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We show that it is possible to construct an accurate approximation to the variational coupled cluster
method, limited to double substitutions, from the minimization of a functional that is rigorously ex-
tensive, exact for isolated two-electron subsystems and invariant to transformations of the underlying
orbital basis. This approximate variational coupled cluster theory is a modification and enhancement
of our earlier linked pair functional theory. It is first motivated by the constraint that the inverse
square root of the matrix that transforms the cluster amplitudes must exist. Low-order corrections
are then included to enhance the accuracy of the approximation of variational coupled cluster, while
ensuring that the computational complexity of the method never exceeds that of the standard tradi-
tional coupled cluster method. The effects of single excitations are included by energy minimization
with respect to the orbitals defining the reference wavefunction. The resulting quantum chemical
method is demonstrated to be a robust approach to the calculation of molecular electronic structure
and performs well when static correlation effects are strong. © 2011 American Institute of Physics.
[doi:10.1063/1.3615060]

I. INTRODUCTION

A central theoretical and computational problem in the
fields of quantum chemistry and molecular physics is the
purely ab initio prediction of molecular electronic structure.
The standard and widely accepted approach to the treat-
ment of this problem is to first make the Hartree-Fock1, 2

(HF) approximation, solving the resulting equations by a self-
consistent field procedure, and then to compute corrections to
this approximation by some scheme. The broad term “electron
correlation” is used to describe these corrections, which can
be further conceptually divided into “dynamic” and “static”
correlation. These terms refer, respectively, to the instanta-
neous correlated motion of the electrons that is not captured
by the HF mean-field treatment and to the character of the sys-
tem that cannot be captured easily from an underlying single-
configuration reference wavefunction approximation.

Low-order corrections may be determined from some
form of many-body perturbation theory, such as the Møller-
Plesset method,3 with the HF Slater determinant playing
the role of the zeroth-order wavefunction. However, the
convergence of the perturbation series is often a troubling
consideration4–6 and motivates the use of other theoretical
methodologies, although these are often used in conjunction
with perturbation theory for reasons of cost.

Of the alternative approaches, the conceptually (although
not computationally) simplest is configuration interaction7

(CI), in which the exact wavefunction is expanded linearly
in the basis of excited determinants. When all possible excita-
tions up to the number of electrons are included it is referred
to as full configuration interaction (FCI). Unfortunately, the
determinantal series typically must be truncated for compu-
tational practicality, say, to include single and double excita-
tions only (CISD). The method is then not extensive, meaning

a)Electronic mail: KnowlesPJ@Cardiff.ac.uk.

that calculated energies do not scale linearly with the size of
the system under consideration.

The widely used and highly successful coupled
cluster8–10 (CC) method has the advantage over variational
CI that its energy is rigorously extensive. However, when
the CC equations are determined by projection of the time-
independent Schrödinger equation against a basis (referred to
as traditional coupled cluster (TCC) or simply CC), its en-
ergy is not a variational upper bound to the exact energy.
Variational optimization of the energy expectation value us-
ing the CC wavefunction is referred to as variational cou-
pled cluster11 (VCC), but this is typically not computationally
feasible.

Before the emergence of the CC theory, corrections of
the CI method and other simple approximations, each of
which attempts to eliminate the unphysical unlinked cluster
contributions, were in use. These included the coupled pair
functional,12 the coupled electron pair approximation13–15

(CEPA), the linear coupled pair many-electron theory,16, 17

also known as CEPA(0), and the very simple Davidson
correction.18 CC has the advantage over the CEPA-type meth-
ods that it is both equivalent to FCI when the cluster operator
is not truncated and is invariant to rotations of the underly-
ing orbital spaces. However, more recent work19 has resulted
in more sophisticated, orbitally invariant approaches derived
from a VCC viewpoint.

When an underlying single-configuration reference
wavefunction is a good approximation, coupled cluster with
single and double excitations (CCSD) performs well. How-
ever, when static correlation effects become large and this
approximation breaks down, such as in cases of the break-
ing of multiple bonds, CCSD can fail, predicting unphysi-
cal potential energy surfaces. On the other hand, a number
of studies20–22 have confirmed the superiority of VCCSD and
related approaches over CCSD in such situations. This mo-
tivates a search for an approximation to VCC that remains

0021-9606/2011/135(4)/044113/9/$30.00 © 2011 American Institute of Physics135, 044113-1
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competitive with TCC both in terms of the computational cost
and the methodological properties of the approach.

II. THEORY

A. Coupled cluster theory

The fundamental ansatz of coupled cluster theory is the
exponential parameterization of the wavefunction

|�〉 = eT̂ |�0〉, (1)

T̂ = T̂1 + T̂2 + . . . , (2)

where |�〉 and |�0〉 are, respectively, the exact and (single
configuration) reference wavefunctions. Each cluster opera-
tor, T̂n, generates a weighted sum of all possible n-fold exci-
tations of the reference Slater determinant. An excitation is a
replacement of an orbital occupied in the reference with one
unoccupied in the reference. Typically, the cluster operator is
truncated to include single and double excitations only, for
reasons of computational cost

T̂1|�0〉 = T i
a

∣∣�a
i

〉
, (3)

T̂2|�0〉 = 1
4T

ij

ab

∣∣�ab
ij

〉
. (4)

The Einstein summation convention is used throughout
this paper, so that a repeated index is understood to imply a
summation over all possible values of that index. The indices
i, j, k, . . . are used to label occupied orbitals and a, b, c, . . .

to label virtual orbitals.
The traditional approach (TCC) to the approximate cal-

culation of the ground-state Schrödinger energy eigenvalue
is to insert the CC wavefunction ansatz into the Schrödinger
equation and, in order to decouple the amplitude equations
from the energy, premultiply by e−T̂ ,

e−T̂ Ĥ eT̂ |�0〉 = ETCC|�0〉. (5)

The energy, ETCC, and equations to be solved for the cluster
amplitudes can then be determined by projection. For exam-
ple, in the CCSD method, for which T̂ = T̂1 + T̂2, there are
three sets of equations that are acquired by projection with
the reference determinant and each of the singly and doubly
excited determinants

〈�0|e−T̂ Ĥ eT̂ |�0〉 = ETCC,

〈�a
i |e−T̂ Ĥ eT̂ |�0〉 = 0,

〈�ab
ij |e−T̂ Ĥ eT̂ |�0〉 = 0. (6)

The TCC approach possesses many properties that make
it a powerful method for the accurate calculation of ground-
state molecular electronic structure, such as its rigorous ex-
tensivity and exactness (equivalence to FCI) when the cluster
operator is not truncated. Unfortunately, it also has some trou-
bling characteristics. Energies calculated by the TCC method
are not variational upper bounds on the exact ground-state
Schrödinger energy eigenvalue, and the symmetric general-
ized Hellmann-Feynman theorem23 is not satisfied. These
problems can be understood by noticing that Eq. (5) can be

thought of as a Schrödinger equation with a similarity trans-
formed Hamiltonian, H̄ = e−T̂ Ĥ eT̂ . The operator H̄ is not
Hermitian, H̄ † �= H̄ .

Despite the widespread acceptance of the TCC approach,
a method that corrects or approximately corrects one or both
of the above problematic properties would be highly desir-
able.

A more intuitive way to calculate an approximate ground-
state energy within the coupled cluster ansatz would be to
variationally minimize the quantum mechanical energy ex-
pectation value with respect to the cluster amplitudes. This
is the VCC approach

EVCC = 〈�0|eT̂ †
Ĥ eT̂ |�0〉

〈�0|eT̂ †
eT̂ |�0〉

= 〈�0|eT̂ †
Ĥ eT̂ |�0〉L. (7)

In addition to extensivity and equivalence to FCI when the
cluster operator is not truncated, this approach also has the
additional advantages that, even with a truncated cluster oper-
ator, the VCC energy is an upper bound to the exact ground-
state Schrödinger energy eigenvalue, and that it satisfies the
symmetric generalized Hellmann-Feynman theorem. Indeed,
it possesses all of the properties typically agreed to be impor-
tant for a successful quantum chemical method, which makes
VCC extremely desirable.

Unfortunately, VCC is typically far more computation-
ally expensive than TCC. For example, consider the computa-
tional costs at the singles and doubles level. If N is the number
of electrons, the computational complexity of CCSD is O(N6)
(more precisely O(o2v4), where o is the number of occupied
orbitals and v is the number of virtual orbitals, where, typi-
cally v � o), whereas VCCSD scales as O(N !). The differ-
ence lies in the natural truncation of H̄ due to the Campbell-
Baker-Hausdorff formula,24 whereas the VCCSD functional
in energy expectation value form does not truncate naturally
except at the N -tuply excited limit. When the VCCSD de-
nominator is cancelled with the unlinked parts of the numera-
tor, uncancelled exclusion-principle-violating terms remain25

and no natural truncation occurs at all; the expression is infi-
nite.

The additional stability of VCCSD over CCSD can be at-
tributed to the variational upper bound property, and the the-
oretical attractiveness of VCCSD motivates the search for vi-
able approximations that may be computed within CCSD-like
O(o2v4) complexity.

B. Approximating VCCD

Since the effect of single excitations is usually small, a
first goal would be to approximate VCCD,

EVCCD = 〈eT̂
†

2 Ĥ eT̂2〉
〈eT̂

†
2 eT̂2〉

= 〈eT̂
†

2 Ĥ eT̂2〉L. (8)

In order to do this, the most obvious approach is to simply
truncate the exponential operator, eT̂2 , at some level, such as
to 1 + T̂2. It is easily demonstrable that such a truncation
yields a method that cannot be both extensive and exact (in
the sense that it is equivalent to CID) in the limiting case
of a two-electron system, simply by considering the VCCD
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energy expression. Truncating the exponential to 1 + T̂2 in the
first form of the energy in Eq. (8) yields CID, which is known
not to be extensive

ECID = 〈Ĥ 〉 + 2〈Ĥ T̂2〉 + 〈T̂ †
2 Ĥ T̂2〉

1 + 〈T̂ †
2 T̂2〉

= 〈Ĥ 〉 + 2〈Ĥ T̂2〉 + 〈T̂ †
2 (Ĥ − 〈Ĥ 〉)T̂2〉

1 + 〈T̂ †
2 T̂2〉

. (9)

On the other hand, the same truncation of the exponential in
the second form of the energy yields CEPA(0), which is not
exact even for two electrons,

ECEPA(0) = 〈Ĥ 〉 + 2〈Ĥ T̂2〉 + 〈T̂ †
2 Ĥ T̂2〉L

= 〈Ĥ 〉 + 2〈Ĥ T̂2〉 + 〈T̂ †
2 (Ĥ − 〈Ĥ 〉)T̂2〉. (10)

One could conceive of truncating the exponential later
in the infinite series, thus acquiring higher order VCCD
terms. Disregarding the fact that this does not solve the
above problem, even extending the truncation to 1 + T̂2

+ (1/2!)T̂ 2
2 would yield a method that scales as O(v6) in

computational complexity due to the presence of the term
(1/4)〈(T̂ †

2 )2 Ĥ T̂ 2
2 〉. This is much worse than CCSD.

Asymmetric expectation value expressions have also
been proposed, such as improved coupled cluster26 (ICC) and
extended coupled cluster27 (ECC). These approaches suggest
hierarchies of methods that step systematically from TCC to
VCC depending on the level of truncation employed. How-
ever, in addition to the increased computational complexity
over TCC, these approaches have the disadvantage that one
has no rigorous guarantee of extensivity at arbitrary trunca-
tion, except at the extremes of the hierarchies.

C. Linked pair functional theory

The recently proposed28 doubles-only linked pair func-
tional (LPFD) may be thought of as an approximation to
VCCD that maintains the essential properties of exactness and
extensivity. The LPFD ground-state energy is defined to be
the minimum of the LPFD functional with respect to the clus-
ter amplitudes T

ij

ab,

ELPFD = 〈Ĥ 〉 + 2〈Ĥ 2T̂ 〉 + 〈1T̂
†(Ĥ − 〈Ĥ 〉)1T̂ 〉. (11)

This functional is, of course, related to both CID and
CEPA(0). The noteworthy difference is the presence of the
qT̂ operators, which are modified double excitation oper-
ators. These are defined by their action on the reference
wavefunction,

qT̂ |�0〉 = 1
4 qT

ij

ab

∣∣�ab
ij

〉
, (12)

qT
ij

ab = 1
2

(
qU qPu

)ij

kl
T kl

ab, (13)

qU
ij

kl = δ
ij

kl + qSu�
ij

kl, (14)

�
ij

kl = λη
ij

kl + 1
2 (1 − λ)

(
δi
kη

j

l − δi
l η

j

k − δ
j

k η
i
l + δ

j

l η
k
i

)

= λη
ij

kl + 1
2 (1 − λ) (1 − τij )(1 − τkl)δi

kη
j

l , (15)

where τij permutes the labels i, j in what follows, and

η
ij

kl = 〈T̂ †klj †i†T̂ 〉 = 1
2T

ij

abT
ab
kl ,

ηi
j = 〈T̂ †ji†T̂ 〉 = 1

2T ik
abT

ab
jk ≡ ηik

jk. (16)

The quantities qPu and qSu are rational parameters chosen to
satisfy certain conditions (discussed below), and the quantity
λ is a continuously adjustable real scalar parameter.

One can define powers of qU, if one considers the indices
labelling qU to be the unique pair indices,

ij ∈ {kl : k ∈ {1 . . . N}, l ∈ {1 . . . (k − 1)}},
where N is the number of electrons, in which case summa-
tions should be rewritten as summations over unique pairs.
It is then clear that qU is simply a Np × Np matrix, where
Np = N (N − 1)/2, the number of electron pairs. Powers
of qU then are defined simply through the powers of this
matrix.

The purpose of introducing the transformed cluster am-
plitudes qT

ij

ab is to ensure exactness in the limiting case of
isolated two-electron subsystems, since then the matrix qU
contains the CID square norms of the isolated pairs. The
powers, qPu, and coefficients, qSu, are fixed by the require-
ment that the square norms enter as local denominators for
each term in the numerator containing the appropriate cluster
amplitudes

qSu = 1,

qPu = −q

2
. (17)

Independent of qPu and qSu, this theory is extensive since no
unlinked contributions are introduced. Since, in the case of a
two-electron system, CID and VCCD are indistinguishable,
LPFD is, in this sense, also an approximation to VCCD.

Of course, one may instead interpret the effect of the
amplitude transformations as introducing an infinite series of
terms via the binomial expansion of the powered qU,

qU qPu = (δ + qSuδ) qPu

= δ + qSu qPuδ + . . . . (18)

It is in this conceptual form that the correspondences with
VCCD are most clear. LPFD can be understood to capture a
subset of the terms in the infinite series 〈eT̂

†
2 Ĥ eT̂2〉L. In the

two-electron limit, cancellations between VCCD terms occur
within each order of T , and, independent of λ, LPFD always
captures a subset of VCCD terms, appropriately weighted,
that gives the correct two-electron behaviour. The value of λ

controls the specific subset that is captured and the weightings
of the terms within it.

This is most easily understood by considering the exam-
ple of the O(T 3) VCCD terms arising from 〈T̂ †

2 Ĥ T̂ 2
2 〉L. This

is the first interesting term in VCCD, since the LPFD func-
tional captures up to O(T 2) in VCCD exactly even without
the amplitude transformations, since then it is just CEPA(0).
The individual contributions to this term are given diagram-
matically in Fig. 1. In the limit of two electrons, these terms
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BA

DC

FIG. 1. O(T 3) terms contributing to VCCD.

obey the following relationships:

A + D = 0,

B + 2C = 0. (19)

The same two-electron contribution may then be captured in
multiple ways

A + B + C + D = B + C = −C = 1
2 B. (20)

Similar cancellations have been noted by Huntington and
Nooijen29 also to occur in the TCCSD residual.

By construction, all values of λ give rise to some com-
bination of the diagrams B and C. For example, λ = 0 yields
(1/2)B and λ = +1 yields −C. If the goal is an approximate
VCCD theory, λ = −1 is the best choice, since it yields both
terms exactly as they appear in VCCD, B + C. This is the best
than can be done from this ansatz since A + D is not obtain-
able from qU.

Independent of λ, LPFD possesses most of the properties
of electronic structure methods that are widely agreed to be
either important or essential.

� It is exactly equivalent to CID in the case of two elec-
trons, since in that case qU is a scalar and equal to the
norm of the wavefunction, 1 + 〈T̂ †T̂ 〉.

� The expression can be written in terms of linked dia-
grams only and is therefore rigorously extensive.

� The energy is a scalar that is invariant to rotations of
the underlying orbital spaces {ψi} and {ψa}.

� The energy is not an upper bound to the exact ground-
state Schrödinger eigenvalue, but variational mini-
mization of the functional gives a theory that sat-
isfies the symmetric generalized Hellmann-Feynman
theorem.

D. Positivity and the linked pair functional

Since much discussion will be given to different choices
of λ in the LPFD theory, the notation LPFD(λ) is occasionally
employed.

By inspection, it can be seen that the η matrices of
Eq. (16) are Gram matrices, and so are necessarily positive-
semidefinite. However, it does not immediately follow that
� is also positive-semidefinite. We are unable to construct

an argument for the positivity of qU for arbitrary λ and, in
fact, there exists a numerical counter-example for the case of
λ = −1.

Since this is a compelling disproof of the positivity of
qU in the general case, one cannot be sure that its matrix in-
verse and inverse square root exist, implying a failure of the
approach. This presents a strong constraint on the available
choices of λ, one which it seems only λ = +1 satisfies within
the current formulation of the theory, since then the positive-
semidefiniteness of � follows from its equality to η.

Rather than proceed with this choice, we consider a refor-
mulation and simplification of the theory, which is suggested
by considering the form of the first order contributions (of the
binomial expansion of the powered qU) to the transformed
amplitudes with the choice λ = 0,

1
2�

ij

kl T
kl
ab = 1

4 (1 − τij )(1 − τkl)δi
k η

j

l T kl
ab

= 1
2 (1 − τij )ηi

k T
kj

ab . (21)

This suggests the following new definitions:

qU
i
j = δi

j + qSu�
i
j , (22)

�i
j = ηi

j , (23)

qT
ij

ab = 1
2 (1 − τij )

(
qU qPu

)i

k
T

kj

ab . (24)

Since here �i
j = ηi

j , �i
j is an element of a positive-

semidefinite matrix. Obviously, δi
j is an element of a positive-

definite matrix, the identity, for which all the eigenvalues are
1. Hence, qU will be a positive-definite matrix and its inverse
and inverse square root always exist.

This is very much like doing LPFD(0) in a positive-
definite way. It has the aesthetic property that qU is now
indexed by electrons, rather than by electron pairs, and so
the matrix is significantly smaller in general. Of course, this
is not LPFD(0); the agreement between LPFD(0) and this
new formulation of the theory is lost at high orders since
the different definitions of matrix powers produce different
terms. For example, in LPFD(0), ηi

k η
j

l T kl
ab is a contribution

to (1/2)(�2)ijkl T
kl
ab , but (η2)ij = ηi

k ηk
j and cannot produce this

term. However, LPFD(0) and this new theory agree exactly
to O(T 4) so, numerically, the differences are expected to be
small.

All of the noteworthy properties of LPFD are preserved
in this reformulation, so there is no obvious disadvantage to
this approach. However, there is also no reason to believe it
is, as an approximation to VCCD, a better theory than simply
making use of LPFD(+1). For now, we adopt this new theory
due to its theoretical and computational simplicity, but future
work will address whether LPFD(+1) is a better underlying
theory for approximate variational coupled cluster, to be pre-
sented in Sec. II F. In what follows, when we refer to LPFD(0)
or simply LPFD, we mean this new approximate λ = 0 the-
ory, unless otherwise stated.
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E. The replacement of single excitations by orbital
optimization

In order for LPF to be a competitive ab initio quantum
chemical method, it must incorporate both single and double
excitations. Extending the LPFD theory to explicitly include
singles is not a trivial task, and we defer this problem to later
work. In our earlier work,28 the Brueckner orbitals from a pre-
ceding BCCD calculation30 were instead used. These are a
set of orbitals in which the optimum singles amplitudes in a
CCSD calculation vanish. Thus, when these orbitals are used,
a doubles-only functional that is equivalent to CID in the lim-
iting case of two electrons (such as LPFD) is also equivalent
to FCI.

While this approach suffices, it possesses two disadvan-
tages over a more inclusive approach. First, the requirement of
performing a calculation of the same computational complex-
ity, O(N6), as LPFD prior to the LPFD calculation itself un-
dermines the simplicity of the approach. Second, the BCCD
equations, Eq. (25), are derived from a projective approach
analogous to CCSD, rather than the requirement that the en-
ergy is at a variational minimum,

〈�0|Ĥ (1 + T̂2)|�0〉 = E,

〈�a
i |Ĥ (1 + T̂2)|�0〉 = 0,

〈�ab
ij |Ĥ (1 + T̂2 + 1

2 T̂ 2
2 )|�0〉 = T ab

ij E. (25)

Both of these problems can be solved by asserting that
the LPFD functional should be variationally minimized with
respect to both the doubles amplitudes and the orbitals. The
first of these conditions is satisfied by the requirement that the
derivative of the functional with respect to the doubles van-
ishes, just as in the doubles-only case. The second condition
can be derived and implemented straightforwardly as shown
by Kollmar and Heßelmann31 in the case of CEPA and some
other pair methods. The orbital gradient for LPFD is then ob-
tained by setting, in the language of Ref. 31, fijkl = 0, to
obtain the CEPA(0) orbital gradient, and then replacing each
B in fia with 2B or 1B for terms linear and quadratic in B,
respectively.

When the LPFD functional is optimized with respect to
both the doubles amplitudes and the orbitals, we choose to
denote it as OLPFD. We have also implemented optimization
of the energy functional with respect to doubles amplitudes
only, with the constraint that the Brueckner condition

〈�a
i |Ĥ (1 + 1T̂2)|�0〉 = 0 (26)

is satisfied, and we denote this ansatz BLPFD. The OLPFD
has the advantage that it is fully variational, making the calcu-
lation of properties simpler, since solution of the linear equa-
tions that determine the Lagrangian multipliers32 is unneces-
sary. However, BLPFD is computationally cheaper since the
recalculation of integrals with three external indices in each
iteration can be avoided.33

F. Approximate variational coupled cluster theory

Regardless of the choice made between LPFD(+1) and
LPFD(0) doubles-only theories, neither is a particularly good
approximation to VCCD, each acquiring just one of the four
unique O(T 3) VCCD terms. The LPFD(-1) would be superior
since it acquires two of the four terms with the correct weight-
ings. However, even if it had not been discarded already on the
grounds of positivity, improvements could still be added.

In this section, low-order corrections are added to the
doubles-only theory, to give the best possible correspondence
with VCCD. These corrections do not increase the computa-
tional complexity of the theory above O(o2v4), so that it is
still competitive with CCSD, and do not disturb any of the
highly desirable properties of LPFD, particularly exactness
for isolated two-electron subsystems and extensivity. This is
ensured by formulating the corrections as additional trans-
formation matrices. We denote this new method approximate
variational coupled cluster (AVCC). In the present work, the
functional is restricted to double excitations (AVCCD), and
the effect of single excitations is taken into account by orbital
optimization (OAVCCD), or through the Brueckner condition
(BAVCCD).

The OAVCCD ground-state energy is the minimum of the
AVCCD functional with respect to the cluster amplitudes and
orbitals,

EAVCCD = 〈Ĥ 〉 + 2〈Ĥ 2T̂ 〉 + 〈1T̂
†(Ĥ − 〈Ĥ 〉)1T̂ 〉, (27)

qT̂ |�0〉 = 1
4 qT

ij

ab

∣∣�ab
ij

〉
. (28)

In addition to the use of the qU transformation, two new trans-
formations are defined, the qW and qV transformations. Each
transformation makes use of the η matrices, to which some
new definitions are added,

η
ij

kl = 〈T̂ †klj †i†T̂ 〉 = 1
2T

ij

abT
ab
kl ,

ηi
j = 〈T̂ †ji†T̂ 〉 = 1

2T ik
abT

ab
jk ≡ ηik

jk,

ηib
aj = 〈T̂ †jb†ai†T̂ 〉 = T ik

ac T
bc
jk ,

ηb
a = 〈T̂ †b†aT̂ 〉 = 1

2T
ij
acT

bc
ij ≡ 1

2ηib
ai . (29)

The qU transformation remains the same as in the approxi-
mate LPFD(0) theory,

qU
i
j = δi

j + qSu �i
j , (30)

�i
j = ηi

j , (31)

(
qU qPu T

)ij

ab
= 1

2 (1 − τij )
(

qU qPu
)i

k
T

kj

ab , (32)

qSu = 1, qPu = −q

2
. (33)

The purpose of the qW transformation is to make the method
equivalent to LPFD(-1) to O(T 4). At O(T 3), for example, it
introduces the additional terms (1/2)B + C, which adds with
the (1/2)B from LPFD(0) to total B + C. This is the correct
total contribution of the terms B and C, since this is how they
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enter VCCD,

qW
ij

kl = δ
ij

kl + qSw 	
ij

kl, (34)

	
ij

kl = η
ij

kl − 1
2 (1 − τij )(1 − τkl) δi

kη
j

l , (35)

(
qW qPw T

)ij

ab
= 1

2

(
qW qPw

)ij

kl
T kl

ab. (36)

The purpose of the qV transformation is to go beyond LPFD(-
1) and add, at O(T 3) for example, the terms A + D,

qV
ib
aj = δib

aj + qSv 
ib
aj , (37)


ib
aj = 2

(
δi
j η

b
a − ηib

aj

)
, (38)

(
qV qPv T

)ij

ab
= 1

4 (1 − τij )(1 − τab)
(

qV qPv
)ic

ak
T

kj

cb . (39)

We choose, for now, to apply these transformations se-
quentially; the qU-transformed amplitudes are used in the
place of the untransformed amplitudes in the qW transforma-
tion, and the qWqU-transformed amplitudes are used in place
of the untransformed amplitudes in the qV transformation,

qT
ij

ab = (
qV qPv

qW qPw
qU qPu T

)ij

ab
. (40)

Note that, for two electrons, both matrices qW and qV reduce
to the identity, or equivalently, � and � are zero matrices.
Therefore, these transformations have no effect in the two-
electron limit and the theory remains exact.

The choices of qSw, qPw, qSv , and qPv are therefore
somewhat arbitrary. However, they are constrained by the re-
quirement of agreement with VCCD at O(T 3) to obey the re-
lationships given in Eq. (41),

qSw.qPw = −qSv.qPv = + q

2 . (41)

We therefore make the choices qPw = +1, qSw = + q

2 and
qPv = +1, qSv = − q

2 . This is the most obvious choice, based
on two considerations. First, negative and non-integer powers
of each of these matrices are ruled out on the grounds of pos-
itivity. Second, since neither matrix needs to be powered, the
increase in computational difficulty from LPFD to AVCCD is
minimized. This is especially important for qV, which can get
quite large.

We now discuss the correspondences between VCCD and
AVCCD. By construction, AVCCD is equivalent to VCCD to
O(T 3). This is a significant improvement over all LPFD the-
ories, including LPFD(−1).

At O(T 4) (where the relevant VCCD term is
(1/4)〈(T̂ †

2 )2 Ĥ T̂ 2
2 〉L), AVCCD still omits some terms

from VCCD. However, although AVCCD and VCCD do
not agree to this order in general, the combination of terms
in AVCCD is known to be reasonable since there is exact
agreement to O(T 4) in the limiting case of two virtual
spin-orbitals.

Although it is, in principle, also possible to add the terms
omitted by AVCCD at O(T 4) without breaking any of the
important properties of the method, doing so would violate
the criterion that the method is computable in O(o2v4) time,
since one of the omitted terms is precisely that term that
makes (1/4)〈(T̂ †

2 )2 Ĥ T̂ 2
2 〉L scale as O(v6) in computational

complexity.

III. NUMERICAL RESULTS

The BLPFD, OLPFD, BAVCCD, and OAVCCD have
been implemented in the closed-shell CCSD program33 of
the MOLPRO (Ref. 34) quantum chemistry software pack-
age. We now present some benchmark results comparing
these methods with CCSD. For reasonably small systems
and basis sets, we are able to compare directly against
VCCSD and FCI. When VCCSD and FCI calculations are
prohibitively expensive, we instead compare against other
methods, such as CCSD(T) (Ref. 35) or Davidson-corrected
internally contracted multireference CI,36 hereafter abbrevi-
ated to MRCI+Q.

We first examine some calculated atomic correlation en-
ergies, given in Table I. In the case of C, O, Si, and S, the
reference wavefunction is one of the closed-shell single deter-
minants contributing to the 1S and 1D states. The results for
the OLPFD method are deceptively good. For example, it pre-
dicts a correlation energy for the carbon atom very close to the
CCSD(T) value. However, it sometimes overshoots, as in the
case of the oxygen atom. Where the single-determinant refer-
ence function is a good approximation (Ne and Ar), LPFD is
close to CCSD. The OAVCCD, however, gives correlation en-
ergies that are very close to those from CCSD in all cases, and
this agreement persists on inclusion of the perturbative triples
correction. We have also included the energies calculated by
the BLPFD and BAVCCD methods, which differ by at most
0.1 mEh from the results with variational orbital optimization.

We also examine the predicted equilibrium bond lengths
and spectroscopic constants of some closed-shell diatomic
molecules in Table II. We show results for HF and CO in a

TABLE I. Comparison of the valence-shell correlation energies (in millihartrees, mEh) of some singlet-state atoms.
All calculations were performed with the cc-pV5Z basis.

Atom CCSD BLPFD OLPFD BAVCCD OAVCCD CCSD(T) OAVCCD(T)

C –126.5 –132.3 –132.4 –125.2 –125.2 –132.2 –129.7
O –217.7 –233.9 –234.0 –216.0 –216.0 –229.1 –225.0
Ne –305.5 –305.3 –305.4 –305.2 –305.3 –311.6 –311.5
Si –105.0 –111.0 –111.0 –103.4 –103.4 –110.0 –107.5
S –184.4 –198.6 –198.7 –182.7 –182.8 –194.8 –191.6
Ar –255.6 –258.0 –258.0 –255.5 –255.5 –264.9 –264.7
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TABLE II. Comparison of equilibrium bond lengths (Å) and spectroscopic
constants (cm−1) for some diatomic molecules.

Method Re ωe ωexe

HF with the 6-31G basis
CCSD 0.9462 3780.7 95.30
OLPFD 0.9458 3783.1 96.36
OAVCCD 0.9460 3785.0 95.11
VCCSD 0.9464 3778.3 95.45
FCI 0.9475 3757.3 96.45

HF with the cc-pV5Z basis
CCSD 0.9154 4172.9 89.50
BLPFD 0.9151 4174.4 90.47
OLPFD 0.9152 4172.6 90.69
BAVCCD 0.9149 4181.0 89.26
OAVCCD 0.9151 4178.9 89.40
CCSD[T] 0.9185 4122.7 91.06
CCSD(T) 0.9182 4128.3 90.82
BLPFD(T) 0.9181 4125.4 92.07
OLPFD(T) 0.9182 4124.6 92.24
BAVCCD(T) 0.9179 4133.7 90.56
OAVCCD(T) 0.9180 4132.6 90.64
Empirical 0.9168 4138.3 89.88

CO with the STO-3G basis
CCSD 1.1822 2179.4 9.64
OLPFD 1.1807 2191.8 9.80
OAVCCD 1.1816 2182.2 9.88
VCCSD 1.1820 2180.4 9.75
FCI 1.1925 2068.7 11.62

CO with the cc-pV5Z basis
CCSD 1.1236 2235.5 12.08
BLPFD 1.1228 2246.7 11.83
OLPFD 1.1233 2240.8 11.98
BAVCCD 1.1223 2251.0 11.79
OAVCCD 1.1227 2244.9 11.96
CCSD[T] 1.1327 2136.7 14.19
CCSD(T) 1.1307 2164.5 13.11
BLPFD(T) 1.1309 2166.0 12.99
OLPFD(T) 1.1312 2161.2 13.15
BAVCCD(T) 1.1299 2174.4 12.89
OAVCCD(T) 1.1302 2169.5 13.07
Empirical 1.1283 2169.8 13.29

HCl with the cc-pV5Z basis
CCSD 1.2735 3014.1 49.58
BLPFD 1.2744 3002.4 50.47
OLPFD 1.2745 3001.8 50.52
BAVCCD 1.2733 3016.6 49.44
OAVCCD 1.2734 3016.1 49.48
CCSD[T] 1.2759 2989.7 50.53
CCSD(T) 1.2758 2990.5 50.52
BLPFD(T) 1.2770 2975.4 51.65
OLPFD(T) 1.2770 2975.2 51.69
BAVCCD(T) 1.2757 2992.7 50.31
OAVCCD(T) 1.2757 2992.6 50.34
Empirical 1.2746 2990.9 52.82

minimal basis set, in order to allow comparison with FCI and
VCCSD results. Results for HF, CO, and HCl in the cc-pV5Z
basis37 are also included. In this basis, we compare against
both CCSD(T) and the empirically known values. We have
additionally included results obtained by adding the standard
(T) correction35 evaluated with the converged doubles ampli-

tudes from the LPFD and AVCCD calculations using both
variational and Brueckner orbitals. The conclusions are simi-
lar to those from the atoms; both OLPFD and OAVCCD pro-
duce similar results to CCSD, which is itself close to VCCSD.
In the case of CO, the harmonic frequency from OLPFD
is somewhat too high, but OAVCCD agrees very well with
VCCSD.

Quantum chemical methods may also be benchmarked
by the calculation and comparison of barrier heights, for
which Truhlar et al.38, 39 have given several representative test
cases. Since OLPFD and OAVCCD have been implemented
only in a closed-shell program, the number of test cases is
limited, but we are able to calculate barrier heights for the
following reactions:

F− + CH3Cl → FCH3 + Cl−

Cl− + CH3Cl → ClCH3 + Cl−

OH− + CH3F → HOCH3 + F−

HCN → HNC.

In Table III, barrier heights calculated in the 3-21G ba-
sis are given. The CCSDT results obtained using the MRCC
program40 of Kállay demonstrate that the error due to the per-
turbative treatment of triple excitations in CCSD(T) is small
relative to the error of CCSD. Barrier heights in the more rep-
resentative cc-pVTZ basis37 are given in Table IV, where the
double-excitation methods can be compared with CCSD(T).

The conclusions from this test are no different; OAVCCD
performs very much like CCSD. It is possibly the case that
static correlation, for which OAVCCD may be a superior
description, is weak for these barriers, which leads to the
CCSD-like behaviour. Overall, we conclude that OAVCCD
is very slightly inferior to CCSD for the treatment of dy-
namic correlation. However, we now turn to the examina-
tion of some systems where static correlation effects are
strong.

We first examine the potential energy curve of BeO, given
in Fig. 2, predicted by each of the methods with the STO-3G

FIG. 2. Potential energy curve of BeO with the STO-3G basis set and all
electrons correlated.
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TABLE III. Calculated barrier heights (in millihartrees, mEh) with the 3-21G basis.

Reaction OLPFD OAVCCD CISD+Q CEPA(0) CCSD CCSD(T) CCSDT

F− + CH3Cl → FCH3 + Cl− –36.937 –36.541 –37.303 –39.008 –36.763 –38.454 –38.474
Cl− + CH3Cl → ClCH3 + Cl− 2.045 2.278 1.615 0.533 1.978 0.747 0.599
OH− + CH3F → HOCH3 + F− –43.346 –42.802 –41.282 –46.328 –43.263 –46.137 –46.242
HCN → HNC 110.415 111.179 109.096 105.556 110.703 109.182 108.888

basis. This system exemplifies the difference between CCSD
and VCCSD. The shape of the CCSD curve is particularly
poor at long bond lengths, crossing the FCI curve between
2.2 Å and 2.3 Å. The VCCSD performs significantly better,
remaining fairly parallel to the FCI curve throughout the re-
gion investigated. Unlike CCSD, it does not cross the FCI
curve, because the VCCSD energy functional is an upper
bound on the ground-state energy. It is hard to say whether
OLPFD performs better or worse than CCSD in this system;
it remains closer to the VCCSD curve for a while but levels off
quickly and ends up below the CCSD curve and significantly
below the FCI. On the other hand, OAVCCD remains particu-
larly close to the VCCSD curve even at long bond lengths and
is thus qualitatively correct throughout. Although OAVCCD
is not an upper bound on the exact ground-state energy, it still
makes use of a variationally minimized energy functional and
clearly inherits some stability from its parent theory, VCCSD.

The situation for BeO appears to remain much the same
in the larger aug-cc-pVTZ basis,41 illustrated in Fig. 3, except
now VCCSD is unavailable for comparison. Given the evi-
dence from the smaller STO-3G basis and the lack of changes
to the relative positioning of the OAVCCD and CCSD curves,
OAVCCD may still mimic the VCCSD behaviour better than
CCSD here, despite the improved CCSD performance.

The potential energy curve of C2 with the cc-pVDZ
basis37 (d functions omitted), shown in Fig. 4, provides an-
other interesting example. In this calculation, only the four
electrons occupying the 1πu orbitals in the reference are cor-
related, in order to explore the effect of the 1πu − 3σg near
degeneracy. None of the methods describes this system par-
ticularly well in comparison to FCI; the predicted equilibrium
bond lengths are in each case roughly 0.1 Å too short. This
can be attributed to strong dynamic correlation in the equilib-
rium region that is not captured by any of the methods due to
the truncation of the cluster operator to the singles and dou-
bles level. This is evidence that a variational approach (such
as VCCSD) is no more useful than a non-variational approach
(such as CCSD) in such situations. However, as the bond is
stretched, static correlation effects also become strong and a
clear difference between CCSD and VCCSD emerges. The

FIG. 3. Potential energy curve of BeO with the aug-cc-pVTZ basis set and
all electrons correlated.

FIG. 4. Potential energy curve of C2 with the cc-pVDZ basis set (d functions
omitted). Only the four electrons occupying 1πu in the reference wavefunc-
tion were correlated.

TABLE IV. Calculated barrier heights (in millihartrees, mEh) with the cc-pVTZ basis.

Reaction OLPFD OAVCCD CISD+Q CEPA(0) CCSD CCSD(T)

F− + CH3Cl → FCH3 + Cl− 1.483 2.037 1.832 − 2.180 1.682 –0.369
Cl− + CH3Cl → ClCH3 + Cl− 22.079 22.898 23.054 18.193 22.517 19.807
OH− + CH3F → HOCH3 + F− –15.568 –14.683 –3.881 –21.508 –15.363 –20.276
HCN → HNC 76.309 77.046 76.239 71.506 76.752 76.076
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FIG. 5. Long bond length behaviour of the potential energy curve of C2 with
the aug-cc-pVTZ basis set and all electrons correlated.

CCSD predicts a maximum in the potential energy curve at
∼2.0 Å. This behaviour is unphysical and qualitatively incor-
rect in comparison to the FCI. The VCCSD does not show
this failure, and this can again be attributed to its variational
upper bound property. The OAVCCD curve does not follow
the VCCSD curve as precisely as in the case of BeO, but it
still remains qualitatively correct and does not fail in the same
catastrophic fashion as CCSD.

Finally, we examine C2 at long bond lengths in the aug-
cc-pVTZ basis, with all electrons correlated, illustrated in
Fig. 5. The predicted unphysical maximum of CCSD has now
vanished, but the methods predict the bonds to be fully bro-
ken (defined as the curve levelling off to close to zero gradi-
ent) at different bond lengths. The CCSD predicts a flat po-
tential energy curve from around 2.8 Å onwards, whereas the
OAVCCD curve remains highly parallel with the MRCI+Q
curve, predicting a non-zero gradient over the 2.8 Å–3.0
Å region. We do not illustrate OLPFD on either of the C2

plots since the method becomes qualitatively incorrect at
bond lengths too short for any meaningful comparison to be
made.

IV. CONCLUDING REMARKS

We have shown that it is possible to construct an approx-
imation to VCCSD with computational demands that scale as
O(o2v4), and which is exact for isolated two-electron subsys-
tems, rigorously extensive, and possesses several other aes-
thetic qualities. The approximation agrees with VCCD to
O(T 3) but replaces difficult diagrams at O(T 4) and beyond
by an effective closed-form correction.

We have also demonstrated that the predictions of the
OAVCCD method are extremely similar to CCSD when static
correlation effects are weak. However, in cases of strong static
correlation, OAVCCD is robust and close to VCCSD and does
not suffer the same poor performance as CCSD. In cases dom-

inated by dynamic correlation, extending the cluster operator
to include triple or quadruple excitations remains more im-
portant than the variational character of the method.
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