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ABSTRACT. The hydroxylation reaction catalyzed by p-hydroxybenzoate hydroxylase and the 

Baeyer-Villiger reaction catalyzed by cyclohexanone monooxygenase are investigated by 

means of quantum mechanical/molecular mechanical (QM/MM) calculations at different levels 

of QM theory. The geometries of the stationary points along the reaction profile are obtained 

from QM/MM geometry optimizations, in which the QM region is treated by density functional 

theory (DFT). Relative energies are determined from single-point QM/MM calculations using 

the domain-based local pair natural orbital coupled cluster DLPNO-CCSD(T) method as QM 

component. The results are compared with single-point DFT/MM energies obtained using 

popular density functionals and with available experimental and computational data. It is found 

that the choice of the QM method strongly affects the computed energy profiles for these 

reactions. Different density functionals provide qualitatively different energy barriers 

(variations of the order of 10 kcal/mol in both reactions), thus limiting the confidence in 

DFT/MM computational predictions of energy profiles. On the other hand, the use of the 

DLPNO-CCSD(T) method in conjunction with large QM regions and basis sets makes it 



 2 

possible to achieve high accuracy. A critical discussion of all the technical aspects of the 

calculations is given with the aim of aiding computational chemists in the application of the 

DLPNO-CCSD(T) methodology in QM/MM calculations. 

1. INTRODUCTION 

Enzymes are natural catalysts with outstanding efficiency and selectivity. A thorough 

understanding of the mechanism of enzymatic reactions can open the route to the development 

of artificial catalysts with improved performance. This is of great interest in pharmaceutical, 

chemical, and biotechnology industries.  

For the modeling of enzymatic reactions, hybrid quantum mechanical/molecular mechanical 

(QM/MM) approaches have become the method of choice. 1-2 In these approaches, an accurate 

QM method is used for describing the region of the system in which the chemical 

transformation occurs and the remainder is treated using an established force field. Hence, the 

accuracy of QM/MM calculations is limited by: (i) the level of theory employed for the QM 

region; (ii) the level of theory used in the description of the MM part; (iii) the QM/MM coupling 

scheme adopted.  

The first issue was addressed already about 10 years ago.3-4 The accuracy of computed 

enzymatic reaction barriers was found to benefit strongly from the use of highly correlated 

techniques as QM components,3-4 in particular of a local variant of the singles and doubles 

coupled cluster method with perturbative treatment of triple excitations, CCSD(T).5 Using a 

QM region of 49 atoms and a triple-ζ quality basis set, the reaction barrier for the hydroxylation 

reaction in the active site of p-hydroxybenzoate hydroxylase (PHBH) was calculated in good 

agreement with available experimental data.3-4, 6-10 

Over the last decade, local correlation methods have made great progress in exploiting the 

short range nature of electron correlation,5, 11-19 allowing the inherent steep scaling of correlated 

wavefunction based methods to be reduced to linear or near-linear scaling. Our group has 
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contributed with the development of the domain-based local pair natural orbital coupled cluster 

method with single, double, and perturbatively included triple excitations, DLPNO-CCSD(T). 

20-26 This approach allows one to perform coupled cluster calculations for systems with 

hundreds of atoms while retaining about 99.9% of the canonical CCSD(T) correlation energy.27 

Single-point energy calculations for entire proteins using more than 12000 basis functions were 

shown to be possible.26 Hence, the use of this technique in QM/MM studies of large proteins 

and enzymes can potentially open the way to a more reliable description of biochemical 

processes.  

Herein, QM/MM energy barriers in enzymatic reactions are computed using the DLPNO-

CCSD(T) method as the QM component. Results are compared with available experimental 

data and with those obtained using Density Functional Theory (DFT) as the QM component. 

The convergence of the results with respect to the basis set size, the size of the QM region, and 

other technical aspects of the calculations is also discussed.  

For this study two enzymes were selected, i.e. the already mentioned PHBH and 

cyclohexanone monooxygenase (CHMO).28 PHBH is a flavoprotein monooxygenase that 

catalyzes the hydroxylation of p-hydroxybenzoate by the cofactor flavin hydroperoxide 

(FADHOOH), as shown in Scheme 1. This reaction has already been the subject of a wide range 

of experimental7, 9-10 and computational3-4, 29-33 investigations. Experimental values for barrier 

of the rate-determining step are available.3-4, 6-10 The present DLPNO-CCSD(T) predictions will 

be compared with available experimental data and previously reported theoretical results.3-4 

 

Scheme 1: Hydroxylation reaction in the active site of PHBH. 
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The second reaction involves CHMO,28 which is a prominent member of the Baeyer-Villiger 

monooxygenase enzyme family,34, 35 responsible for conversion of ketones into esters and 

lactones. Due to its high stereoselectivity towards a rather wide range of valuable reactants, 

CHMO has been intensely studied experimentally36-37 and continues to be subjected to directed 

evolution techniques to further improve or change its catalytic properties.38 In particular, it 

catalyzes the O2-driven oxidation of cyclohexanone into lactone (see Scheme 2).  

 

Previously published QM/MM calculations39 suggested that this reaction proceeds via 

formation of a Criegee intermediate, with the following migration step being rate-determining; 

in this earlier QM/MM study, energy profiles were computed using DFT as the QM component 

and a QM region of 99 atoms. Here we present coupled-cluster based QM/MM results for this 

reaction that can be used as a valuable benchmark reference for lower levels of theory. We also 

address the convergence of the results with the size of the QM region and with other technical 

aspects of the calculations.  

The paper is organized as follows. Computational details are given in Section 2. In Section 3 

we discuss the present QM/MM results for the PHBH- and CHMO-catalyzed reactions. 

Conclusions are offered in Section 4. 

 

 

Scheme 2: Cyclohexanone monooxygenation in the active site of CHMO. The second 

reaction is the rate-determining step (r.d.s.). 
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2. COMPUTATIONAL DETAILS 

The general QM/MM setup and procedures were the same as in previous QM/MM studies of 

these enzymes (see Refs. 3, 4, 29 for PHBH and Ref. 39 for CHMO). Single-point QM/MM 

energies were evaluated in an additive scheme as the sum of the QM energy of the QM region 

in the point-charge field of the MM part (electrostatic embedding) and of the MM term 

comprised of the MM energy of the MM region and the non-electrostatic QM/MM interaction 

energy. All single-point QM energy calculations were carried out with a development version 

of the ORCA suite of programs.40-41 The MM term was either available from previous work4,39 

or evaluated using the ChemShell software.42-44 The QM/MM methodology applied in the 

geometry optimizations has been described previously.3-4,  39  2.1 Hydroxylation of p-

hydroxybenzoate 

Geometries for the reactant and transition states (see Scheme 1) optimized at the 

DFT(B3LYP/TZVP)/GROMOS level were taken from Ref. 4. A total of 10 snapshots were 

used for both reactant and transition states. The snapshots are labeled by 1-10, consistent with 

the previous work.4 Single-point QM/MM calculations using the DLPNO-CCSD/TightPNO 26-

27 method as QM component were carried out at the DFT(B3LYP/TZVP)/GROMOS 

geometries. The original QM region, 3-4 including all the atoms shown in Scheme 1, was used 

(49 atoms). The MM point charges from the remaining protein environment were included in 

the calculations (about 20000 point charges).  

The perturbative triples corrections were computed using two different approximations. The 

(T0) correction relies on the so-called semi-canonical approximation, which neglects the 

couplings between different triples by the off-diagonal Fock matrix elements.25 The (T) 

correction refers to the recently implemented iterative algorithm.45 In the following, the 

DLPNO-CCSD method using the (T0) correction is denoted as DLPNO-CCSD(T0) whereas 

the DLPNO-CCSD method with the iterative triples correction is abbreviated as DLPNO-

CCSD(T). In all cases, the resolution of identity (RI) approximation46 for both Coulomb- and 
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exchange-type integrals (RIJK) was used in the Hartree-Fock (HF) part. Augmented 

correlation-consistent polarized valence basis sets of triple-ζ quality, namely aug-cc-pVTZ, 47-

48 were used in conjunction with matching auxiliary basis sets (aug-cc-pVTZ/C and aug-cc-

pVTZ/JK). See Ref. 4 for a discussion regarding the basis set convergence of the coupled cluster 

energies for the same reaction.  

Single-point DFT/MM calculations were carried out using the BLYP, B3LYP, and M062X 

exchange-correlation functionals.49 For BLYP and B3LYP the RI approximation was employed 

and the –D3 correction of Grimme was included50-51 with Becke-Johnson damping.52 The 

Ahlrichs def2-QZVP basis set 53 in conjunction with matching auxiliary basis sets was used in 

all cases. 

2.2 Cyclohexanone monooxygenation 

Starting from the X-ray structural data,54 previously published DFT/MM calculations 

elucidated the mechanism of cyclohexanone oxygenation in the active site of CHMO.39, 55 Four 

relevant stationary points for the reaction of wild-type (WT) CHMO with cyclohexanone were 

located:38 the reactant state, the Criegee intermediate, the transition state for the rate-

determining migration step, and the product state (see Scheme 2). In this work, the energy of 

these stationary points was calculated by means of QM/MM calculations at different levels of 

QM theory. The original38 QM region (99 atoms, labeled as R1 in the following) as well as two 

larger QM regions of approximately double (R2) and triple (R3) size were employed.  
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Scheme 3: Reactant state structure (QM region R1 only) optimized at the 
QM(B3LYP/TZVP)/CHARMM level. 

 

QM region R1 comprised the cyclohexanone substrate, all atoms from the isoalloxazine ring 

of the peroxyflavin, the side chain of Arg329, the nicotinamide ring, and the adjacent ribose of 

the NADP+ cofactor (See Scheme 3). QM region R2 comprised all atoms included in R1, plus 

the side chains and parts of the backbones of the amino acid residues positioned closest to 

cyclohexanone in the active region (Phe434, Thr435, Asn436, Leu437, Leu145, Leu146, and 

Trp488), with 206 atoms in total (including link atoms). The overall charge of R1 and R2 was 

+1.38 QM region R3 comprised three more residues surrounding the substrate (Phe248, Phe279, 

and Phe507), two residues interacting with Arg329 - Asp59 and Pro330 as well as a water 

molecule connecting Asp59 and Pro330 via two H-bonds. The overall number of atoms in R3 

is 307 (including link atoms), and the overall charge of the QM region was reduced to 0 due to 

incorporation of the negatively charged Asp59 residue. Note that the definition of QM regions 

R2 and R3 involved cuts in the backbone through the polar peptide bonds (one in R2 and two 

in R3), which is usually avoided in QM/MM calculations. However, the rather large size of 
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these QM regions and the use of the charge shift scheme for the link atoms diminished possible 

overpolarization effects. 

Geometry optimizations were carried out at the DFT(B3LYP/TZVP)/CHARMM level, as 

described in Ref. 39. QM/MM geometries for QM region R1 were taken from Ref. 39 whilst 

QM/MM geometries for QM region R2 were optimized herein at the same level of theory. 

QM/MM energies for QM region R3 were obtained at the geometries optimized with QM region 

R2. 

For each definition of the QM region, single-point energies were computed at the 

corresponding DFT(B3LYP/TZVP)/CHARMM geometries employing DLPNO-CCSD(T) and 

DLPNO-CCSD(T0) as QM components. In all cases, TightPNO settings were used. The RIJK 

approximation was applied in the HF part. The Ahlrichs def2-TZVPP and def2-QZVPP basis 

sets were used in conjunction with matching auxiliary basis sets. The MM point charges from 

the remaining protein environment were included in the calculations (about 40000 point 

charges, depending on the size of the QM region).  

 Single-point DFT/MM calculations were carried out at the same geometries using the BLYP, 

B3LYP, and M062X exchange-correlation functionals. For BLYP and B3LYP the RI 

approximation was employed and the –D3 correction of Grimme was included (BLYP-D3 and 

B3LYP-D3) with Becke-Johnson damping.52 The Ahlrichs def2-TZVPP basis set in 

conjunction with matching auxiliary basis sets was used in all cases. 

RESULTS AND DISCUSSION 

3.1 PHBH 

For the hydroxylation reaction in the active site of PHBH we considered a total of 10 

snapshots optimized at the DFT(B3LYP/TZVP)/GROMOS level for both reactant and 

transition states (see Computational Details). The energy of each of these snapshots was 

computed by means of single-point QM/MM calculations using different QM methods. The 

resulting energy barriers are reported in Table 1. The DLPNO-CCSD(T) results employing the 
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iterative algorithm for the triples correction are the most accurate ones and can be taken as 

reference.  

Consistent with previously published results,4 dynamic electron correlation was found to play 

a fundamental role in this system. On average, DLPNO-CCSD(T) barriers are smaller than their 

HF counterparts by about 23 kcal/mol. The perturbative triples correction contributes 

significantly to this energy difference, with DLPNO-CCSD(T) barriers being on average 8.1 

kcal/mol lower in energy than the DLPNO-CCSD barriers.  

In the large majority of cases studied up to now, the gain in accuracy of DLPNO-CCSD(T) 

with respect to DLPNO-CCSD(T0) for relative energies is modest.45 However, for the reaction 

under study, the large contribution of the triples correction to the computed energy barriers 

makes the results very sensitive to approximations in the treatment of the triples correction. In 

fact, the DLPNO-CCSD(T) method provides notably smaller energy barriers with respect to 

DLPNO-CCSD(T0). The average difference is 1.1 kcal/mol, demonstrating that the use of the 

iterative algorithm  provides a non-negligible gain in accuracy in this case.  

The previously published LCCSD and LCCSD(T0) results are given in parentheses for 

comparison.4 DLPNO-CCSD(T0) and LCCSD(T0) results are very close to each other, with an 

average deviation of only 0.4 kcal/mol. Considering the different approximations involved in 

the two approaches, which rely on completely different implementations, these results 

demonstrate the robustness of different local correlation schemes for the system under study. 

It is interesting to compare these results with the ones obtained with the dominant 

computational methodology used as QM component in QM/MM calculations, i.e. with DFT. 

Three functionals were chosen as representative examples of the ones commonly adopted in 

QM/MM simulations, i.e. a pure GGA functional (BLYP), a popular hybrid functional 

(B3LYP), and the meta-hybrid M062X. BLYP and B3LYP energies were corrected by using 

Grimme’s –D3 correction.  
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The reaction barriers computed at the DFT/MM level are reported in Table 2. A graphical 

representation of these results is given in Figure 1, which also includes the coupled cluster 

results for comparison. The horizontal red line in the figure marks the experimental value of 

13.3 kcal/mol. This value has been obtained from the experimental activation enthalpy of 12 

kcal/mol by subtracting the computed ZPE correction of -1.3 kcal/mol, as detailed in Ref. 3.  
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Table 1. QM/MM activation barriers (kcal/mol) calculated at different levels of QM 
theory using the aug-cc-pVTZ basis set. Results do not include the ZPE correction. All 
reported values include the effect of the MM environment (taken from Ref. 4). The 
corresponding values obtained from Ref. 4 with a different local coupled cluster scheme 
are reported in parentheses. 

Entry HF DLPNO-CCSD 
DLPNO-
CCSD(T0) 

DLPNO-
CCSD(T) 

1 36.0 21.1 (20.4) 14.5 (13.8) 13.3 
2 41.3 24.4 (24.0) 16.9 (16.1) 15.6 
3 38.8 23.6 (23.2) 16.4 (16.2) 15.2 
4 39.3 23.0 (22.7) 15.8 (15.9) 14.5 
5 35.9 20.5 (19.9) 13.8 (13.4) 12.8 
6 38.8 22.1 (21.5) 14.9 (14.4) 13.8 
7 32.1 17.6 (16.8) 11.6 (10.9) 10.7 
8 37.8 21.4 (20.8) 14.3 (14.4) 13.2 
9 39.8 22.9 (22.3) 15.5 (14.5) 14.3 
10 41.4 24.3 (23.6) 16.6 (16.4) 15.3 
average 38.1 22.1 (21.5) 15.0 (14.6) 13.9 

 

 

 

Table 2. QM/MM activation barriers (kcal/mol) calculated using different density 
functionals as QM component. The def2-QZVP basis set was used. Results do not include 
the ZPE correction. All reported values include the effect of the MM environment (taken 
from Ref. 4). For completeness, the corresponding values obtained without the -D3 
correction are reported in parentheses. 
Entry BLYP-D3 B3LYP-D3 M06-2X 
1 -1.7 (-0.6) 7.7 (8.6) 21.5 

2 -0.2 (1.6) 9.9 (11.4) 24.4 

3 -0.4 (0.7) 9.4 (10.2) 23.8 

4 -1.2 (0.5) 8.7 (10.1) 23.1 

5 -2.4 (-0.8) 7.1 (8.4) 20.8 

6 -1.3 (0.5) 8.4 (9.9) 22.3 

7 -3.2 (-1.7) 5.5 (6.7) 18.0 

8 -2.3 (-0.5) 7.5 (9.0) 21.5 

9 -0.8 (1.1) 9.0 (10.5) 23.0 

10 -0.5 (1.3) 9.7 (11.1) 24.2 

average -1.4 (0.2) 8.3 (9.6) 22.3 
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The first eye-catching feature of Figure 1 is the wide range obtained in the computed energy 

barriers when different density functionals are employed. BLYP-D3 predicts the wrong energy 

ordering between transition states and intermediates, resulting in a negative “energy barrier” of 

-1.3 kcal/mol. B3LYP-D3 performs comparatively much better, providing an energy barrier of 

8.3 kcal/mol, which is 5.6 kcal/mol smaller than the DLPNO-CCSD(T) value. The popular 

M062X functional significantly overestimates the reaction barrier, thus performing similarly to 

DLPNO-CCSD. The large differences between the various DFT/MM computational 

predictions are probably a consequence of the fundamental role that dynamic electron 

correlation plays in this system. As different functionals describe the dynamic electron 

correlation differently, the computed reaction barriers are inherently very sensitive to the nature 

of the exchange-correlation functional employed in the QM treatment.  

 

Figure 1 QM/MM reaction barriers for the hydroxylation reaction in the active site of 

PHBH at various level of QM theory. The results are obtained by averaging the values 

obtained from 10 different snapshots (see Tables 1 and 2). The horizontal red line marks 

the available experimental value. 
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Note that the high sensitivity of QM/MM energy profiles to the density functional was 

recently observed for different enzymatic reactions.56, 57 It was found that accurate energies can 

be obtained by means of a projector-based embedding scheme in which a small subset of atoms 

in the QM region is treated at the CCSD(T) level of theory. Similar results concerning the 

sensitivity of computational predictions to the density functional were observed for the  alcohol-

mediated Morita Baylis-Hillman reaction.58 In this case, Harvey et al have shown that reliable 

results can be obtained by employing the DLPNO-CCSD(T) method in conjunction with an 

appropriate treatment of environmental effects.59 

As a final remark, it is worth emphasizing that the computed barriers just discussed were 

obtained by averaging the values from a limited number of snapshots, which do not constitute 

a statistically meaningful Boltzmann ensemble. Moreover, the accuracy of any QM/MM 

calculation is limited by the accuracy of the MM force field employed and by the method used 

in the geometry optimizations. Nevertheless, and with all due caution, the excellent agreement 

between the DLPNO-CCSD(T)/MM computational prediction and the experimental value is 

certainly remarkable. 

 

3.2 CHMO 

The same QM methods as in the previous section were also tested for the cyclohexanone 

monooxygenation reaction in the active site of CHMO (Scheme 2). For this reaction, 

experimental data for the barriers are not available for comparison and previous computational 

investigations were only carried out at the DFT/MM level of theory using a QM region of 99 

atoms.  

Hence, we first tested the convergence of the computational results with the size of the QM 

region. Three different QM regions of increasing size, namely R1 (the original QM region38  

with 99 atoms), R2 and R3 (206 and 307 atoms, respectively) were defined. For each QM 

region, single-point DLPNO-CCSD(T0)(TightPNO/def2-TZVPP)/MM calculations were 
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carried out for the stationary points along the reaction profile (the reactant state, the Criegee 

intermediate, the transition state, and the product state). The chosen DLPNO methodology 

typically provides a good balance between accuracy and computational cost.27  

Table 3. DLPNO-CCSD(T0)(TightPNO/def2-TZVPP)/MM relative energies (kcal/mol) of 
the stationary points for the cyclohexanone monooxygenation reaction using QM regions of 
different size. The energy of the reactant state is used as reference.  Results do not include 
the ZPE correction. All reported values include the effect of the MM environment (reported 
in parenthesis). ∆‡E is the energy difference between the transition state and the Criegee 
intermediate. 
QM region reactant Criegee TS product ∆‡E 
R1 0.0 (0.0) -4.5 (4.1) 8.1 (3.0) -68.6 (2.4) 12.6a 
R2 0.0 (0.0) -2.0 (2.2) 10.5 (-0.3) -71.1 (0.6) 12.5 
R3 0.0 (0.0) -1.5 (0.6) 9.9 (-0.4) -71.9 (-0.2) 11.3 

 

aThe corresponding value calculated using DLPNO-CCSD(T0)/def2-QZVPP basis set is 12.7 
kcal/mol. 
 

The results of this study are shown in Table 3, which reports the relative energies of the 

stationary points with respect to the reactant state. In all cases, the Criege intermediate is 

predicted to be the lowest energy point of the reaction profile before the transition state. These 

results differ from the ones obtained previously by means of DFT/MM calculations, which 

predicted the reactant state to be lowest in energy.39,55 We will come back to this point later 

when discussing the quality of DFT/MM predictions in this context.  

The size of the QM region affects the energy profile. In particular, the relative energy of the 

Criegee intermediate with respect to the reactant state was found to be -4.5, -2.0, and -1.5 

kcal/mol for R1, R2, and R3, respectively. The energy differences between the transition state 

and the Criegee intermediate (∆‡E) are 12.6, 12.5, and 11.3 kcal/mol for R1, R2, and R3, 

respectively. These results indicate that very large QM regions are needed if one aims at 

quantitative accuracy. On the other hand, the reaction profiles are qualitatively similar for all 

three QM regions, and the relative energies of the stationary points change by less than 1 

kcal/mol when going from R2 (206 atoms) to R3 (307 atoms).  
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In order to test the dependence of our results with respect to the basis set size, ∆‡E values 

were also calculated using the same settings but with the def2-QZVPP basis set. This 

calculation was carried out only for the smallest QM region (R1, 99 atoms). It was found that 

the increase of the basis set size does not significantly affect the ∆‡E values (see Table 3), 

indicating that triple-ζ quality basis sets already provide reliable coupled cluster energies for 

this reaction. 

Having established the dependence of our results on the size of the QM region and on the 

basis set, DLPNO-CCSD(T) results were used as a benchmark for different QM methods in 

QM/MM calculations. With this aim, the same methods as in the previous section were applied 

to calculate the cyclohexanone monooxygenation energy profile while keeping the size of the 

QM region fixed (R2). The results are reported in Table 4. The benchmark DLPNO-CCSD(T) 

values are given in bold for easy reference. 

Table 4. QM/MM relative energies (kcal/mol) of the stationary points for the 
cyclohexanone monooxygenation reaction using different QM methods. The energy of the 
reactant state is used as reference.  Results do not include the ZPE correction. All reported 
values include the effect of the MM environment. ∆‡E is the energy difference between the 
transition state and the Criegee intermediate. DLPNO-CCSD(T) results are given in bold 
for easy reference. 

QM region Method reactant Criegee TS product ∆‡E 
R2 HF 0.0 15.3 49.2 -77.7 33.9 
R2 DLPNO-CCSD 0.0 0.3 19.4 -72.1 19.1 
R2 DLPNO-CCSD(T0) 0.0 -2.0 10.5 -71.1 12.5 
R2 DLPNO-CCSD(T) 0.0 -2.2 9.5 -71.0 11.7 

R2 BLYP 0.0 6.3 5.6 -67.8 -0.7 
R2 BLYP-D3 0.0 3.7 0.9 -67.9 -2.8 
R2 B3LYP 0.0 5.7 13.9 -71.1 8.2 
R2 B3LYP-D3 0.0 3.6 10.0 -71.1 6.4 
R2 M062X 0.0 -3.2 15.5 -75.2 18.7 

 

When using the HF method as QM component, the Criegee intermediate is found to be 15.3 

kcal/mol higher in energy than the reactant state, which is in striking contrast to the DLPNO-

CCSD(T) results just discussed. The energy of the transition state is shifted to even higher 
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energies, leading to an overall ∆‡E value of 33.9 kcal/mol at the HF/MM level. Hence, dynamic 

electron correlation plays a fundamental role also in this reaction.  

Although the DLPNO-CCSD/MM energies are significantly better than the HF/MM ones, 

the proper energy ordering between the Criegee intermediate and the reactant state is only 

obtained upon inclusion of the triples correction. Note that the DLPNO-CCSD(T) and DLPNO-

CCSD(T0) results differ in the predicted ∆‡E values again by about 1 kcal/mol, consistent with 

the PHBH case. 

It is interesting to compare the above results with those obtained at the DFT/MM level. With 

the only exception of M062X, all functionals predict the opposite energy ordering between the 

Criege intermediate and the reactant state with respect to DLPNO-CCSD(T). They also show a 

 

Figure 2 QM/MM reaction barriers for the cyclohexanone monooxygenation reaction in 

the active site of CHMO at various level of QM theory (QM region: R2). 
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very large variability in the computed ∆‡E values, ranging from -2.8 to 18.3 kcal/mol for BLYP-

D3 and M062X, respectively. A graphical representation of these results is shown in Figure 2.  

These results closely resemble our findings in the PHBH case: BLYP-D3 does not predict an 

energy barrier; B3LYP-D3 provides qualitatively correct results but underestimates the reaction 

energies by about 5 kcal/mol; M062X provides results that are similar to the DLPNO-CCSD 

ones, overestimating the energy barrier by 7.0 kcal/mol. Hence, the choice of the QM method 

is crucial for the accuracy of QM/MM predictions. In this specific case, reaction barriers are 

found to be much more sensitive to this choice rather than to the size of the QM region.  

The present work demonstrates that the novel linear scaling DLPNO-CCSD(T) method can 

be effectively used to study chemical reactions in complex condensed phase systems. Single-

point energy calculations at the DLPNO-CCSD(T)/MM level for fairly large QM regions can 

be now performed in a reasonable amount of time. As an example, the DLPNO-

CCSD(T)/TightPNO/def2-TZVPP/MM single-point energy calculations for QM region R2  

(206 atoms)  required about  one week (using 8 cores of a single node with two 8-core Intel 

Xeon E5-2670 CPUs and 256 GB of main memory).  

3. CONCLUSIONS 

The hydroxylation reaction catalyzed by PHBH and the Baeyer-Villiger reaction catalyzed 

by CHMO were investigated by means of QM/MM simulations employing highly correlated 

wavefunction-based methods as QM components. B3LYP/MM geometries were used in 

conjunction with single-point DLPNO-CCSD(T)/MM energy evaluations using the recently 

introduced iterative algorithm for the treatment of the perturbative triples correction. The results 

were compared with those obtained from analogous single-point QM/MM calculations in which 

various density functionals as well as the HF, DLPNO-CCSD, and DLPNO-CCSD(T0) 

methods were used as QM components.  
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For the hydroxylation reaction, we adopted a QM region of 49 atoms that had already been 

employed in previous QM/MM studies. The computed DLPNO-CCSD(T0)(TightPNO/aug-cc-

pVTZ)/MM energy barriers were found to be in good agreement with previously published 

LCCSD(T0)/MM results and available experimental data. The use of the iterative algorithm for 

the treatment of the perturbative triples correction further improved the quality of the computed 

activation energies by about 1 kcal/mol, thus providing new benchmark data for this reaction. 

For the Baeyer-Villiger reaction catalyzed by CHMO we considered three different QM 

regions with 99, 206, and 307 atoms. The computed DLPNO-CCSD(T)(TightPNO/aug-cc-

pVTZ)/MM energy profiles were found to be only weakly affected by the size of the QM region 

and by the choice of basis set. Also for this reaction, DLPNO-CCSD(T) and DLPNO-

CCSD(T0) activation energies were found to differ by about 1 kcal/mol.  

For both reactions, HF/MM calculations severely overestimate the energy barriers obtained 

at the DLPNO-CCSD(T) level. Hence, dynamic electron correlation plays a fundamental role. 

Probably for this reason, the DFT/MM results were found to be extremely sensitive to the 

specific exchange-correlation functional employed, leading to a wide range of predicted energy 

barriers. In these and similar situations, the DLPNO-CCSD(T) method in conjunction with a 

triple-ζ quality basis set as QM component provides more reliable QM/MM computational 

predictions. 

Finally, we note that DLPNO-CCSD(T)/MM calculations are now feasible for fairly large 

QM regions, as demonstrated in the case of CHMO (up to 307 atoms presently). This allows us 

to converge QM/MM relative energies both with regard to the QM methodology and the size 

of the QM region, and thus to approach quantitative accuracy in QM/MM studies of the 

energetics of enzymatic reactions.  
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