to those that did not (Luc et al 2003). These 

studies in the general population examined patients longitudinally and measured CV 

outcomes. To examine whether the finding of higher VCAM-1 in patients classified as 

high CV risk in this thesis is in fact predictive of CV events, these patients could be 

followed-up over the next 10 years and CV events recorded.  

 

In chapter 5, patients with early RA in DAS28 remission at 6 months had significantly 

lower baseline CRP, ESR and IL-6. In addition, baseline IL-6 correlated significantly 

with US7 and US10 scores at 12 months. A previous study reported a positive 

association between baseline IL-6 and radiographic progression of RA over 4 years 

(Klein-Wieringa et al 2011). To my knowledge, this is the first time that baseline IL-6 

has been shown to be positively associated with ultrasound scores at 12 months.  

These observations suggest the importance of inflammation at baseline in 

propagating the inflammatory response. I did not correlate SCCPs at baseline with 

radiologic damage at 12 months using established scoring systems such as the 

Sharp/van der Heijde scoring (SHS) method (van der Heijde 2000). This could be an 
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area for future work, as radiographic damage and joint deformity are major causes 

of disability for RA patients.   

 

It is known that in early RA, CV risk is increased. I have confirmed the high prevalence 

(41%) of subclinical atherosclerosis in patients with early RA. Carotid US positive 

patients had several traditional risk factors which were significantly higher than 

carotid US negative patients: age, BMI, systolic BP, total cholesterol, cholesterol/HDL 

ratio and LDL cholesterol. Ozen et al found that carotid US positive RA patients had 

higher cholesterol:HDL ratio and age, but not LDL cholesterol or BMI (Ozen et al 

2016). A novel finding of this chapter is that carotid US positive patients had higher 

CXCL9. This has been found previously in the general population (Yu et al 2015) but 

not in RA patients. Previous work using the Biomap® system found that CXCL9 is 

regulated by IL-6 trans-signaling. CXCL9 is a T cell chemoattractant; these cells 

contribute to atherosclerosis by propagating inflammation and plaque growth 

(Robertson and Hansson 2006). CXCL9 was not associated with progression of 

atherosclerosis over 12 months in this thesis but it would be interesting to follow 

these patients up over an extended period and examine the association between 

baseline CXCL9 and CV events.  

 

I have confirmed previous findings that some traditional risk factors (HbA1c, total 

cholesterol, cholesterol:HDL ratio and LDL cholesterol) predict CIMT progression in 

early RA. However, I also show the novel finding that baseline serum VCAM-1 is 

elevated in RA patients who become rapid progressors in terms of subclinical 

atherosclerosis. This adds weight to the finding in this thesis in the cross sectional 

study of patients with established RA that serum VCAM-1 was higher in those 

classified as high CV risk. I also show that baseline disease activity correlates with 

change in change in CIMT at 6 months. Taken together, these findings suggest that 

in RA, inflammation from disease onset may accelerate atherosclerosis in susceptible 

individuals, which confirms the data in ApoE-/- in Chapter 4. This proposed interaction 

between pre-existing CV risk factors and inflammation, autoimmunity and 
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dyslipidaemia at the onset of RA, or even before RA becomes apparent, is 

summarised in Figure 96.   

 

 

 

 

Figure 96. Summary of hypothesis of the effect of inflammation at RA onset on progression of 
atherosclerosis 

 

In all three results chapters, VCAM-1 was consistently associated with disease states. 

In chapter 3, restoration of vascular function in mice treated with sgp130Fc was 

associated with reduced serum VCAM-1. In chapter 4, the increase in plaque size 

seen in ApoE-/- mice with Hyper-IL-6 was associated with increased arterial and 

plaque expression of VCAM-1, which correlated with VCAM-1 arterial expression but 

not serum VCAM-1.  In chapter 3, serum VCAM-1 correlated with disease activity and 

cardiovascular risk in established RA, and in early RA baseline VCAM-1 was higher in 

patients who developed rapid progression of subclinical atherosclerosis.  What 
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remains to be elucidated is whether serum VCAM-1 can predict CV events in RA 

patients. It is also important to mention that inclusion of a biomarker in a risk model 

requires detailed knowledge of the biomarker level in the general population. In 

addition, these consistent findings of association of VCAM-1 in disease states prompt 

consideration about the potential role of blockade of VCAM-1 in the treatment of RA 

and atherosclerosis.   

 

The relationship between cell surface VCAM-1 and soluble serum VCAM-1 is complex 

and appears to be context dependent. In vitro, soluble VCAM-1 levels correlate with 

surface expression (Kjaergaard et al 2013). Of note in this thesis, there was no 

significant correlation between VCAM-1 expression in atherosclerotic plaque in 

ApoE-/- mice and serum VCAM-1. In RA patients, VCAM-1 synovial membrane 

expression does not correlate with serum or synovial fluid levels (Mulherin et al 

1996). Circulating soluble VCAM-1 results either from alternating splicing of mRNA 

or proteolysis of the membrane-bound protein form. The ligand for VCAM-1 is VLA-

4 (Navarro-Hernández et al 2009). Soluble VCAM-1 may act as a competitive inhibitor 

of ligand binding (Rose et al 2000). Of note, Kitani et al found that in RA synovial fluid, 

the binding of soluble VCAM-1 to T cells inhibited their activation (Kitani et al 1996).  

 

In view of its role in both RA and atherosclerosis, blockade of VCAM-1 may be 

beneficial in these diseases. Park et al (2013) found anti-VCAM-1 antibodies 

attenuated atherosclerosis in ApoE-/- mice. Carter et al found that neutralizing 

monoclonal antibody to VCAM-1 resulted in reduced severity, but not incidence of 

CIA in mice (Carter et al 2002). However, studies in patients with atherosclerosis have 

not been successful so far. A study in patients with ACS found that succinobucol (an 

agent which blocks VCAM-1 expression and has anti-oxidant effects) was not 

associated with a difference in the primary endpoint of CV death, cardiac arrest, MI, 

stroke, unstable angina, or coronary revascularization compared with placebo at 2-

year follow-up (Tardif et al 2008). Also, compared with placebo, succinobucol 

increased LDL cholesterol and systolic blood pressure, and decreased HDL cholesterol 
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and HbA1c. Natalizumab is a recombinant, humanized antibody which binds to VLA-

4 and blocks its interaction with VCAM-1. Natalizumab is licensed for treatment of 

highly active relapsing remitting multiple sclerosis (Torkildsen et al 2016) and 

refractory Crohn’s disease (Sandborn et al 2005). However, inhibition of the VLA-

4/VCAM-1 interaction affects the cellular immune response and there have been 

reports of progressive multifocal leukoencephalopathy (Ho et al 2017) and 

sarcoidosis (Parisinos et al 2011) in patients treated with Natalizumab.  

 

Other drugs that have recently been approved for the treatment of RA are the JAK 

inhibitors baricitinib and tofacitinib. Baricitinib inhibits JAK1 and JAK2 and tofacitinib 

inhibits JAK1 and JAK3. IL-6 signals through the JAK/STAT pathway, specifically JAK1 

and JAK2. Therefore both these drugs inhibit the action of IL-6, but also many other 

cytokines such as IFN-γ, IL-8 and IL-23 (Cutolo et al 2013). Both drugs have shown 

efficacy in RA in trials and have the benefit of being oral drugs, but side effects include 

serious infections, deranged liver function tests, neutropenia and increased serum 

lipid levels (Dougados et al 2017, Cutolo et al 2013). Similar to tocilizumab, despite 

the increase in lipids levels, so far there does not seem to be an increase in CV events 

(Weinblatt et al 2017, Charles-Schoeman et al 2016), although long terms effects 

remain to be elucidated. These drugs block downstream activities of both IL-6 

classical and trans-signaling. Selective blockade of IL-6 trans-signaling may offer an 

advantage over these drugs as this strategy offers a reduction in inflammation whilst 

allowing the regenerative and homeostatic effects of IL-6 classical signaling to 

continue.  

 

Overall, IL-6 trans-signaling appears to play a pivitol role in vascular dysfunction and 

atherosclerosis in mouse models. In humans, proteins regulated by IL-6 trans-

signaling are associated with progression of subclinical atherosclerosis in early RA. 

These findings suggest that blockade of IL-6 trans-signaling may be beneficial to 

patients with RA, and perhaps for atherosclerosis in the general population. 

Sgp130Fc successfully underwent phase I clinical trials in 2014 and is currently under 
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the name Olamkicept in phase II clinical trials for use in treatment of inflammatory 

bowel disease (Rose-John 2017), this could also have therapeutic applicability in the 

management of rheumatoid arthritis.  

 

Directions for future work  

To further explore the mechanisms of improved vascular function with IL-6 trans-

signalling blockade in CIA I could examine VCAM-1, CCL2 and macrophage expression 

in the aorta and PVAT. Another area of investigation would be to examine the effect 

of VCAM-1 blockade effect on vascular dysfunction in CIA. Another strategy would 

be to examine the effect of soluble VCAM-1 on atherosclerosis in the ApoE-/- and CIA 

model to determine if soluble VCAM-1 regulates inflammation. It would also be 

interesting to examine plaques from RA patients at autopsy and measure VCAM-1, 

CCL2, IL-6 and IL-6R and compare with those from the general population.  

As discussed, patients in both the cross sectional study and early RA study could be 

followed up over an extended period, perhaps 5 years, and onset of CVD or CV events 

measured. The association of SCCPs, particularly VCAM-1 and CXCL9 with CV 

outcomes could be examined. I could also examine joint radiological damage at 5 

years and correlate with baseline SCCPs.  

The relationship between serum IL-6, sIL-6R, the complex of IL-6/sIL-6R and sgp130 

is still not fully elucidated and there are likely to be complex mechanisms at play in 

RA patients, which change throughout the course of the disease. Serial 

measurements of these proteins over time and their response to treatment would 

be interesting to examine.   

Another area for future study, which has increasing recognition in the literature, is 

‘pre-RA’. It is known that even before RA diagnosis, patients have increased levels of 

inflammation and dyslipidaemia. To study these patients is inherently difficult, but 

studies on groups that are at increased risk of developing RA, such as those with a 

strong family history, would be of value. Measures of subclinical atherosclerosis and 
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measurement of SCCPs could be performed, and a longitudinal study examining RA 

and atherosclerosis development undertaken.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



224 
 

7 References  
 

Abdul-Moniem HF, Faramawy MABA, Abdul-Khalek H. 2001. Clinical significance of serum 
thrombomodulin level in rheumatoid arthritis patients. Egypt Rheumatol Rehab. 28(4):853 
 
Agca R, Heslinga SC, Rollefstad S, Heslinga M, McInnes IB, Peters MJ, Kvien TK, Dougados M, 
Radner H, Atzeni F, Primdahl J, Södergren A, Wallberg Jonsson S, van Rompay J, Zabalan C, 
Pedersen TR, Jacobsson L, de Vlam K, Gonzalez-Gay MA, Semb AG, Kitas GD, Smulders YM, 
Szekanecz Z, Sattar N, Symmons DP, Nurmohamed MT. EULAR recommendations for 
cardiovascular disease risk management in patients with rheumatoid arthritis and other 
forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis. 2017 
Jan;76(1):17-28. doi: 10.1136/annrheumdis-2016-209775.  
 
Ait-Oufella H, Herbin O, Bouaziz J-D, et al. B cell depletion reduces the development of 
atherosclerosis in mice. The Journal of Experimental Medicine. 2010;207(8):1579-1587. 
doi:10.1084/jem.20100155 
 
Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. 2011. Recent advances on the role of cytokines in 
atherosclerosis. Arterioscler Thromb Vasc Biol. 31(5):969-79. 
 
Ajeganova S, Svensson B, Hafström I; BARFOT Study Group. 2014. Low-dose prednisolone 

treatment of early rheumatoid arthritis and late cardiovascular outcome and survival: 10-

year follow-up of a 2-year randomised trial. BMJ Open. 4(4), e004259. doi: 

10.1136/bmjopen-2013-004259. 

Akgun S, Ertel NH, Mosenthal A, Oser W. 1998. Postsurgical reduction of serum lipoproteins: 
interleukin-6 and the acute-phase response. J Lab Clin Med. 131: 103–108 
 
Alemao E, Cawston H, Bourhis F, Al M, Rutten-van Mölken MP, Liao KP, Solomon DH. 2016. 
Cardiovascular risk factor management in patients with RA compared to matched non-RA 
patients. Rheumatology. 55(5): 809-816  doi:10.1093/rheumatology/kev427  
 
Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, Birnbaum NS, 
Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, 
Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease 
P, Ménard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, 
Symmons D, Tak PP, Upchurch KS, Vencovský J, Wolfe F, Hawker G. 2010. Rheumatoid 
arthritis classification criteria: an American College of Rheumatology/European League 
Against Rheumatism collaborative initiative. Ann Rheum Dis. 69:1580–8. 
 
Alonzi T, Fattori E, Lazzaro D, Costa P, Probert L, Kolias G, De Benedetti F, Poli V, Ciliberto G. 
1998. Interleukin 6 Is Required for the Development of Collagen-induced Arthritis . The 
Journal of Experimental Medicine. 187(4):461-468. 
 
Amigues I, Giles JT, Zartoshti A, Morgenstern R, Flores R, Bokhari S, Bathon J. 2016. 
Myocardial 18f-Fluorodeoxyglucose (18F-FDG) Uptake in RA Patients without Clinical 
Cardiovascular Disease Is Higher Than in Controls and Decreases with Treatment [abstract]. 
Arthritis Rheumatol. 68 (suppl 10). 
 



225 
 

Anderson DR, Poterucha JT, Mikuls TR, Duryee MJ, Garvin RP, Klassen LW, Shurmur SW, 
Thiele GM. 2013. IL-6 and its receptors in coronary artery disease and acute myocardial 
infarction. Cytokine. 62(3):395-400. doi: 10.1016/j.cyto.2013.03.020.  
 
Anderson T, Meredith IT, Yeung AC, Frei B, Selwyn AP, Ganz P. 1995. The effect of cholesterol-
lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N. Engl. 
J. Med. 332, 488-493. 
 
Andrews RC, Walker BR.  1999. Glucocorticoids and insulin resistance: old hormones, new 
targets. Clin Sci (Lond); 96:513–23 
 
Annex BH, Denning SM, Channon KM, Sketch MH Jr, Stack RS, Morrissey JH, Peters KG. 1995. 
Differential expression of tissue factor protein in directional atherectomy specimens from 
patients with stable and unstable coronary syndromes. Circulation. 91: 619–622. 
 
Aotsuka S, Okawa-Takatsuji M, Nagatani K, Nagashio C, Kano T, Nakajima K, Ito K, Mimori A. 
2005. A retrospective study of the fluctuation in serum levels of anti-cyclic citrullinated 
peptide antibody in patients with rheumatoid arthritis. Clin Exp Rheumatol. 23(4):475-81. 
 
Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JA. 2012. LVM Assessed by 
Echocardiography and Cardiac Magnetic Resonance, Cardiovascular Outcomes, and Medical 
Practice. JACC Cardiovascular imaging. 5(8):837-848. doi:10.1016/j.jcmg.2012.06.003. 
 
Arnaud C, Burger F, Steffens S, Veillard NR, Nguyen TH, Trono D, Mach F. 2005. Statins reduce 
interleukin-6-induced C-reactive protein in human hepatocytes: new evidence for direct 
antiinflammatory effects of statins. Arterioscler Thromb Vasc Biol. 25(6):1231-6.  
 
Arts EEA, Popa C, Den Broeder AA, Semb AG, Toms T, Kitas GD, van Riel PL, Fransen J. 2014. 
Performance of four current risk algorithms in predicting cardiovascular events in patients 
with early rheumatoid arthritis Ann Rheum Dis. 74(4):668-74 
 
Asquith DL, Miller AM, Hueber AJ, Liew FY, Sattar N, McInnes IB. 2010. Apolipoprotein E-
deficient mice are resistant to the development of collagen-induced arthritis. Arthritis 
Rheum. 62(2):472-7. 
 
Asquith DL, Miller AM, McInnes IB, Liew FY. 2009. Animal models of rheumatoid arthritis. Eur 
J Immunol. 39(8):2040-4. doi: 10.1002/eji.200939578. 
 
Aubry MC, Maradit-Kremers H, Reinalda MS, Crowson CS, Edwards WD, Gabriel SE. 2007. 
Differences in atherosclerotic coronary heart disease between subjects with and without 
rheumatoid arthritis. J Rheumatol. 34(5):937–942 
 
Avina-Zubieta JA, Choi HK, Sadatsafavi M, Etminan M, Esdaile JM, Lacaille D. 2008. Risk of 
cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of 
observational studies. Arthritis and rheumatism. 59(12):1690-7.  
 
Bacon PA, Stevens RJ, Carruthers DM, Young SP, Kitas GD. 2002. Accelerated atherogenesis 
in autoimmune rheumatic diseases. Autoimmun Rev. 1(6):338–347 
 
Backhaus M1, Ohrndorf S, Kellner H, Strunk J, Backhaus TM, Hartung W, Sattler H, Albrecht 
K, Kaufmann J, Becker K, Sörensen H, Meier L, Burmester GR, Schmidt WA. 2009. Evaluation 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Asquith%20DL%5BAuthor%5D&cauthor=true&cauthor_uid=19672892
https://www.ncbi.nlm.nih.gov/pubmed/?term=Miller%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=19672892
https://www.ncbi.nlm.nih.gov/pubmed/?term=McInnes%20IB%5BAuthor%5D&cauthor=true&cauthor_uid=19672892
https://www.ncbi.nlm.nih.gov/pubmed/?term=Liew%20FY%5BAuthor%5D&cauthor=true&cauthor_uid=19672892
https://www.ncbi.nlm.nih.gov/pubmed/19672892
https://www.ncbi.nlm.nih.gov/pubmed/19672892


226 
 

of a novel 7-joint ultrasound score in daily rheumatologic practice: a pilot project. Arthritis 
Rheum. 61(9):1194-201. doi: 10.1002/art.24646. 
 
Bäcklund J, Li C, Jansson E, Carlsen S, Merky P, Nandakumar KS, Haag S, Ytterberg J, Zubarev 
RA, Holmdahl R. 2013. C57BL/6 mice need MHC class II Aq to develop collagen-induced 
arthritis dependent on autoreactive T cells. Ann Rheum Dis. 72(7):1225-32. doi: 
10.1136/annrheumdis-2012-202055.  
 
Barkhausen T, Tschernig T, Rosenstiel P, van Griensven M, Vonberg RP, Dorsch M,  Mueller-
Heine A, Chalaris A, Scheller J, Rose-John S, Seegert D, Krettek C, Waetzig GH. 2011. Selective 
blockade of interleukin-6 trans-signaling improves survival in a murine polymicrobial sepsis 
model. Crit Care Med. 39:1407–13 
 
Barna BP, Pettay J, Barnett GH, Zhou P,  Iwasaki K, Estes ML. 1994. Regulation of monocyte 
chemoattractant protein-1 expression in adult human non-neoplastic astrocytes is sensitive 
to tumor necrosis factor (TNF) or antibody to the 55-kDa TNF receptor. J Neuroimmunol. 50 
(1):101–107 
 
Bartok B, Firestein GS. 2010. Fibroblast-like synoviocytes: key effector cells in rheumatoid 
arthritis. Immunol Rev. 233(1):233-55. doi: 10.1111/j.0105-2896.2009.00859.x. 
 
Bentzon JF, Otsuka F, Virmani R and Falk E. 2014. Mechanisms of Plaque Formation and 
Rupture. Circulation Research. 114(12):1852-866. 
http://dx.doi.org/10.1161/CIRCRESAHA.114.302721 
 
Benucci M, Saviola G, Manfredi M, Sarzi-Puttini P, Atzeni F. 2013. Factors correlated with 
improvement of endothelial dysfunction during rituximab therapy in patients with 
rheumatoid arthritis. Biologics. 7:69-75. 
 
Bevaart L1, Vervoordeldonk MJ, Tak PP. 2010. Evaluation of therapeutic targets in animal 
models of arthritis: how does it relate to rheumatoid arthritis? Arthritis Rheum. 62(8):2192-
205. doi: 10.1002/art.27503. 
 
Biasucci LM, Liuzzo G, Fantuzzi G, Caligiuri G, Rebuzzi AG, Ginnetti F, Dinarello CA, Maseri A. 
1999. Increasing levels of interleukin (IL)-1Ra and IL-6 during the first 2 days of hospitalization 
in unstable angina are associated with increased risk of in-hospital coronary events. 
Circulation. 99(16):2079-2084.34. 
 
Bijnen FC, Caspersen CJ, Mosterd WL. 1994. Physical inactivity as a risk factor for coronary 
heart disease: a WHO and International Society and Federation of Cardiology position 
statement. Bull World Health Organ. 72(1):1-4. 
 
Binstadt BA, Hebert JL, Ortiz-Lopez A, Bronson R, Benoist C, Mathis D. 2009. The same 
systemic autoimmune disease provokes arthritis and endocarditis via distinct mechanisms. 
Proc Natl Acad Sci USA. 106(39):16758-63. doi: 10.1073/pnas.0909132106.  
 
Bissell L, Erhayiem B, Hensor E, et al FRI0070 High Prevalence of Subclinical Cardiovascular 
Disease and Abnormal Left Ventricular Geometry Detected by CMR in Asymptomatic 
Rheumatoid Arthritis Patients Annals of the Rheumatic Diseases 2014;73:406-407 
 

http://dx.doi.org/10.1161/CIRCRESAHA.114.302721


227 
 

Boissier MC, Feng XZ, Carlioz A, Roudier R, Fournier C.  1987. Experimental autoimmune 
arthritis in mice. I. Homologous type II collagen is responsible for self-perpetuating chronic 
polyarthritis. Ann. Rheum. Dis. 46, 691–700 . 
 
Bologa RM, Levine DM, Parker TS, Cheigh JS, Serur D, Stenzel KH, Rubin AL. 1998. Interleukin-
6 predicts hypoalbuminemia, hypocholesterolemia, and mortality in hemodialysis patients. 
Am J Kidney Dis. 32: 107–114 
 
Book C, Saxne T, Jacobsson LT. 2005. Prediction of mortality in rheumatoid arthritis based on 
disease activity markers. Journal of rheumatology. 32(3):430-4. 
 
Bonetti PO, Lerman LO, Lerman A. 2003. Endothelial dysfunction: A marker of atherosclerotic 
risk. Arterioscler Thromb Vasc Bio. 23:168-75. 
 
Brand DD, Latham KA, Rosloniec EF. 2007. Collagen-induced arthritis Nature Protocols 2, - 
1269 – 1275. doi:10.1038/nprot.2007.173 
 
Breslow JL. 1996. Mouse models of atherosclerosis. Science. 272(5262):685-8. 
Brindle P, Emberson J, Lampe F,  Walker M, Whincup P, Fahey T, Ebrahim S. 2003. Predictive 
accuracy of the Framingham coronary risk score in British men: prospective cohort study. 
British Medical Journal. 29;327(7426):1267 
 
Briso EM, Dienz O, Rincon M. 2008. Cutting edge: soluble IL-6R is produced by IL-6R 
ectodomain shedding in activated CD4 T cells. J Immunol. 180(11):7102-6. 
 
Brugada R, Wenger NK, Jacobson TA, Clark WS, Cotsonis G, Iglesias A. 1996. Changes in 
plasma cholesterol levels after hospitalization for acute coronary events. Cardiology. 87: 
194–199 
 
Cacciapaglia F, Navarini L, Menna P, Salvatorelli E, Minotti G, Afeltra A.  2011. Cardiovascular 
safety of anti-TNF-alpha therapies: facts and unsettled issues. Autoimmun Rev. 10(10):631-
5. doi: 10.1016/j.autrev.2011.04.014.  
 
Calabrese LH, Rose-John S. 2014. IL-6 biology: implications for clinical targeting in rheumatic 
disease. Nat Rev Rheumatol. 10(12):720-7. doi: 10.1038/nrrheum.2014.127.  
 
Calandra T, Gerain J, Heumann D, Baumgartner JD, Glauser MP. 1991. High circulating levels 
of interleukin-6 in patients with septic shock: evolution during sepsis, prognostic value, and 
interplay with other cytokines. The Swiss-Dutch J5 Immunoglobulin Study Group. Am J Med. 
91(1):23-9. 
 
Campbell IK, Hamilton JA, Wicks IP. 2000. Collagen-induced arthritis in C57BL/6 (H-2b) mice: 
new insights into an important disease model of rheumatoid arthritis. European Journal Of 
Immunology. 30:1568-1575 
 
Campbell IK, Rich MJ, Bischof RJ, Dunn AR, Grail D, Hamilton JA. 1998. Protection from 
collagen-induced arthritis in granulocyte-macrophage colony-stimulating factor-deficient 
mice. J Immunol. 161:3639-3644 
 
Carter RA, Campbell IK, O'Donnel KL, Wicks IP. 2002. Vascular cell adhesion molecule-1 
(VCAM-1) blockade in collagen-induced arthritis reduces joint involvement and alters B cell 



228 
 

trafficking. Clinical and Experimental Immunology. 128(1):44-51. doi:10.1046/j.1365-
2249.2002.01794.x. 
 
Carter JD, Hudson AP. 2009. Reactive arthritis: clinical aspects and medical management. 
Rheum Dis Clin North Am. 35(1):21-44. doi: 10.1016/j.rdc.2009.03.010. 
 
Charles-Schoeman C, Watanabe J, Lee YY, et al. Abnormal function of high-density 
lipoprotein is associated with poor disease control and an altered protein cargo in 
rheumatoid arthritis. Arthritis Rheum 2009;60:2870–9. 
 
Charo IF, Taub R. 2011. Anti-inflammatory therapeutics for the treatment of atherosclerosis. 
Nat Rev Drug Discov. 10(5):365-76. doi: 10.1038/nrd3444. 
 
Chatterjee Adhikari M, Guin A, Chakraborty S, Sinhamahapatra P, Ghosh A. 2012. Subclinical 
atherosclerosis and endothelial dysfunction in patients with early rheumatoid arthritis as 
evidenced by measurement of carotid intima-media thickness and flow-mediated 
vasodilatation: an observational study. Semin.Arthritis Rheum. 41(5):669-75. doi: 
10.1016/j.semarthrit.2011.08.003.  
 
Chen L, Lu Y, Chu Y, Xie J, Ding W, Wang F. 2013. Tissue factor expression in rheumatoid 
synovium: a potential role in pannus invasion of rheumatoid arthritis. Acta Histochem. 
115(7):692-7. 
 
Choi HK, Hernán MA, Seeger JD, Robins JM, Wolfe F. 2002. Methotrexate and mortality in 
patients with rheumatoid arthritis: a prospective study. Lancet. 359(9313):1173-7. 
 
Choi HK, Seeger JD. 2005. Glucocorticoid use and serum lipid levels in US adults: the Third 
National Health and Nutrition Examination Survey. Arthritis Rheum. 53:528-535 
 
Choy E. 2012. Understanding the dynamics: pathways involved in the pathogenesis of 
rheumatoid arthritis. Rheumatology (Oxford). 51,(5):v3-11. doi: 
10.1093/rheumatology/kes113. 
 
Choy E, Ganeshalingam K, Semb AG, Szekanecz Z, Nurmohamed M. 2014. Cardiovascular risk 
in rheumatoid arthritis: recent advances in the understanding of the pivotal role of 
inflammation, risk predictors and the impact of treatment. Rheumatology (Oxford). 
53(12):2143-54. doi: 10.1093/rheumatology/keu224. 
 
Choy E, Sattar N. 2009. Interpreting lipid levels in the context of high-grade inflammatory 
states with a focus on rheumatoid arthritis: a challenge to conventional cardiovascular risk 
actions. Ann Rheum Dis. 68:460-9 
 
Chu CQ, Song Z, Mayton L, Wu B, Wooley PH. 2003. IFN gamma deficient C57BL/6 (H-2b) 
mice develop collagen induced arthritis with predominant usage of T cell receptor Vbeta6 
and Vbeta8 in arthritic joints. Ann Rheum Dis. 62(10):983-90 
 
Chung CP, Oeser A, Solus JF, Gebretsadik T, Shintani A, Avalos I, Sokka T, Raggi P, Pincus T, 
Stein CM. 2008. Inflammation-associated insulin resistance: differential effects in 
rheumatoid arthritis and systemic lupus erythematosus define potential mechanisms. 
Arthritis and Rheumatism. 58(7):2105-2112 
 



229 
 

Clarke B. 2008. Normal Bone Anatomy and Physiology. Clinical Journal of the American 
Society of Nephrology : CJASN. 3(Suppl 3):S131-S139. doi:10.2215/CJN.04151206. 
 
Cojocaru M, Cojocaru IM, Silosi I, Vrabie CD, Tanasescu R. 2010. Extra-articular 
Manifestations in Rheumatoid Arthritis. Mædica. 5(4):286-291. 
 
Coles B, Fielding CA, Rose-John S, Scheller J, Jones SA, O'Donnell VB. 2007. Classic interleukin-
6 receptor signaling and interleukin-6 trans-signaling differentially control angiotensin II-
dependent hypertension, cardiac signal transducer and activator of transcription-3 
activation, and vascular hypertrophy in vivo. Am J Pathol. 171(1):315-25. 
 
Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, De Backer G, De Bacquer D, 
Ducimetière P, Jousilahti P, Keil U, Njølstad I, Oganov RG, Thomsen T, Tunstall-Pedoe H, 
Tverdal A, Wedel H, Whincup P, Wilhelmsen L, Graham IM. 2003. Estimation of ten-year risk 
of fatal cardiovascular disease in Europe: The SCORE project. Eur Heart J. 24: 987–1003. 
 
Corrales A, Gonzalez-Juanatey C, Peiro ME, Blanco R, Llorca J, Gonzalez-Gay MA. 2014. 
Carotid ultrasound is useful for the cardiovascular risk stratification of patients with 
rheumatoid arthritis: results of a population-based study. Ann Rheum Dis. 73(4):722-7. doi: 
10.1136/annrheumdis-2012-203101. 
 
Corrales A, Parra JA, Gonza´ lez-Juanatey C, Rueda-Gotor J, Blanco R, Llorca J, González-Gay 
MA. 2013. Cardiovascular risk stratification in rheumatic diseases: carotid ultrasound is more 
sensitive than Coronary Artery Calcification Score to detect subclinical atherosclerosis in 
patients with rheumatoid arthritis. Ann Rheum Dis. 72:176470 
 
Corretti MC1, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, 
Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R; 
International Brachial Artery Reactivity Task Force. 2002. Guidelines for the ultrasound 
assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: A 
report of the et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-
mediated vasodilation of the brachial artery: A report of the International Brachial Artery 
Reactivity Task Force. J Am Coll Cardiol. 39:257-65. 
 
A. Corthay, Å. Johansson, M. Vestberg, R. Holmdahl. 1999. Collagen-induced arthritis 
development requires alphabeta T cells but not gammadelta T cells: studies with T cell-
deficient (TCR mutant) mice. Int. Immunol. 11:1065–1073 
 
Crabe´, S., A. Guay-Giroux, A. J. Tormo, D. Duluc, R. Lissilaa, F. Guilhot, U. Mavoungou-
Bigouagou, F. Lefouili, I. Cognet, W. Ferlin, et al. 2009. The IL-27 p28 subunit binds cytokine-
like factor 1 to form a cytokine regulating NK and T cell activities requiring IL-6R for signaling. 
J. Immunol. 183: 7692–7702. 
 
Crilly MA, Kumar V, Clark HJ, Scott NW, Macdonald AG, Williams DJ. 2009. Arterial stiffness 
and cumulative inflammatory burden in rheumatoid arthritis: a dose-response relationship 
independent of established cardiovascular risk factors. Rheumatology. 48(12):1606-1612. 
 
Curtiss LK. 2000. ApoE in atherosclerosis : a protein with multiple hats. Arterioscler Thromb 
Vasc Biol. 20(8):1852-3. 
 



230 
 

Cutolo M. 2013. The kinase inhibitor tofacitinib in patients with rheumatoid arthritis: latest 
findings and clinical potential. Therapeutic Advances in Musculoskeletal Disease. 5(1):3-11. 
doi:10.1177/1759720X12470753. 
 
Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC, Connelly 
PW, Milstone DS. 2001. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J 
Clin Invest. 107(10):1255-62. 
 
Danesh J, Kaptoge S, Mann AG, et al. Long-Term Interleukin-6 Levels and Subsequent Risk of 

Coronary Heart Disease: Two New Prospective Studies and a Systematic Review. Baigent C, 

ed. PLoS Medicine. 2008;5(4):e78. doi:10.1371/journal.pmed.0050078. 

Danesh J, Lewington S, Thompson SG, Lowe GD, Collins R, Kostis JB, Wilson AC, Folsom AR, 
Wu K, Benderly M, Goldbourt U, Willeit J, Kiechl S, Yarnell JW, Sweetnam PM, Elwood PC, 
Cushman M, Psaty BM, Tracy RP, Tybjaerg-Hansen A, Haverkate F, de Maat MP, Fowkes FG, 
Lee AJ, Smith FB, Salomaa V, Harald K, Rasi R, Vahtera E, Jousilahti P, Pekkanen J, D'Agostino 
R, Kannel WB, Wilson PW, Tofler G, Arocha-Piñango CL, Rodriguez-Larralde A, Nagy E, Mijares 
M, Espinosa R, Rodriquez-Roa E, Ryder E, Diez-Ewald MP, Campos G, Fernandez V, Torres E, 
Marchioli R, Valagussa F, Rosengren A, Wilhelmsen L, Lappas G, Eriksson H, Cremer P, Nagel 
D, Curb JD, Rodriguez B, Yano K, Salonen JT, Nyyssönen K, Tuomainen TP, Hedblad B, Lind P, 
Loewel H, Koenig W, Meade TW, Cooper JA, De Stavola B, Knottenbelt C, Miller GJ, Cooper 
JA, Bauer KA, Rosenberg RD, Sato S, Kitamura A, Naito Y, Palosuo T, Ducimetiere P, Amouyel 
P, Arveiler D, Evans AE, Ferrieres J, Juhan-Vague I, Bingham A, Schulte H, Assmann G, Cantin 
B, Lamarche B, Després JP, Dagenais GR, Tunstall-Pedoe H, Woodward M, Ben-Shlomo Y, 
Davey Smith G, Palmieri V, Yeh JL, Rudnicka A, Ridker P, Rodeghiero F, Tosetto A, Shepherd 
J, Ford I, Robertson M, Brunner E, Shipley M, Feskens EJ, Kromhout D, Dickinson A, Ireland B, 
Juzwishin K, Kaptoge S, Lewington S, Memon A, Sarwar N, Walker M, Wheeler J, White I, 
Wood A, Fibrinogen Studies Collaboration. 2005. Plasma fibrinogen level and the risk of 
major cardiovascular diseases and nonvascular mortality: an individual participant meta-
analysis. JAMA. 294 (14):1799-809. 
 
Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, Lowe GD, Pepys MB, 
Gudnason V. 2004. C-reactive protein and other circulating markers of inflammation in the 
prediction of coronary heart disease. N Engl J Med. 350(14):1387–97. 
 
Dann SM, Spehlmann ME, Hammond DC, Iimura M, Hase K, Choi LJ, Hanson E, Eckmann L. 
2008. IL-6-dependent mucosal protection prevents establishment of a microbial niche for 
attaching/effacing lesion-forming enteric bacterial pathogens. J Immunol. 180(10):6816–26  
 
Dart AM, Lacombe F, Yeoh JK, Cameron JD, Jennings GL, Laufer E, Esmore DS. 1991. Aortic 
distensibility in patients with isolated hypercholesterolaemia, coronary artery disease or 
cardiac transplant. Lancet. 338:696–697. 
 
Davis JM, Roger VL, Crowson CS, Kremers HM, Therneau TM, Gabriel SE. The presentation 
and outcome of heart failure in patients with rheumatoid arthritis differs from that in the 
general population. Arthritis Rheum. 2008 Sep;58(9):2603-11. doi: 10.1002/art.23798. 
 
Dayer JM, Choy E. 2010. Therapeutic targets in rheumatoid arthritis: the interleukin-6 
receptor. Rheumatology. 49(1):15-24. 
 



231 
 

De Benedetti F, Massa M, Pignatti P, Albani S, Novick D, Martini A. 1994. Serum soluble 
interleukin 6 (IL-6) receptor and IL-6/soluble IL-6 receptor complex in systemic juvenile 
rheumatoid arthritis. J Clin Invest. 93(5):2114-9. 
 
de Groot L, Posthumus MD, Kallenberg CG, Bijl M. 2010. Risk factors and early detection of 
atherosclerosis in rheumatoid arthritis. European journal of clinical investigation. 40(9):835-
42. 
 
del Rincon I, Freeman GL, Haas RW, O'Leary DH, Escalante A. 2005. Relative contribution of 
cardiovascular risk factors and rheumatoid arthritis clinical manifestations to atherosclerosis. 
Arthritis and Rheumatism. 52(11):3413-3423. 
 
del Rincon ID, Williams K, Stern MP, Freeman GL, Escalante A. 2001. High incidence of 
cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac 
risk factors. Arthritis Rheum.44:2737-2745. 
 
Denys A, Clavel G, Lemeiter D, Schischmanoff O, Boissier MC, Semerano L. 2016. Aortic 
VCAM-1: an early marker of vascular inflammation in collagen-induced arthritis. J Cell Mol 
Med. 20(5):855-63. doi: 10.1111/jcmm.12790.  
 
Denys A, Clavel G, Semerano L, Lemeiter D, Boissier M. 2014. Vascular adhesion molecule 
VCAM-1 overexpression in collagen induced arthritis : a model for rheumatoid arthritis 
vascular dysfunction. Ann Rheum Dis. 20(5):855-63 
 
Deshmane SL, Kremlev S, Amini S, Sawaya BE. 2009. Monocyte Chemoattractant Protein-1 
(MCP-1): An Overview. Journal of Interferon & Cytokine Research. 29(6):313-326. 
doi:10.1089/jir.2008.0027. 
 
Dessein PH, Joffe BI, Veller MG, Stevens BA, Tobias M, Reddi K, Stanwix AE. 2005.  Traditional 
and non traditional cardiovascular risk factors are associated with atherosclerosis in 
rheumatoid arthritis. The Journal of rheumatology. 32(3):435-42. 
 
Dessein PH, Stanwix AE, Joffe BI. 2002. Cardiovascular risk in rheumatoid arthritis versus 
osteoarthritis: acute phase response related decreased insulin sensitivity and high-density 
lipoprotein cholesterol as well as clustering of metabolic syndrome features in rheumatoid 
arthritis. Arthritis Res. 4(5):R5 
 
Dijk JM, Algra A, van der Graaf Y, Grobbee DE, Bots ML. 2005. Carotid stiffness and the risk 
of new vascular events in patients with manifest cardiovascular disease. The SMART study. 
Eur Heart J. 26:1213 – 1220. 
 
Dixon WG, Watson KD, Lunt M, Hyrich KL, Silman AJ, Symmons DP. 2007. Reduction in the 
incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-
tumor necrosis factor alpha therapy: results from the British Society for Rheumatology 
Biologics Register. Arthritis Rheum, 56(9):2905–2912 
 
Doggen CJ, Berckmans RJ, Sturk A, Manger Cats V, Rosendaal FR. 2000 C-reactive protein, 
cardiovascular risk factors and the association with myocardial infarction in men. J Intern 
Med 248:406–414. 
 



232 
 

Dusi V, Ghidoni A, Ravera A, De Ferrari GM, Calvillo L. 2016. Chemokines and Heart Disease: 
A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems. 
Mediators of Inflammation. 2016:5902947. doi:10.1155/2016/5902947. 
 
Egashira K. 2003. Molecular mechanisms mediating inflammation in vascular disease: special 
reference to monocyte chemoattractant protein-1. Hypertension. 41(3 Pt 2):834–41. 
 
Eichler K, Puhan MA, Steurer J, Bachmann LM. 2007. Prediction of first coronary events with 
the Framingham score: a systematic review. Am Heart J. 153(5):722–731 
 
Emami H, Vijayakumar J, Subramanian S, Vucic E, Singh P, MacNabb MH, Corsini E, Hoffmann 
U, Bathon JM, Solomon DH, Tawakol A. 2014. Arterial 18F-FDG uptake in rheumatoid arthritis 
correlates with synovial activity. JACC Cardiovasc Imaging. 7(9):959-60. doi: 
10.1016/j.jcmg.2014.03.018 
 
Emery P,  Keystone E, Tony HP, Cantagrel A, van Vollenhoven R, Sanchez A, Alecock E, J Lee 
J, Kremer J. 2008. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in 
patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: 
results from a 24-week multicentre randomised placebo-controlled trial. Ann Rheum Dis 
67:1516-23. 
 
Erhayiem B, Pavitt S, Baxter P, Andrews J, Greenwood JP, Buch MH, Plein S. 2014. Coronary 
Artery Disease Evaluation in Rheumatoid Arthritis (CADERA): study protocol for a randomized 
controlled trial. Trials. 15:436. doi:10.1186/1745-6215-15-436. 
 
Ettinger WH Jr, Sun WH, Binkley N, Kouba E, Ershler W. 1995. Interleukin-6 causes 
hypocholesterolemia in middle-aged and old rhesus monkeys. J Gerontol A Biol Sci Med Sci. 
50 (3):M137–M140 
 
Evans MR, Escalante A, Battafarano DF, Freeman GL, O’Leary DH, del Rincón I. 2011. Carotid 
atherosclerosis predicts incident acute coronary syndromes in rheumatoid arthritis. Arthritis 
Rheum. 63 (5):1211–20 
 
Everett BM, Pradhan AD, Solomon DH, Paynter N, Macfadyen J, Zaharris E, Gupta M, 
Clearfield M, Libby P, Hasan AA, Glynn RJ, Ridker PM. 2013. Rationale and design of the 
cardiovascular inflammation reduction trial: A test of the inflammatory hypothesis of 
atherothrombosis. Am Heart J. 166(2):199–207.e15. 
 
Falk E. 2006. Pathogenesis of atherosclerosis. J Am Coll Cardiol. 47(8 Suppl):C7-12 
 
Fan CY, Zhang ZY, Mei YF, Wu CJ, Shen BZ. 2012. Impaired brachial artery flow-mediated 
dilation and increased carotid intima-media thickness in rheumatoid arthritis patients. Chin 
Med J (Engl). 125(5):832-7. 
 
Ferreira RC, Freitag DF, Cutler AJ, Howson JM, Rainbow DB, Smyth DJ, Kaptoge S, Clarke P, 
Boreham C, Coulson RM, Pekalski ML, Chen WM, Onengut-Gumuscu S, Rich SS, Butterworth 
AS, Malarstig A, Danesh J, Todd JA. 2013. Functional IL6R 358Ala allele impairs classical IL-6 
receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet. 
9(4):e1003444. 
 



233 
 

L. Figueroa, A. Abdelbaky, Q.A. Truong, Corsini E, MacNabb MH, Lavender ZR, Lawler MA, 
Grinspoon SK, Brady TJ, Nasir K, Hoffmann U, Tawakol A. 2013. Measurement of arterial 
activity on routine FDG PET/CT images improves prediction of risk of future CV events. J Am 
Coll Cardiol Img. 6(12): 1250–1259 
 
Filippin LI, Teixeira VN, Viacava PR, Lora PS, Xavier LL, Xavier RM. 2013. Temporal 
development of muscle atrophy in murine model of arthritis is related to disease severity. J 
Cachexia Sarcopenia Muscle. 4(3):231-8. doi: 10.1007/s13539-013-0102-1.  
 
Fischer M, Goldschmitt J, Peschel C, Kallen KJ, Brakenhoff JPJ, WollmerA, Grötzinger J, Rose-
John S. 1997. A designer cytokine with high activity on human hematopoietic progenitor 
cells. Nat Biotech. 15(2): 142-5. 
 
FitzGerald GA, Patrono C. 2001. The coxibs, selective inhibitors of cyclooxygenase-2. N Engl 
J Med. 345: 433–42 
 
Fransen J,  Welsing PMJ,  de Keijzer RMH,  van Riel PLCM. 2003. Disease activity scores using 
C-reactive protein: CRP may replace ESR in the assessment of RA disease activity, Ann Rheum 
Dis. 62(1): 151 
 
Fugger L, Svejgaard A. 2000. Association of MHC and rheumatoid arthritis: HLA-DR4 and 
rheumatoid  arthritis - studies in mice and men. Arthritis Research. 2(3):208-211. 
doi:10.1186/ar89. 
 
 
Gabriel SE. 2008. Cardiovascular morbidity and mortality in rheumatoid arthritis. The 
American Journal of Medicine. 121(10 Suppl 1):S9-14 
 
Geboes L, Dumoutier L, Kelchtermans H, Schurgers E, Mitera T, Renauld JC, Matthys P. 2009. 
Proinflammatory role of the Th17 cytokine interleukin-22 in collagen-induced arthritis in 
C57BL/6 mice. Arthritis Rheum. 60(2):390-5. doi: 10.1002/art.24220. 
 
Genovese MC, McKay JD, Nasonov EL, Mysler EF, da Silva NA, Alecock E, Woodworth T, 
Gomez-Reino JJ. 2008. Interleukin-6 receptor inhibition with tocilizumab reduces disease 
activity in rheumatoid arthritis with inadequate response to disease-modifying 
antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying 
antirheumatic drug therapy study. Arthritis Rheum. 58(10):2968-80. doi: 10.1002/art.23940 
 
Genovese M, Sebba A, Rubbert-Roth A, Scali J, Alten R, Kremer J, Pitts L, Vernon E, van 
Vollenhoven R. 2013. Long-term safety of tocilizumab in patients with rheumatoid arthritis 
following a mean treatment duration of 3.9 years. Ann Rheum Dis. 72(Suppl 3):461. 
 
Getz GS, Reardon CA. 2012. Animal Models of Atherosclerosis. Arteriosclerosis, Thrombosis, 
and Vascular Biology. 32(5):1104-1115.  
 
Gielen S, Sandri M, Schuler G, Teupser D. 2009. Risk factor management: antiatherogenic 
therapies. Eur J Cardiovasc Prev Rehabil. 16(2):S29-36. doi: 
10.1097/01.hjr.0000359233.58023.64. 
 
Giles JT, Fert-Bober J, Park JK, Bingham CO 3rd, Andrade F, Fox-Talbot K, Pappas D, Rosen A, 
van Eyk J, Bathon JM, Halushka MK. Myocardial citrullination in rheumatoid arthritis: a 



234 
 

correlative histopathologic study. Arthritis Res Ther. 2012 Feb 24;14(1):R39. doi: 
10.1186/ar3752. 
 
Giles JT, Malayeri AA, Fernandes V, Post W, Blumenthal RS, Bluemke D, Vogel-Claussen J, 
Szklo M, Petri M, Gelber AC, Brumback L, Lima J, Bathon JM. 2010. Left ventricular structure 
and function in patients with rheumatoid arthritis, as assessed by cardiac magnetic 
resonance imaging. Arthritis Rheum. 62(4):940-51. doi: 10.1002/art.27349. 
 
Giles JT, Sattar N, Gabriel SE, Ridker PM, Gay S, Warne C, Musselman D, Brockwell L, Shittu 
E, Klearman M, Fleming T. Comparative Cardiovascular Safety of Tocilizumab Vs Etanercept 
in Rheumatoid Arthritis: Results of a Randomized, Parallel-Group, Multicenter, 
Noninferiority, Phase 4 Clinical Trial [abstract]. Arthritis Rheumatol. 2016; 68 (suppl 10). 
 
Glund S, Krook A. Role of interleukin-6 signalling in glucose and lipid metabolism. 2008. Acta 
Physiol (Oxf). 192(1):37-48. doi: 10.1111/j.1748-1716.2007.01779.x. 
 
Goff DC, Jr., Lloyd-Jones DM, Bennett G, Coady S, D'Agostino RB, Gibbons R, Greenland P, 
Lackland DT, Levy D, O'Donnell CJ, Robinson JG, Schwartz JS, Shero ST, Smith SC Jr, Sorlie P, 
Stone NJ, Wilson PW, Jordan HS, Nevo L, Wnek J, Anderson JL, Halperin JL, Albert NM, Bozkurt 
B, Brindis RG, Curtis LH, DeMets D, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke 
FW, Shen WK, Smith SC Jr, Tomaselli GF; American College of Cardiology/American Heart 
Association Task Force on Practice Guidelines. 2014. ACC/AHA guideline on the assessment 
of cardiovascular risk: a report of the American College of Cardiology/American Heart 
Association Task Force on Practice Guidelines. Circulation. 129(25 Suppl. 2): S49–S73 
 
Gonzalez-Gay MA, Gonzalez-Juanatey C, Pineiro A, Garcia-Porrua C, Testa A, Llorca J. 2005. 
High-grade C-reactive protein elevation correlates with accelerated atherogenesis in 
patients with rheumatoid arthritis. The Journal of rheumatology. 32(7):1219-1223. 
 
Gonzalez-Juanatey C, Llorca J, Martin J, Gonzalez-Gay MA. 2009. Carotid intima-media 
thickness predicts the development of cardiovascular events in patients with rheumatoid 
arthritis. Semin Arthritis Rheum. 38(5):366-71. doi: 10.1016/j.semarthrit.2008.01.012.  
 
Goodson N, Marks J, Lunt M, Symmons D. Cardiovascular admissions and mortality in an 
inception cohort of patients with rheumatoid arthritis with onset in the 1980s and 1990s.  
Ann Rheum Dis. 2005 Nov;64(11):1595-601. Epub 2005 Apr 20. 
 
Goodson NJ, Symmons DP, Scott DG, Bunn D, Lunt M, Silman AJ. 2005. Baseline levels of C-
reactive protein and prediction of death from cardiovascular disease in patients with 
inflammatory polyarthritis: a ten-year followup study of a primary care-based inception 
cohort. Arthritis Rheum. 52(8):2293-9. 
 
Graf J, Scherzer R, Grunfeld C, Imboden J. 2009. Levels of C-reactive protein associated with 

high and very high cardiovascular risk are prevalent in patients with rheumatoid arthritis. 

PloS one. 16;4(7):e6242. 

Green MJ, Gough AK, Devlin J, Smith J, Astin P, Taylor D, Emery P. 2003. Serum MMP-3 and 
MMP-1 and progression of joint damage in early rheumatoid arthritis. Rheumatology 
(Oxford). 42(1):83-8. 
 
Greenberg JD, Fayad Z, Furer V, Farkouh M, Colin MJ, Rosenthal PB, Samuels J, Krasnokutsky 
Samuels S, Reddy S, Izmirly P, Oh C, Jain M, Mani V. 2012. Heightened Aortic Wall 



235 
 

Inflammation in Patients with Rheumatoid Arthritis Versus Patients with Established 
Coronary Artery Disease without Autoimmune Disease. [abstract]. Arthritis Rheum. 64(Suppl 
10 :1250 DOI: 10.1002/art.38982 
 
Greenberg JD, Kremer JM, Curtis JR, Hochberg MC, Reed G, Tsao P, Farkouh ME, Nasir A, 
Setoguchi S, Solomon DH; CORRONA Investigators. 2011. Tumour necrosis factor antagonist 
use and associated risk reduction of cardiovascular events among patients with rheumatoid 
arthritis. Ann Rheum Dis. 70(4):576–582 
 
Grivennikov S, Karin E, Terzic J, Mucida D, Yu G-Y, Vallabhapurapu S. Scheller J, Rose-John S, 
Cheroutre H, Eckmann L, Karin M. 2009. IL-6 and STAT3 signaling is required for survival of 
intestinal epithelial cells and colitis associated cancer. Cancer Cell. 15(2):103–13 
 
Guin A, Chatterjee Adhikari M, Chakraborty S, Sinhamahapatra P, Ghosh A. 2013. Effects of 
disease modifying anti-rheumatic drugs on subclinical atherosclerosis and endothelial 
dysfunction which has been detected in early rheumatoid arthritis: 1-year follow-up study. 
Semin Arthritis Rheum. 43(1):48-54. doi: 10.1016/j.semarthrit.2012.12.027.  
 
Gullick NJ, Scott DL. 2011. Co-morbidities in established rheumatoid arthritis. Best practice 
& research. Clinical rheumatology. 25(4):469-483. 
 
Gupta A, Kesavabhotla K2, Baradaran H, Kamel H, Pandya A, Giambrone AE, Wright D, Pain 
KJ, Mtui EE, Suri JS, Sanelli PC, Mushlin AI. 2015. Plaque echolucency and stroke risk in 
asymptomatic carotid stenosis: a systematic review and meta-analysis. Stroke. 46(1):91-7. 
doi: 10.1161/STROKEAHA.114.006091.  
 
Gurtner GC, Davis V, Li H, McCoy MJ, Sharpe A, Cybulsky MI. 1995. Targeted disruption of 
the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. 
Genes Dev. 9(1):1-14. 
 
Hamer ER, Apfel MI, Carvalho JJ, Pereira MJ, Levy RA. 2002. Evaluation of the cholesterol 
influence in type II collagen-induced arthritis in DBA/1J mice: an autoradiographic study. J 
Cell Mol Med. 6: 407–14. 
 
Han DW. Robinson Jr., M.V. Hackett, Paramore LC, Fraeman KH, Bala MV. 2006. 

Cardiovascular disease and risk factors in patients with rheumatoid arthritis, psoriatic 

arthritis, and ankylosing spondylitis. J Rheumatol, 33(11): 2167–2172 

Han JH, Suh CH, Jung JY, Ahn MH, Han MH, Kwon JE1, Yim H, Kim HA. 2017. Elevated 
circulating levels of the interferon-γ-induced chemokines are associated with disease activity 
and cutaneous manifestations in adult-onset Still's disease. Sci Rep. 24(7):46652. doi: 
10.1038/srep46652. 
 
Hannawi S1, Haluska B, Marwick TH, Thomas R. 2007. Atherosclerotic disease is increased in 
recent-onset rheumatoid arthritis: a critical role for inflammation. Arthritis Res Ther. 
9(6):R116. 
 
Hansson GK, Hermansson A. 2011. The immune system in atherosclerosis. Nature 
immunology. 12(3):204-12 
 
Hanyu T, Arai K, Nakano M. 1999. Urinary thrombomodulin in patients with rheumatoid 
arthritis: relationship to disease subset. Clin Rheumatol. 18(5):385-9 



236 
 

 
Haraldsen G, Kvale D, Lien B, Farstad IN, Brandtzaeg P. 1996. Cytokine-regulated expression 
of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion 
molecule-1 (VCAM-1) in human microvascular endothelial cells. J Immunol. 156(7):2558-65. 
 
Hartman J, Frishman WH. 2014. Inflammation and atherosclerosis: a review of the role of 
interleukin-6 in the development of atherosclerosis and the potential for targeted drug 
therapy. Cardiol Rev. 22(3):147-51. doi: 10.1097/CRD.0000000000000021. 
 
Hartog A, Hulsman J, Garssen J. 2009. Locomotion and muscle mass measures in a murine 
model of collagen-induced arthritis. BMC Musculoskelet Disord. 10:59. doi: 10.1186/1471-
2474-10-59. 
 
Hashizume M, Yoshida H, Koike N, Suzuki M, Mihara M. 2010. Overproduced interleukin 6 
decreases blood lipid levels via upregulation of very-low-density lipoprotein receptor. Ann 
Rheum Dis. 69(4):741-6. doi: 10.1136/ard.2008.104844.  
 
Hazes JM, Coulie PG, Geenen V, Vermeire S, Carbonnel F, Louis E, Masson P, De Keyser F. 
2011. Rheumatoid arthritis and pregnancy: evolution of disease activity and 
pathophysiological considerations for drug use. Rheumatology (Oxford). 50(11):1955-68. 
doi: 10.1093/rheumatology/ker302.  
 
He M, Liang X, He L, Wen W, Zhao S, Wen L, Liu Y, Shyy JY, Yuan Z. 2013. Endothelial 
dysfunction in rheumatoid arthritis. The role of monocyte chemotactic protein-1-induced 
protein. Arterioscler Thromb Vasc Biol. 16:1384–1391 
 
Heinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. 1998. Interleukin-6-type 
cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 334 ( Pt 2):297-314. 
 
Hilgers RH, Webb RC. 2005. Molecular aspects of arterial smooth muscle contraction: focus 
on Rho. Exp Biol Med (Maywood). 230(11):829–35. 
 
Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Brindle P (2008). Performance of the 
QRISK cardiovascular risk prediction algorithm in an independent UK sample of patients from 
general practice: a validation study. Heart 94: 34–39 
 
Hirabayashi Y, Ishii T, Harigae H. 2010. Clinical efficacy of tocilizumab in patients with active 
rheumatoid arthritis in real clinical practice. Rheumatol Int. 30(8):1041-8. doi: 
10.1007/s00296-009-1095-0.  
 
Muraguchi A, Hirano T, Tang B, Matsuda T, Horii Y, Nakajima K, Kishimoto T. 1988. The 
essential role of B cell stimulatory factor 2 (BSF-2/IL-6) for the terminal differentiation of B 
cells. J Exp Med 167: 332–344 
 
Hironaka K, Yano M, Kohno M, Tanigawa T, Obayashi M, Konishi M, Umemoto S, Matsuzaki 
M. 1997. In vivo aortic wall characteristics at the early stage of atherosclerosis in rabbits. Am 
J Physiol. 273:H1142–H1147. 
 
Ho AW, Wong CK, Lam CW. 2008. Tumor necrosis factor-alpha up-regulates the expression 
of CCL2 and adhesion molecules of human proximal tubular epithelial cells through MAPK 
signaling pathways. Immunobiology. 213(7):533-44. doi: 10.1016/j.imbio.2008.01.003.  



237 
 

 
Ho PR, Koendgen H, Campbell N, Haddock B, Richman S, Chang I. 2017. Risk of natalizumab-
associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: a 
retrospective analysis of data from four clinical studies. Lancet Neurol. 16(11):925-933. doi: 
10.1016/S1474-4422(17)30282-X.  
 
Holmdahl, R., Jansson, L., Larsson, E., Rubin, K. & Klareskog, L. 1985. Homologous type II 
collagen induces chronic and progressive arthritis in mice. Arthritis Rheum. 29, 106–113  
 
Hou T, Tieu BC, Ray S, Recinos Iii A, Cui R, Tilton RG, Brasier AR. 2008. Roles of IL-6-gp130 
Signaling in Vascular Inflammation. Curr Cardiol Rev. 4(3):179-92. doi: 
10.2174/157340308785160570. 
 
Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T. 2010. Transmembrane TNF-α: 
structure, function and interaction with anti-TNF agents. Rheumatology (Oxford, England). 
49(7):1215-1228. doi:10.1093/rheumatology/keq031. 
 
Huber SA, Sakkinen P, Conze D, Hardin N, Tracy R. 1999. Interleukin-6 exacerbates early 
atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 19:2364 –2367. 
 
Humphreys JH, Verstappen SM, Hyrich KL, Chipping JR, Marshall T, Symmons DP. 2013. The 
incidence of rheumatoid arthritis in the UK: comparisons using the 2010 ACR/EULAR 
classification criteria and the 1987 ACR classification criteria. Results from the Norfolk 
Arthritis Register. Ann Rheum Dis. 72(8):1315-20. doi: 10.1136/annrheumdis-2012-201960.  
 
Hunter CA, Jones SA. 2015. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 
16(5):448-57. doi: 10.1038/ni.3153 
 
Hwang JJ, Yang WS, Chiang FT, Chen MF, Lin HJ, Huang PJ, Hsu SH, Lai SK, Wu YW. 2009. 
Association of circulating matrix metalloproteinase-1, but not adiponectin, with advanced 
coronary artery disease. Atherosclerosis. 204(1):293-7 
 
Ichikawa Y, Takaya M, Shimizu H, Moriuchi J, Uchiyama M, Morita K, Hoshina Y, Horiki T. 
1993. Thrombomodulin levels in the plasma and joint fluid from patients with rheumatoid 
arthritis. Tokai J Exp Clin Med. 18(3-6):123-6 
 
Ikeda U, Ikeda M, Seino Y, Takahashi M, Kasahara T, Kano S, Shimada K. 1993. Expression of 
intercellular adhesion molecule-1 on rat vascular smooth muscle cells by pro-inflammatory 
cytokines. Atherosclerosis. 104(1-2):61-8. 
 
Ikeda UM, Oohara T, Oguchi A, Kamitani T, Tsuruya Y, Kano S. 1991. Interleukin 6 stimulates 
growth of vascular smooth muscle cells in a PDGF-dependent manner. Am. J. Physiol. 260: 
H1713 
 
Inglis JJ, Criado G, Medghalchi M, Andrews M, Sandison A, Feldmann M, Williams RO. 2007. 
Collagen-induced arthritis in C57BL/6 mice is associated with a robust and sustained T-cell 
response to type II collagen. Arthritis Res Ther. 9(5):R113. 
 
Innala L, Moller B, Ljung L, Magnusson S, Smedby T, Södergren A, Öhman ML, Rantapää-
Dahlqvist S, Wållberg-Jonsson S. 2011. Cardiovascular events in early RA are a result of 



238 
 

inflammatory burden and traditional risk factors: a five year prospective study. Arthritis Res 
Ther. 13:R131 
 
IL6R Genetics Consortium Emerging Risk Factors Collaboration, Sarwar N, Butterworth AS, 
Freitag DF, Gregson J, Willeit P, Gorman DN, Gao P, Saleheen D, Rendon A, Nelson CP, Braund 
PS, Hall AS, Chasman DI, Tybjærg-Hansen A, Chambers JC, Benjamin EJ, Franks PW, Clarke R, 
Wilde AA, Trip MD, Steri M, Witteman JC, Qi L, van der Schoot CE, de Faire U, Erdmann J, 
Stringham HM, Koenig W, Rader DJ, Melzer D, Reich D, Psaty BM, Kleber ME, Panagiotakos 
DB, Willeit J, Wennberg P, Woodward M, Adamovic S, Rimm EB, Meade TW, Gillum RF, 
Shaffer JA, Hofman A, Onat A, Sundström J, Wassertheil-Smoller S, Mellström D, Gallacher J, 
Cushman M, Tracy RP, Kauhanen J, Karlsson M, Salonen JT, Wilhelmsen L, Amouyel P, Cantin 
B, Best LG, Ben-Shlomo Y, Manson JE, Davey-Smith G, de Bakker PI, O'Donnell CJ, Wilson JF, 
Wilson AG, Assimes TL, Jansson JO, Ohlsson C, Tivesten Å, Ljunggren Ö, Reilly MP, Hamsten 
A, Ingelsson E, Cambien F, Hung J, Thomas GN, Boehnke M, Schunkert H, Asselbergs FW, 
Kastelein JJ, Gudnason V, Salomaa V, Harris TB, Kooner JS, Allin KH, Nordestgaard BG, 
Hopewell JC, Goodall AH, Ridker PM, Hólm H, Watkins H, Ouwehand WH, Samani NJ, Kaptoge 
S, Di Angelantonio E, Harari O, Danesh J. 2012. Interleukin-6 receptor pathways in coronary 
heart disease: a collaborative meta-analysis of 82 studies. Lancet. 379(9822):1205-1213. 
 
Innala L, Moller B, Ljung L, Magnusson S, Smedby T, Södergren A, Öhman ML, Rantapää-
Dahlqvist S, Wållberg-Jonsson S. 2011. Cardiovascular events in early RA are a result of 
inflammatory burden and traditional risk factors: a five year prospective study. Arthritis Res 
Ther. 13:R131 
 
Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium. 2012. The 
interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian 
randomisation analysis. Lancet. 379:1214-1224. 
 
Ishigami M, Swertfeger DK, Hui MS, Granholm NA, Hui DY. 2000. Apolipoprotein E inhibition 
of vascular SMC proliferation but not the inhibition of migration is mediated through 
activation of inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol. 20:1020–1026 
 
 
N, Ito K, Takagi N. 2010. Safety and efficacy profiles of tocilizumab monotherapy in Japanese 
patients with rheumatoid arthritis: meta-analysis of six initial trials and five long-term 
extensions. Mod Rheumatol. 20:222-32 
 
Iwamoto T, Okamoto H, Toyama Y, Momohara S. 2008. Molecular aspects of rheumatoid 
arthritis: chemokines in the joints of patients. FEBS J. 275(18):4448-55 
 
Jackson CL, Bennett MR, Biessen EA, Johnson JL, Krams R. 2007. Assessment of unstable 
atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 27(4):714-20. Epub 2007 Mar 1.  
 
Jacobsson LT, Turesson C, Gulfe A, Kapetanovic MC, Petersson IF, Saxne T, Geborek P. 2005. 
Treatment with tumor necrosis factor blockers is associated with a lower incidence of first 
cardiovascular events in patients with rheumatoid arthritis. J Rheumatol. 32 (7):1213–1218 
 
Jain MK, Ridker PM. 2005. Anti-inflammatory effects of statins: clinical evidence and basic 
mechanisms. Nat Rev Drug Discov. 4(12):977-87. 
 



239 
 

Jawieri J, Nastalek P, Korbut R. 2004. Mouse models of experimental atherosclerosis. J 
Physiol Pharmacol. 55: 503-17. 
 
Jones GW, McLeod L, Kennedy CL, Bozinovski S, Najdovska M, Jenkins BJ. Imbalanced gp130 
signalling in ApoE-deficient mice protects against atherosclerosis. 2015. Atherosclerosis. 
238(2):321-8. doi: 10.1016/j.atherosclerosis.2014.12.037.  
 
Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller GM. 2001. The soluble interleukin 6 
receptor: mechanismsof production and implications in disease. FASEB J. 15(1):43-58 
 
Jones SA, Novick D, Horiuchi S, Yamamoto N, Szalai AJ, Fuller GM. 1999. C-reactive protein: 
a physiological activator of interleukin 6 receptor shedding. J Exp Med. 189(3):599-604. 
 
Jostock T, Müllberg J, Ozbek S, Atreya R, Blinn G, Voltz N, Fischer M, Neurath MF, Rose-John 
S. 2001. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling 
responses. Eur J Biochem. 268(1):160-7. 
 
Kai H, Shibuya K, Wang Y, Kameta H, Kameyama T, Tahara-Hanaoka S, Miyamoto A, Honda S, 
Matsumoto I, Koyama A, Sumida T, Shibuya A. 2006. Critical role of M. tuberculosis for 
dendritic cell maturation to induce collagen-induced arthritis in H-2b background of C57BL/6 
mice. Immunology, 118:233-239 
 
Katsuda S, Okada Y, Minamoto T, Oda Y, Matsui Y, Nakanishi I. 1992. Collagens in human 
atherosclerosis. Immunohistochemical analysis using collagen type-specific antibodies. 
Arterioscler Thromb. 12(4):494-502 
 
Kawaji H, Yokomura K, Kikuchi K, Somoto Y, Shirai Y. 1995. Macrophage colony-stimulating 
factor in patients with rheumatoid arthritis. Nihon Ika Daigaku Zasshi. 62(3):260-70. 
 
Kearney PM1, Baigent C, Godwin J, Halls H, Emberson JR, Patrono C. 2006. Do selective cyclo-
oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the 
risk of atherothrombosis? Meta-analysis of randomised trials. BMJ. 332(7553):1302-8. 
 
Kelt I, Uren N. 2009. Cardiovascular risk in rheumatoid arthritis. Br J Cardiol. 16:113–115. 
 
Kerekes G, Soltész P, Nurmohamed MT, Gonzalez-Gay MA, Turiel M, Végh E, Shoenfeld Y, 
McInnes I, Szekanecz Z. 2012. Validated methods for assessment of subclinical 
atherosclerosis in rheumatology. Nat Rev Rheumatol. 21;8(4):224-34. doi: 
10.1038/nrrheum.2012.16. 
 
Kerola AM,  Kauppi MJ, Kerola T, Nieminen TV. 2012a. How early in the course of rheumatoid 
arthritis does the excess cardiovascular risk appear? Ann Rheum Dis. 71:1606–15 
 
Kerola AM, Kerola T,  Kauppi MJ Kautiainen H, Virta LJ, Puolakka K, Nieminen TV. 2012b. 
Cardiovascular comorbidities antedating the diagnosis of rheumatoid arthritis. Ann Rheum 
Dis. 98:360–9. 
 
Kim HO, Kim HS, Youn JC, Shin EC, Park S. 2011. Serum cytokine profiles in healthy young and 
elderly population assessed using multiplexed bead-based immunoassays. J Transl Med. 
20;9:113. doi: 10.1186/1479-5876-9-113. 
 



240 
 

Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh GY. 2001. Vascular endothelial growth factor 
expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 
(VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol 
Chem. 9;276(10):7614-20.  
 
Kitani A, Nakashima N, Matsuda T, Xu B, Yu S, Nakamura T, Matsuyama T. 1996. T cells 

bound by vascular cell adhesion molecule-1/CD106 in synovial fluid in rheumatoid arthritis: 

inhibitory role of soluble vascular cell adhesion molecule-1 in T-cell activation. J Immunol. 

156:2300-2308. 

Kitas GD,  Nightingale P, Armitage J,  Sattar N, TRACE RA Consortium, Belch J, Symmons D. 
2015. Trial of atorvastatin for the primary prevention of cardiovascular events in patients 
with rheumatoid arthritis (TRACE RA). Ann Rheum Dis. 74(Suppl 2):688 
 
Kjaergaard AG, Dige A, Krog J, Tønnesen E, Wogensen L. 2013. Soluble adhesion molecules 
correlate with surface expression in an in vitro model of endothelial activation. Basic Clin 
Pharmacol Toxicol. 113(4):273-9. doi: 10.1111/bcpt.12091.  
 
Klein-Wieringa IR, van der Linden MP, Knevel R, Kwekkeboom JC, van Beelen E, Huizinga TW, 
van der Helm-van Mil A, Kloppenburg M, Toes RE, Ioan-Facsinay A. 2011. Baseline serum 
adipokine levels predict radiographic progression in early rheumatoid arthritis. Arthritis 
Rheum. 63(9):2567-74. doi: 10.1002/art.30449. 
 
Klimiuk PA, Sierakowski S, Domysławska I, Fiedorczyk M, Chwiećko J. 2004. Reduction of 
soluble adhesion molecules (sICAM-1, sVCAM-1, and sE-selectin) and vascular endothelial 
growth factor levels in serum of rheumatoid arthritis patients following multiple intravenous 
infusions of infliximab. Arch Immunol Ther Exp (Warsz). 52(1):36-42. 
 
Klimiuk P, Sierakowski S, Latosiewicz R, Cylwik JP, Cylwik B, Skowronski J, Chwiecko J. 2002. 
Soluble adhesion molecules (ICAM-1, VCAM-1, and E-selectin) and vascular endothelial 
growth factor (VEGF) in patients with distinct variants of rheumatoid synovitis. Annals of the 
Rheumatic Diseases. 61(9):804-809. doi:10.1136/ard.61.9.804. 
 
Klouche M1, Bhakdi S, Hemmes M, Rose-John S. 1999. Novel path to activation of vascular 
smooth muscle cells: up-regulation of gp130 creates an autocrine activation loop by IL-6 and 
its soluble receptor. J Immunol. 15;163(8):4583-9. 
 
Knedla A, Neumann E, Müller-Ladner U. 2007. Developments in the synovial biology field 
2006. Arthritis Research & Therapy. 9(2):209. doi:10.1186/ar2140. 
 
Kobayashi Y, Giles JT, Hirano M, Yokoe I, Nakajima Y, Bathon J, Lima J, Kobayashi H. 2010.  
Assessment of myocardial abnormalities in rheumatoid arthritis using a comprehensive 
cardiac magnetic resonance approach: a pilot study. Arthritis Research & Therapy. 
12(5):R171. doi:10.1186/ar3131. 
 
Koch AE. 2005. Chemokines and their receptors in rheumatoid arthritis: future targets? 
Arthritis Rheum. 52(3):710-21. 
 
Koch AE, Kunkel SL, Harlow LA, Johnson B, Evanoff HL, Haines GK, Burdick MD, Pope RM, 
Strieter RM. 1992. Enhanced production of monocyte chemoattractant protein-1 in 
rheumatoid arthritis. J Clin Invest. 90(3):772–779 
 



241 
 

Kohno N, Yokoyama A, Oyama T, Hirasawa Y, Hiwada K, Okuda Y, Takasugi K. 1998. Soluble 
interleukin-6 receptor in rheumatoid arthritis. Japanese Journal of Rheumatology. 8:131. 
doi:10.1007/BF03041336 
 
Kondo K, Kitagawa K, Nagai Y, Yamagami H, Hashimoto H, Hougaku H, Hori M. 2005. 
Associations of soluble intercellular adhesion molecule-1 with carotid atherosclerosis 
progression. Atherosclerosis. 179(1):155–160 
 
Kooter AJ, Kostense PJ, Groenewold J, Thijs A, Sattar N, Smulders YM. Integrating Information 
From Novel Risk Factors With Calculated Risks. Circulation. 2011;124:741-745 
 
Kopf M, Baumann H, Freer G, Freudenberg M, Lamers M, Kishimoto T, Zinkernagel R, 
Bluethmann H, Köhler G. 1994. Impaired immune and acute-phase responses in interleukin-
6-deficient mice. Nature. 368(6469):339-42. 
 
Kraakman MJ, Kammoun HL1, Allen TL, Deswaerte V, Henstridge DC, Estevez E, Matthews 
VB, Neill B, White DA, Murphy AJ, Peijs L, Yang C1, Risis S, Bruce CR, Du XJ, Bobik A, Lee-
Young RS, Kingwell BA, Vasanthakumar A, Shi W7, Kallies A, Lancaster GI, Rose-John S, 
Febbraio MA. 2015. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose 
tissue macrophage recruitment but does not improve insulin resistance. Cell Metab. 
21(3):403-16. doi: 10.1016/j.cmet.2015.02.006  
 
Kuan WP, Tam LS, Wong CK, Ko FW, Li T, Zhu T, Li EK. 2010. CXCL 9 and CXCL 10 as Sensitive 
markers of disease activity in patients with rheumatoid arthritis. J Rheumatol. 37(2):257-64. 
doi: 10.3899/jrheum.090769. 
 
Kume K, Amano K, Yamada S, Hatta K, Ohta H, Kuwaba N. 2011. Tocilizumab monotherapy 
reduces arterial stiffness as effectively as etanercept or adalimumab monotherapy in 
rheumatoid arthritis: an open-label randomized controlled trial. J Rheumatol. 38(10):2169-
71. doi: 10.3899/jrheum.110340.  
 
Kunutsor SK, Bakker SJL, Dullaart RPF. 2017. Soluble Vascular Cell Adhesion Molecules May 
be Protective of Future Cardiovascular Disease Risk: Findings from the PREVEND Prospective 
Cohort Study. J Atheroscler Thromb. 24(8):804-818. doi: 10.5551/jat.38836 
Kvien TK, Uhlig T, Ødegård S, Heiberg MS. 2006. Epidemiological aspects of rheumatoid 
arthritis: the sex ratio. Ann N Y Acad Sci. 1069:212-22. 
 
Larché MJ, Seymour M, Lim A, Eckersley RJ, Pétavy F, Chiesa F, Rioja I, Lukey PT, Binks M, 
McClinton C, Dolan K, Taylor PC.2010.  Quantitative power Doppler ultrasonography is a 
sensitive measure of metacarpophalangeal joint synovial vascularity in rheumatoid arthritis 
and declines significantly following a 2-week course of oral low-dose corticosteroids. J 
Rheumatol. 37(12):2493-501. doi: 10.3899/jrheum.100322 
 
Laszik ZG, Zhou XJ, Ferrell GL, Silva FG, Esmon CT. 2001. Down-regulation of endothelial 
expression of endothelial cell protein C receptor and thrombomodulin in coronary 
atherosclerosis. Am J Pathol. 159: 797–802. 
 
Ley K, Huo Y. VCAM-1 is critical in atherosclerosis. 2001. J Clin Invest. 107(10):1209–10. doi: 
10.1172/JCI13005 
 

http://dx.doi.org/10.1172/JCI13005


242 
 

Liao M, Xu J, Clair AJ, Ehrman B, Graham LM, Eagleton MJ. 2012. Local and Systemic 
Alterations in Signal Transducers and Activators of Transcription (STAT) Associated with 
Human Abdominal Aortic Aneurysms. The Journal of Surgical Research. 176(1):321-328. 
doi:10.1016/j.jss.2011.05.041. 
 
Libby P, Ridker PM, Hansson GK. 2011. Progress and challenges in translating the biology of 
atherosclerosis. Nature. 19;473(7347):317-25.  
 
Libby P, Ridker PM, Maseri A. 2002. Inflammation and Atherosclerosis Circulation. 105:1135-
1143 
 
Lin ZQ, Kondo T, Ishida Y, Takayasu T, Mukaida N. 2003. Essential involvement of IL-6 in the 
skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J 
Leukoc Biol. 73(6):713-21 
 
Linic IS, Sosa I, Kovacevic M, Ivancic A, Trobonjaca Z, Ledic D, Grubesic A, Dvornik S, Stifter S. 
2013. Predicting carotid restenosis by comparison of plaque MCP-1 mRNA expression and 
serum levels. Med Hypotheses. 80(1):26-8. 
 
Lo CW, Chen MW, Hsiao M, Wang S, Chen CA, Hsiao SM, Chang JS, Lai TC, Rose-John S, Kuo 
ML, Wei LH. 2011. IL-6 trans-signaling in formation and progression of malignant ascites in 
ovarian cancer. Cancer Res. 15;71(2):424-34. doi: 10.1158/0008-5472.CAN-10-1496.  
 
López-Mejías R, García-Bermúdez M, González-Juanatey C, Castañeda S, Miranda-Filloy JA, 
Gómez-Vaquero C, Fernández-Gutiérrez B, Balsa A, Pascual-Salcedo D, Blanco R, González-
Álvaro I, Llorca J, Martín J, González-Gay MA. 2011. Lack of association of IL6R rs2228145 
and IL6ST/gp130 rs2228044 gene polymorphisms with cardiovascular disease in patients 
with rheumatoid arthritis. Tissue Antigens. 78(6):438-41. 
 
Low ASL, Symmons DPM, Lunt M, et al. Relationship between exposure to tumour necrosis 
factor inhibitor therapy and incidence and severity of myocardial infarction in patients with 
rheumatoid arthritis. Annals of the Rheumatic Diseases Published Online First: 10 January 
2017. doi: 10.1136/annrheumdis-2016-209784. 
 
Luc G, Arveiler D, Evans A, Amouyel P, Ferrieres J, Bard JM, Elkhalil L, Fruchart JC, Ducimetiere 
P; PRIME Study Group. 2003. Circulating soluble adhesion molecules ICAM-1 and VCAM-1 
and incident coronary heart disease: the PRIME Study. Atherosclerosis. 170(1):169-76. 
 
Luross JA, Williams NA. 2001. The genetic and immunopathological processes underlying 
collagen-induced arthritis. Immunology. 103:407–16. 
 
Luqmani R, Hennell S, Estrach C, Basher D, Birrell F, Bosworth A, Burke F, Callaghan C, Candal-
Couto J, Fokke C, Goodson N, Homer D, Jackman J, Jeffreson P, Oliver S, Reed M, Sanz L, 
Stableford Z, Taylor P, Todd N, Warburton L, Washbrook C, Wilkinson M. 2009. BSR and BHPR 
Standards, Guidelines and Audit Working Group. British Society for Rheumatology and British 
Health Professionals in Rheumatology guideline for the management of rheumatoid arthritis 
(after the first 2 years). Rheumatology (Oxford) 48(4):436-9. 
 
Lyngso D, Simonsen L, Bulow J. 2002. Metabolic effects of interleukin-6 in human splanchnic 
and adipose tissue. J Physiol. 543:379 –386. 
 



243 
 

Macfarlane DP, Forbes S, Walker BR. 2008. Glucocorticoids and fatty acid metabolism in 
humans: fuelling fat redistribution in the metabolic syndrome. J Endocrinol. 197(2):189-204. 
doi: 10.1677/JOE-08-0054. 
 
Mach F, Sauty A, Iarossi AS, Sukhova GK, Neote K, Libby P, Luster AD. 1999. Differential 
expression of three T lymphocyte-activating CXC chemokines by human atheroma-
associated cells. J Clin Invest. 104(8):1041-50. 
 
Madhok R, Crilly A, Watson J, Capell HA. 1993. Serum interleukin 6 levels in rheumatoid 
arthritis: correlations with clinical and laboratory indices of disease activity. Ann Rheum Dis. 
52(3):232-4. 
 
Mahley RW.  1998. Apolipoprotein E: cholesterol transport protein with expanding role in 
cell biology. Science. 240(4852): 622–630 
 
Majesky MW, Dong XR, Hoglund V, Mahoney WM Jr, Daum G. 2011. The adventitia: a 
dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol. 
31(7):1530-9. doi: 10.1161/ATVBAHA.110.221549. 
 
Malik I, Danesh J, Whincup P, Bhatia V, Papacosta O, Walker M, Lennon L, Thomson A, 
Haskard D. 2001. Soluble adhesion molecules and prediction of coronary heart disease: a 
prospective study and meta-analysis. Lancet. 358(9286):971-6. 
 
Mallat Z, Besnard S, Duriez M, Deleuze V, Emmanuel F, Bureau MF, Soubrier F, Esposito B, 
Duez H, Fievet C, Staels B, Duverger N, Scherman D, Tedgui A. 1999. Protective role of 
interleukin-10 in atherosclerosis. Circ Res. 85:e17–e24 
 
Mandl LA, Chibnik L, Schur P, Karlson EW. 2005. Anti-cyclic citrullinated peptide (Anti-CCP) 
antibodies are strongly associated with risk of rheumatoid arthritis after adjusting for 
hormonal and behavioral factors. Arthritis Rheum. 52 suppl.:S732 
 
Maradit-Kremers H, Crowson CS,  Nicola PJ, Ballman KV, Roger VL, Jacobsen SJ, Gabriel SE. 
2005a. Increased unrecognized coronary heart disease and sudden deaths in rheumatoid 
arthritis: a population-based cohort study. Arthritis Rheum, 52(2):402–411 
 
Maradit-Kremers H, Nicola PJ, Crowson CS, Ballman KV, Gabriel SE. 2005b. Cardiovascular 
death in rheumatoid arthritis: a population-based study. Arthritis Rheum, 52:722-732 
 
Martinovic I, Abegunewardene N, Seul M, Vosseler M, Horstick G, Buerke M, Darius H, 
Lindemann S. 2005. Elevated monocyte chemoattractant protein-1 serum levels in patients 
at risk for coronary artery disease. Circ J.  69:1484–1489 
 
Masdottir B, Jónsson T, Manfredsdottir V, Víkingsson A, Brekkan A, Valdimarsson H. 2000. 
Smoking, rheumatoid factor isotypes and severity of rheumatoid arthritis. Rheumatology 
(Oxford). 39(11):1202-5. 
 
Masuko K. 2014. Rheumatoid Cachexia Revisited: A Metabolic Co-Morbidity in Rheumatoid 
Arthritis. Frontiers in Nutrition. 1:20. doi:10.3389/fnut.2014.00020. 
 



244 
 

Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, 
Asmar R, Reneman RS, Hoeks AP, Breteler MM, Witteman JC. 2006. Arterial stiffness and risk 
of coronary heart disease and stroke: the Rotterdam Study. Circulation. 113(5):657-63. 
 
Myasoedova E, Crowson CS, Kremers HM, Roger VL, Fitz-Gibbon PD, Therneau TM, Gabriel 
SE. Lipid paradox in rheumatoid arthritis: The impact of serum lipid measures and systemic 
inflammation on the risk of cardiovascular disease. Annals of the rheumatic diseases. 
2011;70(3):482-487. 
 
McAteer MA, Schneider JE, Clarke K, Neubauer S, Channon KM, Choudhury RP. 2004. 
Quantification and 3D reconstruction of atherosclerotic plaque components in 
apolipoprotein E knockout mice using ex vivo high-resolution MRI. Arterioscler Thromb Vasc 
Biol. 24(12):2384-90.  
 
McEntegart A,  Capell HA, Creran D, Rumley A, Woodward M, Lowe GD. 2001. Cardiovascular 
risk factors, including thrombotic variables, in a population with rheumatoid arthritis. 
Rheumatology (Oxford). 40(6):640–644 
 
McFarland-Mancini MM1, Funk HM, Paluch AM, Zhou M, Giridhar PV, Mercer CA, Kozma SC, 
Drew AF. 2010. Differences in wound healing in mice with deficiency of IL-6 versus IL-6 
receptor. J Immunol. 184(12):7219-28. doi: 10.4049/jimmunol.0901929.  
 
Meier-Ewert HK, Ridker PM, Rifai N, Price N, Dinges DF, Mullington JM. 2001. Absence of 
diurnal variation of C-reactive protein concentrations in healthy human subjects. Clin Chem. 
47(3):426-30. 
 
Mercer E, Rekedal L, Garg R, Lu B, Massarotti EM, Solomon DH. 2012. Hydroxychloroquine 
improves insulin sensitivity in obese non-diabetic individuals. Arthritis Res Ther. 14(3):R135 
 
Meune C, Touze E, Trinquart L, Allanore Y. 2009. Trends in cardiovascular mortality in 
patients with rheumatoid arthritis over 50 years: a systematic review and meta-analysis of 
cohort studies. Rheumatology. 48(10):1309-13. 
 
Meune C, Touze E, Trinquart L, Allanore Y. 2010. High risk of clinical cardiovascular events in 
rheumatoid arthritis: Levels of associations of myocardial infarction and stroke through a 
systematic review and meta-analysis. Archives of cardiovascular diseases. 103(4):253-61. 
 
Mitchell JRA and Schwartz CJ. 1962. Relationship Between Arterial Disease in Different Sites 
Br Med J. 1(5288):1293–1301.  
 
Modur V, Li Y, Zimmerman GA, Prescott SM, McIntyre TM. 1997. Retrograde inflammatory 
signaling from neutrophils to endothelial cells by soluble interleukin-6 receptor alpha. J Clin 
Invest. 100(11):2752-6. 
 
Morley JE, Thomas DR, Wilson MM. 2006. Cachexia: pathophysiology and clinical relevance. 
Am J Clin Nutr. 83:735–43. 
 
Morris SJ, Wasko MC, Antohe JL, Sartorius JA, Kirchner HL, Dancea S, Bili A. 2011. 
Hydroxychloroquine use associated with improvement in lipid profiles in rheumatoid 
arthritis patients. Arthritis Care Res (Hoboken). 63(4):530–4. 
 



245 
 

Moss JWE, Ramji DP. 2016. Nutraceutical therapies for atherosclerosis. Nature Reviews 
Cardiology 13:513–532. doi:10.1038/nrcardio.2016.103 
 
Moudgil KD, Kim P, Brahn E. 2011. Advances in Rheumatoid Arthritis Animal Models. Current 
rheumatology reports. 13(5):456-463. doi:10.1007/s11926-011-0200-z. 
 
Mould AW, Scotney P, Greco SA, Hayward NK, Nash A, Kay GF. 2008. Prophylactic but not 
therapeutic activity of a monoclonal antibody that neutralizes the binding of VEGF-B to 
VEGFR-1 in a murine collagen-induced arthritis model. Rheumatology (Oxford). 47(3):263-
6.doi:10.1093/rheumatology/kem369.  
 
Mulherin DM1, Veale DJ, Belch JJ, Bresnihan B, Fitzgerald O. 1996. Adhesion molecules in 
untreated inflammatory arthritis: synovial expression and levels in synovial fluid and serum. 
QJM. 89(3):195-203. 
 
Myasoedova E, Davis JM, Crowson CS, Roger VL, Karon BL, Borgeson DD, Therneau TM, 
Matteson EL, Rodeheffer RJ, Gabriel SE. 2013. Rheumatoid Arthritis is Associated with Left 
Ventricular Concentric Remodeling: Results of a Population-based Cross-sectional Study. 
Arthritis and rheumatism. 65(7):1713-1718. doi:10.1002/art.37949. 
 
Myers LK, Rosloniec EF, Cremer MA, Kang, AH. 1997. Collagen-induced arthritis, an animal 
model of autoimmunity. Life Sci. 61:1861–1878. 
 
Nakae S, Nambu A, Sudo K, Iwakura Y. 2003. Suppression of immune induction of collagen-
induced arthritis in IL-17-deficient mice. J Immunol. 171: 6173–7. 
 
Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. 1994. ApoE-deficient mice develop 
lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 
14(1):133-40. 
 
National Institute for Health and Clinical Excellence. 2009. Clinical Guideline CG79. 
Rheumatoid arthritis in adults: management, February 2009. 
 
National Institute for Health and Care Excellence. 2014 Lipid modification (CG181): 
cardiovascular risk assessment and the modification of blood lipids for the primary and 
secondary prevention of cardiovascular disease". National Institute for Health and Care 
Excellence (NICE). 
  
Napoli C, D'Armiento FP, Mancini FP, Postiglione A, Witztum J, Palumbo G, Palinski W. 1997. 
Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal 
hypercholesterolemia: intimal accumulation of low density lipoprotein and its oxidation 
precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest. 100 (11):2680-
90 
 
Naranjo A, Sokka T, Descalzo MA, Calvo-Alén J, Hørslev-Petersen K, Luukkainen RK, Combe 
B, Burmester GR, Devlin J, Ferraccioli G, Morelli A, Hoekstra M, Majdan M, Sadkiewicz S, 
Belmonte M, Holmqvist AC, Choy E, Tunc R, Dimic A, Bergman M, Toloza S, Pincus T; QUEST-
RA Group. 2008. Cardiovascular disease in patients with rheumatoid arthritis: results from 
the QUEST-RA study. Arthritis Res Ther. 10(2):R30 
 



246 
 

Narazaki M, Yasukawa K, Saito T, Ohsugi Y, Fukui H, Koishihara Y. Yancopoulos GD, Taga T, 
Kishimoto T. 1993. Soluble forms of the interleukin-6 signal-transducing receptor component 
gp130 in human serum possessing a potential to inhibit signals through membrane-anchored 
gp130. Blood. 82:1120–6 
 
Natarajan S, Glick H, Criqui M, Horowitz D, Lipsitz SR, Kinosian B. 2003. Cholesterol measures 
to identify and treat individuals at risk for coronary heart disease. Am J Prev Med. 25(1):50-
7. 
 
National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and 
Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III).  2002. Third Report 
of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, 
and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report.  
Circulation. 106(25):3143-3421 
 
National Collaborating Centre for Chronic Conditions (UK). 2009. Rheumatoid Arthritis: 
National Clinical Guideline for Management and Treatment in Adults. London: Royal College 
of Physicians (UK). 
 
Navarro-Hernández RE, Oregon-Romero E, Vázquez-Del Mercado M, Rangel-Villalobos H, 
Palafox-Sánchez CA, Muñoz-Valle JF. 2009. Expression of ICAM1 and VCAM1 serum levels in 
rheumatoid arthritis clinical activity. Association with genetic polymorphisms. Dis Markers. 
26(3):119-26. 
 
Navarro-Millán I, Singh JA, Curtis JR. 2012. Systematic review of tocilizumab for rheumatoid 
arthritis: a new biologic agent targeting the interleukin-6 receptor. Clin Ther. 34(4):788-
802.e3. doi: 10.1016/j.clinthera.2012.02.014.  
 
Nechemia-Arbely Y, Barkan D, Pizov G, Shriki A, Rose-John S, Galun E, Axelrod JH. 2008. IL-
6/IL-6R axis plays a critical role in acute kidney injury. J Am Soc Nephrol. 19(6):1106-15. doi: 
10.1681/ASN.2007070744. 
 
Nielen MM, van Schaardenburg D, Reesink HW, van de Stadt RJ, van der Horst-Bruinsma IE, 
de Koning MH, Habibuw MR, Vandenbroucke JP, Dijkmans BA. 2004. Specific autoantibodies 
precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood 
donors. Arthritis Rheum. 50(2):380-6. 
 
Nishimoto N, Ito K, Takagi N. 2010. Safety and efficacy profiles of tocilizumab monotherapy 
in Japanese patients with rheumatoid arthritis: meta-analysis of six initial trials and five long-
term extensions. Mod Rheumatol. 20:222-32 
 
Nishimoto N, Kishimoto T.Interleukin 6: from bench to bedside. 2006. Nat Clin Pract 
Rheumatol. 2(11):619-26. 
 
Nishimoto N, Terao K, Mima T, Nakahara H, Takagi N, Kakehi T. 2008. Mechanisms and 
pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor 
after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with 
rheumatoid arthritis and Castleman disease. Blood. 15;112(10):3959-64. doi: 10.1182/blood-
2008-05-155846.  
 



247 
 

Nowell MA, Richards PJ, Fielding CA, Ognjanovic S, Topley N, Williams AS, Bryant-Greenwood 
G, Jones SA. 2006. Regulation of pre-B cell colony-enhancing factor by STAT-3-dependent 
interleukin-6 trans-signaling: implications in the pathogenesis of rheumatoid arthritis. 
Arthritis Rheum. 54(7):2084–2095. doi: 10.1002/art.21942 
 
Nishina N, Kikuchi J, Hashizume M, Yoshimoto K, Kameda H, Takeuchi T. 2014. Baseline levels 
of soluble interleukin-6 receptor predict clinical remission in patients with rheumatoid 
arthritis treated with tocilizumab: implications for molecular targeted therapy.  Annals of the 
Rheumatic Diseases.  Ann Rheum Dis 2014;73:945–7. doi: 10.1136/annrheumdis-2013-
204137 
 
Nowell MA, Richards PJ, Horiuchi S, Yamamoto N, Rose-John S, Topley N, Williams AS, Jones 
SA. 2003. Soluble IL-6 Receptor Governs IL-6 Activity in Experimental Arthritis: Blockade of 
Arthritis Severity by Soluble Glycoprotein 130. J Immunol. 171:3202–9 
 
Nowell MA, Williams AS, Carty SA, Scheller J, Hayes AJ, Jones GW, Richards PJ, Slinn S, Ernst 
M, Jenkins BJ, Topley N, Rose-John S, Jones SA. 2009. Therapeutic targeting of IL-6 trans-
signaling counteracts STAT3 control of the inflammatory infiltrate in experimental arthritis. J 
Immunol. 182:613–22. 
 
Ntari L, Sakkou M, Chouvardas P, Mourouzis I, Prados A, Denis MC, Karagianni N, Pantos C, 
Kollias G. Comorbid TNF-mediated heart valve disease and chronic polyarthritis share 
common mesenchymal cell-mediated aetiopathogenesis. Ann Rheum Dis. 2018 
Jun;77(6):926-934. doi: 10.1136/annrheumdis-2017-212597. Epub 2018 Feb 23. 
 
O’Brien KD, Allen MD, McDonald TO, Chait A, Harlan JM, Fishbein D, McCarty J, Ferguson M, 
Hudkins K, Benjamin CD. 1993. Vascular cell adhesion molecule-1 is expressed in human 
coronary atherosclerotic plaques. Implications for the mode of progression of advanced 
coronary atherosclerosis. J Clin Invest. 92:945–951. 
 
O'Keeffe LM, Muir G, Piterina AV, McGloughlin T. 2009. Vascular cell adhesion molecule-1 
expression in endothelial cells exposed to physiological coronary wall shear stresses. J 
Biomech Eng. 131(8):081003. doi: 10.1115/1.3148191. 
 
O. Ozdemir, F. Gundogdu, S. Karakelleoglu, S. Sevimli, I. Pirim, M. Acikel, S. Arslan, S. Serdar. 
2008. Comparison of serum levels of inflammatory markers and allelic variant of interleukin-
6 in patients with acute coronary syndrome and stable angina pectoris. Coron Artery Dis.  
19:15–19 
 
Ozen G, Sunbul M, Atagunduz P, Direskeneli H, Tigen K, Inanc N. 2016. The 2013 ACC/AHA 
10-year atherosclerotic cardiovascular disease risk index is better than SCORE and QRisk II in 
rheumatoid arthritis: is it enough? Rheumatology (Oxford). 55(3):513-22. doi: 
10.1093/rheumatology/kev363 
 
Paffen E, DeMaat MP. 2006. C-reactive protein in atherosclerosis: A causal factor? Cardiovasc 
Res. 1;71(1):30-9. 
 
Pan M, Kang I, Craft J, Yin Z. 2004. Resistance to development of collagen-induced arthritis 
in C57BL/6 mice is due to a defect in secondary, but not in primary, immune response. J Clin 
Immunol, 24:481-491 



248 
 

Panoulas VF, Metsios GS, Pace AV, John H, Treharne GJ, Banks MJ, Kitas GD. 2008. 
Hypertension in rheumatoid arthritis. Rheumatology (Oxford). 47(9):1286-98. doi: 
10.1093/rheumatology/ken159.  
 
Parisinos CA, Lees CW, Wallace WAH, Satsangi J. 2011. Sarcoidosis complicating treatment 
with natalizumab for Crohn's disease. Thorax. 66:1109-1110. 
 
Park JG, Ryu SY, Jung IH, Lee YH, Kang KJ, Lee MR, Lee MN, Sonn SK, Lee JH, Lee H, Oh GT, 
Moon K, Shim H. 2013. Evaluation of VCAM-1 antibodies as therapeutic agent for 
atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis. 226(2):356-63. doi: 
10.1016/j.atherosclerosis.2012.11.029.  
 
Perk J, De Backer G, Gohlke H, Graham I, Reiner Z, Verschuren M, Albus C, Benlian P, Boysen 
G, Cifkova R, Deaton C, Ebrahim S, Fisher M, Germano G, Hobbs R, Hoes A, Karadeniz S, 
Mezzani A, Prescott E, Ryden L, Scherer M, Syvänne M, Scholte op Reimer WJ, Vrints C, Wood 
D, Zamorano JL, Zannad F; European Association for Cardiovascular Prevention & 
Rehabilitation (EACPR); ESC Committee for Practice Guidelines (CPG). 2012. European 
Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth 
Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular 
Disease Prevention in Clinical Practice (constituted by representatives of nine societies and 
by invited experts). Eur Heart J. 33(13):1635-701. doi: 10.1093/eurheartj/ehs092.  
 
Peters M, Blinn G, Solem F, Fischer M, Meyer zum Buschenfelde K-H, Rose-John S. 1998. In 
vivo and in vitro activities of the gp130-stimulating designer cytokine hyper IL-6. J Immunol. 
161:3575-3581. 
 
Peters MJ, Symmons DP, McCarey D, Dijkmans BA, Nicola P, Kvien TK, McInnes IB, 
Haentzschel H, Gonzalez-Gay MA, Provan S, Semb A, Sidiropoulos P, Kitas G, Smulders YM, 
Soubrier M, Szekanecz Z, Sattar N, Nurmohamed MT. 2010. EULAR evidence-based 
recommendations for cardiovascular risk management in patients with rheumatoid arthritis 
and other forms of inflammatory arthritis. Annals of the rheumatic diseases. 69(2):325-31. 
 
Peters MJ, van Halm VP, Voskuyl AE, Smulders YM, Boers M, Lems WF, Visser M, Stehouwer 
CD, Dekker JM, Nijpels G, Heine R, Dijkmans BA, Nurmohamed MT. 2009. Does rheumatoid 
arthritis equal diabetes mellitus as an independent risk factor for cardiovascular disease? A 
prospective study. Arthritis Rheum. 61:1571-1579. 
 
Picerno V, Ferro F, Adinolfi A, Valentini E, Tani C, Alunno A. 5015. One year in review: the 
pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 33(4):551-8.  
 
Prati C, Berthelot A, Wendling D, Demougeot C. 2011. Endothelial dysfunction in rat 
adjuvant-induced arthritis: up-regulation of the vascular arginase pathway. Arthritis Rheum. 
63(8):2309-17. doi: 10.1002/art.30391. 
 
Pratt AG, Swan DC, Richardson S, Wilson G, Hilkens CM, Young DA, Isaacs JD. A CD4 T cell 
gene signature for early rheumatoid arthritis implicates interleukin 6-mediated STAT3 
signalling, particularly in anti-citrullinated peptide antibody-negative disease. Ann Rheum 
Dis. 2012 Aug;71(8):1374-81. doi: 10.1136/annrheumdis-2011-200968. Epub 2012 Apr 24. 
 
Prevoo ML, van 't Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL. 1995.  
Modified disease activity scores that include twenty-eight-joint counts. Development and 



249 
 

validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis 
Rheum. 38(1):44-8.  
 
Puel A, Picard C, Lorrot M, Pons C, Chrabieh M, Lorenzo L, Mamani-Matsuda M, Jouanguy E, 
Gendrel D, Casanova JL. 2008. Recurrent staphylococcal cellulitis and subcutaneous 
abscesses in a child with autoantibodies against IL-6. J Immunol. 180(1):647-54. 
 
Pugner KM, Scott DI, Holmes JW, Heike K. 2000. The costs of rheumatoid arthritis: an 
international long-term view. Seminars in Arthritis & Rheumatism. 29(5):305–320.) 
 
Rabe B, Chalaris A, May U, Waetzig GH, Seegert D, Williams AS, Jones SA, Rose-John S, 
Scheller J. 2008. Transgenic blockade of interleukin 6 transsignaling abrogates inflammation. 
Blood. 111:1021–8 
 
Raitakari OT, Celermajer DS. 2000. Flow-mediated dilatation. British Journal of Clinical 
Pharmacology. 50(5):397-404. doi:10.1046/j.1365-2125.2000.00277.x. 
 
Rakemann T, Niehof M, Kubicka S, Fischer M, Manns MP, Rose-John S, Trautwein C. 1999. 
The designer cytokine hyper-interleukin-6 is a potent activator of STAT3-dependent gene 
transcription in vivo and in vitro. J Biol Chem. 15;274(3):1257-66 
 
Rallidis LS, Zolindaki MG, Pentzeridis PC, Poulopoulos KP, Velissaridou AH, Apostolou TS. 
2004. Raised concentrations of macrophage colony stimulating factor in severe unstable 
angina beyond the acute phase are strongly predictive of long term outcome. Heart. 90: 25–
29. 
 
Ramji DP, Davies TS. 2015. Cytokines in atherosclerosis: Key players in all stages of disease 
and promising therapeutic targets. Cytokine Growth Factor Rev. 26(6):673-85. doi: 
10.1016/j.cytogfr.2015.04.003.  
 
Rao VU, Pavlov A, Klearman M, Musselman D, Giles JT, Bathon JM, Sattar N, Lee JS. 2015. An 
evaluation of risk factors for major adverse cardiovascular events during tocilizumab 
therapy. Arthritis Rheumatol. 67(2):372-80. doi: 10.1002/art.38920. 
 
Raterman HG, Levels H, Voskuyl AE, Lems WF, Dijkmans BA, Nurmohamed MT. 2013. HDL 
protein composition alters from proatherogenic into less atherogenic and proinflammatory 
in rheumatoid arthritis patients responding to rituximab. Ann Rheum Dis. 72:560-5. 
Recio-Mayoral A, Mason JC, Kaski JC, Rubens MB, Harari OA, Camici PG Chronic inflammation 
and coronary microvascular dysfunction in patients without risk factors for coronary artery 
disease. Eur Heart J. 2009 Aug;30(15):1837-43. doi: 10.1093/eurheartj/ehp205. Epub 2009 
Jun 5. 
 
Rensen S, Doevendans P,  van Eys G. 2007. Regulation and characteristics of vascular smooth 
muscle cell phenotypic diversity Neth Heart J. 15(3): 100–108. 
 
Reynolds S, Williams AS, Williams H, Smale S, Stephenson HJ, Amos N, George SJ, O’Donnell 
VB, Lang D. 2012. Contractile, but not endothelial, dysfunction in early inflammatory 
arthritis: a possible role for matrix metalloproteinase-9. Br J Pharmacol. 16:505–514 
 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ramji%20DP%5BAuthor%5D&cauthor=true&cauthor_uid=26005197
https://www.ncbi.nlm.nih.gov/pubmed/?term=Davies%20TS%5BAuthor%5D&cauthor=true&cauthor_uid=26005197
https://www.ncbi.nlm.nih.gov/pubmed/26005197


250 
 

Ridker PM, Buring JE, Rifai N, Cook NR. 2007. Development and validation of improved 
algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk 
Score. JAMA. 297:611–19. 
 
Ridker PM, Cook N. 2004. Clinical usefulness of very high and very low levels of C-reactive 
protein across the full range of Framingham Risk Scores. Circulation. 109(16):1955-1959. 
 
Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, 

Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ; JUPITER 

Study Group Rosuvastatin to prevent vascular events in men and women with elevated C-

reactive protein. N Engl J Med. 2008 Nov 20;359(21):2195-207. doi: 

10.1056/NEJMoa0807646. Epub 2008 Nov 9. 

 
Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau 

J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti 

A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi 

PRF, Troquay RPT, Libby P, Glynn RJ; CANTOS Trial Group. Antiinflammatory Therapy with 

Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017 Sep 21;377(12):1119-1131. 

doi: 10.1056/NEJMoa1707914. Epub 2017 Aug 27. 

 
Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. 2000. Plasma concentration of interleukin-
6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 
101(15):1767-1772. 
 
Rinaldi N, Willhauck M, Weis D, Brado B, Kern P, Lukoschek M, Schwarz-Eywill M, Barth TF. 
2001. Loss of collagen type IV in rheumatoid synovia and cytokine effect on the collagen 
type-IV gene expression in fibroblast-like synoviocytes from rheumatoid arthritis. Virchows 
Arch. 439(5):675-82. 
 
Rioja I, Hughes FJ, Sharp CH, Warnock LC, Montgomery DS, Akil M, Wilson AG, Binks MH, 
Dickson MC. 2008. Potential novel biomarkers of disease activity in rheumatoid arthritis 
patients: CXCL13, CCL23, transforming growth factor alpha, tumor necrosis factor receptor 
superfamily member 9, and macrophage colony-stimulating factor. Arthritis Rheum. 
58(8):2257-67. 
 
T Robak, A Gladalska, H Stepień, and E Robak. 1998. Serum levels of interleukin-6 type 
cytokines and soluble interleukin-6 receptor in patients with rheumatoid arthritis. Mediators 
Inflamm. 7(5): 347–353.  doi:  10.1080/09629359890875PMCID: PMC1781865 
 
Robertson AK, Hansson GK. 2006. T cells in atherogenesis: for better or for worse? 
Arterioscler Thromb Vasc Biol. 26(11):2421-32.  
 
Robertson J, Peters MJ, McInnes IB, Sattar N. 2013. Changes in lipid levels with inflammation 
and therapy in RA: a maturing paradigm. Nat Rev Rheumatol. 9(9):513-23. doi: 
10.1038/nrrheum.2013.91.  
 
Rohleder N, Aringer M, Boentert M. 2012. Role of interleukin-6 in stress, sleep, and fatigue. 
Ann N Y Acad Sci. 1261:88-96. doi: 10.1111/j.1749-6632.2012.06634.x. 
 



251 
 

Roman MJ, Moeller E, Davis A, Paget SA, Crow MK, Lockshin MD, Sammaritano L, Devereux 
RB, Schwartz JE, Levine DM, Salmon JE. 2006. Preclinical carotid atherosclerosis in patients 
with rheumatoid arthritis. Ann Intern Med. 144(4):249–256 
 
Rose DM, Cardarelli PM, Cobb RR, Ginsberg MH. 2000. Soluble VCAM-1 binding to alpha4 
integrins is cell-type specific and activation dependent and is disrupted during apoptosis in T 
cells. Blood. 95(2):602-9. 
 
Rose S, Eren M, Murphy S, et al. A novel mouse model that develops spontaneous arthritis 
and is predisposed towards atherosclerosis. Annals of the Rheumatic Diseases. 
2013;72(1):89-95. doi:10.1136/annrheumdis-2012-201431. 
 
Rosales-Alexander JL, Salvatierra J, Llorca J, Magro-Checa C, González-Gay MA, Cantero-
Hinojosa J, Raya-Álvarez E. 2014. Cardiovascular risk assessment in rheumatoid arthritis: 
impact of the EULAR recommendations on a national calibrated score risk index. Clin Exp 
Rheumatol. 32(2):237-42. 
 
Rose-John S. 2012. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-
inflammatory activities of IL-6. Int J Biol Sci. 8(9):1237-47. doi: 10.7150/ijbs.4989.  
 
Rosenblum JM, Shimoda N, Schenk AD, Zhang H, Kish DD, Keslar K, Farber JM, Fairchild RL. 
2010. CXCL9 and CXCL10 are Antagonistic Costimulation Molecules During the Priming of 
Alloreactive T cell Effectors. Journal of immunology. 184(7):3450-3460. 
doi:10.4049/jimmunol.0903831. 
 
Ross R. 1999. Atherosclerosis--an inflammatory disease. N Engl J Med. 340(2):115-26. 
 
Roubenoff R, Freeman LM, Smith DE, Abad LW, Dinarello CA, Kehayias JJ. 1997. Adjuvant 
arthritis as a model of inflammatory cachexia. Arthritis Rheum. 40(3):534-9. 
 
Roubenoff R, Roubenoff RA, Cannon JG, Kehayias JJ, Zhuang H, Dawson-Hughes B, Dinarello 
CA, Rosenberg IH. 1994. Rheumatoid cachexia: cytokine-driven hypermetabolism 
accompanying reduced body cell mass in chronic inflammation. J Clin Invest. 93(6):2379-86. 
 
Routsias JG, Goules JD, Goules A, Charalampakis G, Pikazis D. 2011. Autopathogenic 
correlation of periodontitis and rheumatoid arthritis. Rheumatology (Oxford). 50(7):1189-
93. doi: 10.1093/rheumatology/ker090.  
 
Rozman B, Praprotnik S, Logar D, Tomsic M, Hojnik M, Kos-Golja M, Accetto R, Dolencl P. 
2002. Leflunomide and hypertension. Ann Rheum Dis. 61(6):567–9. 
 
Saitoh T, Kishida H, Tsukada Y, Fukuma Y, Sano J, Yasutake M, Fukuma N, Kusama Y, 
Hayakawa H. 2000. Clinical significance of increased plasma concentration of macrophage 
colony-stimulating factor in patients with angina pectoris. J Am Coll Cardiol. 35:655–665. 
 
Salomaa V, Matei C, Aleksic N, Sansores-Garcia L, Folsom AR, Juneja H, Chambless LE, Wu KK. 
1999. Soluble thrombomodulin as a predictor of incident coronary heart disease and 
symptomless carotid artery atherosclerosis in the Atherosclerosis Risk in Communities (ARIC) 
Study: a case-cohort study. Lancet. 22;353(9166):1729-34. 
 



252 
 

Salonen JT1, Salonen R. 1991. Ultrasonographically assessed carotid morphology and the risk 
of coronary heart disease. Arterioscler Thromb. 11(5):1245-9. 
 
Sandborn WJ, Colombel JF, Enns R, Feagan BG, Hanauer SB, Lawrance IC, Panaccione R, 
Sanders M, Schreiber S, Targan S, van Deventer S, Goldblum R, Despain D, Hogge GS, 
Rutgeerts P; International Efficacy of Natalizumab as Active Crohn's Therapy (ENACT-1) Trial 
Group; Evaluation of Natalizumab as Continuous Therapy (ENACT-2) Trial Group. 2005. 
Natalizumab induction and maintenance therapy for Crohn's disease. N Engl J Med. 
353(18):1912-25. 
 
Sasai M, Saeki Y, Ohshima S, Nishioka K, Mima T, Tanaka T, Katada Y, Yoshizaki K, Suemura 
M, Kishimoto T. 1999. Delayed onset and reduced severity of collagen-induced arthritis in 
interleukin-6-deficient mice. Arthritis Rheum. 42(8):1635-43. 
 
Schaeverbeke T, Renaudin H, Clerc M, Lequen L, Vernhes JP, De Barbeyrac B, Bannwarth B, 
Bébéar C, Dehais J. 1997. Systematic detection of mycoplasmas by culture and polymerase 
chain reaction (PCR) procedures in 209 synovial fluid samples. Br J Rheumatol. 36(3):310-4. 
 
Schieffer B, Selle T, Hilfiker A, Hilfiker-Kleiner D, Grote K, Tietge UJ, Trautwein C, Luchtefeld 
M, Schmittkamp C, Heeneman S, Daemen MJ, Drexler H. 2004. Impact of interleukin-6 on 
plaque development and morphology in experimental atherosclerosis. Circulation. 
110(22):3493-500. 
 
Schiff MH, Kremer JM, Jahreis A, Vernon E, Isaacs JD, van Vollenhoven RF. 2011. Integrated 
safety in tocilizumab clinical trials. Arthritis Res Ther. 13 (5):R141 
Schmidt C, Hulthe J, Fagerberg B. 2009. Baseline ICAM-1 and VCAM-1 are increased in initially 

healthy middle-aged men who develop cardiovascular disease during 6.6 years of follow-up. 

Angiology. 60(1):108-14. doi: 10.1177/0003319708316899.  

Schrader LI, Kinzenbaw DA, Johnson AW, Faraci FM, Didion SP. 2007. IL-6 deficiency protects 
against angiotensin II - Induced endothelial dysfunction and hypertrophy. Arterioscler 
Thromb Vasc Biol. 27(12):2576–81 
 
Schuett H, Oestreich R, Waetzig GH, Annema W, Luchtefeld M, Hillmer A, Bavendiek U, von 
Felden J, Divchev D, Kempf T, Wollert KC, Seegert D, Rose-John S, Tietge UJ, Schieffer B, Grote 
K. 2012. Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. 
Arterioscler Thromb Vasc Biol. 32(2):281-90. doi: 10.1161/ATVBAHA.111.229435.  
 
Schuster, B., M. Kovaleva, Y. Sun, P. Regenhard, V. Matthews, J. Gro¨tzinger, S. Rose-John, 
and K. J. Kallen. 2003. Signaling of human ciliary neurotrophic factor (CNTF) revisited: the 
interleukin-6 receptor can serve as an a-receptor for CTNF. J. Biol. Chem. 278: 9528–9535. 
 
Silman AJ, MacGregor AJ, Thomson W, Holligan S, Carthy D, Farhan A, Ollier WE. 1993. Twin 
concordance rates for rheumatoid arthritis: results from a nationwide study. Br J Rheumatol. 
32(10):903-7. 
 
Singh JA, Cameron DR. 2012. Summary of AHRQ's comparative effectiveness review of drug 
therapy for rheumatoid arthritis (RA) in adults--an update. J Manag Care Pharm. 18(4 Supp 
C):S1-18. 
 
Skeoch S, Cristinacce PLH, Williams H, et al. Imaging atherosclerosis in rheumatoid arthritis: 
evidence for increased prevalence, altered phenotype and a link between systemic and 



253 
 

localised plaque inflammation. Scientific Reports. 2017;7:827. doi:10.1038/s41598-017-
00989-w. 
 
Slavić V, Stanković A, Kamenov B. 2005. The role of interleukin-8 and monocyte chemotactic 
protein-1 inrheumatoid arthritis. Medicine and Biology. 12(1):19 - 22 UC 616.72-002 
 
Sodenkamp J1, Waetzig GH, Scheller J, Seegert D, Grötzinger J, Rose-John S, Ehlers S, 
Hölscher C. 2012. Therapeutic targeting of interleukin-6 trans-signaling does not affect the 
outcome of experimental tuberculosis. Immunobiology. 217(10):996-1004. doi: 
10.1016/j.imbio.2012.01.015.  
 
Södergren A, Karp K, Boman K, Eriksson C, Lundström E, Smedby T, Söderlund L, Rantapää- 
Dahlqvist S, Wållberg-Jonsson S. 2010. Atherosclerosis in early rheumatoid arthritis: very 
early endothelial activation and rapid progression of intima media thickness. Arthritis Res 
Ther. 12(4):R158. 
 
Soejima H, Ogawa H, Yasue H, Kaikita K, Nishiyama K, Misumi K, Takazoe K, Miyao Y, 
Yoshimura M, Kugiyama K, Nakamura S, Tsuji I, Kumeda K. 1999. Heightened tissue factor 
associated with tissue factor pathway inhibitor and prognosis in patients with unstable 
angina. Circulation. 99: 2908–2913. 
 
Sokka T1, Häkkinen A, Kautiainen H, Maillefert JF, Toloza S, Mørk Hansen T, Calvo-Alen J, 
Oding R, Liveborn M, Huisman M, Alten R, Pohl C, Cutolo M, Immonen K, Woolf A, Murphy 
E, Sheehy C, Quirke E, Celik S, Yazici Y, Tlustochowicz W, Kapolka D, Skakic V, Rojkovich B, 
Müller R, Stropuviene S, Andersone D, Drosos AA, Lazovskis J, Pincus T; QUEST-RA Group. 
2008. Physical inactivity in patients with rheumatoid arthritis: data from twenty-one 
countries in a cross-sectional, international study. Arthritis Rheum. 15;59(1):42-50. doi: 
10.1002/art.23255. 
Solomon DH, Avorn J, Katz JN, Weinblatt ME, Setoguchi S, Levin R, Schneeweiss S. 2006. 
Immunosuppressive medications and hospitalization for cardiovascular events in patients 
with rheumatoid arthritis. Arthritis Rheum. 54(12):3790–3798 
 
Solomon DH, Goodson NJ, Katz JN, Weinblatt ME, Avorn J, Setoguchi S, Canning C, 
Schneeweiss S. 2006. Patterns of cardiovascular risk in rheumatoid arthritis. Ann Rheum Dis. 
65(12): 1608–12. 
 
Solomon DH, Curtis JR, Saag KG, Lii J, Chen L, Harrold LR, Herrinton LJ, Graham DJ, Kowal MK, 
Kuriya B, Liu L, Griffin MR, Lewis JD, Rassen JA. 2013. Cardiovascular risk in rheumatoid 
arthritis: comparing TNF-α blockade with nonbiologic DMARDs. Am J Med. 126(8):730.e9-
730.e17. doi: 10.1016/j.amjmed.2013.02.016 
 
Solomon DH, Karlson EW, Rimm EB, Cannuscio CC, Mandl LA, Manson JE, Stampfer MJ, 
Curhan GC. 2003. Cardiovascular morbidity and mortality in women diagnosed with 
rheumatoid arthritis. Circulation. 107(9):1303-7. 
 
Smith MD. 2011. The Normal Synovium. The Open Rheumatology Journal. 5:100-106. 
doi:10.2174/1874312901105010100. 
 
Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P. 2007. New therapies for treatment 
of rheumatoid arthritis. Lancet. 370:1861-74. 
 



254 
 

Smolen JS, Avila JC, Aletaha D. 2012. Tocilizumab inhibits progression of joint damage in 
rheumatoid arthritis irrespective of its anti-inflammatory effects: disassociation of the link 
between inflammation and destruction. Ann Rheum Dis. 71(5):687-93. doi: 
10.1136/annrheumdis-2011-200395.  
 
Smolen JS, Steiner G. 2003. Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug 
Discov. 2(6):473-88. 
 
Sokolove J, Sharpe O, Brennan M, et al. Citrullination within the atherosclerotic plaque: A potential 
target for the anti-citrullinated protein antibody response in rheumatoid arthritis. Arthritis and 
rheumatism. 2013;65(7):1719-1724. doi:10.1002/art.37961. 
Sommer J, Garbers C, Wolf J, Trad A, Moll JM, Sack M, Fischer R, Grötzinger J, Waetzig GH, 
Floss DM, Scheller J. 2014. Alternative intronic polyadenylation generates the interleukin-6 
trans-signaling inhibitor sgp130-E10. J Biol Chem. 289(32):22140-50. doi: 
10.1074/jbc.M114.560938.  
 
Song YW, Kang EH. 2010. Autoantibodies in rheumatoid arthritis: rheumatoid factors and 
anticitrullinated protein antibodies. QJM: An International Journal of Medicine. 103(3):139-
146. doi:10.1093/qjmed/hcp165. 
 
Srirangan S, Choy EH. 2010. The role of interleukin 6 in the pathophysiology of rheumatoid 
arthritis. Ther Adv Musculoskelet Dis. 2(5):247-56. doi: 10.1177/1759720X10378372. 
 
Stallmach A, Hagel S, Bruns T. 2010. Adverse effects of biologics used for treating IBD. Best 
Pract Res Clin Gastroenterol. 24(2):167-82. doi: 10.1016/j.bpg.2010.01.002. 
 
Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, Schaffer SA, Schwartz 
CJ, Wagner WD, Wissler RW. 1994. A definition of initial, fatty streak, and intermediate 
lesions of atherosclerosis: a report from the Committee on Vascular Lesions of the Council 
on Arteriosclerosis, American Heart Association. Circulation. 89:2462-78. 
Stevenson CS, Marshall LA, Morgan DW. 2006. In Vivo Models of Inflammation: Volume 1. 
(Springer London, Limited).  
 
Suissa S, Bernatsky S, Hudson M. 2006. Antirheumatic drug use and the risk of acute 
myocardial infarction. Arthritis Rheum. 55(4):531–536 
 
Suzuki M, Uetsuka K, Suzuki M, Shinozuka J, Nakayama H, Doi K. 1997. Immunohistochemical 
study on type II collagen-induced arthritis in DBA/1J mice. Exp Anim. 46:259–67. 
 
Svanteson M, Rollefstad S, Kløw NE, et al Associations between coronary and carotid artery 
atherosclerosis in patients with inflammatory joint diseases RMD Open 2017;3:e000544. doi: 
10.1136/rmdopen-2017-000544 
 
Svensson L, Jirholt J, Holmdahl R, Jansson L. 1998. B cell-deficient mice do not develop type 
II collagen-induced arthritis (CIA). Clin. Exp. Immunol. 111:521–526 
 
Symmons D, Turner G, Webb R, Asten P, Barrett E, Lunt M, Scott D, Silman A. 2002. The 
prevalence of rheumatoid arthritis in the United Kingdom: new estimates for a new century. 
Rheumatology (Oxford). 41:793–800 
Tak PP, Bresnihan B. 2000. The pathogenesis and prevention of joint damage in rheumatoid 
arthritis: advances from synovial biopsy and tissue analysis. Arthritis Rheum. 43:2619–2633. 
doi: 10.1002/1529-0131 



255 
 

 
Tak PP, Smeets TJ, Daha MR, Kluin PM, Meijers KA, Brand R, Meinders AE, Breedveld FC. 
1997. Analysis of the synovial cell infiltrate in early rheumatoid synovial tissue in relation to 
local disease activity. Arthritis RheuM. 40:217–25. 
 
Takei M, Mitamura K, Fujiwara S, Horie T, Ryu J, Osaka S, Yoshino S, Sawada S. 1997. 
Detection of Epstein-Barr virus-encoded small RNA 1 and latent membrane protein 1 in 
synovial lining cells from rheumatoid arthritis patients. Int Immunol. 9:739–743. doi: 
10.1093/intimm/9.5.739 
 
Tan SL, O’Mahony A, Berg EL, Ganeshalingham D, Choy EH. 2013. Primary Human Cell 
BioMAP® Profiling of Methotrexate, Tocilizumab, Adalimumab and Tofacitinib Reveals 
Different Mechanisms of Action with Distinct Phenotypic Signatures. Arthritis Rheum. 
(Suppl). Abstract No: 1866: 795 
 
Tardif JC, McMurray JJ, Klug E, Small R, Schumi J, Choi J, Cooper J, Scott R, Lewis EF, L'Allier 
PL, Pfeffer MA. 2008. Aggressive Reduction of Inflammation Stops Events (ARISE) Trial 
Investigators. Effects of succinobucol (AGI-1067) after an acute coronary syndrome: a 
randomised, double-blind, placebo-controlled trial. Lancet. 371(9626):1761-8. doi: 
10.1016/S0140-6736(08)60763-1. 
 
Tawako A, Fayad ZA, Mogg R, Alon A, Klimas MT, Dansky H, Subramanian SS, Abdelbaky A, 
Rudd JH, Farkouh ME, Nunes IO, Beals CR, Shankar SS. 2013. Intensification of statin therapy 
results in a rapid reduction in atherosclerotic inflammation: results of a multi-center FDG-
PET/CT feasibility study. J Am Coll Cardiol. 62(10):909–917.  
 
Temiz A, Gökmen F, Gazi E, Akbal A, Barutçu A, Bekler A, Altun B, Tan YZ, Güneş F, Şen H. 
2015. Epicardial adipose tissue thickness, flow-mediated dilatation of the brachial artery, and 
carotid intima-media thickness: Associations in rheumatoid arthritis patients. Herz. 40 Suppl 
3:217-24. doi: 10.1007/s00059-014-4140-z.  
 
Teupser D, Persky AD, Breslow JL. 2003. Induction of atherosclerosis by low-fat, 
semisynthetic diets in LDL receptor-deficient C57BL/6J and FVB/NJ mice: comparison of 
lesions of the aortic root, brachiocephalic artery, and whole aorta (en face measurement). 
Arterioscler Thromb Vasc Biol. 23(10):1907-13.  
 
Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on 

Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment 

Panel III) final report. 2002. Circulation. 106(25):3143-421 

Todd JA, Acha-Orbea H, Bell JI, Chao N, Fronek Z, Jacob CO, McDermott M, Sinha AA, 
Timmerman L, Steinman L, et al. 1988. A molecular basis for MHC class II--associated 
autoimmunity. Science. 240(4855):1003-9. 
 
Torkildsen Ø, Myhr K-M, Bø L. 2016. Disease-modifying treatments for multiple sclerosis – a 
review of approved medications. European Journal of Neurology. 23(Suppl 1):18-27. 
doi:10.1111/ene.12883. 
 

Torzewski j, Bowyer DE, Frohlich M, Koenig W, Waltenberger J, Fitzsimmons C, Hombach V. 

1998. C-reactive protein frequently colocalizes with the terminal complement complex in the 



256 
 

intima of early atherosclerotic lesions of human coronary arteries. Arterioscler Thromb Vasc 

Biol 18(9):1386–1392 

Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Desvarieux M, Ebrahim S, Fatar 
M, Hernandez Hernandez R, Kownator S, Prati P, Rundek T, Taylor A, Bornstein N, Csiba L, 
Vicaut E, Woo KS, Zannad F; Advisory Board of the 3rd Watching the Risk Symposium 2004, 
13th European Stroke Conference. 2004. Mannheim intima-media thickness consensus. 
Cerebrovasc Dis. 18(4):346-9.  
 
Tousoulis D, Antoniades C, Stefanadis C. 2005. Evaluating endothelial function in humans: a 
guide to invasive and non-invasive techniques. Heart. 91(4):553-558. 
doi:10.1136/hrt.2003.032847. 
 

Toussirot E, Wendling D, Tiberghien P, Luka J, Roudier J. 2000. Decreased T cell precursor 

frequencies to Epstein-Barr virus glycoprotein Gp110 in peripheral blood correlate with 

disease activity and severity in patients with rheumatoid arthritis. Ann Rheum Dis. 59(7):533-

8. 

Turesson C, Jacobsson L, Rydén Ahlgren A, Sturfelt G, Wollmer P, Länne T. 2005. Increased 

stiffness of the abdominal aorta in women with rheumatoid arthritis. Rheumatology 

(Oxford). 44(7):896-901. 

Upchurch GR Jr1, Ford JW, Weiss SJ, Knipp BS, Peterson DA, Thompson RW, Eagleton MJ, 

Broady AJ, Proctor MC, Stanley JC. Nitric oxide inhibition increases matrix metalloproteinase-

9 expression by rat aortic smooth muscle cells in vitro. J Vasc Surg. 2001 Jul;34(1):76-83. 

Urbina EM, Williams RV, Alpert BS, Collins, RT, Daniels SR, Hayman L, Jacobson M, Mahoney 
L, Mietus-Snyder M, Rocchini A, Steinberger J, McCrindle B. 2006. Noninvasive assessment 
of subclinical atherosclerosis in children and adolescents: Recommendations for standard 
assessment for clinical research: A scientific statement from the American Heart Association. 
 
Usón J, Balsa A, Pascual-Salcedo D, Cabezas JA, Gonzalez-Tarrio JM, Martín-Mola E, Fontan 
G. 1997. Soluble interleukin 6 (IL-6) receptor and IL-6 levels in serum and synovial fluid of 
patients with different arthropathies. J Rheumatol. 24(11):2069-75. 
 
van der Heijde D. 2000. How to read radiographs according to the Sharp/van der Heijde 
method. J Rheumatol 27: 261-263. 
 
van der Meer IM, Bots ML, Hofman A, del Sol AI, van der Kuip DA, Witteman JC. 2004. 
Predictive value of noninvasive measures of atherosclerosis for incident myocardial 
infarction: the Rotterdam Study. Circulation. 109(9):1089-94.  
 
van der Wal AC, Becker AE. 1999. Atherosclerotic plaque rupture--pathologic basis of plaque 
stability and instability. Cardiovasc Res. 41(2):334-44. 
 
van Halm VP, Nielen MM, Nurmohamed MT, van Schaardenburg D, Reesink HW, Voskuyl AE, 

Twisk JW, van de Stadt RJ, de Koning MH, Habibuw MR, van der Horst-Bruinsma IE, Dijkmans 

BA. 2007. Lipids and inflammation: serial measurements of the lipid profile of blood donors 

who later developed rheumatoid arthritis. Ann Rheum Dis. 66(2):184-8.  



257 
 

van Halm VP, Nurmohamed MT, Twisk JW, Dijkmans BA, Voskuyl AE. 2006. Disease-
modifying antirheumatic drugs are associated with a reduced risk for cardiovascular disease 
in patients with rheumatoid arthritis: a case control study. Arthritis Res Ther. 8(5):R151. 
 
van Vollenhoven RF, Emery P, Bingham CO 3rd, Keystone EC, Fleischmann R, Furst DE, Macey 
K, Sweetser M, Kelman A, Rao R. 2010. Longterm safety of patients receiving rituximab in 
rheumatoid arthritis clinical trials. J Rheumatol. 37(3):558-67. 
 
Veldhuis GJ, Willemse PH, Sleijfer DT, van der Graaf WT, Groen HJ, Limburg PC, Mulder NH, 
de Vries EG. 1995. Toxicity and efficacy of escalating dosages of recombinant human 
interleukin-6 after chemotherapy in patients with breast cancer or non-small-cell lung 
cancer. J Clin Oncol. 13: 2585–2593. 
 
Volpato S, Guralnik JM, Ferrucci L, Balfour J, Chaves P, Fried LP, Harris TB. 2001. 
Cardiovascular disease, interleukin-6, and risk of mortality in older women: the women's 
health and aging study. Circulation. 20;103(7):947-53. 
 
Voskuyl AE. 2006. The heart and cardiovascular manifestations in rheumatoid arthritis. 
Rheumatology (Oxford). 45 Suppl 4:iv4-7. 
 
Wald DS, Bestwick JP. Carotid ultrasound screening for coronary heart disease: results based 
on a meta-analysis of 18 studies and 44,861 subjects. J Med Screen. 2009;16(3):147-54. doi: 
10.1258/jms.2009.009038. 
 
Wang Y, Rollins SA, Madri JA, Matis LA. 1995. Anti-C5 monoclonal antibody therapy prevents 
collagen-induced arthritis and ameliorates established disease. Proc Natl Acad Sci USA. 
92:8955-8959 
 
Warboys CM, Amini N, de Luca A, Evans PC. 2011. The role of blood flow in determining the 
sites of atherosclerotic plaques. F1000 Med Rep. 3:5. doi: 10.3410/M3-5.  
 
Ward MM. 2001. Recent improvements in survival in patients with rheumatoid arthritis: 
better outcomes or different study designs? Arthritis RheuM. 44:1467–9. 
 
Wei HJ, Li YH, Shi GY, Liu SL, Chang PC, Kuo CH, Wu HL. 2011. Thrombomodulin domains 
attenuate atherosclerosis by inhibiting thrombin-induced endothelial cell activation. 
Cardiovasc Res. 92(2):317-27. 
 
Weiss TW, Arnesen H, Seljeflot I. 2013. Components of the interleukin-6 transsignalling 
system are associated with the metabolic syndrome, endothelial dysfunction and arterial 
stiffness. Metabolism. 62(7):1008-13 
 
Whitworth JA, Mangos GJ, Kelly JJ. 2000. Cushing, cortisol, and cardiovascular disease. 
Hypertension. 36:912–16. 
 
Welsh P, Grassia G, Botha S, Sattar N, Maffia P Targeting inflammation to reduce 
cardiovascular disease risk: a realistic clinical prospect? Br J Pharmacol. 2017 
Nov;174(22):3898-3913. doi: 10.1111/bph.13818. Epub 2017 Jun 10. 
 



258 
 

Williams JO, Wang ECY, Lang D, Williams AS. 2016. Characterization of death receptor 3‐
dependent aortic changes during inflammatory arthritis. Pharmacology Research & 
Perspectives. 4(4):e00240. doi:10.1002/prp2.240. 
 
Wilson PW. 2008. Progressing from risk factors to omics. Circ Cardiovasc Genet. 1(2):141-6. 
doi: 10.1161/CIRCGENETICS.108.815605 
 
Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. 1998. Prediction 
of coronary heart disease using risk factor categories.. Circulation. 12;97(18):1837-47 
 
Wolfe F. 2000. The effect of smoking on clinical, laboratory, and radiographic status in 
rheumatoid arthritis. J Rheumatol, 27: 630–637 
 
Wong M, Edelstein J, Wollman J, Bond MG. 1993. Ultrasonic-pathological comparison of the 
human arterial wall. Verification of intima-media thickness. Arterioscler Thromb. 13:482–486 
 
Wooley PH, Dutcher J, Widmer MB, Gillis S. 1993. Influence of a recombinant human soluble 
tumor necrosis factor receptor FC fusion protein on type II collagen-induced arthritis in mice. 
J Immunol. 151(11):6602-7. 
 
Wynne BM, Chiao C-W, Webb RC. 2009. Vascular Smooth Muscle Cell Signaling Mechanisms 
for Contraction to Angiotensin II and Endothelin-1. Journal of the American Society of 
Hypertension : JASH. 3(2):84-95. doi:10.1016/j.jash.2008.09.002. 
 
Yang J, Zhang L, Yu C, Yang X-F, Wang H. 2014. Monocyte and macrophage differentiation: 
circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomarker 
Research.2:1. doi:10.1186/2050-7771-2-1. 
 
Yongfeng Zhang, Yi Zheng, Hongbin Li. 2016. NLRP3 Inflammasome Plays an Important Role 
in the Pathogenesis of Collagen-Induced Arthritis. Mediators Inflamm.  9656270. 2. doi: 
10.1155/2016/9656270 
 
Yu HT, Lee J, Shin EC, Park S. 2015. Significant Association between Serum Monokine Induced 
by Gamma Interferon and Carotid Intima Media Thickness. J Atheroscler Thromb. 22(8):816-
22. doi: 10.5551/jat.28886.  
 
Zadelaar S, Kleemann R, Verschuren L,  Vries-Van der Weij j,  van der Hoorn J, Princen H, 
Kooistra T. 2007. Mouse models for atherosclerosis and pharmaceutical modifiers,” 
Arteriosclerosis, Thrombosis, and Vascular Biology. 27(8): 1706–1721 
 
Zakynthinos E, Pappa N. 2009. Inflammatory biomarkers in coronary artery disease. J Cardiol. 
53(3):317-33. doi: 10.1016/j.jjcc.2008.12.007. 
 
Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL, Blanco-Colio L, Lavin B, Mallavia B, Tarin 
C, Mas S, Ortiz A, Egido J. 2011. Animal models of cardiovascular diseases. J BioMed 
Biotechnol. 2011:497841. 
Zhang H, Wu LM, Wu J. 2011. Cross-talk between apolipoprotein E and cytokines. Mediators 

Inflamm. 949072 10.1155/2011/949072 

Zimmet P, Magliano D, Matsuzawa Y, Alberti G, Shaw J. 2005. The metabolic syndrome: a 

global public health problem and a new definition. J Atheroscler Thromb. 12:295–300 


